

# Temporary employment and tooth loss: a cross-sectional study from the J-SHINE study

| 著者     | SATO YUKIHIRO                        |
|--------|--------------------------------------|
| 学位授与機関 | Tohoku University                    |
| 学位授与番号 | 11301甲第18026号                        |
| URL    | http://hdl.handle.net/10097/00123690 |

# 博士論文

# Temporary employment and tooth loss: a cross-sectional

# study from the J-SHINE study

非正規雇用と歯の喪失:横断研究

佐藤遊洋

平成 29 年度提出

# 東北大学

### 1 Background

2 Oral diseases remain a significant public health problem due to their very high prevalence, 3 major impact on quality of life [1], and costs on health care systems [2]. In addition, oral 4 diseases are socially patterned and closely related to social deprivation [3]. Consequently, 5 stark social inequalities in oral health are now a major public health concern [4]. 6 Temporary employment has attracted the attention of health researchers in recent years, because it has significant adverse effects on health [5–9]. Owing to considerable 7 8 changes in the labour markets, inferior working conditions such as temporary contracts 9 and an imbalanced working organization have emerged as a significant risk factor for 10 poor health [10]. Unstable employment, such as temporary contracts, has been regarded 11 as being harmful to health [5], and therefore, employment status might worsen health 12 inequalities through employment status [5]. Temporary employment also may be harmful 13 to oral health because work stress might lead to smoking tobacco [11] and decreasing 14 salivary flow, which increases the risk of periodontal disease [12]. In addition, temporary 15 employees might experience more severe tooth loss than regular ones, because their 16 incomes are in general lower than ones of regular employees and they often do not receive 17 adequate social benefits, such as health pensions [13].

| 18 | A few studies have examined the relationship between employment status and            |
|----|---------------------------------------------------------------------------------------|
| 19 | oral health, including some that examined the association between unemployment and    |
| 20 | oral health [14-16]. To my knowledge, only one cross-sectional study has reported     |
| 21 | significant associations between the workplace-related factors such as precarious     |
| 22 | employment status and poor self-rated oral health [17]. Our main hypothesis was that  |
| 23 | changes in employment status between regular and temporary employment would have a    |
| 24 | negative impact on tooth loss. The aim of this study was to examine whether the       |
| 25 | experience of temporary employment is associated with tooth loss among working adults |
| 26 | in Japan.                                                                             |

27

# 28 METHODS

# 29 Data sources and participants

I used data from the Japanese Study on Stratification, Health, Income, and Neighborhood
(J-SHINE), which has been described in detail elsewhere [18]. This survey was conducted
between July 2010 and February 2011. Target participants were adults aged 25–50 years
old from 4 municipalities in Japan (2 in the Tokyo metropolitan area and 2 in neighboring
prefectures). Figure 1 shows a detailed flowchart of participant selection. A total of
13,920 participants were probabilistically selected from the residential registry. Trained

| 36 | survey staff successfully contacted 8,408 community dwelling adults, and 4,385             |
|----|--------------------------------------------------------------------------------------------|
| 37 | participants agreed to participate in the survey (response rate 31.5%). The inclusion      |
| 38 | criteria were being 25-50 years of age and being regular or temporary employees at initial |
| 39 | (previous) and current employment. The exclusion criteria were having missing values       |
| 40 | among the independent or dependent variables and not having answered the survey            |
| 41 | questions by themselves. I excluded 68 participants who did not answer the survey          |
| 42 | questions by themselves, 1,256 participants who did not answer the question about current  |
| 43 | employment status (regular and temporary), 43 participants who did not answer the          |
| 44 | question about initial employment status (regular and temporary), 52 participants who      |
| 45 | were not aged 25-50 years old, 4 participants who did not indicate their sex, and 310      |
| 46 | participants who did not answer the question about tooth loss. The analytic population     |
| 47 | was 2,652 participants (the details are shown in Figure 1).                                |

#### Study design 48

49 This study was a cross-sectional study.

#### Independent variable: changes in employment status 50

I obtained information about current employment status from the question, "What is your 51 employment? If you have several jobs, please answer about your main job." Respondents 52 chose one answer from the following: "A president or an executive officer," "Regular 53

54 employment," "Temporary employment," "Contract employment," "Part-time 55 employment," "Self-employed," "Housekeeper," "Subsidiary jobs," and "Unknown." I 56 categorized participants who chose the answer regular employment into the regular 57 employment group and participants who chose the answers temporary employment, contract employment, or part-time employment as temporary employment. I excluded 58 59 those who chose president or executive officer, self-employed, housekeeper, subsidiary jobs, or unknown in the categorization of initial or current employment status (see Figure 60 61 1).

62 I asked all participants whether they had changed jobs. Among only those who 63 had changed jobs, I obtained information about their previous (initial) employment status using the same questions posed for current employment status. For the main analysis, I 64 65 used the replies about current and initial employment status to prepare two categories for 66 the independent variable: continuous regular employment and the experience of 67 temporary employment. For a more analysis, I created four categories: continuous regular employment (regular employee at both times), regular to temporary employment (regular 68 69 employee at initial employment and temporary employee currently), temporary to regular 70 employment (temporary employee at initial employment and regular employee currently), 71 and continuous temporary employment (temporary employee at both times).

### 72 Dependent variable: self-reported tooth loss

73 Dependent variable was self-reported tooth loss. I obtained this information using the 74 question, "How many teeth have you had removed/extracted (excepting tooth extraction 75 for orthodontic treatment, wisdom tooth extraction, and primary teeth)?" Respondents chose one of the following: "None" (scored 0), "1 tooth" (scored 1), "2 teeth" (scored 2), 76 "3 teeth" (scored 3), "4 teeth" (scored 4), and "more than 4 teeth" (scored 5). I used self-77 78 reported tooth loss as a count variable. 79 **Covariates** 80 I regarded the following factors as potential confounders, and included them in the 81 multivariable adjusted models: age (categorized as 25-30, 30-35, 35-40, 40-45, or 45-82 50 years) and sex (men or women). Health status variables that may be related to 83 employment status and tooth loss were included: history of diabetes (none or present) and 84 body mass index (kg/m<sup>2</sup>) (≥25.0, 18.5–25.0, or <18.5). In addition, social determinants 85 variables that could affect oral health were also included: years of education (<9, 10–12, 86 or >12 years), self-rated household economic status in early life at 5 years old (rich, fair, 87 or poor), marital status (married or single), and number of family members in the 88 household (living alone, 2, 3, or  $\geq$ 4).

