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Abstract

Let (X,R) denote a commutative association scheme on s classes. For each integer

n > 2, we construct a bigger commutative association scheme having
(
n+s
s

)
− 1

classes on the vertex set Xn. This new scheme is called the extension of (X,R)

with length n. The extension schemes from one-class initial schemes are in fact the

Hamming association schemes, which are metric and cometric. This thesis serves as

one of the systematic studies on extensions schemes obtained from initial schemes

with at least two classes. Such commutative association schemes are neither metric

nor cometric.



Chapter 1

Introduction

An s-class (commutative) association scheme on a finite set X of vertices is a par-

tition {R1, . . . , Rs} of the edges of the complete graph for which the adjacency

matrices Ai of the subgraphs (X,Ri) satisfy certain axioms. First studied by statis-

ticians in the context of partially balanced designs, association schemes remain to

be objects of interest to this very day and are regarded as the most important uni-

fying concept in algebraic combinatorics. A special family of association schemes

known as metric and cometric schemes possesses many interesting regularity and

duality properties.

Examples of association schemes that are both metric and cometric are Ham-

ming schemes and Johnson schemes. Delsarte [18] used these examples as basis in

studying codes and designs from the point of view of association schemes. He in-

dicated how an association scheme with s classes on a finite set X can be extended

(by a natural process called extension) to produce another scheme with
(
n+s
s

)
− 1

classes on the set Xn. In particular, the special case at s = 1 yields the Hamming

scheme of length n over the alphabetX . The codewords of length n overX are then

viewed as vertices of the extension scheme. With this approach, Delsarte was able
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to cover various topics such as: finding an upper bound on the number of words

in codes of given length and minimum distance (the famous linear programming

bound), extending the concept of duality of linear codes to duality of additive codes

(generalized MacWilliams identity), and finding designs from codes (an analog of

Assmus–Mattson theorem on cometric schemes).

A fundamental tool in studying association schemes is the Bose–Mesner al-

gebra. In fact, the famous linear programming bound by Delsarte is based on

the representation theory of the Bose–Mesner algebra. In the 1990s, Terwilliger

[63, 64, 65] introduced a larger, non-commutative, semisimple matrix C-algebra

attached to each vertex of an association scheme. This contains the Bose–Mesner

algebra, and is now known as Terwilliger algebra. Recent advances show that the

representation theory of Terwilliger algebras proved to be invaluable in the study

of codes (and other areas). Schrijver [51], for one, used the Terwilliger algebra of

binary Hamming schemes along with semidefinite programming to improve upper

bounds on the number of words in codes with given length and minimum distance.

With the same approach, Gijswijt, Schrijver and Tanaka [22] used the Terwilliger

algebra of Hamming schemes to improve upper bounds for the non-binary case.

In studying codes and their Hamming weight enumerators (see Section 4.4.1),

we consider the Hamming association schemes. The theory of the Terwilliger al-

gebra has been most successful when the association scheme is both metric and

cometric, and Hamming schemes possess these two properties. A famous theorem

of Leonard [5, p. 263], [41], states that the class of metric and cometric associ-



3

ation schemes characterizes the univariate Askey–Wilson orthogonal polynomials

and some of its limiting cases. In particular, Hamming association schemes cor-

respond to univariate Krawtchouk polynomials. Go [23] described the irreducible

modules of the Terwilliger algebras of the binary Hamming association schemes.

She showed (implicitly) that the Terwilliger algebras are in this case homomorphic

images of the universal enveloping algebra U(sl2(C)) of the rank one Lie algebra

sl2(C). This relationship between univariate Krawtchouk polynomials and sl2(C)

are discussed further by Nomura and Terwilliger [49] at a more abstract linear al-

gebraic level. On the other hand, we consider an extension scheme called Lee

association schemes over Z4 when dealing with Z4-codes and their symmetrized

weight enumerators (see Section 4.4.2). Lee association schemes over Z4 are ex-

tensions of a 2-class commutative association scheme, and are neither metric nor

cometric. The structure of the Bose–Mesner algebra of Lee association schemes

is known as discussed in [24] or [44]. From the result of Mizukawa and Tanaka

[44], it follows that Lee schemes over Z4 correspond to bivariate Krawtchouk poly-

nomials, also known as Rahman polynomials. Recently, Iliev and Terwilliger [37]

studied Rahman polynomials from the point of view of the rank two Lie algebra

sl3(C) (see also [36]). The first objective of this paper is to describe in detail the

irreducible modules of the Terwilliger algebras of Lee association schemes over Z4.

In situations where we focus on a more complicated type of weight enumerator

of a block code (just like in [31], [57], [59]), we think of the code (say, of length n)

in question as lying in a structure much finer than a Hamming association scheme;

that is to say, codewords are vertices of an extension of an s-class commutative as-
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sociation scheme with s > 2. The resulting extension scheme is neither metric nor

cometric in this case. It turns out that the representation theory of Terwilliger alge-

bras of some extension schemes (together with available tools from multivariable

polynomial interpolation) is quite handy in proving an Assmus–Mattson-type the-

orem that works for more complicated weight enumerators (see Theorem 4.0.1 for

the original Assmus–Mattson theorem). This is our second objective in this paper.

Recently, there is a growing interest in studying spectra of graphs from the point

of view of quantum probability theory. In this perspective, the adjacency algebra

of a k-regular graph G with vertex set X and adjacency matrix A is viewed as an

algebraic probability space with respect to the tracial state ϕtr = |X|−1tr. Hence,

the matrix A is treated as a real random variable (with mean 0 and variance k), and

a unique probability measure νG on R exists (see (5.1)) such that

ϕtr

([
A√
k

]j)
=

∫
R
xj νG(dx) (j = 0, 1, 2, . . . ).

This νG is called the (normalized) spectral distribution of G, and is given by

νG

({
θj√
k

})
=
mj

|X|
(j = 0, 1, . . . , d)

where

spec(G) =

 θ0 θ1 · · · θd

m0 m1 · · · md

 .
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We consider the limit of νG when G “grows”, as an analogue of the classi-

cal central limit theorem. Hora [33] described various limit distributions for sev-

eral growing families of distance-regular graphs (cf. [17]) including the Hamming

graphs H(n, q). In the case of H(n, q), he obtained a Poisson distribution when

q/n → q′ (n → ∞) where 0 < q′ < ∞, and the standard Gaussian distribution

when q/n → 0 (n → ∞). Hora worked with the spectra directly in [33], but then

Hora, Obata, and others revisited, simplified, and generalized these results based on

the quantum decomposition

A = A+ + A◦ + A−

where A+, A◦, A− are non-commuting matrices in a larger ∗-algebra. Particularly,

the matrices A+, A◦, and A− are in the Terwilliger algebra of G (see [17, §16.6]).

Besides the Poisson and Gaussian distributions, many important univariate distri-

butions arise in this way, such as the exponential, geometric, gamma, and the two-

sided Rayleigh distributions (see [34] for more details).

We give a concrete bivariate example of this sort, as an attempt towards a mul-

tivariate extension of the theory. In our context, we take another regular graph H

(say, with valency `) having the same vertex set asG, and assume that the adjacency

matrix B of H commutes with A. This situation occurs for instance when H is the

complement of graph G. Thus, the algebra generated by A and B is viewed as an

algebraic probability space with respect to ϕtr. The pair (A,B) is treated as a pair

of real random variables, and a unique probability measure νG,H on R2 exists (see
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(5.2)) such that

ϕtr

([
A√
k

]j [
B√
`

]h)
=

∫
R2

xjyh νG,H(dxdy) (j, h = 0, 1, 2, . . . ).

This νG,H is called the (normalized) joint spectral distribution of G and H , and is

given by

νG,H

({(
θj√
k
,
τh√
`

)})
=
mj,h

|X|
(j = 0, 1, . . . , d, h = 0, 1, . . . , e).

where τ0 > · · · > τe are the distinct eigenvalues of H , and mj,h is the dimension

of the common eigenspace of (A,B) with respective eigenvalues (θj, τh). Note that

the covariance ϕtr(AB) for A and B equals 0 if and only if G and H have no edge

in common. We are interested in the limit of νG,H when G and H both grow, as an

analogue of the bivariate central limit theorem.

Our third objective is to prove a bivariate version of the result of Hora [33]

for the Hamming graphs mentioned above. H(n, q) is defined as the nth Cartesian

power K�nq of the complete graph Kq on q vertices. We will instead consider the

pair (G�n, G�n) of the nth Cartesian powers of a strongly regular graph G and its

complement G, and obtain as limits a bivariate Poisson distribution and the stan-

dard bivariate Gaussian distribution, together with an intermediate distribution. The

method of quantum decomposition is yet to be developed for the multivariate case,

and hence we will deal with the spectra of these graphs directly, as was done by

Hora in [33], though the discussions here become much more involved. We note

that the complete graphs are the connected regular graphs with precisely two dis-
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tinct eigenvalues, whereas the connected strongly regular graphs are those with

precisely three distinct eigenvalues. This comparison can be made clearer when

viewed in the framework of association schemes, and our choice of considering the

pair (G�n, G�n) above was in fact guided naturally by the work of Mizukawa and

Tanaka [44] on a construction of multivariate Krawtchouk polynomials from arbi-

trary association schemes.

The paper is organized as follows: In Chapter 2, we review basic concepts on

commutative association schemes (see Section 2.1); we recall Terwilliger algebras

and the notion of the inner distribution of a code (see Section 2.2); we discuss trans-

lation association schemes and recall the notion of duality among additive codes

(see Section 2.3); and we review some important properties of extensions of com-

mutative association schemes (including Hamming association schemes) and recall

a generalized MacWilliams identity (see Section 2.4).

In Chapter 3, we provide a resolution to the first objective which requires rep-

resentation theory of symmetric groups and special linear Lie algebras. We give a

brief introduction to the representation theory of symmetric groups in Section 3.1.

We discuss irreducible modules of the special linear Lie algebra (from two points of

view), and recall the Schur–Weyl duality (on symmetric groups and special linear

Lie algebra) in Section 3.2.

In Chapter 4, we prove a general Assmus–Mattson-type theorem that works for

more complicated kinds of weight enumerator. The proofs (provided in Section 4.3)
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requires some techniques from multivariate polynomial interpolation (reviewed in

Section 4.1). Some examples are given in Section 4.4.

In Chapter 5, we provide a resolution to the third objective. We review ba-

sic definitions about graphs and state the main theorem in Section 5.1. We recall

important properties of strongly regular graphs in Section 5.2. We prove the main

theorem in Section 5.3. In Section 5.4, we demonstrate the main theorem with some

specific families of strongly regular graphs.

The entireties of Chapters 3, 4, and 5, are based on [45], [47], and [46], respec-

tively.



Chapter 2

Preliminary Concepts

In this chapter, we review some basic concepts concerning commutative associ-

ation schemes and related algebras. We also review extensions of commutative

association schemes and discuss some examples. We advise the reader to refer to

[5, 13, 18, 19, 42] for a more thorough discussion of the topic. Throughout the

thesis, N denotes the set of all nonnegative integers.

Let X denote a nonempty finite set. Let V denote the vector space over C of

column vectors with coordinates indexed by X . We endow V with a standard basis

{x̂ : x ∈ X} and a Hermitian inner product 〈x̂, ŷ〉 = δxy (x, y ∈ X). For every

subset C ⊂ X , let Ĉ =
∑

x∈C x̂ denote its characteristic vector. We will naturally

identify End(V ) with the C-algebra of complex matrices with rows and columns

indexed byX . The adjoint (or conjugate-transpose) ofA ∈ End(V ) will be denoted

by A†. Let R = {R0, R1, . . . , Rs} denote a set of nonempty binary relations on X .

For each integer 0 6 i 6 s, let Ai ∈ End(V ) denote the matrix such that

(Ai)xy =

 1 if (x, y) ∈ Ri,

0 otherwise,
(x, y ∈ X).
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In other words, Ai is the adjacency matrix of the (directed) graph (X,Ri). We use

the above notations throughout the chapter.

2.1 Commutative association schemes

The pair (X,R) is called a commutative association scheme with s classes if each

of the following conditions is satisfied:

(AS1) A0 = I , the identity matrix;

(AS2)
∑s

i=0Ai = J , the all-ones matrix;

(AS3) A†i ∈ {A0, A1, . . . , As} for 0 6 i 6 s;

(AS4) AiAj = AjAi ∈M :=
∑s

k=0 CAk for 0 6 i, j 6 s.

Unless otherwise stated, we assume that (X,R) is a commutative association

scheme with s classes. It follows from (AS1), (AS2), and (AS4) that M is an

(s+ 1)-dimensional linear subspace of End(V ) which is a commutative C-algebra.

We call M the Bose–Mesner algebra of (X,R). By (AS3), M is closed under †,

and so it is semisimple. Consequently, M has a basis {Ei}si=0 consisting of the

primitive idempotents, that is, EiEj = δijEi,
∑s

i=0 Ei = I . We will always set

E0 = |X|−1J.

We note that the Ei are Hermitian positive semidefinite matrices. By (AS2), M is

also closed under entrywise (or Hadamard or Schur) multiplication, denoted ◦. The

Ai are the primitive idempotents of M with respect to this multiplication, that is,
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Ai ◦ Aj = δijAi,
∑s

i=0 Ai = J .

The intersection numbers pkij and the Krein parameters qkij (0 6 i, j, k 6 s) of

(X,R) are defined by the equations

AiAj =
s∑

k=0

pkijAk, Ei ◦ Ej = |X|−1

s∑
k=0

qkijEk.

Clearly, the pkij are non-negative integers. On the other hand, since Ei ◦ Ej (being

a principal submatrix of Ei ⊗Ej) is positive semidefinite, it follows that the qkij are

real and non-negative.

Since both the Ai and the Ei are bases for M , we find change-of-basis matrices

P = [Pji] and Q = [Qji] such that

Ai =
s∑
j=0

PjiEj, Ei = |X|−1

s∑
j=0

QjiAj. (2.1)

This leads to

PQ = QP = |X|I. (2.2)

We refer to P andQ as the first and the second eigenmatrix of (X,R), respectively.

Note that P0i is the degree (both in and out) of the regular graph (X,Ri), and that

Q0i is equal to the rank of Ei. Moreover, we have

Pi0 = Qi0 = 1 (0 6 i 6 s). (2.3)
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2.2 Terwilliger algebras

We recall the Terwilliger algebra. Fix a base vertex x0 ∈ X , and define the diagonal

matrices E∗i = E∗i (x0), A∗i = A∗i (x0) (0 6 i 6 s) in End(V ) by

(E∗i )xx = (Ai)x0x, (A∗i )xx = |X|(Ei)x0x (x ∈ X).

Note that E∗iE
∗
j = δijE

∗
i ,
∑s

i=0E
∗
i = I , and moreover

A∗iA
∗
j =

s∑
k=0

qkijA
∗
k, A∗i =

s∑
j=0

QjiE
∗
j .

The E∗i and the A∗i are called the dual idempotents and the dual adjacency matrices

of (X,R) with respect to x0, respectively. They form two bases of the dual Bose–

Mesner algebra M∗ = M∗(x0) of (X,R) with respect to x0. The Terwilliger

algebra T = T (x0) (also known as subconstituent algebra) of (X,R) with respect

to x0 is the C-subalgebra of End(V ) generated by M and M∗ [63, 64, 65]. The

following are relations in T (cf. [63, Lemma 3.2]):

E∗iAjE
∗
k = 0 ⇐⇒ pkij = 0; EiA

∗
jEk = 0 ⇐⇒ qkij = 0. (2.4)

Since T is closed under †, it is semisimple and any two non-isomorphic irreducible

T -modules in the standard module V are orthogonal. Define a partition

X = X0 tX1 t · · · tXs (2.5)
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where

Xi = {x ∈ X : (x0, x) ∈ Ri} (0 6 i 6 s).

Observe that X̂i = A†i x̂0 = E∗i X̂ for every 0 6 i 6 s, and so it is immediate to see

that the (s+ 1)-dimensional subspace

s∑
i=0

CX̂i = Mx̂0 = M∗X̂

is an irreducible T -module, called the primary T -module. It has a basis consisting

of the vectors vi = A†i x̂0 ∈ E∗i V for 0 6 i 6 s and another basis consisting of the

vectors v∗j = A∗†j X̂ ∈ EjV for 0 6 j 6 s.

For every irreducible T -module W ⊂ V , define the sets

Ws = {0 6 i 6 s : E∗iW 6= 0} and W ∗
s = {0 6 i 6 s : EiW 6= 0}.

We call Ws and W ∗
s the support and the dual support of W , respectively. We say

W is thin (resp. dual thin) if dim E∗iW 6 1 for all i (resp. dim EjW 6 1 for all j).

Since the one-dimensional subspaces E0V and E∗0V are contained in the primary

T -module, it follows that the primary T -module is the unique irreducible T -module

that has support and dual support both equal to {0, 1, . . . , s}.

We end this section with concepts from coding theory. We shall be using this

information in the succeeding sections of the chapter. Let C denote a subset of X .

