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Abstract

A degeneration of a singular curve on a toric surface, called a tropicalization, was

constructed by E. Shustin. He classified the degeneration of 1-cuspidal curves using

polyhedral complexes called tropical curves. In this thesis, we define a tropical ver-

sion of a 1-tacnodal curve, that is, a curve having exactly one singular point whose

topological type is A3, and classify tropical curves which correspond to 1-tacnodal

curves by applying the tropicalization method.



Contents

Introduction v

Conventions and Notions xii

1 Basics of tropical geometry 1

1.1 Tropical algebra and tropical polynomial . . . . . . . . . . . . . . . . . . . . 1

1.2 Non-Archimedean field and tropical amoeba . . . . . . . . . . . . . . . . . . 3

1.3 Duality theorem of tropical hypersurfaces . . . . . . . . . . . . . . . . . . . 5

1.4 Structure theorem of tropical hypersurfaces . . . . . . . . . . . . . . . . . . 5

1.5 The space of tropical curves and the rank . . . . . . . . . . . . . . . . . . . 6

1.6 Tropicalization and refinement . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries on singularity theory 11

2.1 Basics of plane curve singularity . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Newton diagram of plane curve singularity . . . . . . . . . . . . . . . . . . . 12

2.3 Some remarks on 1-tacnodal curves . . . . . . . . . . . . . . . . . . . . . . . 13

3 Construction of certain singular curves 16

3.1 Statement of a result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Tropicalization of 1-tacnodal curves 24

4.1 Tropical 1-tacnodal curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Definition of tropical 1-tacnodal curves . . . . . . . . . . . . . . . . . 24

4.1.2 Polygons corresponding to tropical 1-tacnodal curves . . . . . . . . . 26

4.2 Definitions and Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Existence of 1-tacnodal curves for ∆I, . . .∆IX . . . . . . . . . . . . . 30

4.2.2 Remarks on the polygon ∆E . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Auxiliary definitions and lemmata . . . . . . . . . . . . . . . . . . . 48

4.3.2 Case (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iii



CONTENTS iv

4.3.3 Case (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 Case (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.5 Case (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 65



Introduction

Tropical geometry is a field of combinatorial algebraic geometry developing in recent years.

The objects treated in this geometry are polyhedral complexes, which can be obtained as

the non-linear locus of a polynomial over the tropical algebra. Here, the tropical algebra

is an algebraic system (R;⊕,⊙) where the addition ⊕ is max and the multiplication ⊙ is

+. Tropical geometry was introduced in a paper of G. Mikhalkin [13] and used to describe

pair-of-pants decompositions of smooth complex algebraic hypersurfaces.

Among known results on tropical geometry, the most famous result is an application to

the enumeration problem on toric surfaces by Mikhalkin [14]. He focused on nodal curves

on toric surfaces and solved the following enumeration problem of nodal curves, which was

proposed by physicists in the study of mirror symmetry:

For a lattice polygon ∆ ⊂ R2 and δ ∈ Z≥0, how many δ-nodal curves on the

toric surface X(∆) which are contained in the complete linear system |D(∆)|

and pass through r(δ,∆)-points lying in general position do there exist?

Here, (X(∆), D(∆)) is the polarized toric surface associated with ∆ and r(δ,∆) = ♯(∆ ∩

Z2) − 1 − δ. For the projective plane CP2, the enumeration problem for rational curves

was studied by M. Kontsevich [11] using the theory of quantum cohomology. In case of

any geometric genus, L. Caporaso and J. Harris [2] proved a recursive formula on the

enumerative number using intersection theory on Severi variety. R. Vakil [21] also proved

that similar results hold on several rational surfaces.

Mikhalkin [14] studied a tropical analogy of the above problem and proved the tropical

enumeration problem is equal to the classical one by giving appropriate multiplicities for

enumerated tropical curves. T. Nishinou and B. Siebert [16] also showed that the enu-

meration problem on toric varieties equals the enumeration of a certain type of tropical

curves.

v
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It is natural to extend the above enumeration problem to that of general singular curves

on toric surfaces. To formulate the problem for singular curves, we introduce some terminol-

ogy and notations. We denote byS a finite collection of topological types of plane curve sin-

gularities. A plane curve C is called an S-curve if there exists a bijection σ : Sing(C) → S

which maps a singular point (C, p) to an element of topological type in S.

Then the above enumeration problem is extended as follows:

For a lattice polygon ∆ ⊂ R2, how many S-curves on X(∆) which are contained

in |D(∆)| and pass through r(∆,S)-points lying in general position do there

exist?

Here, r(∆,S) is the dimension of the space of S-curves on X(∆). As noted before,

Mikhalkin [14] proved in the case of S = {δA1}. The following cases had been studied

by using the theory of characteristic classes:

• the case of S = {a triple point} on any smooth surface (S. Kleiman and R. Piene

[10]),

• the case of |S| = 1 on CP2 (D. Kerner [9]),

• the case of some S on any smooth surface (M. Kazarian [8]).

Tropical approach to the enumeration problem of general singular curves on toric sur-

faces began with E. Shustin [19]. He introduced a degeneration of a curve, called a tropi-

calization, and showed that the tropicalization of a curve which has only one singular point

whose topological type is A2 (he called such a curve a 1-cuspidal curve for simplicity) is

related to a certain tropical curve, called a tropical 1-cuspidal curve. Furthermore, using

the theory of patchworking, he showed that the enumeration of 1-cuspidal curves reduced

into that of the tropical 1-cuspidal curves.

In this thesis, we apply the tropicalization method to 1-tacnodal curves, that is, curves

which have exactly one singular point whose topological type is A3, on a toric surface, and

classify them using tropical curves.

To state our result, we prepare some terminology. Let F be a polynomial in two variables

over the field of convergent Puiseux series over C, denoted by K := C{{t}}. Then we can

define a valuation val : K∗ := K \ {0} → R as follows. For a given element b(t) ∈ K∗, take
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the minimal exponent q of b(t) in t, then define val(b(t)) := q. We set

Trop : (K∗)2 → R2; (z, w) 7→ (−val(z),−val(w)).

We call the closure

TF := Closure(Trop({F = 0} ∩ (K∗)2)) ⊂ R2

of the curve defined by F in (K∗)2 the tropical amoeba defined by F . More generally, a

tropical curve is defined as the non-linear locus of a tropical polynomial function.

The tropical amoeba defined by F is related to a degeneration, called tropicalization,

of the curve defined by F in X(NF ). We will explain the details on the tropicalization in

Subsection 1.6 of this thesis.

It is known that any tropical curve has the structure of 1-dimensional polyhedral com-

plex, whose 1-dimensional polyhedron has a rational slope and a positive integral weight

(See Theorem 1.11). We call a 1-simplex an edge and a 0-simplex a vertex.

Each tropical curve T has a positive integer rk(T ) called a rank, which, roughly speaking,

is the dimension of the space of tropical curves which are combinatorially same as T . The

formal definition of the rank will be given in Section 1.5.

Definition. For a tropical curve T and a vertex V ∈ T , V is a smooth vertex of T if the

following two conditions are satisfied:

• V is trivalent.

• Let v1, v2, v3 ∈ Z2 and w1, w2, w3 ∈ Z≥1 be the slopes and weights of edges adjacent

to V , respectively. Then the multiplicity of V

m(V ) := w1w2|v1 × v2| = w2w3|v2 × v3| = w3w1|v3 × v1|

is 1, where |u× v| means the area of the parallelogram spanned by u and v.

In other words, any smooth vertex is a vertex which is dual to the standard 2-dimensional

simplex Conv{(0, 0), (1, 0), (0, 1)}.

Definition (Shustin [19, Section 4.1]). A tropical 1-cuspidal curve is a tropical curve having

exactly one of the parts (i), . . . , (v) in Figure A, up to the R2 oGL(Z2)-equivalence, and
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the rest of the vertices are smooth, where two tropical curves T1 and T2 are R2 oGL(Z2)-

equivalent if there exists an element Ψ ∈ R2 oGL(Z2) such that Ψ(T1) = T2.

2�1 1�1
(i) 2�3 1�3

(ii)
12

2�2
(iii) 1weight 2 (iv) 1weight 2 �1 1

(v) 2weight 31

�1 1(1)
1weight 2 1(2)

3weight 3
Figure A: Parts of tropical 1-cuspidal curves [19], where the ends of (iii) and (iv) are
connected to of (1), and the end of (v) is connected to of (2).

In [19], for each tropical 1-cuspidal curve T , he defined a multiplicity m(T ) of T and

the notion of general position of points in tropical geometry appropriately. We omit the

details in this thesis.

For a compact lattice polygon ∆ ⊂ R2, let N trop(∆, A2,Q) be the number of tropical

1-cuspidal amoebas in R2 whose Newton polygons are ∆ and which pass through r(∆, A2)

tropical generic points Q counted with the multiplicities m(T ). Let N(∆, A2,P) be the

number of 1-cuspidal curves on X(∆) which are contained in the complete linear system

|D(∆)| and pass through r(∆, A2) generic points P.
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Using the above notations, Shustin [19] proved the following equality. This is a 1-

cuspidal version of Mikhalkin’s result [14, Theorem 1].

Theorem (Shustin [19, Theorem 4]). For any tropically r(A2,∆)-generic points Q ⊂ R2,

there exist r(A2,∆)-generic points P ⊂ Trop−1(Q) such that the following holds:

N(∆, A2,P) = N trop(∆, A2,Q).

This theorem is proved by combining the following two claims:

Claim 1. Let F ∈ K[z, w] be a polynomial which defines a 1-cuspidal curve. If the rank

of the tropical amoeba TF defined by F is more than or equal to the number of the lattice

points of the Newton polygon of F minus three, then TF is a tropical 1-cuspidal curve.

Claim 2. For a given tropical 1-cuspidal amoeba T with the Newton polygon ∆ which passes

through tropically r(A2,∆)-generic points, there exist r(A2,∆)-generic points in X(∆) and

m(T ) 1-cuspidal curves which pass through the points.

Notice that, the condition of the rank of Claim 1 corresponds to the assumption that

“passes through the tropically r(A2,∆)-general points”, and the number ♯(∆ ∩ Z2) − 3 is

equal to the dimension r(A2,∆) of the space of the 1-cuspidal curves.

The aim of this thesis is to study a 1-tacnodal version of the above arguments. As the

main theorem, we prove the 1-tacnodal version of Claim 1. Furthermore, in this case, we

see that the criterion for using patchworking of singular curves, which is necessary in the

proof of Claim 2, does not work.

First, we define a tropical version of 1-tacnodal curves as follows.

Definition (Definition 4.1 of this thesis). A tropical 1-tacnodal curve is a tropical curve

having exactly one of the parts (I), . . . , (IX), (E) in Figure B, up to the R2 o GL(Z2)-

equivalence, and the rest of the vertices are smooth.

The following statement is the main result in this thesis, which corresponds to Claim 1.

Main Theorem. Let F ∈ K[z, w] be a polynomial which defines an irreducible 1-tacnodal

curve. If the rank of the tropical amoeba TF defined by F is more than or equal to the

number of the lattice points of the Newton polytope of F minus four and the tropicalization

of the curve defined by F in X(NF ) has only isolated singularities, then TF is a tropical

1-tacnodal curve.
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1 3�4 1
�4

3(I) �1 3�2 �1�4
5(II)

3�3
(III) 1weight 2

2�2
(IV) 1weight 2 1

4(V)
weight 4 31(VI)

�1�3

11(VII)
�1 33(VIII)

�2�2 24(IX)
�3�1 2

(E) 1�1 weight 2
�1 1(1)

1weight 2 2�2
(2)

1weight 2 1
�4

(3) weight 4
Figure B: Parts of tropical 1-tacnodal curves, where the ends of (III) and (E) are con-
nected to of (1), the end of (IV) is connected to of (2), and the end of (V) is
connected to of (3).
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Note that, the number ♯(∆ ∩ Z2) − 4, which is in the above theorem, is equal to the

lower bound of the dimension of the space of 1-tacnodal curves in X(∆) (see Corollary 2.6

of this thesis). Note also that there is a possibility there exists a tropicalization which has

non-isolated singularities, see Remark 4.20.

In [19], Claim 2 is proved by using patchworking method. The key of the proof is the

criterion which makes sure that we can use the patchworking method [18, 19]. In the 1-

cuspidal case, the criterion works and we can apply it to the proof of the existence of the

nodal and 1-cuspidal curves. On the other hand, it does not work in the 1-tacnodal case.

We will discuss this in Remark 4.21 of Chapter 4 in details.

We organize this thesis as follows. In Chapter 1, we introduce some basic terminology

and properties of tropical hypersurfaces such as the duality theorem, the structure theorem,

tropical amoeba and the rank of a tropical curve. In Chapter 2, we prepare some notions on

plane curve singularities, such as invariants and Newton diagrams of singularities. We also

consider a necessary and sufficient condition for a complex curve to have a tacnode, and

estimate the dimension of the space of 1-tacnodal curves on a toric surface. In Chapter 3,

we give some attempts to use tropical geometry to the theory of plane curve singularities.

In Sections 4.1 and 4.2 of Chapter 4, before the proof of Main Theorem, we prepare some

definition and lemmata on relation between singular curves and their Newton polytopes.

The proof of Main Theorem is carried out in Section 4.3.



Conventions and Notions

We here introduce some definitions and facts from convex geometry which will be used in

this thesis.

(I) Some notions on polyhedra.

A set in RN is a (lattice) polyhedron if it is the intersection of a finite number of

half-spaces in RN whose vertices are contained in the lattice ZN ⊂ RN . A polyhedron is d-

dimensional if its affine span, which is the smallest affine space containing the polyhedron,

has dimension d. In this thesis, we assume that any polyhedron always has the maximal

dimension. A set is a polytope in Rd if it is a compact polyhedron, that is, the convex hull

of a finite number of lattice points. Here, for a subset A ⊂ Rn, the convex hull Conv(A) of

A is the smallest convex set containing A. Note that we will use the symbols ∆ or P as a

polytope. A subset in a d-dimensional polyhedron is a sub-polyhedron if it is a polyhedron

as a subset on Rd. In particular, if a sub-polyhedron is a polytope then the sub-polyhedron

is called a sub-polytope.

A face of a d-dimensional polyhedron ∆ ⊂ Rd is the set

{x ∈ ∆; f(x) ≥ f(y), ∀y ∈ ∆}

for a linear function f . Particularly, a face of codimension 1 is called a facet. The boundary

∂∆ is the union of all facets of ∆. The interior Int∆ is defined by ∆ \ ∂∆.

Let ∆ ⊂ Rd be a polytope. We denote the interior lattice points of ∆, Int∆ and ∂∆ as

∆Z, Int∆Z and ∂∆Z, respectively. That is,

∆Z := ∆ ∩ Zd, Int∆Z := Int∆ ∩ Zd, ∂∆Z := ∂∆ ∩ Zd.

For any ring R with the zero element 0R and a polynomial denoted by

f =
∑

(i1,...,in)

c(i1,...,in)x
i1
1 . . . x

in
n ∈ R[x1, . . . , xn],

the Newton polytope Nf of f is defined by

Nf := Conv
(
{(i1, . . . , in) ∈ Zn; c(i1,...,in) ̸= 0R}

)
⊂ Rn.

xii
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In this thesis, a polygon means a 2-dimensional polytope. We call a facet of a polygon

an edge. Similarly, we call the 0-dimensional face obtained as a corner of a polygon a vertex.

We denote the set of the vertices as V (∆) for a polygon ∆. A polygon is said to be parallel

if the opposite edges have the same directional vector (up to orientation) and the same

lattice length. A polygon is called an m-gon if the number of its edges is m.

In two dimensional case, the following classical facts are well-known as the Pick’s for-

mula:

Theorem (Pick). For a polygon ∆ ⊂ R2, the following formula holds:

Area(∆) = ♯Int∆Z +
♯∂∆Z
2

− 1,

where the notation Area(∆) means the area of ∆.

It is known that, for a polygon ∆ ⊂ R2, we can construct a polarized toric surface

associated with ∆ over C, denoted by (X(∆), D(∆)), where D(∆) is the polarization on

X(∆) associated with ∆ (see [4] for details).

For a topological space X and a subset A ⊂ X, the notation Closure(A) stands for the

closure of A in X.

(II) Subdivision of polytopes.

Secondly, we introduce some notions on subdivisions of polytopes. Let ∆ ⊂ Rd be a

d-dimensional polytope. A collection S := {∆1, . . . ,∆N} of sub-polytopes of ∆ is a (lattice)

subdivision of ∆ if S satisfies the following three conditions:

(1) For each i = 1, . . . , N , the dimension of ∆i is d.

(2) The polytope ∆ is the union of ∆1, . . . ,∆N .

(3) If i ̸= j, the intersection ∆i ∩∆j is a common proper face of ∆i and ∆j or the empty

set.

A subdivision S of ∆ is regular if there exists a continuous convex PL-function ν : ∆ → R
such that S is obtained as the collection of the linearity domains of ν, where a linearity

domain of ν means a maximal sub-polytope R contained in the domain ∆ such that the

restriction ν|R is an affine linear function.

(III) Polyhedral complex.

Thirdly, we introduce the notion of polyhedral complex. A finite collection PC of poly-

hedrons in Rd is a polyhedral complex if the collection PC satisfies the following conditions:

(1) PC contains the empty set ∅.

(2) If P ∈ PC, all faces of P are contained in PC.
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(3) The intersection of polyhedrons P,Q ∈ PC is a common face of P and Q.

A polyhedral complex PC is rational if, for each polyhedron in PC, the affine span of

the polyhedron is parallel to some subspace of Rn defined over Q.

The dimension of a polyhedral complex PC is defined by the maximum of the dimensions

of polyhedrons contained in PC.
Let PC[k] be the set of k-dimensional polyhedrons in PC. An n-dimensional polyhedral

complex PC is weighted if the PC is assigned a function w : PC[n] → Z>0.



Chapter 1

Basics of tropical geometry

In this chapter, we discuss some elementally facts on tropical geometry.

1.1 Tropical algebra and tropical polynomial

Definition 1.1 (Semi-ring). Let S be a set and ⊕,⊙ : S×S → S be binary operations. A

triple (S;⊕,⊙) is a semi-ring if the triple satisfies the following conditions:

(1) The double (S;⊕) is an abelian semigroup, i.e.,

(1-1) (a⊕ b)⊕ c = a⊕ (b⊕ c),

(1-2) a⊕ b = b⊕ a.