| 89                                                                                                               | I supposed potential pathways: income, psychological stress and disorders,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 90                                                                                                               | access to health care, and health behavior. Annual household income (0-300, 300-750,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91                                                                                                               | or >750 million Japanese yen) was also included. I used feeling fear of job loss (yes or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 92                                                                                                               | no) and psychological distress (K6 score [19]; none (0-4) or present ( $\geq$ 5)) as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 93                                                                                                               | psychological stress and disorders variable. To assess the access to health care, I included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 94                                                                                                               | visiting a dental clinic for preventative care (yes or no) and hesitation to use medical and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 95                                                                                                               | dental care (yes, no, or never felt a need to use). I included smoking status (current smoker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 96                                                                                                               | former smoker, or never smoker) as a health behavior variable. I created dummy variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 97                                                                                                               | for the missing values for each covariate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98                                                                                                               | Statistical analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 98<br>99                                                                                                         | Statistical analysis I conducted negative binomial regression analysis stratified by sex to estimate prevalence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98<br>99<br>100                                                                                                  | Statistical analysis<br>I conducted negative binomial regression analysis stratified by sex to estimate prevalence<br>rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss, because there                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 98<br>99<br>100<br>101                                                                                           | Statistical analysis         I conducted negative binomial regression analysis stratified by sex to estimate prevalence         rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss, because there         are clear different trends of employment status between men and women in Japan [20,21].                                                                                                                                                                                                                                                                                                                                                              |
| <ol> <li>98</li> <li>99</li> <li>100</li> <li>101</li> <li>102</li> </ol>                                        | Statistical analysis<br>I conducted negative binomial regression analysis stratified by sex to estimate prevalence<br>rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss, because there<br>are clear different trends of employment status between men and women in Japan [20,21].<br>I also examined an interaction term between changes in employment status and sex                                                                                                                                                                                                                                                                                         |
| <ul> <li>98</li> <li>99</li> <li>100</li> <li>101</li> <li>102</li> <li>103</li> </ul>                           | Statistical analysis         I conducted negative binomial regression analysis stratified by sex to estimate prevalence         rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss, because there         are clear different trends of employment status between men and women in Japan [20,21].         I also examined an interaction term between changes in employment status and sex         adjusting for age. I created 2 models for adjusting potential confounders. In model 1, I                                                                                                                                                                    |
| <ul> <li>98</li> <li>99</li> <li>100</li> <li>101</li> <li>102</li> <li>103</li> <li>104</li> </ul>              | Statistical analysis<br>I conducted negative binomial regression analysis stratified by sex to estimate prevalence<br>rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss, because there<br>are clear different trends of employment status between men and women in Japan [20,21].<br>I also examined an interaction term between changes in employment status and sex<br>adjusting for age. I created 2 models for adjusting potential confounders. In model 1, I<br>controlled for age. In model 2, years of education, self-rated household economic status                                                                                                 |
| <ul> <li>98</li> <li>99</li> <li>100</li> <li>101</li> <li>102</li> <li>103</li> <li>104</li> <li>105</li> </ul> | Statistical analysis<br>I conducted negative binomial regression analysis stratified by sex to estimate prevalence<br>rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss, because there<br>are clear different trends of employment status between men and women in Japan [20,21].<br>I also examined an interaction term between changes in employment status and sex<br>adjusting for age. I created 2 models for adjusting potential confounders. In model 1, I<br>controlled for age. In model 2, years of education, self-rated household economic status<br>in early life at 5 years old, marital status, and number of family members in the household, |

| 107 | constructed a model to evaluate how potential pathway variables explain the association.     |
|-----|----------------------------------------------------------------------------------------------|
| 108 | In model 3, I added annual household income to model 2. In model 4, I added visiting a       |
| 109 | dental clinic for preventive care and hesitation to use medical and dental care to model 3.  |
| 110 | In model 5, I added feel fear of job loss and psychological distress to model 4. Finally, in |
| 111 | model 6, I added smoking status to model 5. I further conducted an analysis using 4          |
| 112 | categories of independent variables to validate the findings of the main analysis. In        |
| 113 | addition, I conducted a linear regression analysis to confirm the validity of the results    |
| 114 | from a negative binomial regression analysis. I applied a chi-squared test for cross-        |
| 115 | tabulation. In addition, I constructed a directed acyclic graph (DAG) of proposed            |
| 116 | associations between employment status and tooth loss to guide my analyses (Figure 2).       |
| 117 | P values of <0.05 (two tailed) were considered significant. Analyses were conducted by       |
| 118 | using STATA ver. 14.2 (Stata Corp., College Station, TX).                                    |
|     |                                                                                              |

119

# 120 **RESULTS**

121 The median age was 37 years (first quartile to third quartile = 31 to 43). More than half 122 of the participants were men (n = 1,394, 52.6%). The percentage of the experience of 123 temporary employment was 14.5% (n = 202) in men and 61.3% (n = 771) in women. 124 Tables 1 and 2 show the characteristics and dependent variables among men and women. 125 There was no significant association between men who experienced temporary 126 employment and tooth loss. On the contrary, compared with women who were continuous 127 regular employees, there was a significant association between women who experienced 128 temporary employment and tooth loss.

129 Table 3 shows the associations between change in employment status and tooth 130 loss found with the multivariable ordered logistic regression models stratified by sex. I 131 found no significant interaction between employment status and sex after adjusting for 132 age (p = 0.71). In model 1, I confirmed a significant association between the experience 133 of temporary employment and tooth loss in both sexes. Model 2 also showed that the 134 experience of temporary employment was significantly associated with tooth loss after adjusting for potential confounders (men: PRR = 1.50 [95%CI = 1.13, 2.00]; women: 135 PRR = 1.42 [95%CI = 1.14, 1.76]). In the additional analysis, compared with continuous 136 137 regular employment, changes from regular to temporary employment and temporary to 138 regular employment as well as continuous temporary employment were associated with 139 tooth loss in models 1 and 2. 140 In models 3 to 6, I observed associations between changes in employment status

142 regular employment, the PRR of having the experience of temporary employment

141

and tooth loss after adjusting for potential pathway variables. Compared with continuous

decreased in models 3 to 6 (men, PRR = 1.44 [95%CI = 1.07, 1.93] to 1.31 [95%CI =
0.98, 1.76]; women, PRR = 1.37 [95%CI = 1.10, 1.71] to 1.33 [95%CI = 1.06, 1.66]).
Similar trends were observed in the additional analysis of the regular to temporary
employment, temporary to regular employment, and continuous temporary employment
groups. The results from the linear regression analysis also showed similar trends with
the main analysis.

149

### 150 **DISCUSSIONS**

151 The results of my study showed that the experience of temporary employment was 152 associated with tooth loss in both men and women in Japan. In addition, changes from 153 regular to temporary employment and temporary to regular employment as well as 154 continuous temporary employment were associated with tooth loss.

The association between temporary employment and poor oral health is important in public health because the level of unstable employment is increasing in both the private and public sectors in many developed countries [5]. The number of temporary employees continues to increase in these countries [9]: for example, the proportion of temporary employees in Japan was only 18.3% in 1988 but reached 37.4%, or more than 1 in 3 workers, in 2014 [22]. Furthermore, more than half of employed young people (15– 24 years old) in certain European countries are temporary workers: 53.6% in Germany,
57.1% in Italy, and 59.6% in France in 2015 [23]. Dental health professionals and public
policy makers should understand the enormous impact of increasing temporary
employment on tooth loss.

