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Chapter 1

Introduction

1.1 Purpose of the study

In the ordinary metal, it is well-known that the magnetic susceptibility consists of

Pauli paramagnetism (spin term) and Landau diamagnetism (orbital term). Pauli

paramagnetism is positive magnetic susceptibility, while Landau diamagnetism is neg-

ative susceptibility. However, it is not always true when we have spin-orbit (SO)

interaction in the system. The SO interaction may give rise to a new term of magnetic

susceptibility, which is not the spin paramagnetism nor the orbital diamagnetism.

The purpose of study is to understand the magnetic response of various materials

with strong spin-orbit coupling (SOC), including two-dimensional (2D) Rashba /Dres-

selhaus system, the 2D surface state of topological insulator, and three-dimensional

(3D) nodal semimetals. We start with the well-known spin-orbit coupled system, i.e.

2D electron gas (2DEG) with Rashba and Dresselhaus SOC. In both cases, the spin-

orbit interaction is induced by the inversion symmetry breaking. The Rashba effect

occurs when there is structural inversion asymmetry in the junction of semiconduc-

tor hetero-structures [1, 2], while the Dresselhaus effect occurs when the asymmetry

exist in bulk crystal structure.[3] Although the energy dispersion at zero magnetic

field is essentially equivalent in both Rashba and Dresselhaus systems, but the spin

texture on the momentum space is completely different between them. We will show

that this leads to a significant difference in the spin-orbit cross term in the magnetic

1



2 CHAPTER 1. INTRODUCTION

susceptibility.

Moreover, there are a variety of novel topological materials in which the spin or-

bit coupling is essential, such as topological insulator, the Dirac semimetal, and the

Weyl semimetal. They are new, but the magnetic response is not well known. The

topological insulator is a bulk insulator with topological surface states.[4, 5, 6, 7, 8]

The Weyl and Dirac semimetals are the systems with 3D gapless spectrum where the

energy bands touch at isolated points in the momentum space.[9, 61, 62, 63, 64, 10, 14,

16, 18, 19, 23]. We expand our standard knowledge of paramagnetism/diamagnetism

to those novel materials by calculating the magnetic susceptibility.

This thesis will be organized as follows: In Chapter 2, we calculate the magnetic

susceptibility for 2DEG with Rashba SOC and Dresselhaus SOC, and also the 2D

Dirac surface states of the topological insulator. In Chapter 3, we present the de-

tailed calculation of the magnetic response for 3D Dirac/Weyl semimetals. Lastly, the

conclusion will be presented in Chapter 4.

1.2 Background

1.2.1 Magnetism of metals

In the ordinary metal, it is well-known that the magnetic susceptibility consists of

Pauli paramagnetism and Landau diamagnetism. Pauli paramagnetism is caused by

the spin magnetic moment, while the Landau diamagnetism originates from the orbital

cyclotron motion. In the Pauli paramagnetism, an external magnetic field shifts the

energy levels up and down by ±µBH, where µB is Bohr magneton, H is the magnetic

field applied. This immediately results in different numbers in the up spins and down

spins at the equilibrium and thus the system has a finite magnetization as a whole.

In Landau diamagnetism, on the other hand, the electrons makes a circular motion

under the Lorentz force, and it gives the magnetization. In the quantum mechanics,

the energy spectrum is quantized into the discrete levels (n+1/2)~ωc where n is integer

and the spacing width is ~ωc between the levels. ~ is Planck constant h divided by

2π and ωc is the cyclotron frequency. This is called the Landau quantization and

this correctly explains the diamagnetic behavior. [24] For free electron, the magnitude

of Landau diamagnetism is 3 times smaller than the Pauli paramagnetism. In total,
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Figure 1.1: Energy band shifting in Pauli paramagnetism (left) and energy quantiza-

tion in Landau diamagnetism (right). [26]

therefore, the magnetic susceptibility is paramagnetic.

The above classic argument applies to the spin-independent free electron system

with the quadratic dispersion E = p2/2m. If the system has the spin-orbit interaction,

then the spin magnetism and the orbital magnetism cannot be treated independently

and we need a different approach to describe the magnetic response. In this thesis, we

show that the magnetic susceptibility in SOC is generally composed of three terms;

the spin-spin term (χspin), the orbital-orbital term (χorb), and also the spin-orbital

term (χSO). We calculate those three terms for different electronic systems introduced

in the following, and argue the characteristic property of each term in a systematic

manner.

1.2.2 Rashba / Dresselhaus system

As mentioned before, the Pauli paramagnetism comes from the contribution of spins

and Landau diamagnetism comes from the orbital contribution. However it’s not

always true if we have system having spin-orbit coupling (SOC). The SOC effect may

give rise the cross term of spin-orbit contribution. Here we explain the well-known

spin-orbit coupled system, i.e. 2DEG with Rashba and Dresselhaus SOC. In both

cases, the spin-orbit interaction is induced by the inversion symmetry breaking.

The Rashba effect occurs when there is structural inversion asymmetry in the

junction of semiconductor hetero-structures. This effect was proposed by Bychkov-

Rashba to explain the splitting phenomena at GaAs−AlxGa1−xAs heterostuctures in
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Figure 1.2: Side view:(a). Band dispersion of 2DEG without SOC, (b). band dis-

persion for 2DEG with SOC. Top view: (c). Spin orientation for 2DEG with Rashba

SOC, (d). spin orientation for 2DEG with Dresselhaus SOC.

n- and p-type layers.[1, 2] Recently, experimental observations of giant Rashba spin-

orbit coupling have been reported.[30, 31, 32, 33, 34] Theoretical research of magnetic

response in 2DEG with the contribution of Rashba effect had been recently calculated.

[35, 36]The Dresselhaus effect occurs when the asymmetry exist in crystal structure of

the bulk material. This theory was proposed by Dresselhaus in 1955 to describe the

SOC effect in zinc blende structures material.[3]

In the Rashba / Dresselhaus spin orbit interaction, the electrons feel the effective

Zeeman field depending on the electronic momentum, so that the spin direction cor-

relates with the momentum direction. Although the spectrum at zero magnetic field

is essentially equivalent in both Rashba and Dresselhaus systems, the spin texture in

the momentum space is completely different as illustrated in Fig. 1.2. Specifically, if
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Figure 1.3: The cone shaped band dispersion of the surface of topological insulator

(left). The view of the Fermi surface from the top (right). The spin’s vector is

perpendicular to momentum k.

we rotate the equi-energy contour in the momentum space in the clock-wise direction,

then the spin also rotates in the clockwise direction in Rashba system, while in the

counter-clockwise direction in the Dresselhaus system. In that sense, the two systems

have opposite ”chirality” (or ”handedness”) of the spin texture. The similar chiral spin

texture is also found in the surface states of the topological insulator. [7, 8] The topo-

logical insulators are electronic systems which have a bulk band gap but also have

protected conducting states on the surface. The 3D topological insulators such as

Bi2Se3 and Bi2Te3, the surface state band is approximates the 2D Dirac cone, where

the spin direction correlates with the momentum as in Fig. 1.3.

In this thesis, we calculate the magnetic susceptibility of Rashba /Dresselhaus sys-

tems and also 2D Dirac mode for the surface states of the 2D topological insulator. We

demonstrate that the spin-momentum relationship makes an essential difference in the

spin-orbit cross term, and determines the amplitude and sign of the total susceptibility.

1.2.3 Weyl / Dirac semimetals

In this thesis, we also theoretically investigate the magnetic response of three-dimensional

(3D) gapless electron systems. The 3D version of the gapless band structure was the-
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Figure 1.4: Three dimensional schematic image of the Weyl semimetal in momentum

space. [47]

oretically proposed by [9, 61, 62, 63, 64, 10, 14, 16, 18, 19, 23]. In very recent exper-

iments, such 3D gapless electron systems were actually realized in various materials

[46, 58, 52, 53, 54, 55].

In 2D gapless electron system (e.g., graphene), the low energy effective theory at

point degeneracies between the conduction and valence bands takes the form, H(k) =

v(kxσx + kyσy) where σx, σy are the Pauli matrices and v is the velocity parameter.

In 3D, the analogous Hamiltonian is H(k) = v(kxσx + kyσy + kzσz) with all three

Pauli matrices, and it is called a Weyl Hamiltonian as it describes a pair of linear

bands degenerating at a point. When the two different Weyl points happen to merge

at a single momentum, the system is called the Dirac semimetal, since the effective

Hamiltonian is given by 4×4 Dirac Hamiltonian around the four-fold degenerate point.

