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CHAPTER 1 

 

General introduction 

 

 

1-1 Hazards of As contamination in water 

 

The general collective term “heavy metal” means the group of metals and metalloids 

with atomic density greater than 4000 kg/m3 or 4 times more than water (Garbarino et 

al., 1995) and they are natural components of the earth’s crust. The main threats to 

human health from heavy metals are associated with exposure to mercury (Hg), lead 

(Pb), cadmium (Cd) and arsenic (As). The heavy metals are generally more persistent 

than organic contaminants in the environment, such as pesticides or petroleum 

byproducts. The heavy metal compounds in soil may become mobile depends on their 

speciation and the pH of soil, which results in a fraction of them may leach to aquifer 

or become bio-available to living organisms (Alloway, 1990; Santona et al., 2006). 

Heavy metals have been used in many different areas for thousands of years. The 

basic use of metallic arsenic is in alloys of lead (for example, in car batteries and 

ammunition). Arsenic is a common n-type dopant in semiconductor electronic 

devices, and after doped silicon the second most commonly used semiconductor is the 

onto electronic compound gallium arsenide. Lead has been used for at least 5000 

years, recent applications includes building materials, pigments for glazing ceramics, 

and pipes for transporting water etc. Cadmium pigments were used extensively in the 

mid-1800s, but finally the scarcity of the metal limited the use in artists’ materials 

until the early 1900s. 
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Although adverse health effects of heavy metals have been known to all for a long 

time, exposure to heavy metals continues and is even increasing in some areas. For 

example, arsenic is still common in wood preservatives, and tetra-ethyl lead remains a 

common additive to petrol. Although this use has decreased dramatically in the 

developed countries, but developing countries still has been using in most cases. 

Actually, in the middle of the 19th century, production of heavy metals increased 

steeply for more than 100 years with concomitant emissions to the environment. 

Contamination in the food chain is the major pathway of heavy metal exposure for 

humans (Khan et al. 2008). Industrial or municipal wastewater that used for irrigation, 

is a common reality for heavy metal pollution in three fourth of the cities in Asia, 

Africa, and Latin America (Gupta et al. 2008). Industries wastewater or contaminated 

water from other sources carries an appreciable amount of toxic heavy metals which 

create a problem for safe rational utilization of agricultural soil (Yadav et al. 2002; 

Chen et al. 2005; Singh et al. 2004). 

Comparing with other heavy metals, the adverse effect of arsenic pollution is more 

severe. As toxicity can be classified into two categories, such as acute and chronic: 

acute toxicity may cause digestive disturbance and fast pulse. More serious diseases 

like cancer or nerve disturbance might be caused by chronic toxicity. Moreover, it 

was reported that 42.7 million of people in West Bengal, India and 79.9 million of 

people in Bangladesh are suffered from groundwater contaminated by As since the As 

levels in groundwater in these areas are above the World Health Organization 

maximum permissible limit of 50 µg/L (Chowdhury et al. 2000). Considering the 

aforementioned situation, it is high time to control heavy metal pollution, especially 

As pollution from contaminated site.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chowdhury%20UK%5bauth%5d
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1-2 Recent remediation technologies for As removal from water 

Several technologies are available for the remediation of heavy metals contaminated 

water with some definite outcomes such as: (i) complete or substantial 

destruction/degradation of the pollutants, (ii) extraction of pollutants for further 

treatment or disposal, (iii) stabilization of pollutants in forms less mobile or toxic, (iv) 

separation of non-contaminated materials and their recycling from polluted materials 

that require further treatment, and (v) containment of the polluted material to restrict 

exposure of the wider environment (Nathanail and Bardos, 2004; Scullion, 2006; 

M.A. Hashim et al. 2011). The treatment technologies can be divided into the 

following classes: i. Chemical Treatment Technologies, ii. 

Biological/Biochemical/Biosorptive Treatment Technologies, iii. Physico-Chemical 

Treatment Technologies. The use of biological methods has been recommended 

because they can be cheap, effective and environmental-friendly compared with other 

conventional (physical and chemical) methods (Hanif, Bhatti and Hanif 2009). The 

biological processes such as phytoremediation, phytoextraction and 

hyperaccumulation have been used for long term remediation purposes in conjugation 

with some other more intense remediation process. In-situ arsenic removal by 

microorganisms, plants and ferrous oxides has been proved to be a very effective and 

sustainable technology in practice. Although it is a long term process but it has long 

lasting effect on aquifer. No waste is generated and practically no chemical is required 

to create an oxygenation zone in the aquifer which makes this process cost effective 

and environmental friendly. It maintains a very fine balance between coprecipitation 

of As(V) with iron(III) and adsorption of the former into the later (M.A. Hashim et al. 

2011). Adsorption is more acceptable than coprecipitation and can be achieved by 

calculated oxygenation process. Biosorption is a highly practical solution for heavy 
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metal remediation from water or soil and is a much researched field of study. 

Biosorption is cost effective, environment friendly and has possibility of metal 

recovery and also generates minimum sludge. Biosurfactants are biodegradable and 

they can solubilize metals by reducing surface tension and increasing their wettability, 

thus bringing them out of soil or aquifer matrix. However, the practical field 

application for heavy metal removal is still limited. Metal uptake by various plants 

and organisms is principally a slower natural process that can be used in field for long 

term remediation measures. However, the immobilized metals can be leach back in 

the solution under influence of acidic pH. Agricultural wastes and cellulosic materials 

have huge potential to be used again for biosorption of heavy metals through ion 

exchange process, surface complexation and electrostatic interactions.  

The technologies that have been used recently and are undergoing further tests in 

laboratory are also discussed. The summary of some important heavy metal 

remediation methods for treatment of contaminated water are given at Table 1-1. 

Contaminated water treatment technologies have come a long way since the days of 

their inception. Much research has been done on various technologies ranging from 

simple ex-situ physical separation techniques to complex in-situ microbiological and 

adsorption techniques. In modern days, sustainability is the keyword to apply any 

process. Instant remediation may provide a temporary solution to a problem but it 

may not be a permanent one. Therefore, natural processes and biogeochemistry of the 

water should be given due consideration before planning remediation processes. 

Considering sustainability of method, cost and the effect on the environment, 

biological methods like phytoremediation might be one suitable solution for removal 

of heavy metals from contaminated water. 
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Table 1-1 Heavy metal remediation methods for contaminated water (Hashim et al. 

2011. Partially modified) 

Remediation method Application and Advantage 

Reduction    

by dithionites 

Injected in aquifer for Redox sensitive elements (Cr, U, Th).  

Active over larger area; Long lasting effect. 

Reduction  

By H2S (g) 

Application by carrier gas medium,  

no secondary waste generation 

Bioremediation To digest heavy metals by biological activity 

Phytoremediation 
To remove toxic heavy metals by using plant, low cost and 

environment friendly method for widely spread pollution 

ISBP process 
immobilizes the heavy metals as sulphide precipitate through 

BSR process 

Chelate Flushing 

In-situ injection of chelates e.g. EDTA, NTA, DTPA, SDTC, 

STC, K2BDET .  

Ligands act at very low dose; Stable complexes formed; 

Chelates can be regenerated 

Remediation  

by selective  

ion exchange 

In-situ use of synthetically prepared type II SIRs and ion 

exchange resins in PRBs 

Selectively remove low level of metal ions from contaminated 

aquifer, despite high concentration 

Chemical fixation 

Using red mud and mixture of FeSO4, CaCO3, KMnO4 and 

Ca(H2PO4)2;  

Stabilization of metals like As, Pb etc. by oxidizing and 

trapping in the structure 

Immobilization of 

radionuclides 

Removal of U, Tc and Ra by micro-organisms of geobacter 

species  

1-3 Arsenic hyperaccumulating tropical and temperate zone ferns 

The term “hyperaccumulator” describes a number of plants that belong to distantly 

related families and to accumulate extraordinarily high amounts of heavy metals in 

the aerial organs, far in excess of the levels found in the majority of species, without 
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suffering phytotoxic effects (Nicoletta R. et al., 2011). Although hyperaccumulation 

of heavy metals or metalloids is a rare phenomenon in terrestrial higher plants,  more 

than 400 taxa of hyperaccumulator species have been identified, in those about three-

quarters are nickel (Ni) hyperaccumulators (Baker et al., 2000). A wide range of 

plant species have been identified as being As resistant (Meharg & Hartley-Whitaker, 

2002), and As hyperaccumulation was discovered initially in the brake fern Pteris 

vittata (Ma et al., 2001). Table 1-2 showed some naturally grown As 

hyperaccumulating plants. Though P. vittata is the mostly studied arsenic 

hyperaccumulator fern, it is limited by its cold tolerance. Being a tropical zone fern, it 

cannot accumulate As at low temperature (≤50C) instead of its highest efficiency at 

250C. P. vittata naturally grows in Florida (USA), South east part of Asia and very 

south part of Japan, belongs to sub-tropical zone (average temperature: 7-15°C in 

winter; 25-30°C in summer). The germination and growth rates of P. vittata are also 

limited at around 25°C (Wan et al. 2009).  

Table 1-2 Some naturally grown As hyperaccumulating plants. 

Plant species Quantity of As (mg/Kg) Referances 

P. vittata 22,630 (in shoot) Ma et al., 2001 

P. multifida 5,510 (in frond) Terrence S. et al., 2009 

P. cretica 5,584 (in frond) Terrence S. et al., 2009 

Lemna gibba 1,021 (in shoot) Mkandawire and Dudel, 2005 

Ceratophyllum demersum 963 (in shoot) Saygideger et al., 2004 

Typha latifolia 1,120  (in shoot) Ye et al., 1997 

Pteris longifolia 5,000 (in frond) Zhao et al., 2002 

Pteris umbrosa 5,000 (in frond) Zhao et al., 2002 

Pityrogramma 

calomelanos 

5,000-8350 (in frond) Francesconi et al., 2002 

http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00493.x/full#b1
http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00493.x/full#b2
http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00493.x/full#b2
http://onlinelibrary.wiley.com/doi/10.1046/j.1469-8137.2002.00493.x/full#b3
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Aiming at searching for cold tolerant As hyperaccumulating fern, two renowned 

temperate zone fern named P. cretica and P. multifida was considered in this study. In 

order to compare As accumulating potential and cold tolerance ability of the above 

temperate ferns, tropical zone fern P.vittata was considered as the most studied As 

hypreaccumulator. Pteris multifida (spider brake fern) and  Pteris cretica (Cretan 

brake) are two common plants native to Europe, Asia and Africa. Both of them are 

also distributed almost all areas in Japan and China including temperate areas. P. 

cretica can grow in a minimum temperature of 2 °C (RHS et al., 2008). Similarly, P. 

multifida has already shown some ability to tolerate low temperatures from 5 °C to -

4.6°C (measured by thermometer in the field) during field experiments (Sugawara, 

Chien and Inoue 2015), which is an essential property for large scale 

phytoremediation in temperate zones such as the northern part of  Japan. Among the 

above As accumulating plants, Pteris is the largest genus that has the significant 

potential to hyperaccumulate As. From the Pteris genus, P. multifida as well as Pteris 

cretica draw our attention because they naturally grow at temperate zone thus have 

potential to accumulate As at low temperature. 

1-4 Phytofiltration by temperate zone ferns at low temperature 

 

Phytoremediation is a plant-based green technology, a promising technology for 

environmental pollution caused by unavoidable limitations of traditional technologies 

(Rahman et al., 2008a). Nowadays, heavy metal accumulation by plants, such as 

Cynodon dactylon (Wu et al. 2010), Salvinia natans (Dhir and Srivastava 2011), 

Melastoma malabathricum L. (Selamat, Abdullah and Idris 2014), Switchgrass (Jeke, 

Zvomuya and Ross 2016) and Pteris vittata (Ronzan et al. 2017) have been reported 

as successful phytoremediation strategies. The use of plants in the process of 

https://en.wikipedia.org/wiki/Native_plant
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phytoremediation from aquatic medium is more commonly known as phytofiltration. 

In this study, I have tried to introduce phytofiltration potential of two temperate zone 

ferns (P. multifida and P. cretica) at low temperature compared with most studied 

tropical zone fern P. vittata for the first time. 

 

Temperature has a deep effect on plant growth since low temperature affects 

transpiration, growth and metabolism of plants and therefore both uptake and 

elimination efficiencies of pollutants (Yu et al. 2005). But the plants that grow 

naturally in temperate zone can survive and accumulate heavy metals even at low 

temperature. Temperate zone plants may have temperature sensing systems which 

help them to adapt adverse environment. In this study, effects of low temperature on 

temperate zone ferns (P. multifida and P. cretica) were compared with a tropical zone 

fern (P. vittata) which distinguished the morphological and heavy metal removal 

potential of temperate and tropical zone ferns. Temperate zone ferns P. multifida and 

P. cretica are confirmed as hyperaccumulators of inorganic arsenic which P. multifida 

as well as P. cretica are efficient at arsenic extraction with maximum frond arsenic 

concentrations of 5,510 ppm and 5,584 ppm respectively (Terrence S. et al., 2009). P. 

multifida was considered more tolerant to arsenic than P. cretica was since the 

biomass of P. multifida was bigger than P. cretica. Another study showed that P. 

multifida can hyperaccumulate As in their fronds with high concentrations in addition 

to P. vittata and P. cretica which have been previously identified as As 

hyperaccumulators (Wang HB1 et al., 2006). On the other hand, tropical fern P. 

vittata is the first discovered As hyperaccumulator, able to accumulate 22,630 mg/kg 

of As in the shoots from soil contained 15,00 mg/kg of As (Ma et al., 2001). The 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20HB%5bAuthor%5d&cauthor=true&cauthor_uid=16615304
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Frond

Root

Rhizome

Frond

Rhizome

Root

Frond

Rhizome

Root

Pteris vittata Pteris multifida Pteris cretica

Figure 1-1 shows the appearance and name of each parts of three ferns.
Figure 1-1 shows the appearance and name of each parts of three ferns.  