165 I found that temporary employment was associated with tooth loss among both 166 male and female workers in Japan. A previous survey of the labor force showed that the 167 reasons for being temporarily employed differ between men and women. The primary reasons for temporary employment in men were "Can't find regular employment jobs" 168 169 (26.9%), whereas the reason in women was "work only during convenient time" (27.6%) 170 [24]. Therefore, it is conceivable that the association between temporary employment and oral health would also differ between sexes. That is, the negative effect of being 171 172 temporarily employed would be amplified in men. However, the evidence suggests a 173 different effect. Inoue et al. reported that temporary female employees faced precarious 174 situations such as low income, limited social safety net, and difficulty sustaining work-175 life balance [21]. The current study also revealed that female participants who 176 experienced temporary employment were low paid and fearful about job loss. Therefore, 177 temporary employment could affect tooth loss in both sexes uniformly.

| 178 | Several potential pathways can exist between temporary employment and oral                  |
|-----|---------------------------------------------------------------------------------------------|
| 179 | health. First, economic factors may link employment status and oral health. In general,     |
| 180 | temporary employees have incomes lower than those of regular employees, and low             |
| 181 | income is among the key risk factors for oral disease [25]. Low income is associated with   |
| 182 | severe caries and periodontal disease, and poor people are less likely to use medical       |
| 183 | services [26]. Indeed, the association between temporary employment and tooth loss was      |
| 184 | explained by the analysis of income in the present study (models 2 and 3).                  |
| 185 | Second, psychological stress and disorders may explain the association between              |
| 186 | temporary employment and tooth loss. Because they can be easily dismissed, temporary        |
| 187 | employees tend to feel more job insecurity and work-related stress which lead to            |
| 188 | psychological disorders [7,13,27]. Stress from fear of job loss and psychological disorders |
| 189 | could influence health behaviors such as less frequent toothbrushing and heavier smoking    |
| 190 | [11]. In addition, stress may decrease salivary flow, which increases the occurrence and    |
| 191 | progression of periodontal disease [12]. Temporary employees could lose their teeth for     |
| 192 | any of these reasons. Indeed, the association between temporary employment and tooth        |
| 193 | loss was explained by the fear of job loss and psychological disorders in the present       |
| 194 | analysis (models 4 and 5).                                                                  |

| 195 | Third, poor health behavior also might explain the association between                   |
|-----|------------------------------------------------------------------------------------------|
| 196 | employment status and oral health. Work stress was associated with poor health behaviors |
| 197 | such as less frequent toothbrushing and heavy smoking [11]. In addition, low social      |
| 198 | economic status could lead to poor oral health behaviors [26]. Indeed, the association   |
| 199 | between temporary employment and tooth loss was explained by smoking status (models      |
| 200 | 5 and 6). However, I could not obtain data on oral health behavior variables such as     |
| 201 | toothbrushing. It might also well explain the association between temporary employment   |
| 202 | and tooth loss.                                                                          |

203 Finally, limited access to health care might explain the association between 204 employment status and oral health. Japan has universal healthcare coverage (UHC) and 205 patients pay only 10-30% of the total cost of treatment [28]. Also, the total cost itself is 206 relatively low because the cost is controlled by the government. In addition, the UHC 207 covers the most basic dental treatments, such as treatments for caries and periodontal 208 disease [28]. With the UHC, most people in Japan did not hesitate obtaining medical and 209 dental services. However, under long lasting economic depression, some people in temporary employment, a new emerging type of unstable employment, were not able to 210 211 use health care service appropriately due to the following two reasons [29]; 1) even 10-212 30% of the total cost of dental care could be a barrier for them to use dental care because they were employed at a low wage, 2) they may be reluctant to take a time off from work to visit dental services because they are concerned that they might be fired if they are absent frequently owing to sickness. Indeed, the association between temporary employment and tooth loss was explained by the frequency of visiting a dental clinic for preventive care and the hesitation to use medical and dental care as analyzed in my study (models 3 and 4).

219 The present study has limitations. First, both the independent and dependent 220 variables were self-reported, which may have introduced self-reporting bias. Although, 221 several studies have shown that the validity and reliability of self-reported oral health 222 status are acceptable [30], self-rated number of teeth lost is not validated. However, previous studies have used self-reported number of teeth lost [31,32]. Second, the 223 224 response rate was relatively low, which could be another source of bias. However, the 225 respondents had characteristics that were fairly comparable to those of the target 226 population [18]. Therefore, my findings are likely to be generalizable in Japan.

227 Conclusions

In conclusion, I found a significant association between temporary employment and tooth loss. A previous study indicated that there is a need to enhance the social safety net for temporary employees even in high-income countries [5]. Secure employment is a social

| 231 | determinant of health [5], and the assurance of safety/physical protections in workplaces, |
|-----|--------------------------------------------------------------------------------------------|
| 232 | health insurance, and more stable employment arrangements are needed. Policy makers        |
| 233 | as well as dental health professionals should understand the impact of employment status   |
| 234 | on population health.                                                                      |
| 235 |                                                                                            |
| 236 | Abbreviations                                                                              |
| 237 | PRR: Prevalence rate ratios; 95%CI: 95% confidence interval; J-SHINE: Japanese Study       |
| 238 | on Stratification, Health, Income, and Neighborhood; WHO: World Health Organization;       |
| 239 | UHC: universal healthcare coverage                                                         |
| 240 |                                                                                            |
| 241 | Declarations                                                                               |
| 242 | Ethics approval and consent to participate                                                 |
| 243 | The J-SHINE study's ethics approval and informed consent procedure were reviewed and       |
| 244 | approved by the ethics committee of the Graduate School of Medicine and Faculty of         |
| 245 | Medicine at the University of Tokyo. Informed consent was obtained in writing from all     |
| 246 | participants. I obtained permission from the J-SHINE research team to access and use the   |
| 247 | data for my study.                                                                         |
| 248 | Funding                                                                                    |

| 249 | This research was supported by a Grand-in-Aid for Scientific Research on Innovative      |
|-----|------------------------------------------------------------------------------------------|
| 250 | Areas (No. 21119002) and a Grant-in-Aid for Scientific Research (B) (No. 15H04781)       |
| 251 | from the Ministry of Education, Culture, Sports, Science and Technology, Japan.          |
| 252 | Acknowledgements                                                                         |
| 253 | The author would like to thank participants and the team for providing me with data from |
| 254 | the Japanese Study of Stratification, Health, Income, and Neighborhood (J-SHINE).        |
| 255 |                                                                                          |
| 256 | REFERENCES                                                                               |
| 257 | 1. Marcenes W, Kassebaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A, et al.            |
| 258 | Global burden of oral conditions in 1990-2010: a systematic analysis. J. Dent. Res.      |
| 259 | 2013;92:592–7.                                                                           |
| 260 | 2. Listl S, Galloway J, Mossey PA, Marcenes W. Global Economic Impact of Dental          |
| 261 | Diseases. J. Dent. Res. 2015;94:1355-61.                                                 |
| 262 | 3. Watt RG, Sheiham A. Integrating the common risk factor approach into a social         |
| 263 | determinants framework. Community Dent. Oral Epidemiol. 2012;40:289-96.                  |
| 264 | 4. Sheiham a, Alexander D, Cohen L, Marinho V, Moysés S, Petersen PE, et al.             |
| 265 | Global oral health inequalities: task groupimplementation and delivery of oral health    |
| 266 | strategies. Adv. Dent. Res. 2011;23:259-67.                                              |
|     |                                                                                          |

