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Abstract  

In this study, I present a new catalog-based algorithm to identify background seismicity and 

spatiotemporal clusters for cases characterized by both mainshock-aftershock sequence and swarm 

activity. We found that simple equations with a few parameters can identify the background seismicity 

from an earthquake sequence.  

Background seismicity plays an important role on earthquake hazard estimation. The scientific 

background of earthquake hazard estimation is to realize earthquake scenarios with knowing physical 

knowledge, and one of the approaches to understand earthquake scenarios is to study the seismicity. 

Seismicity based on the mechanism of the occurrence could be separated into background seismicity and 

triggered seismicity. Background seismicity, also referring as tectonic seismicity, is described as the 

earthquakes who are independent of each other, the term independent indicates that the occurrence of the 

earthquakes are not associated with the stress perturbation of the previous earthquake but related to the 

elastic strain accumulation by the tectonic loading and as a product by releasing the energy through the 

slip on a fault. It could be seen as a homogenous condition on a large scale of areas. On the other hand, 

triggered seismicity indicates the occurrence of earthquakes is related to a previous large earthquake 

(mainshock). These triggered earthquakes are often referred to as aftershocks. A sudden stress 

perturbation imparted by a mainshock caused the occurrence of the aftershocks. There is another special 

case of earthquake cluster called earthquake swarm, which is also an earthquake cluster, but their 

occurrence is mainly driven by the aseismic slip or fluid migration around the volcanic area. It is 

important to distinguish those groups, the variety of applications such as seismic hazard assessment or 

earthquake prediction and seismicity rate change estimation. 

 Previous researches for separating the earthquake clusters with the background seismicity all have 

success on modeling the mainshock-aftershock sequence but they faced a difficulty on separating swarm 

sequence. The reason is because the seismicity of swarm sequence does not usually follow the aftershock 

decay law, and it has a variation in seismicity rate, earthquake productivity, magnitude, and its duration. 

Because the inconsistence of properties in the swarm sequence, it makes a huge difficulty to separate 

those events with pervasive empirical laws. Recently, a study using mean seismicity rate as a primary 

parameter to detect enhanced seismicity rate sequences successfully identified earthquake clusters in a 

swarm dominate region. Using seismicity rate to divide earthquake catalog into several enhanced 

seismicity sequences enables us to select more independent declustered earthquakes. However, the 

choice of parameters for combining sequences is arbitrary and largely influences their results. 

To select the spatio-temporal clusters, the algorithm first searches spatial clusters by considering 

the spatial distribution with time in a 2-D cell-gridded map. Second, the algorithm identifies temporal 

sequences from a spatial cluster by comparing inter-event time with a temporal threshold. A self-driven 

time-dependent parameter is also presented based on the observation of earthquake inter-event time. The 

advantage of this algorithm is that only two parameters are required for near-complete earthquake 

declustering process. A filtering process is designed to find the proper parameter combination to 

maximize the number of declustered earthquakes. Several tests are presented with JMA catalog recorded 
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from 1998 through 2016 in and around Japanese Islands. The results indicate that this algorithm is 

capable of selecting spatiotemporal clusters with regard to the various tectonic environments. For deeper 

subduction-related earthquakes, we have further developed the 2D cell grid to 3D cubic grid system to 

adopt our approach to a wide range of seismicity. Finally, we compare our declustered catalogs with ones 

computed from several other declustering algorithms and suggest that this new algorithm would be 

competitive with other declustering/clustering techniques.  

By extracting spatiotemporal earthquake clusters properly from an input catalog, background rate 

of seismicity could be used as a stress indicator, and change in background seismicity may suggest stress 

perturbation related to a large earthquake is occurring. In our declustered catalogs, we found that 

background seismicity rate increase in several areas in Honshu Island after the M=9.0 2011 Tohoku-oki 

earthquake. Further studies may prove that fluctuation of true background rate of seismicity might be 

one of the key factors to evaluate time-dependent earthquake hazard. 
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Chapter 1 Introduction 

To assess earthquake hazard, background seismicity plays an important role on investigating the 

frequency of the future seismicity [Cao et al., 1996; Wiemer, 2000; Kafka, 2002; Kagan and Jackson 

2000]. Based on the characteristics of distribution in space and time, observed earthquakes could be 

divided into triggered events and secular background activity. In terms of the observed rate of seismicity, 

clustered seismicity can be mainly categorized into mainshock-aftershock sequence [Omori 1894; Utsu 

1970] and swarm sequence [Mogi, 1963; Scholz, 2002]. Generally, clustered seismicity indicates the 

earthquakes that are triggered by other earthquakes. Background seismicity, on the other hand, describes 

as the seismicity which is independent each other and often reflected from the state of tectonic loading. 

Studying clustered seismicity can help us understand the earthquake mechanism such as static triggering 

[ e.g., King et al., 1994; Stein et al., 1994; Toda et al., 2012], dynamic triggering [e.g., Kilb et al., 2000; 

Felzer and Brodsky, 2006], or aseismic triggering [e.g., Peng and Gomberg, 2000]. On the other hand, 

analyzing background seismicity enables us to estimate the regional stress level. In addition, anomalies 

from stable background seismicity may suggest the stress perturbation on a regional scale [Ogata 2005].  

There are several methods already proposed to distinguish triggered seismicity from background 

seismicity. These approaches are often referred to as earthquake clustering/declustering methods [Utsu, 

1970; Gardner and Knopoff, 1974; Reasenberg, 1985; Ogata, 1988; Frohlich and Davis, 1990; Zhuang 

et al., 2002]. However, despite their efforts, each algorithm has its own advantage and disadvantage, and 

the best and versatile method does not exist. A common standard to test the declustering process is if the 

computed background seismicity follows Poisson behavior in space and time.  

The Epidemic Type Aftershocks Sequence [ETAS, Ogata,1988] Model, is one of the most widely 

used models in the recent earthquake hazard estimation. The ETAS model describes seismicity as a point 

process, which consists of a constant background seismicity with a triggering process. The strength of 

the ETAS model is that every earthquake has a capability of generating its own aftershocks, and the 

productivity of aftershocks are controlled by the empirical Omori-Utsu law. But a limitation of ETAS 

model is not to well reproduce seismic swarm sequence. The reason is that the temporal distribution of 

swarm sequence cannot be simply described by aftershock decay law and do not follow any epidemic 

type behavior. Recently, cumulative rate analysis [CURATE, Jacobs, 2013] is proposed to find spatio-

temporal earthquake clusters from the swarm dominated area in New Zealand. This analysis is 

fundamentally different from the others because they do not involve any direct and arbitrary assumptions 

that cause the biases. The CURATE method employs an average rate of seismicity as a threshold for 

detecting enhanced seismicity rate sequence. However, arbitrary choice of additional parameters in the 

CURATE method exposes a limitation to apply to other areas.  

In Chapter 1, we first describe the reason why we need to seek a precise rate of background 

seismicity. We then briefly introduce the previously published major declustering techniques and their 

pros and cons. 

In Chapter 2, we propose a new algorithm that is different from most of the declustering techniques 
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that aimed to “remove” the aftershocks. Our algorithm first identifies spatial cluster, which is an 

enhanced seismicity density area that can be seen on the seismicity density map. We then deal with how 

to automatically select enhanced seismicity density area (spatial clusters). This is a process to link the 

earthquakes occurred closely in space and time. During this process, two parameters are adopted, S° for 

spatial dependency and T (days) for temporal dependency. After selecting spatial clusters, we identify 

spatiotemporal sequence by evaluating temporal behavior in each spatial cluster. Based on the 

observation of earthquake inter-event times, we adopt a self-driven time-dependent temporal threshold 

to quantify the temporal relationship between two continued events. This time-dependent temporal 

threshold is represented as the minimum waiting time for the next event to occur. Earthquake catalog 

adopted in this algorithm would be separated into spatiotemporal sequences and background seismicity 

(combination of spatially independent event and temporally independent event). To find the proper 

combination of S and T, we design a parameter filtering process to find the proper parameter combination 

from a range of S and T. The suggested combination of the parameters is aimed for not only produced a 

smooth background seismicity but also keeping the maximum number of the background events. The 

primary result of this algorithm adopted in western side of Hokuriku region, Japan with JMA catalog 

shows that this technique is capable of selecting the spatiotemporal sequence in such tectonic 

heterogeneous environment.  

To further investigate the algorithm, in Chapter 3, we adopt this algorithm to several areas in and 

around the Japanese Islands. We select the test areas based on various seismo-tectonic environments.  

In Chapter 4, we discuss the issues raised by the tests in Chapter 3. For example, we find that 

background seismicity decreasing after the 2011 Tohoku-oki earthquake in Tohoku area is due to the 

over-declustering of 2-Dimensional gridded system. We then expand the 2-Dimension grid into 3-

Dimension cube system. The decreased rate of background seismicity then disappeared with the 3-

Dimension cube, instead, a sudden increase of background seismicity was observed. This sudden increase 

of background seismicity associated with the 2011 Tohoku earthquake also appeared in the Iwate region, 

suggested that a local stress field had been perturbed due to the stress imparted from the M9.0 Tohoku 

earthquake. Another issue is seismicity increase occurred after the 2016 Kumamoto earthquake in the 

central Kyushu area. We found that the increase is due to the limitation of the time-dependent threshold 

we designed for quantifying the temporal relationship, which attracts our attention to future development 

of the algorithm. 

1.1 Background seismicity to detect seismic anomaly 

Several studies have indicated there exists seismic quiescence prior to large events in and near their 

epicenters [e.g., “Mogi’s donuts” in Mogi, 1979; Wyss and Habermann, 1988; Katsumata, 2015]. Seismic 

quiescence in space and time is defined as and detected by seismicity rate decrease in a seismically active 

region during a specified period, compared to stable activity in the region. However, it is not yet clear 

how common this phenomenon is, what its characteristics are, and what types of physical mechanism 

bring such spatiotemporal dormancy preceding large earthquakes. Recent studies suggested that aseismic 
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slow slip preceding a major earthquake that might have occurred on the plate interface around major 

subduction zones may contribute to hampering regional seismicity. The spatial correlation between area 

of seismic quiescence and location of the aseismic fault plane suggest that the seismic quiescence might 

be related to stress reduced by preceding aseismic slip, which might lead a contribution on the earthquake 

prediction [Seno, 2004; Katsumata, 2015]. Two commonly used stochastic values for computing 

seismicity rate change are z- value [Habermann, 1983] and β- value [Matthews and Reasenberg, 1988]. 

Z- value is to compare the seismicity rate for two different periods by the following equation 

! =

#$
%$
−
#'
%'

#$

%$
' +

#'

%'
'

	,																																																																					(1.1) 

where T1 (background) represents overall period except the time window of interest T2, and n1 and n2 are 

the number of earthquake samples in these periods. A general computation for Z-value is implemented 

into a software package ZMAP [Weimer, 2001] operated in MATLAB. ZMAP computes seismicity rate 

change simply by generating a map with equally sized grid cells, and separating earthquake occurred in 

each cell. Then earthquakes occurred in different grid cells could be sampled in a giving time window. A 

comparison of seismicity rate between a giving time window (T2) and total period (background, T1) could 

be presented. Figure 1.1 shows a schematic plot for how to compute Z-value. Z-values can be also 

calculated and shown as a function of time shifting the range of time window (T2). According to equation 

(1.1), a positive Z-value indicates a decrease in seismicity rate, whereas a negative value indicates an 

increase in seismicity rate. The seismic anomalies could be identified by the variation of Z-value. The 

previous study has suggested |Z| ≥ 5 would be reckoned as a significant change over background noises 

[Katsumata, 2015, 2017]. 

 The other value commonly used to detect the seismicity rate change is β- value defined by the 

following equation 

/0 1, 2 =
3 1, 2 − #2

#2 1 − 2
	,																																																												(1.2) 

where n indicates the number of independent events in the period T (background), and M(t,δ) ,the number 

of samples between time interval (t-δ,t) under the condition of t<T. The β statistics demonstrates a direct 

difference between the observed number and the expected number of earthquakes. A modified standard 

β approach for seismicity [Matthews and Reasenberg, 1988; Reasenberg and Simpson, 1992] is defined 

as  

/ =
56 − 57

8
	,																																																																			(1.3) 

where Na represents the number of earthquakes occurred after an event and Ne represents the expected 

earthquake number estimated by the seismicity rate before that event. A positive β- value indicates an 

increase in seismicity rate and a negative value indicates a decrease in seismicity rate. β-value is more 

sensitive than Z-value, a slight change in seismicity can be emphasized in β-value. But it leads to a 

difficulty to find the increase in seismicity compared to rate decrease [Matthews and Reasenbreg, 1988]. 

According to equation (1.1) and equation (1.2), rate of background seismicity controlled the significance 

of the seismicity rate change. Therefore, using proper background seismicity in such analysis becomes 
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essential. Previous studies suggest that changes in seismicity rates are easily produced by any effects, 

such as the improvement of the seismic station coverage leads to increase of seismicity rate or the 

abundant aftershock activities lead to reduce potential seismic anomalies. Therefore, to investigate 

precise and reliable temporal changes in seismicity, a homogenous earthquake catalog should be 

presented [Habermann, 1987]. 

