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I. INTRODUCTION

Vesicles are considered as one of the main components
of life. They consist of a bilayer membrane of amphiphilic
molecules that are composed of a “water-loving (polar)”
head-group and a “water-avoiding” hydrocarbon chains.
Even though the membrane of vesicle has a thickness of
typically a few nanometers, the size of vesicle can be in
the order of up to 100 micrometers. Lipid bilayer vesicles
are remarkably flexible surfaces that show a wide variety
of shape deformation due to external conditions.

The dynamical aspect of vesicles, especially, the
translocation through a narrow pore due to external driv-
ing forces is an interesting problem. The mechanism is
relevant to, for example, many transdermal applications,
transendothelial migration in immune system and drug
delivery in pharmacological research etc. The interest-
ing question is that how the effectiveness of such filtra-
tion process depends on various parameters of the system
such as the driving forces, bending and stretching moduli
of the vesicle, the initial size of the vesicle, and geometry
and size of the pore.

In this research, we use Onsager variational principle
to study translocation phenomena of a vesicle through a
pore. We are interested in two problems of such a kind of
this translocation process. First, we investigate translo-
cation process of a vesicle through a hole in a solid mem-
brane separating two chambers, where we focus on the ki-
netic pathway of the translocation. Onsager principle can
give us the kinetic pathways of the state changes. On the
other hand, the minimum energy paths or the reaction
paths can be obtained by employing the string method.
Our main purpose is to discuss the paths obtained from
these two different methods when the external driving
force changes. The second problem is the birthing of
a vesicle through a small pore in self-reproducing vesi-
cle system. The binary giant unilamellar vesicle (GUV)
constituted of cylinder- and inverse-cone-surfactants can
form an inclusion vesicle, called the daughter vesicle in-
side the mother vesicle and then the inclusion vesicle is
expelled through the pore by a controlled temperature
cycling. We again use the Onsager principle to investi-
gate the birthing process of the daughter vesicle.
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FIG. 1. The reaction and the kinetic paths at large pressure
difference ∆Pa = λ.

II. TRANSLOCATION OF A VESICLE
THROUGH A NARROW HOLE ACROSS A

MEMBRANE [1]

We simply model a translocating vesicle by two con-
nected spheres. Due to the pressure difference across the
membrane, the vesicle can translocate through the pore
from one side to another side.

At large pressure difference ∆Pa = λ, where a and λ
are the radius of the hole and the stretching modulus,
respectively, Fig. 1 shows the difference between the re-
action path (blue line with filled circle) obtained from the
string method and the kinetic paths obtained from the
Onsager principle when the friction parameter changes.
Figure 1 indicates that reaction and kinetic paths are sig-
nificantly different from each other if the external force
is large. Because the external force exerted on the liquid
flow induces a quick flow of the liquid compared to the
diffusion of the surfactant molecules, the time evolution
of x (liquid volume) is much faster than the evolution
of y (number of the surfactant molecules). This is why
we have the difference between the result from the string
method and the kinetic paths obtained from the Onsager
principle. The solid red line indicates the kinetic path for
large value of the friction coefficient of the hole on the
surfactant molecules ζs.
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FIG. 2. The motion of the daughter vesicle with different
value of the friction coefficient.

FIG. 3. The trajectory of the daughter vesicle with different
size b.

Moreover, we see clearly that the translocation time
decreases when the pressure difference increases and, at
the same value of the pressure difference, the vesicle has
succeeded in the translocating with less translocation
time for the small value of ζs. Our results also suggest
that the translocation time increases as the initial size
of the vesicle increases at a given value of the pressure
difference.

III. BIRTHING OF A DAUGHTER VESICLE IN
SELF-REPRODUCING VESICLE SYSTEM

In this problem, we present theoretical model on the
birthing process of a single, rigid daughter vesicle through
a pore by using a simple geometric ansatz. By solving the
equation of motion of the daughter vesicle derived by us-
ing Onsager principle numerically, we obtain the trajec-
tory of the daughter vesicle when the friction coefficient
changes as shown in Fig. 2. The results show clearly that
the translocation time decreases when the friction caused
by the pore against the motion of the daughter vesicle de-
creases. In Fig. 3, our results also suggest that when the
daughter vesicle is large, the mother vesicle feels more
uncomfortable. Consequently, the large daughter vesicle
is then expelled with higher speed compared to the case
of small daughter vesicle. However, the high speed will
be decreased by the effect of barrier from the line tension
energy.

IV. CONCLUSIONS

In this research, we study translocation phenomena
of a vesicle through a narrow pore by using the On-
sager principle. The first problem is the translocation
of a vesicle through a hole in a solid membrane sep-
arating two chambers. We found that the transloca-
tion time decreases as the pressure difference across the
membrane increases, or the initial size of the vesicle de-
creases as expected. The reaction paths obtained from
the string method and the actual kinetic paths obtained
from the Onsager principle are significantly different from
each other if the external driving force is large. This
suggests that the Onsager principle is an extension of
the string method at large external driving force. For
the second problem, we investigate the birthing process
of a daughter vesicle in self-reproducing vesicle system.
The equation of motion for the daughter vesicle is de-
rived by using the Onsager principle. We found that the
translocation time decreases when the friction caused by
the hole against the motion of the daughter vesicle de-
creases. When the daughter vesicle is large, the mother
vesicle feels more uncomfortable. Consequently, the large
daughter vesicle is then expelled with higher speed com-
pared to the case of small daughter vesicle.

[1] P. Khunpetch, X. Man, T. Kawakatsu, and M. Doi, J.
Chem. Phys. 148, 134901 (2018).
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CHAPTER I

Introduction

1.1 Motivation

Vesicles are considered as one of the main components of life. Vesicles consist of a

bilayer membrane of amphiphilic molecules that are composed of a “water-loving

(polar)” head-group and a “water-avoiding” hydrocarbon chains. Amphiphilic

lipid molecules play a role in the evolution from molecular assembly to cellular

life [1], [2], [3]. Soap and detergent are common amphiphilic substances that we

can see in everyday life. Due to hydrophobic interactions of the hydrocarbon

chains, the amphiphilic molecules start to assemble spontaneously into two layers

held together by non-covalent forces when the concentration in aqueous solution

is high enough [4], [5]. In order to avoid the interaction with water at the edge

of the membrane, the bilayer forms a closed surface called a vesicle. Even though

the membrane of vesicle has a thickness of typically a few nanometers, the size of

vesicle can be in the order of up to 100 micrometers. Due to external conditions

lipid bilayer vesicles show a wide variety of shape deformation. Their remarkably

flexible surfaces attract researchers for many decades [6], [7]. Here, we will give

some examples of shape transitions of fluid bilayer vesicles induced by changing

area-to-volume ratio due to temperature variations.

Our first example of a vesicle shape deformation is budding transition. Fig-

ure 1.1 shows a series of images of L-α-dimyristoylphosphatidylcholine (DMPC)

bilayer vesicle in a pure water prepared at different temperatures. The vesicle has

a simple spherical shape at the lowest temperature but it becomes increasingly
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Figure 1.1: A typical budding transition of a vesicle [8]. The prolate ellipsoid and

pear shapes are stable in the temperature between 27.2◦C and 40.9◦C. Further

increasing the temperature by 0.1◦C the pear shape becomes unstable and goes

into the budded state at 41.0◦C.
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Figure 1.2: Re-entrant transition. From left to right, the temperature increases

from 20.7, 32.6, 40.0, and 44.3◦C, respectively. The lower figure shows the contour

of stationary shapes [9].

rod-like (prolate ellipsoid) when the temperature is increased. During the in-

creasing of the temperature, the vesicle surface area is increased, while the vesicle

volume remains unchanged. As the temperature is increased further, the vesicle

becomes more and more pear-shaped. In the temperature regime between 27.2◦C

and 40.9◦C the ellipsoidal and pear shapes are stable. At 41.0◦C the pear shape

suddenly becomes unstable going into the budding shape. By further changing

the area-to-volume ratio, the neck closes and the vesicle becomes two spherical

vesicles connected by a narrow bilayer cylinder.

The budding transition described above does not always occur when the

temperature is increased. Sometimes the up/down reflection symmetry is restored

among further heating. The situations are shown in the re-entrant transition as

shown in Fig. 1.2. Furthermore, spherical vesicle can become a pancake-shape

(oblate ellipsoid) after increasing of the temperature. The vesicle then develops

into a discocyte and, consequently, transforms into a stomatocyte as shown in

Fig. 1.3. This transformation is very interesting because the discocyte shapes are
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Figure 1.3: Discocyte-stomatocyte transition. From left to right, the temperature

increases from 43.8, 43.9, 44.0, and 44.1◦C, respectively. The theoretical curves

are shown in the lower figure [9].

very similar to the shape of red blood cells when they are at rest. In fact, many

attempts on the study of vesicles shape change are motivated from the questions

for understanding the shape of red blood cells. Examples of these observations

suggest two essential physical properties of the typical lipid bilayer vesicles. First,

fluidity is the important property of bilayer membranes because, if the membranes

resisted shear, these shape deformations are hardly observable. However, the

bilayer structure is also robust because pores or holes are not formed, while the

vesicle shape deforms significantly and topology of the bilayer vesicles does not

change (In the budding transition, as we mentioned, the buds are not cut from

the mother vesicles, but connected together by a bilayer cylinder.).

By using laser tweezers, the dynamics of lipid bilayer vesicles induced by

changing external parameters becomes accessible. Considering bilayer membranes

as two-dimensional surfaces embedded in three-dimensional space, the theoreti-

cal description on this mesoscopic length scales is introduced independently more

than forty years ago in three seminal papers [10], [11], [12]. The bilayer config-

urations are fundamentally determined by bending elasticity. This fundamental

property is the reason why there is a wide variety of non-spherical shapes of vesi-

cles. Bending elasticity not only causes a large variety of vesicle shapes, but also

leads to various dynamical properties. The dynamical aspect of vesicles, espe-

cially, the translocation through a small hole due to external driving forces is
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an interesting problem. The mechanism is relevant to, for example, many trans-

dermal applications [13], [14], transendothelial migration in immune system [15]

and drug delivery in pharmacological research [16], [17], [18]. The translocation

phenomena of a vesicle through a small hole are the subject matter of this the-

sis. Before going into details, we will give a brief review of previous studies on

such a filtration process. The interesting question is that how the effectiveness

of such filtration process depends on various parameters of the system such as

the driving forces, bending and stretching moduli of the vesicle, the initial size of

the vesicle, and geometry and size of the hole. Theoretical studies using Monte

Carlo simulations done by Linke et al. [19] and Gompper et al. [20] gave us an

example of how driving force affects the process. In Ref. [19], their simulation re-

sults indicate that the osmotic pressure alone is sufficient to overcome the barrier

caused by thermal fluctuations of the membrane shape. The translocation time is

calculated and it is found that the translocation time is of the order of minutes.

Gompper et al. [20] showed clearly that the vesicle can move through the narrow,

cylindrical pore when the linear driving field is larger than the threshold value.

Moreover, the mobility of the vesicle saturates at a value which is independent

of the strength of the driving field. The threshold value of the driving field in-

creases when the pore size is decreased as well as membrane area and bending

rigidity increase. This behavior is in agreement with the experiment reported in

Ref. [21]. Recently, Shojaei et al. [22] reported results of a theoretical study of

translocation of an incompressible vesicle through a narrow pore by adopting the

same model as that of Deserno et al. [23]. In the work of Shojaei et al. [22], the

energy for the vesicle shape is described by a bending modulus and a stretching

modulus. Shojaei et al. [22] have considered the effect of various parameters on the

translocation time by using the Fokker-Planck formalism. For each vesicle size,

their results suggested that the translocation time decreases as the external driv-

ing force increases. At a given constant external driving force, their results showed

that the effect of the stretching modulus on the translocation time is weaker than

the bending modulus.
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Deformation of a red blood cell when it translocates through a slit by an

incoming flow is studied by Salehyar et al. [24]. They numerically investigate the

dynamics by using a multiscale fluid-cell interaction model. Their results show

that, depending on the initial orientation of the red blood cell, there are two differ-

ent behaviours of the shape deformation during the translocation process. In the

first behavior, the red blood cell forms a dumbbell shape when it is pushed through

the slit. The second one is that the cell shows infolding where the membrane bends

inwardly to form a concave region.

In our study, we focus on the kinetic pathway of the translocating vesicle.