| 267 | 5. Benach J, Muntaner C, Santana V. Employment conditions knowledge network                |
|-----|--------------------------------------------------------------------------------------------|
| 268 | (EMCONET). Employ. Cond. Heal. inequalities. Final Rep. to WHO Comm. Soc.                  |
| 269 | Determ. Heal. 2007.                                                                        |
| 270 | 6. Virtanen M, Kivimäki M, Joensuu M, Virtanen P, Elovainio M, Vahtera J.                  |
| 271 | Temporary employment and health: a review. Int. J. Epidemiol. 2005;34:610-22.              |
| 272 | 7. Virtanen P, Janlert U, Hammarström A. Exposure to temporary employment and job          |
| 273 | insecurity: a longitudinal study of the health effects. Occup. Environ. Med.               |
| 274 | 2011;68:570–4.                                                                             |
| 275 | 8. Inoue A, Kawakami N, Tsuchiya M, Sakurai K, Hashimoto H. Association of                 |
| 276 | occupation, employment contract, and company size with mental health in a national         |
| 277 | representative sample of employees in Japan. J. Occup. Health. 2010;52:227-40.             |
| 278 | 9. Kivimäki M, Vahtera J, Virtanen M, Elovainio M, Pentti J, Ferrie JE. Temporary          |
| 279 | employment and risk of overall and cause-specific mortality. Am. J. Epidemiol.             |
| 280 | 2003;158:663–8.                                                                            |
| 281 | 10. Berkman LF, Kawachi I, Theorell T. Working Conditions and Health. Soc.                 |
| 282 | Epidemiol. Oxford University Press, New York; 2014. p. 153-81.                             |
| 283 | 11. Wardle J, Steptoe A, Oliver G, Lipsey Z. Stress, dietary restraint and food intake. J. |
| 284 | Psychosom. Res. 2000;48:195–202.                                                           |
|     |                                                                                            |

- 285 12. Marcenes WS, Sheiham A. The relationship between work stress and oral health
- 286 status. Soc. Sci. Med. 1992;35:1511–20.
- 287 13. Ishiguro K. Japanese Employment in Transformation: The Growing Number of
- 288 Non-Regular Workers. Electron. J. Contemp. Japanese Stud. 2008;
- 289 14. Al-Sudani FYH, Vehkalahti MM, Suominen AL. The association between current
- 290 unemployment and clinically determined poor oral health. Community Dent. Oral
- 291 Epidemiol. 2015;43:325–37.
- 292 15. Al-Sudani FYH, Vehkalahti MM, Suominen AL. Association of current
- 293 employment status with oral health-related behaviors: findings from the Finnish Health
- 294 2000 Survey. Eur. J. Oral Sci. 2016;124:368–76.
- 295 16. Mundt T, Schwahn C, Mack F, Polzer I, Samietz S, Kocher T, et al. Risk indicators
- 296 for missing teeth in working-age Pomeranians--an evaluation of high-risk populations.
- 297 J. Public Health Dent. 2007;67:243–9.
- 298 17. Tsuboya T, Aida J, Kawachi I, Katase K, Osaka K. Early life-course socioeconomic
- 299 position, adult work-related factors and oral health disparities: cross-sectional analysis
- 300 of the J-SHINE study. BMJ Open. 2014;4:e005701.

- 301 18. Takada M, Kondo N, Hashimoto H, J-SHINE Data Management Committee.
- 302 Japanese study on stratification, health, income, and neighborhood: study protocol and
- 303 profiles of participants. J. Epidemiol. 2014;24:334–44.
- 304 19. Kessler RC, Andrews G, Colpe LJ, Hiripi E, Mroczek DK, Normand SLT, et al.
- 305 Short screening scales to monitor population prevalences and trends in non-specific
- 306 psychological distress. Psychol. Med. 2002;32:959–76.
- 307 20. Estévez-abe M. An International Comparison of Gender Equality : Why Is the
- 308 Japanese Gender Gap So Persistent ? Japan Labor Rev. 2013;10:82–100.
- 309 21. Inoue M, Nishikitani M, Tsurugano S. Female non-regular workers in Japan: their
- 310 current status and health. Ind. Health. 2016;54:521–7.
- 311 22. The Japan Institute for Labour Policy and Training. Labor Situation in Japan and Its
- 312 Analysis: General Overview 2015/2016. 2016.
- 313 23. Organisation for Economic Co-operation and Development. OECD Employment
- 314 Outlook 2016. OECD Publishing, Paris; 2016.
- 315 24. Annual report on the labour force survey. Minist. Intern. Aff. Commun. Tokyo;

316 2015.

- 317 25. Steele J, Shen J, Tsakos G, Fuller E, Morris S, Watt R, et al. The Interplay between
- 318 socioeconomic inequalities and clinical oral health. J. Dent. Res. 2015;94:19–26.

319 26. Watt RG. Social determinants of oral health inequalities: implications for action.

- 320 Community Dent. Oral Epidemiol. 2012;40:44–8.
- 321 27. De Witte H. Job insecurity: Review of the international literature on definitions,
- 322 prevalence, antecedents and consequences. SA J. Ind. Psychol. 2005;31:1–6.
- 323 28. Ikegami N, Yoo B-K, Hashimoto H, Matsumoto M, Ogata H, Babazono A, et al.
- 324 Japanese universal health coverage: evolution, achievements, and challenges. Lancet
- 325 (London, England). Elsevier Ltd; 2011;378:1106–15.
- 326 29. Inoue M, Nishikitani M, Tsurugano S, Yano E. The health of permanent workers
- 327 and workers with precarious employment: a literature review. Sangyo eiseigaku zasshi.

328 2011;53:117–39.

- 329 30. Matsui D, Yamamoto T, Nishigaki M, Miyatani F, Watanabe I, Koyama T, et al.
- 330 Validity of self-reported number of teeth and oral health variables. BMC Oral Health.
- 331 BMC Oral Health; 2017;17:17.
- 332 31. Haugejorden O, Klock KS, Trovik TA. Incidence and predictors of self-reported
- 333 tooth loss in a representative sample of Norwegian adults. Community Dent. Oral
- 334 Epidemiol. 2003;31:261–8.

- 335 32. Hung H-C, Joshipura KJ, Colditz G, Manson JE, Rimm EB, Speizer FE, et al. The
- association between tooth loss and coronary heart disease in men and women. J. Public
- 337 Health Dent. 2004;64:209–15.

# Tables

Table 1. Characteristics and tooth loss in men (n = 1,394).