1.2 Forecasting seismicity after a mainshock 

The values introduced above are the perspectives of statistic approaches. The ultimate purpose to 

quantify these statistical values is to predict the time and location of future large earthquakes. For the 

physical aspects, another approach for seismic hazard estimation is to forecast seismicity after 

mainshocks by considering the effect of the coseismic stress change. Aftershocks and other triggered 

earthquakes could be interpreted as a product of stress transfer from a mainshock source. Such a stress 

perturbation due to a mainshock and associated seismicity rate change could be comprehended by the 

static Coulomb stress change and/or dynamic stress change. Based on recent numerous studies, remote 

triggering aftershocks are often related to dynamic stress change caused by the passage of seismic wave, 

whereas static Coulomb stress change dominates near-field aftershock triggering behavior. The rate and 

state friction law, introduced by Dieterich [1992, 1994], has been often introduced to convert stress 

perturbation into time-dependent seismicity with background rate of seismicity in a region. Based on the 

laboratory experiment, this law describes a relation between the physical properties and its associated 

slip behavior on a fault. By a simple assumption that earthquake nucleation is associated with the 

instability of the initial slip on a fault, seismicity rate R is found to evolve following an equation,  

: =
;

<=>
	,																																																																									(1.4) 

while r indicates background seismicity, τ̇r indicates reference shear stressing rate and γ indicates a time-

dependent state variable with  

@< =
1

AB
@1 − <@C 	,																																																															(1.5) 

where A represents a constitutive parameter. S indicates a modified Coulomb stress function as 

∆C = ∆= + F
�
∆B	,																																																																	(1.6) 

where Δτ and Δσ represent the changes in shear stress and normal stress, and µ indicates the effective 

coefficient of friction. According to Dieterich [1994], assuming a constant stressing rate following a 

stress step and steady-state seismicity rate prior to a stress step, the state variable γ can be described as 

<0 = <0H$IJK
−∆C

AB
	,																																																															(1.7) 

γn and γn-1 represents the state variable in different stress states, and substituting equation (1.7) to equation 

(1.4), seismicity rate R in any stress perturbation yields  
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;

IJK
−∆C

AB
− 1 IJK

−1

16
+ 1

	,																																																		(1.8) 

where ta is the aftershock duration, indicating the time comes back to the background level and derived 

by  

16 =
AB

=
	.																																																																									(1.9) 

 The Dieterich model can be used to forecast seismicity rate change caused by stress change after a 

mainshock, or any stress perturbation caused by aseismic slip. According to equation (1.8), the expected 

seismicity rate is directly affected by the level of background rate, and it is also worth noting that equation 

(1.8) is only valid when the seismicity rate prior to the stress perturbation is underlying steady state 

condition. 

 Cocco et al., [2010] suggests that background seismicity rate in a steady state should not change 

with time, which leads to a general statement that background seismicity should follow Poissonian 

behavior. Stable Poisson distribution of background seismicity indicates that earthquakes occur 

independently each other. To incorporate such a statistical hypothesis into model, random (Poissonian) 

behavior in seismicity must be assumed. But a fundamental but crucial question is how to quantify proper 

background seismicity. During the past 40 years, there are several methods and models challenged to 

estimate true background seismicity. Most of the previous studies and their approaches concentrated on 

removing clustered seismicity (aftershocks) from an earthquake catalog, and those methods are therefore 

often described as “earthquake declustering method.” Untill now there does not exist the best declustering 

algorithm to properly describe background seismicity. Several declustering algorithms are suitable for 

dealing with data with certain types, and some are fit to handling data with a particular type of space and 

time distribution. In general, declustering algorithms can be divided into deterministic and stochastic 

types. Deterministic type focuses on finding the independent event, whereas stochastic type uses 

probability criterion to estimate the chance that earthquake would be triggered by the previous one. 

Regardless of different types, the basic concept of the declustering algorithm is to separate earthquake 

clusters from the original catalog by quantifying the spatial and temporal dependency between 

earthquakes under some criteria. 

 Table 1 lists several major declustering algorithms published since 1970s and detailed information 

is presented in the following section. 

1.3 Types of declustering methods 

1.3.1 Window method 

The Gardner and Knopoff [1974] method is a straightforward technique that focuses on the creation 

to decluster a catalog. The method quantifies the spatial and temporal dependency of earthquakes by a 

set of magnitude-dependent space-time windows based on visual scanning of earthquake clusters in 

Southern Californian earthquake catalog. An approximation of the windows sizes is given in  
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1 =
	10

Q.QR'×UV'.ZRSW
, 3 < 6.5

	10
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, 3 ≥ 6.5	, (days)
																																										(1.11) 

where L indicates the length of the space window (km) and t indicates the length of the time window 

(day). This method removes earthquakes occurred in the space-time window defined by other 

earthquakes, the remaining events are considered as background seismicity. Note that the space-time 

window size might be changeable depending on target areas. 

1.3.2 Linked method 

Reasenberg [1985] developed an algorithm that identifies aftershocks by linking earthquakes into 

clusters based on a concept of spatial and temporal interaction zone. In the Reasenberg’s theory, spatial 

interaction zone is defined by assuming a circular crack radius for each event and searches within its 

vicinity for aftershocks, which yields a spatial extension = Q x source dimension (S), where Q is a non-

dimensional constant parameter governed the amplitude of spatial extension and S is driven by 

3Q = FCc =
16

7
∆Bd

R
=

16∆B

7e
R

'

C
R

'		 

		 Kanamori	&	Anderson, 1975 ,															(1.12) 

and temporal interaction zone is based on the Omori-Utsu decay of observed aftershock activity with 

probability form, 

= =
−ln 1 − o 1

10' ∆UH$ /R
																																																																		(1.13) 

The equation (1.13) describes a time to wait to be P confident of observing the next event in the sequence. 

P indicates the probability of detecting the next event and ΔM = (M - Mc). Mc indicates the minimum 

magnitude of completeness, which defines a minimum magnitude that earthquakes magnitude above Mc 

is considered to be reliably detected. The Reasenberg’s algorithm needs two free parameters Q and τ. In 

general, Q is set to be 10, which is according to the maximum distance of earthquakes estimate by the 

stress related process. τ gives a range from 1 to 10, which also indicates the maximum interaction time 

between two earthquakes is smaller than ten days. In summary, the Reasenberg’s algorithm first estimates 

spatial extension of earthquakes by equation (1.12) and lasts a duration τ after the earthquake event by 

equation (1.13). If one earthquake falls into a window for another earthquake, both belong to the same 

cluster. 

1.3.2.1 Shortcoming of Gardner and Knopoff and Reasenbeg declustering methods 

The primary target for above declusteirng methods was for seismicity in California region, and the 

observation might only valid for those areas that are represented as seismo-tectonics in the San Andreas 

fault system. The Gardner and Knopoff [1974] method might have been extreme that declustered catalog 

only contained a few events and the Reasenbeg method might be too weak to select aftershocks 

adequately from the modern seismic catalog that include more small earthquakes [Luen and Stark 2012]. 
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1.3.3 Stochastic EATS model 

Stochastic process can analyze a time series data with a combination of probability controlled 

random variables, which can be adapted to a large number of various phenomena where the population 

of interest varies through time. Ogata [1988] first introduced Epidemic Type Aftershock Sequence (ETAS) 

model to reproduce the seismicity as a combination of background seismicity and its branch structure of 

all aftershocks. The seismicity rate λ as a function of time t yields  

q 1 rs = F +
tI

u UvHUw

1 − 1x + y
z

sv{s

	,																																																				(1.14) 

where µ indicates a constant background seismicity rate, t indicates time, K indicates the aftershock 

productivity, α represents the earthquake efficiency of a given magnitude at generating aftershocks, c and 

p are the parameters from the Omori-Utsu law. In the ETAS model, background seismicity rate µ follows 

a Poisson distribution. The ETAS model assumes every event can generate its own aftershocks, which 

gives the uniqueness and strength for modeling seismicity. For each earthquake event, the rate of 

aftershocks decreases in time according to the modified Omori-Utsu law. The rate of aftershocks of an 

earthquake with magnitude Mi increases exponentially with the size of Mi, which gives a similar 

description with the Gutenberg–Richter law. The ETAS model treats all parameters to be constant over a 

study region, the reasonable choice of the study region often becomes crucial. Zhuang [2002] then 

proposed the space-time ETAS model to overcome the issue. It incorporates a location function into the 

original ETAS model 

q 1, J, | = F J, | + } ~� Ä 1 − 1� Å J − J�, | − |� ~�

�:sÉ{s

	,													(1.15) 

} ~ = AI
u ÑHÑw , ~ ≥ ~Ö,																																												(1.16) 

Ä 1 =
K − 1

y
1 +

1

y

Hz

, 1 > 0,																																												(1.17) 

Å J, |;~ =
à − 1

ecIâ ÑHÑw
1 +

J
'
+ |

'

cIâ ÑHÑw

Hä

.																																				(1.18) 

In the space-time ETAS, µ(x,y) indicates the background seismicity as a function of space. k(m) indicates 

the aftershock productivity generated by magnitude m. g(t) indicates the probability function of the 

modified Omori-Utsu law, and newly added f(x,y) indicates location of aftershocks controlled by a 

probability function from the kernel function.  

 These stochastic models to identify background seismicity with probabilities share the following 

common processes: 

1. Calculate the probability (Pi) that event i as the background event by  

ox =
F Jx, |x

q 1x, Jx, |x
	.																																																																			(1.19) 

2. Generate a uniform random number Ui between 0 and 1. 

3. If Pi > Ui, define event i as the background event.  
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1.3.3.1 Shortcoming for ETAS model 

There are two crucial problems that the ETAS confronted. First, the ETAS model is model 

dependent, and different choice of area and time period varies the final result. Marsan and Lengline [2008] 

tackled to resolve this issue by adopting a non-parametric ETAS model in which every parameter settings 

are implicitly given by kernel function. Second, several studies addressed that the ETAS model failed to 

model seismic swarm sequence [e.g., Llenos et al., 2009; Harte 2012; Chouliaras et al., 2015], which is 

still unresolved. The main reason why ETAS cannot fully reproduce swarm sequence is that the temporal 

changes of swarm activity is not uniform. Swarm sequence could be regarded as an outlier from 

earthquake clusters. Instead, swarm sequence is a group of earthquakes occurred closely in space and 

time but does not include a significant mainshock unlike typical mainshock-aftershock sequence. During 

the swarm sequence, seismicity rate often seems to be randomized. Aftershocks following the largest 

event in the swarm sequence do not simply decay with time, makes swarm sequence puzzling. Recently, 

several studies modified the conventional ETAS model by changing the background seismicity (µ) or the 

aftershock efficiency (α) to fit swarm sequences, but their adjustments seem to be hindsight and not yet 

to make the proper contribution to forecast earthquakes prospectively [Llenos et al., 2009]. 

1.3.4 CURATE analysis 

Jacobs et al., [2013] developed a cumulative rate analysis (CURATE) to overcome the difficulty 

of ETAS model for seismic swarm sequence. This analysis consists of two main steps. The first step is 

to select the enhanced seismicity rate sequence. Instead of using an empirical statistical function to model 

the seismicity, they connected earthquakes by time-dependent seismicity rate. CURATE analysis is the 

modified version of CUSUM (cumulative sum) analysis, which is a sequential statistical analysis for 

changing detection in a time series data 

c =
5 1ã, 1å

1åH1ã
	,																																																																			(1.20) 

çé:A%è = 5 1ã, 1x − c 1x − 1ã 	,				1ã ≤ 1x ≤ 1å	,																											(1.21) 

where D indicates the mean seismicity rate during time period (ts,tf), N(ts,tf) indicates the observed 

cumulative number of earthquakes in time period (ts,tf), the CURATE at time ti indicates the residual 

between observed cumulative number of earthquakes at ti and expected cumulative number of 

earthquakes at ti. For a time series data, according to equation (1.21), each positive slope of the CURATE 

represents an enhanced seismicity rate, and the positive slope can be simply represented as when an inter-

event time between two continuous events is smaller than 1/mean rate. After enhanced seismicity rate 

sequence is identified, a “distance rule” is adopted to quantify the spatial dependency. The distance rule 

is used to remove earthquakes if the distance between an event location and the mean location of a seismic 

sequence chosen in the first step is over the defined distance rule. First two steps are an iteration process 

and the CURATE analysis continues working on the residuals until no enhanced seismicity rate 

sequences could be identified. The original input catalog would be divided into several enhanced 

seismicity rate sequences based on CURATE analysis. Next step is to focus on those enhanced seismicity 
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rate sequences and combine those sequences with distance rule and day rule. Two or multiple sequences 

would be then combined into one sequence if the spatiotemporal relationship is fulfilled with the 

following conditions:  

1. The distance between mean location of sequences is smaller than distance rule.  

2. The length of the sequences is overlapped or the time interval between sequences are shorter than 

day rule.  

The CURATE analysis focuses on extracting earthquake clusters and the parameters could successfully 

be adopted all kinds of earthquake sequences, and it may satisfactorily overcome the shortcoming of the 

ETAS model on a swarm dominated area. 

1.3.4.1 Shortcoming of the CURATE analysis 

 Jacobs et al. [2013] suggests that using rate as the primary indicator for monitoring activity gives 

a better aspect to evaluate spatial dependency for earthquake occurrence. This independent treatment of 

distance enables to better identify sparse increases in activity and leads to better categorization of decay 

of sequences. However, a proper parameter set for distance rule and day rule is arbitrarily assumed and 

hardly adjustable. 