Fig. 1-2 Appearance of P. vittata and name of each part. (Sugawara K., PhD thesis, 2015) 

 

appearance and name of each parts of P. vittata, P. multifida and P. cretica are 

showing Fig: 1-1. 

 

 

1-5 As accumulation mechanism of P. vittata  

Pteris vittata, the first discovered and mostly studied As hyperaccumulator, can 

accumulate 22,630 mg/kg of As in the shoots when the fern was cultivated in soil 

contained 1,500 mg/kg of As (Ma et al., 2001). Fig 1-2 shows the appearance and 

parts of P. vittata. 
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Arsenate (As(V)) is mainly absorbed by P. vittata from the environment, then As(V) 

was reduced to arsenite (As(III)) within root system. More than 90% of As(III) was 

transported to shoots via xylem and accumulate as free As(III) in the fronds (Ma et al., 

2001; Su et al., 2008). Actually As(V) is absorbed via phosphate transporter due to the 

chemical analog between As(V) and phosphate (Meharg and Macnair, 1992). In case 

of As(III), it is transported via the aquaporin, which was one of water transporter 

(Bienert et al., 2008). Elemental As accumulation mechanism was described like 

above, but detail of each accumulation and transportation has not been described. For 

example, P. vittata reduces As(V) to As(III) which is more toxic form. To describe this 

phenomenon, As(III) specifically was bound to detoxification with low molecular 

thiols such as phytochelatin, glutathione. Then, Arsenite-thiol complex was 

transported into the cell vacuole (Zhang et al., 2004; Pickering et al., 2006). However, 

it was reported that the material balance of sulfur and arsenic did not match in pinna 

of P. vittata (Sakai et al., 2010). Furthermore, Moore et al. (2014) reported that As 

was not only accumulated in vacuolar of cell but also the cell wall in Oryza sativa. 

These reports were suggested that P. vittata may has other As resistance and 

hyperaccumulation system besides As-thiol conjugation and accumulation of As in the 

vacuolar. K. Sugawara (2015) has conducted As translocation and efflux test at room 

temperature (25°C) in hydroponics system to ensure the translocation of As from As-

exposed fronds to other organs. During 24h exposure, majority of As was translocated 

to other organs with very little As excretion from roots to medium. If some As 

containing fronds become mature or die at 25°C, most of the As was translocated to 

other new fronds but if any frond dies by cold stress at low temperature (5°C), most 

probably As was released to the medium via root system. Thus, it is important to 
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understand As hyperaccumulation and translocation system in P. vittata. As 

accumulation and transportation mechanism of P. vittata shows in Fig. 1-3.  

 

Fig. 1-3 Arsenic accumulation and translocation scheme of P. vittata.  (K. Sugawara, 

PhD thesis, 2015) 

 

1-6 Application to leachate 

Final target is to apply temperate zone ferns as well as tropical zone ferns in a As 

contaminated leachate at the temperate zone of northern part of Japan. Leachate that 

produced from precipitation and ground water seeping through municipal waste in 

landfills is contaminated with various organic and inorganic substances from the 

If some As containing fronds 

become mature or die at room 

temperature, majority As is 

translocated to other new fronds 

If any frond dies 

by cold stress at 

low temperature 

(50C), most 

probably As was 

released to the 

medium via root 

system 
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landfill waste (Baedecker and Back, 1979; Christensen and others, 2001). Leachate 

seeping from a landfill contaminates the water beneath the landfill. Water 

contamination also extends away from the landfill in the direction of water flow, 

forming a leachate plume that can result in the release of naturally occurring arsenic. 

A significant source of metals released into the environment is the solid waste 

disposals (open dumps, landfills, sanitary landfills or incinerators). (Yarlagadda et 

al. 1995; Waheed et al. 2010; Iwegbue et al. 2010; Bretzel and Calderisi 2011; Rizo 

et al. 2012). Primarily leachate is produced in association with precipitation that 

infiltrates through the refuse and normally results in the migration of leachate into 

the groundwater zone and pollutes it (Samuding 2009). Waters and soils have been 

contaminated with heavy metals such as lead, arsenic, zinc, iron, manganese, 

chromium, and cadmium due to migration of leachate, and these heavy metals in 

solid wastes lead to serious problems because they cannot be biodegraded (Hong et 

al. 2002). Co-disposed industrial wastes, incinerator ashes, mine wastes and 

household hazardous substances such as batteries, paints, dyes, inks, etc. are the 

major sources of heavy metals in landfills (Erses and Onay 2003). Water and soil 

contamination by heavy metals from waste disposal sites is a serious problem in 

industrial and urban areas (Mandal and Sengupta 2006). Actually soil and water are 

regarded as the ultimate sink for heavy metals discharged into the environment, as 

many heavy metals are bound to soils and sediments (Obiajunwa et al. 2002).  

Although it is not so easy to keep the healthy condition of plants at any temperature 

during practical application to As contaminated leachate, we approached for 

adaptation of ferns at low temperature and considerable removal of As from 

contaminated leachate. 

https://link.springer.com/article/10.1007/s13201-012-0072-z#CR56
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR33
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR24
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR44
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR51
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1-7 Critical points of As removal by temperate zone ferns at low temperature 

As is extremely toxic for living beings and it is highly persistent pollutants. Once they 

get into groundwater, it becomes extremely difficult to handle them due to the 

complex speciation chemistry coming into play. However, many techniques have 

been devised over the past few decades to remediate As from water. Phytoremediation 

is one of the most promising technologies have been served as a cost effective, 

environment friendly technology for widely spread low concentration contamination. 

Anyway, Plants may develop physiological disorders when exposed to low 

temperature. Low but non-freezing temperatures is called chilling injury refers to an 

injury that is caused by a temperature drop to below to 10°C to 15°C but above the 

freezing point. Chilling injury occurs in tropical and subtropical plants at10°C to 25° 

C and temperate plants at 0 to 15°C. Being temperate zone ferns, P. multifida as well 

P. cretica showed usual efficiency for As removal at 10°C, 15°C and 25°C but 

chilling effect was noticed in tropical zone fern P. vittata at 10°C, 15°C. This effect is 

manifested by physiological and cytological changes when cytological changes may 

be reversible or irreversible depending upon time of exposure to low temperature. The 

most common site implicated for chilling injury is the plasma membrane. The 

consequences of this change may lead to cell leakage or disruption. Most common 

symptoms of chilling stress is rapid wilting followed by water soaked patches which 

develop into sunken pits that reflect cells tissue collapse. Following warming, the 

sunken pits usually dry up, leaving necrotic patches of tissues on the leaf surface.  

 During hydroponic cultivation and application to leachate, lowest considered 

temperature (5°C or ≤5°C) was always critical for all temperate and tropical zone 

ferns. Severe cold stress was observed when they are exposed to a low temperature 
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like 00C. In case of tropical zone fern P. vittata, Symptoms like desiccation or burning 

of foliage was noticed and As accumulation was almost stopped, even accumulated 

As was released to the medium. Water-soaked areas that progress to necrotic spots on 

leaves and death of sections of the plant or the entire plant. Close examination of 

plants several days or weeks at ≤5°C may reveal a dead or weakened root system or 

split bark on stems or branches. Although temperate zone fern like P. multifida or P. 

cretica was still green in appearance at 5°C, but their As accumulation efficiency was 

decreased significantly, sometimes released some amount of accumulated As to the 

media at ≤5°C. 

Moreover, the growth rate of temperate zone ferns (P. multifida or P. cretica) are 

considerably slower than tropical fern P. vittata. Further investigations are 

recommended to overcome the above difficulties for more successful 

phytoremediation. 

 

1-8 Objectives of present research 

 

Ferns are promising for phytoremediation of As contaminated site. Although P. 

vittata is the most studied As hyperaccumulator fern, it is limited to its cold tolerance. 

In this research, temperate zone ferns P. multifida and P. cretica were considered for 

investigating their heavy metal accumulating potential at four different temperature. 

Comparative potential of temperate zone fern P. vittata was also determined to find 

out the suitable fern for successful phytoremediation at low temperature. However, 

release tendency of those three ferns under cold stress has also been investigated but 

these results are not enough for searching the most suitable fern for practical 

application to arsenic contaminated water. In addition, temperate zone ferns as well as 
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tropical zone ferns were applied in a arsenic contaminated dumping site in winter for 

the first time. However, survival of the ferns under cold stress and continuous arsenic 

removal was a big challenge at this application. The objectives of the present study 

were 1: Evaluation of basic potential of temperate zone ferns p. multifida and P. 

cretica to remove arsenic, cadmium and lead from contaminated water; 2: 

Determination of the effect of low temperature on arsenic removal potential of 

temperate zone and tropical zone ferns; 3: Investigation of the efficiency of the 

practically applied temperate zone and tropical zone ferns in a arsenic contaminated 

dumping site leachate. 

 

1-9 Contents of this thesis 

 

This doctoral thesis consists of 5 chapters.  

 

Chapter 1 “General introduction” was written about back ground information of As 

contamination and phytoremediation of As from water, temperate and tropical zone 

ferns, and summarized issues of phytoremediation by temperate zone ferns at low 

temperature. 

 

Chapter 2 “Arsenic, lead and cadmium removal potential of Pteris vittata, Pteris 

multifida and Pteris cretica from contaminated water” was investigated the basic 

potential of temperate zone fern P. multifida and P. cretica for removal of three top 

toxic metals (arsenic, lead and cadmium) and tropical zone fern P. vittata was 

considered for comparative analysis. Translocation of accumulated metals in different 

parts of P.multifida, P. cretica and P. vittata were also observed. 
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Chapter 3 “Influence of temperature on comparative arsenic accumulation and release 

by P. multifida, P. vittata and P. cretica” was highlighted the effect of different 

temperature on arsenic accumulating potential of temperate zone and tropical zone 

ferns. Additionally, accumulated arsenic release tendency of those three ferns was 

also observed for investigating comparatively higher cold tolerant fern for successful 

application of phytoremediation. 

 

Chapter 4 “Practical application of temperate zone ferns to an arsenic contaminated 

leachate” was discussed about first time application of temperate zone fern P. cretica 

and tropical zone fern P. vittata to an arsenic contaminated dump site leachate for 

removal of As all over the year where adaptation of the plants with fluctuating 

temperature was a big Challenge.   

 

Chapter 5 “Conclusion” was summarized all of results that have done in this thesis 

and also dedicated some unsolved issues to the future researchers.  
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CHAPTER 2 

 

 

Arsenic, Lead and Cadmium Removal Potential of Pteris vittata, Pteris multifida 

and Pteris cretica from Contaminated Water 

 

 

2.1 Introduction 

 

Heavy metal pollution is a great threat worldwide. This type of pollution has 

accelerated rapidly since the onset of the industrial revolution (Gisbert et al. 2003). 

Retention of heavy metals at high concentrations in the environment exerts toxic 

effects on fauna and flora (Xue et al. 2010). Increased metal concentrations in the soil 

or water up to toxic levels is also a severe environmental problem (Briat et al. 1999).  

Arsenic (As), lead (Pb) and cadmium (Cd) are heavy metals of particular interest 

because of their unique toxic and carcinogenic effects. It was reported that 42.7 

million people in West Bengal, India and 79.9 million people in Bangladesh suffered 

from groundwater contamination by As, with As levels in groundwater above the 

World Health Organization maximum permissible limit of 50 µg/L (Chowdhury et al. 

2000). Most of the previous studies of As focused on As(V) remediation (Mandal et 

al. 2012; Natarajan et al. 2011; Tu et al. 2002; Ma et al. 2001), but in this research, 

we have used As(III) for hydroponic culture which is almost 2 to 10 times more toxic 

than As(V) (Goyer et al. 2001). In case of Cd poisoning, itai–itai disease is the most 

severe form of chronic poisoning caused by prolonged oral Cd ingestion which 

developed in numerous inhabitants of the Jinzu River basin in Toyama Prefecture of 

Japan (Inaba et al. 2005). Severe exposure to Pb can induce badly damage of the 

central nervous system (Kaul et al. 1999; Hertz-Picciotto 2000). According to Cui et 

al. (2004), soil and vegetables were heavily polluted by Pb and Cd near a smelter 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chowdhury%20UK%5bauth%5d
http://www.sciencedirect.com/science/article/pii/S030438941001277X
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producing Pb in a suburb of Nanning, the capital of Guangxi Province in southern 

China. 

 

For removal and recovery of toxic heavy metals, the use of biological methods has 

been recommended because they can be cheap, effective and environmentally-friendly 

compared with other conventional (physical and chemical) methods (Hanif, Bhatti 

and Hanif 2009). Phytoremediation is one of the most promising biological 

technologies for the removal of environmental pollution caused by the limitations of 

traditional technologies (Rahman et al. 2008). Recently, heavy metal accumulation by 

plants, such as Cynodon dactylon (Wu et al. 2010), Salvinia natans (Dhir and 

Srivastava 2011), Melastoma malabathricum L. (Selamat, Abdullah and Idris 2014), 

Switchgrass (Jeke, Zvomuya and Ross 2016) and Pteris vittata (Ronzan et al. 2017) 

has been tested and the effectiveness of phytoremediation by these plants has been 

demonstrated. The use of fern for this removal technique has developed considerable 

interest since the initial report of a Chinese brake fern (Pteris vittata) as an arsenic 

hyperaccumulator (Ma et al. 2001). Although P. vittata is the most studied fern, it is 

limited in its cold-tolerance. In case of Japan, P. vittata naturally grows in very south 

part of Japan, belongs to sub-tropical zone (average temperature: 7-15°C in winter; 

25-30°C in summer). Being a tropical zone fern, germination and growth rates of P. 

vittata were also limited at around 25°C (Wan et al. 2009). Thus, it is of interest to 

find an alternative cold-tolerant heavy metal-accumulating fern. 