In order to study such a translocation process, we employ the string method to

investigate the reaction path of the kinetic. The string method is a robust tool to

obtain the reaction pathways [25], [26], [27]. The basic idea of the string method is

to evolve paths (strings) according to the potential force in the normal directions

to the path on the free energy landscape. The condition that at each point on the

path the force perpendicular to the paths is zero gives the minimum energy paths

(MEPs). On the other hand, the actual kinetic pathways of phase transitions can

be obtained by using “Onsager variational principle” (or “Onsager principle” for

short). The basic concept of the principle is the Onsager’s reciprocal relation. This

relation casts the slow dynamics of the system into variational principle, which

bases on the existence of slow variables specifying slow dynamics of the system.

The slow variables are characterized by that their relaxation time is distinctively

larger than the other variables called fast variables. Our results show clearly that

the reaction path obtained from the string method and the kinetic paths obtained

from the Onsager principle are significantly different from each other when the

pressure gradient is large. We also show that the translocation time of the vesicle

decreases as the pressure difference increases, or the initial size of the vesicle

decreases.

Another problem of such translocation process is the birthing of a vesi-

cle through a pore in self-reproducing vesicle system. Previous studies done by

various synthetic biology groups [30], [31], [32], [33], [34], [35], [36], [37] have
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shown that binary vesicle constituting of two types of lipids with different molec-

ular shape shows self-reproduction of a vesicle. However, the mechanism is still

not been understood yet. Recently, Sakuma et al. [38] proposed a model self-

reproducing vesicle system without adding molecules. In their model, the vesicle is

composed of cylinder-shaped lipids [1, 2-dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC)] which has a high melting temperature Tm = 41◦C and inverse-cone-

shaped lipids [1, 2-dilauroyl-sn-glycero-3-phosphoethano lamine (DLPE)] which

has a low melting temperature Tm = 29◦C. A phosphoethanolamine head group

(PE lipids) is frequently noticed in topological transformations of the cellular

membrane [39], [40], [41], [42]. This indicates that PE lipids have a role to induce

topological transformations.

The birthing pathway observed by Sakuma et al. has shown in Fig. 1.4. The

binary giant unilamellar vesicle (GUV) with a composition of DLPE/DPPC= 3/7

has a spherical shape at the temperature below the DPPC Tm (35◦C) (Step 1).

By increasing the temperature up to the temperature above the DPPC melting

temperature Tm = 42◦C, the GUV forms a stomatocyte shape due to an excess

surface area compared with its inside volume in Step 2. The stomatocyte vesicle

then forms an inclusion vesicle called the daughter vesicle inside it by plucking

off the invagination neck (Step3). When the temperature is decreased below the

melting temperature of the DPPC (35◦C) the surface area of the mother vesicle

decreases. This causes an increase in the membrane tension of the mother vesicle.

To release this tension, the mother vesicle produces a pore and, then, the daughter

vesicle is expelled through the pore, called the birthing of the daughter vesicle

(Step 4). Due to the decrease in the line tension, the mother GUV recovers a

spherical shape by closing the pore after the birthing. Although the recovered

mother GUV is smaller than the original one, it follows the same pathway to

produce the second daughter vesicle (green pathway in Fig. 1.4). Moreover, the

daughter vesicle produces granddaughter vesicle via the same birthing pathway

(red pathway in Fig. 1.4). Sometimes the birthing is maintained to fourth- or

fifth-generation of vesicles.
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Figure 1.4: The observed birthing pathway of binary giant unilamellar vesicle

constituting of [1, 2-dilauroyl-sn-glycero-3-phosphoethano lamine (DLPE)] and [1,

2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)] with a composition of DLPE/

DPPC= 3/7. The birthing pathway composes of the following 4 steps. (Step 1)

The spherical mother GUV forms a stomatocyte shape. (Step 2) The stomatocyte

mother vesicle forms the daughter vesicle. (Step 3) The daughter vesicle is expelled

through the pore, called the birthing of the daughter vesicle. (Step 4) The mother

GUV recovered a spherical shape by closing the pore. The green pathway shows

that the recovered mother vesicle follows the same pathway to produce the second

daughter vesicle and the red pathway shows producing of the granddaughter vesicle

by the daughter vesicle [1].
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In our study, we theoretically model the birthing process of the daughter

vesicle. We derive the free energy landscapes of the system and show clearly the

disappearance of the energy barrier when the appropriate bending, stretching, and

line tension moduli are selected. We, again, employ the Onsager principle to inves-

tigate kinetic of the system. Our results show the decreasing in the translocation

when the friction decreases, or the size of the daughter vesicle decreases.

1.2 Outline of the Thesis

We begin the Chapter 2 by giving a brief review of the Onsager variational prin-

ciple. In this thesis, we will explain the Onsager principle by taking a problem

in hydrodynamics. We will show that the principle is an extension of Rayleigh’s

principle of the least energy dissipation which based on the existence of Rayleigh’s

dissipation function. The recipe of making kinetic equations from the Onsager

principle will be given. To demonstrate how the principle works, we will apply the

principle to study the problem of a droplet translocating through a hole across a

membrane. We end this chapter by introducing the Helfrich free energy which is

an important concept for studying the problem of a vesicle translocating through

a pore.

In Chapter 3, the string method which is a tool for determining the kinetic

pathway will be described. We give some examples of the application of the string

method for calculating the minimum energy paths in the end of this chapter.

In Chapters 4 and 5 we will examine the translocation process of a vesicle

through a small pore. In Chapter 4, we will study translocation process of a vesicle

through a hole in a solid membrane separating two chambers. By considering the

stretching energy of the vesicle and the driving force due to pressure difference, we

derive a free energy that shows clearly the decreasing in the energy barrier as the

pressure difference between two sides of the membrane increases. The difference

between the reaction path obtained from the string method and the actual kinetic

paths obtained from the Onsager principle is discussed when the friction parameter
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changes. The translocation time decreases as the pressure difference increases, or

the initial size of the vesicle decreases.

Chapter 5 is devoted to the birthing process of a daughter vesicle in self-

reproducing vesicle system. We will present a simple theoretical model on the

birthing process of a single, rigid daughter vesicle through a pore. We derive a

free energy that includes the bending, stretching and line tension energies. Our

results show clearly the disappearance of the energy barrier with different values of

bending, stretching, and line tension moduli. The effect of adding more water into

the mother vesicle will also be discussed. The kinetic of the system will be studied

by employing the Onsager principle. Our results indicate that translocation time

decreases as the friction parameter decreases, or the initial size of the daughter

vesicle decreases. We close this chapter with conclusions of the study.

Finally, we end this thesis with Chapter 6. This chapter will give a brief

summary and conclusion of all results obtained under the investigation pursued

in this study.



CHAPTER II

Methodology and the Simplest

Example

In this chapter, we will give a brief review of the physical theories used in the

present thesis. We shall first discuss the Onsager variational principle (or “On-

sager principle” for short) which is useful for deriving the equations of motion

for the translocating vesicle. Onsager principle is originally proposed by L. On-

sager [43], [44]. The basic concept of the principle is the Onsager’s reciprocal

relation. The relation casts the slow dynamics of the system into a variational

principle which bases on the existence of slow variables specifying slow dynam-

ics of the system. The principle has been shown to be useful for deriving time

evolution equations in many soft matter systems such as diffusion equations for

particles in dilute and in concentrated solutions [45] [46], kinetic equations in gel

dynamics [46] [47], Cahn-Hilliard equations in phase separation [48] etc.

We first discuss sedimentation of a particle in a viscous fluid in Subsec. 2.1.1.

The friction coefficient for the case of rigid sphere is evaluated in Subsec. 2.1.2.

We discuss the variational principle for motion of particles in viscous fluids in

Subsec. 2.1.3. Subsection 2.1.4 describes the Onsager principle in a more general

form of the variational principle. We give a summary of the derivation of the

kinetic equations by using the principle in Subsec 2.1.5. In Sec 2.2, we will give

the simplest example of using Onsager principle: translocation of a droplet through

a narrow hole across a membrane. We end this chapter by introducing the Helfrich

free energy for membrane which is an important concept for studying translocation
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of a vesicle through a pore.

2.1 Onsager Variational Principle

The Onsager principle is an extension of Rayleigh’s principle of the least dissipation

of energy. Here, we will consider the problem in hydrodynamics, i.e., the dynamics

of particle-fluid systems. Small particles moving in a viscous fluid, e.g., particles

sedimenting in a fluid, can be described by the force balance between the potential

force and the frictional force. The reciprocal relation for the friction coefficient

allows us to write such the balance of two forces in the form of a variational

principle. Onsager noticed that many phenomenological equations describing the

time evolution of the non-equilibrium systems can be written in a form of particle-

fluid system. He then proved that the reciprocal relation must hold for such a kind

of time evolution equation. This casts the evolution law of such systems into a

variational principle called the Onsager variational principle which bases on the

existence of slow variables. The slow variables are characterized by their relaxation

time, which are distinctively larger than the other variables called fast variables.

2.1.1 Sedimentation of a Particle in a Viscous Fluid

We consider sedimentation of a particle of mass m in a viscous fluid under grav-

itational force (see Fig. 2.1). Let x = (x1, x2, ..., xf ) be generalized coordinates

specifying the state of the particle, where f is the degree of freedom of the system.

For a rigid particle, f is 6 and xi are the position and orientation of the particle.

Let U(x) be the gravitational potential energy. The gravitational force is

F = mg = −∂U(x)
∂x . (2.1)

In the limit of small Reynolds number, the frictional force is proportional to the

velocity of the particle:

Ff = −ζẋ, (2.2)



13

Figure 2.1: The balance between two forces acting on a particle with mass m

sedimenting in a viscous fluid.

where ζ is the friction coefficient.

Since the Reynolds number is assumed to be negligibly small in Stokesian

hydrodynamics, the gravitational force must be balanced with the frictional force

as

ζẋ = −∂U(x)
∂x . (2.3)

2.1.2 Friction Constant for a Rigid Sphere

We proceed to discuss the friction constant for the case of a rigid sphere [57]. In

the absence of external force, we consider a sphere of radius r moving with instan-

taneous velocity v0 in an infinite, viscous, incompressible fluid. The situation is

shown in Fig. 2.2. In such a situation, the Navier-Stokes equation reduces to

0 = −∇
(
P − η

3
∇ · v

)
+ η∇2v, (2.4)
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Figure 2.2: The rigid sphere moving in the viscous fluid. The sphere has instan-

taneous velocity v0, while the fluid velocity is denoted as v.
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where the fluid has a viscosity η and v(x) is the velocity field of the fluid. We

assume that the material derivative of v is small compared to the viscous terms.

Since there is no source for the fluid, the incompressibility condition ∇ · v = 0

must satisfy everywhere. Then, the dynamics of the particle can be described by

the coupled equations

∇2v =
1

η
∇P, (2.5)

and

∇ · v = 0, (2.6)

where the fluid sticking to the sphere boundary condition is given. We choose

the center of the sphere to be the origin of the coordinate system. Any points in

space are specified by the cartesian coordinates (x, y, z) or the spherical coordintes

(r, θ, ϕ). The sphere is at rest at the origin and the fluid flows with uniform

constant velocity v0 at infinity. The boundary conditions become

v(r)|r=a = 0, (2.7)

and

v(r) −−−→
r→∞

v0, (2.8)

while the Eqs. (2.5) and (2.6) remain invariant under the translation.

By taking the divergence of Eq. (2.5) and using Eq. (2.6), we obtain the

Laplace’s equation

∇2P = 0. (2.9)

In spherical polar coordinates, the solution must be a linear superposition of solid

harmonics. We can write the solution as

P = P0 + ηP1
cos θ
r2

, (2.10)

and, to determine the coefficients P0 and P1, Eqs. (2.5) and (2.6) must be satisfied.

Then, the problem now is to solve the inhomogeneous Laplace’s equation, which

is derived from Eqs. (2.5) and (2.10)

∇2v = P1∇
cos θ
r2

, (2.11)
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with the conditions

v(r)|r=a = 0, (2.12)

and

v(r) −−−→
r→∞

v0. (2.13)

Equation (2.11) gives a particular solution

v1 = −P1

6
r2∇cos θ

r2

= −P1

6

( ẑ
r
− 3r z

r3

)
, (2.14)

where ẑ denotes the unit vector in the z direction. We can easily verify that

Eq. (2.14) is the solution of Eq. (2.11), as follows:

∇2v1 = −P1

6

[
− 3∇2

(rz
r3

)]
= P1∇

( z
r3

)
= P1∇

cos θ
r2

. (2.15)

To obtain the complete solution, we add the appropriate homogeneous so-

lution to Eq. (2.14) which satisfies the conditions Eqs. (2.12) and (2.13). The

complete solution is

v = v0

(
1− a

r

)
+

1

4
v0a(r

2 − a2)∇cos θ
r2

, (2.16)

where

P1 = −
3

2
v0a, (2.17)

for satisfying Eq. (2.6).