| Men (n=1,394)                |                                               |     | Number of tooth loss |         |         |         |         |                   |          |
|------------------------------|-----------------------------------------------|-----|----------------------|---------|---------|---------|---------|-------------------|----------|
|                              |                                               |     | none                 | 1 tooth | 2 teeth | 3 teeth | 4 teeth | more than 4 teeth | P-value* |
| Changes in employment status | Continuous regular employment                 | n   | 736                  | 140     | 111     | 60      | 46      | 99                |          |
|                              | (n = 1,192)                                   | (%) | (61.7)               | (11.7)  | (9.3)   | (5.0)   | (3.9)   | (8.3)             | 0.69     |
|                              | Having the experience of temporary employment | n   | 122                  | 20      | 23      | 9       | 6       | 22                | 0.68     |
|                              | (n = 202)                                     | (%) | (60.4)               | (9.9)   | (11.4)  | (4.5)   | (3.0)   | (10.9)            |          |
|                              | Regular to temporary employment               | n   | 32                   | 7       | 10      | 7       | 0       | 9                 |          |
|                              | (n = 65)                                      | (%) | (49.2)               | (10.8)  | (15.4)  | (10.8)  | (0.0)   | (13.9)            |          |
|                              | Temporary to regular employment               | n   | 32                   | 5       | 7       | 0       | 2       | 8                 |          |
|                              | (n = 54)                                      | (%) | (59.3)               | (9.3)   | (13.0)  | (0.0)   | (3.7)   | (14.8)            |          |
|                              | Continuous temporary employment               | n   | 58                   | 8       | 6       | 2       | 4       | 5                 |          |
|                              | (n = 83)                                      | (%) | (69.9)               | (9.6)   | (7.2)   | (2.4)   | (4.8)   | (6.0)             |          |
| Age (years old)              | 25–30                                         | n   | 220                  | 18      | 15      | 3       | 4       | 6                 |          |
|                              |                                               | (%) | (82.7)               | (6.8)   | (5.6)   | (1.1)   | (1.5)   | (2.3)             |          |
|                              | 30–35                                         | n   | 169                  | 22      | 15      | 11      | 7       | 16                |          |
|                              |                                               | (%) | (70.4)               | (9.2)   | (6.3)   | (4.6)   | (2.9)   | (6.7)             |          |
|                              | 35–40                                         | n   | 195                  | 41      | 27      | 15      | 12      | 19                | <0.05    |
|                              |                                               | (%) | (63.1)               | (13.3)  | (8.7)   | (4.9)   | (3.9)   | (6.2)             | <0.05    |
|                              | 40–45                                         | n   | 159                  | 45      | 43      | 18      | 17      | 33                |          |
|                              |                                               | (%) | (50.5)               | (14.3)  | (13.7)  | (5.7)   | (5.4)   | (10.5)            |          |
|                              | 45–50                                         | n   | 115                  | 34      | 34      | 22      | 12      | 47                |          |
|                              |                                               | (%) | (43.6)               | (12.9)  | (12.9)  | (8.3)   | (4.6)   | (17.8)            |          |
| History of diabetes          | None                                          | n   | 843                  | 157     | 132     | 67      | 51      | 116               |          |
|                              |                                               | (%) | (61.7)               | (11.5)  | (9.7)   | (4.9)   | (3.7)   | (8.5)             | 0.62     |
|                              | Present                                       | n   | 15                   | 3       | 2       | 2       | 1       | 5                 | 0.62     |
|                              |                                               | (%) | (53.6)               | (10.7)  | (7.1)   | (7.1)   | (3.6)   | (17.9)            |          |

| Body mass index (kg/m <sup>2</sup> )                              | ≥25.0        | n   | 214    | 53     | 31     | 20     | 14    | 40     |        |
|-------------------------------------------------------------------|--------------|-----|--------|--------|--------|--------|-------|--------|--------|
|                                                                   |              | (%) | (57.5) | (14.3) | (8.3)  | (5.4)  | (3.8) | (10.8) |        |
|                                                                   | 18.5–25.0    | n   | 601    | 104    | 100    | 44     | 35    | 76     | 0.11   |
|                                                                   |              | (%) | (62.6) | (10.8) | (10.4) | (4.6)  | (3.7) | (7.9)  | 0.11   |
|                                                                   | <18.5        | n   | 38     | 3      | 2      | 5      | 3     | 3      |        |
|                                                                   |              | (%) | (70.4) | (5.6)  | (3.7)  | (9.3)  | (5.6) | (5.6)  |        |
| Marital status                                                    | Married      | n   | 575    | 113    | 99     | 53     | 43    | 93     |        |
|                                                                   |              | (%) | (58.9) | (11.6) | (10.1) | (5.4)  | (4.4) | (9.5)  | <0.05  |
|                                                                   | Single       | n   | 283    | 47     | 35     | 16     | 9     | 28     | <0.03  |
|                                                                   |              | (%) | (67.7) | (11.2) | (8.4)  | (3.8)  | (2.2) | (6.7)  |        |
| No. of family members in the household                            | Living alone | n   | 109    | 21     | 18     | 13     | 3     | 19     |        |
|                                                                   |              | (%) | (59.6) | (11.5) | (9.8)  | (7.1)  | (1.6) | (10.4) |        |
|                                                                   | 2            | n   | 163    | 25     | 25     | 10     | 9     | 24     |        |
|                                                                   |              | (%) | (63.7) | (9.8)  | (9.8)  | (3.9)  | (3.5) | (9.4)  | 0.50   |
|                                                                   | 3            | n   | 228    | 40     | 32     | 14     | 9     | 27     | 0.56   |
|                                                                   |              | (%) | (65.1) | (11.4) | (9.1)  | (4.0)  | (2.6) | (7.7)  |        |
|                                                                   | ≥4           | n   | 357    | 74     | 59     | 32     | 31    | 51     |        |
|                                                                   |              | (%) | (59.1) | (12.3) | (9.8)  | (5.3)  | (5.1) | (8.4)  |        |
| Self-rated household economic status in early life at 5 years old | Rich         | n   | 138    | 45     | 28     | 13     | 13    | 28     |        |
|                                                                   |              | (%) | (52.1) | (17.0) | (10.6) | (4.9)  | (4.9) | (10.6) |        |
|                                                                   | Fair         | n   | 566    | 90     | 80     | 45     | 29    | 69     | 0.04   |
|                                                                   |              | (%) | (64.4) | (10.2) | (9.1)  | (5.1)  | (3.3) | (7.9)  | 0.06   |
|                                                                   | Poor         | n   | 145    | 24     | 25     | 11     | 10    | 23     |        |
|                                                                   |              | (%) | (60.9) | (10.1) | (10.5) | (4.6)  | (4.2) | (9.7)  |        |
| Years of education (year)                                         | <9           | n   | 31     | 3      | 6      | 6      | 1     | 6      |        |
|                                                                   |              | (%) | (58.5) | (5.7)  | (11.3) | (11.3) | (1.9) | (11.3) |        |
|                                                                   | 9–12         | n   | 113    | 32     | 31     | 12     | 8     | 35     | < 0.05 |
|                                                                   |              | (%) | (48.9) | (13.9) | (13.4) | (5.2)  | (3.5) | (15.2) |        |
|                                                                   | >12          | n   | 708    | 124    | 96     | 51     | 42    | 80     |        |