 

Pteris multifida as well as Pteris cretica are two As hyperaccumulating temperate 

zone fern that can accumulate 5,510 and 5,584 mg/kg As respectively (Terrence S. et 

al., 2009) in the fronds from soil. This is one of the world's common plants, 
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distributed almost all areas in Japan and China including temperate areas. P. multifida 

has already shown some ability to tolerate low temperatures from 5 °C to -4.6°C 

(measured by thermometer in the field) during field experiments (Sugawara, Chein 

and Inoue 2015), which is an essential property for large scale phytoremediation in 

temperate zones such as the northern part of Japan. There is currently limited 

knowledge on the accumulation and translocation of heavy metals by P. multifida and 

P. cretica to date there is no published information on the potential for accumulation 

of As, Pb and Cd by those two temperate zone ferns from solution. Therefore, the 

aims of the present study were: (I) to determine the potential of temperate ferns for 

heavy metal accumulation from both water and soil media and to compare that with 

tropical fern P. vittata; (II) to compare the long-term accumulation of heavy metals by 

temperate fern (P. multifida) and tropical fern (P. vittata); and (III) to investigate the 

translocation of heavy metals from roots to aerial tissues. Hopefully the results of this 

study will provide novel information on the ability of temperate ferns to accumulate 

and translocate As, Pb and Cd from both water and soil. These results will contribute 

to the application of P. multifida and P. cretica and for phytofiltration or 

phytoremediation of multi-metal-contaminated soil and contaminated water.  

 

2.2 Materials and methods 

 

2.2.1 Plant materials 

 

P. multifida, P. cretica and P. vittata were obtained from Fujita Co. (Tokyo, Japan). 

Fujita company prepared those Pteris from spore. Almost 7 or 8 months had passed to 

prepare Pteris sporophytes from spores. We received 4 or 5 frond containing fern at 
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the age of 7 or 8 months. The average height and fresh weight was around 23cm and 

3.5g respectively.     

 

Efforts were made to ensure the uniformity and similarity of the size of plants used in 

the experiments. The ferns were used without sterilization for hydroponic cultivation, 

but sand was washed with tap water to remove the adhering compost from the roots, 

which is relevant to real treatment conditions (Natarajan et al 2008; Huang et al. 

2004). Then plants were transplanted to 500 mL opaque containers where they were 

acclimatized in 400 mL 5 times diluted Hoagland’s solution (Hoagland and Arnon 

1950) for two weeks in a growth chamber with the following conditions: 16-h light 

period with a light intensity of around 280 µmol / m2s ; 25 °C daytime; 20 °C night; 

and 70% relative humidity. All of the experiments of this study were done with the 

same growth conditions as mentioned above. After adapting to the hydroponic 

environment, the plants were used for heavy metal accumulation experiments. The 

experiments were set up with five plants of approximately equal size and after 

analysis, the average of best three plants was selected for results. 

 

2.2.2 Comparative hydroponic accumulation trial of P. multifida, P. cretica and 

P. vittata 

 

To determine the As(III), Pb and Cd accumulation potential of P. multifida and to 

establish its efficiency compared with P. vittata, 4-day hydroponic trials were 

conducted with both P. multifida, P. cretica and P. vittata. In this study, the more 

toxic form of As, As(III), was used during the hydroponic experiments to obtain the 

responses of those three ferns to As(III). Plants were pre-cultivated in 5 times diluted 
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Hoagland’s nutrient solution. The nutrient solution was composed of: 8 mM of KNO3; 

4 mM Ca(NO3)2; 2 mM MgSO4; 1 mM NH4H2PO4; 50 µM H3BO3; 9 µM MnSO4; 1 

µM ZnSO4; 0.2 µM CuSO4; 0.1 µM Na2MoO4; and 60 µM Fe(III)-EDTA. The 

acclimatized plants were incubated in 0.1 M 2-morpholinoethanesulfonic acid 

monohydrate (MES) buffer solution for three days to allow them to adjust to the 

buffer solution. Then P. multifida, P. cretica and P. vittata plants were transplanted to 

mixed metal solution where they have been growing for 4 days.  Metal solutions were 

prepared by using 0.1 M MES buffer. Every day, 1 mL of sample solution was 

collected at a fixed time for analysis and initial solution level (400mL) was 

supplemented very carefully by adding Milli-Q water. pH was kept at around 6.0 by 

adding 0.1M HNO3 or 0.1M NaOH initially and was not adjusted again during the 

experiment. The buffer solution maintained the pH within the range of 5.98 to 6.04 

during the 4 days’ experiment.  

 

To investigate the long-term accumulation and translocation ability of P. multifida 

and P. vittata, a separate long-term hydroponic experiment was conducted over 24 

days. Initial concentrations were measured before plantation when concentrations of 

Pb (Pb(NO3)2), Cd (Cd(NO3)2 . 4H2O) and As(III) (NaAsO2) in mixed metal solution 

were 27µg/L, 30µg/L and 33µg/L respectively. All methods were the same as 

described above for the 4-day experiment but this time, 5 times diluted Hoagland’s 

solution was used initially and solution was continuously aerated to ensure survival 

and health of the plant during the longer incubation period (24 days). All experiments 

were kept in the growth chamber.  
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2.2.3 Pot soil experiment for As(V), Pb and Cd accumulation and tranportation  

 

Pot soil experiments were conducted to investigate As(V), Pb and Cd uptake and 

transportation by P. multifida and P. vittata from pot soil medium from July to 

October, 2015. During the 3-month pot soil experiment, it was not possible to prevent 

the oxidation of As, so As(V) was spiked into the soil instead of As(III). During pre-

cultivation, plants were grown in pot soil for 2 weeks to allow them to acclimatize to 

the pot conditions, where each pot contained about 3 kg mixture of sand and peat 

moss (4:1, v/v). According to Zheng et al. (2003), high concentration Pb reacted with 

As in soil solution to form a stable mineral. To avoid those possibilities, individual 

metal solutions of As(V) (Na2HAsO4 . 7H2O), Pb (Pb(NO3)2) and Cd (Cd(NO3)2 . 

4H2O) were injected into separate pots so that in each pot metal concentration was 

maintained at 0.5 mg heavy metal/kg soil. Initial metal concentration of pot soil (0.5 

mg/kg) was higher than that of hydroponic solution (about 30 µg/L) because usually, 

in soil most of the metals are absorbed as soon as possible and would like to form 

some insoluble compounds like minerals or hydroxides. Thus, the availability of 

metals in soil is always comparatively lower than that of metal solution (containing 

metals as ions). Plants were watered every day and changes in the physical 

appearance of plants were recorded. Each metal was injected into triplicate separate 

pots for both P. multifida and P. vittata where each pot contained one plant only. 

After 3 months’ incubation, plant samples were digested for inductive coupled plasma 

mass spectroscopy (ICP-MS) analysis. 
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2.2.4 Sample preparation and chemical treatment 

 

After the incubation period was completed, plant roots and rhizomes were immersed 

in a solution containing 1 mM K2HPO4, 0.5 mM Ca(NO3)2, and 5 mM MES (pH 6.0) 

for 10 min and then briefly rinsed in distilled water. Fronds were also washed three 

times with distilled water and then dried in an oven for 3 days. The dried plant 

samples (10 mg) were digested in 3 mL of concentrated HNO3 on a heating block 

(ALB-121, Acinics, Japan) at 130 °C for 90 min. The digests were subsequently 

cooled and diluted 10-fold using Milli-Q water (Merck Millipore Corporation, 

Darmstadt, Germany), filtered through a PTFE 0.45 µm filter membrane (Merck 

Millipore Corporation) and then stored for analysis in 15 mL polypropylene tubes. 

As(III) and As(V) were separated by using an As speciation cartridge (Metal Soft 

Center, Highland Park, NJ, USA) that retains As(III) (Meng et al. 2001). As species 

in the solution were analyzed by the process described previously (Huang, Hatayama 

and Inoue 2011) 

Inductively coupled plasma mass spectrometry (ICP-MS; ELAN 9000, Perkin Elmer, 

SCIEX) was used for quantitative analysis of As, Pb, and Cd. The internal standard 

used during analysis was 10 µg/L indium (In). Standard reference materials were 

standard solution of As, Pb, and Cd (Wako chemicals, Japan) and recovery rates were 

more than 100%. All glassware was washed five times with detergent solution, 3% 

HNO3 and Milli-Q water. All reagents were of analytical grade. 

 

2.2.5 Data analysis  

The values reported in both text and figures are the mean ± SE (standard error of the 

mean). The statistical significance (at 95% confidence) was tested using analysis of 
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variance, where appropriate, and the numbers of replicates are included in the figure 

legends. 

2.3  Results and discussion 

 

2.3.1 As, Pb and Cd uptake from hydroponic mixed metal solution 

 

Temperate zone fern has the potential to accumulate and store As, Pb and Cd from 

multi-metal solution, although the accumulation efficiency varied for each individual 

metal. The concentrations of As, Pb and Cd in the mixed metal solution decreased 

with increasing exposure time. To compare the efficacy of P. multifida, P. cretica and 

P. vittata for accumulating As(III), Pb and Cd, a short-term (4 days) hydroponic 

experiment was conducted. A long-term (24 day) hydroponic experiment was also 

conducted to clarify the long-term accumulation ability of those two ferns.   

 

2.3.1.1 As(III) was removed by temperate zone fern (P. multifida and P. cretica), 

but not by tropical fern P. vittata during short-term incubation  

 

During the short-term (4 day) hydroponic experiment, a mixed metal solution was 

used where the form of As was As(III). To the best of our knowledge, the As(III) 

removal potential of P. multifida has not yet been tested, even though As(III) is 

almost 2 to 10 times more toxic than As(V) (Goyer 2001). During this experiment, the 

hydroponic conditions were strictly maintained to prevent the oxidation of As(III). 

Nutrients were not added to the metal stock solution to avoid the interactions between 

nutrients and metals. According to Su et al. (2008), in hydroponic solutions without 

nutrient, the possibility of oxidation from As(III) to As(V) is very low, which agrees 
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with our results. Speciation tests for As in the mixed metal solution showed that even 

on the last day of experiment, almost 93% of As was measured as As(III) (Fig. 2-1).  

 

During this 4 days’ experiment, concentrations of As, Cd and Pb were removed from 

hydroponic solution by P. vittata, P. multifida and P. cretica although initial 

concentrations of three target metals were not same in the mixed metal solution as the 

set value was 30 µg/L [Fig. 2-2 (a)(b)(c)]. Tropical fern P. vittata accumulated 79% 

Pb and 45% Cd respectively, but no As(III) at all from the mixed metal solution  [Fig. 

2-3 (a)] where 63%, 44% and 33% of Pb, Cd and As(III), respectively, were 

accumulated by P. multifida within 4 days’ [Fig. 2-3 (b)]. As(III) accumulation by P. 

multifida was significantly higher than that of P. vittata (P = 0.005). Cd and Pb 

accumulation by P. multifida and P. vittata were almost similar (P = 0.41 and P = 

0.94 respectively) during short term. Another temperate fern P. cretica accumulated 

90%, 71% and 43% of Pb, Cd and As(III), respectively from hydroponic mixed metal 

solution [Fig. 2-3 (c)]. 

Fig. 2-1 Amount of As(III) and As(V) in the hydroponic solution after 5 days

experiment of Pteris vittata (n = 3) (a) and Amount of As(III) and As(V) in the

hydroponic solution after 24 days experiment of Pteris multifida (n = 3) (b)

Fig. 2-1 Amount of As(III) and As(V) in the hydroponic solution after 4 days’ 

experiment of Pteris vittata (n = 3) (a) and Amount of As(III) and As(V) in the 

hydroponic solution after 24 days’ experiment of Pteris multifida (n = 3) (b) 

(a) (b) 
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Comparative result between two temperate ferns showed that Pb and Cd accumulation 

capacity of P. cretica was higher than P. multifida. The first sampling (0 h) in this 

experiment was done after transplantation of the ferns. It is likely that at first, some of 

the As(III) was adsorbed by the root surface but was released back into solution 

within day 1 of the experiment; P. multifida then started to absorb up to 33% of the 

As(III) within 4 days’ but P. vittata could not accumulate As(III) at all.  

 

This unique result suggests that temperate fern (P. multifida and P. cretica) are better 

than tropical fern P. vittata for As(III) removal. In some plants, As(III) can be 

transported by aquaglyceroporin channels (Hatayama et al. 2011; Bienert et al. 2008). 

Further investigations are needed to clarify the mechanism of As(III) accumulation 

and transportation by Pteris species. 

 

2.3.1.2 Transportation of heavy metals during hydroponic experiments 

 

For successful application of phytoextraction or phytofiltration, accumulation and 

transportation of heavy metals is very important (Rozas, Alkorta and Garbisu 2006).  