The force per unit area acting on the sphere by the fluid is given by

f = −r̂ · ←→P , (2.18)

where r̂ is the unit vector in the radial direction and the tensor ←→P is given by

Pij = δijP − η

[(
∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
δij∇ · v

]
. (2.19)
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The i−th component of the vector r̂ · ←→P is(
r̂ · ←→P

)
i

=
1

r
xjPji

=
1

r
xj

[
δjiP − η

(
∂vj
∂xi

+
∂vi
∂xj

)]

=
xi
r
P − η

r

[
∂

∂xi
(xjvj)− vi + xj

∂

∂xj
vi

]
. (2.20)

Then, f becomes

f = −P r̂ + η

r
[∇(r · v)− v + (r · ∇)v], (2.21)

where P = P0 + ηP1(cos θ/r2), P1 = −(3/2)v0a, and v is given by Eq. (2.16).

Because v(r)|r=a = 0, the second term in the bracket vanishes. We need to verify

the first term and the last terms in the bracket at r = a. We can show that the

first term becomes zero and the last term is

1

r
[(r · ∇)v]r=a =

3

2

(v0

a

)
− 3

2
v0

(cos θ
a

)
r̂. (2.22)

By substituting Eq. (2.22) into Eq. (2.21), we obtain

fr=a = −P0r̂ +
3

2

η

a
v0. (2.23)

The total force acting on the sphere by the fluid is

Ff =

∮
dA f, (2.24)

where dA is a surface element of the sphere. Using Eq. (2.23), we obtain Stokes’

law

Ff = 6πηav0. (2.25)

The first term in Eq. (2.23) does not contribute to force on the sphere due to

symmetry. Owing to the definition of the friction constant

Ff = −ζv0, (2.26)

we obtain the friction coefficient for the sphere as

ζ = 6πηa. (2.27)
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Figure 2.3: A collection of particles sedimenting in a viscous fluid.

2.1.3 Variational Principle for Motion of Particles in Vis-

cous Fluids

Here we will discuss the variational principle for particle-fluid systems. Let us

consider many particles moving in a viscous fluid. An example of this system is

particles sedimenting under a gravity (see Fig. 2.3).

The system is described by a set of generalized coordinates x = (x1, x2, ..., xf )

specifying the sate of the system. Let U(x) be the potential energy of the system.

The potential energy can be a gravitational potential energy or the interaction

energy between the particles. The potential force conjugate to the coordinate xi
is then written as

Fi = −
∂U(x)
∂xi

. (2.28)

When the particles move in a viscous fluid, the fluid exerts a frictional force
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against the motion of the particles. In the limit of small Reynolds number, the

frictional force is a linear function of the generalized velocity ẋj [49] which is given

by

Ffi = −
∑
j

ζijẋj, (2.29)

where ζij are the friction coefficients. Usually, ζij’s are functions of x and they

satisfy the following two properties:

(i) the Lorentz reciprocal relation

ζij = ζji, (2.30)

and

(ii) the positive definiteness∑
i,j

ζijẋiẋj ≥ 0 for any ẋi. (2.31)

By using the reciprocal relation, we can write the frictional force as

Ffi = −
∂Φ

∂ẋi
, (2.32)

where Φ is called the Rayleigh’s dissipation function defined by

Φ =
1

2

∑
i,j

ζijẋiẋj.
1 (2.33)

Since we have assumed that the Reynolds number is negligibly small, the

time evolution of the particles can be described by the frictional force and the

potential force where these two forces need to be balanced, i.e.,∑
j

ζijẋj = −
∂U(x)
∂xi

, (2.34)

where we have neglected the random forces regarding as the particles are suffi-

ciently large. The inertia forces are also assumed to be negligibly small. Then,

the time evolution equation for xi can be written as
dxi
dt

= −
∑
j

(ζ−1)ij
∂U(x)
∂xj

, (2.35)

1Notice that since ∂Φ/∂ẋi gives (1/2)Σj(ζij + ζji)ẋj , to get the frictional force Eq. (2.29),

the reciprocal relation is really needed.
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where (ζ−1)ij is the ij-component of the inverse of the matrix ζij.

Next, let us consider the following quadratic function of ẋ = (ẋ1, ẋ2, ..., ẋf ),

R(ẋ) = 1

2

∑
i,j

ζijẋiẋj +
∑
i

∂U(x)
∂xi

ẋi. (2.36)

Since
∑

i,j ζijẋiẋj ≥ 0, R(ẋ) has a unique minimum as a function of ẋ = (ẋ1, ẋ2, ..., ẋf )

when the conditions ∂R/∂ẋi = 0 are satisfied. We can see that this condition

gives us the time evolution for xi in the same manner as the force balance equa-

tion Eq. (2.34). This is the variational principle for motion of particles in viscous

fluids. This principle is called the principle of least energy dissipation, first intro-

duced by Rayleigh [59]. The function R(ẋ) is called the Rayleighian of the system.

It is sum of dissipation function and time derivative of the potential energy, i.e.,

R = Φ+ U̇ , (2.37)

where Φ is given by Eq. (2.33) and U̇ is defined by∑
i

∂U(x)
∂xi

ẋi. (2.38)

It should be noted that the principle of least energy dissipation is based on

the existence of Rayleigh’s dissipation function. The minimization of Rayleighian

is performed over the rate of change of the coordinate of the system, ẋ, rather

than on the coordinate x. It is the competition between dissipation and rate of

change of the energy. One can give a physical interpretation of the dissipation

function. Let us consider the work done by the system against friction given by

dWf = −Ff · dx

= −Ff · vdt (2.39)

In the limit of small Reynolds number, dWf gives

(ζxv
2
x + ζyv

2
y + ζzv

2
z)dt = 2Φdt. (2.40)

Hence, 2Φ is the rate of energy dissipation due to friction.
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2.1.4 Onsager Variational Principle

In the previous section, we have shown that the variational principle gives us

the time evolution equation for particle-fluid systems in the same form as force

balance, where the configuration of the particles is described by a set of generalized

coordinates x = (x1, x2, ..., xf ). Here let us consider non-equilibrium system where

the state of the system is described by the state variables x = (x1, x2, ..., xf ) and

assume that the kinetic equation is of the following form

dxi
dt

= −
∑
j

µij(x)
∂A(x)
∂xj

, (2.41)

where A(x) is the free energy of the system and the coefficients µij(x) are called the

kinetic coefficients corresponding to the inverse of the friction coefficients (ζ−1)ij

in Eq. (2.35). We can see that Eq. (2.41) and Eq. (2.35) have the same form.

As long as the time evolution of the system is described by Eq. (2.41) the kinetic

coefficients µij must satisfy the reciprocal relation

µij = µji. (2.42)

Therefore the kinetic equations as shown in Eq. (2.41) can be translated into

the variational principle. We then can write the Rayleighian of the system as

R(ẋ) = 1

2

∑
i,j

ζijẋiẋj +
∑
i

∂A(x)
∂xi

ẋi, (2.43)

which is sum of the dissipation function and time derivative of the free energy

R = Φ+ Ȧ. (2.44)

By minimizing the Rayleighian R with respect to ẋi, we can obtain the time evo-

lution of the system. This is the Onsager variational principle or simply Onsager

principle [43], [44], [45]. The important point in the Onsager principle is that the

state variables x = (x1, x2, ..., xf ) change much more slowly than the other vari-

ables. We shall call this set of state variables “slow variables”. The slow variables

are characterized by using their relaxation time, which are distinctively larger than

the other variables called “fast variables”.
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As we said, Onsager principle is an extension of Rayleigh’s principle of the

least dissipation of energy because he showed that the principle holds for general

irreversible processes. The essential physical assumption for the irreversible pro-

cess is that the fluxes depend linearly on the thermodynamic forces that causes

them, e.g., Ohm’s law for electrical conduction and Fick’s law for diffusion. In

the original paper published in 1953 [60], Onsager and Machlup formulated the

variational principle as the extremum of the function Ṡ − Φ, where Ṡ is the rate

of production of entropy. This variational principle is formally equivalent to the

physical assumption described above.

2.1.5 Recipe to Make Kinetic Equations

Here we will give a summary of making kinetic equations for non-equilibrium

systems by using the Onsager principle.

(1) Choose proper slow variables x = (x1, x2, ..., xf )

In order to apply the principle to the practical problems, we first need to

choose slow variables specifying slow dynamics of the system. How do we choose

slow variables ? Because the slow variables specify the non-equilibrium state of

the system, they must satisfy the following two conditions

(i) The set of the slow variables x = (x1, x2, ..., xf ) must be a complete set to

describe the slow dynamics of the system. If the slow variables x = (x1, x2, ..., xf )

at time t is given, we should uniquely determine the set of the slow variables at

time t+∆t.

(ii) The relaxation time of the slow variables are distinctively longer than

the other variables.

(2) Construct the dissipation function of the system Φ(x) = (1/2)Σi,jζijẋiẋj

(3) Construct the free energy of the system A(x)
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(4) By minimizing the Rayleighian

R = Φ+ Ȧ

=
1

2

∑
i,j

ζijẋiẋj +
∑
i

∂A

∂xi
ẋi (2.45)

with respect to ẋi, i.e., ∂R/∂ẋi = 0, it gives the equation of motion

−
∑
j

ζijẋj −
∂A

∂xi
= 0. (2.46)

2.2 The Simplest Example: Translocation of a

Droplet Through a Narrow Hole Across a

Membrane

Here we give the simplest example of using the Onsager principle: translocation

of a droplet through a hole across a membrane. Structures and dynamics of a

droplet suspended in a liquid attract researchers for decades [6]. Due to pressure

difference between two sides of a membrane, a droplet can translocate through a

small hole across the membrane. Effective filtration process depends on various

parameters of the system such as pressure difference, an initial size of a droplet and

pore sizes on a membrane, which is an interesting topic of study. In the petroleum

industry, such a kind of process is used as one of the treatment techniques of oily

wastewater [61].

Recently, there are progresses on the study of a droplet translocation. Darvi-

shzadeh et al. [62] reported, in the absence of crossflow velocity, the dependence

of critical pressure required for pushing an oil droplet across porous membranes in

oil-in-water emulsions on a cylindrical pore with the pore radius size of micron by

solving the Navier-Stokes equation numerically. Their results are consistent with

the analytical prediction using the Young-Laplace pressure [63], [64].

In this example, we will use Onsager variational principle to study filtration

process of a droplet. Our result in the dependence of the critical pressure on the
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Figure 2.4: Model of a translocating droplet.

initial droplet size is in agreement with the result in [62]. We also consider the

dependence of the translocation time on the pressure difference between both sides

of a membrane, and on the initial size of a translocating droplet.

A. Theory of A Droplet

The shape of a translocating droplet is modeled by two connected spheres

as illustrated schematically in Fig. 2.4. The translocating droplet has radii r1(t)

and r2(t), where r1(t) and r2(t) stand for the radii of the above and below droplet,

respectively. The initial size of the droplet is denoted by R0 which is assumed to be

much larger than the size of the narrow hole on the membrane and the thickness

of the membrane is very small. Then we can neglect the structure of the hole

and we consider the hole as a circle with radius a. The pressure is assumed to be

constant at every point inside the droplet. The pressure difference between inside

and outside of the spherical droplet is determined by the Laplace pressure. The

liquid inside the droplet is assumed to be incompressible with viscosity η. Most

of the energy dissipation is assumed to take place at the hole when the liquid is

flowing through. The flow velocity is also assumed to be very small.
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We use Onsager principle as an approximation scheme to derive a set of

evolution equations for the droplet. The basic concept of the Onsager principle

is the Onsager’s reciprocal relation. This relation casts the slow dynamics of the

system into variational principle. The remarkable relation in the principle, i.e.

the reciprocal relation, bases on the existence of slow variables which specify slow

dynamics of a system and their characteristic relaxation time is distinctively larger

than the other variables, called fast variables.

If we have a set of slow variables x = (x1, x2, ..., xf ), Onsager principle is

described by the minimization of Rayleighian defined by

R = Φ+ Ȧ, (2.47)

with respect to ẋi. Φ is the energy dissipation function and Ȧ is the time derivative

of the free energy.