(2) The double (S;⊙) is an abelian group with unit element 1S .

(3) The ⊙ is distributive on ⊕, i.e.,

(3-1) a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c),

(3-2) (a⊕ b)⊙ c = (a⊙ c)⊕ (b⊙ c).

In some literature, instead of (1), it may be requested that (S;⊕) is a monoid. I.e., each

semi-ring does not necessarily have the unit element with respect to the addition (we call

such an element the zero element for simplicity).

Next we introduce a semi-ring which we work on. We define the triple T := (R;⊕,⊙)

as

a⊕ b := max(a, b), a⊙ b := a+ b, a, b ∈ R,

where the notation + is the usual addition on R. The following statement holds for T:

Proposition 1.2. The triple T = (R;⊕,⊙) has the structure of semi-ring with unit element

0 ∈ R.

1
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The proof of this statement is done by easily computations. We call T the tropical

algebra. It is also known as the max-plus algebra. The tropical algebra is an example of

idempotent algebra. I.e., for any a ∈ T,

a⊕ a = max(a, a) = a.

We also remark that, −∞ plays a role of zero element of the tropical algebra.

A polynomial over the tropical algebra is naturally defined as follows:

τ(X1, . . . , Xn) :=
⊕

(i1,...,in)∈A

a(i1,...,in) ⊙X⊙i1
1 ⊙ · · · ⊙X⊙in

n

= max{a(i1,...,in) + i1X1 + · · ·+ inXn; (i1, . . . , in) ∈ A},

where a(i1,...,in) ∈ R is a real number and A ⊂ Zn is a finite set. We call such a polynomial

as a tropical polynomial in n variables and denote the set of tropical polynomials as

T[X1, . . . , Xn].

We also use multi-index for describing tropical polynomials, that is, we denote a tropical

polynomial as

τ(X) =
⊕
i∈A

ai ⊙X⊙i = max
i∈A

{ai + ⟨i,X⟩},

for simplicity, where i = (i1, . . . , in), X = (X1, . . . , Xn) and ⟨i,X⟩ := i1X1 + · · · + inXn.

Each tropical polynomial in n variables is a continuous concave PL-function from Rn to R.
We always treat each tropical polynomial as a function.

Furthermore, each tropical polynomial τ is obtained as the discrete Legendre transform

of the function

A→ R; (i1, . . . , in) 7→ −a(i1,...,in),

where, for a function κ, the discrete Legendre transform κ∗ of κ is defined as

κ∗(X) := max
i∈A

{−κ(i) + ⟨i,X⟩}.

For each tropical polynomial τ described as above, the polytope

Nτ := Conv(A) ⊂ Rn

is called the Newton polytope of τ .

Next, we define an analogy of a hypersurface defined by a tropical polynomial.

Definition 1.3 (Tropical Hypersurface). Let τ ∈ T[X1, . . . , Xn] be a tropical polynomial.
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The tropical hypersurface Vτ ⊂ Rn defined by τ is the set of non-differentiable points of

τ : Rn → R.

This definition can be paraphrased as follows:

Proposition 1.4 (Mikhalkin [14, Proposition 3.3]). Let τ ∈ T[X1, . . . , Xn] be a tropical

polynomial. The tropical hypersurface Vτ defined by τ is the set of points such that two or

more terms of τ attain their maximum.

Proof. If exactly one term of τ attains the maximum at a point X ∈ Rn, then, since τ

matches the term at X locally, τ is a linear function on a sufficiently small neighborhood

of X and therefore smooth at X.

By this proof, the set Vτ is equal to the projection of the intersection of two or more

hyperplanes in Rn ×R obtained as the graph of some terms of τ . In other words, Vτ is the

projection of the “corner” points of the graph of τ : Rn → R in Rn ×R. From this fact, Vτ

is also called the corner locus of τ .

By paying attention that −∞ has a role as a zero element of T, we can describe the

relationship between the definition of a classical hypersurface and that of the tropical hy-

persurface as follows.

Lemma 1.5 (Mikhalkin [14, Proposition 3.5] ). Let τ ∈ T[X1, . . . , Xn] be a tropical poly-

nomial and Gr(τ) ⊂ Rn × R be the graph of τ . The set

Gr(τ) := Gr(τ) ∪ {(X, Y ) ∈ Rn × R; X ∈ Vτ , Y ≤ τ(X)}

is the tropical hypersurface defined by τ(X)⊕ Y .

Proof. If (X, Y ) ∈ Gr(τ), then Y and some terms of τ attain the maximum of τ(X) ⊕ Y .

On the other hand, if X ∈ Vτ and Y < τ(X), some two terms of τ attain the maximum of

τ(X)⊕ Y .

For sufficiently small t ∈ R, we obtain Vτ ≃ Gr(τ) ∩ {Y = t}. Therefore we can call Vτ

the “zero set” of τ .

1.2 Non-Archimedean field and tropical amoeba

A field K is non-Archimedean if there exists a function val : K∗ := K \ {0K} → R, called
a valuation on K, i.e., a function such that, for a, b ∈ K∗,

(1) val(ab) = val(a) + val(b),

(2) val(a+ b) ≤ max{val(a), val(b)}.
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The pair (K, val) is called a non-Archimedean field. For the zero element 0K of K, we define

val(0K) = −∞ formally.

Example 1.6. We here give an example of a non-Archimedean field. Let C{{t}} be the

set of convergent Puiseux series, which is a convergent series described as

∞∑
k=k0

ckt
k
M , ck ∈ C,

where k0 ∈ Z and ck0 ̸= 0. It is well-known that the set C{{t}} has the structure of an

algebraic closed field of characteristic zero. We define the function val : C{{t}}∗ → R on

the field as

c(t) =

∞∑
k=k0

ckt
k
M 7→ val(c(t)) :=

k

M
.

This function is a non-Archimedean valuation. Therefore, (C{{t}}, val) is a non-Archimedean

field. The field is called the field of convergent Puiseux series over C.

A relationship between hypersurfaces over a non-Archimedean field and tropical hyper-

surfaces is described as follows. Let

F (x1, . . . , xn) =
∑

(i1,...,in)

c(i1,...,in)x
i1
1 . . . x

in
n ∈ K[x1, . . . , xn]

be a polynomial over K in n variables and V K
F ⊂ (K∗)n be the hypersurface defined by F

in (K∗)n.

Definition 1.7 (Tropical Amoeba). Set

Trop : (K∗)n → Rn; (x1, . . . , xn) 7→ (−val(x1), . . . ,−val(xn)).

The set

TF := Closure
(
Trop(V K

F )
)
⊂ Rn

is called the tropical amoeba or non-Archimedean amoeba defined by F .

The tropical polynomial tropF defined by F is defined by

tropF (X) :=
⊕

i=(i1,...,in)

−val(ci)⊙X⊙i ∈ T[X1, . . . , Xn].

Then the following fact, which is well-known as Kapranov’s Theorem, holds:

Theorem 1.8 (Kapranov [3, Theorem 2.2.5]). Let F ∈ K[x1, . . . , xn] be a polynomial over

the non-Archimedean field K. The tropical amoeba TF defined by F is equal to the tropical

hypersurface defined by the tropical polynomial tropF .
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1.3 Duality theorem of tropical hypersurfaces

Let

τ(X) =
⊕
i∈A

ai ⊙X⊙i ∈ T[X1, . . . , Xn]

be a tropical polynomial whose Newton polytope is ∆ ⊂ Rn. We define the (n + 1)-

dimensional polyhedron ∆̂(τ) as

∆̂(τ) := Conv
(
{(i, t) ∈ Rn × R; i ∈ A, t ≤ ai}

)
⊂ Rn × R.

The projection Rn × R → Rn induces a homeomorphism from the union of compact

faces of ∆̂(τ) to ∆. In particular, by the projection Rn × R → Rn, each compact face of

∆̂(τ) is mapped into some sub-polytope of ∆. Therefore, we obtain a subdivision Sτ of ∆

from τ .

The following theorem is the so-called Duality Theorem of tropical hypersurfaces.

Theorem 1.9 (Mikhalkin [14, Theorem 3.11]). Let τ ∈ T[X1, . . . , Xn] be a tropical poly-

nomial whose Newton polytope is ∆ ⊂ Rn. The subdivision Sτ is combinatorially dual to

the tropical hypersurface Vτ defined by τ , that is, for any k-dimensional polytope P ∈ Sτ ,

there exists a polyhedron V P
τ ⊂ Vτ uniquely such that

(1) the polyhedron V P
τ is contained in an (n − k)-dimensional affine subspace LP ⊂ Rn

and V P
τ is orthogonal to P ,

(2) the relative interior UP of V P
τ in LP is non-empty,

(3) Vτ =
∪

P∈Sτ
UP ,

(4) if P1 ̸= P2 then UP1 ∩ UP2 = ∅,

(5) non-compactness of V P
τ is equivalent to P ⊂ ∂∆.

Clearly, for a given tropical hypersurface T which is defined by a tropical polynomial

τ , the subdivision Sτ is determined uniquely. Therefore we use the notation ST in place of

Sτ , and call it the dual subdivision of T .

1.4 Structure theorem of tropical hypersurfaces

Let PC be an n-dimensional weighted rational polyhedral complex and w : PC[n] → Z>0

be the weight. By definition, for an n-dimensional polyhedron P ∈ PC[n], there exists a

unique Z-linear map cP : Zn → Z up to sign such that

(1) the kernel Ker(cP ) is parallel to P , and
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(2) cP /w(P ) is a primitive Z-linear map.

Note that, if an orientation of P is fixed, then the sign of cP is determined.

Definition 1.10 (Balancing Condition [13, Definition 3]). The polyhedral complex PC
satisfies the balancing condition if the following condition is satisfied: For each (n − 1)-

dimensional polyhedron Q ∈ PC[n−1], let P1, . . . , Pk ∈ PC[n] be n-dimensional polyhedrons

adjacent to Q. A choice of a rational direction about Q defines a coherent co-orientation

on these n-dimensional polyhedrons. Then

k∑
j=1

cPj = 0

holds.

Theorem 1.11 (Mikhalkin [14, Theorem 3.15]). Let PC be an n-dimensional weighted

rational polyhedral complex and w : PC[n] → Z>0 be the weight. The polyhedral complex PC
is a tropical hypersurface if and only if the polyhedral complex PC satisfies the balancing

condition.

1.5 The space of tropical curves and the rank of tropical

curves

For a fixed polytope ∆ ⊂ Rd, the set of tropical hypersurfaces having the fixed Newton

polytope ∆ is denoted by T(∆), that is,

T(∆) :=
{
tropical hypersurface in Rd whose Newton polytope is ∆

}
.

Proposition 1.12 (Mikhalkin [14, Proposition 3.8]). The set T(∆) has the structure of

closed convex polyhedral cone in R♯∆Z−1. The cone T(∆) is well-defined up to natural

isomorphism of SL♯∆Z−1(Z).

Let S be a regular subdivision of ∆ ⊂ Rd. Set

T(∆;S) :=
{
T ∈ T(∆);ST = S

}
,

where ST means the subdivision dual to T in Theorem 1.9.

Lemma 1.13 (Mikhalkin [14, Lemma 3.14]). The set T(∆;S) ⊂ T(∆) has the structure of

convex polyhedral domain, which is open in its affine span.
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Next, we discuss the dimension of the space of tropical curves. Let S be the dual

subdivision of T ∈ T(∆) and define the rank of the tropical curve T (or of S) as

rk(T ) := rk(S) := dimT(∆;S).

Let ∆1, . . . ,∆N be the polygons of S. According to [19], we define the expected rank of

the tropical curve T (or of S) as

rkexp(T ) := rkexp(S) := ♯V (S)− 1−
N∑
k=1

(♯V (∆k)− 3),

where V (S) is the set of vertices of S and V (∆k) is the set of vertices of ∆k.

Definition 1.14 (TP-subdivision). A lattice subdivision of a polygon is a TP-subdivision

if the subdivision consists of only triangles and parallelograms.

We remark that, this definition is same as the definition of the nodal subdivision in [19,

Subsection 3.1] except the condition on the boundary ∂∆.

For any subdivision S, we denote the number of ℓ-gons and the number of parallel

(2m)-gons contained in S as Nℓ and N
′
2m, respectively.

Lemma 1.15 (Shustin [19, Lemma 2.2]). For a tropical curve T , the difference

d(T ) := rk(T )− rkexp(T )

satisfies d(T ) ≥ 0. Moreover, for the dual subdivision S of T , the difference d(T ) satisfies

• d(T ) = 0 if S is a TP-subdivision and

• 0 ≤ 2d(T ) ≤ NS otherwise,

where

NS :=
∑
m≥2

((2m− 3)N2m −N ′
2m) +

∑
m≥2

((2m− 2)N2m+1)− 1

=
∑
ℓ≥3

(ℓ− 3)Nℓ −
∑
m≥2

N ′
2m − 1.

1.6 Tropicalization of classical curves and its refinement

We briefly introduce the tropicalization of a curve and its refinement (see [19, Section 3]

for more details). In this section, let K be the field of convergent Puiseux series C{{t}}.
Let F ∈ K[z, w] be a reduced polynomial which defines a curve C ⊂ X(NF ). Set

∆ = NF and let TF be the tropical amoeba defined by F introduced in Section 1.2 and SF



CHAPTER 1. BASICS OF TROPICAL GEOMETRY 8

be the dual subdivision of TF . We consider the 3-dimensional unbounded polyhedron

∆̌F := Conv{(i, j, t) ∈ R2 × R; t ≥ −νF (i, j)} ⊂ R3.

We remark that a compact facet ∆̌i of ∆̌F corresponds to a polygon ∆i in SF by the

projection ∆̌F ⊂ R2 × R → R2.

We then obtain a toric flat morphism X(∆̌F ) = X → C from the toric 3-fold associated

with ∆̌F to the complex line, which is called a toric degeneration. A generic fiber Xt is

isomorphic to X(∆), and its central fiber X0 is isomorphic to
∪

i=1,...,N X(∆i) (see [16,

Section 3] for more details). Let D ⊂ C be a small disk centered at the origin. We regard

the indeterminate t of K as the variable in D∗ := D \ {0}. Then we can get an analytic

function F (t; z, w) in three variables. From this analytic function, we obtain an equisingular

family on the toric surface X(∆)

{C(t) := Closure({F (t; z, w) = 0})}t∈D∗ .

The limit C(0) of this family is constructed as follows: For each i = 1, . . . , N , a complex

polynomial fi ∈ C[z, w] whose Newton polygon is ∆i ∈ SF is induced from the face function

of F on ∆̌i by the transformation induced by the projection from ∆̌i to ∆i. The union

of these curves is the limit C(0), which is a curve on the central fiber X0 of the toric

degeneration. The limit C(0) is called a tropicalization of C.

For each singular point z of C, there exists a continuous family of singular points {zt}
for t ∈ D∗, where zt ∈ C(t), and this family defines a section s : D∗ → X(∆̌F ). If the limit

s(0) = limt→0 s(t) does not belong to the intersection lines
∪

i ̸=j X(∆i ∩∆j) and bears just

one singular point of C(t), the point s(0) is called a regular singular point. Otherwise it is

called an irregular singular point. Note that if s(0) is a regular singular point then it is

topologically equivalent to the original singularity.

If the singular point s(0) is irregular, additional information can be obtained by the

refinement of the tropicalization, see Figure C. In the rest of this section, we explain this

method briefly. See [19, Subsection 3.5] for the details of the refinement.

Hereafter, we assume that F defines a 1-tacnodal curve in X(∆). Let ∆1 ∈ SF and

∆2 ∈ SF be polygons which have a common edge σ of length m ≥ 2 and we observe the

case where an irregular singularity degenerates into the subvariety X(σ) of X0. For each

i = 1, 2, let fi be a polynomial whose Newton polygon is ∆i such that the union of curves

C1 ∪ C2 ⊂ C(0) defined by f1 = f2 = 0 intersects X(σ) at z ∈ X0. In this thesis, by

later discussion, we can assume that, for each i = 1, 2, the polynomial fi has an isolated

singularity at z ∈ X(σ) and their Newton boundary intersects the x- and y-axes at (mi, 0)

and (0,m), respectively, where the y-axis corresponds to X(σ).

Find an automorphism Mσ ∈ Aff(Z2) such that Mσ(∆) is contained in the right half-
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plane of R2 and Mσ(σ) =: σ′ is a horizontal segment, see Figure C. The automorphism Mσ

induces a transformation (x, y) 7→ (x′, y′), by which we obtain a new polynomial F ′(x′, y′)

from F . We can assume that F ′ ∈ K[x′, y′] by multiplying a monomial. We remark that

the point z corresponds to a root ξ ̸= 0 of the truncation polynomial F ′σ′
(x′, y′) of F ′ on

σ′. Here the truncation polynomial F σ of a polynomial F on a facet σ of NF is the sum of

the terms of F corresponding to the lattice points on σ.

Then we choose an element τ ∈ K such that the coefficient of x̃m−1 in F̃ (x̃, ỹ) =

F ′(x̃ + ξ + τ, ỹ) is zero. Moreover, the dual subdivision of the tropical amoeba defined

by F̃ contains a subdivision of the triangle ∆z := Conv{(m, 0), (0,m1), (0,−m2)}. In this

thesis, we call the polygon ∆z the exceptional polygon for the irregular singularity z ∈ X0.

We remark that, the exceptional polygon is the union of the complements of the Newton

diagrams of the polynomials f1 and f2 at z ∈ X(σ) in the first quadrant of R2. Making

the exceptional polygon ∆z by the translation is an operation similar to a blowing-up of

the 3-fold X. We can restore the topological type of the irregular singularity z in X(∆z)

by this operation.�1�2 Using M� M�(�1)
M�(�2) Applyingtransformation �zthe above m1�m2 mm

Figure C: A refinement of a tropicalization

Definition 1.16. For each i = 1, 2, let fi be a polynomial which defines Ci such that

fσ1 = fσ2 , and ϕi denote the composition of fi and the translation which maps z to the

origin of C2. Set

σ̂i := ∆z ∩Nϕi
⊂ ∆z,

where Nϕi
is the Newton polygon of ϕi. We assume that σ̂i is an edge of ∆z. We call a

polynomial ϕ whose Newton polygon is ∆z and that satisfies

(a) the coefficient of xm−1 is zero and

(b) the truncation polynomial ϕσ̂i is equal to ϕi for each edge σ̂i of ∆z

a deformation pattern compatible with given data (f1, f2, z).

