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Nitrogen – importance, synthetic fertilizers, 
and future challenges

Nitrogen (N) availability is one of the most prevalent 
resource limitations of plant productivity in both natural 
and anthropogenic (e.g., agricultural) ecosystems (Gill and 
Finzi 2016; Hallin et al. 2009; Sochorová et al. 2016). High 
crop yields in current agriculture are, since the beginning 
of Green Revolution, maintained mainly due to massive 
inputs of synthetic N fertilizers, and this has led to global 
rearrangements of N cycling, reducing soil organic matter 
content and thus soil quality, increasing soil erosion, 
eutrophication of water bodies, and great societal dependency 
on fossil energy, above all the natural gas (Canfield et al. 2010; 
Lal et al. 2007; Pimentel and Pimentel 2008; Rockström et 
al. 2009; Steffen et al. 2015). With steadily increasing global 
human population and rocketing requirements for their food 
quality (e.g., meat or other products with large ecological 
footprint), largely stagnating crop yields also pose a serious 

uncertainty to global food security as well as political stability 
(Jansa et al. 2010; Lal 2009). This means that the synthetic 
N fertilizers that are important components of modern 
production agriculture for several decades, sustaining yields 
an order of magnitude higher than ever before, may bring 
along (particularly if used excessively) very dramatic negative 
consequences for soil quality and long-term ecosystem 
productivity, which may be difficult or impossible to reverse 
at decent temporal scales (Jones et al. 2013). Unwise and 
excessive applications of synthetic N fertilizers can also 
undermine other (unrelated) ecosystem services such as clean 
water supply even at distant places from agricultural fields – 
mainly because about half of the N applied to the fields is not 
taken up by the crops but is lost to the environment (Lassaletta 
et al. 2014; Somers and Savard 2015). If the fossil energy once 
becomes scarce, it is likely that organic N sources such as 
farmyard or green manure, compost or sewage sludge become 
as important as they were before the Green Revolution – yet 
it remains unclear if such organic agriculture could ever feed 
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Abstract

Nitrogen (N) availability often limits growth and yields of crop plants. Utilization 
of synthetic N fertilizers resulted in great yield improvements but also brought with it 
negative consequences such as soil degradation and environmental pollution. Organic 
N sources are thus likely to play a greater role in future agriculture, as they did before 
the Green Revolution. Arbuscular mycorrhizal (AM) fungi form symbiosis with 
majority of world crops, providing their host plants with a multitude of nutritional and 
other benefits. Development of AM fungal hyphae is usually stimulated by organic 
N inputs into soil and the fungi can gain a significant share of N from the organic 
soil amendments and eventually transport the N to their host plants, in spite of the 
fact that they are unable to mineralize the organic materials themselves. It has been 
postulated that the AM fungi depend on activity of soil saprotrophs to gain access to 
organic N. Recent studies indicated that not only the primary degraders, but also their 
grazers such as soil protists, most likely play an important role in making the N once 
released from organic materials and then immobilized in microbial cells, available 
for uptake by the AM fungi. On the other hand, AM fungi are likely competing for 
free ammonium ions released by the protists with ammonia oxidizers, suppressing 
nitrification in consequence. In this short paper we provide new insights into organic 
N recycling from soil to plant and identify knowledge gaps to be filled by future 
research.
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human population inhabiting the world today or projected 
to be there in the future (Cui et al. 2014; Muller et al. 2017; 
Razon 2015; Seufert et al. 2012)

Roots and mycorrhizas

Most plants take up N from soil with their underground 
organs, the roots. Legumes and few other plant taxa are 
a notable exception in this regards, because they derive 
a significant part or all of their N requirements from the 
biological dinitrogen fixation through tight association with 
diazotrophic prokaryotes (Sprent et al. 2017, and references 
therein). Plants take the N from the soil solution either as 
nitrate (NO3

-), ammonium (NH4
+) ions or small organic 

molecules such as aminoacids (Ganeteg et al. 2017; Klement 
et al. 2009; Miller and Cramer 2005; Warren 2013). Most 
plants, strictly speaking, do not have roots, however. They 
develop symbiotic relationship with specialized soil fungi 
called mycorrhizas, where some of the root functions (e.g., 
uptake of phosphorus) are taken over to smaller or larger 
extent (or almost completely) by the fungi (Smith et al. 2004). 
Since most herbaceous plants and particularly all mycotrophic 
(i.e., mycorrhiza-forming) crop species such as wheat, maize, 
rice, bean, potato and cassava develop only one, the primordial 
type of mycorrhizal association called arbuscular mycorrhizal 
(AM) symbiosis (Parniske 2008), we dedicate further text 
exclusively to this type of mycorrhizal symbiosis, intentionally 
leaving out the ecto-, ericoid- and other types of mycorrhizal 
symbioses (Smith and Read 2008) that do not play such an 
important role in production agriculture as the AM symbiosis.