For convenience, we call C a code if 1 < |C| < |X|. For the moment, assume that

C is a code. The inner distribution of C is the vector a = (a0, a1, . . . , as) ∈ Rs+1
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defined by

ai = |C|−1〈Ĉ, AiĈ〉 = |C|−1 · |Ri ∩ (C × C)| (0 6 i 6 s).

Observe that (cf. (2.2), (2.3))

a0 = 1,
s∑
i=0

ai = |C|, (aQ)0 = |C|,
s∑
i=0

(aQ)i = |X|.

Clearly, the ai are non-negative. On the other hand, from (2.1) it follows that

〈Ĉ, EiĈ〉 = |X|−1|C| (aQ)i (0 6 i 6 s). (2.6)

Since theEi are positive semidefinite, it follows that the (aQ)i are also non-negative.

Delsarte’s famous linear programming bound [18] on the sizes of codes is based

on this simple observation. The vector aQ ∈ Rs+1 is often referred to as the

MacWilliams transform of a. We remark the following:

(aQ)i = 0 ⇐⇒ EiĈ = 0.

2.3 Translation association schemes

Suppose X is endowed with the structure of a finite abelian group (written addi-

tively) with identity element 0. We call (X,R) a translation association scheme

[13, §2.10] if for all 0 6 i 6 s and z ∈ X , (x, y) ∈ Ri implies (x+ z, y + z) ∈ Ri.

For the rest of this section, assume that (X,R) is a translation association
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scheme. For convenience, we will always choose 0 as the base vertex. (Note that

the automorphism group of (X,R) is transitive on X .) Observe that

Ri = {(x, y) ∈ X ×X : y − x ∈ Xi} (0 6 i 6 s).

Let X∗ denote the character group of X with identity element ι. To each ε ∈ X∗

we associate the vector

ε̂ = |X|−1/2
∑
x∈X

ε(x) x̂ ∈ V,

so that

〈x̂, ε̂〉 = |X|−1/2ε(x) (x ∈ X, ε ∈ X∗). (2.7)

Note that the ε̂ form an orthonormal basis of V by the orthogonality relations for

the characters. Moreover, it follows that

Aiε̂ =

(∑
x∈Xi

ε(x)

)
ε̂ (0 6 i 6 s, ε ∈ X∗).

This shows that each of the ε̂ is an eigenvector for M , and hence belongs to one of

the EiV . Thus, we have a partition

X∗ = X∗0 tX∗1 t · · · tX∗s ,

given by

X∗i = {ε ∈ X∗ : ε̂ ∈ EiV } (0 6 i 6 s).
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Note that X∗0 = {ι}, and that

Ei =
∑
ε∈X∗i

ε̂ ε̂† (0 6 i 6 s). (2.8)

Define the set R∗ = {R∗0, R∗1, . . . , R∗s} of nonempty binary relations on X∗ by

R∗i = {(ε, η) ∈ X∗ ×X∗ : ηε−1 ∈ X∗i } (0 6 i 6 s).

Then it follows from the orthogonality relations and (2.8) that

A∗i =
∑

(ε,η)∈R∗i

ε̂ η̂† (0 6 i 6 s).

In other words, the matrix representing A∗i with respect to the orthonormal basis

{ε̂ : ε ∈ X∗} of V is precisely the adjacency matrix of the graph (X∗, R∗i ). It turns

out that the pair (X∗,R∗) is again a translation association scheme, called the dual

of (X,R). In particular, the qkij are the intersection numbers of (X∗,R∗), so that

these are again non-negative integers in this case. We also note that (X∗,R∗) has

eigenmatrices P ∗ = Q and Q∗ = P , and that

Pji =
∑
x∈Xi

ε(x) (ε ∈ X∗j ), Qji =
∑
ε∈X∗i

ε(x) (x ∈ Xj).

We will view V together with the basis {ε̂ : ε ∈ X∗} as the standard module for

(X∗,R∗), and choose ι as the base vertex.

A code C in X is called an additive code if it is a subgroup of X . Assume

for the moment that C is an additive code, and let a = (a0, a1, . . . , as) be its inner
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distribution. Observe that

ai = |Xi ∩ C| (0 6 i 6 s),

and hence a is also called the weight distribution of C in this case. The dual code

of C is the subgroup C⊥ in X∗ defined by

C⊥ = {ε ∈ X∗ : ε(x) = 1 for all x ∈ C}.

From (2.7) it follows that

Ĉ = |X|−1/2 |C|
∑
ε∈C⊥

ε̂. (2.9)

In other words, Ĉ is a scalar multiple of the characteristic vector of C⊥ with respect

to the basis {ε̂ : ε ∈ X∗}. We now observe that

〈Ĉ, EiĈ〉 = |X|−1|C|2 · |X∗i ∩ C⊥| (0 6 i 6 s). (2.10)

In particular, combining this with (2.6), we have

|X∗i ∩ C⊥| = |C|−1(aQ)i (0 6 i 6 s),

so that |C|−1(aQ) gives the weight distribution of C⊥.

The group operation on X∗ is multiplicative. In many cases (cf. Section 4.4),
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we fix a (non-canonical) isomorphism X → X∗ (x 7→ εx) such that

εx(y) = εy(x) (x, y ∈ X). (2.11)

Then the dual code of an additive code in X becomes again an additive code in X .

For more information about translation association schemes, the reader may

refer to [13, §2.10], [18, Chapter 6], and [42, §6].

2.4 Extensions of commutative association schemes

and Hamming association schemes

For the rest of this chapter, we fix an integer n ≥ 2. Delsarte [18, §2.5] gave a

construction of a new commutative association scheme from (X,R) with vertex

set Xn as follows. For a sequence α = (α1, α2, . . . , αs) ∈ Ns, let |α| =
∑s

i=1 αi.

For any two vertices x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Xn, define the

composition of x,y to be the vector c(x,y) = (c1, c2, . . . , cs) ∈ Ns, where

ci = |{` : (x`, y`) ∈ Ri}| (1 6 i 6 s).

It is clear that |c(x,y)| 6 n. For every α ∈ Ns with |α| 6 n, define the binary

relationRα on Xn by

Rα = {(x,y) ∈ Xn ×Xn : c(x,y) = α}.
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Let

Symn(R) = {Rα : α ∈ Ns, |α| 6 n}.

Then it follows that the pair (Xn, Symn(R)) is a commutative association scheme,

called the extension of (X,R) of length n. We identify its standard module with

vector space V ⊗n so that x̂ := x̂1 ⊗ x̂2 ⊗ · · · ⊗ x̂n for x = (x1, x2, . . . , xn) ∈ Xn.

For every α = (α1, α2, . . . , αs) ∈ Ns with |α| 6 n, the 0-1 adjacency matrix

Aα ∈ End(V ⊗n) of the graph (Xn,Rα) is then given by

Aα =
∑

i1,i2,...,in

Ai1 ⊗ Ai2 ⊗ · · · ⊗ Ain , (2.12)

where the sum is over i1, i2, . . . , in ∈ N such that

{i1, i2, . . . , in} = {0n−|α|, 1α1 , 2α2 , . . . , sαs}

as multisets. In particular, the Bose–Mesner algebra M of (Xn, Symn(R)) co-

incides with the nth symmetric tensor space of M . Similar expressions hold for

the primitive idempotents, dual idempotents and the dual adjacency matrices of

(Xn, Symn(R)), denoted henceforth by the Eα, the E∗α and the A∗α, respectively.

For simplicity, we will always choose x0 := (x0, x0, . . . , x0) ∈ Xn as the base ver-

tex. We denote the corresponding dual Bose–Mesner algebra and the Terwilliger

algebra byM ∗ and T , respectively. We also consider the partition

Xn =
⊔
α∈Ns
|α|6n

(Xn)α
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corresponding to (2.5), i.e.,

(Xn)α = {x ∈ Xn : (x0,x) ∈ Rα}.

Let {ei : 1 6 i 6 s} be the standard basis of Rs. Then in view of (2.3), we have

Aei =
∑
α∈Ns
|α|6n

(
s∑
j=0

αjPji

)
Eα, A∗ei =

∑
α∈Ns
|α|6n

(
s∑
j=0

αjQji

)
E∗α, (2.13)

where α0 := n − |α|. More generally, Mizukawa and Tanaka [44] described the

eigenmatrices of (Xn, Symn(R)) in terms of certain s-variable hypergeometric

orthogonal polynomials which generalize the Krawtchouk polynomials (see also

[36, 37]). Let pγαβ (resp. qγαβ) denote the intersection numbers (resp. Krein param-

eters) of (Xn, Symn(R)). Then, for all 1 6 i 6 s and β, γ ∈ Ns with |β|, |γ| 6 n,

we have

pγeiβ 6= 0 ⇐⇒ γ ∈
{
β − ej + ek : pkij 6= 0

}
, (2.14)

where we set e0 := 0. A similar result holds for the qγeiβ .

Let ξ = (ξ0, ξ1, . . . , ξs) denote a sequence of s + 1 mutually commuting inde-

terminates. For every α ∈ Ns with |α| 6 n, we let

ξα = ξ
n−|α|
0 ξα1

1 ξα2
2 . . . ξαss . (2.15)

Then it follows from (2.12) that

(
s∑
i=0

ξiAi

)⊗n
=
∑
α∈Ns
|α|6n

ξαAα,
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and similarly for the Eα. Observe that

s∑
i=0

ξiEi = |X|−1

s∑
i=0

(ξQT)iAi.

Combining these comments, we have (cf. [24, 62])

∑
α∈Ns
|α|6n

ξαEα = |X|−n
∑
α∈Ns
|α|6n

(ξQT)αAα. (2.16)

(Here, we extend the notation (2.15) to the sequence ξQT as well.)

Now, let C denote a code in Xn with inner distribution a = (aα)α∈Ns, |α|6n.

Consider the polynomial wC(ξ) in R[ξ] = R[ξ0, ξ1, . . . , ξs] defined by

wC(ξ) =
∑
α∈Ns
|α|6n

aαξ
α.

Note that wC(ξ) is homogeneous of degree n. From (2.16) it follows that

|C|−1
∑
α∈Ns
|α|6n

〈Ĉ,EαĈ〉ξα = |X|−nwC(ξQT). (2.17)

Hence we can read which of the EαĈ vanish from the expansion of wC(ξQT).

Suppose for the moment that (X,R) is a translation association scheme, and

thatC is an additive code inXn. In this case, wC(ξ) is called the weight enumerator

of C. It should be remarked that (Xn, Symn(R)) and (X∗n, Symn(R∗)) are dual
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to each other. By (2.10) and (2.17) we have (cf. [24])

wC⊥(ξ) = |C|−1wC(ξQT).

This generalizes the well-known MacWilliams identity.

In proving our results, we need to consider extensions of length n of one-class

association scheme (X, {R0, (X×X)\R0}). This special fusion of (Xn, Symn(R))

is called the Hamming association scheme H(n, |X|). Observe that H(n, |X|) has

n classes, and that the associated matrices as well as the partition of the vertex set

Xn are parametrized by the integers 0, 1, . . . , n, i.e.,Ai,Ei,E
∗
i ,A

∗
i , and also (Xn)i

(0 6 i 6 n). We denote the corresponding Bose–Mesner algebra, the dual Bose–

Mesner algebra, and the Terwilliger algebra by MH ,M
∗
H , and TH , respectively.

Note that

A1 =
n∑
i=0

θiEi, A∗1 =
n∑
i=0

θ∗iE
∗
i , (2.18)

where

θi = θ∗i = n(|X| − 1)− |X|i (0 6 i 6 n).

Below we collect important facts about the irreducible TH-modules, most of

which can be found in Terwilliger’s lecture notes [67]. See also [61, §5.1]. (Some

of the results hold in the wider class of metric and cometric association schemes.)

Lemma 2.4.1. Let W be an irreducible TH-module.

(i) A1E
∗
iW ⊂ E∗i−1W +E∗iW +E∗i+1W (0 6 i 6 n), whereE∗−1 = E∗n+1 = 0.

(ii) A∗1EiW ⊂ Ei−1W +EiW +Ei+1W (0 6 i 6 n), where E−1 = En+1 = 0.
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(iii) There are non-negative integers r and d such that

n− 2r 6 d 6 n− r, (2.19)

and

dimE∗iW = dimEiW =


1 if r 6 i 6 r + d,

0 otherwise,
(0 6 i 6 n).

(iv) E∗iA1E
∗
jW 6= 0 if |i− j| = 1 (r 6 i, j 6 r + d).

(v) EiA
∗
1EjW 6= 0 if |i− j| = 1 (r 6 i, j 6 r + d).

The integers r and d in (iii) above are called the endpoint and the diameter of W ,

respectively. The integer 2r + d − n is called the displacement of W (see [66]).

From (2.19) it follows that

0 6 2r + d− n 6 n.

For every 0 6 c 6 n, let Uc be the span of the irreducible TH-modules in V ⊗n with

displacement c. Then we have

V ⊗n =
n⊕
c=0

Uc.

and this decomposition is called the displacement decomposition of V ⊗n. In [67],

Terwilliger showed that

U0 = (Cx̂0 + CX̂)⊗n. (2.20)



Chapter 3

On Lee association schemes over Z4 and

their Terwilliger algebra

Codes over Z4 are an active area of research. Hammons, Kumar, Calderbank,

Sloane, and Solé [28] studied Z4-linear codes to understand via the Gray map the

‘duality’ of several families of nonlinear binary codes such as the Kerdock codes

and the Preparata codes. Certain Z4-codes are also relevant to the study of vertex

operator algebras (see [30] for example). The aim in this chapter is to explore the

algebraic structure of the space Zn4 underlying the Z4-codes of length n.

When dealing with Z4-codes of length n and their symmetrized weight enumer-

ators (see Section 4.4.2), we consider the so-called Lee association scheme L(n)

with vertex set Zn4 . The structure of the Bose–Mesner algebra of L(n) is known

as discussed in [24] or [44]. In this chapter, we focus on the Terwilliger algebra

of L(n), and determine all of its irreducible modules. We show that there is a ho-

momorphism from the universal enveloping algebra U(sl3(C)) to the Terwilliger

algebra of L(n), and that the latter is generated by this image together with the cen-

ter. It follows that in this case every irreducible module of the Terwilliger algebra
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has the structure of an irreducible sl3(C)-module. Our main results in this chapter

are Theorems 3.3.12, 3.3.13, and 3.3.14. The situation here turns out to be much

more complicated than in the case of the binary Hamming schemes (see Go [23]),

and in proving our theorems we invoke several facts from the representation theory

of the symmetric groups and the Lie algebras slm(C). We plan to discuss applica-

tions of the Terwilliger algebra to Z4-codes in a future paper.

This chapter is organized as follows: In Section 3.1, we give a brief background

on the representation theory of the symmetric groups and recall some known prop-

erties of the Specht modules. In Section 3.2, we recall some important results in

representation theory particularly on the connection between Specht modules and

irreducible slm(C)-modules. Also, we describe the irreducible slm(C)-modules

from the points of view of highest weight theory and of Weyl modules. Finally, we

prove our main results in Section 3.3. The entire chapter is based on [45].

3.1 Specht modules

In this section, we discuss irreducible modules of the symmetric groups which are

called Specht modules. There are a lot of available references for this topic, for

instance see [20, 25, 50, 56]

Throughout this section, let k denote a positive integer. A partition λ of k is a
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sequence λ = (λ0, λ1, . . . , λn−1) of nonnegative integers satisfying the conditions

λ0 > λ1 > · · · > λn−1 and
n−1∑
i=0

λi = k.

In symbols, we write λ ` k. Naturally, we identify λ with (λ0, . . . , λn−1, 0, . . . , 0)

so that length is immaterial. We say λ has l parts and we write part(λ) = l if l is

the largest integer such that λl 6= 0. For each positive integer l, we define

P (k, l) = {λ ` k : part(λ) 6 l}

and we set P (0, l) := {(0, . . . , 0)} for convenience. Let λ and ε be partitions of k.

We say that λ dominates ε and we write λ ≥ ε whenever

λ0 + · · ·+ λi > ε0 + · · ·+ εi (∀i ∈ N).

Observe that ≥ is a partial order on the set of all partitions of k.

To each partition λ ` k we associate a Ferrers diagram, an array of k boxes ar-

ranged in rows and columns such that the ith row has λi boxes for every i ∈ N. On

the other hand, a λ-tableau (also known as a Young tableau of shape λ) is an array

t obtained by filling the boxes of the Ferrers diagram associated to λ with integers

from 1 to k without repetitions. A λ-tableau t is said to be standard if its entries are

strictly increasing from left to right along each row and from top to bottom along

each column. We denote by STab(λ) the set of all standard λ-tableaux.
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Two λ-tableaux t, t′ are said to be row equivalent (resp. column equivalent) if

the entries in the corresponding rows (resp. columns) of t and t′ are the same up

to permutation. Let Sk denote the symmetric group on k objects. We observe that

Sk acts transitively on the set of all λ-tableaux by applying σ ∈ Sk to the entries

in the boxes. The result of the action of σ on the λ-tableau t will be denoted by

σt. If t and σt are row equivalent (resp. column equivalent), we say σ is a row

stabilizer (resp. column stabilizer) of t. Observe that the set of all row stabilizers

(resp. column stabilizers) of t forms a subgroup of Sk.