If the Weyl points are isolated in the momentum space, on the contrary, the system

is called the Weyl-semimental, and the effective Hamiltonian at each Weyl point is

given by 2 × 2 Weyl Hamiltonian. The schematic image of Weyl semimetal is shown

in Fig.1.4 [47].

Therefore, we have three different categories of 3D band structures, the trivial

insulator (fully gapped), the Dirac semimetal and the Weyl semimetal. The Dirac
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semimetal exists on the phase boundary between the trivial insulator and the Weyl

semimetal. The Dirac semimetal can generally occur when the system has both the

time-reversal (T) symmetry and the spacial-inversion (I) symmetry and the Weyl

semimetal can be obtained by breaking either of T or I symmetries [9]. In recent

exeperiments these three-dimensional gapless band structures are actually realized in

specific compounds. The Dirac semimetal phase was found in β-cristiobalite BiO2,

Cd3As2 and Na3Bi [46, 58, 52], and the experimental realization of a Weyl semimetal

state have been recently reported in TaAs and NbAs. [53, 54, 55, 56]

The existence of Dirac points near the Fermi level is responsible for various un-

usual physical properties. One of the most spectacular examples is the magnetic

susceptibility, which is quite distinct from the conventional Landau diamagnetism. In

two-dimenisional graphene, the electronic orbital diamagnetism contains a singularity

expressed as a delta function in Fermi energy, which diverges at Dirac point where

the two bands stick, and vanishes otherwise. [41, 42, 43] The similar calculation of

the orbital magnetism was also done for 3D Dirac Hamiltonian, [50] and it was shown

that the susceptibility in the gapless case becomes a logarithmic function in the Fermi

energy.

The result seems to directly apply to the Dirac andWeyl semimetals, but there is an

important difference between the real relativistic Dirac Hamiltonian and the effective

Dirac Hamiltonian in the solid state physics. In the Dirac and Weyl semimetals, the

external magnetic field B enters the Hamiltonian in two independent manners, one in

the orbital part where p is changed to p+eA with the vector potential A, and the other

in the spin Zeeman term gµBB, where g is the g-factor and µB is the Bohr magneton.

The two-different magnetic field terms give rise to the different terms in the magnetic

susceptibility, the spin-spin term, the orbital-orbital term, and the spin-orbital cross

term, which are not captured in the previous calculation including only the orbital part.

In this thesis, we calculate those components and correctly describe the total magnetic

response in the three-dimensional gapless semimetals. First we calculate analytically

the Landau level spectrum of 4 × 4 linear Hamiltonian which covers Dirac and Weyl

semimetal phases. Then we take the derivative of the thermodynamic potential to get

the magnetic susceptibility.
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Chapter 2

2DEG with Rashba/Dresselhaus

SOC and 2D Dirac System

In this chapter, we calculate the magnetic susceptibility of Rashba /Dresselhaus sys-

tems and also 2D Dirac mode for the surface states of the 2D topological insulator.

We show that the spin-momentum relationship governs the sign the spin-orbit cross

term, and that significantly affects the amplitude and sign of the total susceptibility.

2.1 Hamiltonian and Landau Levels

2.1.1 2DEG with Rashba and Dresselhaus Spin-Orbit Coupling

We start from the Hamiltonian of 2DEG with mass m without magnetic field written

as

H0 =
p2

2m
, (2.1)

From the equation we know the energy band is a parabolic curve in momentum (Fig.

(2.1) (a)). Next, we consider the Hamiltonian of 2DEG with Rashba SOC in presence

of magnetic field B parallel to z axis,[2]

HR =
π2

2m
− λR

~
(πxσy − πyσx) + bσz, (2.2)

The Zeeman term is added as the consequence of the magnetic field presence in the

system. In the Dresselhaus SOC case, we only consider the linear Dresselhaus SO

9
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term. The Hamiltonian is written as [49]

HD =
π2

2m
+
λD
~

(πxσx − πyσy) + bσz. (2.3)

Here σx, σy, σz is Pauli matrices, λR(λD) is Rashba (Dresselhaus) coefficient, and

π = p + eA, (2.4)

where A is vector potential giving in the magnetic field by B = ∇ × A. Here note

that b is also dependent on the external magnetic field B as

b =
1

2
gµBB, (2.5)

where and g is g-factor and µB = e~/(2m0) is the Bohr magneton, and m0 is the bare

electron mass.

When we add Rashba (Dresselhaus) term into the Hamiltonian, the energy band

splits into two bands crossing at zero point forming a single Dirac point like state as

in graphene and other Dirac materials (see Fig. 2.1 (b)). Where εSO here is spin-orbit

energy proportional to Rashba(Dresselhaus) coefficient λR(λD).

Figure 2.1: Energy band of 2DEG (a) without Rashba (Dresselhaus) SOC, and (b)

with Rashba(Dresselhaus) SOC.

To calculate the Landau level we define a lower and uppering operators as

a† =
1√

2e~B
(πx + iπy) (2.6)

a =
1√

2e~B
(πx − iπy), (2.7)
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and we rewrite the Hamiltonian as

HR(n≤1) =

 ~ωc(a†a+ 1
2 ) + b

√
2λR

lB
ia

−
√

2λR

lB
ia† ~ωc(a†a+ 1

2 )− b

 . (2.8)

These operators operate on the Landau-level wave function φn as aφn =
√
nφn−1

and a†φn =
√
n+ 1φn+1. In Rashba system the eigenfunction can be written as

(c1φn−1, c2φn) for n ≥ 1, the Hamiltonian matrix for the vector (c1, c2) then becomes

HR(n≤1) =

 ~ωc(n− 1
2 ) + b i

√
2λR

lB

√
n

−i
√

2λR

lB

√
n ~ωc(n+ 1

2 )− b

 , (2.9)

This gives the two energy levels

εRsn
= n~ωc + s

√
(
1

2
~ωc − b)2 + (

√
2nλR
lB

)2 (2.10)

where s = ±, ωc = eB
m∗ is the cyclotron frequency and lB =

√
~
eB is the magnetic

length. For n = 0, the wave function is written as (0, c2φ0) which gives the only one

levels

εRn=0 =
1

2
~ωc − b. (2.11)

The level εs can be viewed as the n = 0 part of εR,sn in Eq. (2.10), but s = − part is

missing.

In Dresselhaus system the eigenfunction can be written as (c3φn, c4φn−1) for n ≥ 1,

the Hamiltonian matrix for the vector (c3, c4) then becomes

HD(n≤1) =

 ~ωc(n+ 1
2 ) + b

√
2λD

lB

√
n

√
2λD

lB

√
n ~ωc(n− 1

2 )− b

 , (2.12)

This gives the two energy levels

εDsn = n~ωc + s

√
(
1

2
~ωc + b)2 + (

√
2nλD
lB

)2 (2.13)

where s = ±. For n = 0, the wave function is written as (c3φ0, 0) which gives the only

one levels

εDn=0 =
1

2
~ωc + b. (2.14)

The level εs can be viewed as the n = 0 part of εD,sn in Eq. (2.13), but s = − part is

missing. Note that Eqs. (2.9) and (2.12) differ only in the sign in front of of b.
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Figure 2.2: Landau level spectrum of Rashba system (solid lines) and Dresselhaus

(dashed lines) system for λR = λD = 2
√

~3eB0

m∗2 and gm = m0/m
∗. Where B0 is unit

of magnetic field.

Fig. 2.2 is the plot of Landau level for Rashba system (solid lines) and Dresselhaus

system (dashed lines) with λR = λD and the same g-factor. Their energy levels in

B → 0 limit are differ only in n = 0, while all other levels are almost degenerate.

2.1.2 2D Dirac System

Now we consider the 2D Dirac Hamiltonian which describes the surface state of the

3D topological insulator. It is similar to the Rashba /Dresselhaus system, while the

p2 term is absent.

The Hamiltonian is,

HRDirac =

 0 vi(px − ipy)

−vi(px + ipy) 0

 (2.15)

and

HDDirac =

 0 v(px + ipy)

v(px − ipy) 0

 (2.16)
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which are analogous to the Rashba and Dresselhaus systems, respectively. It looks

similar to graphene, but here the vector components correspond to the real spin de-

gree of freedom. The two Hamiltonians have different spin-texture as a function of

momentum. The surface band of the typical topological insulators such as Bi2Se3

corresponds to the case Eq.(2.15). The differences between those Hamiltonians are

the imaginary parts in the off diagonal parts and the sign in front of py. Although the

Hamiltonians are different, their energy bands are identical, written as

εR,Ds = svp (2.17)

where s = ±.