We use this deformation pattern in the proof of Main Theorem about 1-tacnodal curves.

In that case, by the same reason as in [19, Subsection 3.5], except case (E) in Figure B,
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if the curve defined by F has only one singular point which is an irregular singularity and

there does not exist a deformation pattern compatible with the irregular singularity which

defines a 1-tacnodal curve, then F does not define a 1-tacnodal curve. We will discuss what

happen in case (E) in Subsection 4.2.2.



Chapter 2

Preliminaries on singularity theory

2.1 Basics of plane curve singularity

Let C{x, y} be the ring of convergent series in two variables over the field of complex

numbers and m be the maximal ideal given by {f ∈ C{x, y}; f(0) = 0}.
The Jacobi ideal J(f) associated by a series f ∈ C{x, y} is defined by

J(f) :=

⟨
∂f

∂x
,
∂f

∂y

⟩
⊂ C{x, y}.

For f ∈ m, the number (possibly infinity) defined by

µ(f) := dimCC{x, y}/J(f)

is called the Milnor number of f .

Let

Of := C{x, y}/⟨f⟩ ↪→ O{t1} ⊕ O{t2} ⊕ · · · ⊕ O{tr(f)} =: Of

be the normalization of Of . Then the delta number of f is defined as

δ(f) := dimC Of/Of .

A relationship between the Milnor number and the delta number can be described as follows:

Theorem 2.1 (Milnor [15, Theorem 10.5]). For a reduced holomorphic germ f ∈ m, the

equality

2δ(f) = µ(f) + r(f)− 1

holds, where r(f) is the number of irreducible factors of f .

Let X be a projective surface with only isolated singularity over C and C ⊂ X be an

algebraic curve in X such that C ∩ Sing(X) = ∅. For any germ of curve (C, p), we can take

11



CHAPTER 2. PRELIMINARIES ON SINGULARITY THEORY 12

f ∈ m which defines the curve C locally at p.

A point p ∈ C is a singular point (or a singularity of C) if the germ (C, p) defines an

f ∈ m which satisfies df(0) = 0.

The Milnor number µ(C, p) of (C, p) is defined by

µ(C, p) = µ(f),

where f ∈ m defines (C, p) locally. Similarly, the delta number δ(C, p) of (C, p) is defined

by

δ(C, p) = δ(f).

Note that p ∈ C is a singular point if and only if µ(C, p) > 0.

2.2 Newton diagram of plane curve singularity

Let f ∈ m be a convergent series described as

f(x, y) :=
∑

(i,j)∈(Z≥0)2

c(i,j)x
iyj .

Definition 2.2 (Newton diagram/boundary). We define the polyhedron Γ+(f) as the

convex hull

Conv

∪
(i,j)

{
(i, j) + (R≥0)

2; c(i,j) ̸= 0
}

and call it the Newton diagram of f at the origin. We denote the union of all compact facet

of the Newton diagram Γ+(f) by Γ(f) and call it the Newton boundary of f .

We auxiliary define Γ−(f) as the cone over the Newton boundary Γ(f) whose vertex is

the origin of R2.

For a face P ⊂ Γ+(f), the truncation function (or the face function) of f on P is defined

by

fP (x, y) :=
∑

(i,j)∈P∩Z2

c(i,j)x
iyj .

Definition 2.3 (Newton non-degenerate/convenient). A function f ∈ m is Newton non-

degenerate if, for any compact facet P ⊂ Γ+(f), the equation

∂fP
∂x

=
∂fP
∂y

= 0

has no solution in (C∗)2.

A function f ∈ m is convenient if the Newton boundary Γ(f) intersects both of x- and

y-axes.
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If the Milnor number of f is finite, we can always assume that f is convenient by the

fact that, for a sufficiently large integer n ∈ Z≥0, the topological types of the singularities

of f and f + xn at the origin are the same.

We denote by Vk the sum of the volumes of k-dimensional faces of Γ−(f) containing the

origin of R2. We define the Newton number ν(f) of f as the alternating sum of k!Vk, i.e.,

ν(f) := 2!V2 − 1!V1 + V0.

Theorem 2.4 (Kouchnirenko [12, Théorème I]). For any convenient f ∈ C{x, y}, the

inequality µ(f) ≥ ν(f) holds. Moreover, µ(f) = ν(f) if and only if f is Newton non-

degenerate.

2.3 Some remarks on 1-tacnodal curves

In this thesis, a curve on a projective surface is called a 1-tacnodal curve if the curve

has exactly one singular point at a smooth point of the surface whose topological type is

A3. The term “tacnode” means an A3-singularity. In this subsection we prepare a lemma

concerning a 1-tacnodal curve.

For a polynomial f and p ∈ C2, we use the notations fx(p) =
∂f
∂x (p), fy(p) =

∂f
∂y (p) and

so on. We set Hess(f)(p) = fxx(p)fyy(p)− fxy(p)
2 and

K(f)(p) := −fxy(p)3fxxx(p)+3fxx(p)fxy(p)
2fxxy(p)

− 3fxx(p)
2fxy(p)fxyy(p) + fxx(p)

3fyyy(p).

Lemma 2.5. Suppose that a polynomial f ∈ C[x, y] satisfies fxx(p) ̸= 0. Then the curve
{f = 0} ⊂ C2 has a tacnode at p if and only if f satisfies

(1) f(p) = fx(p) = fy(p) = 0,

(2) Hess(f)(p) = 0,

(3) K(f)(p) = 0,

(4) a12(p)
2 − 4fxx(p)a04(p) ̸= 0,

where

a12(p) :=fxy(p)
2fxxx(p)− 2fxx(p)fxy(p)fxxy(p) + fxx(p)

2fxyy(p),

a04(p) :=fxy(p)
4fxxxx(p)− 4fxx(p)fxy(p)

3fxxxy(p)

+ 6fxx(p)
2fxy(p)

2fxxyy(p)− 4fxx(p)
3fxy(p)fxyyy(p) + fxx(p)

4fyyyy(p).
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Proof. For simplicity, we assume that p is the origin (0, 0) of C2. First, if the origin is a

singular point then we can represent f as

f = Ax2 +Bxy + Cy2 + (higher terms),

where (A,B,C) = (fxx(0, 0)/2, fxy(0, 0), fyy(0, 0)/2). If Hess(f)(0, 0) ̸= 0, then the origin

is an A1-singularity of {f = 0}. Therefore Hess(f)(0, 0) = 0 for the origin to be an A3-

singularity. Then we can rewrite f as

f =
1

4A
(2Ax+By)2 + (higher terms).

The tangent line of {f = 0} at the origin is defined by

fxx(0, 0)x+ fxy(0, 0)y = 0.

Now we define new coordinates (u, v) as(
u

v

)
=

(
fxx(0, 0) fxy(0, 0)

0 1

)(
x

y

)

and set

f̂(u, v) := f(x(u, v), y(u, v)).

Note that the condition f(0, 0) = fx(0, 0) = fy(0, 0) = Hess(f)(0, 0) = 0 is equivalent to

f̂(0, 0) = f̂u(0, 0) = f̂v(0, 0) = Hess(f̂)(0, 0) = 0.

By direct computation, we obtain the equalities:

f̂uu(0, 0) =
1

fxx(0, 0)
,

f̂uv(0, 0) = 0,

f̂vv(0, 0) =
1

fxx(0, 0)
Hess(f)(0, 0),

f̂uvv(0, 0) =
1

fxx(0, 0)3
a12(0, 0),

f̂vvv(0, 0) =
1

fxx(0, 0)3
K(f)(0, 0),

f̂vvvv(0, 0) =
1

fxx(0, 0)4
a04(0, 0).

(*)

By Kouchnirenko’s Theorem 2.4, the condition that the singularity at the origin is A3

can be rewritten as

f̂uv(0, 0) = f̂vv(0, 0) = f̂vvv(0, 0) = 0, f̂uu(0, 0) ̸= 0
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and

f̂uvv(0, 0)
2 − 4f̂uu(0, 0)f̂vvvv(0, 0) ̸= 0

on the new coordinate system. By (*), these conditions coincide with the conditions in the

assertion.

For µ = 1, 3, let U(∆, Aµ) denote a locally closed subvariety in the complete linear

system |D(∆)| of D(∆) which parametrizes the set of curves having exactly one singular

point whose topological type is Aµ. Let V (∆, Aµ) be the closure of U(∆, Aµ) in |D(∆)|.

Corollary 2.6. If V (∆, A3) is non-empty then dimV (∆, A3) ≥ ♯∆Z − 4.

Proof. For µ = 1, 3, we set

Σ(∆, Aµ) := {(C, p); p is a singular point of C} ⊂ U(∆, Aµ)×X(∆) ⊂ |D(∆)| ×X(∆).

For a curve C ∈ U(∆, Aµ) ⊂ V (∆, Aµ), we choose a local coordinate system (x, y) of X(∆)

around the singular point p = (x0, y0) ∈ C. By Lemma 2.5, Σ(∆, A3) is defined in a

neighborhood of C in Σ(∆, A3) by

f(x0, y0) = fx(x0, y0) = fy(x0, y0) = Hess(f)(x0, y0) = K(f)(x0, y0) = 0. (**)

where f is a polynomial whose Newton polygon is ∆. Note that, by [7, Theorem (1.49)],

the dimension of the Severi variety V (∆, A1) satisfies

dimV (∆, A1) = dimΣ(∆, A1) = ♯∆Z − 1− 1

and Σ(∆, A1) is defined by the first three equations of (**). Therefore, we obtain

dimV (∆, A3) ≥ dimΣ(∆, A3) ≥ ♯∆Z − 1− 3 = ♯∆Z − 4.



Chapter 3

Construction of certain singular curves

via tropical geometry

The main claim in this chapter can be found in [20].

3.1 Statement of a result

We first prepare several notations and notions. Let ∆ ⊂ R2 be a polygon and T ∈ T(∆) be

a tropical curve whose Newton polygon is ∆. We use the notation S as the dual subdivision

of T .

To state the claim we consider a union of polygons corresponding to a part of S. Let

∆′ be a sub-polygon of ∆. A subset T ′ of T is called the tropical sub-curve with respect to

∆′ if ∆′ is a union of sub-polygons of S and T ′ is dual to the subdivision of ∆′ induced

by S. We denote it by T |∆′ . Note that if ∆′ = ∆ then T |∆′ = T . The exact definition of

this notion will be given in Definition 3.2 in Section 3.2. For a tropical sub-curve T |∆′ , let

v(T |∆′) denote the number of 4-valent vertices of T |∆′ and r(T |∆′) denote the number of

bounded components of R2 \ T |∆′ .

The following claim asserts that we can get the Milnor number of an isolated plane

curve singularity (f, 0) from the tropical curve associated with a subdivision of Γ−(f).

Theorem 3.1 ([20]). For any Newton non-degenerate and convenient isolated singularity

(f, 0), there is a polynomial F := Ff ∈ C{{t}}[x, y] such that NF = Conv(Γ−(f)) ⊂ R2

and TF |Γ−(f) gives the Milnor number by

µ(f, 0) = v(TF |Γ−(f)) + r(TF |Γ−(f)).

For plane curve singularities, the real morsification due to A’Campo [1] and Gusein-Zade

[6] gives an explicit way to understand the configuration of vanishing cycles. Our hope is

that we can perform the same observation for tropical curves realized in Γ−(f).

16
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Theorem 3.1 is an analogy of the following equality valid for a real morsification:

µ(f) = δ(fs) + r(fs),

where fs is a real morsification of f , δ(fs) is the number of double points of {fs = 0}|R2∩U ,

where U is a small neighborhood of the origin fixed before the deformation, and r(fs) is the

number of regions in U bounded by {fs = 0}|R2 . As a corollary of Theorem 3.1 we have

the equality δ(f) = v(TF |Γ−(f)), where δ(f) is the δ-invariant of (f, 0), see Corollary 3.6.

3.2 Proof of Theorem 3.1

In this section, let K denote the field of convergent Puiseux series C{{t}}.
Let F ∈ K[x, y] be a polynomial over K and

SF : ∆1, . . . ,∆N

be the dual subdivision of the tropical amoeba TF defined by F . Due to the structure

theorem in tropical geometry, a tropical hypersurface has the structure of a polyhedral

complex. In particular, a plane tropical curve is an embedded plane graph in R2.

Let [u, v] denote the edge of the tropical curve TF whose endpoints are 0-cells u and v.

Set [u, v) = [u, v] \ {v}. We allow that one of the endpoints is at ∞. In this case, the other

endpoint is contained in the 0-cells of the curve.

Let

S′
F : ∆k1 , . . . ,∆km

be a subset of SF such that
∪
S′
F \S[0]

F is connected, where S
[0]
F is the set of vertices of SF .

Let ∆′ be a sub-polyhedron of NF given as the union of S′
F .

Let V = {v1, . . . , vN} and E = {[u, v] ; u, v ∈ V } be the set of vertices and edges of TF

respectively.

Definition 3.2 (Tropical sub-curve). A subset of TF is called the tropical sub-curve with

respect to ∆′ if it has the structure of a metric (open) sub-graph (V ′, E′) of the tropical

curve TF which satisfies the following conditions:

(1) the set of vertices V ′ ⊂ V is given by {vk1 , . . . , vkm},
(2) the set of edges E′ is given by the following manners: for each [u, v] ∈ E,

(i) if u, v ∈ V ′ then [u, v] ∈ E′,

(ii) if v = ∞ and u ∈ V ′ then [u, v] ∈ E′,

(iii) if u ∈ V ′ and v ∈ V \ V ′ then [u, v′) ∈ E′, where v′ is taken as the middle point of

[u, v].
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We denote the tropical sub-curve of TF with respect to ∆′ by TF |∆′ .

Example 3.3. (1) Let F be a polynomial over K given by

F =1 + tz + tw + t3z2 + t2zw + t3w2 + t6z3 + t4z2w + t4zw2 + t6w3

+ t10z4 + t7z3w + t12z2w2 + t7zw3 + t10w4 + t15z5 + t15w5.

The Newton polygon NF of F is Conv{(0, 0), (0, 5), (5, 0)}. See on the left in Figure D.

This polynomial F is Ff in Theorem 3.1 for the singularity of x5 + x2y2 + y5 at the origin.

The polyhedron ∆′ in the figure is Γ−(f) for the singularity (f, 0). The tropical sub-curve

TF |Γ−(f) with respect to Γ−(f) is as shown on the right. Since µ(f) = 11, v(TF |Γ−(f)) = 6

and r(TF |Γ−(f)) = 5, the equality µ(f) = v(TF |Γ−(f)) + r(TF |Γ−(f)) in Theorem 3.1 is

verified.

�0
�F

5

5
2

2 TF j�0

Figure D: NF , ∆
′ and TF |∆′ in Example 3.3 (1).

(2) Let F be a polynomial over K given by

F = 1 + tz + tw + t3z2 + t2zw + t3w2 + t6w3.

The Newton polygon NF = ∆′ of F is Conv{(0, 0), (2, 0), (0, 3)}. See on the left in Figure E.

This polynomial F is Ff in Theorem 3.1 for the singularity of x2 + y3 at the origin. The

polyhedron NF in the figure is Γ−(f) for the singularity (f, 0). The tropical sub-curve

TF |Γ−(f) with respect to Γ−(f) is as shown on the right. Since µ(f) = 2, v(TF |Γ−(f)) = 1

and r(TF |Γ−(f)) = 1, the equality in Theorem 3.1 holds.

Suppose that f is convenient. For the lattice points (i, j) ∈ Γ−(f)∩Z2, we define a map

νf |Γ−(f)∩Z2 : Γ−(f) ∩ Z2 → R by

νf (i, j) = a0 + a1 + · · ·+ ai + b0 + b1 + · · ·+ bj ,

where {ak}k∈N, {bk}k∈N are non-negative strictly increasing sequences of integers. We then

extend it to the whole domain Γ−(f) as a continuous piecewise linear function and obtain

a map νf : Γ−(f) → R. Taking sufficiently large values for νf at the lattice points of the
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2

3 TF = TF j��(f)

Figure E: NF (= ∆′ = Γ−(f)) and TF in Example 3.3 (2).

Newton boundary of f , we may assume that each sub-polygon which is not a square is a

triangle of area 1/2.

Definition 3.4. We call the subdivision of Γ−(f) defined as above the special subdivision

of Γ−(f) and each square in this subdivision the special square.

For example, the special subdivisions of the polyhedrons ∆′ in Example 3.3 are as in

the following figures. Here, ∆′ in (1), (2) of Example 3.3 are represented by ∆1, ∆2,

respectively. �1
2

234120 1 3 4 5
5 �2

2
3

10
21

Figure F: The special subdivisions of ∆1 and ∆2.

Lemma 3.5. Let p, q ∈ N be coprime integers. The number of special squares in the special

subdivision of ∆(p,q) = Conv{(0, 0), (p, 0), (0, q)} ⊂ R2 is (p− 1)(q − 1)/2.

Proof. Let ∆̂ be the rectangle given by

∆̂ = Conv{(0, 0), (p, 0), (0, q), (p, q)} ⊂ R2.

We consider the special subdivision of ∆̂. We decompose it into p vertical rectangles

∆̂i = ([i, i+ 1]× R) ∩ ∆̂ ⊂ ∆̂, i = 0, . . . , p− 1.

The special subdivision of ∆̂ induces a special subdivision of each ∆̂i. Let ℓ be the segment

connecting (p, 0) and (0, q). We denote by I the number of special squares in ∆̂ which
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intersect ℓ. Similarly, we denote by Ii the number of special squares in ∆̂i which intersect

ℓ. Obviously I =
∑p−1

i=0 Ii.

Let λ be the number of special squares of ∆(p,q). Notice that λ = 1
2(pq − I) since

pq = 2λ+ I. Thus it is enough to show I = p+ q − 1. Without loss of generality, we may

assume p < q. Let k, l be integers such that q = pk + l and 0 < l < p. The segment ℓ can

be denoted as (
x,−q

p
x+ q

)
=
(
x, (pk + l − kx)− l

p
x
)
, x ∈ [0, p].