Let λ ` k and let t ∈ STab(λ). Denote by Rt and Ct the subgroups of Sk

consisting of row and column stabilizers of t, respectively. Define an element st in

the group algebra C[Sk] such that

st =
∑
σ∈Ct

sgn(σ)σ
∑
ψ∈Rt

ψ

where sgn denotes the sign character of Sk. We mention that st is proportional to

an idempotent gt (see [20, Lemma 5.13.3] or [25, Lemma 9.3.8]). We call gt the

normalized Young symmetrizer associated to t.

Theorem 3.1.1. Let λ ` k and let t ∈ STab(λ). Then the subspace Vλ = C[Sk]gt

of C[Sk] is an irreducible module of C[Sk] under left multiplication and is inde-

pendent of t up to isomorphism. Moreover, every irreducible module of C[Sk] is

isomorphic to Vλ for a unique λ.

Proof. See Theorem 5.12.2 and Section 5.13 of [20].

The spaces Vλ are called the Specht modules and the collection {Vλ | λ ` k}
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forms a complete set of mutually non-isomorphic irreducible modules for C[Sk].

Remark 3.1.2. In other references such as [50] and [56], the Specht modules are

defined in terms of polytabloids. In this setup, Theorem 3.1.1 is proven using the

so-called submodule theorem (see [50, Theorem 2.4.4] or [56, Theorem 10.2.13]).

In addition, the set of all polytabloids associated to a standard λ-tableau forms a

basis for the Specht module Vλ (see [50, Theorem 2.5.2]). Thus dim(Vλ) is equal

to the number of standard λ-tableaux. This quantity can be computed using known

formulas which are as follows:

Consider the Ferrers diagram of λ ` k with part(λ) = l. To every box, we

associate an ordered pair (i, j) of nonnegative integers such that 0 6 i 6 l − 1 is

its row position and 1 6 j 6 λi is its column position. By the hook-length hλ(i, j)

we mean the number of boxes (a, b) such that either a = i and b > j or a > i and

b = j. Then the dimension of Vλ is given by

dim(Vλ) =
k!∏
hλ(i, j)

where the product ranges to all boxes (i, j) of the Ferrers diagram of λ. This for-

mula is called the hook-length formula and is proven by Frame, Robinson and Thrall

in 1954 (see [50, Section 3.10]). The second one is due to Frobenius and Young,

and is called the determinantal formula. To state the formula, we set 1/c! = 0

whenever c < 0. Then the dimension of Vλ is given by

dim(Vλ) = k! det
[

1

(λi − i+ j)!

]l−1

i,j=0

.

This formula is much older than the hook-length formula (see [50, Section 3.11]).
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3.2 sl(V )-modules

Throughout this section, let V denote an n-dimensional vector space over C. The

Lie algebra sl(V ) is the vector space over C of traceless linear operators on V to-

gether with the Lie bracket [x, y] = xy− yx for all x, y ∈ sl(V ). Fixing an ordered

basis for V means we may identify the linear operators on V with n × n matrices

and write sl(V ) = sln(C). In this section we discuss the irreducible modules for

sl(V ) from two points of view. The first is described as follows: For every σ ∈ Sk

and for vectors v1, . . . , vk ∈ V , define σ(v1⊗ · · · ⊗ vk) = vσ−1(1)⊗ · · · ⊗ vσ−1(k) so

that V ⊗k becomes a module for C[Sk]. Then for every λ ∈ P (k, n) and for every

t ∈ STab(λ), the space gt(V ⊗k) is an irreducible module for sl(V ) and is called a

Weyl module. The other one is by means of a theorem of the highest weight. This

states that every irreducible sl(V )-module has a unique highest weight and two ir-

reducible modules with the same highest weight are isomorphic. We establish the

connection between these two points of view in the latter part of the section. The

reader may refer to [20, 25, 27, 35] for more background information.

Let gl(V ) be the Lie algebra of linear operators on V with the usual Lie bracket.

Similarly, we write gl(V ) = gln(C) if an ordered basis for V is fixed. Let I denote

the identity operator in gl(V ). For σ ∈ Sk and for operators M1, . . . ,Mk ∈ gl(V ),

define σ(M1⊗ · · · ⊗Mk) = Mσ−1(1)⊗ · · · ⊗Mσ−1(k) so that gl(V ) acts on V ⊗k by

F (v1 ⊗ · · · ⊗ vk) =
1

(k − 1)!

∑
σ∈Sk

σ(F ⊗ I ⊗ · · · ⊗ I)(v1 ⊗ · · · ⊗ vk) (3.1)

for every F ∈ gl(V ). We see that the space V ⊗k supports a module structure for
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both the group algebra C[Sk] and the universal enveloping algebra U(gl(V )).

Theorem 3.2.1. (Schur-Weyl duality) LetA and B denote the homomorphic images

of C[Sk] and U(gl(V )) in End(V ⊗k), respectively. Then each of the following

statements holds:

i) A and B are the centralizers of each other.

ii) A and B are semisimple and in particular V ⊗k is a semisimple gl(V )-module.

iii) V ⊗k =
⊕

λ`k Vλ⊗Lλ is a direct sum decomposition intoA⊗B-modules where

{Vλ} are Specht modules and {Lλ} are some non-isomorphic irreducible mod-

ules for gl(V ) or zero.

Proof. This is found in [20, Theorem 5.18.4] which is in fact a consequence of the

double centralizer theorem [20, Theorem 5.18.1].

According to the Weyl character formula [20, Theorem 5.22.1], dim(Lλ) is zero

if and only if part(λ) > n. Thus V ⊗k decomposes into irreducible gl(V )-modules

V ⊗k =
⊕

λ∈P (k,n)

Vλ ⊗ Lλ ∼=
⊕

λ∈P (k,n)

dim(Vλ) Lλ. (3.2)

In other words, a complete set of mutually non-isomorphic irreducible gl(V )-modules

on V ⊗k is in bijection with the set P (k, n).

Lemma 3.2.2. On the space V ⊗k, a complete set of mutually non-isomorphic ir-

reducible modules for gl(V ) is also a complete set of mutually non-isomorphic

irreducible modules for sl(V ).
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Proof. Let W denote a subspace of V ⊗k. Note that every operator F ∈ gl(V ) can

be written as F = S+ cI where S ∈ sl(V ) and c ∈ C. From this and (3.1), we find

W is an irreducible sl(V )-module if and only if W is an irreducible gl(V )-module.

Suppose W is a gl(V )-module. Let W ′ denote a gl(V )-module on V ⊗k and let

f : W → W ′ be a vector space isomorphism. Then for all w ∈ W we have

f(Mw)−Mf(w) = f((S + cI)w)− (S + cI)f(w)

= f(Sw + ckw)− (Sf(w) + ckf(w))

= f(Sw)− Sf(w).

Hence f is an isomorphism of gl(V )-modules if and only if f is an isomorphism of

sl(V )-modules.

Lemma 3.2.3. Let λ ∈ P (k, n). Then for every standard λ-tableau t, the Weyl

module gt(V ⊗k) is an irreducible module for sl(V ) isomorphic to Lλ.

Proof. Recall that gt is an idempotent in C[Sk] and Vλ is isomorphic to C[Sk]gt.

Then HomC[Sk](Vλ, V
⊗k) ∼= gt(V

⊗k) by [20, Lemma 5.13.4]. On the other hand,

we obtain Lλ ∼= HomC[Sk](Vλ, V
⊗k) by the double centralizer theorem.

Remark 3.2.4. Fix an ordered basis {v0, v1, . . . , vn−1} for V and identify sl(V )

and gl(V ) with sln(C) and gln(C), respectively. Let h denote the set of all complex

diagonal matrices of the form H = diag(a0, a1, . . . , an−1) such that
∑n−1

j=0 aj = 0.

Recall that h is a Cartan subalgebra of sln(C). For H = diag(a0, . . . , an−1) and

H ′ = diag(b0, . . . , bn−1), define an inner product on h such that

〈H,H ′〉 =
n−1∑
j=0

ajbj.
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For integers 0 6 r, s 6 n − 1, let Ers denote the matrix in gln(C) that has a 1 on

the (r, s)-entry and 0 on all other entries. Define the linear functional αrs : h → C

that sends H 7→ (ar − as) for all H ∈ h. Then for integers 0 6 r, s 6 n − 1 such

that r 6= s we find Ers ∈ sln(C) and

[H,Ers] = (ar − as)Ers = αrs(H)Ers ∀H ∈ h.

We call αrs a root of sln(C) relative to the Cartan subalgebra h with corresponding

root vector Ers. Clearly, αrs(H) = 〈Err − Ess, H〉 for all H ∈ h and thus we can

transfer the roots to h via the map αrs 7→ (Err − Ess). Let R denote the set of all

roots and let E denote the R-linear span of R. Then R forms a root system that is

conventionally called An−1. We abbreviate Hj = Ejj − Ej+1,j+1 for each integer

0 6 j 6 n − 2 so that {H0, . . . , Hn−2} is a base for E. We comment about finite-

dimensional modules for sln(C). If W is a finite-dimensional sln(C)-module, then

W has a basis consisting of simultaneous eigenvectors for h. In fact, for each basis

vector v there exists µ ∈ h such that

Hv = 〈µ,H〉v ∀H ∈ h.

We call µ a weight in W with corresponding weight vector v. Recall that 〈µ,Hj〉

is an integer for every 0 6 j 6 n − 2. There exist elements ω0, ω1, . . . , ωn−2 ∈ h

called fundamental weights where 〈ωi, Hj〉 = δij for all integers 0 6 i, j 6 n − 2.

Consequently, the weight µ is written as µ =
∑n−2

j=0 〈µ,Hj〉ωj . We say that a weight

µ is dominant if 〈µ,Hj〉 is nonnegative for all 0 6 j 6 n − 2. Suppose µ, µ′ are

weights in W . We say that µ is higher than µ′ if there exists nonnegative real
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numbers c0, c1, . . . , cn−2 such that

µ− µ′ =
n−2∑
j=0

cjHj.

A weight λ occuring in W is said to be the highest weight if λ is higher than any

other weight in W . The highest weight theory of irreducible sln(C)-modules states

that every irreducible module has a unique highest weight and that two irreducible

modules are isomorphic if and only if they have the same highest weight. Suppose

W is an irreducible sln(C)-module with highest weight λ. The multiplicity of the

weight µ in W is the dimension of the µ-weight space in W and this quantity is

determined using two known formulas: Freudenthal’s (see [35, Section 22]) and

Kostant’s formulas (see [35, Section 24]).

We resume our discussion on Weyl modules. Recall that {v0, v1, . . . , vn−1} is a

fixed ordered basis for V . For convenience, every vector of the form

β = vj1 ⊗ vj2 ⊗ · · · ⊗ vjk (j1, j2, . . . , jk ∈ {0, 1, . . . , n− 1})

will be called a simple tensor. We shall identify the set of all simple tensors with

the set of all ordered k-tuples on {0, 1, . . . , n− 1}. Let β = (j1, j2, . . . , jk) denote

a simple tensor and define the ordered tuple ε = (ε0, ε1, . . . , εn−1) such that

εr = |{1 6 s 6 k | js = r}| (0 6 r 6 n− 1).

We call ε the content of β and write cont(β) = ε. Let span(ε) denote the subspace

of V ⊗k spanned by simple tensors β with cont(β).
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Let λ ∈ P (k, n) and let t ∈ STab(λ). To each simple tensor β = (j1, j2, . . . , jk)

we associate a substitution βt such that for every integer 1 6 s 6 k we write js

in the box labeled s in t. We say β is a (λ, t)-semistandard simple tensor if the

corresponding βt satisfies each of the following conditions:

(SST1) the numbers are weakly increasing from left to right along each row, and

(SST2) the numbers are strictly increasing from top to bottom along each column.

Lemma 3.2.5. Let λ ∈ P (k, n) and let t ∈ STab(λ). Then the set of all vectors

gt(β) where β is a (λ, t)-semistandard simple tensor forms a basis for gt(V ⊗k).

Furthermore, we have

dim(gt(V
⊗k) ∩ span(ε)) = Kλ,ε

where the scalar Kλ,ε (called the Kostka number) is equal to the number of distinct

(λ, t)-semistandard simple tensors with content ε.

Proof. See [8, Theorem 8.11].

In view of Lemmas 3.2.3 and 3.2.5, the space gt(V ⊗k) is an irreducible module

for sln(C) with basis consisting of vectors gt(β) such that β is a (λ, t)-semistandard

simple tensor. Pick an arbitrary basis vector gt(β) and suppose cont(β) = ε where

ε = (ε0, . . . , εn−1). Let H0, H1, . . . , Hn−2 and ω0, ω1, . . . , ωn−2 denote elements of

h as described in Remark 3.2.4. Observe that

Hjgt(β) = (εj − εj+1)gt(β) for each j ∈ {0, 1, . . . , n− 2}
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and thus, ε is viewed as a weight via the map ω that sends ε 7→
∑n−2

i=0 (εi− εi+1)ωi.

Theorem 3.2.6. Let λ ∈ P (k, n) and let t ∈ STab(λ). Then the Weyl module

gt(V
⊗k) is an irreducible module for sln(C) with highest weight ω(λ).

Proof. The Weyl module gt(V ⊗k) is a highest weight cyclic representation of sln(C)

with weight ω(λ) in view of [27, Definition 7.16]. The theorem then follows im-

mediately from [27, Proposition 7.17].

Corollary 3.2.7. The set of all dominant weights occuring in the Weyl module

gt(V
⊗k) is {ω(ε) | ε ∈ P (k, n) and λ ≥ ε}.

Proof. See [8, Lemma 4.5].

Remark 3.2.8. The set of all weights occurring in the Weyl module gt(V ⊗k) to-

gether with their corresponding multiplicities can be described as follows: Let

ε ∈ P (k, n) such that λ ≥ ε. Thus, ε is a content occurring in gt(V ⊗k) and in

particular ω(ε) is a dominant weight. Suppose ε′ is an n-tuple obtained by permut-

ing the entries of ε. By applying the Bender-Knuth involution (see [7]) repeatedly,

we see that there exists a bijection between the set of all (λ, t)-semistandard simple

tensors with content ε and that of content ε′. Hence, ω(ε′) is a weight occurring in

gt(V
⊗k) and the multiplicity of ω(ε′) is equal to Kλ,ε.
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3.3 Terwilliger algebras of Lee association schemes

over Z4 and irreducible modules

Throughout the section, (X,R) denotes the commutative association scheme with

vertex set X = {0, 1, 2, 3} and associate classes R = {R0, R1, R2} such that

Ri = {(x, y) ∈ X ×X : x− y ≡ ±i (mod 4)} (0 6 i 6 2).

Note that X is an abelian group with respect to addition reduced modulo 4. Hence,

(X,R) is a translation association scheme. Let A0, A1, A2 and E0, E1, E2 denote

the associate matrices and the primitive idempotents, respectively. Write the dual

matrices as A∗i = A∗i (0) and E∗i = E∗i (0) for each integer 0 6 i 6 2. Let V denote

the standard module for (X,R) and let T = T (0) denote the Terwilliger algebra

of (X,R) with respect to vertex 0. Let W0 denote the primary T -module with

bases {v0, v1, v2} and {v∗0, v∗1, v∗2} (as described in Section 2.2) and let W1 denote

the orthogonal completement of W0 in V . Finally, let TL denote the Lie algebra

over C obtained by endowing T with the usual Lie bracket.

From here on, we fix an integer n > 2 and let L(n) denote the commutative

association scheme (Xn, Symn(R)). Observe that L(n) is a translation association

scheme and the identity element is the zero codeword. We refer to L(n) as the Lee

association scheme over Z4. We recall the Bose–Mesner algebra M of L(n). For
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every α = (α1, α2) ∈ N2 with |α| 6 n, we have

Aα =
1

(n− |α|)!α1!α2!

∑
σ∈Sn

σ
(
A
⊗(n−|α|)
0 ⊗ A⊗α1

1 ⊗ A⊗α2
2

)
,

Eα =
1

(n− |α|)!α1!α2!

∑
σ∈Sn

σ
(
E
⊗(n−|α|)
0 ⊗ E⊗α1

1 ⊗ E⊗α2
2

)
.

Then the Aα are the adjacency matrices and the Eα are the primitive idempotents.

Now consider the dual Bose–Mesner algebra M ∗ of L(n) with respect to the zero

codeword. Then similar expressions hold for the dual primitive idempotents E∗α

and the dual adjacency matricesA∗α.

Let T denote the Terwilliger algebra of L(n) with respect to the zero codeword

of length n. Recall that T is the subalgebra of End(V ⊗n) generated by the associate

and the dual associate matrices. In this section, we determine and describe the

irreducible modules for the Terwilliger algebra T . Our methods and techniques are

inspired by [67].

Lemma 3.3.1. With above notation, each of the following relations holds:

4E1 = 2A0 − 2A2,

4E2 = A0 − A1 + A2,

A∗1 = 2E∗0 − 2E∗2 ,

A∗2 = E∗0 − E∗1 + E∗2 .

Proof. Label the coordinates of the vectors in V , and the rows and columns of the

matrices in End(V ) with the natural ordering of the vertices in X . Let V1 (resp.