When the droplet is translocating through the hole, the slow variables de-

scribing its size are r1(t) and r2(t). However, we can further reduce the degrees

of freedom to one using the constraint R3
0 = r31 + r32. Because the translocation

time of the droplet should depend on the initial size R0 as well as the pressure

difference ∆P across the membrane, we introduce dimensionless parameters, a/R0

and ∆Pa/γ, where γ is the interfacial tension between the droplet and the liquid.

a. The potential energy

Because the translocating droplet’s shape is assumed to be two connected

spheres, the free energy is the sum of the surface tension energy and the work

done by the pressure difference of each sphere:

Adr = γ4π(r21 + r22)−∆P
4π

3
(r31 − r32). (2.48)

Using the dimensionless variable and parameters we have introduced, the free

energy is rewritten as

Adr

(
x;

a

R0

;
∆Pa

γ

)
= a2γ

[
4π
(R0

a

)2
(x2/3 + (1− x)2/3)

−4π

3

(R0

a

)3(∆Pa
γ

)
(2x− 1)

]
.
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b. The energy dissipation function

In the limit of small Reynolds number, the energy dissipation function for

the droplet takes the form

Φdr =
1

2
ζv2l , (2.50)

where the liquid flow velocity vl is defined by vl = (2r1/a)
2ṙ1. We should mention

that our flow velocity vl is assumed to be proportional to ∆P . This dependence

is different from the Orifice plate flowmeter which gives vl ∝
√
∆P [65].

Next, we introduce the dimensionless variable x defined by x = (r1/R0)
3.

Then, the energy dissipation function becomes

Φdr

(
ẋ;

a

R0

)
=

8

9
a2ζ
(R0

a

)6
ẋ2. (2.51)

c. The droplet’s evolution equation

To derive the evolution equation for the droplet, we minimize the Rayleighian,

Rdr = Φdr + Ȧdr with respect to ẋ. This yields

dx

dτ ′dr
= −3π

4

( a

R0

)4[
(x−1/3 − (1− x)−1/3)

−
(R0

a

)(∆Pa
γ

)]
, (2.52)

where τ ′dr = t/τdr is a droplet-dimensionless time and τdr is defined by τdr = ηa/γ.

We have assumed that, at the initial state, the bottom part of the droplet is a

hemisphere with radius a and its center is located on the membrane. This gives

x(τ ′dr = 0) = (a/R0)
3.

B. Results and Discussions

We will show the results from our translocating droplet model. The experi-

mental result done by F. Peters and D. Arabali [66] will be used to estimate the

critical pressure and the translocation time for the droplet.

For completed translocation process, the pressure required for pushing the

droplet can be obtained by solving Eq. 2.52 numerically. Figure. 2.5 shows clearly

that, at R0/a = 10.0, the critical pressure ∆Pc is 0.9 γ/a. By using the measured
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Figure 2.5: The evolution of the droplet. At R0/a = 10.0, our representative result

at short time scale shows the critical pressure ∆Pc = 0.9 γ/a. The horizontal axis

is defined by τ ′dr = γt/ηa, where γ is the interfacial tension between the droplet

and the liquid. η is the viscosity of the fluid inside the droplet. The vertical axis

is defined by x = (r1/R0)
3.
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interfacial tension γ between wacker silicone fluid AK20 (a poly dimethyl siloxane

(PDMS)) with an kinematic viscosity of 20 µm2 ·s−1 and water in the temperature

range 18-35◦C in [66] as an example, the critical pressure for the droplet will be

estimated. At T = 25◦C, the interfacial tension is of 35.87 mN ·m−1. If the hole

size a is of the order of micron, for R0/a = 10.0, the critical pressure is ∆Pc ≃ 32.3

kPa with the time scale τdr = 0.54µs, where the density of PDMS is of 965 kg·m−3.

In Ref. [66], the oil drop contour data based on digital image processing are used to

determine the interfacial tension. The authors proposed an explicit expression for

the interfacial tension in terms of the measured quantities by using a force balance

without involving the Laplace equation relating the pressure and curvature of the

oil drop. Among a few data of the interfacial tension for the oil/water system,

the authors’ result in Ref. [66] gives us the good source for reference. To justify

the contact angle θ which is measured from the angle between the interface of

an droplet and a liquid with respect to the membrane surface, we can use the

analytical prediction for the critical pressure given by [62]:

∆Pc =
2γ cos θ

a

× 3

√
1− 2 + 3 cos θ − cos3 θ

4(R0/a)3 cos3 θ − (2− 3 sin θ + sin3 θ)
,

(2.53)

which is determined by the Young-Laplace pressure. In the limit R0 → ∞, the

expression in Eq. 2.53 will converge to the critical pressure for an oil film on

a membrane, which gives ∆Pc = 2γ cos θ/a [63]. We can also see clearly that

the translocation time for the droplet becomes less when the pressure difference

increases, as illustrated in Fig. 2.6.

At a given value of the pressure difference, the translocation time increasing

as the initial size of the droplet R0 increases are clearly seen in Fig. 2.7. We have

chosen R0/a = 2.0, 2.5 and 3.0 as representative values. For R0/a = 2.0, we found

that ∆Pc = 0.48γ/a. Our results are in agreement with the results in [62] which

are obtained from Eq. 2.53.
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Figure 2.6: The evolution of the droplet at long time scale. At R0/a = 10.0,

our representative result shows clearly that the translocation time for the droplet

decreases when the pressure difference increases.
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Figure 2.7: Translocation time of the droplet with different initial droplet’s sizes

is plotted as a function of the dimensionless variable ∆Pa/γ. Inset: The critical

pressure for the translocated droplet is plotted against the droplet’s initial size.
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C. Conclusions

We have used Onsager principle to investigate the translocation process of

a droplet through a narrow hole across a membrane. The equation of motion for

the droplet is derived by choosing the appropriate slow variables. Naturally, in

the absence of any external driving force, the free energy landscape is symmetric

around the translocation coordinate. Necessarily, the energy barrier decreases as

the pressure gradient increases. The translocation time decreases as the pressure

difference across the membrane increases, or the initial size of the droplet decreases

as expected.

Apart from a droplet, study of translocation of a vesicle through a narrow

hole across a membrane we need to take into account the effect of bilayer mem-

branes of a vesicle. In order to to this, we need to introduce the concept of the

Helfrich free energy. On a phenomenological level, including a potential asymme-

try between the two monolayers constituting a bilayer membrane of a vesicle, the

Helfrich free energy reads

F =
κ

2

∮
dA(2H − c0)2, (2.54)

where κ is bending modulus of a vesicle membrane and A is the membrane area.

H is the mean curvature which has dimensions of inverse length and c0 is the

spontaneous curvature arising from asymmetry in the areas of inner and outer

membranes constituting a bilayer membrane of a vesicle.



CHAPTER III

The String Method

The kinetic pathways of the translocation are interesting to discuss. By solving

the equation of motion obtained from the Onsager principle, the state changes of

the vesicle can be described in the configuration space. On the other hand, the

string method is a robust tool to obtain the reaction pathways [25], [26], [27]. The

basic idea of the string method is to find a geodesic path between the initial and

final states on the free energy surface. The condition that at each point on the

paths the force perpendicular to the paths is zero gives the minimum energy paths

(MEPs). In this chapter, we will discuss the string method used in our study. The

concept and applications of the string method will be given in Secs 3.1 and 3.2.

3.1 The String Method for Computing the Min-

imum Energy Paths (MEPs)

The string method is a computational method for computing reaction paths or

minimum energy paths (MEPs) for events that have energy barriers. Gener-

ally, the string methods are categorized into two types, i.e., (1) zero-temperature

string method for computing MEPs on smooth energy landscapes and (2) finite-

temperature string method for rough energy landscapes. Several computational

methods are proposed for finding minimum energy paths [25], [26], [27], [28], [50],

[51], [59]. Here we will discuss the concept of string method for computing MEPs

on smooth energy landscapes in Sec. 3.1. The applications of the string method
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will be shown through the representative free energy landscapes in Sec. 3.2.1

The basic idea of the string method is to evolve paths (strings) according

to the potential force in the normal directions to the path on the free energy

landscape. The condition that at each point on the paths the force perpendicular

to the paths is zero gives the minimum energy paths (MEPs). In the string method,

there are two steps, i.e., (i) evolution of the points on the initial guess string and

(ii) interpolation of the string.

Let us consider the system described by the Langevin dynamics

γ
dq

dt
= −∇V (q) + ξ(t), (3.1)

where γ is the friction coefficient. ξ(t) is a Gaussian white noise with zero mean

and satisfies the fluctuation-dissipation theorem

⟨ξj(t)ξk(0)⟩ = 2γkBTδjkδ(t), (3.2)

where ⟨...⟩means the statistical average over the ensemble of noises. The metastable

regions are localized around the minima of the potential V (q) and MEP is the most

probable transition pathway. Assuming that V has at least two minimal energy

states, i.e., a and b which we want to find MEP connecting these two states. Let

ψ be a path (string) connecting a and b (a and b can be considered as the initial

and final states in the configuration space, respectively). By definition, ψ is MEP

when the product between ψ and the force perpendicular to ψ must be zero, i.e.,

0 = (∇V )⊥(ψ), (3.3)

where (∇V )⊥ is the component of (∇V ) normal to ψ. For initial guess of the

path, the force perpendicular to the path will be non-zero. We need to evolve the

string according to the dynamics

un = −(∇V )⊥(ψ), (3.4)
1The original article about the applications of the string method for computing MEPs was

accepted to publish in Thai Journal of Physics (in Thai) [53]. Here we give the English translation

from the original article.
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where un is the hypothetical normal velocity of the path. We can see clearly that

Eq. 3.3 is the stationary state of Eq. 3.4.

In order to do numerical computations, we assume that the string is parametrized

by α, i.e., ψ = {φ(α), α ∈ [0, 1]}. The unit tangent vector of φ is defined by

τ̂ = φα/|φα|, where φα denotes the derivative of φ with respect to α. For sim-

plicity, we use equal arc-length parametrization. In this case, we also have |φα| =

const. Under this parametrization, Eq. 3.4 will be written as

∂φ

∂t
= −(∇V )⊥(φ) + λτ̂ , (3.5)

where λτ̂ = λ(α, t)τ̂(α, t) is a Lagrange multiplier added to enforce the parametriza-

tion. This Lagrange multiplier term does not affect the evolution of the string but

it contributes the parametrization of the curve.

In order to find the MEP by using the string method, there are two steps:

Step 1: Evolution of the images

We discretize the initial guess string into set of images where

φ = {φi(t), i = 0, 1, 2, ..., N}. (3.6)

We evolve the images within time step ∆t through the equation

∂φi

∂t
= −(∇V )⊥(φi). (3.7)

If we denote φn
i , i = 0, 1, 2, ...N be the positions of the images after n iterations.

After step 1, by using the Euler method, the new set of images is given by

φ∗
i = φn

i − (∆t)(∇V )⊥(φn
i ), (3.8)

or by using the fourth order Runge-Kutta as

φ∗
i = φn

i −
1

6
k
(1)
i −

1

3
k
(2)
i −

1

3
k
(3)
i −

1

6
k
(4)
i , (3.9)
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where

k
(1)
i = (∆t)(∇V )⊥(φn

i ),

k
(2)
i = (∆t)(∇V )⊥

(
φn
i +

1

2
k
(1)
i

)
,

k
(3)
i = (∆t)(∇V )⊥

(
φn
i +

1

2
k
(2)
i

)
,

k
(4)
i = (∆t)(∇V )⊥

(
φn
i + k

(3)
i

)
. (3.10)

Step 2: Interpolation of the string

We would like to interpolate the points {φ∗
i } on a nonuniform mesh {α∗

i }

onto a uniform mesh where the number of points is preserved. We follow these

two steps:

(1) We first calculate the arc length corresponding to φ∗
i . We define

s0 = 0, (3.11)

and

si = si−1 + |φ∗
i − φ∗

i−1|, i = 1, 2, 3, ..., N, (3.12)

and mesh {α∗
i } can be obtained from normalizing {si}, i.e.,

α∗
i = si/sN (3.13)

(2) We use the interpolation to obtain the points φn+1
i on uniform mesh

αi = i/N that can use, for example, cubic spline interpolation for {(α∗
i , φ

∗
i ), i =

0, 1, 2, ..., N} [54]. When the points {φn+1
i , i = 0, 1, 2, ..., N} are obtained, the

process goes back to step 1 and iterates until convergence.

3.2 Applications for Computing MEPs

(i) We will first consider the two-dimensional potential energy for computing MEP

by using the string method. The potential energy is written as

V (x, y) = (1− x2 − y2)2 + y2/(x2 + y2). (3.14)
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Figure 3.1: Contour line of the potential V (x, y) = (1− x2 − y2)2 + y2/(x2 + y2).