Set ξ(x) = l
px. Then, Ii is calculated as

Ii = pk + l − nk − ⌊ξ(i)⌋ −
{
pk + l − (i+ 1)k − ⌊ξ(i+ 1)⌋ − 1

}
= k + 1− ⌊ξ(i)⌋+ ⌊ξ(i+ 1)⌋

for i = 1, . . . , p− 2 and

I0 = Ip−1 = k + 1,

where ⌊α⌋ means the largest integer not greater than α ∈ R. Thus, we obtain

I =

p−1∑
i=0

Ii = I0 + (p− 2)(k + 1) + ⌊ξ(p− 1)⌋ − ⌊ξ(1)⌋+ Ip−1

= pk + p+ ⌊ l
p
(p− 1)⌋ = p+ q − 1.

Proof of Theorem 3.1. Choose a polynomial F such that the Newton polygon NF coincides

with Conv(Γ−(f)). To determine coefficients of F , we take the convex function ν : NF ∩
Z2 → R as a linear extension of νf used in the definition of the special subdivision of Γ−(f),

and define F as the patchworking polynomial defined by ν, that is,

F (x, y) =
∑

(i,j)∈NF∩Z2

t−ν(i,j)xiyj .

In the rest of the proof, we check that TF |Γ−(f) satisfies the equality in the assertion. To

calculate the number of special squares, we decompose Γ−(f) into two sub-polyhedrons as

follows. First, set the coordinates of the intersection points of the Newton boundary Γ(f)

of f and the lattice as

Γ(f) ∩ Z2 = {(0, q), (P1, Q1), . . . , (Pn−1, Qn−1), (p, 0)},
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where 0 < P1 < · · · < Pn−1 < p. We set P0 = 0, Pn = p,Q0 = q,Qn = 0 and define

pi = |Pi − Pi−1|, qi = |Qi −Qi−1|, i = 1, . . . , n.

Notice that p = p1 + · · ·+ pn and q = q1 + · · ·+ qn. For i = 1, . . . , n, we define the subset

∆i of Γ−(f) as

∆i = Conv{(Pi−1, Qi−1), (Pi−1, Qi), (Pi, Qi)} = ∆(pi,qi)

and

Ξ1 :=

n∪
i=1

∆i ⊂ Γ−(f), Ξ2 := Closure
(
Γ−(f) \ Ξ1

)
⊂ Γ−(f).

Then, Γ−(f) decomposes as Γ−(f) = Ξ1∪Ξ2. For i = 1, 2, we denote by |Ξi| the number of

special squares contained in the special subdivision of Ξi induced by that of Γ−(f). Then,

using Lemma 3.5, we have

|Ξ1| =
n∑

i=1

1

2
(pi − 1)(qi − 1),

|Ξ2| =
n−1∑
i=1

pi · (qi + · · ·+ qn)

=
n−1∑
i=1

pi · {q − (q1 + · · ·+ qi−1)} = Vol(Ξ2).

Next we will show the following equalities:

|Ξ1|+ |Ξ2| = v(TF |Γ−(f)), (3.1)

|Ξ1|+ |Ξ2| − (n− 1) = r(TF |Γ−(f)). (3.2)

The correspondence between subdivisions and tropical curves, introduced in Theorem 1.9,

gives a 1-to-1 correspondence between parallelograms and 4-valent vertices. In our case,

any 4-valent vertex corresponds to a special square. Thus, the number of special squares,

|Ξ1|+ |Ξ2|, coincides with the number of 4-valent vertices of TF |Γ−(f). Hence equality (3.1)

holds.

We prove the other equality. There is a 1-to-1 correspondence between

{special square � contained in special subdivision of Γ−(f) ; V (�) ∩ Γ(f) = ∅}

and

int(Γ−(f)) ∩ Z2,
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where V (�) is the set of vertices of a special square � in Γ−(f). Moreover, by Theorem 1.9,

we have a 1-to-1 correspondence between the bounded regions contained in the complement

of TF |Γ−(f) ⊂ R2 and the interior lattice points int(Γ−(f) ∩ Z2) in Γ−(f). Since

♯{special square � contained in special subdivision of Γ−(f);V (�) ∩ Γ(f) ̸= ∅}

= n− 1,

we get

r(TF |Γ−(f)) = ♯(int(Γ−(f)) ∩ Z2)

= |Ξ1|+ |Ξ2| − (n− 1).

Thus equality (3.2) holds.

Set L =
∑n

i=1 piqi. From equality (3.1), we get L = 2|Ξ1|+ (p+ q)− n as

|Ξ1| =
n∑

i=1

1

2
(pi − 1)(qi − 1) =

1

2

n∑
i=1

(piqi − pi − qi + 1)

=
1

2

{
L− (p+ q) + n

}
.

For the Milnor number µ(f), we use Kouchnirenko’s Theorem 2.4:

µ(f) = 2V2 − V1 + 1,

where V2 is the area of Γ−(f) and V1 is the sum of lengths of the segments obtained as the

intersection of Γ−(f) and the x- and y-axes. In our case, they are given by

V2 =
L

2
+ |Ξ2|, V1 = p+ q.

Thus, we get

µ(f) = 2V2 − V1 + 1

= L+ 2|Ξ2| − (p+ q) + 1

=
{
2|Ξ1|+ (p+ q)− n

}
+ 2|Ξ2| − (p+ q) + 1

= v(TF |Γ−(f)) + r(TF |Γ−(f)).

Corollary 3.6. Let F := Ff be a polynomial obtained in Theorem 3.1. Then the δ-invariant

δ(f) of (f, 0) coincides with v(TF |Γ−(f)).

Proof. In [17, Theorem 22(4)], we have r(f) = ♯(Z2 ∩ Γ(f))− 1, where r(f) is the number
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of local irreducible components of {f = 0} at 0. We also have

µ(f) = 2(|Ξ1|+ |Ξ2|)−
{
♯(Z2 ∩ Γ(f))− 2

}
= 2v(TF |Γ−(f))−

{
♯(Z2 ∩ Γ(f))− 2

}
from the argument in the proof of Theorem 3.1. By Theorem 2.1, we obtain

2δ(f) = µ(f) + r(f)− 1

= 2v(TF |Γ−(f))−
{
♯(Z2 ∩ Γ(f))− 2

}
+ ♯(Z2 ∩ Γ(f))− 1− 1

= 2v(TF |Γ−(f)).

As in [1, 6], we can obtain the intersection form of vanishing cycles from the immersed

curve of a real morsification. To study the intersection form in our tropical curve we need

to fix “framings” on the edges of the curve in Γ−(f), though we do not have any good way

to see these “framings”.



Chapter 4

Tropicalization of 1-tacnodal curves

4.1 Tropical 1-tacnodal curves

4.1.1 Definition of tropical 1-tacnodal curves

In this subsection, we define a tropical 1-tacnodal curve. We can think of it as a tropical

version of a 1-tacnodal curve, which is the main theorem in this thesis.

Set

∆I := Conv{(0, 7), (1, 0), (2, 0)}, ∆II := Conv{(0, 7), (2, 0), (3, 0)},

∆III := Conv{(0, 0), (2, 0), (1, 3)}, ∆IV := Conv{(0, 0), (2, 0), (1, 2)}

∆V := Conv{(0, 0), (4, 0), (0, 1)}, ∆VI := Conv{(1, 0), (2, 0), (0, 3), (1, 3)},

∆VII := Conv{(0, 0), (1, 0), (2, 1), (0, 1), (1, 2)},

∆VIII := Conv{(0, 0), (1, 0), (0, 1), (3, 3)}, ∆IX := Conv{(0, 0), (1, 0), (0, 1), (4, 2)},

∆E := Conv{(0, 0), (2, 0), (0, 1), (1, 2)},

see Figure G.

We say that a polygon P ⊂ R2 is equivalent to P ′ ⊂ R2 if there exists an affine

isomorphism A ∈ Aff(Z2) such that A(P ) = P ′, and denote it as P ≃ P ′.

Definition 4.1. A tropical curve T is said to be tropical 1-tacnodal if the dual subdivision

S of T contains one of the following polygons or unions of polygons:

(I) a triangle equivalent to ∆I,

(II) a triangle equivalent to ∆II,

(III) the union of a triangle equivalent to ∆III and a triangle with edges of lattice length

1, 1 and 2 and without interior lattice point glued in such a way that they share the

edge of lattice length 2,

24
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(IV) the union of two triangles equivalent to ∆IV which share the edge of lattice length 2,

(V) the union of two triangles equivalent to ∆V which share the edge of lattice length 4,

(VI) a parallelogram equivalent to ∆VI,

(VII) a pentagon equivalent to ∆VII,

(VIII) a quadrangle equivalent to ∆VIII,

(IX) a quadrangle equivalent to ∆IX,

(E) the union of a quadrangle equivalent to ∆E and a triangle with edges of lattice length

1, 1 and 2 and without interior lattice point which share the edge of lattice length 2,

and the rest of S consists of triangles of area 1/2.

7

1 2

�I
321

7

32

�II

1
421

3
20

�III
�1
21 2

20
�IV

�2
1

1 40 �V
�1

3
21

�VI21 2
21

�VII10
3

31
�VIII

10 2
2

2
41

�IX10 2 20
�E

�1
21

Figure G: Polygons in Definition 4.1. The notation △ means a lattice point on the boundary
which is not a vertex and the notation ⋆ means an interior lattice point.
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4.1.2 Polygons corresponding to tropical 1-tacnodal curves

In this subsection, we mention some remark on polygons appearing in Definition 4.1.

We denote an m-gon which has edges of lattice lengths ℓ1, . . . , ℓm and I interior lattice

points by

∆m(I; ℓ1, . . . , ℓm).

Similarly, we denote a parallel 2m-gon which has m pairs of antipodal parallel edges of

lattice length ℓ1, . . . , ℓm by

∆par
2m(I; ℓ1, . . . , ℓm).

When we consider polygons of the same type (I; ℓ1, . . . , ℓm) simultaneously, we denote one

as ∆m(I; ℓ1, . . . , ℓm) and the others as ∆′
m(I; ℓ1, . . . , ℓm), ∆′′

m(I; ℓ1, . . . , ℓm) and so on.

Lemma 4.2. The following holds up to the equivalence:

(1) A triangle ∆3(3; 1, 1, 1) is either ∆I or ∆II.

(2) A triangle ∆3(2; 2, 1, 1) is ∆III.

(3) A triangle ∆3(1; 2, 1, 1) is ∆IV.

(4) A triangle ∆3(0; 4, 1, 1) is ∆V.

(5) A parallelogram ∆par
4 (2; 1, 1) is ∆VI.

(6) A pentagon ∆5(1; 1, 1, 1, 1, 1) is ∆VII.

(7) A non-parallel quadrangle ∆4(2; 1, 1, 1, 1) is equivalent to one of the following polygons:

∆VIII, ∆IX, Conv{(1, 0), (0, 1), (2, 1), (1, 3)}.

Proof. (1) We can take A ∈ Aff(Z2) which maps ∆3(3; 1, 1, 1) to

∆̂n := Conv{(0, q), (n, 0), (n+ 1, 0)}

for some q, n. By Pick’s formula, we obtain q = 7. We remark that, ∆̂n and ∆̂n+7 are

equivalent by (
1 1

0 1

)
. (***)

Moreover we do not have to discuss the cases n = 0 and n = 6 since they have an edge of

lattice length more than 1.

We get the isomorphisms

∆̂1 ≃ ∆̂5, ∆̂2 ≃ ∆̂4

by the reflection, and ∆̂1 ≃ ∆̂3 by (
3 1

−7 −2

)
.

Because of the configuration of interior lattice points, we can show that ∆̂1 = ∆I and
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∆̂2 = ∆II are not isomorphic.

(2) For any ∆3(2; 2, 1, 1), there exists A ∈ Aff(Z2) such that ∆3(2; 2, 1, 1) maps to

Conv{(p, 0), (p+ 2, 0), (0, q)}

for some p, q ∈ N. Then we have q = 3 by Pick’s formula, and we may assume p = 0, 1, 2

by the isomorphism (***). But the cases p = 0, 1 do not satisfy the conditions of lattice

length. Hence we get p = 2. This triangle is equivalent to ∆III.

The claims (3), (4), (5) and (6) can be proved by the same method.

(7) We can split P := ∆4(2; 1, 1, 1, 1) into two triangles which satisfy one of the following:

• ∆3(1; 2, 1, 1) and ∆3(0; 2, 1, 1) such that their intersection is a segment of length 2,

• ∆3(2; 1, 1, 1) and ∆3(0; 1, 1, 1) such that their intersection is a segment of length 1,

• ∆3(0; 3, 1, 1) and ∆′
3(0; 3, 1, 1) such that their intersection is a segment of length 3,

• ∆3(1; 1, 1, 1) and ∆′
3(1; 1, 1, 1) such that their intersection is a segment of length 1.

In the first case, ∆3(1; 2, 1, 1) is uniquely determined as Conv{(0, 0), (2, 0), (1, 2)}, so P
has two descriptions

P̂1 := Conv{(0, 0), (2, 0), (1, 2), (0,−1)}, P̂2 := Conv{(0, 0), (2, 0), (1, 2), (1,−1)}.

In the second case, by [19, Lemma 4.1], any triangle ∆3(2; 1, 1, 1) is isomorphic to

Q := Conv{(0, 0), (3, 2), (2, 3)}.

We denote the other triangle, which is ∆3(0; 1, 1, 1), by R. We can easily check that Q is

equivalent to

Q1 := Conv{(0, 1), (0, 2), (0, 5)}, Q2 := Conv{(0, 2), (0, 3), (0, 5)}.

If the intersection of Q with R is Conv{(0, 0), (3, 2)} ⊂ Q or Conv{(0, 0), (2, 3)} ⊂ Q, then

we can assume that the intersection is the bottom edge of Q1. Similarly, if the intersection

is Conv{(2, 3), (3, 2)} ⊂ Q, then we can assume that R shares the bottom edge of Q2. Thus,

the polygon P is equivalent to either

P̂3 := Conv{(1, 0), (2, 0), (0, 5), (2,−1)} or P̂4 := Conv{(2, 0), (3, 0), (0, 5), (3,−1)}.

In the third and fourth cases, we obtain the following polygons in the same way as

above:

P̂5 := Conv{(0, 0), (0, 1), (1,−1), (3, 0)}, P̂6 := Conv{(0, 0), (0, 1), (2,−1), (3, 0)}.
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Between the polygons P̂1, . . . , P̂6, we have the following isomorphisms:

P̂1 ≃ P̂3 by

(
−1 0

3 −1

)
, P̂5 ≃ P̂4 by

(
−1 −1

2 1

)
, P̂6 ≃ P̂2 by

(
0 −1

1 1

)
.

Notice that, the polygon P̂2 is the translation of Conv{(1, 0), (0, 1), (2, 1), (1, 3)}. Also, the

polygons P̂3 and P̂4 are equivalent to ∆IX and ∆VIII by(
1 1

−1 0

)
: Z2 → Z2,

respectively.

Furthermore, by the configuration of interior lattice points and vertices, we obtain

∆VIII ̸≃ ∆IX, ∆IX ̸≃ Conv{(1, 0), (0, 1), (2, 1), (1, 3)}, and Conv{(1, 0), (0, 1), (2, 1), (1, 3)} ̸≃
∆VIII.

Lemma 4.3. A quadrangle ∆4(1; 2, 1, 1, 1) is ∆E.

Proof. We can split P = ∆4(1; 2, 1, 1, 1) into two polygons Q, R which are either

(3-1) Q = ∆3(0; 1, 1, 1), R = ∆4(1; 1, 1, 1, 1) and these polygons share an edge of length 1,

(3-2) Q = ∆3(0; 2, 1, 1), R = ∆4(0; 2, 1, 1, 1) and these polygons share the edge of length 2,

(3-3) Q = ∆3(1; 1, 1, 1), R = ∆4(0; 1, 1, 1, 1) and these polygons share an edge of length 1,

(3-4) Q = ∆3(1; 2, 1, 1), R = ∆3(0; 1, 1, 1) and these polygons share an edge of length 1,

(3-5) Q = ∆3(0; 2, 2, 1), R = ∆3(0; 2, 1, 1) and these polygons share an edge of length 2, or

(3-6) Q = ∆3(0; 2, 1, 1), R = ∆3(1; 1, 1, 1) and these polygons share an edge of length 1.

Among them, case (3-5) can not occur by Lemma 4.12.

(3-1) If R is a parallelogram, then we can assume that R is

Conv{(1, 0), (2, 0), (0, 2), (1, 2)}

and the common edge of R with Q is its bottom edge. Hence, we get

Q = Conv{(1, 0), (2, 0), (2,−1)}

by Pick’s formula, but their union does not satisfy the condition of P .

If R is not a parallelogram, then we can assume that R is

Conv{(0, 0), (1, 0), (0, 1), (2, 2)}



CHAPTER 4. TROPICALIZATION OF 1-TACNODAL CURVES 29

and the common edge with Q is either

Conv{(0, 0), (1, 0)} or Conv{(1, 0), (2, 2)}.

In the former case, Q is uniquely determined as

Conv{(0, 0), (1, 0), (0,−1)}

and the union Q ∪ R = Conv{(0,−1), (1, 0), (0, 1), (2, 2)} is isomorphic to P . In the latter

case, we can assume that R is

Conv{(1, 0), (2, 0), (0, 2), (0, 3)}

and the common edge is the bottom edge. Then Q must be

Conv{(1, 0), (2, 0), (2, 1)},

but the union Q ∪R does not satisfy the condition of P .

(3-2) We can assume that R is

Conv{(0, 0), (2, 0), (0, 1), (1, 1)}

and the common edge is the bottom edge. Then Q must be either

Conv{(0, 0), (2, 0), (0,−1)} or Conv{(0, 0), (2, 0), (3,−1)}.

In both cases, the union Q ∪R is isomorphic to P .

(3-3) We can assume that R is

Conv{(0, 0), (1, 0), (0, 1), (1, 1)},

but any union with Q does not satisfy the condition of P .

(3-4) We can assume that Q is

Conv{(0, 0), (1, 0), (−2, 4)}

and the common edge is its bottom edge. Then R must be

Conv{(0, 0), (1, 0), (1,−1)}.

Their union R ∪Q is isomorphic to P .
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(3-6) We assume that R is

Conv{(1, 0), (2, 0), (0, 3)}

and the common edge is its bottom edge. Then Q must be either

Conv{(1, 0), (2, 0), (2,−2)} or Conv{(1, 0), (2, 0), (3,−2)}.