V2) denote the eigenspace of A1 corresponding to the eigenvalue τ1 = 0 (resp.
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τ2 = −2). Then V1 has an orthonormal basis {x1, x2} and V2 has an orthonormal

basis {x3} where

x1 =
1√
2



1

0

−1

0


, x2 =

1√
2



0

1

0

−1


, and x3 =

1

2



1

−1

1

−1


.

Consequently,

E1 = x1x̄
t
1 + x2x̄

t
2 =

1

2



1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1


,

E2 = x3x̄
t
3 =

1

4



1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1


.

These prove the first two equations of the lemma. The remaining equations follow

immediately from the first two and the definition of dual matrices.

Lemma 3.3.2. With above notation, for F ∈ {A1, A2, E
∗
0 , E

∗
1 , E

∗
2} the matrix rep-

resenting F |W0 with respect to the ordered basis {v0, v1, v2} and the matrix repre-
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senting F |W1 are given by

F A1 A2 E∗0 E∗1 E∗2

F |W0


0 2 0

1 0 1

0 2 0




0 0 1

0 1 0

1 0 0




1 0 0

0 0 0

0 0 0




0 0 0

0 1 0

0 0 0




0 0 0

0 0 0

0 0 1


F |W1 [0] [−1] [0] [1] [0]

.

Proof. Routine.

Lemma 3.3.3. With above notation, for F ∈ {A∗1, A∗2, E1, E2} the matrix represent-

ing F |W0 with respect to the ordered basis {v0, v1, v2} and the matrix representing

F |W1 are given by

F A∗1 A∗2 E1 E2

F |W0


2 0 0

0 0 0

0 0 −2




1 0 0

0 −1 0

0 0 1




1
2

0 −1
2

0 0 0

−1
2

0 1
2




1
4
−1

2
1
4

−1
4

1
2
−1

4

1
4
−1

2
1
4


F |W1 [0] [−1] [1] [0]

.

Proof. Follows immediately from Lemma 3.3.1 and Lemma 3.3.2.

Lemma 3.3.4. With above notation, the matrices

E∗0 , E1E
∗
1 , E

∗
2 , E

∗
1A2, E

∗
0A2, A2E

∗
0 , E

∗
0A1, A1E

∗
0 , E

∗
1A1E

∗
2 , E

∗
2A1E

∗
1

form a basis for T .

Proof. Use Lemmas 3.3.2 and 3.3.3.
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Lemma 3.3.5. With above notation, each of the following relations holds:

E∗1A2 = 1
2
A2 + 1

2
A∗2 − 1

16
[A1, [A1, A

∗
2]],

E∗0A2 = 1
4
A2 − 1

4
A∗2 + 1

8
[A∗1, A2] + 1

32
[A1, [A1, A

∗
2]],

E∗0A1 = 1
4
A1 − 1

8
[A1, A

∗
1]− 1

8
[A1, A

∗
2] + 1

16
[A2, [A1, A

∗
1]],

E∗1A1E
∗
2 = 1

4
A1 − 1

8
[A1, A

∗
1] + 1

8
[A1, A

∗
2]− 1

16
[A2, [A1, A

∗
1]],

E∗0 − E1E
∗
1 = 3

4
A∗2 + 1

4
A2 + 1

4
A∗1 − 1

32
[A1, [A1, A

∗
2]],

E∗2 − E1E
∗
1 = 3

4
A∗2 + 1

4
A2 − 1

4
A∗1 − 1

32
[A1, [A1, A

∗
2]].

Proof. Use Lemmas 3.3.2 and 3.3.3.

Let I denote the identity matrix in T and let g denote the Lie subalgebra of TL

consisting of matrices with trace 0. We define the unique element Φ ∈ g for which

Φ|W0 acts as identity on W0 and Φ|W1 acts as the scalar −3 on W1.

Lemma 3.3.6. With above notation, each of the following statements holds:

i) The Terwilliger algebra T is a direct sum of g and CI .

ii) The matrices

E∗0−E1E
∗
1 , E

∗
2−E1E

∗
1 , E

∗
1A2, E

∗
0A2, A2E

∗
0 , E

∗
0A1, A1E

∗
0 , E

∗
1A1E

∗
2 , E

∗
2A1E

∗
1

form a basis for g.

iii) The Lie algebra g is precisely the Lie subalgebra of TL that is generated by

A1, A2, A
∗
1 and A∗2.

Proof. If F ∈ g, then F |W1 acts as − trace(F |W0) on W1. Thus, dim(g) = 9 and

(i) holds since I /∈ g. Statement (ii) holds since each matrix has trace 0 and are
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linearly independent by Lemma 3.3.4. Statement (iii) follows immediately from

(ii) and Lemma 3.3.5.

Proposition 3.3.7. With above notation, each of the following statements holds:

i) The map g→ gl(W0) that sends every matrix F ∈ g to the restriction F |W0 is

an isomorphism of Lie algebras.

ii) The Lie algebra [g, g] is isomorphic to sl(W0).

Proof. Let τ denote the map in (i). Note that τ is a Lie algebra homomorphism

and the spaces g and gl(W0) are of equal dimension. Thus, it suffices to show that

Ker τ = {0}. Suppose F ∈ Ker τ . Then both F and F |W0 must have trace 0 and so

must F |W1 . Since dim(W1) = 1, the matrix F acts as 0 on W1. This implies that F

is the zero matrix. Statement (ii) follows immediately from (i).

Lemma 3.3.8. With above notation, each of the following statements holds:

i) The Lie algebra g is a direct sum of [g, g] and CΦ.

ii) The Lie algebra [g, g] is precisely the Lie subalgebra of TL consisting of matri-

ces F such that both F |W0 and F |W1 have trace 0.

Proof. Let F and G denote matrices in g and observe that both [F,G]|W0 and

[F,G]|W1 have trace 0. Hence, Φ /∈ [g, g] and (i) holds by Proposition 3.3.7. State-

ment (ii) follows immediately from (i).

Lemma 3.3.9. With above notation, the Terwilliger algebra T is a direct sum of

[g, g] and the center Z(T ) of T . In particular, Z(T ) is spanned by Φ and I .
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Proof. Observe that span{Φ, I} ⊆ Z(T ). By Lemmas 3.3.6 (i) and 3.3.8 (i), we

obtain the direct sum T = [g, g]⊕ span{Φ, I}. Suppose F is a matrix contained in

Z(T ) ∩ [g, g]. Then F |W0 has trace 0 and is a scalar multiple of the identity map

in gl(W0). Hence, F |W0 is the zero map in gl(W0). Consequently, F is the zero

matrix by the isomorphism in Proposition 3.3.7 (i).

Lemma 3.3.10. Let {e1, e2} denote the standard basis for R2. With above notation,

the Terwilliger algebra T has four generators namelyAe1 ,Ae2 ,A
∗
e1

andA∗e2 .

Proof. LetM ′ be the subalgebra of the Bose–Mesner algebraM generated byAe1

andAe2 . For each α = (α1, α2) ∈ N2 with |α| 6 n, observe that the matrixAα is in

the expansion of [Ae1 ]
α1 [Ae2 ]

α2 and hence, Aα ∈M ′ by induction on |α|. Hence

M ′ contains all the adjacency matrices and is in fact the Bose–Mesner algebraM .

Similarly, we can prove that the dual Bose–Mesner algebra M ∗ is generated by

A∗e1 andA∗e2 .

Define the unique matrix ∆(P ) in End(V ⊗n) for every matrix P ∈ T such that

∆(P ) is given by

∆(P ) =
1

(k − 1)!

∑
σ∈Sn

σ(P ⊗ I ⊗ · · · ⊗ I).

Endow V ⊗n with a TL-module structure such that P ∈ T acts as ∆(P ) under left

multiplication. Consequently, V ⊗n becomes a module for Lie algebras g and [g, g].

Proposition 3.3.11. With above notation, suppose W is a non-zero subspace of

V ⊗n such that Φ acts as a scalar on W . Then the following are equivalent:

i) W is an irreducible T -module,
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ii) W is an irreducible g-module,

iii) W is an irreducible [g, g]-module.

Proof. Immediate from Lemma 3.3.6 (iii), Lemma 3.3.8 (i) and Lemma 3.3.10.

Theorem 3.3.12. With above notation, there exists a unital algebra homomorphism

from the universal enveloping algebra U(sl(W0)) to T . Furthermore, T is gener-

ated by the image of U(sl(W0)) and the center Z(T ).

Proof. View T as a Lie algebra with respect to the usual Lie bracket and consider

the map g→ T such that P 7→ ∆(P ). Under this mapping, observe that

A1 7→ Ae1 , A∗1 7→ A∗e1 ,

A2 7→ Ae2 , A∗2 7→ A∗e2 .

So this map is a well-defined Lie algebra homomorphism (see Lemma 3.3.6 (iii) and

Lemma 3.3.10). Thus there exists a unique unital algebra homomorphism ρ from

the universal enveloping algebra U(g) of g to T and in fact, ρ is an epimorphism.

The theorem follows from Proposition 3.3.7 (ii) and Lemma 3.3.9.

Theorem 3.3.13. With above notation,

V ⊗n ∼=
n⊕
k=0

⊕
λ∈P (k,3)

(
n

k

)
dim(Vλ) Lλ ⊗ (W1)⊗(n−k) (3.3)

is a decomposition into irreducible T -modules where {Vλ} are the Specht modules,

and {Lλ} are irreducible sl(W0)-modules. Moreover, (k, λ) = (k′, λ′) if and only if

the summands Lλ⊗ (W1)⊗(n−k) and Lλ′ ⊗ (W1)⊗(n−k′) are isomorphic T -modules.
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Proof. First we prove the isomorphism (3.3). Recall that V = W0 ⊕ W1 so we

obtain the isomorphism

V ⊗n ∼=
n⊕
k=0

(
n

k

)
(W0)⊗k ⊗ (W1)⊗(n−k).

We obtain (3.3) by applying (3.2) to (W0)⊗k. Fix an ordered pair (k, λ) where k 6 n

is a nonnegative integer and λ ∈ P (k, 3). That the summand Lλ⊗ (W1)⊗(n−k) is an

irreducible [g, g]-module follows from Proposition 3.3.7 (ii) and Lemma 3.3.8 (ii).

Moreover, Φ acts on Lλ⊗ (W1)⊗(n−k) as a scalar multiplication by 4k−3n. Hence,

Lλ ⊗ (W1)⊗k is an irreducible T -module by Proposition 3.3.11. The last statement

follows from the action of ∆(Φ) and Theorem 3.3.12.

Observe that a complete set of mutually non-isomorphic irreducible T -modules

on V ⊗n is in bijection with the set of all ordered pairs (k, λ) where k is a nonneg-

ative integer such that k 6 n and λ ∈ P (k, 3). Recall that the support Ws (resp.

dual support W ∗
s ) of an irreducible T -module W is the set of all α = (α1, α2) ∈ N2

with |α| 6 n such that E∗αW 6= 0 (resp. EαW 6= 0).

Theorem 3.3.14. With above notation, abbreviateW = W(k,λ) := Lλ⊗(W1)⊗(n−k)

for a fixed integer 0 6 k 6 n and a fixed partition λ ∈ P (k, 3). Let P (λ) denote

the set of all partitions in P (k, 3) that are dominated by λ. Then each of Ws and

W ∗
s is equal to

{(µ0, µ1 + n− k, µ2) | (µ0, µ1, µ2) is a permutation of some ε ∈ P (λ)}. (3.4)

Moreover if µ = (µ0, µ1, µ2) is a permutation of some ε ∈ P (λ), then each ofE∗αW

and EαW has dimension Kλ,ε whenever α1 = µ1 + n− k and α2 = µ2.
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Proof. Identify W with gt(W⊗k
0 )⊗ (W1)⊗(n−k) for a fixed standard λ-tableau t in

view of Lemma 3.2.3. Now we give a basis for W consisting of common eigenvec-

tors for the dual primitive idempotents. Fix the ordered basis {v0, v1, v2} forW0 and

the basis {v} for W1. Then by Lemma 3.2.5, the set of all vectors gt(β)⊗ v⊗(n−k)

forms a basis for W where β is (λ, t)-semistandard simple tensor. Pick a (λ, t)-

semistandard simple tensor β and suppose cont(β) = (µ0, µ1, µ2). Then for every

α = (α1, α2) ∈ N2 with |α| 6 n, we obtain

E∗α
(
gt(β)⊗ v⊗(n−k)

)
=

 gt(β)⊗ v⊗(n−k) if α1 = µ1 + n− k and α2 = µ2,

0 otherwise.

We see that Ws is equal to the set (3.4) by Corollary 3.2.7 and Remark 3.2.8. Sim-

ilarly we get W ∗
s by using the ordered basis {v∗0, v∗1, v∗2} for W0 and the basis {v}

for W1. The last statement follows from Lemma 3.2.5 and Remark 3.2.8.

Remark 3.3.15. In [1], there is a method that describes how the multiplicities of

the weights in the root system A2 can be obtained. The set of all weights in an

irreducible module for sl3(C) is then partitioned into layers such that weights lying

on the same layer have the same multiplicities. In particular, the Kostka number

Kλ,ε mentioned in Theorem 3.3.14 only depends on which layer does ε belong.

To further explain this, write λ = (λ0, λ1, λ2) and let P (λ) denote the set of all

partitions in P (k, 3) dominated by λ. Let r denote the largest nonnegative integer

for which λr := (λ0 − r, λ1, λ2 + r) ∈ P (λ). Suppose r > 0. Then the sequence

λ0, λ1, . . . , λr determines the layers and the Kostka number Kλ,ε for each ε ∈ P (λ)
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is given by

Kλ,ε =

 s if λs−1 ≥ ε and λs 6≥ ε for some integer 1 6 s 6 r,

r + 1 if λr ≥ ε.

Suppose r = 0. In this case, there is exactly one layer and Kλ,ε = 1 for each

ε ∈ P (λ). Hence, the corresponding irreducible T -module is both thin and dual

thin.

Remark 3.3.16. Observe that the irreducible T -module W(k,λ) = Lλ⊗ (W1)⊗(n−k)

for a positive integer k 6 n and λ ∈ P (k, 1) is isomorphic as an sl3(C)-module

to the vector space over C of homogeneous polynomials in mutually commuting

indeterminates x, y, z with total degree k. On such an irreducible T -module, we

can show the relationship among the Lie algebra sl3(C), Rahman polynomials and

rank two extension of Leonard pair as discussed in [37].



Chapter 4

An Assmus-Mattson theorem for codes over

commutative association schemes

We begin by recalling the famous Assmus–Mattson theorem which relates linear

codes and combinatorial designs:

Theorem 4.0.1 (Assmus and Mattson [2, Theorem 4.2]). Let C be a linear code

of length n over Fq with minimum weight δ. Let C⊥ be the dual code of C, with

minimum weight δ∗. Suppose that an integer t (1 6 t 6 n) is such that there are at

most δ − t weights of C⊥ in {1, 2, . . . , n− t}, or such that there are at most δ∗ − t

weights of C in {1, 2, . . . , n−t}. Then the supports of the words of any fixed weight

in C form a t-design (with possibly repeated blocks).

We remark that [2, Theorem 4.2] also includes a criterion for obtaining simple t-

designs (see Section 4.1 for definition), but we will not pay much attention in this

chapter to the simplicity of the resulting designs. There are several proofs and

strengthenings of Theorem 4.0.1; see, e.g., [3, 15, 16, 38, 53, 58, 60]. The purpose

of this chapter is to establish a theorem which unifies many of the known general-

izations and extensions of Theorem 4.0.1.
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Constructing t-designs from codes received renewed interest when Gulliver and

Harada [26] and Harada [29] found new 5-designs by computer from the lifted

Golay code of length 24 over Z4 (among others). Their constructions were later

explained and generalized further by Bonnecaze, Rains, and Solé [9]. Motivated by

these results, Tanabe [57] obtained an Assmus–Mattson-type theorem for Z4-linear

codes with respect to the symmetrized weight enumerator. Tanabe’s theorem can in-

deed capture the 5-designs from the lifted Golay code over Z4, but the conditions in

his theorem involve finding the ranks of matrices having quite complicated entries,

so that it is hard to verify the conditions without the help of a computer. Tanabe

[59] then presented a simpler version of his theorem, and we can easily check its

conditions by hand for the lifted Golay code over Z4.

To be somewhat concrete, by an Assmus–Mattson-type theorem, we mean in

this chapter a theorem which enables us to find t-designs by just looking at some

kind of weight enumerator of a code (plus a bit of extra information in some cases,

e.g., linearity). Such a theorem is not always the best way to estimate the parameter

t of the resulting designs as it does not take into account the structure of the code

at all (cf. Remark 4.4.5), but instead it has a great advantage in its wide range of

applicability.

As stated in the introduction, we consider the Hamming association schemes

when we are dealing with codes and their Hamming weight enumerator (see Sec-

tion 4.4.1 for definition) as in Theorem 4.0.1. Hamming association schemes are

examples of metric and cometric association schemes, and Theorem 4.0.1 can be
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interpreted and generalized from this point of view; cf. [60]. On the other hand, in

situations where we focus on a more complicated type of weight enumerator of a

block code, we think of the code in question (say, of length n) as lying in a struc-

ture much finer than a Hamming association scheme; that is to say, the alphabet

itself naturally becomes the vertex set of a commutative association scheme with s

classes where s > 2, and we consider its extension of length n. Hamming associ-

ation schemes are the same thing as extensions of 1-class (i.e., trivial) association

schemes, but if s > 2 then its extensions are no longer metric nor cometric.