|                                              |                          | (%) | (64.3) | (11.3) | (8.7)  | (4.6) | (3.8) | (7.3)  |        |
|----------------------------------------------|--------------------------|-----|--------|--------|--------|-------|-------|--------|--------|
| Annual household income (million yen)        | 0–300                    | n   | 35     | 10     | 7      | 5     | 1     | 9      |        |
|                                              |                          | (%) | (52.2) | (14.9) | (10.5) | (7.5) | (1.5) | (13.4) |        |
|                                              | 300–750                  | n   | 369    | 67     | 60     | 28    | 23    | 51     | 0.86   |
|                                              |                          | (%) | (61.7) | (11.2) | (10.0) | (4.7) | (3.9) | (8.5)  | 0.80   |
|                                              | ≥750                     | n   | 287    | 59     | 47     | 26    | 16    | 46     |        |
|                                              |                          | (%) | (59.7) | (12.3) | (9.8)  | (5.4) | (3.3) | (9.6)  |        |
| Feel fear of job loss                        | No                       | n   | 563    | 103    | 81     | 43    | 25    | 68     |        |
|                                              |                          | (%) | (63.8) | (11.7) | (9.2)  | (4.9) | (2.8) | (7.7)  | <0.05  |
|                                              | Yes                      | n   | 269    | 55     | 47     | 23    | 25    | 52     | <0.03  |
|                                              |                          | (%) | (57.1) | (11.7) | (10.0) | (4.9) | (5.3) | (11.0) |        |
| Psychological distress (k6)                  | None (0-4)               | n   | 565    | 106    | 89     | 45    | 32    | 78     |        |
|                                              |                          | (%) | (61.8) | (11.6) | (9.7)  | (4.9) | (3.5) | (8.5)  | 0.00   |
|                                              | Present (≥5)             | n   | 293    | 54     | 44     | 24    | 20    | 42     | 0.99   |
|                                              |                          | (%) | (61.4) | (11.3) | (9.2)  | (5.0) | (4.2) | (8.8)  |        |
| Visiting a dental clinic for preventive care | Yes                      | n   | 201    | 38     | 24     | 25    | 11    | 27     |        |
|                                              |                          | (%) | (61.7) | (11.7) | (7.4)  | (7.7) | (3.4) | (8.3)  | 0.12   |
|                                              | No                       | n   | 654    | 122    | 109    | 44    | 41    | 93     | 0.12   |
|                                              |                          | (%) | (61.5) | (11.5) | (10.3) | (4.1) | (3.9) | (8.8)  |        |
| Hesitation to use medical and dental care    | Yes                      | n   | 374    | 78     | 58     | 28    | 28    | 69     |        |
|                                              |                          | (%) | (58.9) | (12.3) | (9.1)  | (4.4) | (4.4) | (10.9) | -0.05  |
|                                              | No                       | n   | 353    | 70     | 55     | 34    | 18    | 38     | <0.05  |
|                                              |                          | (%) | (62.2) | (12.3) | (9.7)  | (6.0) | (3.2) | (6.7)  |        |
|                                              | Never felt a need to use | n   | 131    | 12     | 21     | 6     | 6     | 14     |        |
|                                              |                          | (%) | (69.0) | (6.3)  | (11.1) | (3.2) | (3.2) | (7.4)  |        |
| Smoking status                               | Current smoker           | n   | 258    | 61     | 62     | 29    | 26    | 58     | < 0.05 |
|                                              |                          | (%) | (52.2) | (12.4) | (12.6) | (5.9) | (5.3) | (11.7) |        |
|                                              | Former smoker            | n   | 226    | 43     | 41     | 22    | 15    | 30     |        |
|                                              |                          |     |        |        |        |       |       |        |        |

|              | (%) | (60.0) | (11.4) | (10.9) | (5.8) | (4.0) | (8.0) |  |
|--------------|-----|--------|--------|--------|-------|-------|-------|--|
| Never smoker | n   | 373    | 56     | 31     | 18    | 11    | 32    |  |
|              | (%) | (71.6) | (10.8) | (6.0)  | (3.5) | (2.1) | (6.1) |  |

\* P-value was calculated by chi-squared test.

# Table 2. Characteristics and tooth loss in women (n = 1,258).

| Women (n=1,258)                      |                                               |     |        | Num     | ber of too | oth loss |         |                   |          |
|--------------------------------------|-----------------------------------------------|-----|--------|---------|------------|----------|---------|-------------------|----------|
|                                      |                                               |     | none   | 1 tooth | 2 teeth    | 3 teeth  | 4 teeth | more than 4 teeth | P-value* |
| Changes in employment status         | Continuous regular employment                 | n   | 349    | 63      | 29         | 15       | 12      | 19                |          |
|                                      | (n = 487)                                     | (%) | (71.7) | (12.9)  | (6.0)      | (3.1)    | (2.5)   | (3.9)             | <0.05    |
|                                      | Having the experience of temporary employment | n   | 449    | 116     | 66         | 47       | 26      | 67                | <0.05    |
|                                      | (n = 771)                                     | (%) | (58.2) | (15.1)  | (8.6)      | (6.1)    | (3.4)   | (8.7)             |          |
|                                      | Regular to temporary employment               | n   | 286    | 82      | 52         | 33       | 17      | 47                |          |
|                                      | (n = 517)                                     | (%) | (55.3) | (15.9)  | (10.1)     | (6.4)    | (3.3)   | (9.1)             |          |
|                                      | Temporary to regular employment               | n   | 39     | 7       | 2          | 2        | 0       | 5                 |          |
|                                      | (n = 55)                                      | (%) | (70.9) | (12.7)  | (3.6)      | (3.6)    | (0.0)   | (9.1)             |          |
|                                      | Continuous temporary employment               | n   | 124    | 27      | 12         | 12       | 9       | 15                |          |
|                                      | (n = 199)                                     | (%) | (62.3) | (13.6)  | (6.0)      | (6.0)    | (4.5)   | (7.5)             |          |
| Age (years old)                      | 25–30                                         | n   | 248    | 20      | 8          | 5        | 6       | 5                 |          |
|                                      |                                               | (%) | (84.9) | (6.9)   | (2.7)      | (1.7)    | (2.1)   | (1.7)             |          |
|                                      | 30–35                                         | n   | 163    | 24      | 12         | 6        | 7       | 9                 |          |
|                                      |                                               | (%) | (73.8) | (10.9)  | (5.4)      | (2.7)    | (3.2)   | (4.1)             |          |
|                                      | 35–40                                         | n   | 152    | 47      | 21         | 8        | 4       | 16                | <0.05    |
|                                      |                                               | (%) | (61.3) | (19.0)  | (8.5)      | (3.2)    | (1.6)   | (6.5)             | <0.05    |
|                                      | 40–45                                         | n   | 133    | 47      | 25         | 16       | 11      | 19                |          |
|                                      |                                               | (%) | (53.0) | (18.7)  | (10.0)     | (6.4)    | (4.4)   | (7.6)             |          |
|                                      | 45–50                                         | n   | 102    | 41      | 29         | 27       | 10      | 37                |          |
|                                      |                                               | (%) | (41.5) | (16.7)  | (11.8)     | (11.0)   | (4.1)   | (15.0)            |          |
| History of diabetes                  | None                                          | n   | 793    | 178     | 94         | 60       | 38      | 86                |          |
|                                      |                                               | (%) | (63.5) | (14.3)  | (7.5)      | (4.8)    | (3.0)   | (6.9)             | 0.24     |
|                                      | Present                                       | n   | 5      | 1       | 1          | 2        | 0       | 0                 | 0.24     |
|                                      |                                               | (%) | (55.6) | (11.1)  | (11.1)     | (22.2)   | (0.0)   | (0.0)             |          |
| Body mass index (kg/m <sup>2</sup> ) | ≥25.0                                         | n   | 65     | 19      | 14         | 7        | 4       | 18                | < 0.05   |