1.4 Motivation 

From a brief review of the existing algorithms above, we temporarily conclude that no best and 

versatile technique exists to properly decluster observed earthquakes. Some of them are only suited for 

a specific type of earthquakes, and some of them might be only applicable for certain areas. To capture 

the seismicity in more general perspective, we here develop an algorithm that aims to be suitable for any 

types of seismic sequences under any tectonic environments (mainshock-aftershock sequence, swarm 

sequence or in-between). Based on the knowledge of preexisting techniques in mind, that is, seismicity 

fitted by an empirical formula is only validated on the mainshock-aftershock sequence. We thus keep the 

advantage of the usage of seismicity rate parameter to be the primary parameter as the CURATE analysis 

reducing the arbitrary choice of additional parameters for our further investigation. In chapter 2, we 

propose a new algorithm. An initial test of this algorithm adopted in an area mixing inland mainshock-

aftershock sequence with large swarm sequence demonstrates the new technique can select the 

spatiotemporal sequence in such tectonic heterogeneous environment. Chapter 3 shows a series of tests 

for earthquakes in and around the Japanese Islands. In Chapter 3, we adopt this new algorithm with the 

various areas to investigate the power of selecting spatiotemporal sequences; from a single mainshock-

aftershock sequence to enhanced seismicity rate areas. In Chapter 4, we discuss several strengths and 

limitations recognized from these applications in Chapter 3, and then conclude our study in Chapter 5. 
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Table 1.1 List of major declustering techniques since 1970. 
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Figure 1.1 Schematic explanation of how to calculate Z-value. The Z-value is calculated for all times t 

between T0 and Te to Tw. According to the equation 1.1, T2 represents the time period from t to t + tw, 

and T1 represent the time period from T0 to Te subtracting T2. (T0<t<Te)	
  

 



	 12	

Chapter 2 A new algorithm 

2.1 Multiple steps to find spatio-temporal clusters 

 Our newly proposed algorithm for clustering/declustering is based on detailed observations of 

seismicity in which a group of earthquakes occurred closely in space and time. In terms of spatial 

distribution, earthquake clusters can be visually identified as high density areas on a map. On the other 

hand, temporal distribution, earthquake clusters can be identified as a sudden increase of seismicity in a 

time series plot. In order to recognize earthquake clusters, a key factor is to quantify the temporal and 

spatial dependency between two continuous events without causality assumptions. This algorithm 

focuses on finding spatiotemporal earthquake clusters and discriminates from remaining events as 

background seismicity. 

The new algorithm includes the following three steps. The first two steps are the primary processes 

that aim to extract clusters, and the final step is a filtering process to find the best clustered/declustered 

catalog from all the catalogs from the first two processes with a proper combination of parameters. Two 

parameters are adopted in the primary process (first two steps) and additional two parameters are adopted 

in the filtering process (final step).  

At the first step, we deal with the spatial dependency. We first bound the space volume of the 

spatiotemporal earthquake sequences by selecting high seismicity density areas. The first step includes a 

linking process with spatial and temporal parameters and aims to identify high seismicity density areas 

from an earthquake catalog automatically. 

After selecting high seismicity density areas, next step is to extract the enhanced seismicity rate 

sequences from those high seismicity density areas. To quantify the temporal dependency, we adopt the 

same concept as the CURATE analysis that compares an inter-event time of two sequential events to a 

temporal threshold. The second step is the modified version of CURATE analysis and intends to 

overcome the shortcoming of CURATE analysis. As we mentioned in Chapter 1, the CURATE analysis 

used two subjective rules to link the enhanced seismicity rate sequences. But these two rules directly 

affect the size and duration of the earthquake sequences. The only reason why two rules are required in 

the CURATE analysis is the simple usage of a constant mean rate throughout the study period. A constant 

rate in multiple runs of CURATE to reduce residuals leads to an unavoidable requirement of additional 

rules to combine the sequences. In the second step, instead of using a constant temporal threshold like 

CURATE, we seek to find time-dependent automatically determined temporal thresholds to quantify the 

relationship between two continuous events and try to select enhanced seismicity rate sequences in one 

run with these threshold values. A flowchart of this algorithm is shown in Figure 2.1. 

 

2.1.1 Step 1 : Identifying the spatial clusters (neighboring cell connection method) 

 The purpose of step 1 is to identify high seismicity density areas. A dense seismicity area, what we 

call “spatial cluster,” represents a group of earthquakes occurred closely in space. To identify those spatial 
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clusters, here we adopt a linking procedure to connect events occurred nearby. Earthquakes would be 

linked if they occurred close enough, and the spatial dependency is quantified by a 2-dimension grid (S, 

in degree) discarding the information of hypocenter depth. However, if an area is enhanced in seismicity, 

it is possible that all of the earthquakes would be linked as one large spatial cluster. To avoid such a 

possible but unfavorable situation, we also introduce a temporal parameter T (in day) to select transient 

spatial clusters. 

A simple schematic plot of step 1 is shown in Figure 2.2. Before the screening process started, an 

initial cluster number (nc = 0 as the initial value) is set up for all events (events are sorted by ascending 

order of occurrence time). This cluster number is critical in this step. This screening is to update the value 

of cluster number into all events in the input earthquake catalog. This step starts with screening the events 

with time window T from the first event of the catalog and girding the catalog spatially with a two-

dimensional cell size of S° x S°. After dividing the spatial distribution into multiple cells, the cell location 

of the screening events could be identified, and the program will select the events which are in the same 

or neighboring cells with respect to the first event of the screening events. The input earthquake catalog 

will be divided into two sub-catalogs, one is the selecting events and the other is remaining events. Next, 

the program will examine the cluster numbers of selecting events and try to update the cluster numbers. 

Three possible cases of updating cluster numbers are presented in the following contents:  

Case 1 (Figure 2.2a): if the cluster number of selecting events equals to the initial number (nc = 

0), the program will update the cluster number with nc’ = nc’’ + 1 in to all selecting events, nc’’ 

indicates the minimum non-zero value of n in remaining events (except one condition when nc= 

0 in all remaining events, nc’’ = 0).   

Case 2 (Figure 2.2b): if the cluster number of selecting events had been updated in the previous 

screening, the program will compare the size of cluster number in selecting events and choose 

the smallest cluster number and update that number into all selecting events.  

Case 3: if the cluster number inside the selecting events are the same and not the initial number, 

the program will pass this run of the screening and shift to the next run.  

 After the screening process is finished, which means that all of the earthquakes in the catalog are 

updated and re-labeled their cluster numbers, we divide the input catalog into two groups based on how 

many earthquakes are sharing same cluster number. The input catalog will be divided into (1) spatial 

cluster (a cluster number shared with multiple earthquakes) and (2) spatially independent event (a cluster 

number only owned by one earthquake). The spatial cluster represents a relatively dense seismicity area 

in periods, which include all kinds of clustered seismicity.  

Figure 2.3 shows an example of selected spatial independent events (black open circle) and spatial 

clusters (colored open circle) of earthquakes occurred shallower than 20 km in the western part of 

Hokuriku region, Japan, where five M ≥ 6.5 mainshocks and one large swarm sequence occurred during 

the period of 1998-2016. Note that in the figure we only show the spatial clusters that include the number 

of earthquakes larger than or equal to 20. Based on the temporal distribution of Mc (minimum magnitude 

of catalog completeness) (Figure 2.4), here we used cutoff magnitude 2.0 for the input earthquake catalog. 

The parameters used for this example are S = 0.05° and T = 64 days. Distribution of spatial clusters shows 

that those clusters are often related to large mainshocks, while some spatial clusters are not associated 
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with any particular large mainshock could be a swarm sequence. Besides the spatial clusters, the first 

order of background seismicity also can be identified. It is clear that there exists high background 

seismicity in the southern part of the study area. Based on their temporal distribution, spatial clusters can 

be characterized with: (1) Spatial cluster with a relatively large event and daily seismicity rate decayed 

with time since the mainshock (Figure 2.5a). (2) Spatial cluster without any relatively large event and 

seismicity rate followed by the largest shock do not have a clear temporal rate decay (Figure 2.5b). (3) A 

cluster with very few events. As a consequence of using two parameters for identifying spatial clusters, 

the size of the spatial clusters is dominated by the size of S and T. For instance, the size of the high 

background seismicity area would be significantly reduced if we choose a large S or T. It is thus evident 

that the choice of S and T becomes important. We will address this topic in section 2.2. 

2.1.2 Step 2 : Identifying the temporal sequence in a spatial cluster  

 The next step is to find the enhanced seismicity sequence in each spatial cluster chosen from step 

1. This step is indeed a modified version of the CURATE analysis. We keep the concept of the CURATE 

but uniquely incorporated an automatically determined temporal threshold values into the CURATE 

analysis to quantify the temporal relationship between two subsequent earthquake events. Such 

automatically determined temporal threshold value can be represented as the background level at a 

temporal location of each event. By comparing an inter-event time to the threshold background time 

interval, it provides a general statement that interaction between two events occurs when the inter-event 

time between two events is shorter than the background threshold at that time. This is one of the 

advantages in our analysis without any additional assumptions. However, the challenge is how to assign 

a proper temporal threshold rate (inter-event time) to represent time-dependent background level.  

 The CURATE analysis, as we introduced before, use a mean inter-event time (1/mean rate) as the 

background level to quantify the temporal dependency, which yields  

% =
17 − 1$

I − 1
	,																																																																							(2.1) 

where te indicates the occurrence time of the last event and t1 indicates the occurrence time of the first 

event. However, it requires multiple runs in residual to select the enhanced rate sequences completely, 

and it also requires additional parameters to combine those selected sequences. To overcome the flaw of 

the CURATE analysis, other automatically determined temporal parameters are introduced. First, we 

describe the evolution of inter-event time in a spatial cluster. Figures 2.6a and b show the temporal change 

in inter-event times in the mainshock-aftershock and swarm like sequences, respectively. For mainshock-

aftershock type (Figure 2.6a, corresponding to Figure 2.5a), the time evolution of inter-event times in 

mainshock-aftershock cluster indicates an overall trend that inter-event times rapidly shortened 

immediately after the mainshock and gradually increased with time. For swarm type (Figure 2.6b, 

corresponding to Figure 2.5b), even though the inter-event time is small during the whole period, a gentle 

trend that inter-event times have gradually increased with time is also identified. Regarding cluster types, 

both inter-event times become gradually longer started from the first event to the end, while the increased 

amplitude seems larger and sharper in the one with a significant mainshock. Thus, a proper temporal 



	 15	

threshold can be set to be (1) representing as the time-dependent background level and (2) selecting 

enhanced seismicity rate sequence without additional parameters. The task here is how to asses this 

automatically determined temporal parameters that fulfill the above requirements.  

 We first focus on a time-dependent parameter which we call “forward mean inter-event time”, 

which is the mean inter-event time before a target event. In a spatial cluster containing e events (i = 

1,2,3,….e), for every ith event, forward mean inter-event time %å can be described as : 

%åi =
1x − 1$

ë − 1
	,																																																																				(2.2) 

where ti indicates the occurrence time of the ith event. Figure 2.7 shows the schematic plot for this process. 

Comparing equation (2.2) with equation (2.1), the difference between the CURATE analysis and our 

forward mean rate analysis is that %åx varies with time. Similar to the CURATE analysis, we now define 

two sequential events (event i, event i+1) are temporally related if their inter-event time (Δt = ti+1 - ti) is 

shorter than the forward mean inter-event time (%åx) at that time. For an earthquake which is not related 

to any of the events will be defined as the temporally independent event and will combine with the other 

spatially independent events as background seismicity. Figure 2.8 shows the comparison between the 

temporal change of observed inter-event time (Δt) and forward mean inter-event time (%åx). Figure 2.8a 

and 2.8c show the temporal change of Δt in mainshock-aftershock sequence and swarm like sequence, 

respectively. Figures 2.8b and 2.8d show the temporal change of %å in mainshock-aftershock sequence 

and swarm like sequence, respectively. Temporal change of %å indicates that the value of %å is shorter 

during the seismicity enhanced period and longer in a relatively dormant period. 

We expected this time-dependent rate parameter would be more suitable to quantify the temporal 

dependency on the seismic data. But surprisingly, the results of background seismicity adopted with %åx 

performed poorly. Figures 2.9 show the comparison of the spatial cluster (Figures 2.9a and 2.9c for 

mainshock-aftershock sequence swam sequence, respectively) and background seismicity adopting 

forward mean inter-event time (Figures 2.9b and 2.9d for mainshock-aftershock sequence swam 

sequence, respectively). Regardless of types of the spatial cluster, declustered earthquakes were caught 

as background seismicity with forward mean inter-event time. It may suggest the forward mean inter-

event time approach failed to select aftershock sequences. We found that this %åx performs worst when 

aftershock decay is fast. During a rapid aftershock decay period, most of the events are concentrated in 

a relatively short amount of time, and it will indeed result in a very low value of %å, even lower than 

mean inter-event time. It leads to raising the threshold to identify temporal clusters.  
 In order to overcome the insufficiency of %å, we then introduce an alternative approach, which is 

the backward rate analysis (%í) formulated as 

%íi =
17 − 1x

I − ë
	,																																																																	(2.3) 

where ti , and te represent the occurrence time of ith and the last event (eth) of a spatial cluster, respectively.  