If the metals are not transported to aerial plant parts but stay attached to the root then 

there is a high possibility that they can be released again to the media. To investigate 

the transportation of As, Pb and Cd from the root to other plant organs in temperate 

fern P. multifida, and P. cretica, concentrations of As, Pb and Cd in fronds, rhizomes 

and roots after 4 days’ incubation were analyzed. As shown in [Fig. 2-4 (a)], 

concentration of As in the frond of P. multifida was comparatively higher than root or 

rhizome but not significant (P = 0.08 and 0.13 respectively). In case of P. cretica, As 

was distributed to root, rhizome and frond within 4 days’ [Fig. 2-4 (b)].  
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Fig. 2-4 Transportation of arsenic (As), cadmium (Cd) and lead (Pb) in different 

parts (fronds, rhizome and roots) of (a) Pteris multifida; (b) Pteris cretica after the 

4-day hydroponic experiment (n = 3) 

0

5

10

15

20

25

30

35

40

45

As Cd Pb

Root

Rizome

Frond

C
o

n
c
e

n
tr

a
ti
o
n

 in
 p

la
n

t 
(m

g
/K

g
 D

W
)

Pteris multifida (after 5 days accumulation)

Fig. 2-5 Translocation of arsenic (As), cadmium (Cd) and lead
(Pb) in different parts (fronds, rhizome and roots) of Pteris
multifida after the 5-day hydroponic experiment (n = 3)
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Significantly higher concentration of Cd and Pb were stored in the root and rhizome 

(P ≤ 0.01) rather than frond in both temperate ferns. In case of P. multifida, although 

44% Cd was removed from the solution, but concentration in plant was lower. Thus, 

Cd might be just attached with the root surface and washed away from root during 

washing time. But most of the removed Pb was detected in the root of P. multifida. 

Transportation pattern of P. multifida can be compared with P. vittata which was 

incubated in mixed metal solution (100µM As +60µM Cd) for 15 days (Ronzan et al. 

2017). Significantly higher concentration of As was detected in frond (P < 0.05) 

rather than root of P. vittata and significantly higher Cd was detected in root and 

rhizome than fronds (P < 0.01) which was similar as P. multifida of this research. 

According to Wu et al 2009 P. vittata could accumulate and store Pb mainly in root 

but some concentration was also detected in frond which consistent with our result of 

Pb accumulation by P. multifida. Concentration of Pb and Cd that removed by P. 

cretica from the hydroponic solution were mostly detected in the root of P. cretica. 

 

2.3.1.3 Comparative long-term accumulation by temperate fern (P. multifida) 

and tropical fern (P. vittata) from hydroponic solution  

 

During the long-term experiment, concentrations of As, Cd and Pb were decreased 

with time from hydroponic solution by P. vittata and P. multifida [Figs. 2-5 (a)(b)]. P. 

vittata accumulated 98% As, 43% Cd and 47% Pb during 24days [Fig 2-6 (a)]. In case 

of long term incubation, significantly higher amount of As (12.3 ± 0.2 µg) was 

removed by P. vittata than that of Cd (5.5 ± 0.6 µg) and Pb (5.9 ± 2.0 µg) (P < 0.0001 

and P = 0.0003 respectively). P. multifida accumulated 90%, 36% and 50% of Pb, Cd 

and As, respectively, from mixed metal solution, as shown in [Fig. 2-6 (b)].  Removal 
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potential of P. multifida was compared in case of three target metals.   Within 24 

days, amount of Pb (9.5 ± 1.2 µg) that removed from hydroponic solution, was 

significantly higher than that of Cd (4.2 ± 0.1 µg) and As (6.6 ± 2.0 µg) (P = 0.007 

and P = 0.04 respectively). To avoid the initial adsorption and release observed in the 

short-term experiment, the first sampling (0 h) was undertaken before transplantation. 

The major difference between the long-term and short-term experiments was that 

essential nutrients were added initially to the mixed metal solution in the long-term 

experiment to ensure the health and survival of the plant, which might have caused 

some interaction between metals and nutrients. According to our hypothesis, the 

interaction between metals and nutrients during the long-term experiment resulted in 

slow accumulation of heavy metals during the first few days. In the case of the long-

term (24 days) experiment with nutrient, it is most likely that As (III) was gradually 

oxidized to As (V) and finally almost all As (III) was converted to As (V) (99.7%) 

(Fig. 2-1). According to Hatayama et al. 2011 in hydroponic condition, most of the 

arsenite was almost completely oxidized to arsenate (96%) within 48 h. After 

oxidation As (V) might be transported by the phosphate transporter (Wang et al. 

2002; Hatayama et al. 2011). According to Hughes (2002), phosphate uptake can be 

replaced by As (V), which would interrupt many biochemical pathways. But as the 

initial phosphate concentration in the solution was high, that time phosphate might be 

transported mainly by the phosphate transporter for the first few days. As the 

phosphate concentration decreased within first few days, ferns might have started to 

accumulate As (V) by using the phosphate transporter. The decrease in phosphate 

concentration from the solution was analyzed to support the above possibilities.  
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Fig. 2-6 Percentage of arsenic(III) [As(III)], cadmium (Cd) and lead (Pb) 

accumulation from hydroponic solution during 24 days’ incubation with (a) Pteris 

vittata (n=3); (b) Pteris multifida (n=3) 
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2.3.2 As(V), Pb and Cd accumulation and transportation by temperate fern (P. 

multifida) and tropical fern (P. vittata) from pot soil 

 

A long-term pot soil experiment confirmed the uptake and transportation of As(V), Pb 

and Cd from soil by P. vittata and P. multifida. After 3 months’ assimilation in metal-

injected pot soil at 0.5 mg/kg metals concentration, P. vittata accumulated 

significantly higher concentrations of As (5.0×103 mg/kg) (P < 0.01) and Cd (1.8×102 

mg/kg) (P < 0.01) but lower Pb (88 mg/kg) (P < 0.05) than P. multifida (Fig. 2-10). 

The transportation pattern was also different for P. vittata than for P. multifida. After 

the 3-month experiment, rhizomes and fronds of P. vittata showed significantly 

higher concentrations of As than root (P < 0.05). Concentration of Pb was not 

significantly varied in root and rhizome (P = 0.37) but Cd was transported to the 

rhizome significantly (P < 0.01). Transportation of As, Pb and Cd in P. vittata 

compared with the control plants was shown in Fig. 2-7 (a). 
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Fig. 2-11 Concentrations of arsenic (As), cadmium (Cd) and lead
(Pb) in different parts (fronds, rhizome and roots) of Pteris
vittata after the 3-month pot soil experiment (n = 3)

Fig. 2-7 (a) Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) in 

different parts (fronds, rhizome and roots) of Pteris vittata after the 3-month pot 

soil experiment (n = 3) 
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Comparative result showed that temperate fern P. multifida contained 1.6×103, 

2.4×102 and 99 mg/kg dw of As, Pb and Cd, respectively [Fig. 2-7 (b)]. Significantly 

higher concentration of As was stored in the rhizome (1.2×103 mg/kg) (P < 0.05) than 

other parts, similar to the results of Sugawara, Chein and Inoue (2015). The results of 

this study and those of Sugawara, Chien and Inoue (2015) indicated that, during long-

term exposure to As-contaminated soil, P. multifida might have stored the maximum 

concentration of As in the rhizome, although the pathway of accumulation started 

with the root and was then transported to the frond before finally ending up in the 

rhizome. The morphology of P. multifida is suited to the storage of nutrients and 

heavy metals for long time periods, as the rhizomes are relatively large in size. 

Control P. multifida plants also showed transportation of metals even at very low 

metal concentrations. Pb-infused P. multifida stored almost two times higher 

concentrations of Pb in the rhizome than in the root (P < 0.05). Concentration of Pb 

that accumulated by P. multifida from pot soil was higher than the accumulated 

concentration by P. vittata which matches with the previous results of those two ferns 
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Fig. 2-10 Concentrations of arsenic (As), cadmium (Cd) and lead
(Pb) in different parts (fronds, rhizome and roots) of Pteris
multifida after the 3-month pot soil experiment (n = 3)

Fig. 2-7 (b) Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) in different 

parts (fronds, rhizome and roots) of Pteris multifida after the 3-month pot soil 

experiment (n = 3) 
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from hydroponic solution. Rhizome and root concentrations of Cd were almost the 

same (P = 0.93) in P. multifida. Further investigations are needed to clarify the 

mechanism of accumulation and storage of heavy metals over long time periods.  

 

2.3.3 Responses of temperate fern after three months’ exposure to As, Pb and Cd 

 

Even after 3 months’ growth in As, Pb and Cd injected soil, P. multifida plants still 

looked healthy. Natural spontaneous changes in plant condition, like the formation of 

new fronds, was also noticed which can be compared with P. vittata that grew 

healthily at sites highly contaminated by As and Pb (An et al., 2006; Wu et al., 2007). 

Kachenko et al. 2007 also demonstrated that pot trials Of P. vittata possesses a 

relatively high tolerance to Cd.  

 

With respect to the control, the appearance of As spiked plants were not damaged by 

metal toxicity after three months exposure which is similar with the findings of 

Ronzon et al. 2017 who have done the details histological analysis of P. vittata on the 

apical, median and basal part after As exposure. The exposure of P. multifida to 0.5 

mg Cd/kg soil for three months did not cause any visual modification in comparison 

with the control. But according to Ronzon et al 2017, Cd caused a strong cell wall 

thickening in all the tissues around the midrib and epidermis when exposed to 60 µM 

Cd. Wu et al. 2009 also stated that besides having a high level of As tolerance, P. 

vittata also possesses considerable tolerance to Pb which is similar as the Pb tolerance 

of P. multifida in this experiment. Comparative dry biomass of metal injected plants 

and control plants confirmed that the growth and vitality of P. multifida had not been 

affected by the toxic metals (Table 2-1). The tolerance of P. multifida to 0.5 mg As, 
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Pb and Cd/kg soil for three months provides evidence that this plant could be 

practically applied to toxic metal contaminated environments. 

 

Table. 2-1 Dry biomass of Pteris multifida and Pteris vittata after pot soil experiment.  

 

Pteris multifida Root (g) Rhizome  (g) Frond  (g) 

As treatment 1.09 0.98 0.48 

Pb treatment 0.31 0.74 1.03 

Cd treatment 0.84 1.39 1.66 

Control treatment 0.39 0.62 1.03 

ANOVA * * NS 

Pteris vittata Root (g) Rizome  (g) Frond  (g) 

As treatment 1.50 0.73 1.15 

Pb treatment 1.46 0.96 2.03 

Cd treatment 2.24 2.02 1.08 

Control treatment 1.57 0.47 1.01 

ANOVA * * * 

Significance determined by ANOVA : NS not significant, * P < 0.05,  

 

2.4 Conclusion 

 

In the present study, temperate ferns (P. multifida and P. vittata) were chosen because 

of its high cold tolerance in the field. The potential of temperate ferns to remove 

As(III), Pb and Cd from solution and comparison with P. vittata was reported here for 

the first time. Our results showed that during the hydroponic experiment, heavy metal 
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concentrations in the solution decreased continuously with time. P. multifida 

accumulated 90%, 36% and 50% of Pb, Cd and As, respectively, from the mixed 

metal solution within 24 days. The hydroponic experiment comparing P. multifida 

and P. cretica with p. vittata revealed that 33% and 43% of As(III) was removed by 

P. multifida and P. cretica respectively, whereas P. vittata could not accumulate 

As(III) at all within 4 days’. As was translocated to the frond and some Pb and Cd 

was also translocated to the rhizome from the root during the hydroponic experiment. 

The results of the long-term (3 months) pot soil experiment provided confirmation of 

the As(V), Pb and Cd uptake and translocation potential of temperate fern (P. 

multifida). After 3 months, P. multifida grown in metal-spiked soil stored significantly 

higher concentrations of As, Pb and Cd compared with the control plants (P < 0.01). 

The heavy metal (As, Pb and Cd) accumulation capacity and translocation ability of 

temperate ferns were demonstrated in this study, providing evidence that it could be 

applied for the treatment of water and soil that are not only contaminated with As but 

also co-contaminated with Pb and/or Cd. 
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CHAPTER 3 

Arsenic accumulating potential of temperate zone ferns at low temperature 

 

 

 

3.1 Introduction 

 

The metalloid Arsenic (As) is a carcinogenic element and persistent contaminant in 

water and soil. There is a practical need to control As because of its demonstrated 

toxicity and its mobility in the environment (Fowler et al., 2013). As presents 

simultaneously with other metals in the environment (Groudev et al., 2001; Kim et al., 

2003), and can be readily absorbed by the plants, with negative effects on the growth. 

Moreover, the presence of As in the environment affects the plant uptake of essential 

metals due to their chemical similarity with these elements, and to competition for the 

same cellular transporters/channels (Verbruggen et al., 2009). It was reported that 

42.7 million people in West Bengal, India and 79.9 million people in Bangladesh 

suffered from groundwater contamination by As, with As levels in groundwater above 

the World Health Organization maximum permissible limit of 50 µg/L (Chowdhury et 

al. 2000). 

 

For removal and recovery of toxic heavy metals, biological methods have been 

recommended as cheap, effective and environmentally-friendly compared with other 

conventional (physical and chemical) methods (Hanif, Bhatti and Hanif 2009). 

Phytoremediation is one of the most promising biological technologies for the 

removal of environmental pollution (Rahman et al. 2008). Recently, heavy metal 

accumulation by plants, such as Cynodon dactylon (Wu et al. 2010), Salvinia natans 

(Dhir and Srivastava 2011), Melastoma malabathricum L. (Selamat, Abdullah and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chowdhury%20UK%5bauth%5d


55 

 

Idris 2014), Switchgrass (Jeke, Zvomuya and Ross 2016) and Pteris vittata (Ronzan 

et al. 2017) has been tested and the effectiveness of phytoremediation by these plants 

has been established. Since the initial report of a Chinese brake fern (P. vittata) as an 

arsenic hyperaccumulator (Ma et al. 2001), the use of fern for this removal technique 

has developed considerable interest. Usually, P. vittata naturally grows in sub-tropical 

zone (average temperature: 7-15°C in winter; 25-30°C in summer). Although P. 

vittata is the most studied fern, it is limited in its cold-tolerance for being a tropical 

zone fern, even germination and growth rates of P. vittata were also limited at around 

25°C (Wan et al. 2009).  