In this chapter, we prove a general Assmus–Mattson-type theorem for codes

in extensions of arbitrary commutative association schemes. Our main results are

Theorem 4.1.1 and Supplements 4.1.2–4.1.5. In general, the weights of a code take

the form α = (α1, α2, . . . , αs), where the αi are non-negative integers such that∑s
i=1 αi 6 n. We count the number of weights in a given interval when s = 1

as in Theorem 4.0.1, but if s > 2 then instead we speak of the minimal degree of

subspaces of the polynomial ring R[ξ1, ξ2, . . . , ξs] which allow unique Lagrange in-

terpolation with respect to those weights (which are lattice points in Rs) contained

in a given region. When specialized to the case of Z4-linear codes with the sym-

metrized weight enumerator as in [57, 59], the association scheme on the alphabet

Z4 has two classes R1 and R2, together with the identity class R0, defined by

(x, y) ∈ Ri ⇐⇒ y − x = ±i (mod4) (x, y ∈ Z4)

for i ∈ {0, 1, 2}, and our results give a slight extension of Tanabe’s theorem in [59].

The Assmus–Mattson-type theorem for Z4-linear codes with the Hamming weight
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enumerator due to Shin, Kumar, and Helleseth [52] can also be recovered. To prove

our results, we make heavy use of the representation theory of the Terwilliger alge-

bra [63, 64, 65], which is a non-commutative semisimple matrix C-algebra attached

to each vertex of an association scheme. See, e.g., [51, 22, 60, 4] for more applica-

tions of the Terwilliger algebra to coding theory and design theory.

The layout of this chapter is as follows. In Section 4.1, we recall important

concepts from polynomial interpolation and state our main results. Section 4.2 is

devoted to their proofs. Finally, we discuss a number of examples in Section 4.4.

The entire chapter is based on [47].

4.1 Statement of main results

We recall some concepts from polynomial interpolation (see [21]). Throughout the

section, let S denote a finite set of points in Rs. A linear subspace L of the polyno-

mial ring R[ξ1, ξ2, . . . , ξs] is called an interpolation space with respect to S if, for

every f ∈ R[ξ1, ξ2, . . . , ξs], there is a unique g ∈ L such that f(z) = g(z) for all

z = (z1, . . . , zs) ∈ S. We call L a minimal degree interpolation space with respect

to S if, moreover, the interpolant g always satisfies deg f > deg g.

Let M (S) be a minimal degree interpolation space with respect to S and define

µ(S) = max{deg f : f ∈M (S)}.
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We note that M (S) exists; see Theorem 4.1.6 below. Observe also that the scalar

µ(S) is well-defined, that is, independent of the choice of M (S).

From here on, we assume that (X,R) is a commutative association scheme with

fixed base vertex x0 and we shall adopt the notation in Chapter 2. For each vertex

x = (x1, x2, . . . , xn) ∈ Xn, define

supp(x) = {` : x` 6= x0} ⊂ {1, 2, . . . , n}.

We call supp(x) the support of x (with respect to x0). Recall that a t-(n, k, λ)

design (or simply a t-design) is an incidence structure of points and blocks such

that the following conditions hold:

(TD1) there are exactly n points,

(TD2) each block contains exactly k points,

(TD3) for any t points, there are exactly λ blocks containing these points.

In this section, we state our main results and we discuss proofs of our main results

in the next section.

Theorem 4.1.1. Let C be a code in Xn. Let

Sr = {α ∈ Ns : r 6 |α| 6 n− r, E∗αĈ 6= 0} (1 6 r 6 bn/2c),

and let δ∗ = min{i 6= 0 : EiĈ 6= 0}. Suppose there exists an integer t (1 6 t 6 n)
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such that

µ(Sr) < δ∗ − r (1 6 r 6 t). (4.1)

Then the multiset

{supp(x) : x ∈ (Xn)α ∩ C} (4.2)

is a t-design (with block size |α|) for every α ∈ Ns with |α| 6 n.

We use Theorem 4.1.1 together with the following ”supplements”.

Supplement 4.1.2. Let C be a code in Xn. Assume that we are given in advance

a set K ⊂ Ns such that the multiset (4.2) is a t-design for every α ∈ K. Then the

condition (4.1) in Theorem 4.1.1 may be replaced by

µ(Sr\K) < δ∗ − r (1 6 r 6 t).

We call a subset C of Xn a weakly t-balanced array1 over (X,R) (with respect

to x0) if, for any Λ ⊂ {1, 2, . . . , n} and γ ∈ Ns such that |γ| 6 |Λ| 6 t, the number

∣∣{x ∈ C : (xi)i∈Λ ∈ (X |Λ|)γ
}∣∣

depends only on |Λ| and γ.

Recall that, when considering translation association scheme, we always choose

the identity as the base vertex.

Supplement 4.1.3. Suppose that (X,R) is a translation association scheme, and

that C is an additive code in Xn. Assume that we are given in advance a set
1This term is meant as only provisional (see [55]).
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L ⊂ Ns such that, for every α ∈ L, (X∗n)α∩C⊥ is a weakly t-balanced array over

(X∗,R∗). Then the scalar δ∗ in Theorem 4.1.1 may be replaced by

min{|α| : 0 6= α ∈ Ns\L, EαĈ 6= 0}. (4.3)

Remark 4.1.4. We discuss a special case of weakly t-balanced array over (X∗,R∗).

Recall that {ei}si=1 is the standard basis for Rs. Let α = hei for some 0 ≤ i ≤ s and

for some h > 0. Observe that the condition (X∗n)α ∩ C⊥ is a weakly-t-balanced

array over (X∗,R∗) is equivalent to saying that the multiset

{supp(x) : x ∈ (X∗n)α ∩ C⊥}

is a t-design.

Supplement 4.1.5 below was inspired by [59, Theorem 2] and allows us to es-

timate µ(S), and hence t, by geometrical considerations; see Section 4.4. It is a

general result about minimal degree interpolation spaces, so that we give a proof

right after the statement.

Supplement 4.1.5. Let S be a finite set of points in Rs. Suppose that there are real

scalars zi` (1 6 i 6 s, ` ∈ N), a positive integer m, and a linear automorphism

σ ∈ GL(Rs) such that zik 6= zi` whenever k 6= `, and that

σ(S) ⊂ {(z1α1 , z2α2 , . . . , zsαs) ∈ Rs : α ∈ Ns, |α| 6 m} . (4.4)

Then µ(S) 6 m.

Proof. We abbreviate zα := (z1α1 , z2α2 , . . . , zsαs). Let Σ denote the RHS in (4.4).
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It suffices to show that µ(Σ) 6 m. To this end, we construct an interpolation space

with respect to Σ with maximum degree at most m as follows. Let α ∈ Ns be given

with |α| 6 m, and assume that we have constructed polynomials

fβ ∈ R[ξ1, ξ2, . . . , ξs] (β ∈ Ns, |α| < |β| 6 m)

such that deg fβ 6 m and

fβ(zγ) = δβγ (γ ∈ Ns, |γ| 6 m).

Define gα ∈ R[ξ1, ξ2, . . . , ξs] by

gα =
s∏
i=1

αi−1∏
`=0

ξi − zi`
ziαi − zi`

,

and let

fα = gα −
∑
β∈Ns

|α|<|β|6m

gα(zβ)fβ.

Then deg fα 6 m, and it is easy to see that

fα(zγ) = δαγ (γ ∈ Ns, |γ| 6 m). (4.5)

Thus, by induction we obtain polynomials fα with deg fα 6 m satisfying (4.5) for

all α ∈ Ns with |α| 6 m. It is clear that the subspace

∑
α∈Ns
|α|6m

Rfα ⊂ R[ξ1, ξ2, . . . , ξs]
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is an interpolation space with respect to Σ and hence µ(Σ) ≤ m.

We end this section by recalling a construction of a minimal degree interpolation

space due to de Boor and Ron (see [10, 11]). See also [21, §3]. For every non-zero

element f =
∑∞

i=0 fi in the ring of formal power series R[[ξ1, ξ2, . . . , ξs]] where fi

is homogeneous of degree i, let

f↓ = fi0 ,

where i0 = min{i : fi 6= 0}. We conventionally set 0↓ := 0.

Theorem 4.1.6 ([10, 11]). Let S be a finite set of points in Rs. Let E be the subspace

of R[[ξ1, ξ2, . . . , ξs]] spanned by the exponential functions

exp

(
s∑
i=1

ziξi

)
((z1, z2, . . . , zs) ∈ S).

Then the subspace ∑
f∈E

Rf↓ ⊂ R[ξ1, ξ2, . . . , ξs]

is a minimal degree interpolation space with respect to S.

Theorem 4.1.6 immediately leads to the following formula for µ(S) which is well

suited for computer calculations:

Supplement 4.1.7. For every finite set S of points in Rs, the scalar µ(S) equals the

smallest m ∈ N for which the polynomials

m∑
k=0

(
s∑
i=1

ziξi

)k
((z1, z2, . . . , zs) ∈ S)

are linearly independent.



56

(Note that we just discarded the irrelevant factors 1/(k!) in the Taylor polynomials

of these exponential functions.)

4.2 Preliminary lemmas

We being by proving a few preliminary lemmas that are necessary in verifying our

main results. Recall the space U0 spanned by the irreducible TH-modules in V ⊗n

with displacement 0 (see latter part of Section 2.4). Let

πU0 : V ⊗n → U0

denote the orthogonal projection onto U0. Note that πU0 is a TH-homomorphism.

Lemma 4.2.1. The primary T -module Mx̂0 is orthogonal to every non-primary

irreducible TH-module in U0.

Proof. Let u0 = x̂0 and u1 = X̂ − x̂0. For every τ = (τ1, τ2, . . . , τn) ∈ {0, 1}n, let

uτ = uτ1 ⊗ uτ2 ⊗ · · · ⊗ uτn ∈ E∗|τ |U0,

where |τ | =
∑n

`=1 τ` denotes the weight of τ . The uτ form an orthogonal basis of

U0 by (2.20), and we have

||uτ ||2 = (|X| − 1)|τ |. (4.6)
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For every α ∈ Ns with |α| 6 n, we have

〈Aαx̂0,uτ 〉 = δ|τ |,|α|
∑

(x0,y)∈Rα

〈ŷ,uτ 〉

= δ|τ |,|α|

(
|α|

α1, α2, . . . , αs

) s∏
i=1

(P0i)
αi , (4.7)

where we recall that P0i is the degree of graph (X,Ri). Since

πU0Aαx̂0 =
∑

τ∈{0,1}n
||uτ ||−2〈Aαx̂0,uτ 〉uτ ,

it follows from (4.6) and (4.7) that πU0Aαx̂0 is a scalar multiple of

∑
τ∈{0,1}n
|τ |=|α|

uτ = A|α|x̂0 ∈MHx̂0.

It follows that πU0Mx̂0 = MHx̂0, as desired.

Lemma 4.2.2. Let C be a non-empty subset of (Xn)k for some 0 6 k 6 n. Then

the following are equivalent:

(i) The multiset {supp(x) : x ∈ C} is a t-design.

(ii) EiπU0Ĉ is a scalar multiple of Eix̂0 for every 0 6 i 6 t.

(iii) Ĉ is orthogonal to every non-primary irreducible TH-module in U0 with end-

point at most t.

Proof. First, we show the equivalence of (i) and (ii). To this end, we introduce
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another orthogonal basis of U0 as follows. Define v0, v1 ∈ V by

v0 = E0x̂0 = |X|−1X̂, v1 = (I − E0)x̂0 = x̂0 − |X|−1X̂. (4.8)

Note that

||v0||2 = |X|−1, ||v1||2 = 1− |X|−1, 〈v0, v1〉 = 0.

For every τ = (τ1, τ2, . . . , τn) ∈ {0, 1}n, let

vτ = vτ1 ⊗ vτ2 ⊗ · · · ⊗ vτn ∈ E|τ |U0,

where |τ | =
∑n

`=1 τ`. The vτ form an orthogonal basis of U0 by (2.20), and we

have

||vτ ||2 = |X|−n (|X| − 1)|τ |

Moreover, observe that ∑
τ∈{0,1}n
|τ |=i

vτ = Eix̂0.

By these comments and since

EiπU0Ĉ =
∑

τ∈{0,1}n
|τ |=i

||vτ ||−2〈Ĉ,vτ 〉 vτ ,

it follows that (ii) holds if and only if 〈Ĉ,vτ 〉 depends only on |τ |whenever |τ | 6 t.
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Assume that (i) holds. Let τ ∈ {0, 1}n with |τ | 6 t. From (4.8) it follows that

〈Ĉ,vτ 〉 = |X|−n
|τ |∑
i=0

(−1)i(|X| − 1)|τ |−i

×
∣∣{x ∈ C : | supp(τ) ∩ supp(x)| = i

}∣∣,
which is indeed a constant depending only on |τ |, and hence (ii) holds.

Conversely, assume that (ii) holds. Let τ ∈ {0, 1}n with |τ | = t, and let

wτ = wτ1 ⊗ wτ2 ⊗ · · · ⊗ wτn ,

where w0 = X̂ = |X|v0 and w1 = x̂0 = v0 + v1. On the one hand, we have

〈Ĉ,wτ 〉 = |{x ∈ C : supp(τ) ∩ supp(x) = ∅}|. (4.9)

On the other hand, observe that

wτ = |X|n−t
∑
ρ

vρ,

where the sum is over ρ ∈ {0, 1}n with supp(ρ) ⊂ supp(τ). It follows that the

common value in (4.9) is independent of the choice of τ , and hence (i) holds. We

have now shown the equivalence of (i) and (ii).
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Finally, we show the equivalence of (ii) and (iii). Observe that

EiU0 = CEix̂0 ⊥
∑
W

EiW (0 6 i 6 t), (4.10)

where the sum is over the non-primary irreducible TH-modules W in U0 with end-

point at most i. If (iii) holds, then the vectors EiĈ (0 6 i 6 t) are also orthogonal

to every non-primary irreducible TH-module in U0 with endpoint at most t, and

hence the vector πU0EiĈ ∈ EiU0 vanishes on the second term of the RHS in (4.10)

for every 0 6 i 6 t. In other words, (ii) holds.

Conversely, letW be a non-primary irreducible TH-module in U0 with endpoint

r 6 t, and assume that Ĉ is not orthogonal to W . Let πW : V ⊗n → W be the

orthogonal projection onto W . Then we have πW Ĉ 6= 0. Let

` = min{i : EiπW Ĉ 6= 0}.

By Lemma 2.4.1 (iii), E`πW Ĉ spans E`W . In view of Lemma 2.4.1 (ii), (v), we

have

Er(A
∗
1)`−rπW Ĉ = Er(A

∗
1)`−r

n∑
j=0

EjπW Ĉ = Er(A
∗
1)`−rE`πW Ĉ 6= 0.

Since πW is a TH-homomorphism and since Ĉ ∈ E∗kV ⊗n, it follows from (2.18)

that

0 6= ErπW (A∗1)`−rĈ = (θ∗k)
`−rErπW Ĉ,

and hence we have ` = r. It follows that EiπU0Ĉ does not vanish on the second
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term of the RHS in (4.10) when i = r, and hence (ii) fails to hold. We have now

shown that (ii) and (iii) are equivalent. This completes the proof of the lemma.

Lemma 4.2.3. Let C be a non-empty subset of (Xn)α for some α ∈ Ns satisfying

|α| 6 n. Suppose that C is a weakly t-balanced array over (X,R). Then

E∗i πU0M Ĉ = CAix̂0 (0 6 i 6 t).

Proof. Fix an element β ∈ Ns with |β| 6 n, and consider the vectorAβĈ ∈M Ĉ.

We use the notation in the proof of Lemma 4.2.1. Let τ ∈ {0, 1}n with |τ | 6 t.

We will use ′ and ′′ to denote objects associated with the extensions of (X,R) of

lengths |τ | and n− |τ |, respectively; e.g.,A′γ (γ ∈ Ns, |γ| 6 |τ |),A′i (0 6 i 6 |τ |),

x′0 ∈ X |τ | for the former. We understand that the coordinates of X |τ | and Xn−|τ |

are indexed by supp(τ) and {1, 2, . . . , n}\ supp(τ), respectively. With this notation

established, we have

Aβ =
∑
ν

A′ν ⊗A′′β−ν ,

where the sum is over ν ∈ Ns such that β−ν ∈ Ns, |ν| 6 |τ |, and |β−ν| 6 n−|τ |.

Observe also that

uτ = A′|τ |x̂
′
0 ⊗ x̂′′0.