|                                                                   |              | (%) | (51.2) | (15.0) | (11.0) | (5.5)  | (3.2) | (14.2) |       |
|-------------------------------------------------------------------|--------------|-----|--------|--------|--------|--------|-------|--------|-------|
|                                                                   | 18.5–25.0    | n   | 580    | 131    | 63     | 43     | 27    | 60     |       |
|                                                                   |              | (%) | (64.2) | (14.5) | (7.0)  | (4.8)  | (3.0) | (6.6)  |       |
|                                                                   | <18.5        | n   | 113    | 25     | 13     | 11     | 7     | 7      |       |
|                                                                   |              | (%) | (64.2) | (14.2) | (7.4)  | (6.3)  | (4.0) | (4.0)  |       |
| Marital status                                                    | Married      | n   | 455    | 124    | 58     | 51     | 27    | 62     |       |
|                                                                   |              | (%) | (58.6) | (16.0) | (7.5)  | (6.6)  | (3.5) | (8.0)  | <0.05 |
|                                                                   | Single       | n   | 340    | 55     | 37     | 11     | 11    | 24     | <0.05 |
|                                                                   |              | (%) | (71.1) | (11.5) | (7.7)  | (2.3)  | (2.3) | (5.0)  |       |
| No. of family members in the household                            | Living alone | n   | 75     | 6      | 7      | 5      | 3     | 5      |       |
|                                                                   |              | (%) | (74.3) | (5.9)  | (6.9)  | (5.0)  | (3.0) | (5.0)  |       |
|                                                                   | 2            | n   | 161    | 43     | 15     | 10     | 6     | 21     |       |
|                                                                   |              | (%) | (62.9) | (16.8) | (5.9)  | (3.9)  | (2.3) | (8.2)  | 0.22  |
|                                                                   | 3            | n   | 201    | 42     | 34     | 15     | 12    | 22     | 0.32  |
|                                                                   |              | (%) | (61.7) | (12.9) | (10.4) | (4.6)  | (3.7) | (6.8)  |       |
|                                                                   | <u>≥</u> 4   | n   | 356    | 87     | 39     | 31     | 17    | 37     |       |
|                                                                   |              | (%) | (62.8) | (15.3) | (6.9)  | (5.5)  | (3.0) | (6.5)  |       |
| Self-rated household economic status in early life at 5 years old | Rich         | n   | 139    | 32     | 26     | 18     | 12    | 28     |       |
|                                                                   |              | (%) | (54.5) | (12.6) | (10.2) | (7.1)  | (4.7) | (11.0) |       |
|                                                                   | Fair         | n   | 490    | 111    | 57     | 33     | 16    | 42     | -0.05 |
|                                                                   |              | (%) | (65.4) | (14.8) | (7.6)  | (4.4)  | (2.1) | (5.6)  | <0.05 |
|                                                                   | Poor         | n   | 162    | 35     | 12     | 11     | 10    | 15     |       |
|                                                                   |              | (%) | (66.1) | (14.3) | (4.9)  | (4.5)  | (4.1) | (6.1)  |       |
| Years of education (year)                                         | <9           | n   | 17     | 6      | 1      | 6      | 2     | 3      |       |
|                                                                   |              | (%) | (48.6) | (17.1) | (2.9)  | (17.1) | (5.7) | (8.6)  |       |
|                                                                   | 9–12         | n   | 127    | 37     | 25     | 15     | 11    | 25     | .0.05 |
|                                                                   |              | (%) | (52.9) | (15.4) | (10.4) | (6.3)  | (4.6) | (10.4) | <0.05 |
|                                                                   | >12          | n   | 647    | 135    | 68     | 41     | 25    | 57     |       |
|                                                                   |              | (%) | (66.5) | (13.9) | (7.0)  | (4.2)  | (2.6) | (5.9)  |       |

| Annual household income (million yen)        | 0–300                    | n   | 53     | 9      | 5     | 3     | 3     | 12     |        |
|----------------------------------------------|--------------------------|-----|--------|--------|-------|-------|-------|--------|--------|
|                                              |                          | (%) | (62.4) | (10.6) | (5.9) | (3.5) | (3.5) | (14.1) |        |
|                                              | 300–750                  | n   | 249    | 58     | 39    | 21    | 9     | 28     | 0.41   |
|                                              |                          | (%) | (61.6) | (14.4) | (9.7) | (5.2) | (2.2) | (6.9)  | 0.41   |
|                                              | ≥750                     | n   | 233    | 57     | 26    | 20    | 14    | 27     |        |
|                                              |                          | (%) | (61.8) | (15.1) | (6.9) | (5.3) | (3.7) | (7.2)  |        |
| Feel fear of job loss                        | No                       | n   | 495    | 123    | 56    | 38    | 23    | 45     |        |
|                                              |                          | (%) | (63.5) | (15.8) | (7.2) | (4.9) | (3.0) | (5.8)  | 0.00   |
|                                              | Yes                      | n   | 272    | 46     | 32    | 21    | 13    | 39     | 0.09   |
|                                              |                          | (%) | (64.3) | (10.9) | (7.6) | (5.0) | (3.1) | (9.2)  |        |
| Psychological distress (k6)                  | None (0-4)               | n   | 548    | 120    | 66    | 30    | 25    | 50     |        |
|                                              |                          | (%) | (65.3) | (14.3) | (7.9) | (3.6) | (3.0) | (6.0)  | -0.05  |
|                                              | Present (≥5)             | n   | 248    | 59     | 29    | 31    | 13    | 36     | <0.05  |
|                                              |                          | (%) | (59.6) | (14.2) | (7.0) | (7.5) | (3.1) | (8.7)  |        |
| Visiting a dental clinic for preventive care | Yes                      | n   | 247    | 57     | 40    | 27    | 18    | 20     |        |
|                                              |                          | (%) | (60.4) | (13.9) | (9.8) | (6.6) | (4.4) | (4.9)  | 0.05   |
|                                              | No                       | n   | 548    | 122    | 55    | 35    | 20    | 65     | <0.05  |
|                                              |                          | (%) | (64.9) | (14.4) | (6.5) | (4.1) | (2.4) | (7.7)  |        |
| Hesitation to use medical and dental care    | Yes                      | n   | 366    | 80     | 43    | 34    | 13    | 39     |        |
|                                              |                          | (%) | (63.7) | (13.9) | (7.5) | (5.9) | (2.3) | (6.8)  |        |
|                                              | No                       | n   | 310    | 77     | 36    | 23    | 17    | 39     |        |
|                                              |                          | (%) | (61.8) | (15.3) | (7.2) | (4.6) | (3.4) | (7.8)  | 0.45   |
|                                              | Never felt a need to use | n   | 122    | 22     | 16    | 5     | 8     | 8      |        |
|                                              |                          | (%) | (67.4) | (12.2) | (8.8) | (2.8) | (4.4) | (4.4)  |        |
| Smoking status                               | Current smoker           | n   | 91     | 26     | 15    | 17    | 11    | 21     |        |
|                                              |                          | (%) | (50.3) | (14.4) | (8.3) | (9.4) | (6.1) | (11.6) |        |
|                                              | Former smoker            | n   | 115    | 34     | 20    | 12    | 5     | 20     | < 0.05 |
|                                              |                          | (%) | (55.8) | (16.5) | (9.7) | (5.8) | (2.4) | (9.7)  |        |

| Never smoker | n   | 589    | 119    | 59    | 33    | 22    | 45    |  |
|--------------|-----|--------|--------|-------|-------|-------|-------|--|
|              | (%) | (67.9) | (13.7) | (6.8) | (3.8) | (2.5) | (5.2) |  |

\* P-value was calculated by chi-squared test.