 

Actually, for tropical zone plants, lower temperature affects transpiration, growth and 

metabolism of plants and therefore both uptake and elimination efficiency of 

pollutants (Yu et al. 2005). In addition, temperature has a profound effect on plant 

growth rates. Usually higher temperatures will result in greater biomass production 

and distribution of submersed macro phyte communities (Marschner, 

1995 and Rooney and Kalff, 2000). Water chemistry may also be influenced by the 

effect of temperature (Fritioff et al. 2005). As cool water contains more dissolved 

oxygen than warm water, metal concentration in the interstitial water of the sediment 

may decrease with decreasing temperature because of low redox potentials (Förstner, 

1979). Moreover, there is a positive relationship between temperature and metal 

accumulation has been identified (Almas and Singh 2001; Mander and Jessen 2002; 

Fritioff et al. 2005).  

 

As successful phytoremediation requires the treatment of contaminated sites for all 

over the year, so it is of interest to find an alternative cold-tolerant heavy metal-

http://www.sciencedirect.com/science/article/pii/S026974910400243X#bib18
http://www.sciencedirect.com/science/article/pii/S026974910400243X#bib18
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accumulating fern. P. multifida (spider brake fern) as well as P. cretica (Cretan brake 

fern) are two As hyperaccumulators which can accumulates 5510 mg/kg and 5584 

mg/kg of As from 200 mg/kg and 100 mg/kg As contaminated soil (Slonecker et al., 

2009). Actually  these are very common plants native to Europe, Asia and Africa. 

Both of them are also distributed almost all areas in Japan and China including 

temperate areas. P. cretica can grow in a minimum temperature of 2 °C (RHL et al., 

2008). Similarly, P. multifida has already shown some ability to tolerate low 

temperatures from 5 °C to -4.6°C (measured by thermometer in the field) during field 

experiments (Sugawara, Chien and Inoue 2015), which is an essential property for 

large scale phytoremediation in temperate zones such as the northern part of Japan.  

 

There is currently limited knowledge of effect of temperature on the accumulation of 

heavy metals by ferns and to date there is no published information of effect of 

temperature on As accumulating potential of three different ferns from hydroponic 

solution. Therefore, the aims of the present study were: (I) to determine the effect of 

temperature on comparative As accumulating potential of P. vittata, P. cretica and P. 

multifida from water; (II) to investigate the comparative tendency to release 

accumulated As to the water media by P. multifida, P. cretica and P. vittata; and (III) 

to suggest the comparatively better cold tolerant As hyperaccumulating fern for the 

practical application of As contaminated water site. Hopefully the results of this study 

will provide novel information on the ability of the above three ferns to accumulate 

As from water. These results may contribute to the future research to select the most 

effective fern for the applied phytofiltration of As-contaminated water.  

 

 

https://en.wikipedia.org/wiki/Native_plant
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3.2 Materials and Methods 

 

3.2.1 Plant materials 

 

P. multifida, P. cretica and P. vittata were obtained from Fujita Co. (Tokyo, Japan). 

At Fujita company those Pteris were prepared from spore [Fig 3.1 (a)]. To prepare 

Pteris sporophytes from spores, almost 7 or 8 months had passed. 4 or 5 frond 

containing ferns were received at the age of 7 or 8 months. The average height and 

fresh weight was around 23 cm and 3.50 g respectively. Efforts were made as much as 

possible to ensure the uniformity and similarity of the size of plants used in the 

experiments [Fig 3.1 (b)]. Although sand was washed with tap water to remove the 

adhering compost from the roots, which is relevant to real treatment conditions 

(Natarajan et al 2008; Huang et al. 2004) but the ferns were used without sterilization 

for hydroponic cultivation. For each set-up, five plants of approximately equal size 

were used and after analysis, the average value of best three plants was selected for 

results. 

Fig 3.1(a) Pteris sporophytes produced from spores; (b) Uniformly sized plants that used for experiments

Fig 3.1(a) Pteris sporophytes produced from spores; (b) Uniformly sized plants 

that used for experiments 

(a) (b) 
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3.2.2 Growth condition: 

 

Then plants were transplanted to opaque containers where they were acclimatized in 

250 mL 5 times diluted Hoagland’s solution (Hoagland and Arnon 1950) for three 

weeks in order to ensure their recovery. The Hoagland’s solution was composed of: 8 

mM of KNO3; 4 mM Ca(NO3)2; 2 mM MgSO4; 1 mM NH4H2PO4; 50 µM H3BO3; 9 

µM MnSO4; 1 µM ZnSO4; 0.2 µM CuSO4; 0.1 µM Na2MoO4; and 60 µM Fe(III)-

EDTA. For pre-cultivation of ferns, growth conditions were as the following: 16-h 

light period with a light intensity of around 280 µmol /m2s; 25 °C daytime; 20 °C 

night. Humidity for the pre-cultivation of P. vittata was 70% but in case of P. 

multifida and P. cretica it was increased to 80%. Because those temperate ferns 

were growing faster at higher humidity. After adapting to the hydroponic 

environment, the plants were used for temperature controlled As accumulation 

experiments.  

  

3.2.3 Comparative As accumulation trial of three ferns at 50C, 100C, 150C and 

250C 

 

In this study, temperature controlled accumulation test has done for ensuring the 

effect of different temperature on accumulation efficiency. After adapting with the 

hydroponic condition, 4 sets of each fern (P. vittata, p. cretica and P. multifida) has 

transplanted to 5 mg/L As(V) solution which was made by dissolving sodium arsenate 

into milli-Q water (Millipore, USA). Initial sampling has done before transplantation 

of plants to the As solution. Then four sets of plant (each set contains 5 plants) were 

decided to move into 4 individual incubators kept at 50C, 100C, 150C and 250C. For 
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maintaining the temperature at 50C, 100C and 150C and other conditions, incubators 

were preset before 24 hours. The plant set for 250C was kept at the controlled growth 

chamber with maintaining the conditions explained above including strictly complied 

250C temperature by air condition. Until 5th day of experiment, sampling was done 

every day and then alternate day sampling was done up to the end of the experiment 

(15 days). 

 

3.2.4 Temperature dependent release tendency of three ferns  

 

Probability the tendency to release accumulated metal to the medium by the plant is 

one of the great concern in case of phytoremediation. Release of accumulated As may 

inhibit successful phytoremediation by ferns even at the slightly contaminated site. 

Release experiments were also done for ensuring the release property of the plant. In 

the first step, the 4 set of plants that were selected for release experiment, were 

assimilated to 5 mg/L arsenic solution for two weeks at room temperature (250C) so 

that they can accumulate arsenic as much as possible. Then arsenic containing ferns 

were washed away three times and wiped away. Then in the second step, that arsenic 

containing ferns were transplanted to the Milli-Q water and send each set to different 

incubator at 50C, 100C, 150C to observe the effect of different temperatures to the 

release property of three ferns. The plant set for 250C was also kept in the temperature 

controlled (250C) growth chamber together with accumulation set. For this release 

test, sampling schedule of water was same as the above accumulation experiment 

from first to last.  
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Photograph of the plants were taken each and every day for observing the gradual 

change of physical appearance by the effect of temperature. Solution pH was also 

recorded initially at every temperature for both accumulation and release experiment.  

 

3.2.5 Sample preparation and chemical treatment 

 

After completion of 15 days’ experiment, plant samples from accumulation and 

release test were harvested to wash it 3 times with Milli-Q water, dried in oven for 3 

days and about 10 mg of dried plant samples were digested with 4 ml of concentrated 

HNO3 on a heating block (ALB-121, Acinics, Japan) at 130oC for 90 min. The 

digested plant samples were cooled at room temperature and diluted using Milli-Q 

water (Millipore, USA), filtered with a PTFE 0.45µm filter membrane (Millipore, 

USA) and stored for analysis in polypropyline tubes.  

 

Quantitative analysis of As was done by using inductively coupled plasma mass 

spectrometry (ICP-MS) (ELAN 9000, Perkin Elmer, SCIEX). Internal standard was 

10 ng/ml indium (In). Detergent solution, 3％ HNO3 and Milli-Q water were used for 

proper washing of glass wares. All reagents were of analytic grade. 

 

3.2.6 Data analysis  

The values reported in both text and figures are the mean ± SE (standard error of the 

mean). The statistical significance (at 95% confidence) was tested using analysis of 

variance, where appropriate, and the numbers of replicates are included in the figure 

legends. 
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3.3 Results and Discussion 

 

 

3.3.1 Temperature dependent As accumulation of three ferns at 50C, 100C, 150C 

and 250C 

 

Change of temperature significantly affects the As removal potential of P. vittata, P. 

multifida, and P. cretica. During 15 days experiment, tropical zone fern P. vittata 

showed that 95%, 53%, 37% and 7% As was up taken at 250C, 150C, 100C and 50C 

respectively Fig 3-2(a). Higher accumulation capacity of P. vittata at room 

temperature (250C) supports the hydroponic accumulation results of Wang et al. 

(2002). But being a tropical fern, accumulation potential of this fern was clearly 

affected by low temperature which was not reported yet. Accumulation efficiency of 

P. vittata at 100C or 50C was significantly lower than the efficiency at 250C (P<0.05). 

At the same time, temperate fern P. multifida accumulated 100%, 99%, 93% and 30% 

of As at 250C, 150C, 100C and 50C respectively from 5 mg/L sodium arsenate 

solution, as shown in Fig 3-2(b). Removal potential of P. multifida was compared in 

case of four different target temperature. Comparative study between P. vittata and P. 

multifida showed that although maximum accumulation capacity at 250C was almost 

same for both of them, being a temperate zone fern, As accumulating potential of P. 

multifida was significantly higher at 10°C (P<0.05) compared with P. vittata. 

Accumulation capacity of P. multifida at 5°C was also higher than P. vittata but not at 

a level of significance (P>0.05). Another temperate zone fern P. cretica accumulated 

57% As at 250C, 52% As at both 150C and 100C and 27% at 50C during 15 days (Fig. 

3-2(c)). Although maximum accumulation capacity of P. cretica at 250C was almost 

50% lower than other two ferns, at low temperature like 100C, As uptake capacity of 

P. cretica was significantly higher (P<0.01) than P. vittata where at 50C it was also 
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higher but not significant (P>0.05) compared with P. vittata. Absorption 

accumulation might be influenced by temperature than adsorption (Garnham at al. 

1992; Harris 1999) which supports the above results about As absorption by P. 

vittata. However, the chemistry of the root zone is responsible for the degree to which 

temperature can affect the mechanism of accumulation (Peer et al. 2006), biomass and 

plant growth (Almas and Singh 2001), and other metal and nonmetal constituents 

(Fritioff et al. 2005; Peer et al. 2006). A number of studies, specially Fritioff et al. 

(2005), have shown that temperature has a positive effect on metal accumulation in 

various species. In agreement with these studies, our study noted that although not 

significant, both species tended to accumulate more As under higher versus lower 

temperatures. Different patterns of accumulation and growth of tropical and temperate 

ferns at low temperature indicated that tropical fern P. vittata might not belongs to the 

active temperature sensing system, where temperate ferns were changing their 

morphology in winter to adapt with low temperature by using their temperature 

sensing system. 

If accumulation capability at room temperature (25 °C) was considered as standard 

(100%) for all three target ferns, at low temperature like 150C and 100C, temperate 

fern P. multifida as well as P. cretica has accumulated almost 100% As but only 67% 

and 31% As was up-taken by tropical fern P. vittata at 150C and 100C respectively 

[Figs. 3-3 (a)(b)(c)] 
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Fig 3-2(a) Concentrations of arsenic (As) in hydroponic solution during 15 days’ 

incubation at 250C, 150C, 100C and 50C with Pteris vittata (n=3)
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Temperate fern: Pteris multifida

Fig 3-2(b) Concentrations of arsenic (As) in hydroponic solution during 15 days’ incubation

at 250C, 150C, 100C and 50C with Pteris multifida (n=3)
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Fig 3-2(c) Concentrations of arsenic (As) in hydroponic solution during 15 

days’ incubation at 250C, 150C, 100C and 50C with Pteris cretica (n=3)

Fig 3-2 Concentrations of arsenic (As) removed from hydroponic solution during 

15 days’ incubation at 250C, 150C, 100C and 50C with (a) Pteris vittata (n=3); (b) 

Pteris multifida (n=3); (c) Pteris cretica (n=3) 
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Fig 3-3(a) Percentage of arsenic (As) removed by Pteris vittata from hydroponic 

solution during 15 days’ incubation at 150C, 100C and 50C  (n=3) when removal at 

250C was considered as standard (100% removal)
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Fig 3-3(b) Percentage of arsenic (As) removed by Pteris multifida from 
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3.3.2 Accumulation of As in root, rhizome and frond of three ferns 

 

The metal concentrations in plants increased with increasing temperature (Fig 3-4 

(a)(b)(c)) after 15 days’ assimilation in 5 mg/L arsenic injected hydroponic solution, 

in case of tropical zone fern P. vittata, 2.6×103, 2.3×103, 1.0×103 and 2.0×102 mg/kg 

dw of As was up-taken by the plant at 250C, 150C, 100C and 50C respectively. After 

15 days’ hydroponic experiment, comparative concentration of accumulated As in P. 

vittata was lower than P. multifida at all temperature but not at the level of 

significance (P > 0.05) as P. multifida contained 4.4×103, 2.7×103, 1.9×103 and 

4.6×102 mg/kg dw of As at 250C,150C, 100C and 50C respectively. Significantly 

higher concentration of As was stored at 250C (4.4×103 mg/kg) (P < 0.05) than at 

lower temperature like 50C or 100C, similar to the results of Xiao-Zhang Y. et al. 