We can see the plot for the energy bands in Fig. 2.3. We have Dirac point at (0,0).

-2 -1 0 1 2
-2

-1

0

1

2

px

¶

Figure 2.3: Energy bands for 2D Dirac systems [Eqs. (2.15) and (2.16)] at zero

magnetic field.

The Hamiltonian in presence of external magnetic field B in z axis is

HRDirac =

 b vi(πx − iπy)

−vi(πx + iπy) −b

 (2.18)

and

HDDirac =

 b v(πx + iπy)

v(πx − iπy) −b

 (2.19)
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for Rashba dan Dresselhaus case respectively.

0 2 4 6 8

-3

-2

-1

0

1

2

3

B

¶

Figure 2.4: Landau levels for 2D Dirac systems. Solid and dashed thick lines are

the n = 0 level for the Rashba type [Eq. (2.15)], and Dresselhaus type [Eq. (2.16)],

respectively. Thin curves are n 6= 0 levels which are shared by the two cases.

The Landau levels for both cases are identical for n 6= 0

εR,Ds = s
√

(b)2 + v22~eBn. (2.20)

For n = 0 the Landau level is,

εR,Dn=0 = αR,Db (2.21)

where,

αR,D =

 αR = −1 for Rashba type,

αD = 1 for Dresselhaus type.

2.2 Magnetic susceptibility

The magnetic susceptibility can be derived from the thermodynamic potential. The

thermodynamic potential of the system at temperature T is written as

Ω = − 1

β

∑
α

ln[1 + exp−β(εα − ζ)], (2.22)
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where α is the index labeling the all eigenstates of the system, β = 1/kBT , and ζ is

the chemical potential. The magnetization is then given by

M = − ∂Ω

∂B
= −

(
∂Ω

∂Bspin
+

∂Ω

∂Borb

)
. (2.23)

The magnetic susceptibility is given by three components

χ = − ∂M

∂B

∣∣∣∣
B=0

=

[
− ∂

2Ω

∂B2
s

− 2
∂2Ω

∂Bs∂Borb
− ∂2Ω

∂B2
orb

]
B=0

≡ χspin +χso +χorb.

(2.24)

We analytically derived the magnetic susceptibility using the Landau level spec-

trum Eq. (2.10) and Eq. (2.11). The thermodynamic potential in Eq. (2.22) per unit

volume can be written as,

Ω = − 1

β

1

2πl2B

∑
s=±

∞∑
n=0

ϕ[εµsn](
1− δn0

1− τs
2

)
, (2.25)

where

ϕ(εµsn) = ln[1 + exp−β(εµsn − ζ)], (2.26)

lB =
√

~/(eBorb) is the magnetic length, ζ is the chemical potential.

2.2.1 2DEG with Rashba and Dresselhaus Spin-Orbit Coupling

The energy defined as,

εµsn = xn + s
√

(∆x/2 + µb)2 + xnxSO (2.27)

with

xn = n∆x, ∆x = 2~eBorb, xSO =
2m∗λ2

SO

~
. (2.28)

Here λSO is Rashba(or Dresselhaus) constant, λR(orD). The variable µ = ±1 denotes

Rashba and Dresselhaus systems as we already know that the difference of their energy
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level is the sign in front of b,

µ =

 −1 for Rashba system,

1 for Dresselhaus system.
(2.29)

We also introduced the variable τs = ±1 as

τs =

 −1 when εs0 = −ε0,

1 when εs0 = ε0.
(2.30)

Equivalently, we have τs = +1 when the Landau level sequence of (s) start from n = 0,

while τs = −1 when it start from n = 1 (i.e., the n = 0 level is missing).

In small magnetic field, using the Euler-Maclaurin formula, the thermodynamic

potential can be expanded in power of Borb as

Ω = Ω0 + α1(Borb) + α2(B2
orb) +O(B3

orb) (2.31)

where

Ω0 = − 1

β

1

2πl2B

∑
s=±

∫ ∞
0

ϕ(x, 0)dx, (2.32)

α1 = − 1

β

1

2πl2B

∑
s=±

e~
m∗

(τs
2
ϕ(0, 0)

+

∫ ∞
0

∂ϕ(x,∆x)

∂∆x

∣∣∣∣
∆x=0

dx

)
(2.33)

Eq. (2.33) expresses the contribution of spin-orbit part. The first term in the bracket

tells us that SO term is solely dependent of n=0 Landau level.

α2 = − 1

β

1

2πl2B

∑
s=±

1

2

(
e~
m∗

)2

(∫ ∞
0

∂2ϕ(x,∆x)

∂∆x2

∣∣∣∣
∆x=0

dx

+
τs∂ϕ(0,∆x)

∂∆x

∣∣∣∣
∆x=0

− 1

12

∂ϕ(x, 0)

∂x
+

∣∣∣∣
x=0

)
,

(2.34)

Then we have,

χorb = −2α2, χspin = − ∂2Ω0

∂Bspin

χSO = −2
∂α1

∂Bspin

∣∣∣∣
Bspin=0

(2.35)
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Here we expect that only χSO has opposite signs in Rashba and Dresselhaus systems,

because it is the first derivative in b. While χspin and χorb is even-number (2 or 0)

derivative in b, so the sign of b doesn’t change the results.

Finally, we get the magnetic susceptibility as

χ∗orb =
1

2

√
1 +

εF
εSO

θ(−εF )θ(εF + εSO)

−1

6
θ(εF )− 2

3
εSOδ(εF ), (2.36)

and

χ∗spin =
1

2
g2
m

√
1 +

εF
εSO

θ(−εF )θ(εF + εSO)

+
1

2
θ(εF )g2

m, (2.37)

where

gm =
gm∗

2m0
, (2.38)

χ∗ = χ/χ0, and

χ0 =
e2

2πm∗
(2.39)

is unit of susceptibility and

εSO =
m∗λ2

R

2~2
. (2.40)

χspin and χorb are completely identical for both systems if if they share the equal

εSO. Our stressing point is that χSO comes with opposite signs, written as

χ∗SO = µgm

√
1 +

εF
εSO

θ(−εF )θ(εF + εSO).

(2.41)

The sign of µ will change as the system changes.

The difference of χSO in both systems results the difference of total magnetic

susceptibility, expressed as

χ∗Total =
1

2

√
1 +

εF
εSO

(gm + µ)2θ(−εF )θ(εF + εSO)

+
1

2
(g2
m −

1

3
)2θ(εF )− 2

3
εSOδ(εF )

(2.42)
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Figure 2.5: Magnetic Susceptibility for Rashba system (χR):(a) χRorb
(b) χRspin

(c)

χRSO
(d)χRTotal

. Dashed lines are analytical results and solid lines are numerical

results with kBT = 0.01εSO.
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Figure 2.6: Magnetic Susceptibility for Dresselhaus system (χD):(a) χDorb
(b) χDspin

(c) χDSO
(d)χDTotal

. Dashed lines are analytical results and solid lines are numerical

results with kBT = 0.01εSO.
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2.2.2 2D Dirac

Now, we focus on The Dirac cone in Rashba and Dresselhaus case.

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

¶FH¶0L

Χ
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O
2

D
H
Χ

0
L

Figure 2.7: χSO for Rashba(solid black line) and Dresselhaus(dashed red lines) 2D

Dirac cone.

The energy defined as,

εR,Dsn = s
√
b2 + xn (2.43)

with

xn = n∆x, ∆x = 2v2~eBorb. (2.44)

The magnetic susceptibility are,

χR,DSO = −αR,D
gµBe

π~
(−θ(−|εF |) + 2θ(εF )) (2.45)

2.3 Discussion

In Fig. 2.5 and Fig. 2.6, we show the magnetic susceptibility as a function of the

Fermi energy εF in 2D Rashba and Dresselhaus systems, respectively. Here (a) the

orbital component, (b) the spin component, (c) the spin-orbit component, and (d)
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the total susceptibility are plotted in separate panels. We can see that Rashba and

Dresselhaus systems have identical orbital and spin susceptibility for λR = λD. The

orbital susceptibility χorb is positive (paramagnetic) in εF < 0, and it diverges to

the negative infinity at εF = 0, and becomes constant in εF > 0. The divergence at

zero energy is related to the band crossing point in the energy bands of zero magnetic

field. This crossing point resembles Dirac point in graphene case. It has been shown

that the orbital magnetic susceptibility of graphene diverges at zero energy [38]. The

spin magnetic susceptbility χspin is always paramagnetic due to its dependency of g2.