We compare the minimum energy paths (MEPs) obtained from the string method

(red solid curve) and the exact MEP (dashed black curve).
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The contour line of the energy is illustrated in fig. 3.1. The minima are located

at the points (−1, 0) and (1, 0), respectively. The exact minimum energy paths

connecting these two states are the upper and lower part of the unit circle x2+y2 =

1.

In order to calculate MEPs we select the initial string which has the initial

and final points at (−1, 0) and (1, 0), respectively. We discretize the string into

N = 20 and use the forward Euler method, where ∆t = 2.5 × 10−3 for evolving

the string. The red solid curve in fig. 3.1 shows the calculated MEP compared to

the exact MEP (dashed black curve). The error between the calculated and exact

MEP might occur from (i) the number of point N is too small and (ii) the selected

time step is inappropriate.

For the mth order accurate interpolation, the interpolation error is

interpolation error= O(N−m),

where m = 4 for cubic spline scheme and the error for evolving points on the

string scales as

evolution error= O(∆t−l),

where l = 2 for the Euler method.

(ii) The Müller-Brown potential

The Müller-Brown potential energy is often used for testing algorithms for

finding transition pathways and minimum energy paths. The analytic form of the

potential is given by [55]

V (x, y) =
4∑

k=1

Ak exp
[
ak(x− x0k)2 + bk(x− x0k)(y − y0k) + ck(y − y0k)2

]
, (3.15)

where

A = (−200,−100,−170, 15),

a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6),
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Figure 3.2: The initial string (the vertical line) and the calculated MEP (the other

one) on the Müller-Brown potential. The initial string is discretized into 20 points.

The Euler method is used for evolving the points on the string. The number of

iterations is n = 2, 000.

c = (−10,−10,−6.5, 0.7),

x0 = (1, 0,−0.5,−1),

y0 = (0, 0.5, 1.5, 1).

The Müller-Brown potential has three minima and two saddle points. For

finding MEP, we discretize the initial string into N = 20 connecting the points

(0,−0.25) and (0, 1.25) as in Fig. 3.2. We use Euler method for evolving the

points on the string with n = 2, 000 for the number of iterations. Fig. 3.2 shows

the initial guess string (vertical line) and the other one is calculated MEP.



CHAPTER IV

Translocation of a Vesicle

Through a Narrow Hole Across a

Membrane

We discuss translocation of a vesicle through a hole across a membrane, where we

focus on the kinetic pathway of the translocation in this chapter. The free energy

and the dissipation function of the system are given. The vesicle’s evolution equa-

tions are also shown in Sec. 4.1. Section 4.2 is devoted for results and discussions of

the study. The emergence of the free energy barriers associated with the pressure

difference is discussed. We investigate the reaction paths obtained from the string

method and the actual kinetic paths obtained from the Onsager principle when the

friction between the surfactant molecules and the surface membrane is changed.

Our results show that those paths are significantly different from each other when

the pressure gradient is large [29]. We also show clearly that the translocation

time of the vesicle decreases as the pressure difference increases, or the initial size

decreases. We end this chapter with conclusion of the study in Sec. 4.3.

4.1 Theory of a Vesicle

The shape of a translocating vesicle is modeled by two connected spheres as il-

lustrated schematically in Fig. 4.1. The translocating vesicle has radii r1(t) and

r2(t), where r1(t) and r2(t) stand for the radii of the lower and upper parts of
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Figure 4.1: Model of a translocating vesicle.

the vesicle, respectively. Furthermore, the number of surfactant molecules on the

enclosed surfaces with radii r1(t) and r2(t) is denoted by n1(t) and n2(t), respec-

tively. We neglect the thickness of the membrane of the vesicle. The vesicle is

assumed to be initially a sphere of radius R0 consisting of N0 surfactant molecules.

R0 is assumed to be much larger than the size of the narrow hole on the membrane

and the thickness of the membrane is assumed to be negligible. Then we can ne-

glect the structure of the hole and we regard the hole as a circle with radius a.

The pressure is almost constant in the upper (and the lower) part of the vesicle,

but drops significantly across the hole connecting the two parts. The pressure

difference between inside and outside of the spherical vesicle is determined by the

Laplace pressure. The liquid inside the vesicle is assumed to be incompressible

with viscosity η. Most of the energy dissipation is taking place at the hole when

the membrane and the liquid are going through, where the translocation velocity

is also assumed to be small.

Now we construct a dynamical equation for our model system. If we have

a set of slow variables x = (x1, x2, ..., xf ), Onsager principle is described by the
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minimization of Rayleighian defined by

R = Φ+ Ȧ, (4.1)

with respect to ẋi, where Φ is the energy dissipation function and Ȧ is the time

derivative of the free energy.

We have chosen r1(t), r2(t), n1(t) and n2(t) as the slow variables of the

translocating vesicle. We can further reduce the degrees of freedom to two by

using the volume conservation R3
0 = r31 + r32 together with the conservation of the

total number of molecules N0 = n1+n2. By letting ϕ as a surfactant number den-

sity, where ϕ is defined by (the number of surfactant molecules)/(surface area), the

second constraint can be rewritten as ϕ0R
2
0 = ϕ1r

2
1 + ϕ2r

2
2, where ϕ0 = N0/4πR

2
0,

ϕ1 = n1/4πr
2
1 and ϕ2 = n2/4πr

2
2, respectively. To understand how the translo-

cation time of the vesicle depends on the initial size R0 as well as the pressure

difference ∆P , we introduce dimensionless parameters a/R0 and ∆Pa/λ, where λ

is the stretching modulus of the stretched membrane constituting the vesicle.

4.1.1 The Potential Energy

We have assumed that, at equilibrium, the vesicle with surface area S0 = 4πR2
0 has

a number of surfactant molecules N0. Then, if we stretch out the vesicle to two

connected spheres with surface areas S1 and S2, their surface area differences com-

pared to their equilibrium surface areas should be written as 4π(r21 −R2
0(n1/N0))

and 4π(r22−R2
0(1−n1/N0)) for the lower and upper parts in Fig. 4.1, respectively.

Then, the stretching energy of the membrane takes the form

A =
1

2
λ4π

(
r21 −R2

0

(
n1

N0

))2
R2

0

(
n1

N0

) +
1

2
λ4π

(
r22 −R2

0

(
1−

(
n1

N0

)))2
R2

0

(
1−

(
n1

N0

)) −∆P
4π

3
(r31 − r32),

(4.2)

where the bending elastic energy is constant for a spherical vesicle and we have ne-

glected its contribution. We rewrite Eq. 4.2 in terms of the dimensionless variables
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x and y, where x and y are defined by

x =

(
r1
R0

)3

, (4.3)

and

y =
n1

N0

=
ϕ1

ϕ0

·

(
r1
R0

)2

, (4.4)

respectively. Then, the energy is rewritten as

A

(
x, y;

a

R0

;
∆Pa

λ

)
= a2λ

{
2π

(
R0

a

)2[
(x2/3 − y)2

y
+

((1− x)2/3 − (1− y))2

1− y

]

−4π

3

(
R0

a

)3(
∆Pa

λ

)
(2x− 1)

}
. (4.5)

4.1.2 The Energy Dissipation Function

The energy dissipation is caused mostly at the hole. It arises not only from the

moving liquid but also from the moving surfactant molecules. In the limit of small

Reynolds number, the dissipation function for the vesicle is given by

Φ =
1

2
ζsav

2
s +

1

2
ζla

2(vs − vl)2, (4.6)

where ζs represents the friction coefficient of the hole on the surfactant molecules,

and ζl is related to the viscosity. Generally, the friction coefficients should be

functions of the slow variables and they can be derived from the Stokesian hydro-

dynamics. In this work, however, for the sake of simplicity, they are assumed to

be constants. Note that ζs and ζl have the units of kg m−1 s−1, and kg m−2 s−1,

respectively. The surfactant velocity vs and the liquid flow velocity vl are defined

by

vs =
ṅ1

πa(ϕ1 + ϕ2)
=

4(r1r2)
2ṅ1

a(n1r22 + n2r21)
, (4.7)

and

vl =
V̇1
πa2

=

(
2r1
a

)2

ṙ1, (4.8)
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respectively. The first term in Eq. 4.6 is caused from the membrane through the

friction force against the moving surfactant molecules, while the second term is

the dissipating energy caused by the relative motion of the liquid and the surfac-

tant molecules. By introducing the dimensionless parameter, ζs/ζla, the energy

dissipation function for the vesicle can be rewritten from Eqs. 4.6, 4.7 and 4.8 as

Φ

(
ẋ, ẏ;

a

R0

;
ζs
ζla

)
= 8a4ζl

(
R0

a

)4{(
R0

3a

)2

ẋ2

+

(
1 +

ζs
ζla

)
x4/3(1− x)4/3

[(1− x)2/3y + (1− y)x2/3]2
ẏ2

−

(
2R0

3a

)
x2/3(1− x)2/3

[(1− x)2/3y + (1− y)x2/3]
ẋẏ

}
. (4.9)

4.1.3 The Vesicle’s Evolution Equations

By minimizing the vesicle Rayleighian R = Φ + Ȧ with respect to ẋ and ẏ, we

obtain the two-coupled differential equations

dx

dt′
= − 9

32

(
a

R0

)7(
1 +

ζla

ζs

)
f(x, y)

− 3

32

(
a

R0

)6(
ζla

ζs

)[
y

x2/3
+

(1− y)
(1− x)2/3

]
g(x, y), (4.10)

and

dy

dt′
= − 1

32

(
a

R0

)5(
ζla

ζs

)[
y

x2/3
+

(1− y)
(1− x)2/3

]

×

{(
3a

R0

)
f(x, y) +

[
y

x2/3
+

(1− y)
(1− x)2/3

]
g(x, y)

}
, (4.11)

where we have defined

f(x, y) = 2π

(
R0

a

)2[
4

3
(x2/3 − y)x

−1/3

y
− 4

3
((1− x)2/3 − (1− y))(1− x)

−1/3

(1− y)

]

−8π

3

(
R0

a

)3(
∆Pa

λ

)
, (4.12)



44

and

g(x, y) = 2π

(
R0

a

)2[
− (x4/3 − y2)

y2
+

(1− x)4/3 − (1− y)2

(1− y)2

]
. (4.13)

The dimensionless time t′ is defined by t′ = t/τ , where τ = ζla
3/2R0λ. We have

assumed that, at the initial state, the lower part of the vesicle is a sphere with

radius a and its surfactant density is (ϕ1)i. This gives x(t′ = 0) = (a/R0)
3 and

the initial condition for y is y(t′ = 0) = [(ϕ1)i/ϕ0](a/R0)
2.

4.2 Results and Discussions

4.2.1 Energy Barrier

Figure 4.2 shows the free energy landscape of the translocating vesicle for R0/a =

2.0, where the horizontal and vertical axes stand for the dimensionless variables x

and y, respectively. In the absence of the pressure difference across the membrane,

the energy landscape is symmetric with respect to (x, y) = (0.5, 0.5) as illustrated

in Fig. 4.2 (a). We can see clearly that the free energy barrier moves from the

midpoint toward the initial point along the trajectory as the pressure difference

increases, as shown in Fig. 4.2 (from (a) to (b)). Moreover, it disappears when

∆Pa/λ ≥ 0.05 as illustrated in Figs. 4.2 (c) and (d). Our results suggest a

decreasing in the energy barrier as the pressure difference increases. It should be

noted that a similar free energy landscape was studied by Shojaei et al. [22] In

their consideration, the pore volume is also taken into account. In contrast, we

neglect such detailed structure of the pore in order to highlight the qualitative

behavior of the kinetic pathway.

In the work of Shojaei et al. [22], the energy for the vesicle shape is described

by a bending modulus κc and a stretching modulus λ through the form:

F =
1

2
κc

∮
dA(2H − c0)2 +

1

2A0

λ(∆A)2, (4.14)

where the mean curvature H is defined by H ≡ (1/R1 + 1/R2)/2. (R1 and R2

stand for the radii of principal curvatures.) c0 is the spontaneous curvature, and
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Figure 4.2: Free energy landscape with ∆Pa/λ = 0.0, 0.01, 0.05 and 1.0 at R0/a =

2.0. The horizontal and vertical axes refer to the dimensionless variables x and y,

respectively.
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∆A is the change in the total area of the vesicle, which is defined by ∆A = A−A0,

where A0 is the area of the initial vesicle and A is that of the stretched vesicle.