Figure 2.10 shows the schematic plot for the criterion. Equation (2.3) is the flipped version of the 

equation (2.2), which we call it “backward mean inter-event time analysis”. This analysis, on the contrary 

to %å , %í  represents a background level estimated by the time difference from the last event of the 

cluster. Two successive events are defined as a temporal sequence if the inter-event time (Δt = ti+1 - ti) is 
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shorter than the backward mean inter-event time (%íx) at that time. Figure 2.11 demonstrates a time series 

of backward mean inter-event time. Time series of %í seems to fit the observed data well. According to 

equation (2.3), %í is estimated by the reciprocal of seismicity rate after an event. The value of %í would 
be sensitive to the decay of aftershock rate. If we use this backward rate analysis to select the temporal 

clusters, any enhanced seismicity rate sequence would be selected in one run (Figure 2.12, See also 

Figure 2.9 for comparison). More importantly, there is no need to set up any extra parameter to link those 

temporal sequences like the CURATE approach. So far, we cannot explain any physics why this 

backward rate analysis works better than CURATE and forward rate analysis. When a relatively larger 

event (mainshock) occurs, the lengths of the inter-event times for the following events gradually become 

longer with time after the mainshock. 

 We tested those three different thresholds for the spatial clusters and found that the background 

seismicity estimated from the backward mean inter-event time fulfilled the requirement that we need. We 

then decided to use the backward rate analysis to find the enhanced seismicity rate sequences. Spatial 

clusters adopted the backward rate analysis would be divided into two groups, temporally independent 

event, and temporally related sequences. The temporally related sequences are regarded as 

spatiotemporal sequences, whereas the temporally independent events are combined with the spatially 

independent events collected at step 1 and then go into the background seismicity (Figure 2.1). 

2.2 Parameter dependency  

 This algorithm adopts two parameters to identify spatiotemporal sequences. Because the size of 

spatial cluster directly affects the size of the spatiotemporal sequences, the size of the spatial cluster plays 

a key role in this algorithm. We test this algorithm in the western part of Hokuriku region in Japan (Figure 

2.3) with the different range of S (range from 0.01 to 0.1° with increment by 0.01°) and T (range from 

20 to 210 with common ratio of 2). This test area includes six M ≥ 6.5 mainshocks (2004/10/23 M6.8 

Niigata-Chuetsu earthquake, 2007/03/25 M6.9 Noto earthquake, 2007/07/16 M6.8 Chuetsu-Oki 

earthquake, 2011/03/12 M6.7 north-Nagano earthquake and 2014/11/22 M6.7 Nagano earthquake) and 

a large swarm sequence occurred under the Hida Mountains starting from 1998/08/07. Table 2.1 indicates 

the ratio of background seismicity to the input catalog. The number of background events decreases as 

the values of S and T increase. Comparison of the cumulative number of input earthquakes with the 

cumulative number of background events with different T and S is shown in Figure 2.13a, b, and c, 

respectively. Here we demonstrate an example of S = 0.04° with various T values, and T = 256 days with 

various S values. From a visual inspection of background seismicity rate in the figures, background 

seismicity rate changes at the occurrence time of M ≥ 6.5 mainshocks in smaller S and T settings, and 

stays stable (Poissonian) with larger S and T values. Following a fundamental assumption that 

background seismicity rate should not change with time, the results should be approved with large S and 

T settings. However, we need to be careful of over-declustering process. Statistically, it is easy to have a 

Poisson distribution when a significant amount of data is removed. From the viewpoint of earthquake 

hazard estimation, if too many earthquakes are removed from the catalog, the number of forecasted 

aftershocks thus the rate of future mainshocks will be underestimated. Therefore, we need additional way 

to automatically find a proper combination for S and T to maximize the number of background events 
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keeping the Poisson distribution in the time series.  

 In order to find a proper combination of S and T values, we then adopt a variety of parameter sets 

used in step 1, with S from 0.01° to 0.1° and T from 1 day to 1024 days, which provides us 10x11 different 

results. For searching the best parameter from all the combinations, we develop a parameter filtering 

process. A schematic plot of the filtering process is shown in Figure 2.14, two sub-processes are included 

and are designed to search the proper parameter set from a variety of parameter sets.  

2.2.1 Over-declustering assessment  

 Figures 2.13b and 2.13c display examples of resulted background seismicity which appears to 

nearly follow Poissonian behavior with larger S and T values. However, it might be a wrong judgment 

due to over-declustering. Thus, we first focus on excluding the parameters that result in over-declustering. 

In our new algorithm, one possible condition for over-declustering is associated with over-clustering, 

which stands for broad spatial coverage of a spatial cluster. When the areal coverage of a spatial cluster 

is large, a small number of the spatially independent events will be identified, which leads to reduce the 

total number of background events. Large areal coverage of spatial cluster also results in large spatial 

coverage of spatiotemporal sequence, which increases the risk of over-declustering. Figures 2.15a and 

2.15b indicate spatial distribution of identifying spatial clusters with T = 64, and 1024 days, respectively. 

S is fixed at 0.04° in both analyses. In Figure 2.13b, the temporal change of seismicity is negligible in 

both T settings, but the spatial distribution of spatial clusters in T = 1024 days clearly shows over-

clustering. Comparing Figure 2.15a with Figure 2.15b, each M ≥ 6.5 mainshock-aftershock rupture area, 

could be distinct in the case of T = 64 days. Instead, in the case of T = 1024 days, one spatial cluster 

embraces a wide mainshock-aftershock area. Figure 2.16a and Figure 2.17a indicate mapviews of two 

different spatial clusters that both include the 2004 M6.8 Niigata-Chuetsu earthquake from a fixed S = 

0.04° and T = 64, and 1024 days, respectively. Spatial distribution of spatial clusters in smaller T clearly 

portrays the aftershock rupture area, while larger T setting, excepts for the 2004 M6.8 rupture area, there 

is also the 2007 M 6.9 Chuetsu-oki earthquake inside the cluster, which has a huge potential of over-

clustering. 

To exclude the over-clustering parameter sets, we here design another spatial distribution analysis. 

This analysis is to exclude the possible parameter sets that lead to over-clustering for the spatial cluster. 

It examines the relationship between the distance of multiple sub-spatial clusters and the spatial coverage 

of input earthquake catalog. First, we estimate the areal coverage of a spatial cluster, which is the distance 

between earthquakes and a reference location. The reference location is given by the mean location of 

earthquakes (αx,αy) in a spatial cluster which contained n events (i = 1,2,3,….n) corresponding to the 

epicenter of (xi,yi) : 
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Figure 2.16b and Figure 2.17b show the histogram of distances between earthquakes and mean location 

in a spatial cluster corresponding to Figure 2.16a and Figure 2.17a, respectively. Bin width is set to be 1 

km. For a spatial cluster that earthquakes occurred concentrated in one area, the histogram shows a 

distribution similar to a normal distribution (Figure 2.16b), a typical bell-shape with a significant peak. 

On the contrary, for a spatial cluster that contained multiple dense seismicity areas, the histogram shows 

multimodal distribution (Figure 2.17b), and the number of significant peaks can roughly correspond to 

the number of dense seismicity areas. To avoid the ”plateau” in the multimodal distribution that prevents 

from defining a significant peak, we then smooth the distribution by a following kernel density function 
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	,																																																					(2.5) 

where d indicates the number of samples and h indicates the kernel bandwidth. Note that we use the 

kernel bandwidth equals to 10% of the grid size (0.1 x S, km). The kernel density of two examples is 

shown in Figure 2.16c and Figure 2.17c. Like the histogram plot, the number of peaks could correspond 

to the number of sub-spatial clusters. Those peaks are automatically identified by each data sample that 

has a larger value than its two neighboring samples. The distances between peaks also can be presented 

as the distances between sub-spatial clusters. Multiple peaks are likely appeared when earthquakes in a 

spatial cluster occurred disconnected in space (Figure 2.17a). If a spatial cluster that contained several 

sub-spatial clusters, the maximum distance of peaks can represent as the length of spatial coverage of a 

spatial cluster. We then use the size of the spatial coverage to judge if a spatial cluster is over-declustering. 

Instead of using the earthquake magnitude to define the maximum spatial coverage of a spatial cluster, 

we defined a threshold (Dm) that is proportional to the study area, which yields  

c~ = A
Q.\
×ç	,																																																																				(2.6) 

where A indicates a rectangle area (km2) of input catalog and C represents a non-dimension weighting 

parameter corresponding to the size of the threshold (Dm). For a spatial cluster (Sc) contained multiple 

sub-spatial clusters (Sc1,Sc2,Sc3,…Scn), the distance between sub-spatial clusters could be presented as 

ΔDij (i,j = 1,2,3…..,n). The coverage of spatial cluster can be represented by the maximum ΔDij, and if 

maximum ΔDij > Dm, we judge the spatial cluster is over-declustered. 

 Using this criterion, we can rule out the first-order possible parameters that lead to over-

declustering. An example is shown in Figure 2.17c, which indicates that maximum ΔD (70.8 km) is over 

Dm (Dm = 32.2 km) in T = 1024 days when we set C = 0.1, thus the case of T = 1024 will be eliminated 

from the process. Note that the parameter C controls the size of Dm. Here we set C ranging from 0.1 to 

1. If no parameter passes through the first process, the program will increase the value of C by 0.01. 

However, aftershocks occurred concentrating on one side of the rupture zone, the histogram of distance 

between the mean location will be likely to have a multimodal distribution. Such situations will lead to 
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enlarging the value of ΔD and tends to mis-judge over-declustering. In such case, we then estimate the 

centroid location (Cx,Cy) of the area of spatial cluster (a, km2) with counter clock wise boundary position 

(xk,yk) : 
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			 Steger, 1996 .					(2.7) 

The program will first define the boundary location in a spatial cluster, by choosing an extreme 

value in every 0.5° intervals of coordinated (xk,yk), then reshaping the vector (xk,yk) into counter clockwise 

order. The program will calculate the reference location as mean location and centroid location of a 

spatial cluster, then compare the estimated maximum ΔD under both reference locations, and then choose 

a minimum one as the final ΔD. 

2.2.2 Poisson behavior assessment 

 After excluding the possible parameter sets that cause over-clustering, we then quantify the Poisson 

behavior for the remaining parameters. A time series data with independent events, representing Poisson 

behavior, gives a perfectly straight line with a positive slope. There are several methods to estimate if a 

time series can be fitted with a Poisson distribution, most common and standard process is to divide a 

time series data by N intervals with a constant bin length, and to use Chi-square test with a null hypothesis 

to test if input data matched with the Poisson distribution. The standard Poisson test requires a bandwidth 

parameter for generating the independent intervals. But choosing a reasonable bandwidth becomes 

crucial. 

To reduce the number of parameters, we employ another process to quantify how closely the 

background seismicity follows the Poisson distribution. We here adopt the CURATE criterion (equation 

1.20) for estimating Poisson behavior because the CURATE criterion can demonstrate as the residual 

between observed and expected numbers of earthquakes calculating a mean rate. If the observation data 

is close to Poisson distribution, which reproduces a straight line with a positive slope, the result of 

CURATE at each point will be equal to zero, and the time series of CURATE would be a flat line.  

An example of CURATE in different background seismicity is shown in Figure 2.18. Figure 2.18a shows 

cumulative number of declustered earthquakes (background seismicity) as a function of time in the cases 

of T = 4 and 64 days. Figure 2.18b shows the CURATE as a function of time corresponding to Figure 

2.18a. Comparing Figure 2.18a with Figure 2.18b, the time series of CURATE for the case of T=64 days 

shows less perturbation, suggesting closer to a Poisson distribution (red line in Figures 2.18a and b). 