Hence we have

〈AβĈ,uτ 〉 =
∑
ν,ρ

gνρ ·
〈
Ĉ, (A′ρ)

†x̂′0 ⊗ (A′′β−ν)
†x̂′′0
〉

=
∑
ν,ρ

gνρ ·
∣∣{x ∈ C : (xi)i∈supp(τ) ∈ (X |τ |)ρ

}∣∣, (4.11)
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where the sums are over ν, ρ ∈ Ns such that |ν|, |ρ| 6 |τ |, β − ν = α − ρ ∈ Ns,

and |β − ν| 6 n− |τ |, and where we write

A′νA
′
|τ | = A′|τ |A

′
ν =

∑
ρ∈Ns
|ρ|6|τ |

gνρA
′
ρ.

By the assumption, the RHS in (4.11) depends only on |τ | 6 t, and hence it follows

that E∗i πU0AβĈ is a scalar multiple of Aix̂0 for every 0 6 i 6 t as in the proof

of Lemma 4.2.1. We have now shown that E∗i πU0M Ĉ is a subspace of CAix̂0 for

0 6 i 6 t. That it is non-zero and hence agrees with CAix̂0 follows from

E∗i πU0J
⊗nĈ = |C|E∗i πU0X̂

⊗n = |C|Aix̂0.

This completes the proof.

4.3 Proofs of main results

In this section, we provide proofs of the main results mentioned in Section 4.1. For

convenience, we break down the proofs into subsections.

4.3.1 Proof of Theorem 4.1.1

DefineD∗1,D
∗
2, . . . ,D

∗
s ∈M ∗ by

D∗i =
∑
α∈Ns
|α|6n

αiE
∗
α (1 6 i 6 s).
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Observe that the D∗i generate M ∗. By (2.2), (2.3), and (2.13), for 1 6 j 6 s we

have

s∑
i=1

PijA
∗
ei

=
∑
α∈Ns
|α|6n

s∑
i=1

Pij

(
s∑

h=0

αhQhi

)
E∗α

=
∑
α∈Ns
|α|6n

(
s∑

h=0

αh

s∑
i=1

QhiPij

)
E∗α

=
∑
α∈Ns
|α|6n

(
s∑

h=0

αh
(
|X|δhj −Qh0P0j

))
E∗α

= |X|D∗j − nP0j I
⊗n, (4.12)

where we have used α0 = n− |α|. In particular, theA∗ei also generateM ∗.

Now, fix α ∈ Ns with |α| 6 n. We invoke Lemma 4.2.2 to show that the

multiset (4.2) is a t-design. Let W be a non-primary irreducible TH-module in U0

with endpoint r 6 t. Recall that W has diameter n − 2r. It suffices to show that

E∗αĈ is orthogonal to W . Let πW : V ⊗n → W denote the orthogonal projection

onto W . First, we show that

πWE
∗
αĈ ∈

n−r∑
i=δ∗−µr

EiW, (4.13)

where µr := µ(Sr). To this end, let f ∈M (Sr) be such that

f(β) = δαβ (β ∈ Sr).
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Observe that

f(D∗1,D
∗
2, . . . ,D

∗
s)−E∗α ∈

∑
β/∈Sr

RE∗β.

Since

W ⊂
n−r∑
i=r

E∗i V
⊗n

by Lemma 2.4.1 (iii), we have

πWE
∗
βĈ = 0 unless β ∈ Sr, (4.14)

from which it follows that

πWE
∗
αĈ = πWf(D∗1,D

∗
2, . . . ,D

∗
s)Ĉ. (4.15)

Let U denote the orthogonal complement of the primary T -module Mx̂0 in V ⊗n,

and let πU : V ⊗n → U denote the orthogonal projection onto U . We note that

πUE0 = E0πU = 0 since E0V
⊗n ⊂Mx̂0, so that

πU Ĉ ∈
n∑

i=δ∗

EiV
⊗n. (4.16)

Moreover, since πU is a T -homomorphism and since W ⊂ U by Lemma 4.2.1, we

have

πWB
∗Ĉ = πWπUB

∗Ĉ = πWB
∗πU Ĉ (B∗∈M ∗). (4.17)

By the definition of µr and (4.12), f(D∗1,D
∗
2, . . . ,D

∗
s) is written as a polynomial

in the A∗ei with degree at most µr. For any β, γ ∈ Ns with |β|, |γ| 6 n, we also
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have

EβA
∗
ei
Eγ = 0 if

∣∣|β| − |γ|∣∣ > 1

by virtue of (2.4) and (the dual of) (2.14). Hence it follows from (4.15), (4.16), and

(4.17) that

πWE
∗
αĈ ∈ πW

n∑
i=δ∗−µr

EiV
⊗n

=
n−r∑

i=δ∗−µr

EiW.

This proves (4.13).

Assume now that E∗αĈ is not orthogonal to W , i.e., πWE∗αĈ 6= 0. Let

` = min{i : EiπWE
∗
αĈ 6= 0}.

By Lemma 2.4.1 (iii),E`πWE
∗
αĈ spansE`W . In view of Lemma 2.4.1 (ii), (v), we

have

Er(A
∗
1)`−rπWE

∗
αĈ = Er(A

∗
1)`−rE`πWE

∗
αĈ 6= 0.

Since πW is a TH-homomorphism, it follows from (2.18) that

0 6= ErπW (A∗1)`−rE∗αĈ = (θ∗|α|)
`−rErπWE

∗
αĈ.

Therefore, we must have ` = r. However, this contradicts (4.13) since δ∗ − µr > r

by (4.1). It follows that πWE∗αĈ = 0, and the proof is complete.
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4.3.2 Proof of Supplement 4.1.2

The most important step in the proof of Theorem 4.1.1 was to establish (4.13),

and the first key observation (4.15) in this process was based on (4.14). By using

Lemma 4.2.2, (4.14) can now be improved as follows:

πWE
∗
βĈ = 0 unless β ∈ Sr\K.

Hence it suffices to interpolate on Sr\K, as desired.

4.3.3 Proof of Supplement 4.1.3

At the end of the proof of Theorem 4.1.1, we used (4.13) and assumption δ∗−µr > r

to show that πWE∗αĈ = 0. Observe that we arrive at the same conclusion if we can

instead prove that

πWE
∗
αĈ ∈

n−r∑
i=r+1

EiW. (4.18)

Let δ∗L denote the scalar in (4.3), and recall that we are assuming that δ∗L − µr > r.

Then (4.16) becomes

πU

(
Ĉ −

∑
β∈L

EβĈ

)
∈

n∑
i=δ∗L

EiV
⊗n,

from which it follows in the same manner that

πWF
∗
α

(
Ĉ −

∑
β∈L

EβĈ

)
∈

n−r∑
i=δ∗L−µr

EiW ⊂
n−r∑
i=r+1

EiW, (4.19)



67

where we abbreviate

F ∗α = f(D∗1,D
∗
2, . . . ,D

∗
s).

On the other hand, recall that the roles of M and M ∗ are interchanged when we

work with the basis {ε̂ : ε ∈ X∗n} of V ⊗n, and observe that EβĈ is a scalar

multiple of the characteristic vector of (X∗n)β ∩ C⊥ with respect to this basis;

cf. (2.9). Hence, for any β ∈ L and 0 6 i 6 t, it follows from Lemma 4.2.3

(applied to the dual) that

EiπWF
∗
αEβĈ = EiπWπU0F

∗
αEβĈ

= πWEiπU0F
∗
αEβĈ

∈ CπWA∗i ι̂

= 0,

where ι = (ι, ι, . . . , ι) is the identity of X∗n, since A∗i ι̂ = |X|n/2Ei0̂ belongs to

the primary TH-moduleMH 0̂. (Recall that x0 = 0 = (0, 0, . . . , 0) in this context.)

Hence we have

πWF
∗
αEβĈ ∈

n−r∑
i=t+1

EiW ⊂
n−r∑
i=r+1

EiW (β ∈ L). (4.20)

Combining (4.15), (4.19), and (4.20), we obtain (4.18), and this completes the

proof.
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4.4 Examples

In this section, we mainly discuss additive codes over various translation association

schemes (so that x0 = 0).

4.4.1 Codes with Hamming weight enumerators

Recall that the Hamming weight of x = (x1, x2, . . . , xn) ∈ Xn is defined by

wt(x) = |{` : x` 6= 0}|.

The Hamming weight enumerator of an additive code C in Xn is then defined by

hweC(ξ0, ξ1) =
∑
x∈C

ξ
n−wt(x)
0 ξ

wt(x)
1 .

Thus, when working with the Hamming weight enumerator, we are considering

codes over the 1-class association scheme (X, {R0, (X ×X)\R0}) with eigenma-

trices

P = Q =

1 |X| − 1

1 −1

,
whose extension of length n is the Hamming association scheme H(n, |X|). In

particular, we have T = TH in this case. Tanaka [60] showed the following:

Theorem 4.4.1 ([60, Theorem 5.2, Example 5.5]). Let C be a code in Xn. Let

δ = min{i 6= 0 : E∗i Ĉ 6= 0}, δ∗ = min{i 6= 0 : EiĈ 6= 0}.
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Suppose that an integer t (1 6 t 6 n) is such that, for every 1 6 r 6 t, at least one

of the following holds:

|{i : r 6 i 6 n− r, E∗i Ĉ 6= 0}| 6 δ∗ − r, (4.21)

|{i : r 6 i 6 n− r, EiĈ 6= 0}| 6 δ − r. (4.22)

Then the multiset

{supp(x) : x ∈ (Xn)i ∩ C}

is a t-design for every 0 6 i 6 n.

Observe that Theorem 4.4.1 strengthens the original Assmus–Mattson theorem

(Theorem 4.0.1). In particular, it does not require the code C to be linear nor ad-

ditive. The condition (4.21) agrees with (4.1) when s = 1. Indeed, the proof of

Theorem 4.1.1 reduces to that of Theorem 4.4.1 for (4.21). The dual argument

shows the result for the case (4.22). (It seems that the condition dual to (4.1) does

not necessarily lead to the same conclusion as Theorem 4.1.1 when s > 1.) On the

other hand, Supplements 4.1.2 and 4.1.3 refine [60, Remark 7.1], and prove useful

as we will see below.

Example 4.4.2. The Assmus–Mattson-type theorem for additive codes over F4

given by Kim and Pless [38, Theorem 2.7] follows from Theorem 4.4.1, except

their comment on the simplicity of the designs obtained from minimum weight

codewords. The additive group of F4 is isomorphic to the Kleinian four group

Z2 × Z2, and additive codes over F4 are the same thing as linear Kleinian codes

studied by Höhn [32]. It should be noted that giving an (appropriate) inner product

on Fn4 ∼= (Z2×Z2)n, on which concepts like self-orthogonality and self-duality de-
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pend, amounts to choosing a group isomorphism Z2 ×Z2 → (Z2 ×Z2)∗ satisfying

the symmetry (2.11). This last remark applies to all examples that follow.

Example 4.4.3. Recall that a binary Type II code is a self-dual binary codeC which

is doubly even (i.e. wt(u) ≡ 0 (mod 4) ∀u ∈ C). It is known that if there exists a

binary Type II code of length n, then we can find µ ∈ N and ` ∈ {0, 1, 2} such that

n = 24µ+ 8`.

A binary Type II code C is called extremal if its minimum weight is equal to 4µ+4.

Suppose C is an extremal binary Type II code of length n. Then by Theorem 4.0.1

(or Theorem 4.4.1), we see that the words of any fixed weight in C yield a t-design

with t = 5− 2`. Using Bachoc’s results on harmonic weight enumerators [3], Ban-

nai, Koike, Shinohara, and Tagami [6, Theorem 6, Remark 5] showed that if one

of these (non-trivial) designs is a (t + 1)-design then so are the others. This obser-

vation is also immediate from Supplement 4.1.2. We note that similar observations

hold for extremal Type III codes over F3 and extremal Type IV codes over F4. See

also [43].

Example 4.4.4. Additive codes over Z4 are also referred to as Z4-linear codes. For

a Z4-linear code C in Zn4 , let

C2 = (2Zn4 ) ∩ C,

which may also be viewed as a binary linear code (called the torsion code of C)

since 2Z4
∼= Z2. We note that hweC2 is derived immediately from either the com-

plete or the symmetrized weight enumerators of C; cf. Subsection 4.4.2. Shin, Ku-
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mar, and Helleseth [52, Theorem 10] proved an Assmus–Mattson-type theorem for

Z4-linear codes, and we now claim that Theorem 4.4.1, together with Supplements

4.1.2 and 4.1.3, always gives at least as good estimate on t as their theorem. First,

they assume that C2 and (C⊥)2 both satisfy the conclusion of Theorem 4.4.1. If

a (Hamming) weight of C is not a weight of C\C2, then the corresponding words

of C must all belong to C2, and hence by Supplement 4.1.2 we can exclude that

weight from the weights of C. The same comment applies to C⊥. Second, they

assume that the number of non-zero weights of the shortened code of C⊥\(C⊥)2

at some t coordinates is bounded above by δ − t. However, the conclusion of their

theorem shows in the end that this number is equal to that of non-zero weights at

most n− t in C⊥\(C⊥)2. Hence it follows that this second condition is not weaker

than (4.22).

Remark 4.4.5. From the Assmus–Mattson-type theorem by Shin et al. mentioned

above (or Theorem 4.4.1) it follows that the words of any fixed weight in the

Goethals code or its dual (a Delsarte–Goethals code) over Z4 of length 2m with m

odd, support a 2-design. However, Shin et al. [52, Corollaries 7 and 8] showed that

it is in fact a 3-design, based on what they call an Assmus–Mattson-type approach.

See also [40].

4.4.2 Codes with complete/symmetrized weight enumerators

Let C be an additive code over the ring Zk. Besides hweC , it is also important to

consider the complete and the symmetrized weight enumerators defined respectively



72

by

cweC(ξ0, ξ1, . . . , ξk−1) =
∑
x∈C

ξ
n0(x)
0 ξ

n1(x)
1 . . . ξ

nk−1(x)
k−1 ,

sweC(ξ0, ξ1, . . . , ξe) =
∑
x∈C

ξ
n0(x)
0 ξ

n±1(x)
1 . . . ξn±e(x)

s ,

where e = bk/2c,

ni(x) = |{` : x` = i}| (0 6 i 6 k − 1),

n±i(x) = ni(x) + nk−i(x) (1 6 i 6 b(k − 1)/2c),

and we understand that n±e(x) = ne(x) if k is even. Thus, for cweC , the initial

association scheme (X,R) is the group association scheme of Zk, which is the

translation association scheme on Zk defined by the partition (cf. (2.5))

Zk = {0} t {1} t · · · t {k − 1},

and has eigenmatrices

P =
[
ζ ijk
]k−1

i,j=0
, Q =

[
ζ−ijk

]k−1

i,j=0
,

where ζk ∈ C is a primitive kth root of unity. For sweC , the initial association

scheme (X,R) is the association scheme of the ordinary k-cycle, which is defined

similarly by the partition

Zk = {0} t {±1} t · · · t {±e},
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and has eigenmatrices

P = Q =
[
(1 + δ0,2j)

−1
(
ζ ijk + ζ−ijk

)]e
i,j=0

,

where δ0,2j is evaluated in Z2k. Extensions of the ordinary k-cycle are referred to

as Lee association schemes (see [54, 62]). We note that

sweC(ξ0, ξ1, . . . , ξe) = cweC(ξ0, ξ1, ξ2, ξ3, . . . , ξ2, ξ1),

hweC(ξ0, ξ1) = sweC(ξ0, ξ1, . . . , ξ1),

and that

hweC2(ξ0, ξ1) = sweC(ξ0, 0, ξ1) when k = 4.

Example 4.4.6. Our main results are in fact modeled after the Assmus–Mattson-

type theorem due to Tanabe [59, Theorem 2] for Z4-linear codes with respect to the

symmetrized weight enumerator, so that the latter is a special case of the former. In

particular, we can easily find 5-designs from the lifted Golay code over Z4 of length

24 as discussed in [59] (see also [9]). On the other hand, it is not clear at present

whether Tanabe’s original version of his theorem [57, Theorem 3] is a consequence

of our results. It would be an interesting problem to understand [57, Theorem 3] in

terms of the irreducible T -modules (see [45]).

See [31] for a survey on t-designs constructed from Z4-linear codes.

Below we discuss the extended quadratic residue codes XQ11 of length 12 over

small finite fields. That these codes support 3-designs follows from the fact that

their automorphism groups contain PSL(F2
11) and hence are 3-homogeneous on the
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12 coordinates, but we include these examples in order to demonstrate the use of

our results further. Recall again that we only look at the weight enumerators (and

linearity) of these self-dual codes. We aim at doing the relevant computations by

hand. The first example is a warm-up:

Example 4.4.7. Consider C = XQ11 over F3 = Z3, which is the extended ternary

Golay code. We have hweC and cweC as follows:

wt n1 n2 #words

0 0 0 1

6 6 0 22

0 6 22

3 3 220

9 6 3 220

3 6 220

12 12 0 1

0 12 1

6 6 22

As is well known, the words of fixed (Hamming) weight 6 or 9 support 5-designs

by Theorem 4.0.1. (The one with block size 9 is the non-simple trivial design with

constant multiplicity 2.) Set t = 3. We have δ∗ = 6 and

S1 = S2 = S3 = {(6, 0), (0, 6), (3, 3), (6, 3), (3, 6)}.