In negative Fermi energy it is an increasing function of Fermi energy, and it becomes

constant in positive Fermi energy.

The difference of Rashba case and Dresselhaus case comes from the spin-orbit cross

susceptibility, χSO. The sign of the spin-orbit magnetic susceptibility is completely

opposite in Rashba and Dresselhaus systems, as argued in Eq. (2.41) and also seen in

panel (c) of Figs. 2.5 and 2.6. χSO is linear in gm, so it is diamagnetic or paramagnetic

depending on gm. The χSO is solely determined by n = 0 Landau level, while other

susceptibility components depend on the whole Landau level spectrum. Indeed, the

sign of the energy of n = 0 Landau level is opposite in Rashba and Dresselhaus

systems, while all other Landau levels are just identical. This fact agrees with that

the difference between Rashba and Dresselhaus systems is only found in χSO.

The difference in χSO significantly affects the total magnetic susceptiblity. We

show the total susceptibilities for the Rashba and Dresselhaus systems in (d) of Figs.

2.5 and 2.6. In εF < 0, the total magnetic susceptibility is always paramagnetic as is

obvious from the first term of Eq. (2.42). In εF > 0, the total susceptibility is purely

given by the χorb and χspin just as in the conventional metal without SOC, and it

can be paramagnetic or diamagnetic depending on g-factor. The central delta-function

peak is orbital effect, and it always exists independently of gm.

In 2D Dirac case, the Rashba type and Dresselhaus type spin texture results in the

opposite sign in χSO as shown in Eq. (2.45), and also plotted in Fig. 2.7. We see the

positive step function for the former and the negative step function in the latter. This

is essentially the same behavior as the discrete steps found in 2DEG with Rashba and

Dresselhaus SOC in Figs. 2.5 and 2.6.

In the material with large |g| factor, i.e. GaAs, withm/m0 = 0.067, g = −0.44, gm =
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−0.015 we will have large value of χspin and χSO.[36] Refer to the results in Fig. 2.5,

the magnetic susceptibility will be paramagnetic for negative Fermi energy and dia-

magnetic for positive Fermi energy.

From the above results, we conclude that the spin texture in the momentum space

is crucial for the sign of χSO, and it deeply influences the observed total susceptibility.

In the next section, we calculate the magnetic response in the Dirac / Weyl semimet-

als and also demonstrate that the spin-momentum relationship is important in those

systems.



Chapter 3

3D Dirac/Weyl Semimetal

In this chapter, we calculate magnetic susceptibility in 3D Dirac semimetal and Weyl

semimetal. We first introduce 4 × 4 Hamiltonian which covers the Dirac semimetal,

Weyl semimetal as well as the gapped semiconductor. Then we applied the general

formulation in the previous section to the Hamiltonian, and analytically obtain the

three susceptibility components: spin-spin term, the orbital-orbital term, and the spin-

orbital cross term. We also consider the Hamiltonian with the opposite chirality in

the spin texture, and argue about how it affects the magnetic susceptibility.

3.1 Electronic Structures of Dirac and Weyl Semimet-

als

3.1.1 Band dispersion at Zero Magnetic Field

We will introduce 4×4 Dirac-Weyl Hamiltonian matrix. In the absence of the magnetic

field the Hamiltonian is,

H =


m+ b 0 vpz v(px − ipy)

0 m− b v(px + ipy) −vpz
vpz v(px − ipy) −m+ b 0

v(px + ipy) −vpz 0 −m− b

 , (3.1)

23
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Figure 3.1: Energy spectrum for Dirac semimetal case.m and b are equal to zero.

Where v is taken as 1.
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Figure 3.2: Energy spectrum for semiconducting case (m = 1, b = 0.5). Where v is

taken as 1. The spectrum is fully gapped.
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Figure 3.3: Energy spectrum for Weyl semimetal case (m = 0.5, b = 1). The two

bands are touching in p = (0, 0,±
√
b2 −m2/v). Where v is taken as 1.

where m is an effective mass, v is the velocity parameter, and b is the intrinsics

Zeeman-like term coupled to the electronic spin, which may exist in magnetic materials

without the time-reversal symmetry. We assume m > 0 and b > 0 in the following.

By diagonalizing the Hamiltonian matrix, we obtain the energy spectrum as,

ε(p) = ±
√
m2 + b2 + v2p2 ± 2b

√
v2p2

z +m2. (3.2)

For the case of px = py = 0, we will have the energy spectrum in pz direction which is

given by

ε(0, 0, pz) = ±|b| ±
√
v2p2

z +m2. (3.3)

The energy spectrum ε(0, 0, pz) is plotted in Figs. 3.1, 3.2 and 3.3 for three different

cases of m = b = 0, m > b and b > m, respectively. The case of m = b = 0 is the

Dirac semimetal, where we have the four-fold degeneracy at the zero energy and the

dispersion is completely linear. The second one m > b describes the semiconducting

case where the spectrum is gapped in the energy range between E = m − b and

−m + b. The last one b > m is the Weyl semimetal case where the the middle two

bands touching at the wave points p = (0, 0,±
√
b2 −m2/v).
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3.1.2 Landau Level Structures

In the case of the presence of magnetic field B perpendicular to z axis, the Hamiltonian

3.1 becomes,

H =


m+ b 0 vπz v(πx − iπy)

0 m− b v(πx + iπy) −vπz
vπz v(πx − iπy) −m+ b 0

v(πx + iπy) −vπz 0 −m− b

 , (3.4)

where

π = p + eA, (3.5)

and A is vector potential giving in the magnetic field by B = ∇×A. Here note that

b is also dependent on the external magnetic field B as

b = b0 + gµBB, (3.6)

where b0 is the intrinsic Zeeman term in the absence of B, and g is g-factor and

µB = e~/(2m0) is the Bohr magneton, and m0 is the bare electron mass. We define a

lower and uppering operators,

a† =
1√

2e~B
(πx + iπy) (3.7)

a =
1√

2e~B
(πx − iπy), (3.8)

which operate on the Landau-level wave function φn as aφn =
√
nφn−1 and a†φn =

√
n+ 1φn+1. The eigenfunction can be written as (c1φn−1, c2φn, c3φn−1, c4φn) for

n ≥ 1, the Hamiltonian matrix for the vector (c1, c2, c3, c4) then becomes

Hn≤1 =


m+ b 0 vpz ∆B

√
n

0 m− b ∆B
√
n −vpz

vpz ∆B
√
n −m+ b 0

∆B
√
n −vpz 0 −m− b

 , (3.9)

where

∆B =
√

2~v2eB. (3.10)
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This gives the four energy levels

εsµpzn = s

√
m2 + b2 + v2p2

z + ∆2
Bn+ µ2b

√
v2p2

z +m2 (3.11)

where s, µ = ±. For n = 0, the wave function is written as (0, c2φ0, 0, c4φ0) and the

Hamiltonian matrix for (c2, c4) becomes

Hn=0 =

 m+ b vpz

vpz −m+ b

 , (3.12)

which gives the only two levels

εµpz0 = b+ µ
√
v2p2

z +m2, (3.13)

with µ = ±. The level εµpz0 can be viewed as the n = 0 part of εsµpzn in Eq. (3.11),

but either of s = ± branches is missing.

The Landau level spectrum is plotted against pz in Figs. 3.4, 3.5 and 3.6 for m =

b = 0, m > b and b > m, respectively. We note that the Landau levels of n ≤ 1 [Eq.

(3.11)] is completely electron-hole symmetric with respect to the zero energy because

the existence of s = ± branches, while that of n = 0 [Eq. (3.13)] is not symmetric

except for b = 0. The dashed curves in the figures indicate the energy level −εµ0

which actually does not exist. As we will see in the following sections, the symmetry

breaking of n = 0 level is actually responsible for the electron-hole asymmetric term

in the magnetic susceptibility.

3.2 Formula to Calculate Magnetic Susceptibility

3.2.1 Decomposition of susceptibility

In the following we will calculate analytically the magnetic susceptibility of the Dirac-

Weyl Hamiltonian.