Then we can quantify the Poisson behavior by 

 



	 20	

çé:A%è ë = 5 1ã, 1x − c 1ã, 1x

y =
1

I
(çé:A%è(ë)')

7

xï$

																
			,																																															(2.9) 

where i indicates the ith (i = 1,2,3,……e) earthquake in the background seismicity, N(ts,ti) indicates the 

observed cumulative number of earthquakes occurred at ti, and D(ti-ts) indicates the expected cumulative 

number of earthquakes with a constant mean rate of background seismicity. The advantage of adopting 

CURATE criterion is that there is no need to use any additional parameter. For background seismicity 

that may be close to a Poisson distribution, the value of c would be close to zero. For each parameter 

combination that passed through the first process, we then estimate c for each combination and choose 

the smallest c value to be the suggested best combination of the parameters. Figures 2.20a, b, and c 

display the comparison of spatiotemporal distributions between input catalog, background seismicity and 

spatiotemporal clusters on the western Hokuriku region with a suggested combination of the parameter 

set of S = 0.02° and T = 512 days. A constant background rate of seismicity could be estimated by 

adopting this algorithm (Figure 2.20b), while the clustered seismicity is also distinct (Figure 2.20c). The 

background seismicity looks also homogeneous in spatial domain, while earthquakes occurred closely in 

space and time in visual inspection (Figure 2.20a) is taken over as the spatiotemporal clusters (Figure 

2.20c). It indicates that this algorithm has a capability of selecting different types of earthquake clusters. 
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Figure 2.1 Flowchart of our newly developed algorithm. 
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Figure 2.2a Schematic plot of case 1 of step 1. Upper and lower panels indicate time series and spatial 

distribution of seismicity in a spatial cluster, respectively. Back circles indicate selected events by 

parameter T (yellow box in upper panel) and S (cell bounded by dash lines in lower panel), and gray 

circles indicate remaining events. Numbers in circle indicates earthquake index i, and nc indicates cluster 

number.  
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Figure 2.2b Schematic plot of case 2 of step 1. Upper and lower panels indicate time series and spatial 

distribution of seismicity in a spatial cluster, respectively. Back circles indicate selected events by 

parameter T (yellow box in upper panel) and S (cell bounded by dash lines in lower panel), and gray 

circles indicate remaining events. Numbers in circle indicates earthquake index i and nc indicates cluster 

number. Noted that #Ö′′ updated from 0 to 1  
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Figure 2.3 Mapview of seismicity in the western Hokuriku region, Japan. Colored circle indicates spatial 

cluster with the number of M ≥ 2.0 events larger than 20. Colored is coded by the cluster indices. Gray 

circle indicates spatial cluster events with number of events in a spatial cluster smaller than 20. Black 

circles are identified spatial independent events. Black star denotes M ≥ 6.5 event. Here we set S = 0.05° 

and T = 64 days. 
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Figure 2.4 Temporal changes in Mc during the period of 1998/01/01-2016/09/16. Mc is computed by 

software ZMAP (Weimer, 2001). The calculation is approached by the maximum likelihood method with 

an equal earthquake counts of 1000, and minimum numbers of 100 earthquakes. The timing of each M 

≥ 6.5 event is marked by a vertical gray dash line. The computed Mc values are mostly below 2.0, 

represented as the horizontal dash line, whereas several significant spikes of high Mc well correspond to 

the M ≥ 6.5 event. 
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Figure 2.5 Two different types of spatial cluster based on the temporal distribution.  (a) Mainshock-

aftershock and (b) swarm like sequence. Horizontal axis indicates earthquake occurrence time and 

vertical axis indicates seismicity rate. Red dashed line denotes the occurrence time of the largest event 

in the spatial cluster. 
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Figure 2.6 Temporal distribution of earthquake inter-event time in one spatial cluster. (a) Mainshock-

aftershock and (b) swarm like sequences. The temporal distribution of seismicity corresponds to Figure 

2.5. Horizontal axis is earthquake occurrence time and vertical axis is time difference between two 

continuous events. Red dashed line indicates the occurrence time of the largest event in the spatial cluster. 
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Figure 2.7 Schematic plot of how to calculate %å. Stem plot indicates time series of earthquakes in a 

spatial cluster, i indicates the earthquake index and ti indicates that occurrence time. %å  in event i 
indicates the mean inter-event time before event. 
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Figure 2.8 Temporal change of observed Δt and %å in mainshock-aftershock type (a,b for Δt and %å, 

respectively) and swam type (c,d for Δt and %å, respectively) spatial cluster. The temporal distribution 

of seismicity corresponds to Figure 2.5. The Horizontal axis indicates earthquake occurrence time and 

vertical axis indicates the estimated forward mean inter-event time. Dashed line denotes the occurrence 

time of mainshock. It is clear that %åis smaller after the mainshock and gradually increases with time.  
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Figure 2.9 Magnitude-time plot from (a) observed mainshock-aftershock type spatial cluster, (b) 

identified temporally independent event, (c) observed swarm type spatial clusters and (d) identified 

temporally independent event. Temporally independent event is identified from equation 2.2.  
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Figure 2.10 Schematic illustration of how to calculate %í. Stem plot indicates time series of earthquakes 

in a spatial cluster, i indicates the earthquake index and ti indicates that occurrence time. %í in event i 
indicates the mean inter-event time after event i. 
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Figure 2.11 Temporal change of observed Δt and %í in mainshock-aftershock type (a,b for Δt and %í, 

respectively) and swam type  (c,d for Δt and %í , respectively) spatial clusters. The Horizontal axis 
indicates earthquake occurrence time and vertical axis indicates the estimated forward mean inter-event 

time. Dashed line indicates the occurrence time of mainshock.  
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Figure 2.12 Magnitude-time plot from (a) observed mainshock-aftershock type spatial cluster, (b) 

identified temporally independent event, (c) observed swarm type spatial clusters and (d) identified 

temporally independent event. Temporally independent event is identified from equation 2.3. 
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Figure 2.13 Comparison between cumulative number of raw data and cumulative number of background 

events with different parameter settings. (a) Raw data, (b) Fixed T = 256 days, colored is coded by 

different S settings and (c) Fixed S = 0.04°, colored is coded by different T settings. Dashed grey line 

indicates occurrence time of M ≥ 6.5 event.  
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Figure 2.14 Schematic illustration for filtering process to find the best parameter combination. 
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Figure 2.15 Spatial distribution of spatial cluster events with the parameter settings of (a) S = 0.04° and 

T = 64 days, and (b) S = 0.04° and T = 1024 days. Color circles indicate M ≥ 2 events. Color is coded by 

the cluster number. Black star indicates M ≥ 6.5 mainshock. Each mainshock-aftershock rupture area is 

well presented with smaller T. 
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Figure 2.16 Space divergence in a spatial cluster contained the 2004 M6.8 Niigata-ken-Chuetsu 

earthquake with S = 0.04° and T = 64 days. (a) Spatial distribution. Black circle indicates M ≥ 2 event 

and red cross symbol indicates a reference location calculated by equation (2.4). (b) Histogram of 

distances between earthquakes and the reference location. Bin width is set to be 1 km. (c) Calculated 

kernel density plot by equation (2.5). Kernel bandwidth (h) is set to be 0.4 km.  

 

 

 
Figure 2.17 Space divergence in a spatial cluster contained 2004 M6.8 Niigata-Chuetsu earthquake with 

S = 0.04° and T = 1024 days. (a) Spatial distribution. Black circle indicate M ≥ 2 events and red cross 

symbol denotes a reference location calculated by equation (2.4). (b) Histogram of distances between 

earthquakes and reference location. Bin width is set to be 1 km. (c) Calculated kernel density plot by 

equation (2.5). Kernel bandwidth (h) is set to be 0.4 km. Yellow triangle marks local peaks (see text for 

details). Peaks, identified as high kernel density, are represented as sub-areas, and the distance between 

peaks also represents the distance between each sub-areas. Maximum distance of peaks in this case is 

70.8 km. 
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Figure 2.18 (a) Cumulative number of background seismicity with T = 16 days (blue line) and T = 64 

days (red line). S is set to be 0.04°. (b) CURATE as a function of time with T = 16 days (blue line) and 

T = 64 days (red line).  Vertical dashed grey line indicates the occurrence time of M ≥ 6.5 event. 

Temporal change in CURATE is sensitive to the seismicity rate change, background seismicity changes 

after the 2007 M6.8 event with T =16 days leads to an acceleration of CURATE, while background 

seismicity performed more stable with T = 64 days leads to CURATE with less perturbation. The 

estimated c values from equation (2.9) for T = 16 and T = 64 days are 1.93 and 0.79, respectively. 
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Figure 2.19 Temporal distribution of estimated background seismicity and input data. The best 

combination of parameters is S = 0.02° and T = 512 days. The spatial distribution of input data is shown 

in Figure 2.3. Back line indicates the input data, red line indicates the estimated background seismicity. 

Vertical grey line denotes occurrence time of M ≥ 6.5 event. A constant background seismicity rate is 

found by this new algorithm. 
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Figure 2.20 Space-time plot in the western Hokuriku region. (a) Input catalog. (b) Background seismicity. 

(c) Spatiotemporal seismicity. Horizontal axis represents occurrence time and vertical axis represent 

earthquake latitude. Dashed grey line indicates the occurrence time of M ≥ 6 event. A homogenous 

condition also shown on the background seismicity and this algorithm has a capability to select 

earthquake clusters. 
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Table 2.1 Ratios of the number of background events to total number of events with various parameter 

sets.  
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Chapter 3 Application to areas in and around the Japanese Islands 

3.1 Earthquake data and completeness 

Here we apply this algorithm to several areas in and around the Japanese Islands. The areas are 

intentionally chosen to test if this algorithm is suited for any types of seismo-tectonic environments. We 

use earthquakes in the JMA (Japan Meteorological Agency) catalog whose recorded time period is from 

1998/01/01 to 2016/09/22. Prior to the catalog analysis, we first assess the minimum magnitude of 

completeness (Mc). Mc is sought from addressing a smallest magnitude threshold above which the 

frequency magnitude distribution follows the Gutenberg-Richter relationship [e.g., Habermann, 1983, 

1987; Woessner et al., 2005; Gutenberg et al., 1944]. Mc also depends on area and time, is often reflected 

from the seismic station coverages or transient changes by mainshocks [Kagan, 2003]. To obtain a stable 

earthquake catalog throughout the study period, we employed a cutoff magnitude that is larger than Mc. 

We estimate the value of Mc for each selected area before running the algorithm and address its own 

magnitude cutoff above Mc for the input earthquake catalog. 

3.2 Northern Kyushu region 

Northern Kyushu region (Figure 3.1a) was characterized as low seismicity before the 2005 M7.3 

Fukuoka-ken-seiho-oki earthquake [hereinafter Fukuoka earthquake, GSI,1987]. The hypocenter depth 

distribution (Figure 3.1b) indicates the down-dip limit of seismogenic layer is up to 20 km in this region. 

The temporal distribution of Mc (Figure 3.1c) by using the maximum likelihood approach [Wiemer and 

Wyss, 2000] shows a small constant value around 0.5 to 1 but sudden jump to 2.8 is seen after the 2005 

M7 Fukuoka event. To analysis the seismicity in this region, we selected earthquakes with magnitude 

larger than 1 (Mcutoff = 1) and focal depth shallower than or equal to 20 km. Map view of seismicity 

displays three major spatial clusters occurred in this area, from southeast to northwest, corresponding to 

the northern flank of Mount Aso volcano and Oita area where aftershocks triggered by the 2016 M7.3 

Kumamoto earthquake [Uchide et al., 2016; Miyazawa, 2016]. There are an earthquake cluster occurred 

in 2009 in the central area with a mainshock magnitude 4.7, and aftershocks associated with the 2005 

M7.3 Fukuoka earthquake, respectively. The suggested combination of S and T for estimating 

background seismicity is 0.02° and 64 days. 

A comparison of temporal distribution between seismicity, estimated background seismicity and 

spatiotemporal sequence is shown in Figure 3.2. The smoothed pattern of temporal distribution of 

background seismicity (Figure 3.2a) indicates that estimated background seismicity is homogenous, 

while temporal distributions between seismicity (Figure 3.2a) and spatiotemporal sequence (Figure 3.2c) 

are identical, which suggests the background earthquake productivity is extremely low. Homogenous in 

temporal distribution is also accompanied by homogenous spatial distribution. Figure 3.3 shows the 

comparison of space-time distribution between seismicity (Figure 3.3a), background seismicity (Figure 

3.3b) and spatiotemporal cluster (Figure 3.3c). It is evident that earthquakes occurred closely in space 

and time are identified as the spatiotemporal sequences in this area. 
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3.3 Central Kyushu region 

We selected earthquakes in a rectangle box from 32.25° N to 33.5° N, and 130° E to 131.5° E. Note 

that a part of the study region is overlapped by northern Kyushu region (section 3.2). Regarding regional 

geologic features, a large scale right-lateral shear zone (Oita–Kumamoto Tectonic Line, Yabe, 1925), 

running through the central part of Kyushu Island, bisects the island. The shear zone is thought to be a 

southwest extension of the Median Tectonic Line which extended from the Kii Peninsula through the 

Shikoku Island. There are several major active volcanos along the shear zone. In a recent geodetic 

measurement, the Oita–Kumamoto Tectonic Line has a lateral-strike slip behavior which produces strike-

slip and normal faulting earthquakes [Nishimura and Hashimoto, 2006; Loveless and Meade, 2010; 

Matsumoto et al. 2015]. The spatial distribution of seismicity (Figure 3.4a) shows seismicity at Central 

Kyushu region concentrated on three areas, from southwest to northeast, corresponding to the main 

rupture area of 2016 Kumamoto event, the northern part of Aso volcano, and Oita, respectively. Before 

the 2016 Kumamoto earthquake, only one M > 5 event occurred during the study period, and volcanic 

type earthquakes occurred frequently. Hypocenter depth distribution provides the seismogenic layer is 

about 20 km (Figure 3.4b). The temporal distribution of minimum magnitude of completeness (Mc) by 

using the maximum likelihood approach [Wiemer and Wyss, 2000] shows a small constant value around 

0.3-0.5 before the 2016 Kumamoto earthquake, but it jumped to 3 immediately after the mainshock 

(Figure 3.4c). The estimation of b-value by Maximum Likelihood (ML) estimation [Aki, 1965; Utsu, 

1965] is 0.86±0.13 for the pre-Kumamoto earthquake period, which is lower than the average b-value 

(0.9-1.1). It suggests that this area is characterized by a structural and stress heterogeneity [Mogi, 1962; 

Mori and Abercrombie, 1997]. To analyze the aftershocks of the Kumamoto earthquake, we used 

magnitude cutoff, Mcutoff = 2 and hypocenter depth shallower than or equal to 20 km. The best 

combination of S and T is 0.01° and 256 days. Temporal distribution (Figure 3.5a) and spatial distribution 

of seismicity (Figure 3.5a) indicate that the seismicity is dominated by the aftershocks following the 

Kumamoto earthquake. Temporal distribution of estimated background seismicity indicates a general 

stable seismicity with a constant rate during the pre-Kumamoto earthquake period, but a sudden rate 

increase appeared immediately after 2016 Kumamoto earthquake (Figure 3.5b). Space-time plot of the 

estimated background seismicity also displays homogenous distribution during the pre-Kumamoto 

earthquake period. But a high density of seismicity remains after the 2016 Kumamoto earthquake (Figure 