Observe that the words with (n1, n2) = (6, 3) and those with (n1, n2) = (3, 6)

come in pairs by the correspondence x 7→ −x, so that the words with each of these
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two complete weight types support the (simple!) trivial design. Hence we may

disregard them by Supplement 4.1.2, i.e., we set K = {(6, 3), (3, 6)}. Then S3\K

consists of three collinear points in R2, and thus we have µ(S3\K) = 2. Since

2 < 6 − 3, it follows from Theorem 4.1.1 that the non-trivial 5-design with block

size 6 is partitioned into two 3-designs (after discarding repeated blocks).

Example 4.4.8. Consider C = XQ11 over F5 = Z5. We have hweC and sweC as

follows:

wt n±1 n±2 #words

0 0 0 1

6 3 3 440

7 6 1 264

1 6 264

8 4 4 2640

9 7 2 1320

2 7 1320

10 5 5 5544

11 8 3 1320

3 8 1320

12 11 1 24

1 11 24

6 6 1144

We have δ∗ = 6. Observe that Theorem 4.0.1 nor Theorem 4.4.1 cannot find designs

from the supports of the codewords in this case. On the other hand, set t = 3, and
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take σ ∈ GL(R2) such that σ(i, j) = (1/5)(2i+ 3j, i− j). Then we have

σ(S1) =



(6,−1),

(5,−1), (5, 0), (5, 1),

(4,−1), (4, 0), (4, 1),

(3, 0), (3, 1)


,

σ(S2) =


(5,−1), (5, 0),

(4,−1), (4, 0), (4, 1),

(3, 0), (3, 1)

 ,

σ(S3) =


(5,−1),

(4,−1), (4, 0), (4, 1),

(3, 0), (3, 1)

 .

From Supplement 4.1.5 it follows that µ(S1) 6 4 and µ(S2) 6 3. If we apply

Supplement 4.1.5 directly to σ(S3) then we would only obtain µ(S3) 6 3, but

indeed it follows that µ(S3) = 2. To see this, let

f(5,−1) = (ξ1 − 3)(ξ1 − 4)/2,

f(4,−1) = −(ξ1 + ξ2 − 4)(ξ1 − ξ2 − 3)/2,

f(4,1) = (ξ1 + ξ2 − 3)(ξ1 + ξ2 − 4)/2,

f(3,0) = (ξ1 − 4)(ξ1 + ξ2 − 4),

f(3,1) = −(ξ1 − 4)(ξ1 + 2ξ2 − 3)/2,

f(4,0) = 1− f(5,−1) − f(4,−1) − f(4,1) − f(3,0) − f(3,1).
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Then we have

fα(β) = δαβ (α, β ∈ σ(S3)),

from which it follows that the linear span of the fα (α ∈ σ(S3)) is an interpolation

space with respect to σ(S3). This shows µ(S3) = 2, as desired. Thus, the condition

(4.1) is satisfied for r ∈ {1, 2, 3}. Theorem 4.1.1 now shows that the codewords

of any fixed symmetrized weight type support 3-designs. This example tells us that

looking at sweC may sometimes give a better estimate on t than hweC , even when

Supplement 4.1.2 is not applicable.

Finally, we consider C = XQ11 over F4 = {0, 1, ω, ω2}. Note that cweC

makes sense by defining nω(x) and nω2(x) in the same manner as above. The

eigenmatrices of the group association scheme of F4 are given by

P = Q =



1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


.

Example 4.4.9. Consider C = XQ11 over F4. We have hweC and cweC as follows:
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wt n1 nω nω2 #words

0 0 0 0 1

6 2 2 2 330

7 5 1 1 132

1 5 1 132

1 1 5 132

8 4 4 0 165

4 0 4 165

0 4 4 165

9 3 3 3 1320

10 6 2 2 330

2 6 2 330

2 2 6 330

11 5 5 1 132

5 1 5 132

1 5 5 132

12 12 0 0 1

0 12 0 1

0 0 12 1

4 4 4 165

We have δ∗ = 6. Again, Theorem 4.0.1 cannot find designs from the supports of

the codewords. Take σ ∈ GL(R3) such that

σ(i, j, k) = (1/4)(2i+ j + k, i+ 2j + k, i+ j + 2k).



79

Then we have

σ(S3) =

(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3),

(3, 2, 2), (3, 2, 3), (3, 3, 2), (3, 3, 3)

 ,

σ(S2) = σ(S3) t {(4, 3, 3), (3, 4, 3), (3, 3, 4)},

σ(S1) = σ(S2) t {(4, 4, 3), (4, 3, 4), (3, 4, 4)}.

We claim that µ(S1) 6 4 and that µ(S2) = µ(S3) = 3. First, it is easy to see that

µ(S3) = 3 as σ(S3) forms a cube. Next, let

f(4,3,3) = (ξ1 − 2)(ξ1 − 3)/2.

Then we have

f(4,3,3)(α) = δ(4,3,3),α (α ∈ σ(S2)).

We similarly define f(3,4,3) and f(3,3,4). Recall that M (σ(S3)) denotes a minimal

degree interpolation space with respect to σ(S3). Then it is immediate to see that

M (σ(S3)) + Rf(4,3,3) + Rf(3,4,3) + Rf(3,3,4)

is an interpolation space with respect to σ(S2). Since µ(S3) 6 µ(S2), we have

µ(S2) = 3. Finally, let for example

f(4,4,3) = (ξ1 + ξ2 − 4)(ξ1 + ξ2 − 5)(ξ1 + ξ2 − 6)(ξ1 + ξ2 − 7)/24,
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so that we have

f(4,4,3)(α) = δ(4,4,3),α (α ∈ σ(S1)),

and a similar argument establishes µ(S1) 6 4, as desired. Thus, the condition (4.1)

is satisfied for r ∈ {1, 2} but fails for r = 3. Theorem 4.1.1 now shows that the

codewords of any fixed complete weight type support 2-designs. Though this is not

the best estimate (i.e., t = 3), Theorem 4.1.1 still outperforms Theorem 4.0.1 for

this example.



Chapter 5

Asymptotic Spectral Distributions for

Cartesian Powers of Strongly Regular

Graphs

Let G = (X,R) be a finite simple graph with vertex set X and edge set R. Let A

be the adjacency matrix of G. By an eigenvalue of G we mean an eigenvalue of A.

Likewise, we speak of the spectrum of G.

Spectra of graphs have been receiving attention from the point of view of quan-

tum probability theory. Recall that an algebraic probability space is a pair (A, ϕ),

whereA is a ∗-algebra over C and ϕ : A → C is a state, i.e., a linear map such that

ϕ(1) = 1 and that ϕ(a∗a) > 0 for every a ∈ A. The elements of A are referred to

as (algebraic) random variables. We call a ∈ A real if a∗ = a. For a real random

variable a ∈ A, we are interested in finding, and discussing the uniqueness of, a

probability measure ν on R such that

ϕ(aj) = Mj(ν) :=

∫
R
xj ν(dx) (j = 0, 1, 2, . . . ). (5.1)
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The adjacency algebra C[A] of the graph G is the commutative subalgebra of

the full matrix algebra generated by A. It is natural to consider the tracial state ϕtr

defined by2

ϕtr(Z) =
1

|Z|
tr(Z) (Z ∈ C[A]),

and we view A as a random variable in the algebraic probability space (C[A], ϕtr).

Suppose for simplicity thatG is k-regular, so thatA has mean 0 and variance k. The

probability measure ν = νG in (5.1) for a = A/
√
k is then the (normalized) spec-

tral distribution of G. It is interesting to find the limit of this normalized spectral

distribution when G grows, as an analogue of the classical central limit theorem.

Notable works in this area are done by Hora [33], and by Hora and Obata [34].

The objective of this chapter is to give a concrete bivariate example of this

sort, as an attempt towards a multivariate extension of the theory. Consider again

a general algebraic probability space (A, ϕ). We now pick two commuting real

random variables a, b ∈ A, and discuss a probability measure ν on R2 such that

ϕ(ajbh) = Mj,h(ν) :=

∫
R2

xjyh ν(dxdy) (j, h = 0, 1, 2, . . . ). (5.2)

We take another regular graph H with valency ` on the vertex set X such that the

adjacency matrix B of H commutes with A. This occurs for instance when H is

the complement of G. We view A and B as real random variables in the algebraic

probability space (C[A,B], ϕtr). The probability measure ν = νG,H in (5.2) for

2Another important example is the vacuum state ϕx(Z) = Zx,x (Z ∈ C[A]) at a fixed origin
x ∈ X . We note that the matrix ∗-algebras we will discuss in this chapter all have the property that
every element has constant diagonal entries, so that the two states ϕtr and ϕx turn out to be equal
on them.
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a = A/
√
k and b = B/

√
` is then the (normalized) joint spectral distribution of G

and H . We are interested in the limit of this joint spectral distribution when G and

H both grow, as an analogue of the bivariate central limit theorem.

Our main result (Theorem 5.1.1) is indeed a bivariate version of the result of

Hora [33] for the Hamming graphs. We will consider the pair (G�n, G�n) of the

nth Cartesian powers of a strongly regular graph G and its complement G, and ob-

tain as limits a bivariate Poisson distribution and the standard bivariate Gaussian

distribution, together with an intermediate distribution.

This chapter is organized as follows: We recall basic facts about graphs and state

the main theorem in Section 5.1. We review basic properties of strongly regular

graphs in Section 5.2. We prove the main theorem in Section 5.3. In Section 5.4,

we demonstrate the main theorem with some specific families of strongly regular

graphs. The entire chapter is based on [46].

5.1 Basic definitions and the main result

Let G = (X,R) be a graph with vertex set X and edge set R. All the graphs we

consider in this chapter are finite and simple. Thus, X is a finite set and R is a

subset of
(
X
2

)
, the set of 2-element subsets of X . Two vertices x, y ∈ X are called

adjacent (and written x ∼ y) if {x, y} ∈ R. The graph G is called k-regular if

every vertex is adjacent to precisely k vertices. It is called connected if for any

two vertices x and y, there is a sequence x = x0, x1, . . . , xm = y of vertices such

that xj−1 ∼ xj for j = 1, 2, . . . ,m. Recall that a complete graph Kv is a graph



84

on |X| = v vertices such that R =
(
X
2

)
. We note that if G is k-regular then every

eigenvalue θ of G satisfies |θ| 6 k.

From now on, suppose that G is k-regular and has |X| = v vertices. We call G

strongly regular with parameters (v, k, λ, µ) if G is not complete or edgeless (i.e.,

0 < k < v − 1), and if every pair of adjacent (resp. non-adjacent) vertices has

precisely λ (resp. µ) common adjacent vertices; cf. [14, §9.1]. In matrix terms, this

means that

A2 = kI + λA+ µ(J − A− I), (5.3)

where I and J denote the identity and the all-ones matrix, respectively. It is clear

that G is a disconnected strongly regular graph precisely when it is the disjoint

union pKq of p complete graphs Kq for some integers p, q > 2.

The complement G of G is the graph with the same vertex set X as G, where

two distinct vertices are adjacent if and only if they are non-adjacent in G. Thus, G

has adjacency matrix A := J −A− I . Since AJ = JA = kJ , we have AA = AA.

It is easy to see that ifG is strongly regular as above thenG is again strongly regular

with parameters (v, k, λ, µ), where

k = v − k − 1, λ = v − 2k + µ− 2, µ = v − 2k + λ. (5.4)

Thus, strongly regular graphs always exist in pairs. The complement of pKq is the

complete multipartite graph Kp×q.
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Observe that G is complete if and only if the linear span 〈I, A〉 equals 〈I, J〉,

which is the Bose–Mesner algebra of a one-class association scheme. Likewise,

from (5.3) it follows thatG is strongly regular if and only if 〈I, A,A〉 = 〈I, A, J〉 is

the Bose–Mesner algebra of a two-class association scheme. In particular, if this is

the case then there are precisely three (maximal) common eigenspaces for (A,A),

one of which corresponds to the eigenvalues (k, k) and is spanned by the all-ones

vector 1 in Cv. (Note that these eigenspaces diagonalize J as well.) Let (r, s) and

(s, r) be the eigenvalues corresponding to the other two, where s = −r − 1 and

r = −s − 1. We will assume r > s, or equivalently, r > s. We have s, s < 0 as

ϕtr(A) = ϕtr(A) = 0, so that3

− 1 < r 6 k, −k 6 s < 0, −1 < r 6 k, −k 6 s < 0. (5.5)

We call r and s (resp. r and s) the restricted4 eigenvalues of G (resp. G).

The Cartesian product G1�G2 of two graphs Gj = (Xj, Rj) (j = 1, 2) is

the graph with vertex set X1 × X2, where (x1, x2) ∼ (y1, y2) if and only if either

x1 ∼ y1 and x2 = y2, or x1 = y1 and x2 ∼ y2; cf. [14, §1.4.6]. For a positive

integer n, the Cartesian power G�G� · · ·�G (n times) will be denoted by G�n.

For example, we already mentioned that H(n, q) = K�nq . We note that G�n is

nk-regular. The adjacency matrixA of G�n is given by

A =
n∑
j=1

I ⊗ · · · ⊗ I ⊗ A
_
j

⊗ I ⊗ · · · ⊗ I. (5.6)

3In fact, it follows that r, r > 0 and s, s 6 −1; cf. Lemma 5.2.1.
4More generally, an eigenvalue of a (not necessarily regular) graph is called restricted if it has

an eigenvector which is not a scalar multiple of 1.
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LetA denote the adjacency matrix of G�n. Note that G�n and G�n are relations in

the extension of length n of the two-class association scheme induced by G and G,

and thatA andA together generate its Bose–Mesner algebra; see the first paragraph

of Section 4.3.1, and also Lemma 3.3.10. Also, observe that AA = AA and the

covariance ϕtr(AA) = 0.

Notation & Assumption. We consider an infinite family of pairs of Cartesian pow-

ers of graphs (G�n, G�n), where n ranges over an infinite set of positive integers,

and G is strongly regular and may depend on n. To simplify notation, we think of

G, v, k, k, r, s, etc., as functions in n. We will assume that

k

n
→ k′,

k

n
→ k′,

r

n
→ r′,

s

n
→ s′

as n→∞, where k′, k′, r′, and s′ are finite. We note that

v

n
→ v′ := k′ + k′.

The following is our main result which describes the possible limits of the joint

spectral distribution νG�n, G�n .

Theorem 5.1.1. With the above notation and assumption, we have r′ = 0 or s′ = 0,

and one of the following holds:

i. k′ > 0, k′ = −s′ > 0, r′ = 0, and νG�n, G�n converges weakly to an affine

transformation ν of a bivariate Poisson distribution given by

ν

({(
k′j − k′h√

k′
,
k′j + k′h− 1√

k′

)})
= e−1/k′

(
1

v′

)j(
k′

v′k′

)h
1

j!h!
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for non-negative integers j and h. In this case, G is a complete multipartite

graph for all but finitely many values of n.

ii. k′ = r′ > 0, k′ > 0, s′ = 0, and νG�n, G�n converges weakly to an affine

transformation ν of a bivariate Poisson distribution given by

ν

({(
k′j + k′h− 1√

k′
,
k′j − k′h√

k′

)})
= e−1/k′

(
1

v′

)j(
k′

v′k′

)h
1

j!h!

for non-negative integers j and h. In this case, G is a disjoint union of com-

plete graphs for all but finitely many values of n.

iii. k′ > 0 or k′ > 0, and r′ = s′ = 0, and νG�n, G�n converges weakly to an

affine transformation ν of the product measure of a Poisson distribution and

a Gaussian distribution given by

∫
R2

f(x) ν(dx) =

√
v′

2π
e−1/v′

∞∑
h=0

(
1

v′

)h
1

h!

∫ ∞
−∞

f(xh,t) e
−v′t2/2 dt

for every Borel function f : R2 → R, where

xh,t =

(
√
k′ h+

√
k′ t−

√
k′

v′
,
√
k′ h−

√
k′ t−

√
k′

v′

)
.

iv. k′ = k′ = r′ = s′ = 0, and νG�n, G�n converges weakly to the standard

bivariate Gaussian distribution.
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5.2 Preliminaries on strongly regular graphs

In this section, we collect necessary facts about strongly regular graphs. See [14,

Chapter 9] for more details. Throughout this section, let G be a (fixed) strongly

regular graph with parameters (v, k, λ, µ), and let G be the complement of G, hav-

ing parameters (v, k, λ, µ) (cf. (5.4)). Let A (resp. A) be the adjacency matrix of G

(resp. G). For convenience, we let

κ = (k, k), ρ = (r, s), σ = (s, r).

Let Uκ,Uρ, and Uσ be the common eigenspaces of (A,A) associated with κ, ρ, and

σ, respectively. Recall that Uκ = 〈1〉. Let f = dim(Uρ), g = dim(Uσ).