The thermodynamic potential is written as

Ω = − 1

β

1

2πl2B

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

∞∑
n=0

ϕ[εsµpz (xn)]

(
1− δn0

1− τsµpz
2

)
, (3.14)

where

ϕ(ε) = ln[1 + exp−β(ε− ζ)], (3.15)
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Figure 3.4: Landau level energy spectrum for m = b = 0.
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Figure 3.5: Landau level energy spectrum for m = 1, b = 0.5. The dashed line is non

exist energy level.
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Figure 3.6: Landau level energy spectrum for m = 0.5, b = 1. The dashed line is non

exist energy level.

lB =
√

~/(eBorb) is the magnetic length, ζ is the chemical potential, and we defined

εsµpz (xn) = εsµpzn

= s

√
m2 + b2 + v2p2

z + xn + µ2b
√
v2p2

z +m2 (3.16)

with

xn = n∆x, ∆x ≡ ∆2
B = 2~v2eBorb. (3.17)

We also introduced the variable τsµpz = ±1 as

τsµpz =

 1 when εsµpz0 = εµpz0,

−1 when εsµpz0 = −εµpz0.
(3.18)

Equivalently, we have τsµpz = +1 when the Landau level sequence of (s, µ, pz) start

from n = 0, while τsµpz = −1 when it start from n = 1 (i.e., the n = 0 level is missing).

In weak magnetic field, the summation over n in Eq. (3.14) can be written as a

continuous integral over variable x, and additional terms can be Taylor-expanded in

Borb. For convenience, we introduce the notation,

F (x) = ϕ[εsµpz (x)]. (3.19)
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By using the Euler-Maclaurin formula, we can rewrite the summation over n in the

case of τsµpz = 1 (i.e., n starts from 0) as,

∞∑
n=0

F (xn) =
1

∆x

[∫ ∞
0

F (x)dx+ F (0)
∆x

2
− F ′(0)

∆x2

12
+O(∆x3)

]
(3.20)

and in the case of τsµpz = −1 (i.e., n starts from 1) as,

∞∑
n=1

F (xn) =
1

∆x

[∫ ∞
0

F (x)dx− F (0)
∆x

2
− F ′(0)

∆x2

12
+O(∆x3)

]
(3.21)

The two expressions are united into a single equation as

∞∑
n=0

F (xn)

(
1− δn0

1− τsµpz
2

)
=

1

∆x

[∫ ∞
0

F (x)dx+ τsµpzF (0)
∆x

2
− F ′(0)

∆x2

12
+O(∆x3)

]
(3.22)

Noting that ∆x ∝ Borb, the thermodynamic potential can be expanded within the

second order of Borb as

Ω = − 1

β

1

2πl2B

1

∆x

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

×
[∫ ∞

0

ϕ[εsµpz (x)]dx+ τsµpzϕ[εsµpz (0)]
∆x

2
− ∂

∂x
ϕ[εsµpz (x)]|x=0

∆x2

12
+O(∆x3)

]
= Ω0 + λ1Borb + λ2B

2
orb +O(B3

orb), (3.23)

where

Ω0 = − 1

β

1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

∫ ∞
0

ϕ[εsµpz (x)]dx, (3.24)

λ1 = − 1

β

1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

τsµpzϕ[εsµpz (0)]
2~ev2

2
, (3.25)

λ2 = − 1

β

1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

(−1)
∂

∂x
ϕ[εsµpz (x)]|x=0

4~2e2v4

12
. (3.26)

Finally, the three susceptibility components are written in terms of Ω0, λ1, λ2 as

χspin = − ∂2Ω0

∂B2
spin

∣∣∣∣∣
Bspin=0

, χSO = − ∂λ1

∂Bspin

∣∣∣∣
Bspin=0

, χorb = −2λ2. (3.27)
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3.2.2 Calculation of χspin,χSO, and χorb

3.2.3 χspin term

For zero magnetic field Borb = 0, we have

Ω(Borb = 0) = − 1

β

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

∫ ∞
0

dpxdpy
4π2~2

ϕ[εsµpz (v2(p2
x + p2

y)))],

(3.28)

where

εsµpz (v2(p2
x + p2

y)) = s
√
v2(p2

x + p2
y) + ∆2

B ,

and,

∆ = b+ µ
√
v2p2

z +m2, (3.29)

s = µ is ±.

Denote more simply expression for px and py, we have

v2(p2
x + p2

y) ≡ v2p⊥ ≡ x

2v2p⊥ = dx∫ ∫
dpxdpy
(2π~)2

=

∫ ∞
0

2πp⊥dp⊥
(2π~)2

=

∫ ∞
0

2πdx

2v2(2π~)2
=

1

4π~2v2

∫ ∞
0

dx

.

Then we rewrite Ω0 as,

Ω(Borb = 0) = − 1

β

∫ ∞
−∞

dpz
2π~

∑
s=±

∑
µ=±

∫ ∞
0

dx

4π~2v2
ϕ[εsµpz (x)))],

(3.30)

To calculate χspin, we need to take the second derivative of Ω0. Replace vpz with

Πz, χspin can be written as

χspin = − ∂2Ω0

∂B2
spin

= −(gµB)2 ∂
2Ω0

∂b2

= − (gµB)2

4π~2v2
(− 1

β
)

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx
∂2

∂b2
ϕ[εsµpz (x)))]

(3.31)
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The first derivative is given by,

∂

∂b
ϕ(ε) =

e−β(ε−ζ)

1 + e−β(ε−ζ) (−β)
∂ε

∂b

= (−β)f(ε)
∂ε

∂b
(3.32)

where

f(ε) =
1

1 + eβ(ε−ζ) (3.33)

and ε = εsµpz (x)

The second derivative is given by,

∂2

∂b2
ϕ(ε) = (−β)

(
f ′(ε)

(
∂ε

∂b

)2

+ f(ε)
∂2ε

∂b2

)
(3.34)

Taking the limit of T → 0 of Eq.(3.34), Eq.(3.31) becomes

χspin = − (gµB)2

4π~2v2
(− 1

β
)

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx

(
f ′(ε)

(
∂ε

∂b

)2

+ f(ε)
∂2ε

∂b2

)

= − (gµB)2

4π~2v2

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx

(
−δ(ε− εF )

(
∂ε

∂b

)2

+ θ(εF − ε)
∂2ε

∂b2

)
(3.35)

The first term is Pauli paramagnetism and the second term is Van-Vleck paramag-

netism. Therefore, we can divide the calculation to these two parts:

χspin = χPspin +χVspin, (3.36)

where χPspin is a Pauli paramagnetism term, which given by

χPspin = − (gµB)2

4π~2v2

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx

(
−δ(ε− εF )

(
∂ε

∂b

)2
)

= − (gµB)2

4π~2v2

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx

(
−δ(ε− εF )

(
∆

ε

)2
)
, (3.37)

and χVspin is a Van-Vleck paramagnetism term given by

χVspin = − (gµB)2

4π~2v2

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx

(
θ(εF − ε)

∂2ε

∂b2

)

= − (gµB)2

4π~2v2

∫ ∞
−∞

dΠz

2π~v
∑
s=±

∑
µ=±

∫ ∞
0

dx
(
θ(εF − ε)

x

ε3

)
. (3.38)
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For Dirac semimetal (b = m = 0) case, µ = ± energy levels are degenerated. If

we have the Fermi energy less than zero, we will have only s = 1 contribution for our

calculation. Therefore, the Eq. (3.37) now is given by

χPspin = − (gµB)2

4π~2v2

∫ ∞
−∞

dΠz

2π~v
∑
µ=±

∫ ∞
0

dx

(
−δ(ε− εF )

(
Πz

ε

)2
)

=
(gµB)2

4π~2v2

∫ |εF |
−εF

dΠz

2π~v
∑
µ=±

∫ ∞
0

dε2ε

(
δ(ε− εF )

(
Πz

ε

)2
)

=
(gµB)2

8π2~3v3

8|εF |2

3
(3.39)

and the Eq. (3.38) now is given by,

χVspin =
(gµB)2

4π~2v2

∫ εc

−εc

dΠz

2π~v
∑
µ=±

∫ ε2c

0

dx
(
θ(εF − ε)

x

ε3

)
= 4

(gµB)2

4π~2v2

∫ εc

0

dΠz

2π~v

∫ ε2c

0

dx
(
θ(εF − ε)

x

ε3

)
= 4

(gµB)2

4π~2v2

∫ εc

0

dΠz

2π~v

∫ εc

Πz

dε2ε

(
θ(εF − ε)

(ε2 −Π2
z)

ε3

)
= 8

(gµB)2

4π~2v2

(∫ |εF |
0

dΠz

2π~v

∫ εc

|εF |
dε

(
1− Π2

z

ε2

)
+

∫ εc

|εF |

dΠz

2π~v

∫ εc

Πz

dε

(
1− Π2

z

ε2

))

=
(gµB)2

8π2~3v3

(
8|εc|2

3
− 8|εF |2

3

)
(3.40)

where εc = vpc. From the above results we know that the one of the term of χV0
cancels the term of χP0 . The remaining term is only dependent of εc.