3.6b). The increased seismicity occurred on the mainshock rupture zone and the northern part of the Aso 

volcano (Figure 3.6b). We found that this result is due to the limitation of backward rate method. More 

details are discussed in section 4.1.3 

3.4 Geiyo area 

The 2001 Geiyo earthquake (M6.7) occurred in the Philippine Sea slab beneath the Seto Inland Sea 

of Japan, at a depth of 46 km. To analyze the seismicity around the mainshock, we selected earthquakes 

in a rectangle box from 34.5° N to 36° N and 132.5° E to 134° E (Figure 3.7a). The hypocenter depth 

distribution indicates that earthquakes concentrate on two depth ranges, one is shallower than 20 km 

which associated with the seismogenic zone in the upper crust, the other is a depth range between 30 and 

60 km that represented the interplate and intra-slab seismicity in the subduction zone. (Figure 3.7b) The 
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temporal distribution of Mc by using the maximum likelihood approach shows a constant small Mc 

around 0.3-0.5 but sudden jump to 1 occurred immediately after the Geiyo earthquake (Figure 3.7c). To 

analyze the seismicity and aftershocks occurred in the Geiyo area, we used Mcutoff = 1 and hypocenter 

depth shallower than 60 km. The spatial distribution shows that there are two clustered sequences 

occurred in the surrounding area from the Geiyo mainshock even except the aftershocks of the Geiyo 

earthquake (Figure 3.7a). The only earthquakes associated with Geiyo mainshock are seen on the 

temporal distribution plot (Figure 3.8a). The best combination of parameters is S = 0.01° and T = 256 

days. A Poisson like-behavior is identified on both temporal and space-time distribution (Figure 3.8b and 

Figure 3.9b, respectively), it is also worth suggesting that a relatively high background seismicity is 

observed on the latitude between 34.2° N to 34.4° N. The temporal distribution of spatiotemporal clusters 

indicates that expect the 2001 Geiyo aftershocks, a slight rate increase of seismicity occurred in 1999 

and 2004 (donated as arrows in Figure 3.8c) also provided, while those small increase corresponding to 

the dense seismic area on the space-time plot (Figure 3.9c).. 

3.5 Kinki region 

Kinki region is characterized by several local high rates of small earthquakes in the shallow depth 

(≤ 20 km). The western part of the Kii Peninsula is also marked as one of the most intensive non-volcanic 

high background rate of seismicity in Japan [e.g., Mizoue et al. 1983; Kato et al. 2010, 2014; Yoshida et 

al. 2011]. We selected earthquakes in a rectangle box from 33° N to 36° N and 134° E to 136° E, which 

covers the western part of the Kii Peninsula and Kinki region (Figure 3.10a). Figure 3.10b indicates the 

thickness of seismogenic layer is about 20 km. The temporal distribution of Mc shows a small value from 

0 to 0.5 and a spike of 2 associated with a M5.6 mainshock occurred in the northern part of the Kinki 

region in 2001 (Figure 3.10c). Spatial distribution (Figure 3.10a) shows that rate of small earthquakes is 

high in the entire region, six M ≥ 5 events occurred during the study period. The temporal distribution 

also demonstrates that seismicity in this area is high, while most temporal aftershocks were brought from 

the 2001 M5.6 event (Figure 3.11a). The suggested best combination for S and T is S = 0.01° and T = 

256 days. Temporal distribution of estimated background seismicity (Figure 3.12b) shows Poisson-like 

behavior and the space-time distribution (Figure 3.12b) is mostly homogenous. Temporal distribution 

(Figure 3.11c) and space-time distribution (Figure 3.12c) of spatiotemporal clusters are identical with the 

input catalog, while most spatiotemporal clusters occurred on the western part of the Kii Peninsula.  

3.6 Izu area 

We selected earthquakes in a rectangle box from 34° N to 36° N and 138° E to 140° E, where 

seismicity is dominated by the 2000 Izu swarm sequence (Figure 3.13a). The Izu swarm sequence is one 

of the largest swarm sequences occurred in Japan, which produced nearly 4000 M ≥ two events during 

the first week of the sequence and was associated with eruptions of the Miyakejima volcano [Ukawa et 

al., 2000; Toda et al., 2002]. Spatial distribution of seismicity (Figure 3.13a) shows there are five larger 

earthquake clusters occurred in this area, three occurred offshore and two occurred on the landside. 

Clusters occurred offshore are associated with the 2009 M6.4 Shizuoka earthquake, the 2000 Izu swarm 

sequence, and rapid swarm activity in the eastern side of the Izu Peninsula [Okada et al., 2000; Morita et 

al., 2006; Ueno et al., 2012]. Clusters in the inland area are mostly around Mt. Fuji and one M ≥ 6 
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mainshock triggered by the 2011 Tohoku earthquake on the Shizuoka Prefecture [Toda et al., 2011a, 

2011b]. Here we adopted earthquakes occurred at depths shallower than 50 km based on the depth 

distribution (Figure 3.13b). Temporal distribution of Mc shows a value below 1.5 but a sudden jump to 

2.5 immediately after the 2000 Izu swarm sequence (Figure 3.13c). We used cutoff magnitude 2 for the 

input catalog.  

The best combination for S and T in this region is S = 0.01° and T = 512 days, which resulted in a 

constant background seismicity rate throughout the study period (Figure 3.14b). The spatial distribution 

(Figure 3.15b) also displays homogenous locations compared to the input catalog (Figure 3.15a). For the 

spatiotemporal clusters, it is clear that this algorithm successfully selected the seismic bursts associated 

with seismic swarms (Figure 3.14c), which also corresponds to the dense seismicity in the space-time 

plot (Figure 3.15c). Several spatiotemporal sequences are also observed in the entire study area 

associated with the 2011 M9.0 event.  

3.7 Tottori prefecture 

On October 6, 2000, a M7.3 earthquake stroke the western Tottori Prefecture. Hypocenter depth 

distribution of the aftershocks indicates the thickness of the seismogenic layer is about 20 km [Ohmi et 

al., 2002]. Two clusters occurred off-fault area after the M7.3 Tottori mainshock, which suggested that 

seismicity in those surrounding areas might have been triggered by the Tottori mainshock. We selected 

earthquakes in a rectangle box from 34.5° N to 36° N and 132.5° E to 134° E (Figure 3.16a), the temporal 

change of Mc shows a low range from 0.2 to 0.8, but a sudden jump to 2.5 occurred immediately after 

the Tottori mainshock (Figure 3.16c). Hypocenter depths of earthquakes with magnitude above Mc are 

shallower than 25 km (Figure 3.16b). Therefore, we use cutoff magnitude 2.0 and depth ≤ 25 km for the 

clustering analysis. Seismicity rate for M ≥ 2.0 and depth ≤ 25 km shows a smoothed pattern (Figure 

3.17a), which only changes during the aftershock period of the Tottori mainshock. The best parameter 

found for this area is S = 0.03° and T = 64 days. Background seismicity shows a homogenous pattern 

throughout the entire study period temporally and spatially (Figure 3.17b and Figure 3.18b, respectively), 

which suggests that the aftershocks triggered by the Tottori mainshock are successfully captured with the 

parameters. 

3.8 Iwate region 

To analyze background seismicity in the Iwate region, we select earthquakes in rectangle box from 

34.5° N to 36° N and 132.5° E to 134° E, avoiding the aftershocks associated with the 2011 M9.0 Tohoku 

mainshock (Figure 3.19a). Three M ≥ 6 mainshocks occurred at shallow depth (< 15 km) during the study 

period. Hypocenter depth distribution of earthquakes indicates that earthquakes occurred in this area can 

be divided into shallow part (0 - 40 km) and deeper part (60 - 150 km). Temporal distribution of Mc 

(Figure 3.19b) shows a general low Mc close to 1 but a sudden jump to 2.45 after the 2008 Iwate-Miyagi-

nairiku earthquake (hereinafter Iwate earthquake). There is another increase of Mc occurred after the 

2011 M9.0 Tohoku earthquake, which might be due to the larger number of aftershocks caused by the 

M9.0 mainshock. We used earthquakes occurred at depth shallower than 40 km and cutoff magnitude 2.0 

for estimating background seismicity. Despite the seismicity increase associated with M ≥ 6 mainshocks, 

both temporal distribution (Figure 3.20) and spatial distribution (Figure 3.21) indicate that this entire 
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study area has been suffered from the triggered seismicity after the 2011 Tohoku-oki earthquake. We 

found a seismicity rate increase in the period of 2011/03/11 to 2011/06/26. The best combination of the 

parameters for this area is S = 0.02° and T = 512 days. Temporal distribution of background seismicity 

shows a homogenous pattern except an apparent increase in the period of 2011/03/11 to 2011/06/26. 

Space-time distribution also indicates that background seismicity (Figure 3.21b) occurred during this 

period is different from the clustered seismicity (Figure 3.21c). We will discuss this issue in the next 

chapter. 

3.9 2011 M9.0 Tohoku-Oki rupture area 

2011 M9.0 Tohoku earthquake stroke east Honshu Island, with enormous aftershocks and the 

ensuing tsunami near east coast of Honshu took nearly 20,000 lives, marked as one of the most natural 

disasters ever recorded [Geller, 2011; Hayes et al., 2011; Simons et al., 2011; Stein et al., 2011]. The 

Tohoku earthquake indeed triggered the seismicity on the entire Japan Islands, which provided us the 

best example for studying the earthquake triggering behavior [e.g., Ruff and Kanamori,1980; Minoura 

et al., 2001; Sugawara et al., 2013]. We selected earthquake occurred in a rectangle box from 34° N to 

41° N and 139° E to 136° E and chose cutoff magnitude 4.0 according to the temporal change of Mc 

(Figure 3.22a and Figure 3.22b). Earthquakes occurred in this area could be divided into two groups 

based on their hypocenter depths (Figure 3.22c). Most of the earthquakes occurred at depths shallower 

than 20 km, the others occurred at a deeper depth range that are related to the subduction processes. Here 

we chose hypocenter depth shallower than 50 km for estimating the background seismicity.  

Figures 3.23a, b, and c indicate the comparison between the input catalog, background seismicity, 

and spatiotemporal sequence. The best combination of the parameters is S = 0.09° and T = 512 days. 

Computed background seismicity shows a seismicity rate decreased after the M9.0 mainshock. Annual 

seismicity rate of 60.6 earthquakes per year dropped to 58.2 earthquakes per year. The comparison of 

between space-time distribution input catalog (Figure 3.24a), background seismicity (Figure 3.24b) and 

spatiotemporal cluster (Figure 3.24c) also shows that most of the events are identified as spatiotemporal 

sequences associated with the 2011 Tohoku earthquake. We will also discuss this issue in the next chapter. 
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Figure 3.1 Seismicity of Northern Kyushu. (a) Spatial distribution. Black circle indicates M ≥ 1 event, 

red stars denote M ≥ 5 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is computed 

by software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood method 

with minimum numbers of 100 earthquakes. The timing of each M ≥ 5.5 event is marked by a vertical 

gray line. Here we use cut off Magnitude = 1 and depth below 20 km for the analysis. 
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Figure 3.2 Temporal distribution of seismicity in Northern Kyushu region of (a) input catalog, (b) 

background seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time 

of M ≥ 5.5 event. The suggested combination of S and T for seismicity Northern Kyushu are S = 0.02° 

and T = 64 days. 
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Figure 3.3 Space-time distribution in Northern Kyushu region. (a) Input catalog. (b) Background 

seismicity. (c) Spatiotemporal seismicity. Horizontal line represents occurrence time and vertical line 

represents latitude. Dashed grey line indicates the occurrence time of M ≥ 5.5 event. Space-time 

distribution of input catalog and spatiotemporal seismicity are identical, the spatial distribution of 

background seismicity shows a homogeneous throughout time, expect there is a high density appeared 

on the southern part of the study area, which might be related to the 2016 Kumamoto earthquake. 
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Figure 3.4 Seismicity of Central Kyushu. (a) Spatial distribution. Black circles indicate M ≥ 2 

earthquakes, red stars denote M ≥ 6 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc 

is computed by software Zmap (Weimer, 2001). The calculation is approached by the maximum 

likelihood method with minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked 

by a vertical gray line. Here we use cut off Magnitude = 2 and depth below 20 km for the analysis. 
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Figure 3.5 Temporal distribution of seismicity in Central Kyushu region of (a) input catalog, (b) 

background seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time 

of M ≥ 6 event. The suggested combination of S and T for seismicity Central Kyushu are S = 0.01° and 

T = 256 days. A constant background seismicity is estimated within this algorithm. It is worth notice that 

background seismicity rate increase after the 2016 Kumamoto earthquake. 
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Figure 3.6 Space-time distribution in Central Kyushu region. (a) Input catalog. (b) Background seismicity. 

(c) Spatiotemporal seismicity. Horizontal line represents occurrence time and vertical line represents 

longitude. Dashed grey line indicates the occurrence time of M ≥ 6 events. Temporal and spatial 

distribution of input catalog and spatiotemporal seismicity are identical. It is worth noticed that a clearly 

seismicity rate increase occurred right after Kumamoto earthquake on the Kumamoto aftershock area. 
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Figure 3.7 Seismicity of Geiyo area. (a) Spatial distribution. Black circle indicates M ≥ 1 event, red stars 

denote M ≥ 6 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is computed by 

software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood method with 

minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked by a vertical gray line. 