Table 3. Associations between change in employment status and tooth loss.

|                                     | Changes in employment status        |                                               |                                 |                                 |                                 |  |  |  |  |
|-------------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|
|                                     | Continuous<br>regular<br>employment | Having the experience of temporary employment | Regular to temporary employment | Temporary to regular employment | Continuous temporary employment |  |  |  |  |
| Negative binomial regression models | Reference                           | PRR (95%CI)                                   | PRR (95%CI)                     | PRR (95%CI)                     | PRR (95%CI)                     |  |  |  |  |
| Men (n=1,394)                       | (n=1,192)                           | (n=202)                                       | (n=65)                          | (n=54)                          | (n=83)                          |  |  |  |  |
| Model 1                             | 1.00                                | 1.55 (1.18, 2.04)                             | 1.71 (1.11, 2.63)               | 1.69 (1.05, 2.73)               | 1.31 (0.86, 2.01)               |  |  |  |  |
| Model 2                             | 1.00                                | 1.50 (1.13, 2.00)                             | 1.62 (1.05, 2.52)               | 1.62 (0.99, 2.64)               | 1.30 (0.83, 2.02)               |  |  |  |  |
| Model 3                             | 1.00                                | 1.44 (1.07, 1.93)                             | 1.51 (0.96, 2.37)               | 1.63 (1.00, 2.65)               | 1.22 (0.77, 1.92)               |  |  |  |  |
| Model 4                             | 1.00                                | 1.38 (1.03, 1.85)                             | 1.44 (0.91, 2.26)               | 1.53 (0.94, 2.50)               | 1.20 (0.76, 1.88)               |  |  |  |  |
| Model 5                             | 1.00                                | 1.32 (0.98, 1.78)                             | 1.37 (0.87, 2.16)               | 1.46 (0.89, 2.39)               | 1.16 (0.74, 1.82)               |  |  |  |  |
| Model 6                             | 1.00                                | 1.31 (0.98, 1.76)                             | 1.41 (0.90, 2.21)               | 1.43 (0.88, 2.33)               | 1.13 (0.72, 1.77)               |  |  |  |  |
| Women (n=1,258)                     | (n=487)                             | (n=771)                                       | (n=517)                         | (n=55)                          | (n=199)                         |  |  |  |  |
| Model 1                             | 1.00                                | 1.44 (1.16, 1.79)                             | 1.34 (1.06, 1.70)               | 1.33 (0.79, 2.24)               | 1.73 (1.28, 2.34)               |  |  |  |  |
| Model 2                             | 1.00                                | 1.42 (1.14, 1.76)                             | 1.35 (1.07, 1.72)               | 1.30 (0.77, 2.18)               | 1.62 (1.19, 2.19)               |  |  |  |  |
| Model 3                             | 1.00                                | 1.37 (1.10, 1.71)                             | 1.31 (1.02, 1.66)               | 1.31 (0.78, 2.20)               | 1.56 (1.14, 2.12)               |  |  |  |  |
| Model 4                             | 1.00                                | 1.38 (1.11, 1.72)                             | 1.32 (1.03, 1.68)               | 1.29 (0.76, 2.19)               | 1.58 (1.16, 2.15)               |  |  |  |  |
| Model 5                             | 1.00                                | 1.37 (1.09, 1.71)                             | 1.32 (1.03, 1.70)               | 1.27 (0.75, 2.17)               | 1.51 (1.10, 2.06)               |  |  |  |  |
| Model 6                             | 1.00                                | 1.33 (1.06, 1.66)                             | 1.31 (1.02, 1.68)               | 1.14 (0.67, 1.94)               | 1.44 (1.06, 1.97)               |  |  |  |  |
| Linear regression models            | Reference                           | Coefficient (95%CI)                           | Coefficient (95%CI)             | Coefficient (95%CI)             | Coefficient (95%CI)             |  |  |  |  |
| Men (n=1,394)                       | (n=1,192)                           | (n=202)                                       | (n=65)                          | (n=54)                          | (n=83)                          |  |  |  |  |
| Model 1                             | -                                   | 0.38 (0.14, 0.62)                             | 0.51 (0.12, 0.91)               | 0.47 (0.04, 0.90)               | 0.21 (-0.15, 0.57)              |  |  |  |  |
| Model 2                             | -                                   | 0.37 (0.12, 0.62)                             | 0.46 (0.06, 0.85)               | 0.42 (-0.01, 0.85)              | 0.25 (-0.12, 0.62)              |  |  |  |  |
| Model 3                             | -                                   | 0.34 (0.09, 0.59)                             | 0.41 (0.01, 0.81)               | 0.42 (-0.02, 0.85)              | 0.22 (-0.16, 0.59)              |  |  |  |  |
| Model 4                             | -                                   | 0.32 (0.07, 0.57)                             | 0.38 (-0.02, 0.78)              | 0.38 (-0.05, 0.81)              | 0.23 (-0.15, 0.60)              |  |  |  |  |
| Model 5                             | -                                   | 0.28 (0.02, 0.53)                             | 0.33 (-0.07, 0.74)              | 0.31 (-0.12, 0.74)              | 0.20 (-0.18, 0.58)              |  |  |  |  |
| Model 6                             | -                                   | 0.25 (0.00, 0.50)                             | 0.31 (-0.09, 0.71)              | 0.29 (-0.15, 0.72)              | 0.17 (-0.20, 0.55)              |  |  |  |  |

| Women (n=1,258) | (n=487) | (n=771)            | (n=517)            | (n=55)             | (n=199)            |
|-----------------|---------|--------------------|--------------------|--------------------|--------------------|
| Model 1         | -       | 0.25 (0.08, 0.41)  | 0.19 (0.00, 0.38)  | 0.25 (-0.16, 0.65) | 0.36 (0.13, 0.60)  |
| Model 2         | -       | 0.23 (0.06, 0.40)  | 0.20 (0.00, 0.39)  | 0.25 (-0.15, 0.65) | 0.31 (0.07, 0.54)  |
| Model 3         | -       | 0.20 (0.03, 0.38)  | 0.17 (-0.03, 0.36) | 0.24 (-0.16, 0.64) | 0.27 (0.02, 0.51)  |
| Model 4         | -       | 0.21 (0.04, 0.39)  | 0.17 (-0.02, 0.37) | 0.24 (-0.16, 0.65) | 0.28 (0.04, 0.53)  |
| Model 5         | -       | 0.20 (0.02, 0.38)  | 0.16 (-0.04, 0.36) | 0.25 (-0.15, 0.65) | 0.26 (0.01, 0.51)  |
| Model 6         | -       | 0.16 (-0.02, 0.33) | 0.13 (-0.06, 0.33) | 0.11 (-0.29, 0.51) | 0.22 (-0.03, 0.46) |

Model 1: Age was adjusted.

Model 2: Model 1 + years of education, self-rated household economic status in early life at 5 years old, marital status, no. of family members in the household, history of diabetes, and body mass index were adjusted.

Model 3: Model 2 + Annual household income was adjusted.

Model 4: Model 3 + Visiting a dental clinic for preventive care and hesitation to use medical and dental care were adjusted.

Model 5: Model 4 + Feel fear of job loss and psychological distress was adjusted.

Model 6: Model 5 + Smoking status was adjusted.

Abbreviation: PRR = prevalence rate ratios, 95%CI = 95% confidence interval





Figure 2. A directed acyclic graph (DAG) showing the association between employment status and tooth loss