For the next case, we put m 6= 0 where b is still equal to zero. The Dirac point in

the previous case is not exist because of the appearance of the effective mass here. If

we assume the Fermi energy negative and lies inside the gap, the susceptibility will be

a constant. Now, if the Fermi energy lies below the gap (εF < −|m|) the Eq.(3.37) is

given by

χPspin = 8
(gµB)2

4π~2v2

∫ √ε2F−m2

0

dΠz

2π~v

√
Π2
z +m2

|εF |
(3.41)
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and the Van Vleck term now is given by

χVspin = 8
(gµB)2

4π~2v2

(∫ √ε2F−m2

0

dΠz

2π~v

∫ εc

|εF |
dε

(
1− (Π2

z +m2)

ε2

)

+

∫ εc

√
ε2F−m2

dΠz

2π~v

∫ εc

√
(Π2

z+m2)

dε

(
1− (Π2

z +m2)

ε2

))

= 8
(gµB)2

4π~2v2

(∫ √ε2F−m2

0

dΠz

2π~v

((
εc +

(Π2
z +m2)

εc

)
−
(
εF +

(Π2
z +m2)

εF

))

+

∫ εc

√
ε2F−m2

dΠz

2π~v

((
εc +

(Π2
z +m2)

εc

)
−
(

2
√

Π2
z +m2

)))
(3.42)

As well as b = m = 0 case, Pauli term is canceled by one of Van Vleck terms, and the

remaining terms are

χspin = 8
(gµB)2

8π2~3v3
m2 ln

√
ε2
F −m2 + |εF |

m
+χspin(0) (3.43)

where χspin(0) is the constant corresponds to the susceptibility for zero Fermi energy.

Here is given by

χspin(0) = 8
(gµB)2

8π2~3v3

∫ εc

0

dΠz

2π~v

(
εc +

Π2
z +m2

εc
− 2
√

Π2
z +m2

)
. (3.44)

3.2.4 χSO term

To obtain χSO, we have to take the first derivative of λ1 on Bspin. We will start from

the energy spectrum for x = 0, which is given by

εsµpz (0) = s
∣∣∣b+ µ

√
v2p2

z +m2
∣∣∣ . (3.45)

For more simply calculation, we can convert the above equation to

ε′sµpz (0) = µ′b+ s′
√
v2p2

z +m2 (3.46)

where,

χSO = − ∂λ1

∂Bspin

∣∣∣∣
Bspin=0

(3.47)

For T → 0(B →∞), we have

ϕ(ε) = ln(1 + exp−β(ε− εF ))

≈ −β(ε− εF )θ(εF − ε) (3.48)
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or,

− 1

β
ϕ(ε) = (ε− εF )θ(εF − ε) (3.49)

For εF = 0,

λ1 =
1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
s′µ′

(εs′µ′pz − εF )θ(εF − εs′µ′pz )
2~ev2

2

=
1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
s′=±

(b+ s′
√
v2p2

z +m2)
2~ev2

2

=
1

4π~2v2

∫ pc

−pc

dpz
2π~

2b
2~ev2

2

=
epcb

2π~
(3.50)

For 0 < εF < (b−m)

Define,

|p+| =
√

(ε+ b)2 −m2/v

|p−| =
√

(ε− b)2 −m2/v (3.51)

Then,

λ1 =
1

4π~2v2

∫ pc

−pc

dpz
2π~

Λ(pz)
2~ev2

2
(3.52)

For p+ < |pz|,

Λ(pz) =
∑
s′,µ′

µ′(µ′b+ s′
√
v2p2

z +m2 − εF )

= (b−
√
v2p2

z +m2 − εF )− (−b−
√
v2p2

z +m2 − εF )

= 2b (3.53)

For p− < |pz| < p+

Λ(pz) = (b−
√
v2p2

z +m2 − εF )− (−b+
√
v2p2

z +m2 − εF )

−(−b−
√
v2p2

z +m2 − εF )

= 3b−
√
v2p2

z +m2 + εF (3.54)

For |pz| < p−

Λ(pz) = −(−b+
√
v2p2

z +m2 − εF )− (−b−
√
v2p2

z +m2 − εF )

= 2b+ 2εF (3.55)
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Then we have,

λ1 =
1

4π~2v2

∫ pc

−pc

dpz
2π~

Λ(pz)
2~ev2

2

=
1

4π~2v2
(2)

∫ pc

0

dpz
2π~

Λ(pz)
2~ev2

2

=
1

4π~2v2

1

2π~
(2)

[∫ p−

0

dpz(2b+ 2εF ) +

∫ p+

p−

dpz(3b−
√
v2p2

z +m2 + εF )

+

∫ pc

p+

dpz2b

]
2~ev2

2

=
1

4π~2v2

1

2π~
(2) [(2b+ 2εF )p− + (3b+ εF )(p+ − p−) + 2b(pc − p+)

−
∫ p+

p−

dpz
√
v2p2

z +m2

]
2~ev2

2
(3.56)

For (b−m) < εF < (b+m)

Define,

|p+| =
√

(ε+ b)2 −m2/v

For p+ < |pz|,

Λ(pz) = (b−
√
v2p2

z +m2 − εF )− (−b−
√
v2p2

z +m2 − εF )

= 2b (3.57)

For |pz| < p+

Λ(pz) = (b−
√
v2p2

z +m2 − εF )− (−b+
√
v2p2

z +m2 − εF )

−(−b−
√
v2p2

z +m2 − εF )

= 3b−
√
v2p2

z +m2 + εF (3.58)

Then we have,

λ1 =
1

4π~2v2

1

2π~
(2)

[∫ p+

0

dpz(3b−
√
v2p2

z +m2 + εF ) +

∫ pc

p+

dpz2b

]
2~ev2

2

=
1

4π~2v2

1

2π~
(2)

[
(3b+ εF )p+ + 2b(pc − p+)−

∫ p+

0

dpz
√
v2p2

z +m2

]
2~ev2

2

(3.59)

For εF > (b+m)
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Define,

|p+| =
√

(ε+ b)2 −m2/v

|p−| =
√

(ε− b)2 −m2/v (3.60)

For p+ < |pz|,

Λ(pz) = (b−
√
v2p2

z +m2 − εF )− (−b−
√
v2p2

z +m2 − εF )

= 2b (3.61)

For p− < |pz| < p+

Λ(pz) = (b−
√
v2p2

z +m2 − εF )− (−b+
√
v2p2

z +m2 − εF )

−(−b−
√
v2p2

z +m2 − εF )

= 3b−
√
v2p2

z +m2 + εF (3.62)

For |pz| < p−

Λ(pz) = (b+
√
v2p2

z +m2 − εF )− (−b+
√
v2p2

z +m2 − εF )

+(b−
√
v2p2

z +m2 − εF )− (−b−
√
v2p2

z +m2 − εF )

= 4b (3.63)

Then we have,

λ1 =
1

4π~2v2

1

2π~
(2) [(4b)p− + (3b+ εF )(p+ − p−) + 2b(pc − p+)

−
∫ p+

p−

dpz
√
v2p2

z +m2

]
2~ev2

2
(3.64)

For semiconducting case χSO is given by,

χSO = − egµB
2π2~2v

(√
(εF + b)2 −m2 + 2εc

)
(3.65)

for |b−m| < εF < |b+m| and,

χSO = − egµB
2π2~2v

(√
(εF + b)2 −m2 +

√
(εF − b)2 −m2 + 2εc

)
(3.66)

for (b+m) < εF .

For Weyl semimetal case χSO is given by,

χSO = − egµB
2π2~2v

(√
(εF + b)2 −m2 +

√
(εF − b)2 −m2 + 2vpc

)
(3.67)
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for (b+m) < εF .