Here we use cut off Magnitude = 1 and depth below 40 km for the analysis. 
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Figure 3.8 Temporal distribution of seismicity in Geiyo area of (a) input catalog, (b) background 

seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time of M ≥ 6 

event. The suggested combination of S and T for seismicity Geiyo area are S = 0.01° and T = 256 days.  
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Figure 3.9 Space-time distribution in Geiyo area. (a) Input catalog. (b) Background seismicity. (c) 

Spatiotemporal seismicity. Horizontal line represents occurrence time and vertical line represent 

earthquake latitude. Dashed grey line indicates the occurrence time of M ≥ 6 event. Temporal and spatial 

distribution of input catalog and spatiotemporal seismicity are identical.  
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Figure 3.10 Seismicity of Kinki region. (a) Spatial distribution. Black circle indicates M ≥ 1 event, red 

stars denote M ≥ 5 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is computed by 

software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood method with 

minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked by a vertical gray line. 

Here we use cut off Magnitude = 1 and depth below 20 km for the analysis. 
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Figure 3.11 Temporal distribution of seismicity in Kinki region. (a) Input catalog, (b) background 

seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time of M ≥ 6 

events. The suggested combination of S and T for seismicity in the Kinki region are S = 0.01° and T = 

256 days.  
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Figure 3.12 Space-time distribution in the Kinki region. (a) Input catalog. (b) Background seismicity. (c) 

Spatiotemporal seismicity. Horizontal line represents occurrence time and vertical line represents latitude. 

Dashed grey line indicates the occurrence time of M ≥ 6 event.  
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Figure 3.13 Seismicity in the Izu area. (a) Spatial distribution. Black circle indicates M ≥ 2 seismicity, 

red stars denote M ≥ 6 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is computed 

by software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood method 

with minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked by a vertical gray 

line. Here we use cutoff magnitude = 2 and depth below 50 km for the analysis. 
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Figure 3.14 Temporal distribution of seismicity in Izu area. (a) Input catalog, (b) background seismicity 

and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time of M ≥ 6 event. The 

suggested combination of S and T for seismicity are S = 0.01° and T = 256 days.  
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Figure 3.15 Space-time plot in Izu area. (a) Input catalog. (b) Background seismicity. (c) Spatiotemporal 

seismicity. Horizontal axes represent occurrence time and vertical axes represents latitude. Dashed grey 

line indicates the occurrence time of M ≥ 6 event.  
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Figure 3.16 Seismicity of Tottori prefecture. (a) Spatial distribution. Black circle indicates M ≥ 2 

seismicity, red stars denote M ≥ 6 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is 

computed by software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood 

method with minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked by a 

vertical gray line. Here we use cut off Magnitude = 2 and depth below 40 km for the analysis. 
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Figure 3.17 Temporal distribution of seismicity occurred in Tottori prefecture. (a) Input catalog, (b) 

background seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time 

of M ≥ 6 event. The suggested combination of S and T for seismicity are S = 0.03° and T = 64 days.  
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Figure 3.18 Space-time plot in Izu area. (a) Input catalog. (b) Background seismicity. (c) Spatiotemporal 

seismicity. Horizontal axes represent occurrence time and vertical axes represents latitude. Dashed grey 

line indicates the occurrence time of M ≥ 6 event. 
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Figure 3.19 Seismicity of Iwate area. (a) Spatial distribution. Black circle indicates M ≥ 2 seismicity, red 

stars denote M ≥ 6 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is computed by 

software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood method with 

minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked by a vertical gray line. 

Here we use cut off Magnitude = 2 and depth below 20 km for the analysis. 
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Figure 3.20 Temporal distribution of seismicity occurred in Iwate area. (a) Input catalog, (b) background 

seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time of M ≥ 6 

event. The suggested combination of S and T for seismicity are S = 0.02° and T = 512 days. It is worth 

noting that background seismicity increased during three months after 2011 Tohoku earthquake.  
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Figure 3.21 Space-time distirbution in Iwate area. (a) Input catalog. (b) Background seismicity. (c) 

Spatiotemporal seismicity. Dashed grey line indicates the occurrence time of M ≥ 6 event.  
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Figure 3.22 Seismicity of Tohoku area. (a) Spatial distribution. Black circle indicates M ≥ 4 seismicity, 

red stars denote M ≥ 6 events. (b) Focal depth distribution. (c) Temporal change of Mc. Mc is computed 

by software Zmap (Weimer, 2001). The calculation is approached by the maximum likelihood method 

with minimum numbers of 100 earthquakes. The timing of each M ≥ 6 event is marked by a vertical gray 

line. Here we use cut off Magnitude = 4 and depth below 50 km for the analysis. 
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Figure 3.23 Temporal distribution of seismicity occurred in Tohoku area. (a) Input catalog, (b) 

background seismicity and (c) spatiotemporal seismicity. Dashed grey line indicates the occurrence time 

of M ≥ 6 events. The suggested combination of S and T for seismicity are S = 0.02° and T = 512 days. It 

is worth noting that background seismicity decreased after the 2011 Tohoku earthquake.  
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Figure 3.24 Space-time plot in Tohoku area. (a) Input catalog. (b) Background seismicity. (c) 

Spatiotemporal seismicity. Dashed grey line indicates the occurrence time of M ≥ 6 event. 
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Chapter 4 Discussion 

4.1 Non-Stationary estimated background seismicity 

4.1.1 Case of Iwate region 

Figure 3.20 indicates a sudden increase of background seismicity associated with the 2011 M9.0 

Tohoku earthquake. A question is that if this result is a true or false detection due to fundamental 

limitation of the algorithm. One common flaw for any declustering algorithms is that they often fail to 

decluster earthquake catalog if the source fault of a large earthquake is located out of the study area. It is 

because these algorithms define their spatial parameters either with the mainshock magnitude (e.g., 

equation 1.10) or with a smoothed distance by a kernel function (e.g., equation 1.18). Those assumptions 

lead to a general limitation of declustering earthquakes occurred very far away from the mainshock or 

source area, which tends to regard them as background seismicity. Our new algorithm, instead, does not 

include any parameter directly associated with earthquake magnitude. Therefore, it should have worked 

to decluster the input catalog properly. However, we observed the sudden increase of background 

seismicity after the 2011 M9.0 event. So far, we do not know which factor brought such a significant rate 

change in background seismicity. 

In our algorithm, background seismicity is computed from two parts, one is the spatially 

independent events isolated with spatial range confined by S° and temporal range confined by T day, the 

other is the temporally independent events with backward rate threshold to split a spatial cluster into 

temporal clusters. During the period sustaining high rate of seismicity, from 2011/03/11 to 2011/06/20, 

these background events are mostly identified as spatially independent events. Figure 4.1a shows the 

temporal distribution of spatially independent events after step 1. A remarkable seismicity rate increase 

appears in the time period from 2011/03/11 to 2011/06/20. Furthermore, the space-time distribution 

(Figure 4.1b) indicates that those spatially independent events occurred pervasively in the study area, 

which suggests that sudden increase of background seismicity rate after the 2011 Tohoku-oki earthquake 

might be real and thus the 2011 Tohoku earthquake has changed the local stress field and activated the 

background seismicity. 

4.1.2 Case of Tohoku area 

 Figure 3.23b indicates an apparent rate decrease in background seismicity right after the 2011 M9.0 

Tohoku-oki earthquake, annual seismicity rate dropped from 60.6 per year to 58.2 per year. Space-time 

distribution shows a comparable seismicity rate change between 1.5 years before and after Tohoku 

earthquake (Figure 3.24b). However, we found that this seismicity rate decrease is a false detection due 

to over-declustering associated with a 2-Dimension grid. Figure 4.2 shows a schematic plot that two 

earthquakes occurred at a wide range of hypocenter depths, in which these events are normally linked as 

one spatial cluster in the 2D grid system. Seismicity in this area includes onshore crustal earthquakes 

shallower than 20 km and events deeper than 50 km associated with the subduction process. Therefore, 
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it is likely that one spatial cluster has a wide variation of hypocenter depths. Figure 4.3 shows an example 

that a spatiotemporal sequence detected in 2D system contains earthquakes occurred in a range of 0-40 

km deep, which suggests that using 2D grid has a possibility to perform over-declustering, leading to a 

false detection. To avoid such a situation, we then developed a 3-Dimension grid with two different types 

of coordinates: Cube and spheres. For cube grid, an additional depth parameter Z is applied, here we set 

Z is roughly equal to cell size in 2D to reduce the degree of freedom of parameters (e.g., for S = 0.01° x 

0.01°, Z will be 1 km). For sphere system, we adopted a radius parameter r (km) for estimating the spatial 

coverage of spatiotemporal clusters.  

4.1.2.1 Cube coordination  

 We first modified the 2-Dimension grid into the 3-Dimension grid. Additional depth parameter Z, 

height of a cube, is added into the algorithm. Figure 4.4 shows a comparison of computed background 

seismicity with 2-D case (blue) and 3-D case (red). The best parameter screened by the filtering process 

is S = 0.1°, Z = 10 km and T = 256 days. In Figure 4.4, using 3-Dimension grid has successfully reduced 

the over-declustering effect that observed with the 2-Dimension grid system. Instead, background 

seismicity shows a slight increase immediately after the 2011 M9.0 Tohoku-oki earthquake, by about 

25% of the rate before the 2011 M9.0 event. Spatial distribution of background seismicity before and 

after the Tohoku-oki event (Figure 4.5a) reveals a seismicity rate increased in a small area from 36.5° N 

to 37.5° N and 140.3° E to 141° N. Figure 4.5b presents the temporal change of seismicity in the small 

area showing clear rate increase after the Tohoku-oki earthquake. This area is also the area that numerous 

normal faulting events were triggered by the 2011 Tohoku-oki event [e.g., Kato et al., 2011; Okada et al., 

2011; Imanishi et al., 2012]. It suggests that this algorithm is sufficiently useful for detecting a change in 

local stress field.  

4.1.2.2 Radius coordination  

 Another extension in 3-Dimension coordinates is to apply spheres with a radius parameter (r) to 

search neighboring earthquakes for linkages. Here we use parameter sets with r from 10 km to 100 km 

incremented by 10 km, and T from 1 to 1024 days for searching the proper parameter combination. The 

computation provided us the best parameter within r = 50 km and T = 256 days. Since the cutoff depth 

of the hypocenters in the input catalog is 50 km, r = 50 km means that the range of radius meets the 

bottom depth, which also suggests that an earthquake occurred at 0 km will be linked with other 

earthquakes occurred at depth 50km. Temporal distribution (Figure 4.6) of background seismicity with 

the sphere 3D grid is almost identical with the 2-D result, which suggests that this approach does not 

have any power to reduce the effect of over-declustering.  

4.1.3 Case of Central Kyushu region 

As shown in the chapter 3, we found that this algorithm did not completely select spatiotemporal 

clusters associated with the 2016 Kumamoto earthquake of M7.3. To seek the reason why the apparent 

background rate increase occurred after the Kumamoto earthquake, we first look at the two outputs 
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(spatial clusters, spatially independent events) from the first step of the algorithm. If we were to find that 

this background seismicity increase is dominated by the spatially independent events, we would conclude 

that the rate increase is true. Figure 4.7 shows the temporal distribution of spatially independent events. 

The temporal change of spatially independent events is smoothed compared to the final output (e.g., 

Figure 3.5b), which suggests the rate increase is derived from the second step of the algorithm.  

We used the backward rate analysis for quantifying the temporal relationship between two 

continuous events, which is expected to be well described an earthquake inter-event time in each spatial 

cluster. However, we found that the backward rate analysis becomes a flaw in this case that the aftershock 

activity is still on-going. Figure 4.8 shows the estimated backward mean inter-event time (e.g., equation 

2.3) for a spatial cluster including the Kumamoto mainshock. A sudden drop of %í is observed after the 
Kumamoto event, we found that it is because the aftershock activity is still continuing. The backward 

rate will eventually increase and shorten the expected earthquake inter-event time (%í), which will be 
higher than the temporal threshold for extracting the temporal sequences. To check if the aftershock 

period influences the backward rate analysis, we selected the spatial clusters that are associated with the 

aftershock activity of the 2016 Kumamoto earthquake. There are two spatial clusters associated with the 

2016 Kumamoto earthquake. We first calculated p-value for each spatial clusters and then simulated 

seismicity to the end of 2018 following the Omori-Utsu law. We then computed the algorithm for 

estimating the background seismicity. Figure 4.9a shows an example from a spatial cluster associated 

with the 2016 Kumamoto earthquake, whereas the synthetic seismicity is shown in Figure 4.9b. The 

computed background seismicity (Figure 4.9c) reproduced a more smoothed curve with the synthetic 

earthquake catalog. This test revealed one weakness of this algorithm that the real-time operation cannot 

be applicable for estimating the change in background seismicity during the on-going aftershock period. 

A hope would be that a real-time spatial cluster still can be selected from the first step of the algorithm.  