In the absence of any external driving force, their representative results show

the decreasing in the energy barrier as the spontaneous curvature increases. The

effect is obviously noticed when the vesicle is being at the crossing stage (The

stage that the partial vesicle occupies the volume of the pore, while its remainder

is partitioned into both sides of the pore. In the consideration of Shojaei et al. [22],

the pore has a cylindrical shape.). The symmetry in the free energy landscape in

the absence of any external driving force is found naturally in our results and

in ref. [22] In the presence of the external potential difference, Shojaei et al. [22]

reported the effect of changing the bending and the stretching moduli on the

free energy landscape, when the vesicle has no spontaneous curvature c0. Their

results suggest that variation of the bending modulus affects the energy barrier

significantly, while the variation of the stretching modulus seems to affect the

barrier insignificantly.

4.2.2 Reaction Path and Kinetic Path

The reaction path is the path of the state change which is usually identified with

the minimum energy path (MEP), whose shape can be obtained by the string

method. Generally, the string method is used for computing the MEP in config-

uration space. If the MEP is a path φ connecting two states a and b, i.e. two

endpoints of the string on the free energy landscape A, then, by definition, φ must

satisfy

(∇A)⊥(φ) = 0, (4.15)

where (∇A)⊥ is the component of (∇A) normal to φ. Once the free energy A

is obtained (Eq. 4.5), we can directly get the reaction path from Eq. 4.15. Our

initial trial string is discretized into a set of points where each point corresponds

to different states and morphologies of the system. For such initial guess of the

path, the force perpendicular to the path will be non-zero. We need to evolve the
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string according to the dynamics

−(∇A)⊥(φ) = un, (4.16)

where un is the hypothetical normal velocity of the path. We can see clearly

that Eq. 4.15 is the stationary state of Eq. 4.16. Generally, kinetic path which is

the actual kinetic pathway can be significantly different from reaction path since

reaction path is determined by the free energy A(x, y) only while kinetic path

depends also on kinetic coefficients (ζs and ζl). In the following results, we will

show the comparison between the reaction paths obtained from the string method

and the actual kinetic paths obtained from the Onsager principle when ζs/ζla is

changed on the free energy landscape.

At R0 = 10.0a and ∆Pa = 0.02λ, Fig. 4.3 shows that the reaction path (blue

line with filled circle) is slightly different from the kinetic paths. The difference

can be seen clearly when ∆Pa = λ in Fig. 4.4.

Figures 4.3 and 4.4 indicate that reaction and kinetic paths are close to each

other if the external force on the liquid flow is small (and this is independent

of the kinetic coefficients), while they are significantly different from each other

if the external force is large. Because the external force exerted on the liquid

flow induces a quick flow of the liquid compared to the diffusion of the surfactant

molecules, the time evolution of x is much faster than the evolution of y. This

is why we have the difference between the result from the string method and the

kinetic paths obtained from the Onsager principle.

In the limit that ζs is very large, the surfactant distribution (the change of

y) changes very slowly, while the liquid transport (the change of x) takes place

very quickly. In this case, we may assume that y is the slow variable, and x

is in equilibrium for given y, i.e. ∂A/∂x = h(x, y) = 0. This determines the

kinetic path for large value of ζs as shown in Figs. 4.3 and 4.4 with solid red

lines. The state variables (x, y) will quickly approach to the kinetic path, and

then moves slowly along the kinetic path. The translocation time is determined

by the dynamics of y along the kinetic path.
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Figure 4.3: Free energy landscape at small external force. The reaction and the

kinetic paths are evaluated at R0 = 10.0a with ∆Pa = 0.02λ. The free energy

landscape has a steep valley for ζs/ζla = 0.1, 1.0, and 10.0. The initial string is

discretized into 20 points. The solid red line indicates the kinetic path for large

value of ζs.
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Figure 4.4: Free energy landscape at large external force. The free energy land-

scape becomes flatter for ∆Pa = λ. We give the results with ζs/ζla = 0.1, 1.0, 10.0

and 100.0. The initial string is discretized into 150 points.
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Figure 4.5: The time evolution of the vesicle. At R0/a = 10.0 and ζs = 2ζla, we

give the results for the translocating vesicle with different values of the pressure

difference across the membrane. The horizontal axis is defined by t′ = 2R0λt/ζla
3,

where λ and ζl are the stretching modulus and the friction coefficient related to

the viscosity of the fluid inside the vesicle, respectively. The vertical axis is defined

by x = (r1/R0)
3.

4.2.3 Translocation Time

To clearly understand the effect of the friction coefficient ζs on the translocation

time of the vesicle, we have considered a system which has small and large values of

ζs at R0/a = 10.0 and the initial surfactant density is chosen as (ϕ1)i = 0.5ϕ0. For

the case of small ζs, we have chosen ζs = 2ζla. On the other hand, ζs = 1, 000ζla

holds for the case of large ζs. We see clearly that the translocation time decreases

when the pressure difference increases and, at the same value of ∆P , the vesicle

has succeeded in the translocating with less translocation time for the small value

of ζs. The results are shown in Figs. 4.5 and 4.6.
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Figure 4.6: The motion of the vesicle with the different pressure gradient at ζs =

1, 000ζla. The initial size of the vesicle is set as R0 = 10.0 a. The initial surfactant

density is chosen as (ϕ1)i = 0.5ϕ0.
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Figure 4.7: Translocation time of the vesicle with different its initial size is plotted

as a function of the dimensionless variable ∆Pa/λ. The graphs are evaluated at

ζs = 10ζla, (ϕ1)i = 0.5ϕ0.
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The translocation time of the vesicle is plotted against ∆Pa/λ as illustrated

in Fig. 4.7 at ζs = 10ζla. The translocation time increases as the initial size of

the vesicle R0 increases at a given value of the pressure difference. The authors in

ref. [22] have considered the effect of various parameters on the translocation time

by using the Fokker-Planck formalism. For each vesicle size, their results suggested

that the translocation time decreases as the external driving force increases as in

our results. At a given constant external driving force, their results showed that the

effect of the stretching modulus λ (the last term in Eq. 4.14) on the translocation

time is weaker than the bending modulus κc (the first term in Eq. 4.14). In our

model, we use non-dimensional equations, where the behavior of the model is

specified by a few numbers of non-dimensional parameters. Thus, we do not have

to change individual parameters such as λ and κc as they did in ref. [22]. We

should change only the two parameters i.e. ∆Pa/λ and R0/a.

4.3 Conclusions

We have used Onsager principle to investigate the translocation process of a vesi-

cle through a narrow hole across a membrane. The equations of motion for the

translocating vesicle are derived by choosing the appropriate slow variables. The

potential energy is calculated by considering the stretching energy of the translo-

cating vesicle and the pressure difference across the membrane. There is a free

energy barrier for translocation process of a vesicle through a narrow hole due to

stretching of the vesicle. In the absence of the pressure difference, the free energy

landscape is symmetric around the translocation coordinate and its magnitude de-

pends on the initial size of the vesicle. The height of the barrier can be decreased

by applying the pressure gradient across the membrane. By increasing the pres-

sure difference or decreasing the initial size of the vesicle, the translocation time

becomes shorter.

The kinetic paths obtained from the Onsager principle are independent of

the friction coefficients ζs and ζl when the pressure difference is small and those
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paths are close to the reaction paths (the minimum energy paths) obtained from

the string method. On the other hand, they are significantly different from each

other if the pressure difference is large. Because the pressure exerted on the

liquid flow induces a quick flow of the liquid compared to the diffusion of the

surfactant molecules, the diffusion flow of the liquid volume inside the vesicle

(denoted by the variable x) is much faster than the migration of the number of

the surfactant molecules (denoted by the variable y). This is the reason why we

have the difference between the result from the string method and the kinetic

paths obtained from the Onsager principle. This means that we have already

shown that Onsager principle is an extension of the conventional string method

when the external driving force is large.

In our model, we have considered the hole on a rigid membrane wall as a

circular hole with fixed radius a. However, in real physical system e.g. translo-

cation of a white blood cell through a hole on blood vessel wall (transcellular

diapedesis), pore can change its size during the translocation process. In such a

case, our model needs to be extended by introducing one more variable i.e. size

of the pore. In the present work, however, we neglected such a degree of freedom,

and predicted the dependencies of translocation kinetics of a single vesicle on its

stretching property and size and on the applied pressure difference. We hope that

our simple model would stimulate experiments on the study of translocation of

vesicle through a narrow hole.



CHAPTER V

Birthing of a Daughter Vesicle in

Self-reproducing Vesicle System

Recently, Sakuma and Imai [38] established a temperature-controlled cyclic self-

reproducing vesicle system without feeding. The characteristic feature of their

system is that the vesicle composed of cylinder-shaped lipids [1, 2-dipalmitoyl-sn-

glycero-3-phospho choline (DPPC)] and inverse-cone-shaped lipids [1, 2-dilauroyl-

sn-glycero-3-phos phoethanolamine (DLPE)]. The vesicle forms an inclusion vesi-

cle called daughter vesicle inside the mother vesicle and then the daughter vesicle

is expelled through the small pore on the mother vesicle. In this chapter we present

theoretical model on the birthing process of a single, rigid daughter vesicle through

a pore. By using a simple geometric picture, we derive the free energy constitut-

ing the material properties of the mother vesicle, i.e., bending, stretching and line

tension moduli, as functions of the distance between centers of the daughter and

mother vesicles. We see clearly the disappearance of the energy barrier by select-

ing appropriate moduli. The dynamics of the system is studied by employing the

Onsager principle. The results indicate that translocation time decreases as the

friction parameter decreases, or the initial size of the daughter vesicle decreases.

We organize this chapter as follows. In Sec. 5.1, we describe the theory for

a birthing daughter vesicle. Section 5.2 is devoted to the discussion of the results

of the birthing vesicle. We end this chapter with the conclusion of this study in

Sec 5.3.
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Figure 5.1: Model of a birthing daughter vesicle.

5.1 Theory of a Birthing Vesicle

5.1.1 Geometry

The birthing of a single, spherical, rigid daughter vesicle with radius b through a

pore of the spherical mother vesicle with radius R is modeled by a simple geometric

ansatz as illustrated in Fig. 5.1. We neglect the thickness of the membrane of the

mother vesicle. The distance between the centers of the mother and daughter

vesicles is denoted by zd. During the birthing process, the pore on the surface of
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the mother vesicle gradually expand and shrink due to line tension energy. We

have assumed that the pore has a circular shape with radius a where its center

is located on the straight line between the centers of the mother and daughter

vesicles. The angle defined by the line joining the centers of the mother and

daughter vesicles, and the line between the center of the mother vesicle and the

edge of the hole is denoted by θ. At initial state, the daughter vesicle is a little

bit expelled from the mother vesicle which has radius R0. The distance and angle

at the initial state are denoted by zd,0 and θ0, respectively. When the daughter

vesicle is completely expelled from the mother vesicle and the pore is completely

closed, we will have θ = 0. Then, θ has a maximum value when the daughter

vesicle passes the mother vesicle with half of its volume. Investigation of Fig. 5.1.

shows that the three variables R, zd, and θ are related with each other by the

geometry of constraint

cos θ = R2 + z2d − b2

2zdR
. (5.1)

It follows that we may take zd as the only one independent variable that describes

the system. We assume that during the birthing process there is no water goes

out from the mother vesicle and the daughter vesicle moves very slowly. Then,

the volume of the mother vesicle is conserved.

5.1.2 The Potential Energy

We have assumed that, at equilibrium, the mother vesicle has a spherical shape.

The potential energy is composed of the bending, stretching and line tension

energies,

F =
κ

2

∫
dA(2H − c0)2 +

λ

2

(A− Aeq)
2

Aeq
+ σ

∮
dl, (5.2)

where κ, λ, and σ are bending, stretching, and line tension moduli, respectively.

The first term on the right hand side of Eq. 5.2 is the bending energy which is

harmonic in the mean curvature H, where H is defined by H ≡ (1/R1 +1/R2)/2.

(R1 and R2 stand for the radii of principal curvatures.) c0 is the spontaneous

curvature. Typically, the bending modulus κ is of the order of 10 kBT . The
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experimental techniques to measure this bending modulus and its reported values

are given in [58].

The second term on the right hand side of Eq. 5.2 shows the stretching

energy of the mother vesicle. It is in the form of harmonic in the change of vesicle

surface area A−Aeq, where Aeq = 4πR2
eq which is the equilibrium surface area of

the mother vesicle and A is the mother vesicle surface area subtracted by the area

of the pore, which is determined by R and θ. The value of the stretching modulus

λ is taken in the order of 10−1 kBT/µm2.