In both cases, the union Q ∪R is isomorphic to P .

4.2 Definitions and Lemmata

4.2.1 Existence of 1-tacnodal curves for ∆I, . . .∆IX

For a polygon P , we set

F(P ) := {f ∈ C[x, y];Nf = P}.

We denote the plane curve defined by f ∈ F(P ) in X(P ) as Vf . We remark that Vf is a

member of |D(P )|. We consider the following two conditions:

(S1) Vf ⊂ X(P ) is a 1-tacnodal curve whose singular point is contained in the maximal

torus of X(P ),

(S2) Vf intersects the toric boundary X(∂P ) transversally.

In the rest of this section, except cases (III), (IV), and (V), we only consider polygons

whose edges are only of length one. Hence the condition (S2) is automatically satisfied

except the three cases.

Lemma 4.4. For each i = I, II and given coefficients cij on the vertices (i, j) ∈ V (P ),

there is a polynomial f ∈ F(∆i) which has the fixed coefficients on the vertices and satisfies

the conditions (S1), (S2). Furthermore, there is no polynomial f ∈ F(∆i) that defines a

curve with more complicated singularity than A3, i.e., the curve does not have an isolated

singularity whose Milnor number is more than 3.

Proof. (I) We first show that we can assume that the coefficients on the vertices of ∆I are

1. We transform the polynomial

f = c10x+ c20x
2 +Axy +Bxy2 + Cxy3 + c07y

7 ∈ F(∆I)

by substituting x = X−1, y = Y and multiplying X2. Then we get a new polynomial

f̃ := c20 + c10X +AXY +BXY 2 + CXY 3 + c07X
2Y 7.
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By multiplying suitable constants to the variables and the whole polynomial, we can assume

that c20 = c10 = c07 = 1. Transforming f̃ by x = X−1, y = Y again, we get

x+ x2 +A′xy +B′xy2 + C ′xy3 + y7.

We re-denote this polynomial by f .

For a polynomial

f = x+ x2 +Axy +Bxy2 + Cxy3 + y7 ∈ F(∆I),

we apply Lemma 2.5 and eliminate the variables by the system f = fx = fy = Hess(f) =

K(f) = 0. First, by f = 0, we can get A as

A = −x+ x2 +Bxy2 + Cxy3 + y7

xy
.

Therefore the system is reduced as

(1) x2 − y7 = 0,

(2) − x− x2 +Bxy2 + 2Cxy3 + 6y7 = 0,

(3) substituting A for Hess(f) = 0,

(4) substituting A for K(f) = 0.

Secondly, by equation (2), we can get B as

B =
x+ x2 − 2Cxy3 − 6y7

xy2
.

Then the system is reduced as
(1’) x2 − y7 = 0,

(3’) 4x3 + 4x4 + 4Cx3y3 + 60x2y7 − 49y14 = 0,

(4’) 2Cx3 + 7xy4 + 77x2y4 + 7Cxy7 − 42y11 = 0.

Thirdly, by equation (3’), we can get C as

C =
−4x3 − 4x4 − 60x2y7 + 49y14

4x3y3
.
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Then the system is reduced as x2 − y7 = 0,

8x5 + 8x6 − 160x4y7 + 490x2y14 − 343y21 = 0.

Hence we obtain x = 8/5 and the equation

y7 − (8/5)2 = 0. (****)

Next, we check that the above f satisfies the condition (S1). Let y0, y1, . . . , y6 be the

solutions of equation (****) and, for each i = 1, . . . , 6, let f (i) denote the polynomial f

with the solution y = yi. By the above calculation, the curve Vf (i) defined by f (i) has a

tacnode at (8/5, yi) ∈ (C∗)2. Notice that the coefficients A,B and C of f (i) are determined

by x = 8/5 and y = yi. Let (s, t) be a singular point of f (i) on Vf (i) . Solving f
(i)
s = 0, we

obtain s = s0(t, y0). Set

f1(t, y0) := f (i)(s0(t, y0), t), f2(t, y0) := f
(i)
t (s0(t, y0), t).

Eliminating y0 from f1, f2 by y70 − (8/5)2 = 0, we obtain two equations with variable t. We

can check that their greatest common divisor is t7 − (5/8)2. Thus, the singularities of f (i)

are only tacnodes.

The coefficient A of f (i) depends only on the solution y0 of (****) and we can check

directly that the coefficients A for y = yi and y = yj are different if i ̸= j. That is, the

defining polynomials f (i) and f (j) are different for i ̸= j. Therefore each f (i) satisfies the

condition (S1).

(II) For the polynomial

f = x2 + x3 +Ax2y +Bx2y2 + Cxy4 + y7 ∈ F(∆II),

we apply Lemma 2.5 and eliminate the variables by the system f = fx = fy = Hess(f) =

K(f) = 0. First, by f = 0, we can get A as

A = −x
2 + x3 +Bx2y2 + Cxy4 + y7

x2y
.
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Therefore the system is reduced as

(1) x3 − Cxy4 − 2y7 = 0,

(2) − x2 − x3 +Bx2y2 + 3Cxy4 + 6y7 = 0,

(3) substituting A for Hess(f) = 0,

(4) substituting A for K(f) = 0.

Secondly, by equation (2), we can get B as

B =
x2 + x3 − 3Cxy4 − 6y7

x2y2
.

Then the system is reduced as
(1’) x3 − Cxy4 − 2y7 = 0,

(3’) 8x5 + 8x6 − 4Cx3y4 + 20Cx4y4 − 4x2y7 + 116x3y7 − 28C2x2y8 − 184Cxy11 − 256y14 = 0,

(4’) substituting B for (4) = 0.

Thirdly, by equation (1’), we can get C as

C =
x3 − 2y7

xy4
.

Then the system is reduced as x3 + y7 + xy7 = 0,

4x9 + 14x6y7 + 5x7y7 + 16x3y14 + 11x4y14 + 6y21 + 7xy21 = 0.

By direct computation, we can see that the solution of the above system is

(x, y) = (y70, y0), (*****)

where y0 is a solution of y14 + y7 + 1 = 0.

Next, we check that the above f satisfies the condition (S1). Notice that the curve

Vf defined by f has a tacnode at (y70, y0) ∈ (C∗)2, where y0 is a solution of (*****).

Let (s, t) ∈ (C∗)2 be a singular point of Vf . Then, we can easily check that the system

f(s, t) = fx(s, t) = fy(s, t) = y140 + y70 + 1 = 0 implies t = y. After substituting y = t

for f(s, t), fx(s, t), fy(s, t), we obtain s − y70 as their greatest common divisor. That is,

the singularities of Vf are only tacnodes. Moreover, we can easily check that for two

different solutions y0 and y′0 of y14 + y7 + 1 = 0, the triples (A,B,C) of the coefficients of

the polynomial f , which are determined by y0 and y′0, are different. Therefore, for each
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solution of y14 + y7 + 1 = 0, the polynomial f satisfies the condition (S1).

Lemma 4.5. For each i = VI,VII,VIII, IX, and given coefficients cij on the vertices (i, j) ∈
V (P ), there is a polynomial f ∈ F(∆i) which has the fixed coefficients on the vertices and

satisfies (S1) and (S2) if and only if

• c03c20 = 64c10c13, if i = VI,

• c21c200 = −4c01c
2
10, and c12c

2
00 = −4c10c

2
01, if i = VII,

• 86c33c
5
00 = 55c310c

3
01, if i = VIII,

• 256c42c
5
00 = (41 + 38

√
−1)c410c

2
01, or 256c42c

5
00 = (41− 38

√
−1)c410c

2
01, if i = IX.

Furthermore, there is no polynomial f ∈ F(∆i) that defines a curve with more compli-

cated singularity than A3.

Proof. (VI) We transform the polynomial

f := c10x+ c20x
2 +Axy +Bxy2 + c03y

3 + c13xy
3 ∈ F(∆VI)

by substituting x = X−1, y = Y and multiplying X2. Then we get the new polynomial

f̃ := c10X + c20 +A′XY +B′XY 2 + c03X
2Y 3 + c13XY

3.

By multiplying suitable constants to the variables and the whole polynomial, we can rewrite

f̃ as

1 +X +A′′XY +B′′XY 2 +XY 3 + CX2Y 3,

where

C =
c03c20
c10c13

.

For the polynomial

1 + x+Axy +Bxy2 + xy3 + Cx2y3

we apply Lemma 2.5 and eliminate the variables by the system f = fx = fy = Hess(f) =

K(f) = 0. First, by f = 0, we can get A as

A = −1 + x+Bxy2 + xy3 + Cx2y3

xy
.
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Therefore the system is reduced as

(1) − 1 + Cx2y3 = 0,

(2) − 1− x+Bxy2 + 2xy3 + 2Cx2y3 = 0,

(3) substituting A for Hess(f) = 0,

(4) substituting A for K(f) = 0.

Secondly, by equation (1), we can get C as

C =
1

x2y3
.

Then the system is reduced as
(2’) 1− x+Bxy2 + 2xy3 = 0,

(3’) − 4 + 8x− x2 − 4Bxy2 + 2Bx2y2 − 4xy3 + 4x2y3 −B2x2y4 − 4Bx2y5 − 4x2y6 = 0,

(4’) 48− 144x+ 36x2 + 48Bxy2 + 48xy3 − 48Bx2y2 − 72x2y3 + 12B2x2y4 + 24Bx2y5 = 0.

Thirdly, by equation (2’), we can get B as

B = −1− x+ 2xy3

xy2
.

Then the system is reduced as  4x+ 4xy3 − 1 = 0,

6x+ 2xy3 − 1 = 0.

The solution of the above system is

(x, y) = (1/8, y0), (******)

where y0 is a solution of y3 = 1. Then we obtain

A = −9/y0, B = −9/y20, C = 1/x2y3 = 64.

Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (1/8, y0) ∈ (C∗)2, where y0 is a solution of (******). Let

(s, t) ∈ (C∗)2 be a singular point of Vf . Then, we obtain t3 − 1 = 0 and s = 1/8 from

the system f(s, t) = fx(s, t) = fy(s, t) = 0 and the equation y30 − 1 = 0. That is, the

singularities of Vf are only tacnodes. Moreover, we can easily check that for two different

solutions y0 and y
′
0 of y

3−1 = 0, the triples (A,B,C) of the coefficients of the polynomial f ,
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which are determined by y0 and y′0, are different. Therefore, for each solution of y3−1 = 0,

the polynomial f satisfies the condition (S1).

(VII) We can rewrite the polynomial

f = c00 + c10x+ c01y +Axy + c21x
2y + c12xy

2 ∈ F(∆VII)

as

f = 1 + x+ y +Axy +Bx2y + Cxy2

by the same manner as above, where

B =
c21c

2
00

c01c210
, C =

c12c
2
00

c10c201
.

For the polynomial

f = 1 + x+ y +Axy +Bx2y + Cxy2,

we apply Lemma 2.5 and eliminate the variables by the system f = fx = fy = Hess(f) =

K(f) = 0. First, by f = 0, we can get A as

A = −1 + x+ y +Bx2y + Cxy2

xy
.

Therefore the system is reduced as

(1) − 1− y +Bx2y = 0,

(2) − 1− x+ Cxy2 = 0,

(3) substituting A for Hess(f) = 0,

(4) substituting A for K(f) = 0.

Secondly, by equations (1) and (2), we can get B and C as

B =
1 + y

x2y
, C =

1 + x

xy2
,

respectively. Then the system is reduced as (3’) 3 + 4x+ 4y + 4xy = 0,

(4’) (1 + y)2(1 + 2x) = 0.

The solution of the above system is

(x, y) = (−1/2,−1/2),
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and we obtain

A = B = C = −4.

Next, we check that the above f satisfies the condition (S1). Notice that the curve

Vf defined by f has a tacnode at (−1/2,−1/2) ∈ (C∗)2. Let (s, t) ∈ (C∗)2 be a singular

point of Vf . Then, we can solve f(s, t) = fx(s, t) = fy(s, t) = 0, and the solution is

(s, t) = (−1/2,−1/2). That is, the singularity of f is only one point and is a tacnode.

Therefore the f satisfies the condition (S1).

(VIII) We can rewrite the polynomial

f = c00 + c10x+ c01y +Axy +Bx2y2 + c33x
3y3 ∈ F(∆VIII)

as

f = 1 + x+ y +Axy +Bx2y2 + Cx3y3

by the same manner as above, where

C =
c33c

5
00

c310c
3
01

.

For the polynomial

f = 1 + x+ y +Axy +Bx2y2 + Cx3y3,

we apply Lemma 2.5 and eliminate the variables by the system f = fx = fy = Hess(f) =

K(f) = 0. First, by f = 0, we can get A as

A = −1 + x+ y +Bx2y2 + Cx3y3

xy
.

Therefore the system is reduced as

(1) − 1− y +Bx2y2 + 2Cx3y3 = 0,

(2) − 1− x+Bx2y2 + 2Cx3y3 = 0,

(3) substituting A for Hess(f) = 0,

(4) substituting A for K(f) = 0.

Secondly, by equation (1), we can get B as

B =
1 + y − 2Cx3y3

x2y2
.
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Then the system is reduced as
(2’) x− y = 0,

(3’) 4− x+ 4y + 4Cx3y3 = 0,

(4’) substituting B for (4) = 0.

Thirdly, by equation (3’), we can get C as

C =
−4 + x− 4y

4x3y3
.

Then the system is reduced as  x− y = 0,

−8 + 3x− 8y = 0.

The solution of the above system is

(x, y) = (−8/5,−8/5),

and we also obtain

A = 75/64, B = −54/212, C = 55/86.

Next, we check that the above f satisfies the condition (S1). Notice that the curve

Vf defined by f has a tacnode at (−8/5,−8/5) ∈ (C∗)2. Let (s, t) ∈ (C∗)2 be a singular

point of Vf . Then, we can solve f(s, t) = fx(s, t) = fy(s, t) = 0, and the solution is

(s, t) = (−8/5,−8/5). That is, the singularity of f is only one point and is a tacnode.

Therefore the f satisfies the condition (S1).

(IX) We can rewrite the polynomial

f = c00 + c10x+ c01y +Axy +Bx2y + c42x
4y2 ∈ F(∆IX)

as

f = 1 + x+ y +Axy +Bx2y + Cx4y2

by the same manner as above, where

C =
c42c

5
00

c410c
2
01

.

For the polynomial

f = 1 + x+ y +Axy +Bx2y + Cx4y2,
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we apply Lemma 2.5 and eliminate the variables by the system f = fx = fy = Hess(f) =

K(f) = 0. First, by f = 0, we can get A as

A = −1 + x+ y +Bx2y + Cx4y2

xy
.

Therefore the system is reduced as

(1) − 1− y +Bx2y + 3Cx4y2 = 0,

(2) − 1− x+ Cx4y2 = 0,

(3) substituting A for Hess(f) = 0,

(4) substituting A for K(f) = 0.

Secondly, by equation (1), we can get B as

B =
1 + y − 3Cx4y2

x2y
.

Then the system is reduced as
(2’) − 1− x+ Cx4y2 = 0,

(3’) 1− 4Cx2y2 − 8Cx3y2 − 4Cx2y3 + 4C2x6y4 = 0,

(4’) substituting B for (4) = 0.

Thirdly, by equation (2’), we can get C as

C =
1 + x

x4y2
.

Then the system is reduced as 4x+ 4y + 3x2 + 4xy = 0,

(4 + 3x)(16x+ 8y + 24x2 + 22xy + 4y2 + 9x3 + 12x2y + 5xy2) = 0.

The solutions of the above system are

(x0, y0) =
(
−6

5
+

2

5

√
−1,

2

5
− 4

5

√
−1
)
, (x1, y1) =

(
−6

5
− 2

5

√
−1,

2

5
+

4

5

√
−1
)
,

and we obtain

C = − 41

256
+

19

128

√
−1 if x = x0, C =

41

256
+

19

128

√
−1 if x = x1.
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Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (x0, y0) ∈ (C∗)2. Let (s, t) ∈ (C∗)2 be a singular point of

Vf . Then, we can solve f(s, t) = fx(s, t) = fy(s, t) = 0, and the solution is (s, t) = (x0, y0).

That is, the singularity of f is only one point and is a tacnode. Therefore the f satisfies the

condition (S1). Also, we can check the condition (S1) for (x1, y1) by the same manner.

Lemma 4.6. For each i = III, IV,V and given coefficients cij on the vertices (i, j) ∈ V (P ),

there is a polynomial f ∈ F(∆i) which has the fixed coefficients on the vertices such that f

defines a curve which has

(III) an A2-singularity on the toric divisor corresponding to the edge of length 2,

(IV) an A1-singularity on the toric divisor corresponding to the edge of length 2,

(V) an intersection with the toric divisor corresponding to the edge of length 4 whose

multiplicity is 4.

Proof. (III) We set

f := 1 +Ax+ x2 +Bxy + Cxy2 + xy3 ∈ F(∆III).

Let σ ⊂ ∆III be the edge of length 2. The intersection point of X(σ) and the curve defined

by f is an A2-singularity and this implies A = ±2.

We assume A = 2 and the singularity is at (−1, 0). For f = (1+x)2+Bxy+Cxy2+y3,

the solution of f(−1, 0) = fx(−1, 0) = fy(−1, 0) = Hess(f)(−1, 0) = 0 is B = C = 0.

Therefore we obtain the polynomial f := 1 + 2x+ x2 + xy3 ∈ F(∆III).

(IV) We set

f := 1 +Ax+ x2 +Bxy + xy2 ∈ F(∆IV).

Let σ ⊂ ∆IV be the edge of length 2. The intersection point of X(σ) and the curve defined

by f is an A1-singularity and this implies A = ±2.

We assume A = 2 and the singularity is at (−1, 0). For f = (1 + x)2 + Bxy + xy2,

the solution of f(−1, 0) = fx(−1, 0) = fy(−1, 0) = 0 is B = 0. Therefore we obtain the

polynomial f := 1 + 2x+ x2 + xy2 ∈ F(∆IV).

(V) We can prove that the polynomial

f := (1± x)4 + y ∈ F(∆V)

satisfies the condition.
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Set

∆̂III := Conv{(0,−1), (2, 0), (0, 3)},

∆̂IV := Conv{(0,−2), (2, 0), (0, 2)},

∆̂V := Conv{(0,−1), (4, 0), (0, 1)},

see Figure H.