There are a number of standard identities involving these scalars. What we will

need are the following:

v = 1 + k + k = 1 + f + g, (5.7)

0 = 1 + r + s = 1 + s+ s, (5.8)

0 = k + rf + sg = k + sf + rg, (5.9)

k2 + r2f + s2g = kv, (5.10)

kk + rsf + srg = 0, (5.11)

k
2

+ s2f + r2g = kv, (5.12)

f =
(v − 1)s+ k

s− r
, g =

(v − 1)r + k

r − s
, (5.13)

fg =
kkv

(r − s)2
. (5.14)



89

The proofs of (5.7)–(5.13) are straightforward: (5.7) is clear; (5.8) is already men-

tioned and follows from I+A+A = J ; (5.9)–(5.12) are the values of tr(A), tr(A),

tr(A2), tr(AA), and tr(A2); (5.13) is immediate from (5.7) and (5.9). To show

(5.14), count the triples of distinct vertices x, y, z such that x ∼ y ∼ z 6∼ x (in G)

in two ways to get

k(k − 1− λ) = kµ, (5.15)

and then use (5.13) together with the fact that r and s are the solutions of the

quadratic equation

ξ2 − (λ− µ)ξ + µ− k = 0, (5.16)

where ξ is an indeterminate (cf. (5.3)).

Lemma 5.2.1. If r and s are non-integral then f = g and we have

v = 4`+ 1, k = 2`, λ = `− 1, µ = ` (5.17)

for some positive integer `. Moreover, in this case we have

r =
−1 +

√
1 + 4`

2
, s =

−1−
√

1 + 4`

2
. (5.18)

Proof. See [14, p. 118]. From (5.16) it follows that r and s are algebraic conjugates,

so that we have f = g. Using (5.13) and (5.16), we then have (v− 1)(µ−λ) = 2k.

Since k < v−1, this is possible only when µ−λ = 1 and v−1 = 2k. In particular,

we have k = k and hence it follows from (5.15) that k = 2µ, as desired.

Strongly regular graphs with parameters of the form (5.17) are called conference
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graphs.

We say that G is imprimitive if either G or G is disconnected, and primitive

otherwise. Thus, G is imprimitive if and only if G = pKq or G = Kp×q for some

integers p, q > 2.

Example 5.2.2 (imprimitive graphs). Let p and q be integers such that p, q > 2.

The disjoint union pKq is strongly regular with parameters (pq, q− 1, q− 2, 0) and

restricted eigenvalues r = q − 1, s = −1. The complete multipartite graph Kp×q

is strongly regular with parameters (pq, (p− 1)q, (p− 2)q, (p− 1)q) and restricted

eigenvalues r = 0, s = −q.

We now introduce two more families of strongly regular graphs. See [14, Sec-

tions 9.1.10–9.1.13]. Recall that an incidence structure is a triple (P,B,I ),

where P and B are finite sets whose elements are called points and blocks, re-

spectively, and where I ⊂ P ×B. If (p, b) ∈ I then we say that p and b are

incident, or p is contained in b, and so on. The block graph of (P,B,I ) is the

graph G = (X,R) with X = B where two distinct blocks are adjacent if and only

if they contain a point in common.

Example 5.2.3 (Steiner graphs). Let m and d be integers such that 2 6 m < d. A

Steiner system S(2,m, d) is an incidence structure (P,B,I ) with |P| = d such

that every block contains precisely m points, and that any two distinct points are

contained in a unique block. The block graph of an S(2,m, d) is called a Steiner

graph and is strongly regular with parameters (v, k, λ, µ) provided d > 4, where

v =
d(d− 1)

m(m− 1)
, k =

(d−m)m

m− 1
, λ = (m− 1)2 +

d− 2m+ 1

m− 1
, µ = m2,
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and with restricted eigenvalues

r =
d−m2

m− 1
, s = −m.

Example 5.2.4 (Latin square graphs). Let m and e be integers with m, e > 2. A

transversal design TD(m, e) is an incidence structure (P,B,I ) where the point

set is given a partition P = P1 t · · · tPm into m groups of the same size e (so

|P| = me), such that every block is incident with every group in exactly one point,

and that any two points from distinct groups are contained in a unique block. The

block graph of a TD(m, e) is called a Latin square graph and is strongly regular

with parameters (v, k, λ, µ) provided m 6 e, where

v = e2, k = m(e− 1), λ = (m− 1)(m− 2) + e− 2, µ = m(m− 1),

and with restricted eigenvalues

r = e−m, s = −m.

The following fundamental result is due to Neumaier [48].

Proposition 5.2.5 ([48]). For any fixed integer m > 0, there are only finitely many

primitive strongly regular graphs with s = −m, other than Steiner graphs and

Latin square graphs.
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5.3 Proof of Theorem 5.1.1

To prove Theorem 5.1.1, we invoke Lévy’s continuity theorem (see [39, p. 225])

concerning the pointwise convergence of the characteristic functions. Thus, we fix

(ξ1, ξ2) ∈ R2 throughout the proof.

Recall that G depends on n in general. Let A and A be the adjacency matrices

of G�n and G�n, respectively. For j, h = 0, 1, . . . , n with j + h 6 n, consider the

subspace ⊕
ε1,ε2,...,εn

Uε1⊗ Uε2⊗ · · · ⊗ Uεn

of Cvn ∼= (Cv)⊗n, where the sum is over ε1, ε2, . . . , εn ∈ {κ, ρ, σ} such that

{ε1, ε2, . . . , εn} = {κn−j−h, ρj, σh}

as multisets. It has dimension

(
n

n− j − h, j, h

)
f jgh.

By virtue of (5.6), this subspace is a common eigenspace5 of (A,A) with eigenval-

ues (θj,h, θj,h), where

θj,h = (n− j − h)k + jr + hs, θj,h = (n− j − h)k + js+ hr.

5Since A and A are generators of the Bose–Mesner algebra of the extension scheme, the pairs
(θj,h, θj,h) (j, h = 0, 1, . . . , n, j+h 6 n) are mutually distinct, and these subspaces are indeed the
maximal common eigenspaces of (A,A). However, this fact is not necessary in the computation of
(5.19) below.
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Note that G�n and G�n are nk-regular and nk-regular, respectively. Hence it

follows from the above comments that the value of the characteristic function of

νG�n, G�n at (ξ1, ξ2) is given by

ϕtr

(
exp

(
iξ1√
nk
A+

iξ2√
nk
A

))
=

1

vn

∑
j,h

exp

(
iξ1θj,h√
nk

+
iξ2θj,h√
nk

)(
n

n− j − h, j, h

)
f jgh

=

(
1

v
e∆κ +

f

v
e∆ρ +

g

v
e∆σ

)n
= exp

(
n log

(
1

v
e∆κ +

f

v
e∆ρ +

g

v
e∆σ

))
, (5.19)

where

∆κ =
iξ1k√
nk

+
iξ2k√
nk
, ∆ρ =

iξ1r√
nk

+
iξ2s√
nk
, ∆σ =

iξ1s√
nk

+
iξ2r√
nk
.

Note that
r

n
→ −s′, s

n
→ −r′, (5.20)

and that (cf. (5.5))

−min{k′, k′} 6 s′ 6 0 6 r′ 6 min{k′, k′}. (5.21)

5.3.1 The case r′ > 0 or s′ < 0

First we consider the case where r′ > 0 or s′ < 0. Then we have k′ > 0, k′ > 0 by

(5.21), and moreover 1/v = O(1/n). Note that each of ∆κ, ∆ρ, and ∆σ converges
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by (5.20). On the one hand, by (5.14) we have

fg

n
→ k′k′v′

(r′ − s′)2
<∞, (5.22)

so that
fg

n2
→ 0.

On the other hand, by (5.13) we have

f

n
→ v′s′

s′ − r′
,

g

n
→ v′r′

r′ − s′
.

Hence we have r′ = 0 or s′ = 0.

For the moment, assume that r′ = 0 and s′ < 0, so that

f

n
→ v′,

g

n
→ 0.

Then it follows from (5.22) that

g → g∞ :=
k′k′

s′ 2
.

In particular, g is bounded. Moreover, by (5.9) we have

r = −k + sg

f
→ r∞ := −k

′ + s′g∞
v′

,
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so that r is also bounded, and therefore ∆ρ = O(1/n). Since

f

v
e∆ρ = e∆ρ − 1 + g

v
e∆ρ = 1 + ∆ρ −

1 + g

v
+O

(
1

n2

)
,

it follows that (5.19) is equal to

exp

(
n

(
1

v
e∆κ +

g

v
e∆σ + ∆ρ −

1 + g

v
+O

(
1

n2

)))
= exp

(
n

v
e∆κ +

ng

v
e∆σ + n∆ρ −

n(1 + g)

v
+O

(
1

n

))
→ exp

(
exp
(
iξ1

√
k′ + iξ2

√
k′
) 1

v′
+ exp

(
iξ1s

′
√
k′
− iξ2s

′
√
k′

)
g∞
v′

+
iξ1r∞√
k′
− iξ2(r∞ + 1)√

k′
− 1 + g∞

v′

)
. (5.23)

We note that (5.23) is (a value of) the characteristic function of an affine transfor-

mation of a bivariate Poisson distribution.

We now show that G is a complete multipartite graph for n � 0, so that we

have s′ = −k′, r∞ = 0, g∞ = k′/k′, and (5.23) becomes

exp

(
exp
(
iξ1

√
k′ + iξ2

√
k′
) 1

v′
+ exp

(
−iξ1k

′
√
k′

+ iξ2

√
k′
)
k′

v′k′
− iξ2√

k′
− 1

k′

)
,

which corresponds to the distribution ν given in Theorem 5.1.1 (i). Observe that

s = −r − 1 is bounded. By virtue of Proposition 5.2.5 and Lemma 5.2.1, G is one

of the following for n � 0: (G1) a conference graph; (G2) a disjoint union pKq of

complete graphs; (G3) a complete multipartite graph Kp×q; (G4) a Steiner graph of

an S(2,m, d); (G5) a Latin square graph of a TD(m, e). Case (G1) is impossible as

v would also be bounded. For Case (G3), we have s′ = 0, a contradiction. If G is a
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Steiner graph of an S(2,m, d) as in Case (G4), then m is bounded since s = −m.

However, since k and v are linear and quadratic in d, respectively, k′ and v′ cannot

be both finite and non-zero, a contradiction. The same argument shows that Case

(G5) is also impossible. Hence we are left with Case (G2), so that we have (i) in

Theorem 5.1.1.

If r′ > 0 and s′ = 0, then switching the roles of G and G gives (ii) in Theorem

5.1.1. This completes the case where r′ > 0 or s′ < 0.

5.3.2 The case r′ = s′ = 0

Next we deal with the case where r′ = s′ = 0. Note that ∆κ converges, ∆ρ → 0,

and ∆σ → 0. From (5.10), (5.11), and (5.12), it follows that

r2f 6 kv, −rsf 6 kk, s2f 6 kv,

from which it follows that

∣∣∆2
ρ

∣∣f 6 ( |ξ2
1 |r2

nk
− 2
|ξ1ξ2|rs
n
√
kk

+
|ξ2

2 |s2

nk

)
f

6 |ξ2
1 |
v

n
+ 2|ξ1ξ2|

√
kk

n
+ |ξ2

2 |
v

n
. (5.24)

Hence ∆2
ρf is bounded. Likewise, we can show that ∆2

σg is bounded. We also need

the following identities:

∆κ + ∆ρf + ∆σg = 0, (5.25)

∆2
κ + ∆2

ρf + ∆2
σg = −ξ

2
1v

n
− ξ2

2v

n
. (5.26)
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For the moment, assume that k′ > 0 or k′ > 0. Note that 1/v = O(1/n) in this

case. Moreover, we have

f

v
e∆ρ =

(
1 + ∆ρ +

∆2
ρ

2
+O

(
∆3
ρ

))f
v

=

(
1 + ∆ρ +

∆2
ρ

2

)
f

v
+ o

(
1

n

)
,

and similarly for ge∆σ/v. Hence it follows from (5.25) and (5.26) that (5.19) is

equal to

exp

(
n log

(
1

v
e∆κ +

(
1 + ∆ρ +

∆2
ρ

2

)
f

v

+

(
1 + ∆σ +

∆2
σ

2

)
g

v
+ o

(
1

n

)))
= exp

(
n log

(
1 +

1

v
e∆κ − ∆κ

v

+
(

∆2
ρf + ∆2

σg
) 1

2v
− 1

v
+ o

(
1

n

)))
= exp

(
n

(
1

v
e∆κ − ∆κ

v
+
(

∆2
ρf + ∆2

σg
) 1

2v
− 1

v
+ o

(
1

n

)))
→ exp

(
exp
(
iξ1

√
k′ + iξ2

√
k′
) 1

v′
− iξ1

√
k′ + iξ2

√
k′

v′

−
(
ξ1

√
k′ − ξ2

√
k′
)2

2v′
− 1

v′

)
.

This corresponds to the distribution ν in Theorem 5.1.1 (iii).

Finally, assume that k′ = k′ = 0. In this case, we have v′ = 0, i.e.,

v

n
→ 0.
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Note that ∆κ = O((v/n)1/2), ∆ρ = O((v/n)1/2), and ∆σ = O((v/n)1/2). More-

over, by virtue of (5.24), it follows that ∆2
ρf = O(v/n) and also ∆2

σg = O(v/n).

Hence it follows from (5.25) and (5.26) that (5.19) is equal to

exp

(
n log

((
1 + ∆κ +

∆2
κ

2

)
1

v
+

(
1 + ∆ρ +

∆2
ρ

2

)
f

v

+

(
1 + ∆σ +

∆2
σ

2

)
g

v
+O

((v
n

)3
2

)
1

v

))
= exp

(
n log

(
1− ξ2

1

2n
− ξ2

2

2n
+O

((v
n

)3
2

)
1

v

))
= exp

(
n

(
− ξ

2
1

2n
− ξ2

2

2n
+O

((v
n

)3
2

)
1

v

))
= exp

(
−ξ

2
1

2
− ξ2

2

2
+O

((v
n

)1
2

))
→ exp

(
−ξ

2
1

2
− ξ2

2

2

)
.

This corresponds to the standard bivariate Gaussian distribution, and hence we have

(iv) in Theorem 5.1.1.

This completes the proof of Theorem 5.1.1.

5.4 Examples

The graph G (which we recall is a function in n) is already identified for (i) and (ii)

in Theorem 5.1.1, whereas (iv) is a degenerate case and is easily realized as it only

requires v/n → 0. Below are some examples for (iii) in Theorem 5.1.1, i.e., such

that k′ > 0 or k′ > 0, and r′ = s′ = 0.

Example 5.4.1. Consider the imprimitive strongly regular graphs pKq and Kp×q.

Assume that pq is (essentially) linear in n and that q/n→ 0. Then we have k′ = 0
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and k′ > 0 in Theorem 5.1.1 (iii) for pKq, and k > 0 and k′ = 0 for Kp×q.

Example 5.4.2 (Paley graphs). Let q be a prime power with q ≡ 1 (mod 4). The

Paley graph Paley(q) has vertex set Fq (the finite field with q elements), where two

distinct vertices are adjacent if and only if their difference is a square. It is easy to

see that Paley(q) is a conference graph. See [14, Sections 9.1.1 and 9.1.2]. Hence

if we take n to be linear in q, then it follows from (5.17) and (5.18) that we are in

Theorem 5.1.1 (iii) with k′ = k′ > 0.

Example 5.4.3 (Symplectic graphs). Let q be a prime power, and let ` be an integer

at least two. Endow F2`
q with a non-degenerate symplectic form. The Symplectic

graph Sp2`(q) has as vertex set the set of one-dimensional subspaces (i.e., pro-

jective points) of F2`
q , where two distinct vertices are adjacent if and only if they

are orthogonal. The graph Sp2`(q) is strongly regular with parameters (v, k, λ, µ),

where

v =
q2` − 1

q − 1
, k =

q(q2`−2 − 1)

q − 1
, λ =

q2(q2`−4 − 1)

q − 1
+ q− 1, µ =

q2`−2 − 1

q − 1
,

and with restricted eigenvalues

r = q`−1 − 1, s = −q`−1 − 1.

Fix q and let ` → ∞. If n is linear in q2` then again we are in Theorem 5.1.1 (iii)

with k′ = k′/(q−1) > 0. There are many other infinite families of strongly regular

graphs related to finite geometry; cf. [12].

Example 5.4.4. Let q be a prime power. Let H1, H2, . . . , Hm be distinct one-

dimensional subspaces of F2
q , where 1 6 m 6 q. For j = 1, 2, . . . ,m, let Pj
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be the set of q parallel affine subspaces of F2
q with direction Hj , i.e.,

Pj = {Hj + x : x ∈ F2
q} (j = 1, 2, . . . ,m).

Let P = P1t· · ·tPm and B = F2
q . Consider an incidence structure (P,B,I ),

where a point Hj + x and a block y are incident if and only if y ∈ Hj + x. Then

it is easy to see that (P,B,I ) is a TD(q, e). Hence if we take both q2 and mq to

be linear in n, then the corresponding Latin square graph attains Theorem 5.1.1 (iii)

with k′ > 0. We may view Paley(q2) in this way with m = (q+ 1)/2, as Fq2 ∼= F2
q .

We note that, unlike the previous examples, any k′ > 0 and k′ > 0 can be achieved

here as limits. There is also a more general construction of strongly regular graphs

from cyclotomy, all giving rise to examples of Theorem 5.1.1 (iii); cf. [14, §9.8.5].
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