(2010) about Cr(VI) accumulation by hybrid willows. Their results indicated that, At 

the low temperature (110C), 12.53% of the applied Cr(VI) were removed from the 

hydroponic solution but at high temperature like 320C, 61.30% of the applied mass 

was removed by plants. At 250C,150C, 100C accumulated As was clearly transported 

to frond by P. vittata within 15 days’ where in P. multifida or P. cretica, As was 

distributed into root, rhizome and frond. After 15 days’ accumulation, almost 40% 

accumulated As was remained in the root of P. multifida. No significant difference 

was found between the concentrations of As in three different parts of P. multifida or 

P. cretica (P > 0.05). This result indicated that As transportation capacity of P. vittata 

from root to frond might be faster than other two ferns. 
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Fig. 3-4 Transportation of arsenic (As) in different parts (fronds, rhizome and 

roots) of (a) Pteris vittata; (b) Pteris multifida; (c) Pteris cretica after the 15-days’ 

hydroponic experiment (n = 3) 
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Comparison between the dry biomass of three target ferns showed that biomass of P. 

cretica was higher than other two ferns. As the dry biomass of frond was significantly 

higher (P < 0.05) than root (Table 3-1) in all ferns at 250C, 150C, 100C, the amount of 

As stored at frond was also significantly higher (P < 0.05) compared with root (Fig. 3-

5 (a)(b)(c)).  

 

Table 3-1: Dry biomass of tropical (P. vittata) and temperate (P. multifida and P. 

cretica) zone ferns at four different temperature 

 

Maximum amount of As was found in the frond of P. vittata, P. multifida and P. 

cretica. Comparative transportation between three ferns indicated that the majority of 

the As was accumulated in the fronds of P. vittata and P. cretica and small amounts 

were remained in roots and rhizomes. At 250C,150C, 100C accumulated amount of As 

in the frond was significantly higher (P ≤ 0.05) than root (Fig. 3-5(a)) in P. vittata. 

But in P. multifida, almost 35% As of total accumulated amount was remained in the 

root.  

Dry biomass (g) of three ferns

P. vittata P. multifida P. cretica

Root 0.2±0.05 0.3±0.08 0.2± 0.04

5 °C Rhizome 0.2±0.01 0.1±0.04 0.2±0.02

Frond 0.5±0.01 0.4± 0.03 0.9± 0.10

Root 0.2±0.10 0.3± 0.04 0.3± 0.02

10 °C Rhizome 0.3±0.10 0.2± 0.01 0.2± 0.03

Frond 0.5±0.10 0.7± 0.2 1.9± 0.00

Root 0.2±0.07 0.3± 0.02 0.2± 0.02

15 °C Rhizome 0.3±0.10 0.1± 00 0.2±0.09

Frond 0.6±0.20 0.8± 0.06 1.6± 0.30

Root 0.3±0.08 0.2± 0.06 0.3± 0.07

25 °C Rhizome 0.3±0.10 0.1± 0.02 0.2± .0.08

Frond 0.8±0.30 0.5± 0.20 1.4± 0.50
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Fig. 3-5 Transported amount of arsenic (As) in different parts (fronds, rhizome and 

roots) of (a) Pteris vittata; (b) Pteris multifida; (c) Pteris cretica after the 15-days’ 

hydroponic experiment (n = 3) 
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So, the transportation rate of P. multifida from root to frond might be slower than 

other two ferns. Another temperate zone fern P. cretica up-taken 8.5×102, 5.3×102, 

6.2×103 and 1.9×102 mg/kg dw of As at 250C, 150C, 100C and 50C respectively. Total 

amount of As accumulated by P. cretica was lower than P. multifida and P. vittata but 

not significance level (P = 0.07). Amount of As in frond was significantly higher (P < 

0.05) than root because of high dry biomass of frond of P. cretica (Fig. 3-5(c)). Mass 

balance calculation between accumulated As amount in plant (P. vittata, P. multifida 

and P. cretica) and amount of As removed from solution showed that at 250C, balance 

was good (92%) but at low temperature amount of As in plant was lower than the 

amount removed from solution. Low temperature might be damaged the plants or 

made them weak, thus during washing some amount of As might be washed away 

from the plant. 

 

3.3.3 Effect of temperature on As release tendency of three ferns  

 

Now-a-days release of accumulated metal by plant to the media is one of the great 

concern for successful phytoremediation. Low temperature is one of the vital issue 

that makes plants too weak to retain the accumulated metals. In this research, release 

experiments have done at four different temperatures to ensure the release tendency of 

plants by the effect of low temperature. After 15 days’ pre-cultivation to 5 mg/L As 

solution at 250C, P. vittata, P. multifida and P. cretica has accumulated almost 100% 

As. Then they have transplanted to Milli-Q water kept at four temperature controlled 

incubators at 250C,150C, 100C and 50C. Tropical fern P. vittata showed that 3.5 µg/L, 

27 µg/L, 22 µg/L and 234.5 µg/L As was released to the medium at 250C,150C, 100C 

and 50C respectively (Fig. 3-6(a)). At 250C 0.9 ± .03 µg amount of As was released to 
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Milli-Q water but at 150C and 100C 6.7±0.7 µg and 5.5±0.8 µg As was released 

respectively. As P. vittata is a tropical zone fern, at 50C it has almost died and 10% of 

total accumulated As 59±2.2 µg was released to Milli-Q water which was not 

accumulated again by P. vittata. Temperate fern P. multifida released 1.9 µg/L, 1.2 

µg/L, 4.9 µg/L and 83.2 µg/L As to the Milli-Q water at 250C, 150C, 100C and 50C 

respectively within 15 days’ (Fig. 3-6(b)). If the released amount was considered, 0.4 

± 0.05 µg As at 250C and 150C and 1 ± 0.09 µg at 100C was released when all 

released concentrations were again up-taken by this fern P. multifida. Although P. 

multifida is also sensitive to 50C, but only 3.7% (21 ± 0.07 µg) of total accumulated 

As was released to the Milli-Q water at this low temperature. On the other hand, P. 

cretica released 1.0 µg/L, 1.9 µg/L, 1.6 µg/L and 34.1 µg/L As at 250C, 150C, 100C 

and 50C respectively (Fig. 3-6(c)). Released amount was also calculated. 0.2±0.09 µg, 

0.4±0.08 µg and 0.4±0.05 µg As was released at 250C, 150C, 100C temperature 

respectively when that amounts were accumulated again within 15 days’. Although it 

is also a temperate zone fern, it might be sensitive to low temperature like 50C as it 

has released 10% (34±1.4 µg) of total accumulated As to the medium.  

 

These results clearly showed that being a temperate zone fern, P. mutifida can retain 

almost all accumulated As at 250C, 150C and even at 100C although its transportation 

rate of As from root to frond was slower than other two ferns. 50C temperature is still 

critical for all plants to survive in a healthy state. Each and every results are the 

average of three similar ferns where SD values were put at each point. In case of P. 

multifida the results from three ferns were almost same and SD values were too small 

to appear.  
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Fig 3-6 Concentrations of released arsenic (As) in milli-Q water during 15 days’ 

incubation at 250C, 150C, 100C and 50C with (a) Pteris vittata (n=3); (b) Pteris 

multifida (n=3); (c) Pteris cretica (n=3) 
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3.4 Conclusion 

 

Results from this study demonstrated that P. multifida removed almost same 

concentration of As as P. vittata from hydroponic solution at 250C but at low 

temperature, accumulation potential of this temperate fern was faster and more 

effectively than P. vittata and P. cretica. For being a temperate zone fern, at low 

temperature like 100C or 150C, P. multifida accumulated significantly higher 

concentration of As (P<0.05) compared with most studied tropical zone fern P. vittata 

. At 5°C or 15°C accumulation capacity of P. multifida was also higher than P. vittata 

but not at a level of significance (P>0.05). Another temperate zone fern P. cretica, 

although it was not so sensitive to change in temperature but the maximum 

accumulated As by this fern was significantly lower (P=0.005) that P. multifida. 

Maximum amount of As was stored in the frond at all temperature for all three ferns. 

Analysis of comparative release properties showed that except 50C, initially released 

small concentration of As in Milli-Q water was accumulated again by P. multifida as 

well as P. cretica but tropical zone fern P. vittata could not accumulate total 

concentration of initially released As. Though temperate zone fern P. multifida and P. 

cretica released lower concentration than P. vittata at 50C but 50C temperature is still 

critical for all plants. Therefore, more investigations are needed to make plants 

sustainable even at ≤50C. Comparative potential of As accumulation, translocation 

and release of P. multifida, P. cretica and P. vitata in this study providing evidence 

that P. multifida could be the most suitable fern for the treatment of As contaminated 

water at temperate zone area. 

 

 

 

 



73 

 

References 

 

Almas, A. R., & Singh, B. R. 2001. Plant uptake of cadmium- 109 and zinc-65 at 

different temperature and organic matter levels. Journal of Environmental Quality, 30, 

869–877. 

 

Dhir B, Srivastava S. 2011. Heavy metal removal from a multi-metal solution and     

wastewater by Salvinia natans. Ecological Engineering. 37, 893–896.  

 

Ekvall, L., & Greger, M. 2003. Effects of environmental biomass-producing factors 

on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environmental 

Pollution, 121(3), 401-411. 

 

Förstner, U., & Wittmann, G. T. 2012. Metal pollution in the aquatic environment. 

Springer Science & Business Media.  

 

Fowler, Bruce A., ed. 2013. Biological and environmental effects of arsenic. Vol. 6. 

Elsevier. 

 

Förstner, U. 1981. Metal transfer between solid and aqueous phases. In Metal 

pollution in the aquatic environment (pp. 197-270). Springer Berlin Heidelberg. 

 

Fritioff, A., Kautsky, L., & Greger, M. 2005. Influence of temperature and salinity on 

heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274. 

 



74 

 

Garnham, G. W., Codd, G. A., & Gadd, G. M. 1992. Kinetics of uptake and 

intracellular location of cobalt, manganese and zinc in the estuarine green alga 

Chlorella salina. Applied Microbiology and Biotechnology, 37, 270–276. 

 

Groudev, S.N., Spasova, I.I., Georgiev, P.S., 2001. In situ bioremediation of soils 

contaminated with radioactive elements and toxic heavy metals. Int. J. Miner. Process. 

62, 301–308.  

 

Harris, C. S. 1999. Bioaccumulation of zinc in periphyton and invertebrates: Lotic 

field and microcosm studies. Master of Science Thesis. Craig S. Harris. April 1999. 

 

Hoagland, D.R., Arnon, D.I., 1950. The water-culture method for growing plants 

without soil. California Agricultural Experiment Station – Circular 347, 1–32. 

 

Huang, Y., Hatayama, M., Inoue, C., 2011. Characterization of As efflux from the 

roots of As hyperaccumulator Pteris vittata L. Planta 234, 1275–1284. 

 

Jeke NN, Zvomuya F, Ross L. 2016. Accumulation and partitioning of biomass, 

nutrients and trace elements in switchgrass for phytoremediation of municipal 

biosolids. International Journal of Phytoremediation. 18(9), 892–899. 

 

Kertulis-Tartar, G. M., Ma, L. Q., Tu, C., & Chirenje, T. 2006. Phytoremediation of 

an arsenic-contaminated site using Pteris vittata L.: a two-year study. International 

Journal of Phytoremediation, 8(4), 311-322. 

 



75 

 

Kim, M.J., Ahn, K.H., Jung, Y., Lee, S., Lim, B.R., 2003. Arsenic, cadmium, 

chromium, copper, lead, and zinc contamination in mine tailings and nearby streams 

of three abandoned mines from Korea. Bull. Environ. Contam. Toxicol. 70, 942–947.  

 

Lombi, E., Zhao, F. J., Fuhrmann, M., Ma, L. Q., & McGrath, S. P. 2002. Arsenic 

distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New 

Phytologist, 156(2), 195-203 

 

Lynch, D. V., & Steponkus, P. L. 1987. Plasma membrane lipid alterations associated 

with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant 

Physiology, 83(4), 761-767. 

 

Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. 2001. A fern that 

hyperaccumulates arsenic. Nature. 409, 579. 

 

Marschner, H. (1995). Mineral nutrition of higher plants. 2nd. Edn. Academic Pres. 

Meng, X.G., Korfiatis, G.P., Jing, C., Christodoulatos, C., 2001. Redox 

transformations of arsenic and iron in water treatment sludge during aging and TCLP 

extraction. Environmental Science and Technology 35, 3476–3481. 

 

Peer, A.W., Baxter, I. R., Richards, E. L., Freeman, J. L.,Murphy, A. S. 2006. 

Phytoremediation and hyperaccumulator plants. Molecular Biology of Metal 

Homeostasis and Detoxification. Springer Berlin and Heidelberg, pp. 299–340. 

 



76 

 

Ronzan, M., Zanella, L., Fattorini, L., Della Rovere, F., Urgast, D., Cantamessa, S., & 

Feldmann, J. 2017 The morphogenic responses and phytochelatin complexes induced 

by arsenic in Pteris vittata change in the presence of cadmium. Environmental and 

Experimental Botany. 133, 176-187. 

 

Rooney, N., & Kalff, J. 2000. Inter-annual variation in submerged macrophyte 

community biomass and distribution: the influence of temperature and lake 

morphometry. Aquatic Botany, 68(4), 321-335. 