3
0 2

�̂III
�1
21 2

0 2
�̂IV

�2
1�1 10 4�̂V

�1
Figure H: Polygons ∆̂III, ∆̂IV and ∆̂V. The notation △ means a lattice point on the boundary
which is not a vertex and the notation ⋆ means an interior lattice point.

For the polygons ∆III and ∆3(0; 2, 1, 1) appearing in Definition 4.1 (III), the polynomial

on ∆III obtained in Lemma 4.6 induces the polynomial on ∆3(0; 2, 1, 1) as

1 +Ax+ x2 + y,

where A = ±2. Therefore the exceptional polygon in this case is ∆̂III.

For the polygons ∆IV and ∆3(1; 2, 1, 1) appearing in Definition 4.1 (IV), the polynomial

on ∆IV obtained in Lemma 4.6 induces the polynomial on ∆3(1; 2, 1, 1) as

1 +Ax+ x2 +Bxy + xy2,

where A = ±2. If B = 0, the exceptional polygon compatible with the data is ∆̂IV. Note

that, if B ̸= 0, the exceptional polygon compatible with the data is

Conv{(2, 0), (0, 2), (0,−1)},

and it has no deformation pattern which defines an 1-tacnodal curve, see the discussion in

Lemma 4.17.

For the polygons ∆V and ∆3(0; 4, 1, 1) appearing in Definition 4.1 (V), the polynomial

on ∆V obtained in Lemma 4.6 induces the same polynomial on ∆3(0; 4, 1, 1). Therefore,

the exceptional polygon compatible with the data is ∆̂V.

Lemma 4.7. For each i = III, IV,V, there is a deformation pattern ϕ ∈ F(∆̂i) compatible
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with given data in Lemma 4.6 which has the fixed coefficients on the vertices such that the

curve defined by ϕ in X(∆̂i) is a 1-tacnodal curve.

Proof. (III) For the polynomial

ϕ := 1 +Ay + x2y +By2 + Cxy2 +Dy3 + y4 ∈ F(∆̂III)

we apply Lemma 2.5 and eliminate the variables by the system ϕ = ϕx = ϕy = Hess(ϕ) =

K(ϕ) = 0. Notice that y is nonzero. First, by ϕx = 0, we can get C as

C = −2x

y
.

Therefore the system is reduced as

(1) 1 +Ay − x2y +By2 +Dy3 + y4 = 0,

(2) A− 3x2 + 2By + 3Dy2 + 4y3 = 0,

(3) 4By − 12x2 + 12Dy2 + 24y3 = 0,

(4) − x2 +Dy2 + 4y3 = 0.

Secondly, by equation (4), we obtain

x2 = y2(D + 4y).

Then the system is reduced as
(1’) 1 +Ay − 3y4 +By2 = 0,

(2’) A− 8y3 + 2By = 0,

(3’) −B + 6y2 = 0.

Thirdly, by equation (3’), we can get B as

B = 6y2.

Then the system is reduced as  (1”) 1 +Ay + 3y4 = 0,

(2”) A+ 4y3 = 0.

Hence we obtain A = −4y3 and then the equation

y4 − 1 = 0.
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The solution is

(A,B,C,D, x, y) = (−4y30, 6y
2
0,−2x0/y0, D, x0, y0),

where y0 is a solution of y4 − 1 = 0 and x0 is a solution of x2 = y20(D + 4y0).

Next, we check that the above ϕ has only one singularity and it is a tacnode. Notice

that the curve Vϕ defined by ϕ has a tacnode at (x0, y0) ∈ C2. Let (s, t) ∈ C2 be a singular

point of Vϕ. Then we solve ϕ(s, t) = ϕx(s, t) = ϕy(s, t) = 0 and we check that the solution

is only (s, t) = (x0, y0). That is, the singularity of ϕ is only one point and is a tacnode.

(IV) We consider the following polynomial

ϕ := 1 +Ay +By2 + Cy3 + y4 + c11xy + c13xy
3 + x2y2 ∈ F(∆̂IV).

Note that c11, c13 are both zero because of the form of the polynomials derived by Lemma 4.6 (IV).

For the polynomial

ϕ := 1 +Ay +By2 + Cy3 + y4 + x2y2 ∈ F(∆̂IV),

we eliminate the variables by the system ϕ = ϕx = ϕy = Hess(ϕ) = K(ϕ) = 0 by Lemma 2.5.

Notice that y is nonzero. First, by ϕx = 0, we obtain x = 0. Therefore the system is reduced

as 

(1) 1 +Ay +By2 + Cy3 + y4 = 0,

(2) A+ 2By + 3Cy2 + 4y3 = 0,

(3) B + 3Cy + 6y2 = 0,

(4) C + 4y = 0.

Secondly, by equation (4), we obtain

C = −4y.

Then the system is reduced as
(1’) 1 + 4y +By2 − 3y4 = 0,

(2’) A+ 2By − 8y3 = 0,

(3’) B − 6y2 = 0.

Thirdly, by equation (3’), we can get B as

B = 6y2.
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Then the system is reduced as  (1”) 1 +Ay + 3y4 = 0,

(2”) A+ 4y3 = 0.

Hence we obtain A = −4y3 and then the equation

y4 − 1 = 0.

The solution is

(A,B,C, x, y) = (−4y30, 6y
2
0,−4y0, 0, y0),

where y0 is a solution of y4 − 1 = 0.

Next, we check that the above ϕ has only one singularity and it is a tacnode. Notice

that the curve Vϕ defined by ϕ has a tacnode at (0, y0) ∈ C2. Let (s, t) ∈ C2 be a singular

point of Vϕ. Then, we solve ϕ(s, t) = ϕx(s, t) = ϕy(s, t) = 0 and check that the solution is

only (s, t) = (0, y0). That is, the singularity of ϕ is only one point and is a tacnode.

(V) In this case, in order to achieve ϕxx ̸= 0, we exchange the variables x and y in ϕ.

For the polynomial

ϕ := 1 +Ax+Bxy + Cxy2 + xy4 + x2 ∈ F(∆̂V),

we eliminate the variables by the system ϕ = ϕx = ϕy = Hess(ϕ) = K(ϕ) = 0 by Lemma 2.5.

Notice that x is nonzero. First, by ϕ = 0, we obtain

A = −1 + x2 +Bxy + Cxy2 + xy4

x
.

Therefore the system is reduced as

(1) (x− 1)(x+ 1) = 0,

(2) B + 2Cy + 4y3 = 0,

(3) substituting A for Hess(ϕ) = 0,

(4) substituting A for K(ϕ) = 0.

Secondly, by equation (2), we obtain

B = −2y(C + 2y).
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Then the system is reduced as 
(1’) (x− 1)(x+ 1) = 0,

(3’) 4x(C + 6y2) = 0,

(4’) 192xy = 0.

Thirdly, by equation (3’), we can get C as

C = −6y2.

The solution is

(A,B,C, x, y) = (∓2, 0, 0,±1, 0).

Next, we check that the above ϕ has only one singularity and it is a tacnode. Suppose

that the tacnode is at (1, 0). Let (s, t) ∈ C2 be a singular point of Vϕ. Then we solve

ϕ(s, t) = ϕx(s, t) = ϕy(s, t) = 0 and check that the solution is only (s, t) = (1, 0). That is,

the singularity of ϕ is only one point and is a tacnode. We can check the condition for the

case where the tacnode is at (−1, 0) by the same manner.

Remark 4.8. Among the calculation in this section, there are finitely many polynomials

which define 1-tacnodal curves except case (III) in Lemma 4.7. In case (III) in Lemma 4.7,

we can get the conclusion without eliminating the variable D. This means that there exists

a one-parameter family of deformation patterns which define 1-tacnodal curves.

4.2.2 Remarks on the polygon ∆E

By the above discussion, for each tropical 1-tacnodal curve, except case (E), there is a

“degenerate model of a 1-tacnodal curve” whose tropical amoeba is the tropical 1-tacnodal

curve. In this subsection, we discuss what happens in case (E).

Lemma 4.9. There is NO polynomial f ∈ F(∆E) which defines a 1-tacnodal curve on

X(∆E).

Proof. We assume that a polynomial

f := c00 +Ax+ c20x
2 + c01y +Bxy + c12xy

2

defines a 1-tacnodal curve. Then, since fxx is non-zero, we can apply Lemma 2.5 and obtain

y = −B/2c12. Substituting it for fy = c01 +Bx+ 2c12xy = 0, we get c01 = 0, but this is a

contradiction.

On the other hand, there is a polynomial f ∈ F(∆E) which has a Newton degenerate

singularity on X(σ) ⊂ X(∆E), where σ ⊂ ∆E is the edge of length 2. Actually, we
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can calculate as follows: Set P := ∆4(1; 2, 1, 1, 1), Q := ∆3(0; 2, 1, 1). We consider the

polynomial

f := c00 +Ax+ c01y + c20x
2 +Bxy + c12xy

2 ∈ F(P ).

By multiplying suitable constants to the variables and the whole polynomial, we can rewrite

f as

1 +Ax+ y + x2 +Bxy + Cxy2 ∈ F(P ).

If the curve Vf ⊂ X(P ) defined by f intersects X(σ) at two points, we can easily check

that these points are smooth points of Vf and the intersection Vf ∩ X(σ) is transversal.

Therefore Vf ∩X(σ) is exactly one point. Then, f can be rewritten as follows:

f = (ϵ+ x)2 + y +Bxy + Cxy2 ∈ F(P ),

where ϵ = ±1. Set (X,Y ) := (x+ ϵ, y). Then f is rewritten as follows:

f̃(X,Y ) := X2 +BXY + (1∓B)Y + CXY 2 ∓ CY 2.

Thus the most complicated isolated singular point defined by this polynomial at the

origin (under the condition that the form of the polynomial does not change) is given as

X2 ±XY +
1

4
Y 2 + (higher terms).

By a direct computation, the curve defined by f has no singularity more complicated than

A3. Since f is irreducible, the curve has only a cusp as the singularity.

Applying the refinement argument mechanically in this case, we find that the edge

∆4(1; 2, 1, 1, 1)∩∆3(0; 2, 1, 1) does not correspond to a 1-tacnodal curve as follows: By the

above discussion, the exceptional polygon in this case is ∆̂2. We only consider the case of

ϵ = 1. The other case can be proved by the same argument. According to the explanation

of a deformation pattern in Definition 1.16, we set

ϕ := 1 +A′y + x2y +B′y2 + xy2 +
1

4
y3 ∈ F(∆̂2).

By a direct computation, we get ϕxx ̸= 0. Using Lemma 2.5, we obtain 8B′x = 0. Both

cases x = 0 and B′ = 0 contradict ϕ = 0.

In [19], it is assumed that each polynomial fi has only semi-quasi-homogeneous singular-

ity since the paper only deals with the case of nodal or 1-cuspidal curves. This assumption

may not be reasonable in the case of 1-tacnodal curves. Actually, when we list the possible

polygons for 1-tacnodal curves we cannot ignore case (E). This is the reason why this case

is included in the definition of tropical 1-tacnodal curves. Note that, in fact, by the above

discussion, there is no degenerate model of 1-tacnodal curve corresponding to case (E).
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4.3 Proof of Main Theorem

The main theorem of this thesis is the following:

Main Theorem. Let F ∈ K[z, w] be a polynomial which defines an irreducible 1-tacnodal

curve. If the rank of the tropical amoeba TF defined by F is more than or equal to the

number of the lattice points of the Newton polygon of F minus four and the tropicalization

of the curve defined by F in X(NF ) has only isolated singularities, then TF is a tropical

1-tacnodal curve.

Let F be a polynomial in the assertion, TF be the tropical amoeba defined by F , whose

rank satisfies

♯∆Z − 1 ≥ rk(TF ) ≥ ♯∆Z − 4,

and S be the dual subdivision of TF . We remark that, from the discussion in [19, Section

4], if ♯∆Z − 1 ≥ rk(TF ) ≥ ♯∆Z − 3, then TF is smooth, nodal or 1-cuspidal. Moreover, by

Remark 4.14 below, we can assume that the rank of TF is ♯∆Z − 4.

From the discussion in [19, Subsection 3.3] and the equality g(C(t)) = ♯Int∆Z − 2, we

can see that

♯∂∆Z − ♯(V (S) ∩ ∂∆) = 0 or 1.

We decompose the proof into four cases

(A) S is a TP-subdivision and satisfies ♯∂∆Z − ♯(V (S) ∩ ∂∆) = 0,

(B) S is a TP-subdivision and satisfies ♯∂∆Z − ♯(V (S) ∩ ∂∆) = 1,

(C) S is NOT a TP-subdivision and satisfies ♯∂∆Z − ♯(V (S) ∩ ∂∆) = 0,

(D) S is NOT a TP-subdivision and satisfies ♯∂∆Z − ♯(V (S) ∩ ∂∆) = 1.

For each case, we remove polygons which cannot correspond to a 1-tacnodal curve and show

that the remaining polygons are exactly tropical 1-tacnodal curves in Definition 4.1.

To explain the removing process more precisely, we prepare some terminologies.

Definition 4.10. A 2-dimensional polygon P is 1-tacnodal if there is a polynomial f ∈
F(P ) which defines a 1-tacnodal curve Vf ∈ |D(P )| satisfying the conditions (S1) and (S2)

in Subsection 4.2.1.

Let σ := P1 ∩P2 be an edge which is the intersection of 2-dimensional polygons P1 and

P2. The edge σ is 1-tacnodal if there is a pair of polynomials (f1, f2) ∈ F(P1)×F(P2) such

that

• their truncation polynomials fσ1 , f
σ
2 on σ are same,

• each of the curves C1 and C2 defined by f1 and f2 has a smooth point or an isolated

singular point at z in X(σ),
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• there exists a deformation pattern ϕ ∈ F(∆z) compatible with the above data which

defines a 1-tacnodal curve in X(∆z).

It can be seen from the discussion in Subsection 4.2.1 that the polygons and the pairs

of polygons appearing in Definition 4.1 are 1-tacnodal. To prove the theorem, for each of

cases (A), (B), (C) and (D), we carry out the following arguments.

(1) Remove configurations of edges and interior lattice points of polygons which do not

exist.

(2) Classify polygons that are not 1-tacnodal.

(3) From the list in (2), remove polygons which do not have 1-tacnodal edges.

In Subsection 4.3.1, we prepare lemmata for the non-existence of polygons in (1), and

then prove the theorem for case (A), (B), (C) and (D) in Subsection 4.3.2, 4.3.3, 4.3.4 and

4.3.5, respectively.

4.3.1 Auxiliary definitions and lemmata

Lemma 4.11 (On interior lattice points). (1) The number of interior lattice points of a

non-parallel quadrangle whose edges are length 1 is larger than 0.

(2) For an integer m ≥ 5, the number of interior lattice points of an m-gon is larger than

0.

Proof. (1) If a non-parallel ∆4(0; 1, 1, 1, 1) exists, it can be decomposed into two triangles

of area 1/2. Thus, we can map this polygon to

Conv{(0, 0), (1, 0), (0, 1), (p, q)}

by some isomorphism. Then, from Pick’s formula, we obtain

p+ q

2
= 1.

Hence p = q = 1. This is a parallelogram.

(2) It is obvious from the facts that the minimum pentagon is ∆VII and any m-gon can be

decomposed into polygons including a pentagon.

Lemma 4.12 (Non-existence of some polygons). (1) The following polygons do NOT exist:

∆3(1; 2, 2, 1), ∆3(1; 3, 1, 1), ∆3(0; 2, 2, 1), ∆3(0; 3, 2, 1), ∆5(0; 2, 1, 1, 1, 1).

(2) There is NO non-parallel quadrangle ∆4(0; 2, 2, 1, 1).
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Proof. (1) The first triangle is equivalent to

Conv{(p, 0), (p+ 2, 0), (0, q)}.

By Pick’s formula, we obtain q = 5/2. But this contradicts q ∈ Z. We can easily check

the non-existence of the second, third and fourth triangles. If there exists a pentagon

∆5(0; 2, 1, 1, 1, 1), we can split it into two quadrangles ∆4(0; 1, 1, 1, 1) and ∆′
4(0; 1, 1, 1, 1).

But these quadrangles are parallelograms by the fact that is proved in Lemma 4.11 (1).

Thus the union can not be a pentagon.

(2) If it exists, then the edges of length 2 are either adjacent or in opposite sides. The

former case can not occur since a triangle ∆3(0; 2, 2, 1) does not exist. In the latter case,

we can split it into two triangles ∆3(0; 2, 1, 1) and ∆′
3(0; 2, 1, 1). We can assume that one of

the triangles is isomorphic to Conv{(0, 0), (1, 0), (0, 2)} and the common edge is the bottom

edge. Then, by Pick’s formula, the last vertex of ∆4(0; 2, 2, 1, 1) must be one of the following

lattice points

(0,−2), (1,−2), (2,−2),

but all of them do not satisfy the required conditions.

Lemma 4.13. For the polygon

P := Conv{(0, 0), (2, 0), (0, 1), (2, 1)},

the polynomial

f := c00 +Ax+ c20x
2 + c01y +Bxy + c21x

2y ∈ F(P )

satisfies f = fx = fy = Hess(f) = 0 if and only if

c21c00 = c20c01.

Moreover, if f satisfies f = fx = fy = Hess(f) = 0, i.e., Vf ⊂ X(P ) has a singularity more

complicated than A1, then f has the form

(y + 1)(x± 1)2

up to multiplication of a non-zero constant. In particular, the set of singularities of Vf is

non-isolated.

Proof. By direct computation.
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Remark 4.14 (Known Results). (1) Let I ≥ 0, s, t, u ≥ 1 be integers such that

0 ≤ I + (s− 1) + (t− 1) + (u− 1) ≤ 2.

For each (I; s, t, u), a triangle ∆3(I; s, t, u) is uniquely determined up to the equivalence as

follows:

∆3(2; 1, 1, 1) ≃ Conv{(0, 0), (3, 2), (2, 3)},

∆3(1; 2, 1, 1) ≃ Conv{(0, 0), (2, 0), (1, 2)},

∆3(1; 1, 1, 1) ≃ Conv{(0, 0), (1, 2), (2, 1)},

∆3(0; 3, 1, 1) ≃ Conv{(0, 0), (3, 0), (0, 1)},

∆3(0; 2, 1, 1) ≃ Conv{(0, 0), (2, 0), (0, 1)},

∆3(0; 1, 1, 1) ≃ Conv{(0, 0), (1, 0), (0, 1)}.