The AM symbiosis is globally widespread, evolutionarily 
ancient and quantitatively important component of microbial 
communities in virtually all soils on Earth inhabited by 
suitable host plants - which is more than a half of extant plant 
species, actually (Brundrett 2002; Davison et al. 2015; Fitter 
1990; Remy et al. 1994). Hyphae of AM fungi connect the 
soil environment with inner layer of root cortex, as well as 
they are providing functional interconnection between plant 
individuals of the same and/or of different species in a plant 
community (so called common mycorrhizal networks, CMN), 
transporting mineral nutrients towards plants while gaining 
carbon from their plant hosts, and also providing a highway for 
transport of signalling molecules and/or secondary metabolites 
(Babikova et al. 2013; Duhamel et al. 2013; Jakobsen et al. 
1992; Lendenmann et al. 2011; Robinson and Fitter 1999; 
Simard and Durall 2004). This symbiosis plays important roles 
in plant acquisition from the soil of phosphate, micronutrients 
such as zinc and copper, in soil aggregate stabilization 
and conditioning soil  hydraulic properties,  shaping 
mycorrhizosphere microbiome, and interactions between 
plants themselves as well as interactions between plants and 
their pathogens (Bitterlich et al. 2018; Leifheit et al. 2015; 
Newsham et al. 1995; Philippot et al. 2013; Smith and Read 
2008). Trading of resources in mycorrhizal symbiosis based on 
reciprocal reward concept such as phosphate for plant carbon 
has been documented between the plants and their fungal 
symbionts (Kiers et al. 2011), although patterns deviating 
from this concept such as asymmetric redistribution of 
symbiotic costs and benefits in multispecies plant communities 
interconnected by CMN have also been observed (Walder et 

al. 2012; Weremijewicz et al. 2016).

Arbuscular mycorrhiza and nitrogen

As every other living organism on Earth, known to 
science, the AM fungi also contain nucleic acids and proteins, 
compounds that require N for construction of the molecules. 
Therefore, the AM fungi require N for building up their 
biomass and maintaining their metabolic activity. Further on, 
as the cell walls of AM fungi contain N-rich biopolymer chitin 
(Bago et al. 1996; Balestrini and Bonfante 2014; Lanfranco 
et al. 1999; Shinya et al. 2015; Tisserant et al. 2012), this 
structural biomolecule represents another significant sink for 
N in AM fungal biomass. The AM fungi thus need lots of 
N for building up their biomass (see Kaschuk et al. (2009) 
and references therein) and thus it is not surprising that 
competition for N occurs between plants and the AM fungi 
at low N availabilities (Püschel et al. 2016). When the fungal 
needs are satisfied, additional N could be moved to plants 
and traded for plant carbon in a similar way as phosphorus, 
although the contribution of AM fungi to N uptake of plants 
is considered to be generally lower than the contribution to 
phosphorus uptake (Fellbaum et al. 2012; George et al. 1995; 
Hodge et al. 2010; Johansen et al. 1992; Mäder et al. 2000). 
The N could be taken up from the soil solution both as nitrate 
or ammonium ions, because ion channels for transport of both 
these ions have been characterized for the AM fungi (Garcia 
et al. 2016, and references therein). Interestingly, earlier 
research indicated that AM fungal hyphae can also take up and 
assimilate amino acids such as glycine and glutamate from the 
soil solution (Hawkins et al. 2000). Long-distance transport of 
N through the AM fungal hyphae occurs most likely in a form 
of arginine, possibly coupled with the polyphosphate granules 
(Cruz et al. 2007; Govindarajulu et al. 2005; Kikuchi et al. 
2014). Release of N from the AM fungus to the plant is most 
likely in form of ammonium (Guether et al. 2009).