 

RHS A-Z. 2008 encyclopedia of garden plants. United Kingdom: Dorling Kindersley. 

p. 1136. ISBN 1405332964. 

 

Selamat SN, Abdullah SRS, Idris M. 2014. Phytoremediation of lead (Pb) and arsenic 

(As) by Melastoma malabathricum L. from contaminated soil in separate exposure. 

Int J Phytoremediation. 16(7–8), 694–703. 

 

Slonecker, T., Haack, B., & Price, S. 2009. Spectroscopic analysis of arsenic uptake 

in Pteris ferns. Remote Sens. 1(4), 644-675. 

 

Tu, S., Ma, L. Q., Fayiga, A. O., & Zillioux, E. J. 2004. Phytoremediation of arsenic-

contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int 

J Phytoremediation, 6(1), 35-47. 

 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1405332964


77 

 

Vetterlein, Doris, et al. 2009.  Pteris vittata–revisited: uptake of As and its speciation, 

impact of P, role of phytochelatins and S. Environmental pollution 157.11: 3016-

3024. 

 

Xiao-Zhang Y., Xiao-Ying P., Li-Qun X., 2010. Effect of temperature on 

phytoextraction of hexavalent and trivalent chromium by hybrid willows. 

Ecotoxicology.  19, 61–68.  

 

Wan, X. M., Lei, M., Huang, Z. C., Chen, T. B., & Liu, Y. R., 2009. Sexual 

propagation of Pteris vittata L. influenced by pH, calcium, and temperature. Int J 

Phytoremediation. 12(1), 85-95. 

 

Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, 2002. McGrath SP. Mechanisms 

of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with 

phosphate, and arsenic speciation. Plant Physiology. 130, 1552–1561. 

 

Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH. 2010. Accumulation of As, 

Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon 

dactylon grown on metal-contaminated soils. Applied Soil Ecology. 44, 213–218. 

 

Yu X-Z., Trapp S., Zhou P-H., Chen L. 2007. Effect of Temperature on the Uptake 

and Metabolism of Cyanide by Weeping Willows. Int J Phytoremediation. 9(3), 243-

255 

 

 

http://www.sciencedirect.com/science/article/pii/S0929139310000028
http://www.sciencedirect.com/science/article/pii/S0929139310000028
http://www.sciencedirect.com/science/article/pii/S0929139310000028


78 
 

CHAPTER 4 

 

Application of tropical and temperate zone ferns to an arsenic contaminated 

leachate at low temperature 

 

4.1 Introduction 

In Japan, arsenic contaminated leachate might be produced by mining activities and 

dumped excavated soil from various purpose such as tunnel drilling, construction of 

roads and railroads, construction of subway etc. Extreme care about arsenic 

contamination is necessary for reuse and landfill disposal. In addition, environmental 

standard in soil (leaching) for arsenic is 10 μg/L which should be maintained strictly to 

ensure safe disposal of leachate. So, proper management is required. 

A significant source of metals released into the environment is the solid waste 

disposals (open dumps, landfills, sanitary landfills or incinerators). (Yarlagadda et 

al. 1995; Waheed et al. 2010; Iwegbue et al. 2010; Bretzel and Calderisi 2011; Rizo 

et al. 2012). Primarily leachate is produced in association with precipitation that 

infiltrates through the refuse and normally results in the migration of leachate into 

the groundwater zone and pollutes it (Samuding 2009). Waters and soils have been 

contaminated with heavy metals such as lead, arsenic, zinc, iron, manganese, 

chromium, and cadmium due to migration of leachate ,and these heavy metals in 

solid wastes lead to serious problems because they cannot be biodegraded (Hong et 

al. 2002).  

During the construction of Sendai City Subway Tozai Line which opened on 6th 

December, 2015, about 600,000 m3 excavated soil containing small amount of As was 

dumped at Akaishi area from 2008 to 2014 that may dissolve arsenic and produce 

arsenic contaminated leachate. The dumping site generates about 30 L leachate water/ 

https://link.springer.com/article/10.1007/s13201-012-0072-z#CR66
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR65
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR34
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR15
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR55
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR56
https://link.springer.com/article/10.1007/s13201-012-0072-z#CR33
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min which contains 20 to 30 μg/L As that exceed the arsenic concentration of Japanese 

water quality standard (10 μg/L). Therefore, a process for removing arsenic was 

required. Currently, leachate water containing arsenic is purified at the site by 

adsorption method. However, high processing cost and generation of secondary waste 

is a problem for long term removal of widely spread arsenic contamination.  

For removal of toxic heavy metals like arsenic from water, some traditional methods 

such as adsorption method, ion exchange method, coagulation sedimentation method 

etc. has been applying. Although those methods are effective, but proper application 

requires high cost. Another problem is the production of secondary waste. the use of 

biological methods like phytoremediation has been recommended for pre-treatment 

because they can be cheap, effective and environmentally-friendly compared with 

other conventional (physical and chemical) methods (Hanif, Bhatti and Hanif 2009). 

By applying phytoremediation, amount of sludge can be reduced significantly. This is 

one of the most promising biological technologies for the removal of environmental 

pollution caused by the limitations of traditional technologies (Rahman et al. 2008). 

However, successful application of phytoremediation takes a long time to process and 

depends on natural conditions. 

In Japan, although adsorption method is used in preference, a high performance 

adsorbent is required to lower the arsenic concentration. There is a problem that the 

cost is particularly high. One of the successful environmental remediation is 

phytoextraction. Plants have the ability to take moisture from roots and to absorb 

nutrients as well as pollutants from the soil. Some plants have the ability to absorb 

pollutant and concentrate in the body. The merit of this method is low cost, effective, 

wide range of pollutant can also be treated.  
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To the best of my knowledge, hydroponic method by using P. vittata has not yet been 

applied for the removal of arsenic from contaminated leachate at low temperature, 

even though P. vittata has already applied for the phytoremediation of arsenic from 

contaminated soil (XIAO X. et al., 2008). Hydroponic culture system with no aeration 

was developed to apply tropical/sub-tropical fern P. vittata by Huang et al. (2015). The 

feature of this hydroponic culture method is the provision of nutrient salts. This system 

promotes root growth in hydroponic cultivation at underwater. P. vittata also applied to 

treat the arsenic contaminated leachate at Akaishi site. Actually treatment by P. vittata 

had started from July 2015 without any protection from cold stress but in winter P. 

vittata had started to damage by severe cold stress when outside air temperature 

decreased to 00C or below 00C. According to their results, from August 2015 to 

November 2015 P. vittata has gained biomass and accumulated As from Akaishi 

landfill leachate (Huang et al. 2018), but from November 2015 tropical fern P. vittata 

has started to damage by cold stress and released As to the hydroponic media (Huang, 

personal communication). Usually, P. vittata naturally grows in sub-tropical zone 

(average temperature: 7-15°C in winter; 25-30°C in summer). Although P. vittata is 

the most studied fern, it is limited in its cold-tolerance for being a tropical zone fern, 

even germination and growth rates of P. vittata were also limited at around 25°C 

(Wan et al. 2009).  

 

On the other hand, P. cretica (Cretan brake fern) is also an As hyperaccumulators 

which can accumulates 5584 mg/kg of As from 100 mg/kg As contaminated soil 

(Slonecker et al., 2009).  P. cretica can grow in a minimum temperature of 2 °C 

(RHL et al., 2008). These two ferns are very common plants native to Europe, Asia 

https://en.wikipedia.org/wiki/Native_plant
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and Africa. P. cretica distributed almost all temperate areas in Japan and China where 

P. vittata likes to grow at tropical/sub-tropical areas. Effect of low temperature on As 

accumulation by P. vittata as well as P. cretica was determined in chapter-3 which 

showed that As accumulating potential of P. vittata was decreased at low temperature 

(100C) where P. cretica showed almost same potential at 100C and 250C. 

 

In this chapter, target is to apply temperate zone ferns as well as tropical zone ferns in 

As contaminated leachate at the temperate zone of northern part of Japan. I have 

approached for adaptation of ferns at low temperature and considerable removal of 

As from contaminated leachate although it is not so easy to keep the healthy 

condition of plants at any temperature during practical application to As 

contaminated leachate. 

 

To protect the plants from severe cold temperature in winter season, very simple type 

greenhouse was used. Greenhouse plastic sheets were used above still frame to make 

this simple protection system. In order to treat by two different ferns, total leachate 

water coming from the entrance has divided into two tanks. Arsenic removal 

efficiency of those two ferns has examined regularly by collecting water and plant 

samples from tanks and analyzed arsenic concentration in the laboratory by ICP-MS. 

 

 

4.2. Materials and methods 
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4.2.1 Plant materials 

 

P. cretica and P. vittata were bought from Fujita Co. (Tokyo, Japan). Those Pteris 

were prepared from spore. It takes almost 7 or 8 months to prepare Pteris sporophytes 

from spores. We received 4 or 5 frond containing fern at the age of 7 or 8 months. The 

average height of those two ferns were around 20.0 cm. To ensure the uniformity and 

similarity of the size of plants used in the experiments, efforts have done. The ferns 

were used without sterilization for hydroponic cultivation, but sand was washed with 

tap water to remove the adhering compost from the roots, which is relevant to real 

treatment conditions (Natarajan et al 2008; Huang et al. 2004). Plants were treated 

with Hoagland’s solution (Hoagland and Arnon 1950) in 250 mL opaque bottle in a 

growth chamber with the following conditions: 16-h light period with a light 

intensity of around 280 µmol /m2s ; 25 °C daytime; 20 °C night; and 70% relative 

humidity.  

 

4.2.2 Hydroponic trial with various concentrations of nutrient (Hoagland’s 

solution) 

 

To determine the lowest concentration of nutrient that is enough for natural plant 

growth, 5-months hydroponic trials were conducted with both P. cretica and P. vittata. 

In this study, plants were treated with 5, 10, 50, 100, 500, 1000 times diluted 

Hoagland’s solution and tap water where Hoagland’s solution was composed of: 8 

mM of KNO3; 4 mM Ca(NO3)2; 2 mM MgSO4; 1 mM NH4H2PO4; 50 µM H3BO3; 9 

µM MnSO4; 1 µM ZnSO4; 0.2 µM CuSO4; 0.1 µM Na2MoO4; and 60 µM 

Fe(III)-EDTA. Mill-Q water was used for the preparation and dilution of Hoagland’s 
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solution. During this experiment, nutrient solution was renewed every week and the 

plants and bottles were washed every week to protect them from the harmful effect of 

algae. Initial height of root and frond was measured with measuring scale. Initial 

weight was also recorded by analytic balance. The increase of height and weight was 

measured and recorded very carefully every month. Photographs were also taken to 

record the change of appearance in each and every month. The experiments were set 

up with five plants of approximately equal size and after analysis, results were 

calculated from the average of best three plants.   

 

4.2.3 Application of P. cretica and P. vittata in an arsenic contaminated leachate 

 

P. cretica as well as P. vittata were applied to an arsenic contaminated leachate that 

came from a dumping site (600,000 m3 excavated soil has dumped) located in Akaishi 

area, Sendai, Miyagi, Japan [(Fig 4.1 (a)]. Initial arsenic concentration of that leachate 

was around 20-30 µg/L. In order to reduce the concentration to 10 µg/L (Japanese 

environmental standard), P. cretica and P. vittata was applied to two separate tanks that 

were come from the same entrance. Schematic diagram of treatment plant is given in 

Fig 4.1 (b). The height, weight and depth of each tank was 1.8m×0.9m×0.73m where 

flow rate of water to the tank was 0.5L/min. Retention time of the tank for 1.125 day 

(Huang et al 2017). Each tank contained 12 floating plates that kept the ferns remain 

floating like hydroponic cultivation. The ferns were adjusted to the plates so that the 

rhizome and frond was kept above the water level and roots were drowning into the 

water. Each plate contained 16 P. vittata (in case of tank 1) or 16 P. cretica (in case of 

tank 2). Both of the tanks contain total 192 plants. At November 2016 simple type 
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greenhouse was made by using greenhouse plastic above the still frame to protect plants 

from severe cold.  

Water sample was collected two times per month from entrance, tank 1 (treated by P. 

vittata) and tank 2 (treated by P. cretica) for analysis. Plant samples were also taken for 

analysis one time per month.  

 

 

4.2.5 Measurement of in-situ parameters in the leachate 

In-situ parameters like outside and inside air temperature, water temperature and 

essential nutrient concentration were measured to ensure the suitable condition for 

effective arsenic removal by the ferns. Inside air temperature, outside air temperature 

and leachate water temperature was measured by the digital temperature recorder that 

have been fixed in the leachate area. Essential nutrient concentration like the 

concentration of phosphate (PO4
3-) and nitrate (NO3

- ) was also measured by ICP-AES 

(Inductively coupled plasma - atomic emission spectrometry) and IC (Ion 

Chromatography) respectively to ensure that sufficient nutrients were available 

naturally for the healthy survival of plants. 

 

4.2.6 Sample preparation and chemical treatment 

•1

Fig 4.1 (a) Akaishi dumping area, Sendai, Miyagi, Japan Fig 4.1 (b) Schemetric diagram of treatment 

plant of leachate

Entrance of 

the leachate

Tank-1: 

Treated by P. 

vittata

Tank-2: 

Treated by P. 

cretica

Flow rate 

Controlling 

valve

Removal 

Of treated

leachate

(b)

Fig 4.1 (a) Akaishi dumping area, Sendai, Miyagi, Japan; (b) Schematic diagram of 

treatment plant of leachate 
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After collecting water and plant samples from the leachate, plant roots and rhizomes 

were immersed in water for 5 min and then briefly rinsed in distilled water. Fronds 

were also washed three times with distilled water and then dried in an oven for 3 days. 