(2) For integers I ∈ {0, 1}, s, t ≥ 1 such that

0 ≤ I + 2(s− 1) + 2(t− 1) ≤ 2,

a parallelogram ∆par
4 (I; s, t) is uniquely determined up to the equivalence as follows:

∆par
4 (1; 1, 1) ≃ Conv{(0, 0), (1, 0), (1, 2), (2, 2)},

∆par
4 (0; 2, 1) ≃ Conv{(0, 0), (2, 0), (0, 1), (2, 1)},

∆par
4 (0; 1, 1) ≃ Conv{(0, 0), (1, 0), (0, 1), (1, 1)}.

(3) The polygons in this remark are not 1-tacnodal (By [19, Lemma 4.2] and Lemma 4.13,

or direct computation).

Lemma 4.15 (Describing some polygons). (1) Let I ≥ 0, s, t, u ≥ 1 be integers such that

I + (s− 1) + (t− 1) + (u− 1) = 3.

For each (I; s, t, u), a triangle ∆3(I; s, t, u) has the following isomorphisms:

∆3(3; 1, 1, 1) ≃ ∆I,∆II,

∆3(2; 2, 1, 1) ≃ Conv{(0, 0), (2, 0), (1, 3)},

∆3(0; 4, 1, 1) ≃ Conv{(0, 0), (0, 1), (4, 0)},

∆3(0; 2, 2, 2) ≃ Conv{(0, 0), (2, 0), (0, 2)}.

(2) A quadrangle ∆4(0; 2, 1, 1, 1) is uniquely determined as Conv{(0, 0), (2, 0), (0, 1), (1, 1)}
up to the equivalence.
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Proof. (1) These claims, except the last case, are the same as Lemma 4.2. We prove the

last one. Without loss of generality, the polygon can be assumed to be

Conv{(p, 0), (p+ 2, 0), (0, q)}.

From Pick’s formula, we obtain q = 2 and p = 2k for some k ∈ Z. Thus, by the isomorphism(
1 k

0 1

)
: Z2 → Z2,

it is mapped to the polygon Conv{(0, 0), (2, 0), (0, 2)}.

(2) We can split P = ∆4(0; 2, 1, 1, 1) into two polygons Q, R which are either

• Q = ∆3(0; 2, 1, 1), R = ∆3(0; 1, 1, 1) and these polygons share an edge of length 1, or

• Q = ∆3(0; 1, 1, 1), R = ∆4(0; 1, 1, 1, 1) and these polygons share an edge of length 1.

In the former case, we can assume that Q is

Conv{(0, 0), (1, 0), (0, 2)}

and the common edge is its bottom edge. Then the last vertex of P must be (1,−1). In

the latter case, we can assume that R is

Conv{(0, 0), (1, 0), (0, 1), (1, 1)}

and the common edge is its bottom edge. Then the last vertex of P must be either (0,−1),

or (1,−1). All of them are equivalent to

Conv{(0, 0), (2, 0), (0, 1), (1, 1)}.

Lemma 4.16 (Non 1-tacnodal polygons). The following polygons are NOT 1-tacnodal

polygons:

(1) ∆3(0; 2, 2, 2),

(2) ∆3(0; 4, 1, 1),

(3) ∆3(2; 2, 1, 1),

(4) ∆4(0; 2, 1, 1, 1),

(5) Conv{(1, 0), (0, 1), (2, 1), (1, 3)}.

Proof. (1) This is by the fact that the Milnor number of an isolated singularity of a pro-

jective conic does not exceed 1.
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(2) Notice that this polygon is uniquely determined as Conv{(0, 0), (0, 1), (4, 0)}. Then a

polynomial f with this Newton polygon has no singularity since fy is a non-zero constant.

(3) We assume that a polynomial

f := 1 +Ax+ x2 +Bxy + Cxy2 + xy3 ∈ F(∆3(2; 2, 1, 1))

satisfies the condition (S1). Since the polynomial f satisfies fxx ̸= 0, the system f = fx =

fy = Hess(f) = K(f) = 0 must have a solution. But, we obtain K(f) = 48x. This is a

contradiction.

(4) Notice that this polygon is uniquely determined as Conv{(0, 0), (2, 0), (0, 1), (1, 1)}. We

set a polynomial f as

f := c00 +Ax+ c20x
2 + c01y + c11xy ∈ F(Conv{(0, 0), (2, 0), (0, 1), (1, 1)}).

Then we have Hess(f) = −c211 ̸= 0.

(5) We assume that a polynomial

f := c10x+ c01y +Axy + c21x
2y +Bxy2 + c13xy

3

defines a 1-tacnodal curve. Then, since fxx is non-zero, we can apply Lemma 2.5 and obtain

4c01x(c13y
3 + c10) = −4c01c13xy

3 = 0.

This is a contradiction.

Set

∆̂1 = Conv{(2, 0), (0, 1), (0,−1)},

∆̂2 = Conv{(2, 0), (0, 2), (0,−1)},

∆̂3 = Conv{(3, 0), (0, 1), (0,−1)},

see Figure I.

Lemma 4.17 (Non 1-tacnodal edges). The following edges σ are not 1-tacnodal edges:

(1) the edge ∆3(0; 2, 1, 1) ∩∆3(0; 2, 1, 1) of length 2,

(2) the edge ∆3(1; 2, 1, 1)∩∆3(0; 2, 1, 1) of length 2 and the edge ∆3(1; 2, 1, 1)∩∆4(0; 2, 1, 1, 1)

of length 2,

(3) the edge ∆3(0; 3, 1, 1) ∩∆3(0; 3, 1, 1) of length 3,

(4) the edge ∆4(0; 2, 1, 1, 1) ∩∆3(0; 2, 1, 1) of length 2,

(5) the edge ∆4(0; 2, 1, 1, 1) ∩∆4(0; 2, 1, 1, 1) of length 2,
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Figure I: Polygons ∆̂1, ∆̂2 and ∆̂3. The notation △ means a lattice point on the boundary
which is not a vertex and the notation ⋆ means an interior lattice point.

(6) the edge ∆par
4 (0; 2, 1)∩∆3(0; 2, 1, 1) of length 2 and the edge ∆par

4 (0; 2, 1)∩∆4(0; 2, 1, 1, 1)

of length 2,

(7) the edge ∆3(0; 2, 2, 2) ∩∆3(0; 2, 1, 1) of length 2.

Proof. The assertion for cases (1), (3), (4) and (5) are already proved in [19, Lemma 3.9,

3.10 and 4.4]. Here we only prove (2), (6) and (7).

(2) Set P := ∆3(1; 2, 1, 1), Q := ∆3(0; 2, 1, 1). It is easy to check that a curve in |D(P )|
cannot have an isolated singularity more complicated than A1. Also, we can easily check

that if a curve Vf intersects X(σ) at two points then the points are smooth points of Vf

and those intersections are transversal. Therefore we can set

f := (x+ ϵ)2 +Axy + xy2 ∈ F(P ),

where ϵ = ±1 and suppose that f defines a curve which has an A1-singularity on X(σ) ⊂
X(P ). With a simple calculation, we obtain A = 0. The polynomial corresponding to the

polygon Q becomes

f ′ := (x+ ϵ)2 + y ∈ F(Q).

Then the exceptional polygon in this case is ∆̂2. According to the explanation of a defor-

mation pattern in Definition 1.16, we set

ϕ := 1 +A′y + ϵx2y +B′y2 + y3 ∈ F(∆̂2).

In the case ϵ = 1, we get ϕxx ̸= 0 by y ̸= 0. Using Lemma 2.5, we obtain 48y3 = 0, but this

is a contradiction. We also have a contradiction in the case ϵ = −1.

(6) Set P := ∆par
4 (0; 2, 1), Q := ∆3(0; 2, 1, 1). For P , we set

f := (ϵ+ x)2 + (1 +Ax+ x2)y ∈ F(P ),
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where ϵ = ±1. Then a polynomial corresponding to Q must be

f ′ := (ϵ+ x)2 + y ∈ F(Q).

Then the exceptional polygon in this case is ∆̂1.

If ϵ = 1, ϕ is given as

ϕ := 1 + x2y + y2 +A′y ∈ F(∆̂1),

and we can easily check that the solution of the system ϕ = ϕx = ϕy = Hess(ϕ) = 0 does

not exist. The case ϵ = −1 can be proved by the same argument.

(7) Set P := ∆3(0; 2, 2, 2), Q := ∆3(0; 2, 1, 1). Without loss of generality, we can assume

that P and Q are

P = Conv{(0, 0), (2, 0), (0, 2)}, Q = Conv{(0, 0), (2, 0), (0,−1)}.

For P , we set

f := 1 + 2ϵx+ x2 +By + y2 + Cxy ∈ F(P ),

where ϵ = ±1. Applying the new coordinates (X,Y ) := (x+ ϵ, y) for f , we obtain

f = X2 + (B − Cϵ)Y + CXY + Y 2.

Notice that, if Hess(f) = C2 − 4 = 0, f defines a line of multiplicity 2, that is, f has non-

isolated singularity. Therefore we may assume C2 − 4 ̸= 0. If B − Cϵ ̸= 0, the exceptional

polygon in this case is ∆̂1. If B − Cϵ = 0, then (ϵ, 0) ∈ C2 is an A1-singularity, i.e., f has

the form f = X2 + CXY + Y 2. Hence, the exceptional polygon in this case is ∆̂2. The

conclusion is derived by the same calculation as in (7) for the former case and in (2) for

the latter case, respectively.

Remark 4.18 (On an edge of length 1). Let ∆1,∆2 be polygons such that their intersection

σ := ∆1 ∩∆2 is an edge of length 1. The edge σ is NOT an 1-tacnodal edge. Actually, we

can prove it as follows: For integers m1,m2 > 0 and the triangle

∆̂ := Conv{(1, 0), (0,m1), (0,−m2)},

a polynomial ϕ ∈ F(∆̂) can be given as

ϕ = 1 + ψ(y) + xym2 ,

where ψ ∈ C[y] is a polynomial in y which satisfies ψ(0) = 0. If the polynomial ϕ defines a

singular curve, then ϕ = ϕx = ϕy = 0 at the singular point. By ϕx = ym2 = 0, the singular
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point satisfies y = 0. However it satisfies ϕ(x, 0) ̸= 0 and this is a contradiction. Therefore,

any deformation pattern cannot define a 1-tacnodal curve.

To prevent complication of the proof of the main theorem, we give the following auxiliary

definition.

Definition 4.19. The notation T−1 means the set of polygons equivalent to ∆3(1; 1, 1, 1)

and pairs of polygons equivalent to the pair of ∆3(0; 2, 1, 1) and ∆′
3(0; 2, 1, 1) such that their

intersection ∆3(0; 2, 1, 1) ∩∆′
3(0; 2, 1, 1) is a segment of length 2.

The notation T−2 means the set of polygons equivalent to ∆3(2; 1, 1, 1) and pairs of

polygons equivalent to either

• the pair of ∆3(1; 2, 1, 1) and ∆3(0; 2, 1, 1) such that their intersection ∆3(1; 2, 1, 1) ∩
∆3(0; 2, 1, 1) is a segment of length 2,

• the pair of ∆3(0; 3, 1, 1) and ∆′
3(0; 3, 1, 1) such that their intersection ∆3(0; 3, 1, 1) ∩

∆′
3(0; 3, 1, 1) is a segment of length 3.

The triple ∆3(0; 2, 2, 1), ∆3(0; 2, 1, 1) and ∆′
3(0; 2, 1, 1) such that the intersections ∆3(0; 2, 2, 1)∩

∆3(0; 2, 1, 1) and ∆3(0; 2, 2, 1) ∩ ∆′
3(0; 2, 1, 1) are segments of length 2 does not exist by

Lemma 4.12.

Note that, from the above discussion, these polygons and their sharing edges are not

1-tacnodal.

4.3.2 Case (A)

Let S be the dual subdivision of TF . We assume that S is a TP-subdivision and satisfies

♯∂∆Z − ♯(V (S) ∩ ∂∆) = 0. Then d(S) = 0 by Lemma 1.15. Thus

rk(TF ) = rkexp(TF ) = ♯∆Z − 4.

By the definition of rkexp(TF ), we get

♯∆Z − 4 = ♯V (S)− 1−
N∑
k=1

(♯V (∆k)− 3)

= ♯V (S)− 1−N ′
4.

Since ♯V (S) ≤ ♯∆Z, we obtain 0 ≤ N ′
4 ≤ 3.

(A-0) If S satisfies N ′
4 = 0, then it satisfies ♯V (S) = ♯∆Z−3 and consists of triangles. Then,

the subdivision S must contain exactly one of the following polygons:

(i) ∆3(3; 1, 1, 1),
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(ii) ∆3(2; 1, 1, 1) with one of T−1,

(iii) ∆3(2; 2, 1, 1) and ∆3(0; 2, 1, 1) such that their intersection is a segment whose

length is 2,

(iv) ∆3(1; 2, 1, 1) and ∆3(1; 2, 1, 1) such that their intersection is a segment whose

length is 2,

(v) ∆3(1; 2, 1, 1) and ∆3(0; 2, 1, 1) such that their intersection is a segment whose

length is 2 with one of T−1,

(vi) ∆3(1; 2, 2, 1), ∆3(0; 2, 1, 1) and ∆′
3(0; 2, 1, 1) such that their intersections ∆3(1; 2, 2, 1)∩

∆3(0; 2, 1, 1) and ∆3(1; 2, 2, 1) ∩∆′
3(0; 2, 1, 1) are segments whose lengths are 2,

(vii) ∆3(0; 2, 2, 1), ∆3(0; 2, 1, 1) and ∆3(1; 2, 1, 1) such that their intersections ∆3(0; 2, 2, 1)∩
∆3(0; 2, 1, 1) and ∆3(0; 2, 2, 1) ∩∆3(1; 2, 1, 1) are segments whose lengths are 2,

(viii) ∆3(0; 2, 2, 2), ∆3(0; 2, 1, 1), ∆
′
3(0; 2, 1, 1) and ∆′′

3(0; 2, 1, 1) such that their inter-

sections ∆3(0; 2, 2, 2)∩∆3(0; 2, 1, 1), ∆3(0; 2, 2, 2)∩∆′
3(0; 2, 1, 1) and ∆3(0; 2, 2, 2)∩

∆′′
3(0; 2, 1, 1) are segments whose lengths are 2,

(ix) ∆3(1; 3, 1, 1) and ∆3(0; 3, 1, 1) such that their intersection ∆3(1; 3, 1, 1)∩∆3(0; 3, 1, 1)

is a segment whose length is 3,

(x) ∆3(0; 3, 1, 1) and ∆′
3(0; 3, 1, 1) such that their intersection ∆3(0; 3, 1, 1)∩∆3(0; 3, 1, 1)

is a segment whose length is 3, with one of T−1,

(xi) ∆3(0; 3, 2, 1), ∆3(0; 3, 1, 1) and ∆3(0; 2, 1, 1) such that their intersections ∆3(0; 3, 2, 1)∩
∆3(0; 3, 1, 1) and ∆3(0; 3, 2, 1) ∩ ∆3(0; 2, 1, 1) are segments whose lengths are 3

and 2, respectively,

(xii) ∆3(0; 4, 1, 1) and ∆′
3(0; 4, 1, 1) such that their intersection ∆3(0; 4, 1, 1)∩∆′

3(0; 4, 1, 1)

is a segment whose length is 4,

(xiii) three of T−1,

(xiv) one of T−2 and one of T−1.

(A-1) If S satisfies N ′
4 = 1, then it satisfies ♯V (S) = ♯∆Z − 2 and contains only one paral-

lelogram in the following list and the rest of S consists of triangles:

(i) ∆par
4 (2; 1, 1),

(ii) ∆par
4 (0; 2, 1), ∆3(0; 2, 1, 1) and ∆′

3(0; 2, 1, 1) such that their intersections ∆par
4 (0; 2, 1)∩

∆3(0; 2, 1, 1) and ∆par
4 (0; 2, 1) ∩∆′

3(0; 2, 1, 1) are segments whose lengths are 2,

(iii) ∆par
4 (1; 1, 1) with one of T−1,

(iv) ∆par
4 (0; 1, 1) with two of T−1,

(v) ∆par
4 (0; 1, 1) with one of T−2.
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(A-2) If S satisfies N ′
4 = 2, then it satisfies ♯V (S) = ♯∆Z − 1 and contains exactly two

parallelograms in the following list and the rest of S consists of triangles:

(i) ∆par
4 (1; 1, 1), ∆par

4 (0; 1, 1)

(ii) two ∆par
4 (0; 1, 1) with one of T−1.

(A-3) If S satisfies N ′
4 = 3, then ♯V (S) = ♯∆Z holds and S contains exactly three parallel-

ograms. Thus S has three ∆par
4 (0; 1, 1) and the rest of S consists of triangles whose

area is 1/2.

In the above list, by Remark 4.14 and Lemma 4.12, cases (vi), (vii), (ix), (xi) in (A-0)

does NOT occur. Furthermore, the following cases do NOT have a regular singularity by

Lemma 4.16:

• (ii), (v), (viii), (x), (xiii), (xiv) in (A-0),

• (ii), (iii), (iv), (v) in (A-1),

• (i), (ii) in (A-2),

• (A-3).

Among them, the refinement of the following cases do NOT have an irregular singularity

by Lemma 4.17 and Remark 4.18:

• (ii), (v), (viii), (x), (xiii), (xiv) in (A-0),

• (ii), (iii), (iv), (v) in (A-1),

• (i), (ii) in (A-2),

• (A-3).

The remaining cases are (i), (iii), (iv) and (xii) in (A-0) and (i) in (A-1), and they correspond

to the polygons ∆I,∆II,∆III,∆IV,∆V and ∆VI, respectively, by Lemma 4.2. Moreover, by

Lemma 4.4, 4.5, 4.6 and 4.7, these polygons are 1-tacnodal.

4.3.3 Case (B)

We assume that S is a TP-subdivision and satisfies ♯∂∆Z−♯(V (S)∩∂∆) = 1. By the latter

condition, S must have exactly one polygon P ∈ S such that P ∩∂∆ is a segment of length

2. By Lemma 1.15, we get

rk(TF ) = rkexp(TF ) = ♯∆Z − 4.
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By the definition of rkexp(TF ), we obtain

♯∆Z − 4 = ♯V (S)− 1−
N∑
k=1

(♯V (∆k)− 3)

= ♯V (S)− 1−N ′
4.