χSO = − egµB
2π2~2v

(√
(εF + b)2 −m2 + 2vpc

)
(3.68)

for (b−m) < εF < (b+m).

χSO = − egµB
2π2~2v

(√
(εF + b)2 −m2 −

√
(εF − b)2 −m2 + 2vpc

)
(3.69)

for 0 < εF < (b−m)

3.2.5 χorb term

λ2 = − 1

β

1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
sµ

∂

∂x
ϕ[εsµpz (0)]

(2~ev2)2

12
(3.70)

For T → 0(B →∞), we have

− 1

β

∂

∂x
ϕ[εsµpz (x)]|x=0 =

θ(εF − εsµpz (0))

2εsµpz (0)
(3.71)

where,

εsµpz (0) = s|b+ µ
√
v2p2

z +m2|

or,

ε′s′µ′pz (0) = µ′b+ s′
√
v2p2

z +m2

and we have,

λ2 = − 1

β

1

4π~2v2

∫ ∞
−∞

dpz
2π~

∑
s′µ′

θ(εF − ε′s′µ′pz (0))

2ε′s′µ′pz (0)

(2~ev2)2

12
(3.72)

For εF = 0, ∫ ∞
−∞

dpz
∑
s′µ′

θ(εF − ε′s′µ′pz (0))

2ε′s′µ′pz (0)
= 2

∫ pc

0

dpzΛ(pz) (3.73)

Introducing

|p0| =
1

v

√
b2 −m2 (3.74)

For |pz| < p0,

Λ(pz) =
1

−b+
√
v2p2

z +m2
+

1

−b−
√
v2p2

z +m2
(3.75)
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For |pz| > p0,

Λ(pz) =
1

−b−
√
v2p2

z +m2
+

1

b−
√
v2p2

z +m2
(3.76)

Then,Eq. (3.73) becomes,∫ ∞
−∞

dpz
∑
s′µ′

θ(εF − ε′s′µ′pz (0))

2ε′s′µ′pz (0)
= 2

[∫ p0

0

dpz

(
1

−b+
√
v2p2

z +m2
+

1

−b−
√
v2p2

z +m2

)

+

∫ pc

p0

dpz

(
1

−b−
√
v2p2

z +m2
+

1

b−
√
v2p2

z +m2

)]
(3.77)

For 0 < εF < (b−m)

Define,

|p+| =
√

(ε+ b)2 −m2/v

|p−| =
√

(ε− b)2 −m2/v (3.78)

For p+ < |pz|,

Λ(pz) =
1

b−
√
v2p2

z +m2
+

1

−b−
√
v2p2

z +m2
(3.79)

For p− < |pz| < p+

Λ(pz) =
1

−b+
√
v2p2

z +m2
+

1

b−
√
v2p2

z +m2
+

1

−b−
√
v2p2

z +m2

=
1

−b−
√
v2p2

z +m2
(3.80)

For |pz| < p−

Λ(pz) =
1

−b+
√
v2p2

z +m2
+

1

−b−
√
v2p2

z +m2
(3.81)

Then we have,∫ ∞
−∞

dpz
∑
s′µ′

θ(εF − ε′s′µ′pz (0))

2ε′s′µ′pz (0)
= 2

[∫ p−

0

dpz

(
1

−b+
√
v2p2

z +m2
+

1

−b−
√
v2p2

z +m2

)

+

∫ p+

p−

dpz

(
1

−b−
√
v2p2

z +m2

)

+

∫ pc

p+

dpz

(
1

−b−
√
v2p2

z +m2
+

1

b−
√
v2p2

z +m2

)]
(3.82)
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For (b−m) < εF < (b+m)

Define,

|p+| =
√

(ε+ b)2 −m2/v

Then we have,∫ ∞
−∞

dpz
∑
s′µ′

θ(εF − ε′s′µ′pz (0))

2ε′s′µ′pz (0)
= 2

[∫ pc

p+

dpz

(
1

b−
√
v2p2

z +m2

)

+

∫ pc

0

dpz

(
1

−b−
√
v2p2

z +m2

)]
(3.83)

For εF > (b+m)

∫ ∞
−∞

dpz
∑
s′µ′

θ(εF − ε′s′µ′pz (0))

2ε′s′µ′pz (0)
= 2

[∫ pc

p−

dpz

(
1

−b−
√
v2p2

z +m2

)

+

∫ pc

p+

dpz

(
1

b−
√
v2p2

z +m2

)]
(3.84)

Finally, we have the final expression of χorb in semiconducting case given by

χorb =
e

24π2~2v

1√
|m2 − b2|

(
−2b arctan(

bεc√
|m2 − b2|(ε2

c +m2)
)

+2
√
|m2 − b2| log(v(εc +

√
ε2
c +m2)

+b(arctan(

√
εF + b2)−m2√
|m2 − b2|

+ arctan(
b
√
εF + b2)−m2√

|m2 − b2|(εF + b)2
))

+
√
|m2 − b2| log(v(

√
εF + b2)−m2 + (εF + b)))

)
(3.85)

for |b−m| < εF < |b+m| and,

χorb =
e

24π2~2v

1√
|m2 − b2|

(
−2b arctan(

bεc√
|m2 − b2|(ε2

c +m2)
)

+2
√
|m2 − b2| log(v(εc +

√
ε2
c +m2)

+b(arctan(

√
εF + b2)−m2√
|m2 − b2|

+ arctan(
b
√
εF + b2)−m2√

|m2 − b2|(εF + b)2
))

+
√
|m2 − b2| log(v(

√
εF + b2)−m2 + (εF + b)))

+b(− arctan(

√
εF − b2)−m2√
|m2 − b2|

+ arctan(
b
√
εF − b2)−m2√

|m2 − b2|(εF − b)2
))

−
√
|m2 − b2| log(v(

√
εF − b2)−m2 + (εF − b)))

)
(3.86)

for (b+m) < εF .
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3.3 Magnetic susceptibility of Dirac-Weyl semimetals

3.3.1 Time-reversal symmetric case (b = 0)

In this chapter, we argue about the basic properties of the magnetic susceptibility of

Dirac-Weyl semimetal in various choices of (m, b). We first consider the the case of

b = 0, i.e., in the absence of the intrinsic Zeeman term. The susceptibility components

at T = 0 are expressed as functions of the Fermi energy εF as

χspin(εF ) = +
e2v

4π2~

(
g

m0v2

)2

m2θ(|εF | −m) ln

√
ε2
F −m2 + |εF |

m
+χspin(0),

χSO(εF ) = − e2v

2π2~

(
g

m0v2

)
sgn(εF )θ(|εF | −m)

√
ε2
F −m2 +χSO(0), (3.87)

χorb(εF ) = − e2v

12π2~
×


ln

2εc
m

|εF | < m,

ln
2εc√

ε2
F −m2 + |εF |

|εF | > m.

Here χspin(0) and χSO(0) are constants which solely depend on the energy cut off

εc. We should note that these terms may not be physically meaningful because in the

real material, the susceptibility generally have some offset which is determined by the

whole band structure beyond the present description. In the following, therefore, we

argue about relative susceptibility with χspin(0) and χSO(0) substracted.

The three susceptibility components in Eq. (3.87) are separately plotted as solid

curves in Fig.3.7, together with the (90◦-rotated) band structure in the top panel.

The orbital-orbital term χorb is negative and logarithmically decays in higher |εF |.

It actually corresponds to the orbital diamagnetism in 2D graphene, and equivalent

to the previous calculation in 3D [50]. The spin-spin term χspin corresponds to the

summation of the Pauli and the van Vleck paramagnetism, and it is positive and

increases as |εF | becomes larger. Interestingly, the spin-orbital term χSO is an odd

function of εF unlike other two components being even functions, and it monotonically

decreases in increasing εF . It is becauseχSO is solely contributed by the n = 0 Landau

level, which is responsible for breaking the electron-hole symmetry as we argued in

Chapter 2.

It is also important to note that the three susceptibility components have different
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magnitudes. The relative magnitudes are roughly estimated as

χspin

χorb

∼
(

gE

m0v2

)2

,
χSO

χorb

∼ gE

m0v2
, (3.88)

where E is the energy scale corresponding to εF and m. Here m0 is the bare electron

mass which originates from µB in the Zeeman term. The typical velocity operator is of

the order of 105 m/s (e.g., 3×105 m/s for TaAs[54]), and thenm0v
2 becomes the order

of 100 meV. In the case of moderate εF and m much smaller than 100 meV, therefore,

we expect χorb is dominant so that the system becomes diamagnetic in total.