The last term on the right hand side of Eq. 5.2 refers to the line tension

energy of the system which is proportional to the total length of the pore. Ex-

perimentally, it is rather difficult to measure the line tension modulus σ of the

membrane constituting DPPC and DLPE directly. In our study, we will give a

prediction for the value of σ which is assumed to be of the order of 1 kBT/µm.

We can analytically calculate the bending, stretching, and line tension ener-

gies of the system based on the differential geometry of the curved surface. First,

let us calculate the contribution to the free energy from the bending. The Helfrich

free energy is given by

Fb =
κ

2

∫
dA(2H − c0)2. (5.3)

The integral
∫
dA is taken over the area Amother vesicle − Apore = 2πR2(1 + cos θ).

Then, this bending energy reduces to

Fb = πκR2(1 + cos θ)
(

2

R
− c0

)2

, (5.4)

where we have used H = 1/R for the spherical mother vesicle with radius R and

the spontaneous curvature is c0. Using Eq. 5.1, we can eliminate cos θ and, then,

we obtain the Helfrich free energy in terms of the parameters R, zd, and b as

Fb = πκR2

(
1 +

R2 + z2d − b2

2zdR

)(
2

R
− c0

)2

. (5.5)

In order to obtain the stretching energy, we first calculate square of the
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change in the surface area of the mother vesicle as

(∆A)2 = (A− Aeq)
2

= [(Amother vesicle − Apore)− Aeq]
2

= [2πR2(1 + cos θ)− 4πR2
eq]

2. (5.6)

Then, the stretching energy is

Fs =
λ

2

(∆A)2

Aeq

=
πλ

2R2
eq
[R2(1 + cos θ)− 2R2

eq]
2

=
πλ

2R2
eq

[
R2

(
1 +

R2 + z2d − b2

2zdR

)
− 2R2

eq

]2
, (5.7)

where the law of cosine Eq. 5.1 comes to the end for eliminating θ.

Likewise, we calculate the line tension energy. It is given by

Fl = 2πσR sin θ. (5.8)

Since cos θ = (R2+ z2d− b2)/(2zdR), from the identity sin2 θ+ cos2 θ = 1, we easily

obtain

sin θ =

√
1− (R2 + z2d − b2)2

(2zdR)2
. (5.9)

Then, the line tension energy becomes

Fl = 2πσR

√
1− (R2 + z2d − b2)2

(2zdR)2
. (5.10)

The total free energy of the system as a function of the radius R, the distance

zd, and the radius of the daughter vesicle b is

F [R, zd; b] = πκR2

(
1 +

R2 + z2d − b2

2zdR

)(
2

R
− c0

)2

+
πλ

2R2
eq

[
R2

(
1 +

R2 + z2d − b2

2zdR

)
− 2R2

eq

]2

+2πσR

√
1− (R2 + z2d − b2)2

(2zdR)2
. (5.11)
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Here we should note that R is not independent of zd. We have assumed that

during the birthing process the volume of the mother vesicle is preserved. So, R

can be determined by the constraint

∆V =
4

3
πR3 − πb2

[
(R cos θ − zd) + b

]
+
π

3

[
(R cos θ − zd)3 + b3

]
−πR3(1− cos θ) + πR3

3
(1− cos3 θ)

−4

3
πR3

0 + πb2
[
(R0 cos θ0 − zd,0) + b

]
−π
3

[
(R0 cos θ0 − zd,0)3 + b3

]
+πR3

0(1− cos θ0)−
πR3

0

3
(1− cos3 θ0)

= 0, (5.12)

together with Eq. 5.1. Then, the free energy Eq. 5.11 is a function of zd and b

only.

5.1.3 The Energy Dissipation Function

When the daughter vesicle is moving through the pore, the energy dissipation is

caused mostly at the pore. In the limit of small Reynolds number, the dissipation

function for the daughter vesicle is given by

Φ =
1

2
ζżd

2, (5.13)

where ζ is the friction coefficient. Generally, the friction coefficient is a function

of the slow variables and it can be derived from the Stokesian hydrodynamics. In

this work, we assume that the friction coefficient is proportional to the radius of

the pore a and can be written as

ζ = 2παa

= 2παR sin θ, (5.14)

where α is related to the viscosity of the fluid and has the unit of kg m−1 s−1.
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5.1.4 The Equation of Motion

The Rayleighian of the system is

R = Φ+ Ḟ

=
1

2
ζżd

2 +
dF (zd)

dt

=
1

2
ζżd

2 +
∂F

∂zd
żd. (5.15)

By minimizing R with respect to żd, i.e., ∂R/∂żd = 0, we obtain the equation

of motion for the daughter vesicle

żd = −
1

ζ

∂F

∂zd
. (5.16)

5.2 Results and Discussions

We present our results by first discussing the explicit free energy landscapes when

the bending, stretching, and line tension moduli are changed. We then show the

effect of adding water into the mother vesicle on the energy barrier. The kinetics

of birthing will be discussed when the friction coefficient is changed or the size of

the daughter vesicle is varied.

5.2.1 Free Energy Landscapes

A representative results of the free energy landscapes over zd when the bending,

stretching, and line tension moduli change are shown in Figs. 5.2, 5.3, and 5.4.

All plots in Figs. 5.2, 5.3, and 5.4 are evaluated when the size of the daughter

vesicle is fixed at b = 10µm, while the equilibrium size of the mother vesicle

is Req = 30µm. The initial size of the mother vesicle is R0 = 40µm. The

spontaneous curvature c0 is set to zero.

Figure 5.2 shows the increasing of the free energy when the bending mod-

ulus κ increases while the stretching and line tension moduli are fixed at λ =
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Figure 5.2: The free energy landscapes when the bending modulus κ increases.

The stretching and line tension moduli are fixed at λ = 0.125 kBT/µm2 and σ =

1.0 kBT/µm, respectively. The size of the daughter vesicle is b = 10µm, while

the equilibrium size of the mother vesicle is Req = 30µm. The initial size of the

mother vesicle is R0 = 40µm. The spontaneous curvature c0 = 0.
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Figure 5.3: The free energy landscapes with the variation of the stretching mod-

ulus λ. The bending and line tension moduli are fixed at κ = 20 kBT and

σ = 1.0 kBT/µm, respectively. The other parameters are the same as those in

Fig. 5.2.
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Figure 5.4: The free energy landscapes with changing of the line tension mod-

ulus σ. The bending and stretching moduli are fixed at κ = 15 kBT and

λ = 0.15 kBT/µm2, respectively. b is fixed at 10µm. Req = 30µm, R0 = 40µm,

and c0 = 0.
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0.125 kBT/µm2 and σ = 1.0 kBT/µm, respectively. All graphs show that there

is no energy barrier and the daughter vesicle succeeds in the birthing process at

zd < 50µm. This means that the size of the mother vesicle is reduced from its

initial size. This effect will be seen clearly when the daughter vesicle is large

compare to the size of the mother vesicle.

Figure 5.3 shows the effect of varying the stretching modulus on the free

energy landscape. In this figure, the bending and line tension moduli are fixed

at κ = 20 kBT and σ = 1.0 kBT/µm, respectively. We can see clearly that there

is a metastable state at λ = 10.0 kBT/µm2 which means the daughter vesicle is

trapped. The depth of this metastable state can be decreased by decreasing the

stretching modulus.

The free energy landscapes when the line tension modulus σ changes are

shown in Fig. 5.4. The bending and stretching moduli are fixed at κ = 15 kBT

and λ = 0.15 kBT/µm2, respectively. We see clearly the decreasing in the energy

barrier when σ decreases. The daughter vesicle has succeeded in the birthing at

σ = 1.0 kBT/µm when the energy barrier disappears.

The effect of adding water into the mother vesicle is shown in Fig. 5.5, where

κ = 20 kBT , λ = 0.125 kBT/µm2, and σ = 2.75 kBT/µm. Due to water supplying,

the initial size of the mother vesicle is changed and we select R0 = 40, 50, 60, and

70µm. We see the decreasing of the energy barrier and existence of the metastable

state, where the daughter vesicle stops moving at R0 = 70µm. The highest value

of the free energy is also increasing when the pressure inside the mother vesicle

increases due to adding more water.

5.2.2 Kinetics of Birthing

The free energy landscapes when κ = 15 kBT , λ = 0.170 kBT/µm2, and σ =

1.0 kBT/µm is used to verify the kinetic of the birthing process at T = 35◦C. By

solving Eq. 5.16 numerically, we obtain the trajectory of the daughter vesicle when

the friction coefficient is changed as shown in Fig.5.6, The result shows clearly
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Figure 5.5: The free energy landscapes with the variation of R0. The bending,

stretching, and line tension moduli are fixed at κ = 20 kBT , λ = 0.125 kBT/µm2,

and σ = 2.75 kBT/µm, respectively. b is fixed at 10µm, Req = 30µm, and c0 = 0.
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Figure 5.6: The motion of the daughter vesicle with different value of the friction

coefficient. The bending, stretching, and line tension moduli are fixed at κ =

15 kBT , λ = 0.170 kBT/µm2, and σ = 1.0 kBT/µm, respectively. The results are

evaluated at T = 35◦C. b = 10µm, Req = 30µm, R0 = 40µm, and c0 = 0.
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Figure 5.7: The trajectory of the daughter vesicle with different size b. The

bending, stretching, and line tension moduli are fixed at κ = 20 kBT , λ =

0.110 kBT/µm2, and σ = 1.5 kBT/µm, respectively. The friction coefficient is

fixed at ζ = 10−7 kg · s−1 The results are evaluated at T = 35◦C. Req = 40µm,

R0 = 60µm, and c0 = 0.

that the daughter vesicle has succeeded in the birthing with less translocation

time when the friction is small.

At Req = 40µm and R0 = 60µm, Fig. 5.7 shows the trajectory of the

daughter vesicle with different size b, when κ = 20 kBT , λ = 0.110 kBT/µm2,

and σ = 1.5 kBT/µm are kept constant. The friction coefficient is fixed at ζ =

10−7 kg · s−1 and T = 35◦C. The result indicates that, for a big daughter vesicle,

the mother vesicle feels more uncomfortable. Then the big daughter vesicle is

expelled with high velocity compared to the small daughter vesicle. However, the

velocity is reduced due to the barrier from line tension energy. Finally, it can

escape from the mother vesicle with high velocity again.
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5.3 Conclusions

We have used a simple geometric ansatz to study the birthing of the daughter

vesicle in self-reproducing vesicle system. Onsager principle is used to derive the

equation of motion for the birthing vesicle in terms of the bending, stretching and

line tension moduli of the mother vesicle, and the size of the daughter vesicle, and

the distance between the centers of the daughter and mother vesicles. The defor-

mation of the mother vesicle is treated within the Helfrich free energy formalism

and the stretching energy plays a role as a driving force for the system.

The derived free energy suggested that changing the stretching and line ten-

sion moduli affects the free energy landscapes clearly, while changing the bending

modulus does not affect much the energy landscapes. This suggested that the

system is mainly governed by the competition between the stretching and line

tension energies. Adding more water into the mother vesicle will give an increase

in the free energy and a decrease in the energy barrier. Because of the competition

between the stretching and line tension energies, adding water up to some certain

amount causes the dip in the free energy landscape. Further adding more water,

the metastable state occurs which means the daughter vesicle is trapped and the

birthing process is not completed. The translocation time decreases when the

friction caused by the hole against the motion of the daughter vesicle decreases.

Our results also suggest that when the daughter vesicle is large, the mother vesi-

cle feels more uncomfortable. Consequently, the large daughter vesicle is then

expelled with higher speed compared to the case of small daughter vesicle. How-

ever, the high speed will be decreased by the effect of barrier from the line tension

energy.

In our model, the specific details regarding the chemical properties of the

vesicle are parametrized in terms of the material parameters such as bending,

stretching, and line tension moduli for the purpose of investigating the large scale

properties of the birthing process. From the experimental point of view, measuring

the bending, stretching, and line tension moduli of the membrane directly is rather
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difficult. However, experimentalists could compare their experimental data to our

predicted results to estimate the value of the moduli.



CHAPTER VI

Conclusions

In this thesis, we have examined the dynamics of translocation of a vesicle through

a narrow pore by using Onsager variational principle. The problems of interest are

translocation of a vesicle through a narrow hole across a membrane and birthing

of a daughter vesicle in self-reproducing vesicle system. We will summarize and

conclude the study as follows.