Since ♯V (S) ≤ ♯∆Z − 1, we have 0 ≤ N ′
4 ≤ 2.

(B-0) If S satisfies N ′
4 = 0, then S satisfies ♯V (S) = ♯∆Z − 3 and consists of triangles. Let

P ∈ S be a polygon which intersects ∂∆ as a segment of length 2. Then S satisfies

one of the following:

(i) P = ∆3(0; 2, 1, 1) and S contains two of T−1 or one of T−2,

(ii) P = ∆3(1; 2, 1, 1) and S contains one of T−1,

(iii) P = ∆3(2; 2, 1, 1),

(iv) P = ∆3(0; 2, 2, 2),

(v) P = ∆3(0; 2, 2, 1), and S contains one of T−1,

(vi) P = ∆3(1; 2, 2, 1),

(vii) P = ∆3(0; 2, 3, 1).

(B-1) If S satisfies N ′
4 = 1, then S satisfies ♯V (S) = ♯∆Z−2. Let P ∈ S be a polygon which

intersects ∂∆ as a segment of length 2. Then S satisfies one of the following:

(i) P = ∆par
4 (0; 2, 1) and ∆3(0; 2, 1, 1) such that their intersection P ∩∆3(0; 2, 1, 1)

is a segment of length 2,

(ii) P = ∆3(0; 2, 1, 1) and S contains ∆par
4 (1; 1, 1),

(iii) P = ∆3(1; 2, 1, 1) and S contains ∆par
4 (0; 1, 1),

(iv) P = ∆3(0; 2, 2, 1) and S contains ∆par
4 (0; 1, 1),

(v) P = ∆3(0; 2, 1, 1) and S contains ∆par
4 (0; 1, 1), and one of T−1.

(B-2) If S satisfies N ′
4 = 2, then S satisfies ♯V (S) = ♯∆Z and contains exactly two parallel-

ograms. Thus P = ∆3(0; 2, 1, 1) and S contains two ∆par
4 (0; 1, 1).

In the above list, by Lemma 4.12, the following cases do NOT occur:

• (v), (vi), (vii) in (B-0),

• (iv) in (B-1).

Furthermore, the following cases do NOT have a regular singularity by Remark 4.14

and Lemma 4.16:
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• (i), (ii), (iv) in (B-0),

• (i), (ii), (iii), (v) in (B-1),

• (B-2).

Among them, (iv) in (B-0) does NOT have an irregular singularity by Lemma 4.17 and

the other polygons except (iii) in (B-0) also do NOT have it since they have only one edge

of length more than 1, which should be on the boundary ∂∆, and this edge cannot be a

1-tacnodal edge. The remaining case is (iii) in (B-0) and this corresponds to the polygon

∆III by Lemma 4.2. Moreover, by Lemma 4.16 (3), this polygon is NOT 1-tacnodal.

4.3.4 Case (C)

We assume that S is NOT a TP-subdivision. Then

d(S) = ♯∆Z − 4−
{
♯V (S)− 1−

N∑
k=1

(♯V (∆k)− 3)
}

= ♯∆Z − ♯V (S)− 3 +

N∑
k=1

(♯V (∆k)− 3)

≥ −3 +

N∑
k=1

(♯V (∆k)− 3)

=
∑
m≥3

(m− 3)Nm − 3.

By 0 ≤ d(S) ≤ NS/2 due to Lemma 1.15, we get∑
m≥3

(m− 3)Nm ≤ −
∑
m≥2

N ′
2m + 5 and

∑
m≥2

N ′
2m ≤ 2.

We decompose the proof into the following three cases:

(C-0)
∑

m≥2N
′
2m = 0 and

∑
m≥3(m− 3)Nm ≤ 5,

(C-1)
∑

m≥2N
′
2m = 1 and

∑
m≥3(m− 3)Nm ≤ 4,

(C-2)
∑

m≥2N
′
2m = 2 and

∑
m≥3(m− 3)Nm ≤ 3.

(C-0) In this case, since N4+2N5+3N6+4N7+5N8 ≤ 5 and
∑

m≥2N
′
2m = 0, the possible

patterns are the following:

(i) N8 = 1 and N ′
8 = 0,

(ii) N7 = 1, N4 = 0, 1 and N ′
4 = 0,
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(iii) N6 = 1, N ′
4, N

′
6 = 0 and (N4, N5) = (0, 0), (1, 0), (2, 0), (0, 1),

(iv) N5 = 2, N4 = 0, 1 and N ′
4 = 0,

(v) N5 = 1, N4 = 0, 1, 2, 3 and N ′
4 = 0,

(vi) N4 = 1, 2, 3, 4, 5 and N ′
4 = 0.

In case (i), N8 = 1 and N ′
8 = 0. Since NS = 4, we get 0 ≤ d(S) ≤ 2. On the other

hand, any octagon has two or more inner lattice points (Lemma 4.11), so

d(S) = ♯∆Z − 4− {♯V (S)− 1− 5}

= ♯∆Z − ♯V (S) + 2

≥ 4.

This is a contradiction. Therefore case (i) does not occur. We can prove that the

above cases except the cases (v) with N4 = 0 and (vi) with N4 = 1, 2 do NOT occur

by the same argument.

Next, we observe the remaining cases.

Case (v) with N4 = 0. S has exactly one pentagon and the rest of S consists of

triangles. Then rkexp(S) = ♯V (S) − 3 holds. Therefore, the set (∆ ∩ Z2) \ V (S)

is exactly one lattice point. By Lemma 4.11 (2), the pentagon is ∆5(1; 1, 1, 1, 1, 1).

This polygon is equivalent to ∆VII by Lemma 4.2 (6). Moreover, by Lemma 4.5, the

pentagon is a 1-tacnodal polygon.

Case (vi) with N4 = 1. S has exactly one non-parallel quadrangle and the rest of S

consists of triangles. Since rkexp(S) = ♯V (S) − 2, the set (∆ ∩ Z2) \ V (S) consists

of two lattice points. Therefore, a possible non-parallel quadrangle ∆4(I; s, t, u, v) is

one of the following list:

(a) ∆4(0; 1, 1, 1, 1),

(b) ∆4(0; 2, 1, 1, 1),

(c) ∆4(0; 2, 2, 1, 1),

(d) ∆4(1; 1, 1, 1, 1),

(e) ∆4(1; 2, 1, 1, 1),

(f) ∆4(2; 1, 1, 1, 1).

Cases (a) and (c) do NOT occur by Lemma 4.11 and Lemma 4.12, respectively. The

polygons in (b) and (e) are NOT 1-tacnodal polygons by (4) of Lemma 4.16 and

Lemma 4.9, respectively. Also the polygon in (d) is NOT a 1-tacnodal polygon by
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[19, Lemma 4.2 (i)]. Notice that, by Remark 4.18, the polygon in (d) does NOT have

a 1-tacnodal edge.

By Lemma 4.2, the polygon (f) is equivalent to one of

∆VIII, ∆IX and Conv{(1, 0), (0, 1), (2, 1), (1, 3)}.

The polygons ∆VIII, ∆IX are 1-tacnodal polygons by Lemma 4.5. On the other

hand, the polygon Conv{(1, 0), (0, 1), (2, 1), (1, 3)} is NOT a 1-tacnodal polygon by

Lemma 4.16 (5) and does NOT have a 1-tacnodal edge by Remark 4.18.

If S contains the polygon in (b), since rkexp(S) = ♯∆Z − 3, the adjacent polygon

which shares the edge of length 2 of ∆4(1; 2, 1, 1, 1) must be either ∆3(0; 2, 1, 1) or

∆3(1; 2, 1, 1). Each of their intersection with ∆4(1; 2, 1, 1, 1) is NOT a 1-tacnodal

edge by (2) and (4) of Lemma 4.17. Therefore, any edge contained in S is NOT a

1-tacnodal edge.

If S contains the polygon (e), since rkexp(S) = ♯∆Z−4 = rk(S), the adjacent polygon

which shares the edge of length 2 of ∆4(1; 2, 1, 1, 1) must be ∆3(0; 2, 1, 1). This is a

dual subdivision of a tropical 1-tacnodal curve of type (E).

Case (vi) with N4 = 2. S has exactly two non-parallel quadrangles and the rest of S

consists of triangles. Since rkexp(S) = ♯V (S)− 3, the set (∆ ∩ Z2) \ V (S) consists of

exactly one lattice point. Therefore S contains ∆4(0; 2, 1, 1, 1) and ∆′
4(0; 2, 1, 1, 1) such

that their intersection is a segment whose length is 2. This is because a non-parallel

quadrangle must satisfy either “the number of interior lattice points is non-zero” or

“the polygon has an edge of length ≥ 2”, by Lemma 4.11. These polygons are NOT

1-tacnodal polygons by Lemma 4.16. Also their intersection is NOT a 1-tacnodal

edge by Lemma 4.17 (5).

(C-1) In this case, since N4 + 2N5 + 3N6 + 4N7 ≤ 4 and
∑

m≥2N
′
2m = 1, the following

patterns can occur:

(i) N6 = N ′
6 = 1, N4 = 0, 1 and N ′

4 = 0,

(ii) N4 = N ′
4 = 1, N6 = 1 and N ′

6 = 0,

(iii) N4 = 2, N ′
4 = 1 and N5 = 1,

(iv) N4 = N ′
4 = 1 and N5 = 1,

(v) N4 = 2, 3, 4 and N ′
4 = 1.

However, we can check that the cases, except case (v) with N4 = 2, are impossible by

the same argument as in case (i) in (C-0).
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We observe case (v) with N4 = 2. S contains a non-parallel quadrangle P and a

parallelogramQ, and the rest of S consists of triangles. Notice that, by Lemma 4.11, P

must satisfy either “the number of interior lattice points is non-zero” or “the polygon

has an edge of length ≥ 2”. Since rkexp(S) = ♯V (S) − 3, the set (∆ ∩ Z2) \ V (S)

consists of exactly one lattice point. Therefore P and Q must be either

• P = ∆4(1; 1, 1, 1, 1) and Q = ∆par
4 (0; 1, 1), or

• P = ∆4(0; 2, 1, 1, 1) and Q = ∆par
4 (0; 1, 1) such that the edge of length 2 of P

intersects a triangle ∆3(0; 2, 1, 1).

In both cases, the polygons are not 1-tacnodal by Lemma 4.16, Lemma 4.17 and

Remark 4.18.

(C-2) In this case, since N4 + 2N5 + 3N6 ≤ 3 and
∑

m≥2N
′
2m = 2, any possible subdivision

satisfies N4 = 3 and N ′
4 = 2. Since NS = 0, we get d(S) = 0. On the other hand,

since ♯V (S) ≤ ♯∆Z − 1 by Lemma 4.11,

d(S) = ♯∆Z − ♯V (S) ≥ 1.

This is a contradiction.

4.3.5 Case (D)

We assume that S is NOT a TP-subdivision and satisfies ♯∂∆Z − ♯(V (S) ∩ ∂∆) = 1. By

the former condition, we can apply the argument in case (C) to case (D) and obtain the

list of possible subdivisions as follows:

(1) (v) with N4 = 0 in (C-0),

(2) (vi) with N4 = 1 in (C-0),

(3) (vi) with N4 = 2 in (C-0),

(4) (v) with N4 = 2 in (C-1).

Case (1). S has exactly one pentagon and the rest of S consists of triangles. Then

rkexp(S) = ♯V (S) − 3 holds. By the boundary condition, the set (∆ ∩ Z2) \ V (S) is

empty. If S contains a triangle P whose intersection with ∂∆ is an edge of length 2,

then, by Lemma 4.11, S does NOT have a pentagon. Therefore, the possible pentagon is

∆5(0; 2, 1, 1, 1, 1), whose intersection with ∂∆ is an edge of length 2. However, the pentagon

does NOT exist by Lemma 4.12.

Case (2). S has exactly one non-parallel quadrangle and the rest of S consists of triangles.

By rkexp(S) = ♯V (S) − 2 and the boundary condition, the set (∆ ∩ Z2) \ V (S) consists of
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one lattice point. Therefore, the possible non-parallel quadrangle ∆4(I; s, t, u, v) is one of

the following list:

(a) ∆4(0; 1, 1, 1, 1),

(b) ∆4(0; 2, 1, 1, 1),

(c) ∆4(1; 1, 1, 1, 1),

Case (a) does NOT occur by Lemma 4.11. The polygon in (b) is NOT a 1-tacnodal

polygon by Lemma 4.16 (4). Also the polygon in (c) is NOT a 1-tacnodal polygon by

[19, Lemma 4.2 (i)]. Notice that, by Remark 4.18, the polygon in (c) does NOT have a

1-tacnodal edge.

If S contains the polygon in (b), since rkexp(S) = ♯∆Z − 4, the intersection of the

quadrangle ∆4(0; 2, 1, 1, 1) and ∂∆ is an edge of length 2. Thus the edge is NOT a 1-

tacnodal edge.

Case (3) and (4). S has exactly two non-parallel quadrangles and the rest of S consists of

triangles. By rkexp(S) = ♯V (S) − 3 and the boundary condition, the set (∆ ∩ Z2) \ V (S)

is empty. Therefore, such a subdivision S does NOT exist by the fact that a non-parallel

quadrangle must satisfy either “the number of interior lattice points is non-zero” or “the

polygon has an edge of length ≥ 2” in Lemma 4.11.

Remark 4.20 (The case of tropicalization having a non-isolated singularity). By the up-

per semi-continuity of the Milnor number, there is a possibility that a tropicalization has

non-isolated singularities. By Lemma 4.13 and the assumption of the rank, we can make

a list of polygons whose tropicalizations may have non-isolated singularities. For example,

the polygon ∆X in Figure J satisfies these conditions. In [19, Section 3.6], the refinement of

tropicalization along a non-isolated singularity is defined. Applying the method mechani-

cally, by simple calculation, we get that the exceptional polygon is ∆̂X shown on the right

in Figure J. 2
20

�X
�11 10 2

�̂X
�1
2

Figure J: Polygons ∆X and ∆̂X. The notation △ means a lattice point on the boundary
which is not a vertex and the notation ⋆ means an interior lattice point.
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Remark 4.21 (On a possibility of patchworking). As mentioned in the introduction, this

research aims to construct the tropical version of enumerative geometry of 1-tacnodal curves.

Therefore, we would like to lift the 1-tacnodal curve from a given degenerate 1-tacnodal

curve by patchworking. It is known that there is no obstruction if the singular point is

A1, and this is still true even if it is A2, which can be checked by a numerical criterion

of the vanishing of the obstruction constructed by Shustin (See [18, Theorem 4.1], or [19,

Lemma 5.4] for a tropical version). But, unfortunately, this criterion does not work if it is

A3 because of the following reason:

We recall a sufficient condition to apply patchworking [19, Lemma 5.5 (ii)], called

transversality. Let S be the dual subdivision of a tropical curve T , ∆1, . . . ,∆N be the

2-dimensional polygons of S and (C1, . . . , CN ) be a collection of complex curves such that

the Newton polygon of the defining polynomial fi of Ci is ∆i ∈ S and, if σij := ∆i∩∆j ̸= ∅,
f
σij

i = f
σij

j .

For an irreducible curve Ck for some k ∈ {1, . . . N}, if there is a union ∆−
k of edges of

∆k such that Ck satisfies the following inequality∑′
b(Ck, ξ) +

∑′′
b̃(Ck, Q) +

∑′′′
((Ck ·X(σ))− ϵ) <

∑
σ⊂∂∆

(Ck ·X(σ)),

where

• if C has a tacnode, then b(C, ξ) = 1 for both branches, if C is locally given by

{xpr + yqr = 0} for coprime integers p, q, then b̃(C, ξ) = p+ q − 1 for each branch,

•
∑′ ranges over all local branches ξ of Ck, centered at the points z ∈ Sing(Ck)∩ (C∗)2,

•
∑′′ ranges over all local branches Q of Ck, centered at the points z ∈ Sing(Ck) ∩
X(∂∆k), and

•
∑′′′ ranges over all non-singular points z of Ck on X(∂∆k) with ϵ = 0 if σ ⊂ ∆−

k and

ϵ = 1 otherwise,

then Ck is transversal.

Let V ⊂ X(∆III) be a curve which is constructed in Lemma 4.6. We can easily check∑′
b(V, ξ) = 0,

∑′′
b̃(V,Q) = 4,

∑′′′(
(V ·X(σ))− ϵ

)
≥ 0 and

∑
σ⊂∂∆

(V ·X(σ)) = 4.

Therefore V does not satisfy the above inequality.



Bibliography

[1] N. A’Campo, Singularities and Related Knots, Note by W.Gibson and M.Ishikawa.

Unpublished.

[2] L. Caporaso and J. Harris, Counting plane curves of any genus, Invent. Math. 131,

(1998), 345–392.

[3] M. Einsiedler, M. Kapranov and D. Lind, Non-Archimedean amoebas and tropical

varieties, J. Reine Angew. Math. 601 (2006), 139–157.

[4] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131. The

William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ,

1993.

[5] M. Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series

in Mathematics, 114. Published for the Conference Board of the Mathematical Sciences,

Washington, DC; by the American Mathematical Society, Providence, RI, 2011.

[6] S. M. Gusein-Zade, Intersection matrices for certein singularities of functions of two

variables, Funct. Anal. Appl. 8 (1974), 10–13.

[7] J. Harris and D. Morrison, Moduli of curves, Graduate Texts in Mathematics, 187,

Springer-Verlag, New York, 1998.

[8] M. Kazarian, Multisingularities, cobordisms, and enumerative geometry, Uspekhi Mat.

Nauk 58 (2003), no. 4, 29–88; translation in Russian Math. Surveys 58 (2003), no. 4,

665–724.

[9] D. Kerner, Enumeration of singular algebraic curves, Israel J. Math. 155 (2006), 1–56.

[10] S. Kleiman and R. Piene, Enumerating singular curves on surfaces, Algebraic geome-

try: Hirzebruch 70 (Warsaw, 1998), 209–238, Contemp. Math., 241, Amer. Math. Soc.,

Providence, RI, 1999.

[11] M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology and enu-

merative geometry, Comm. Math. Phys. 164 (1994), 525–562.

65



BIBLIOGRAPHY 66
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