4.1.4 Application for other cases using 3-Dimension grid 

4.1.4.1 Kanto area 

 Previous studies suggested that stress loading (secure stressing rate) in Kanto area has changed by 

the 2011 Tohoku-oki mainshock [e.g., Toda and Stein, 2013; Uchida and Matsuzawa, 2013; Gardonio et 

al., 2015]. If the background stress level has changed since 2011, the background seismicity rate is also 

likely to have changed. Here we applied the 3-Dimension algorithm to estimate the background 

seismicity rate as a function of time in the Kanto region. We used earthquakes with their hypocenter 

depths shallower than 100 km and magnitudes larger than 2.5 for the input catalog. The temporal 

distribution (Figure 4.10a) for the background seismicity with the best parameter set also indicates the 

seismicity rate has increased since the 2011 Tohoku event. Figure 4.10b displays the depth-time plot for 

the background seismicity. Before the 2011 Tohoku event, background seismicity occurred mostly at 

depths of 40 to 50 km. But, since the Tohoku event, seismicity in a wide range of depths has become 

active. Figure 4.11 shows the comparison between seismicity shallower than 50 km (red line) and 

seismicity at depths of 50 to 100 km (blue line). We estimated background seismicity rate during two 
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years before and after the Tohoku-oki earthquake (note that the starting time for estimated background 

seismicity rate after the Tohoku-oki earthquake is from 2012/03/11). Background seismicity rate 

occurred at shallower depth only changes during a very short period and returned to the pre-Tohoku level. 

However, seismicity rate at depth deeper than 50 km has been lasting longer (at shortest until the end of 

2016), keeping an ~130% increased rate of the pre-Tohoku level. The long-term high rate of background 

seismicity in the deeper part might suggest that Kanto area is still in the postseismic relaxation process 

of the Tohoku-oki event. 

4.2 Parameter dependency for study area 

 Another important issue for the parameter dependency is that if the parameter is sensitive to the 

size of the study area. If a study area is arbitrarily truncated and affects the estimated background 

seismicity, we then need to be very careful of selecting the study area. Otherwise it might lose the 

subjective perspective. Here we applied one simple case to test the area size dependency, by dividing the 

study area into small sub-areas. We tested the area dependency in the western Hokuriku, Japan (Figure 

4.12), for which we obtained the best combination of the parameters is S = 0.02° and T = 512 days for 

the entire area. We here divided the study area into four rectangle sub-areas and computed the algorithm 

with the same parameter set of S = 0.02° and T = 512 days. According to the temporal distribution of 

background seismicity in all areas (Figure 4.14), we found the following conclusion: 1) Background 

seismicity computed from the entire western Hokuriku area performed to have been closer to Poisson 

behavior. (2) Background seismicity rate differs from sub-area to sub-area, which also indicates the stress 

heterogeneity between those areas in the upper crust. The smoothed background seismicity also indicates 

earthquakes occurred closely in space and time that are automatically identified as spatiotemporal 

clusters without changing the parameter. This simple test shows that this algorithm is insensitive to the 

size of the study area. Once we find the best parameter set from the large area, we can adopt the same 

parameter set for the smaller area to estimate the background seismicity on the local or regional scale. 

4.3 Compare to other models 

 We compared our result for the western Hokuriku region with the space-time ETAS and CURATE 

analyses. Figure 4.15 demonstrates the background seismicity in different algorithms, the space-time 

ETAS within R-package [open source from https://github.com/jalilian/ETAS] was used to reproduce the 

time series of declustered seismicity. Note that we used M ≥ 2.5 for the comparison. Background 

seismicity estimated by the CURATE analysis shows a range of fixed day rule equal to seven days and a 

range of distance rule from 50 - 70 km. The background seismicity rates from our algorithms and the 

space-ETAS results are stable, whereas the one from the CURATE analysis is largely fluctuated. A clear 

increased rate of background declustered earthquakes occurred after the 2007 Chuetsu-Oki earthquake 

in the CURATE curves, indicating that the CURATE analysis cannot sufficiently select spatiotemporal 

earthquake clusters and they are sensitive to the parameter choice. In order to test the temporal Poisson 

behavior with other algorithms, we performed a simple dispersion test by estimating the ratio of mean 

and variance. In a time series with Poisson distribution, the mean rate should be equal to the variance 

[Dixon and Massey, 1968]. Dispersion ≥ 1 indicates some degree of clustering, while dispersion < 1 

indicates more regular occurrence than a Poisson distribution [Vere-Jones, 1970]. We calculated the mean 
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and variance for each background seismicity by choosing a one-day bin width and counting the 

earthquakes occurred in each bin. The dispersion value for our result is 1.09, while ETAS is 1.03 and 

CURATE is a range from 1.13 - 1.36 depending on the different distance rule. This simple dispersion test 

proves that our algorithm is competitive with other pervasive declustering algorithms. 
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Figure 4.1 Space-time distribution of independent events in Iwate region. (a) Temporal distribution. (b) 

Space time distribution of latitude as a function of earthquake occurrence time. Seismicity rate increase 

period is marked by a gray box. 
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Figure 4.2 A schematic plot of (a) 2-Dimension grid and (b) 3-Dimension grid. It is clear that earthquakes 

occurred over a distance of a cell in depth will be linked into one spatial cluster in the 2-Dimension grid 

system. 
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Figure 4.3 Example of one spatiotemporal sequence causing over-declustering. (a) Spatial distribution. 

(b) Temporal distribution. (c) Depth distribution. The depth distribution indicates that there is a 15 km 

hypocenter depth gap in the sequence. 
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Figure 4.4 Cumulative number of background rate of seismicity from 2-D grid and 3-D grid calculations. 

Blue line indicates 2-D result and red line indicates 3-D result. Black dash line marks the occurrence 

time of the 2011 M9.0 Tohoku mainshock. The over-declustering pattern is disappeared on the 3-D result, 

while a sudden seismicity rate increase associated with the 2011 M9.0 Tohoku event is seen in the 2-D 

case. 
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Figure 4.5 Spatial comparison of background seismicity before and after the 2011 Tohoku-oki earthquake. 

(a) Spatial distribution of earthquakes before and after the 2011 Tohoku earthquake. Red solid circle 

indicates background seismicity occurred after the Tohoku earthquake and black open circle indicates 

background seismicity occurred before the 2011 Tohoku earthquake. A small area of enhanced seismicity 

is shown in a rectangle area from 36.5° N to 37.5° N and 140.3° E to 141° N. (b) Temporal distribution 

of background seismicity in the rectangle area. It is evident that the background rate has changed to a 

new level after the Tohoku earthquake. 
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Figure 4.6 Temporal distribution of background seismicity calculated from 2-D grid and 3-D radius 

sphere grid. Blue line indicates 2-D result and red line indicates 3-D result. Black dash line marks the 

occurrence time of the 2011 M9.0 Tohoku mainshock. It is clear that background seismicity estimated 

from the 3-D radius is more likely to over-decluster. 
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Figure 4.7 Cumulative number of spatially independent events in Central Kyushu region. Red dash line 

indicates the occurrence time of the 2016 Kumamoto earthquake. 
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Figure 4.8 Comparison of temporal distribution of earthquake inter-event times and Tb in one spatial 

cluster. Black line indicates the earthquake inter-event times and red line indicates the Tb estimated from 

equation (2.3).  
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Figure 4.9 Example of synthetic earthquake catalog for one spatial cluster. (a) Spatial distribution. Black 

dots are M ≥ 2 events and the red star indicates epicenter of the 2016 Kumamoto mainshock. (b) Temporal 

distribution of seismicity. Black line is the original observed data and grey dash line indicates the 

synthetic data. (c) Temporal distribution of background seismicity in Central Kyushu with synthetic 

catalog. A more smoothed background seismicity is reproduced.  
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Figure 4.10 Background seismicity completed with 3-Dimension grid for Kanto region. (a) Temporal 

distribution. Red dash line indicates the occurrence time of the 2011 Tohoku earthquake. (b) Depth 

distribution of focal depth against earthquake occurrence time. A remarkable seismicity rate increase 

after the 2011 Tohoku earthquake is observed. The depth distribution also shows a concentration of 

earthquakes at depths of 60 - 80 km after the Tohoku earthquake. 
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Figure 4.11 Temporal distribution of background seismicity in different depth range. Red line indicates 

seismicity occurred at shallower depth and blue line indicates seismicity occurred at deeper depth. A 

different behavior is observed that seismicity increased more rapidly in the earthquake occurred at deeper 

part than the shallower part.  
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Figure 4.12 Spatial distribution of seismicity in small areas of western part of Hokuriku region, Japan. 

Black circle indicates M ≥ 2.5 events and red star indicates M ≥ 6.5 event. We divided this area into four 

sub-areas for investigating the areal dependency. 
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Figure 4.13 Temporal distribution of sub-areas: (a) Sub-area 1, (b) Sub-area 2, (c) Sub-area 3 and (d) 

Sub-area 4. Background seismicity is estimated by S = 0.02° and T = 512 day, same as the suggested 

parameters in Chubu region. Grey dash line indicates the occurrence time of M ≥ 6.5 event occurred in 

each sub-area.  
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Figure 4.14 Cumulative number of earthquakes in the declustered catalogs with time for ETAS (purple), 

CURATE (blue) and new algorithm proposed by this study (yellow). Note that we present the CURATE 

with multiple parameter values. Dash black line indicates the occurrence time of M ≥ 6.5 event. 
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Chapter 5 Conclusion 

 In this study, we have developed a new algorithm to divide an original earthquake catalog into 

background seismicity and spatio-temporal clusters for the cases characterized by both mainshock-

aftershock sequence and swarm activity with no specific assumptions. From the perspective of the better 

seismic hazard estimate, selecting spatiotemporal earthquake clusters provides us a clue to understand 

earthquake interaction, whereas background seismicity also suggests time-dependent change in stress 

condition and precursory signal prior to a large earthquake in a region. This new approach starts with 

selecting transient earthquake clusters (spatial clusters) by two free parameters, cell size in space S and 

time window T, which aims to find the high seismicity density areas. Then we adopted a self-derived rate 

parameter (backward mean inter-event time) to quantify the temporal relationship between earthquakes 

in each spatial cluster. We found that the backward mean inter-event time can be well applicable to screen 

the observed temporal sequence in a cluster with regards to mainshock-aftershock and/or swarm type 

sequence. Two important factors control the quality of the estimated background seismicity. One is how 

to select a proper spatial cluster which represents a relativity high seismicity density area from an input 

catalog; the other is how to define a reasonable temporal threshold for quantifying the temporal 

relationship between earthquakes. We designed a parameter filtering process for finding a proper 

parameter set from numerous possible parameter sets. The two concepts, 1) a more stable background 

seismicity following Poisson behavior, and 2) maximizing the number of earthquakes in the background 

seismicity were introduced in the filtering process to choose the best parameter combination of S and T . 

As a result of several representative tests with the JMA catalog in the different tectonic environments, 

we found that our new approach is capable of selecting earthquake clusters in terms of mainshock-

aftershock sequence and/or swarm sequence. In our analysis to decluster input catalogs, several areas 

like Iwate region (inland southern Tohoku) and Kanto and Fukushima regions have been continuously 

affected by the 2011 M9.0 Tohoku-oki earthquake, which suggests that those areas might be still suffering 

from the post-seismic relaxation of the Tohoku-oki mainshock. We also demonstrated that the parameter 

choice is not so sensitive to the size of a study areas from our test of the western Hokuriku region. Finally, 

we proved that our algorithm is sufficiently competitive with other previous declustering techniques. But 

we found limitations and weakness in our new algorithm using the backward rate (inter-event time) 

method such as real-time application in an on-going aftershock sequence. Further tests and modifications 

considering the unstable and complex evolution of earthquake inter-event times might be considered as 

a future work. 

 We also expect two of our resulted catalogs can be addressed in several subjects. One of the benefits 

from our declustered catalog (background seismicity) is to detect a precursory seismic signal (seismic 

quiescence or seismic activation) prior to a large earthquake. Recently several studies reported a 

correlation between temporal changes of background seismicity and long-term acceleration of aseismic 

slip before a large event [e.g, Wu and Chiao, 2006; Kawamura and Chen, 2013; Katsumata, 2015, 2017]. 

We hope that this algorithm, by estimating the background seismicity in the global or regional scale, 

would help us understand the process of earthquake nucleation. Regarding the spatio-temporal sequence, 
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two interesting topics would be studied. One is to investigate earthquake interaction. In our spatio-

temporal catalog, temporal relationship between sequences might help us to investigate the pattern of the 

sequence migration. Such migration pattern may use for demonstrating the earthquake rupture 

propagation or reflecting the triggering behavior due to aseismic slip or fluid migration. The other future 

work is to analyze the difference between different types of earthquake clusters. Seismic swarm is 

distinguished from mainshock-aftershock sequence with regards to the various statistical characteristics. 

Previous studies distinguished swarm sequence from mainshock-aftershock sequence based on the 

empirical Omori-Utsu law or bath’s law (magnitude difference of mainshock and second large aftershock 

is around 1.1-1.5 [Bath, 1965]). However, swarm sequences that do not fulfill the criterion were vastly 

found around the world. It makes a given earthquake sequence very difficult to differentiate swarm 

sequence from typical mainshock-aftershock sequence. We hope that our spatio-temporal catalog can 

statistically characterize the difference between the mainshock-aftershock sequence and swarm sequence. 

After a swarm catalog is established, we can incorporate with the earthquake forecasting for the future 

hazard estimation. 
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Appendix A 

Matlab code for identifying spatial cluster, please go to 
https://www.dropbox.com/sh/abf0lj6bv1qpmie/AADpjXqZtOj9RWEdhRXZQ412a?dl=0 
 