The first chapter is an introduction of the thesis. We state the remarkably

flexible surfaces of vesicles, which show an interesting variety of shape deforma-

tions. Our first example of a vesicle shape deformation is budding transition. A

series of images of L-α-dimyristoylphosphatidylcholine (DMPC) bilayer vesicle in

pure water at different temperatures are shown. The vesicle shows shape deforma-

tions from a simple spherical shape at the lowest temperature to the budding state

when the temperature is increased. Another example of observed shape change

when the temperature is being increased is transitions from discocyte to inside

budded shape via stomatocyte of a DMPC vesicle in pure water.

A brief historical development of the study of translocation of a vesicle

through a small hole due to external driving forces is given. Many attempts tried

to answer the question how the effectiveness of such filtration process depends on

various parameters of the system such as the driving forces, bending and stretching

moduli of the vesicle, the initial size of the vesicle, and geometry and size of the

pore. Apart from the previous studies, we focus on the kinetic pathway of the

translocating vesicle. We employ the string method to investigate the reaction

paths of the kinetic. Those path are compared to the kinetic paths obtained from
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the Onsager principle.

Another problem of such translocation process is the birthing of a vesicle

through a pore in self-reproducing vesicle system. In our study, we theoretically

model the birthing process of the daughter vesicle. We, again, employ the Onsager

principle to investigate kinetic of the system. The chapter ends with the outline

of this thesis.

In Chapter 2, Onsager variational principle which is the physical theory we

use in this thesis, is explained in details. We take the problem in hydrodynamics,

i.e., the dynamics of particle-fluid systems to describe the principle. Small particles

moving in viscous fluids, e.g., particles sedimenting in a fluid can be described by

the force balance between the potential force and the frictional force.

We first discuss a particle moving in a viscous fluid and calculate the fric-

tion constant for a spherical rigid particle. Considering motion of particles in

viscous fluids, Rayleigh defined the dissipation function which allowed us to write

the potential dissipation in analogous with potential force. We then define the

Rayleighian of the system which is a sum of dissipation function and time deriva-

tive of the potential energy. We can see that the force balance between the poten-

tial force and the frictional force is equivalent to the minimization of Rayleighian

over the rate of change of the coordinate of the system. It is the competition

between dissipation and rate of change of the energy. Onsager noticed that many

phenomenological equations describing the time evolution of the non-equilibrium

systems are written in the form of particle-fluid system. He then proved that the

reciprocal relation must hold for such a kind of the time evolution equation. This

casts the evolution law of such systems into a variational principle called the On-

sager variational principle which bases on the existence of slow variables. We give

an example of application of Onsager principle to study translocation of a droplet

through a narrow hole across a membrane.

The kinetic pathways of the translocation are interesting to discuss. By

solving the equation of motion obtained from the Onsager principle, the state

changes of the vesicle can be obtained on the configuration space. On the other
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hand, the string method is a robust tool to obtain the reaction pathways. We

discuss the string method and give some examples of its application in Chapter 3.

In Chapter 4, we discuss translocation of a vesicle through a hole across

a membrane, where we focus on the kinetic pathway of the translocation. The

free energy and the dissipation function of the system are derived. The vesicle’s

evolution equations are shown. The emergence of the free energy barriers associ-

ated with the pressure difference is discussed. We investigate the reaction paths

obtained from the string method and the actual kinetic paths obtained from the

Onsager principle when the friction between the surfactant molecules and the sur-

face membrane is changed. Our results show that those paths are significantly

different from each other when the pressure difference across the membrane is

large. We also show clearly that the translocation time of the vesicle decreases as

the pressure difference increases, or the initial size decreases.

Chapter 5 is devoted to theoretical study to describe experimental results

done by Sakuma and Imai [38]. In this chapter we present theoretical model

on the birthing process of a single, rigid daughter vesicle through a pore. On

the mother vesicle, by using a simple geometric consideration, we derive the free

energy constituting the material properties of the mother vesicle, i.e., bending,

stretching and line tension moduli, as functions of the distance between centers of

the daughter and mother vesicles. We see clearly the disappearance of the energy

barrier by selecting appropriate moduli. The dynamics of the system is studied by

employing the Onsager principle. The results indicate that the translocation time

decreases as the friction parameter decreases, or the initial size of the daughter

vesicle decreases.
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APPENDIX A

Derivation of the Vesicle’s

Evolution Equations from

Onsager Variational Principle

In this appendix, we show the derivation of the vesicle’s evolution equations from

Onsager variational principle used in Chapter IV. The dynamics of the translocat-

ing vesicle can be described by a set of slow variables x = (r1, r2, n1, n2). However,

we can reduce the degrees of freedom to two using the constraints R3
0 = r31+r

3
2 and

N0 = n1+n2. To make dynamics of the translocating vesicle clearer, we introduce

two dimensionless variables x and y, defined by

x ≡

(
r1
R0

)3

, (A.1)

and

y ≡ n1

N0

, (A.2)

respectively. The potential energy of the system can be written in terms of the

two dimensionless variables as

A(x, y) = a2λ

{
2π

(
R0

a

)2[
(x2/3 − y)2

y
+

((1− x)2/3 − (1− y))2

1− y

]

−4π

3

(
R0

a

)3(
∆Pa

λ

)
(2x− 1)

}
. (A.3)
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In the limit of small Reynolds number, the dissipation function for the vesicle is

given by

Φ(ẋ, ẏ) = 8a4ζl

(
R0

a

)4{(
R0

3a

)2

ẋ2 +

(
1 +

ζs
ζla

)
x4/3(1− x)4/3

[(1− x)2/3y + (1− y)x2/3]2
ẏ2

−

(
2R0

3a

)
x2/3(1− x)2/3

[(1− x)2/3y + (1− y)x2/3]
ẋẏ

}
. (A.4)

Next, we construct the Rayleighian of the system. Rayleighian is a sum of dissi-

pation function and time derivative of the free energy. Then, the Rayleighian for

the translocating vesicle is

R = Φ+ Ȧ, (A.5)

where Φ is given by Eq. (A.4) and Ȧ is given by

Ȧ = a2λ

{
2π

(
R0

a

)2[
2y(x2/3 − y)(2

3
x−1/3ẋ− ẏ)− (x2/3 − y)2ẏ

y2

+
2(1− y)((1− x)2/3 − (1− y))(−2

3
(1− x)−1/3ẋ+ ẏ)

(1− y)2

+
((1− x)2/3 − (1− y))2ẏ

(1− y)2

]

−8π

3

(
R0

a

)3(
∆Pa

λ

)
ẋ

}
. (A.6)

The evolutions of x and y are determined by the condition that R is minimized

with respect to ẋ and ẏ, i.e. ∂R/∂ẋ = 0 and ∂R/∂ẏ = 0. This is the Onsager

variational principle [43], [44], [45], [46]. Then, we obtain

ẋ = − 9

16

(
a4λ

R6
0ζl

)(
1 +

ζla

ζs

)
f(x, y)

− 3

16

(
a3λ

R5
0ζl

)(
ζla

ζs

)[
y

x2/3
+

(1− y)
(1− x)2/3

]
g(x, y), (A.7)

and

ẏ = − 1

16

(
a2λ

R4
0ζl

)(
ζla

ζs

)[
y

x2/3
+

(1− y)
(1− x)2/3

]
{(

3a

R0

)
f(x, y) +

[
y

x2/3
+

(1− y)
(1− x)2/3

]
g(x, y)

}
, (A.8)
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where

f(x, y) = 2π

(
R0

a

)2[
4

3
(x2/3 − y)x

−1/3

y
− 4

3
((1− x)2/3 − (1− y))(1− x)

−1/3

(1− y)

]

−8π

3

(
R0

a

)3(
∆Pa

λ

)
, (A.9)

and

g(x, y) = 2π

(
R0

a

)2[
− (x4/3 − y2)

y2
+

(1− x)4/3 − (1− y)2

(1− y)2

]
. (A.10)

By introducing the dimensionless time t′ ≡ t/τ , where τ = ζla
3/2R0λ, we can

rewrite ẋ and ẏ as

ẋ =

(
2R0λ

ζla3

)
dx

dt′
, (A.11)

and

ẏ =

(
2R0λ

ζla3

)
dy

dt′
. (A.12)

By substituting Eqs. (A.11) and (A.12) into Eqs. (A.7) and (A.8), respectively,

we, finally, obtain the vesicle’s evolution equations

dx

dt′
= − 9

32

(
a

R0

)7(
1 +

ζla

ζs

)
f(x, y)

− 3

32

(
a

R0

)6(
ζla

ζs

)[
y

x2/3
+

(1− y)
(1− x)2/3

]
g(x, y), (A.13)

and

dy

dt′
= − 1

32

(
a

R0

)5(
ζla

ζs

)[
y

x2/3
+

(1− y)
(1− x)2/3

]

×

{(
3a

R0

)
f(x, y) +

[
y

x2/3
+

(1− y)
(1− x)2/3

]
g(x, y)

}
. (A.14)
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APPENDIX B

Method of Volume of Solid of

Revolution

Here, we will give a proof of the volume conservation inside the mother vesicle

Eq. (5.12) by using the method of volume of solid of revolution.

In the birthing process, we have assumed that the daughter vesicle moves

gradually and there is no water flowing out through the pore. Then, the water

volume inside the mother vesicle is preserved. The situation is illustrated in Fig. B.

1.

We would like to calculate this constraint which is important for determining

the variable R in terms of zd in Chapter V. In order to calculate the change of

the volume, we first need to find the volume inside of the mother vesicle which is

the total volume of the mother vesicle subtracted by the volume of the daughter

vesicle placed partially inside the mother vesicle, i.e.,

V ′ =
4

3
πR3 − V1 − V2. (B.1)

Let us introduce the method of volume of solid of revolution for calculating

the volume of the daughter vesicle placed partially inside the mother vesicle, V1
and V2. The center of the daughter vesicle is located at point (zd, 0), where zd
is the distance between centers of the mother and daughter vesicles. Using the

ansatz of Fig. B.1, the curve described the upper branch (x > 0) of the daughter

vesicle is

x =
√
b2 − (z − zd)2, (B.2)



83

Figure B.1: The geometry of the daughter vesicle being expelled from the mother

vesicle.

where b is radius of the rigid, spherical daughter vesicle. We then rotate this curve

about z axis to get the surface of the solid of revolution which is the surface of

the daughter vesicle. The volume of this object bounded by the interval z ∈ [a, b]

is given by

V =

∫ b

a

A(z)dz, (B.3)

where A(z) is the cross-sectional area of the solid.

To get the cross-sectional area, we cut the object perpendicular to the axis

of rotation. The cross section is a solid disk with radius x =
√
b2 − (z − zd)2. In

this case, we get a solid disk with the area

A1(z) = πx2

= π[b2 − (z − zd)2]. (B.4)

This method is sometimes called the method of disks.
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Then, the volume V1 is easily obtained from the Eq. (B.3):

V1 = π

∫ R cos θ

zd−b

[b2 − (z − zd)2]dz

= πb2(R cos θ − zd + b)− π

3

[
(R cos θ − zd)3 + b3

]
. (B.5)

Similarly, we can calculate V2 from the same method. The mother vesicle is

located at the origin and the curve described its upper branch (x > 0) is

x =
√
R2 − z2, (B.6)

where R is radius of the mother vesicle. We again rotate the curve about z axis to

get the surface of the mother vesicle. The cross-sectional area obtained by cutting

the surface perpendicular to the z axis is

A2(z) = π(R2 − z2). (B.7)

Then, the volume V2 is

V2 = π

∫ R

R cos θ
(R2 − z2)dz

= πR3(1− cos θ)− π

3
R3(1− cos3 θ). (B.8)

The total volume of the mother vesicle subtracted by the volume of the

daughter vesicle placed partially inside the mother vesicle is

V ′ =
4

3
πR3 − V1 − V2

=
4

3
πR3 − πb2(R cos θ − zd + b) +

π

3

[
(R cos θ − zd)3 + b3

]
−πR3(1− cos θ) + π

3
R3(1− cos3 θ). (B.9)
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Finally, the volume conservation is obtained as

∆V = V ′ − V0

=

{
4

3
πR3 − πb2

[
(R cos θ − zd) + b

]
+
π

3

[
(R cos θ − zd)3 + b3

]
−πR3(1− cos θ) + πR3

3
(1− cos3 θ)

}

−

{
4

3
πR3

0 − πb2
[
(R0 cos θ0 − zd,0) + b

]
+
π

3

[
(R0 cos θ0 − zd,0)3 + b3

]
−πR3

0(1− cos θ0) +
πR3

0

3
(1− cos3 θ0)

}
= 0, (B.10)

where V0 is the total volume of the mother vesicle subtracted by the volume of

the daughter vesicle placed partially inside the mother vesicle at the initial state.