Finally it is worth to argue the Dirac semimetal case m = b = 0. Eq. (3.87) except

for the constant terms becomes,

χspin(εF ) = 0,

χSO(εF ) = − e2v

2π2~

(
g

m0v2

)
εF , (3.89)

χorb(εF ) = − e2v

12π2~
ln

εc
|εF |

which are plotted in Fig.3.7 as dashed curves. There χspin completely vanishes, χSO

becomes a simple linear function, and χorb gives a negative logarithmic peaks which

diverges at zero Fermi energy.

3.3.2 General cases (b > 0)

We plot the result of semiconducting case (m > b) in Fig.3.8 where the band structure

and the plot of χspin, χSO, and χorb is shown respectively. Unlike b = 0 case, we have

kink-like structures in all three terms at εF = ±(m+b) and ±(m−b) corresponding to

the specific band structure such as band edges, while the overall behavior is similar to

(m = 1, b = 0) case in the previous section: The relative χspin is paramagentic inside

the energy bands. The spin-orbital term susceptibility is again an odd function unlike

other two, but not a simple linear function anymore and it is constant inside the gap.

χorb is diamagnetic and logarithmically decays while it is constant inside the gap.

Lastly, we show the plot of Weyl semimetal case in Fig.3.9. We observe in all

three terms the kinks corresponding to the band edges as in the previous gapped case,

while the property is now significantly different. Importantly, the diamagnetism χorb

logarithmically diverges at εF = 0 similarly to the Dirac semimetal case (m = b = 0),
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Figure 3.7: Dirac semimetal case (m = b = 0; dashed line) and semiconducting case

(m = 1, b = 0; solid line). (a) Band structure. (b) Spin-spin term susceptibility

χspin −χspin(εF = 0). (c) Spin-orbital term susceptibility χSO −χSO(εF = 0). (d)

Orbital-orbital term susceptibility χorb.
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and this actually reflects the existence of the linear dispersion around the Weyl nodes at

zero energy. In the same region, χspin−χspin(εF = 0) vanishes and this is also similar

to the Dirac semimetal case. Outside the linear band region, χspin −χspin(εF = 0)

becomes negative near the second band edges εF = ±(m + b), and it increases again

outside. χSO is rather featureless and monotonically decreases in increasing of Fermi

energy.

3.3.3 Chirality Dependence

Similar to the Rashba/Dresselhaus case in the previous section, the sign of the spin-

orbit cross susceptibility χSO depends on the spin-texture in the momentum space.

Here we consider the Hamiltonian,

H =


m+ b 0 vpz v(px + ipy)

0 m− b v(px − ipy) −vpz
vpz v(px + ipy) −m+ b 0

v(px − ipy) −vpz 0 −m− b

 (3.90)

where px ± ipy in Eq. (3.1) is inverted to px ∓ ipy. The difference between Eq. (3.1)

and Eq. (3.90) can be understood as the handedness of the spin texture. Specifically,

when we go clockwise around the equienergy contour on px, py plane (i.e., fix pz),

the spin xy component rotates clockwise in Eq. (3.1), while counter-clockwise in Eq.

(3.90).

We can calculate the Landau level structures for Eq. (3.90) in the exactly same

manner as in Eq. (3.1), then we immediately find that the sign τsµpz is inverted:

namely, the existing level and non-existing level of n=0 sector are interchanged. All

other Landau levels n 6= 0 are identical in Eqs. (3.1) and (3.90). As a result, only

the spin-orbit cross susceptibility χSO inverts its sign from Eq. (3.1), while χorb and

χspin remains unchanged. Only the χSO is sensitive to the ”handedness” of the spin

texture, and it affects the total susceptibility.

In Fig.3.10, we plot χSO for the Dirac semimetals (with m = b = 0) with opposite

chiralities, i.e., Eqs. (3.1) and (3.90).
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Chapter 4

Conclusion

In this thesis, We calculated the magnetic susceptibility in various types of materials

with spin-orbit coupling, including 2DEG with Rashba / Dresselhaus spin-orbit cou-

pling, 2D Dirac model to describe the surface state of 3D topological insulator, and 3D

Dirac / Weyl semimetals. The new findings in the thesis are summarized as follows.

(1) General formulation of the spin-orbit cross susceptibility χSO.

The conventional knowledge tells us that the magnetic susceptibility is composed

of the spin part and orbital part. Here we provided a generic formulation to calculate

the magnetic susceptibility from the Landau levels, and found that the materials with

spin-orbit coupling generally has the spin-orbit cross susceptibility χSO on top of the

spin susceptibility χspin and orbital susceptibility χorb. The important point here is

that the Hamiltonian depends on the external magnetic field in two different ways, via

the orbital term and the spin Zeeman term, and therefore we have three susceptibility

components.

(2) Chirality dependence of χSO.

The Rashba SOC and Dresselhaus SOC have essentially the same energy disper-

sions, while the spin-texture on the momentum space is different. Specifically, if we

rotate the equi-energy contour in the momentum space, then the spin rotates in the

opposite directions in Rashba and Dresselhaus systems. One may naively think that

the magnetic susceptibility is insensitive to such the chirality (or handedness) of the

spin texture, but here we found it is not the case. Namely, the χSO is found to have
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opposite signs in Rashba and Dresselhaus case, whileχorb andχspin are just identical.

We also found that the sign of χSO is closely related to the n = 0 Landau level, which

is also chirality dependent. We applied the same method to the 2D Dirac system and

3D Dirac / Weyl system, and found that the dependence of χSO on the chirality of

the spin texture is quite general.

(3) Magnetic susceptibility of 3D Dirac / Weyl semimetals.

The Dirac / Weyl semimetals are novel materials attracting much interest in the

recent years, while very little was known about the magnetic susceptibility. Here

we provided systematic calculations of the magnetic susceptibility for generic 4 × 4

Hamiltonian, which covers the Dirac semimetal, the Weyl semimetal, and the gapped

semiconductor. We calculate the Landau levels and and analytically derive the ex-

pression of the magnetic susceptibility. Using the formula, we actually calculated the

susceptibility in various different cases.

We found that that χorb and χspin are even functions of the Fermi energy i.e.,

electron hole symmetric with respect to zero energy, while only the χSO is found to

be an odd function of Fermi energy unlike the other two. This makes sense since

χSO is solely determined by the n = 0 Landau level and it breaks the electron hole

symmetry. In the Dirac and Weyl semimetal case, in particular, we showed that χSO

is a monotonically increasing or decreasing function in the Fermi energy, while χorb

is a logarithmic function which diverges at zero energy. The log divergence is reflects

the formation of the band touching points. Using the parameters in experimentally-

realized Dirac or Weyl semimetals, we showed that χorb is the largest while other

terms also have the significant contributions.

We also investigated the susceptibility of the Hamiltonian with opposite chirality

in the spin texture, and confirmed that the sign of χSO becomes opposite by inverting

the chirality, while χorb and χspin remain unchanged.

Lastly, let us argue about how one can experimentally observe the effects predicted

in this thesis. For Rashba / Dresselhaus system, χSO governs the total susceptibility

in εF < 0 (below the Dirac point). If one can measure of the magnetic susceptibility

in Rashba/ Dresselhaus system in εF < 0, it should be the direct measurement of

the chirality dependent part of the magnetic susceptibility. For the surface states of

the topological insulator, we predicted the χSO jumps at the Dirac point, and its the
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direction (negative / positive) depends on the chirality of the spin texture. It should

be observed as the jump of the total susceptibility in changing the Fermi energy.

For Weyl / Dirac semimetals, our calculation predicts the strong diamagnetism at

the band touching point of Weyl and Dirac semimetal, where the χorb logarithmically

diverges. This should be observed as the dominant part of the magnetism. On the

other hand, χSO is the only term which has different sign in the electron side and

the hole side. The present result suggests that the electron side is more paramagnetic

or diamagnetic than the hole side, depending on the chirality of the spin texture. So

in principle, we can directly detect the chirality by measuring the dependence of the

susceptibility on the Fermi energy near the Dirac point. Of course the electron-hole

symmetry is generally broken in the real material, and it may also contribute to the

electron-hole asymmetry in the susceptibility. The detailed study on this is left for the

future work.
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