Organic N and mycorrhizas

Proliferation of AM fungal hyphae in soil is stimulated 
by organic N amendments – a phenomenon that has been 
described for several AM fungal species since a couple of 
decades ago. Originally, the research has been carried out 
with complex organic materials such as plant litter or baker´s 
yeasts applied in root-free zones (Gavito and Olsson 2003; 
Hodge et al. 2001; Hodge et al. 2000) and those results 
were confirmed recently for a range of pure N-containing 
polymers such as chitin, DNA and proteins (Bukovská et al. 
2016, and references therein). The AM fungi were reported 
to speed up the decomposition of organic N, probably in 
concert with other (saprotrophic) microorganisms, acquire 
the N originally bound in the organic materials, and transport 
it towards the plant, where it could be (but not always was) 
transferred to the host plant (Bukovská et al. 2018; Hodge 
2014; Hodge and Fitter 2010; Hodge et al. 2000; Thirkell 
et al. 2016). Although microbial communities in organic N 
patches accessible only to AM fungal hyphae differed between 
mycorrhizal and non-mycorrhizal pots (Herman et al. 2012; 
Nuccio et al. 2013), with Firmicutes responding positively to 
AM fungal presence and Actinobacteria and Comamonadaceae 
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responding negatively to the same, it remains unclear which 
of the microbes were directly involved in the decomposition 
of the organic N, which of them could have been primed by 
AM hyphal exudates (Jansa et al. 2013, Kaiser et al. 2015) and 
which were just back-seat riders.   

   Several of the above studies have indicated that the AM 
fungal hyphae could transfer not less than 20% of the N 
supplied as soil organic amendment to the plants within 
just a few weeks (Bukovská et al. 2018; Hodge et al. 2001; 
Thirkell et al. 2016). This effi cient “mining” of organic N has 
consequences for the soil microbes, too: recently, we showed 
that just a few weeks after placing the organic N in the AM 
fungal hyphosphere, both bacterial and fungal communities 
diminished in size due to presence of the AM fungal hyphae 
(Bukovská et al. 2018), a phenomenon strongly resembling so 
called Gadgil´s effect (Gadgil and Gadgil 1971; Verbruggen et 
al. 2016). The strongest reduction was recorded for ammonia-
oxidizing bacteria, indicating that the AM fungi actually 
outcompeted ammonia oxidizers, responsible for the first 
step of nitrifi cation (see  Fig. 1 ), most likely through reducing 
NH 4  

+  concentration in the soil solution (Bukovská et al. 2018; 
Veresoglou et al. 2012).   

   Another important phenomenon that we observed in our 
organic N patches was higher abundance of soil protists 
(Bukovská et al. 2018; Bukovská et al. 2016). Although the 
diversity of this heterogeneous group of organisms is still 
not easy to capture (Geisen 2016; Geisen et al. 2017), they 
seem to play a very important role in releasing N from the 
primary decomposers, via so called soil microbial loop (see 
also  Fig. 1 ). This is because, for stoichiometric reasons, 
the protists release up to one third of N they ingest back to 
the soil solution as free ammonium ions (Bonkowski 2004; 
Trap et al. 2016). This is also why soil protists likely play a 
key role in increasing availability of the N supplied to soil 
originally as organic amendment to AM fungi, which virtually 

lack any potent exoenzymes and may not be able to compete 
successfully with the primary decomposers (Bukovská et al. 
2018; Ekelund et al. 2009; Raynaud et al. 2006; Tisserant et 
al. 2012).   

  
   Open questions to be addressed in future  

 
   Above all, the “smoking gun” of the primary decomposition 

of soil organic N shall be carefully described in the subsequent 
studies, and linked to AM fungal activity, if any (e.g., priming 
of activity of the decomposers by AM hyphal exudates or 
cross-talking via signaling compounds, Kaiser et al. 2015). 
Ecological significance of soil protists (and soil microbial 
loop more generally) in making the organic N available to 
plant and AM fungi needs to be further studied, as this is 
an exciting and novel subject of soil ecology (Geisen et al. 
2018). Consequences of AM fungal uptake and transport of 
N from the organic patches to their host plants should also 
be scrutinized as to the effects on other N transformation 
pathways (e.g., nitrification and denitrification). Previous 
research carried with just a handful of model plants and AM 
fungal genotypes should also be replicated for a broader 
selection of model organisms and soil properties to allow 
generalization of the observed effects. Particular care 
should then be dedicated to establishing realistic microbial 
communities in the model experiments, particularly with 
respect to including sufficient populations of slow-growing 
members such as ammonia oxidizers (Veresoglou et al. 2012, 
Bukovská et al. 2018).   
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   Fig. 1  .      A scheme showing trophic dependencies between and N transformations carried by different members of soil microbial community involved 
in decomposition of organic N and transport of the released N towards the plants. Thickness of black lines indicates assumed relative 
importance of the different pathways of recycling organic N to the plants in mycorrhizal systems.     
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