The dried plant samples (10 mg) were digested in 3 mL of concentrated HNO3 on a 

heating block (ALB-121, Acinics, Japan) at 130 °C for 90 min. The digests were 

subsequently cooled and diluted 10-fold using Milli-Q water (Merck Millipore 

Corporation, Darmstadt, Germany), filtered through a PTFE 0.45 µm filter membrane 

(Merck Millipore Corporation) and then stored for analysis in 15 mL polypropylene 

tubes. Inductively coupled plasma mass spectrometry (ICP-MS; ELAN 9000, Perkin 

Elmer, SCIEX) was used for quantitative analysis of Arsenic in plant and water 

samples. The internal standard used during analysis was 10 µg/L indium (In). 

Standard reference materials were standard solution of Arsenic (Wako chemicals, 

Japan) and recovery rate was more than 100%. All glassware was washed five times 

with detergent solution, 3% HNO3 and Milli-Q water. All reagents were of analytical 

grade. 

 

4.2.7 Data analysis  

The values reported in both text and figures are the mean ± SE (standard error of the 

mean). The statistical significance (at 95% confidence) was tested using analysis of 

variance, where appropriate, and the numbers of replicates are included in the figure 

legends. 

 

4.3 Results and discussion 
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4.3.1 Limiting concentration of nutrient (Hoagland’s solution) for natural 

growth of P. vittata and P. cretica  

 

In order to ensure the proper limiting nutrient concentration for healthy survival of P. 

vittata and P. cretica in water, 5 months’ hydroponic experiment with 6 different 

concentrations of nutrient (Hoagland’s solution) and tap water has done in the growth 

chamber. After 5 months’ assimilation, the highest growth of root was observed in 

case of 50 times diluted Hoagland’s solution for both P. vittata and P. cretica [Fig 4.2 

(a)]. For P. vittata, the increased height of root within 5 months was not significantly 

varied with the change of nutrient concentration (P>0.05) as it could survive even in 

the tap water. But in case of P. cretica, although after 5 months’ growth of root in 5 to 

1000 times diluted Hoagland’s solution were not so varied, the growth of root in tap 

water was lower than others. So, tap water might not be sufficient for healthy survival 

of P. cretica. Lower concentration of nutrient could ensure the green survival of this 

temperate zone fern. The frond of P. vittata as well as P. cretica was not so 

significantly grown within 5 months’ incubation (P>0.05). 

 

After 5 months’ assimilation, the weight gained by P. vittata and P. cretica was also 

measured to ensure the limiting concentration of nutrient for healthy survival. P. 

vittata has gained the highest weight at 100 times diluted Hoagland’s solution where 

P. cretica has gained the highest at 500 times diluted Hoagland’s solution [Fig 4.2 

(b)]. Assimilation to tap water was decreased the weight of P. cretica but P. vittata 

has gained some weight (1.08g) after 5 months’ assimilation without nutrient. So, this 

results of limiting concentration of nutrient could ensure that lowest concentration 
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(1000 times diluted) of nutrient (Hoagland’s solution) is also enough for healthy 

survival of P. cretica where P. vittata can survive even in the tap water which will 

have helped us to maintain the proper nutrient concentration in the leachate for 

application of ferns.  

 

 

Essential nutrient (PO4
3- and NO3

-) concentration in the leachate of Akaishi dumping 

site was also measured to ensure healthy survival of ferns in natural nutrient without 

any additional supply of nutrients. Phosphate and nitrate concentration in the leachate 
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were around 3.4×10-3 mM and 3.2×10-2 mM respectively which are higher than 500 

times diluted Hoagland’s nutrient solution (Table: 4.1). Comparison with the result of 

limiting nutrient experiment proves that the remaining major nutrient concentrations 

in the leachate were enough for healthy survival and arsenic accumulation. 

 

 

Photographs of P. vittata and P. cretica after 5 months’ assimilation in 7 different 

concentrations of nutrient solution are shown at Fig 4.3. 

4.3.2 Essential parameters for healthy survival of ferns  

 

 

Table 4.1: Comparative concentrations of major nutrients at Akaishi leachate area 

And 500 times diluted Hougland’s solution   

Tropical fern 

(P. vittata)
Temperate fern 

(P. cretica)

1/5 times

1/10 times

1/50 times

1/100 times

Photograph of 

P. vittata and 

P. cretica after 

5 months 

incubation at 7 

different 

concentrations 

of hougland's 

solution

1/500 times

1/1000 times

tap water 

Tropical fern 

(P. vittata)

Temperate fern 

(P. cretica)

4

Fig 4.3:  Photographs of P. vittata and P. cretica after 5 months incubation in 7 different nutrient concentrations  

Fig 4.3:  Photographs of P. vittata and P. cretica after 5 months’ incubation in 7 

different nutrient concentrations 
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Essential parameter of leachate was monitored regularly for effective application of 

ferns to remove arsenic. Outside air temperature (outside of greenhouse), inside air 

temperature (inside of greenhouse) and leachate water temperature was measured 

regularly where outside temperature was lower than inside from November to March. 

During winter outside air temperature was almost same at 2015-2016 and 2016-2017 

session, fluctuating from -50C to +50C [Fig 4.4 (a) (b)]. Lowest water temperature of 

leachate without greenhouse was around 50C which is critical for both P. vittata and P. 

cretica. By applying the simple type greenhouse lowest water temperature was 

controlled as 100C that ensured the plants health survival and accumulation [Fig 4.5 (a) 

(b)].  
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Fig 4.3 Comparative outside air temperature of P. vittata without (a) and with (b) greenhouse at low temperature
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4.3.3 Determination of comparative potential of P. vittata without and with 

greenhouse at low temperature 

At Akaishi dumping site, initially P. vittata was applied without greenhouse at July 

2015. But that time P. vttata had started to damage by cold stress from November to 

March when temperature decreased to 00C/ below 00C. By the effect of low 

temperature, tropical fern P. vittata released arsenic to the leachate instead of 

accumulation. To protect plants from severe cold stress, at November 2016 simple type 

greenhouse was set-up which protected P. vittata from heat loss from the surface of fern 

by wind. Comparative change of biomass and arsenic accumulation capacity of P. 

vittata without and with greenhouse has shown in [Fig 4.6 (a) (b)] and [Fig 4.7 (a) (b)] 

respectively. Without greenhouse, P. vittata has started to damage from November 

when outside temperature decreased to 00C. Application of simple greenhouse helped 

the plant to recover biomass and accumulate arsenic again.   
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Fig 4.4: Comparative water temperature of P. vittata without (a) and with (b) greenhouse at low temperature
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Fig 4.6: Comparative biomass of P. vittata without (a) and with (b) greenhouse at 

low temperature 

(a) 
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Arsenic concentration of the leachate was around 30 µg/L where during treatment with 

P. vittata, concentration of arsenic in tank 1 (treated by P. vittata) was fluctuating from 

25 µg/L to 10 µg/L. Actually flow rate of leachate water to the tank was also fluctuating 

from 230L/day to 720L/day. However, it was really very difficult to control the fixed 

flow rate because sometimes, some solid particles or microorganisms came through the 

pipe to decrease the pre-set flow rate. Moreover, temperature or other parameters were 

also changing each and every moment naturally, even water chemistry and plant 

morphology were also affects arsenic removal potential of plants in leachate. So, it was 

difficult to control that kind of fluctuation of accumulation. Photograph of the applied 

ferns were taken two times per month to monitor the physical change of plants under 

cold stress. In summer, P. vittata appeared green and showed higher As accumulation 

efficiency from July to October which can be compared with P. vittata that grew 

healthily at sites highly contaminated by As (An et al., 2006; Wu et al., 2007). But 

during winter, it was slightly damaged even inside the simple type greenhouse. Because 

at every plant sampling time, greenhouse cover was taking off for 30-40 min and plants 

got stressed by cold. Fig 4.8 shows small damage by cold stress in P. vittata which has 

recovered very soon inside the greenhouse. Arsenic concentration in P. vittata has 

decreased at November-December by the effect of sudden low temperature (below 

0
0

C), but from January the plant started to accumulate again as greenhouse helped the 

plant to keep healthy. From November 2016 to May 2017 arsenic removal from 

tank-1 by P. vittata and accumulated amount of arsenic in root, rhizome and frond of 

P. vittata has shown in Fig 4.9 and Fig 4.10 respectively. Mass balance calculation 

between amount of arsenic removed from leachate by P. vittata and amount of arsenic 

gained by P. vittata at low temperature (from 11/2016 to 5/2017) showed that total 

amount of As accumulated in P. vittata was 997.3 mg which was almost the average 
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value of maximum (1439.0 mg) and minimum (460.5 mg) amount of As removed 

from leachate by P. vittata. As the flow rate of leachate water was fluctuating each 

and every day, maximum and minimum amount of removed arsenic from leachate 

was calculated by using maximum (720L/day) and minimum (230L/day) flow rate 

respectively. So, the balance was good even at low temperature from November to 

May. Formula used for mass balance is given below-  
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Mass balance calculation between amount of arsenic removed from leachate by P. vittata

and amount of arsenic gained  by P. vittata at low temperature (from 11/2016 to 5/2017)

Total As amount accumulated in P.

vittata

= As amount per plant x 218 (total plant

number in Tank1)

Total As amount removed from leachate by P.

vittata

= (influent As conc. - effluent As conc.) (mg/L)

x 720 L/day (flow rate) x time interval (days)

Result: 997.3 mg
Result: 460.5 mg (using minimum flowrate 230 L/day)

~ 1439.0 mg (using maximum flowrate 720 L/day) 

 Water sample was collected two times per month. So It 

was difficult to keep the flow rate fixed for everyday

 As the total amount of As accumulated in P. vittata (997.3 mg) was almost the average 

value of maximum (1439.0) and minimum (460.5) amount of As  removed from leachate 

by P. vittata, the balance was acceptable. 
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Fig 4.7:  Showed small damage by cold stress in P. vittata

Fig 4.8: Showed small damage by cold stress in P. vittata  

Fig 4.8: Arsenic concentration in the entrance of contaminated leachate 

and arsenic concentration removed from tank-1 (treated by P. vittata)
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Fig 4.9: Amount of accumulated arsenic in 

root, rhizome and frond of P. vittata 
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4.3.4 First application of temperate zone fern P. cretica to Akaishi landfill 

leachate 

 

To the best of our knowledge, temperate fern P. cretica has not yet been applied for 

the removal of arsenic from contaminated leachate at low temperature. Thus, this was 

the very first application of P. cretica to arsenic contaminated leachate. P. cretica 

with greenhouse has applied to the leachate at July 2016. This time, P. cretica has 

pre-cultivated for only one week at tank-2. Therefore, the initial biomass was low but 

total biomass of this fern was still increasing from November 2016 to May 2017 (Fig 

4.11). 

With the increase of dry biomass, total arsenic concentration in the plant was also 

increasing (Fig 4.12). Although P. cretica is a temperate zone fern, the result of 

laboratory experiment showed that low water temperature like 50C/ below 50C is still 

critical for P. cretica (chapter 3). So this time, simple type greenhouse made by 

greenhouse plastic above the still frame was used to protect the fern from the loss of 

heat and humidity. By using simple type greenhouse, the inside water temperature was 

controlled as 10
0
C which was suitable for natural growth and arsenic accumulation. 

So, this simple type greenhouse was essential to protect P. cretica from heat loss by 

wind. Photograph of the plants has taken two times per month. Fig 4.13 shows the 

appearance of P. cretica looked green even at lowest temperature.  P. cretica was 

applied to an arsenic contaminated leachate in temperate area that came from a 

dumping site having initial arsenic contamination around 30 µg/L. In order to reduce 

the concentration to 10 µg/L (Japanese environmental standard), P. cretica has applied 

to tank-2 where concentration of arsenic in tank 2 were fluctuating from 25 µg/L to 10 

µg/L (Fig 4.14) as the flow rate of water to tank-2 was also fluctuating from 720L/day 
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to 230L/day. The maximum accumulation capacity of P. cretica was lower (chapter 3), 

although each and every plant has different morphology. Further investigations are 

recommended to ensure the mechanism of arsenic accumulation by temperate zone 

ferns. 
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4.10: Dry biomass of P. cretica ( treated in tank-2) 4.11: concentration of arsenic in different parts (fronds, 

rhizomes and roots) of P. cretica (tank2)
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Fig. 4.11: Dry biomass of P. cretica 

(treated in tank-2) 

Fig. 4.12: concentration of arsenic in 

different parts (fronds, rhizomes and 

roots) of P. cretica (tank2)  
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Fig 4.12: Appearance of P. cretica at low temperature
Fig 4.13: Appearance of P. cretica at low temperature 
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4.3.5 Arsenic transportation by P. vittata and P. cretica applied at the 

contaminated leachate 

 

During application of ferns to the arsenic contaminated leachate, P. vittata as well as 

P. cretica has collected one time per month as sample plants to analyze the arsenic 

distribution in different parts of ferns. In most cases, maximum concentration of 

arsenic was storied in frond of P. vittata and P. cretica which supports the previous 

results of P. vittata (Su et al. 2008). Frond arsenic concentration of P. cretica and P.  

 

vittata was significantly higher than the concentration in root (P<0.05). Maximum 

accumulated arsenic concentration in P. vittata was (2038 ± 61) mg/Kg dry weight  
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Fig 4.13: Arsenic concentration in the entrance of contaminated leachate and 

tank-2 (treated by P. cretica) solution
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Fig 4.14: Arsenic concentration in the entrance of contaminated 

leachate and tank-2 (treated by P. cretica) solution 
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where P. cretica accumulated maximum (2066 ± 81) mg/Kg dry weight. Amount of 

arsenic in different parts of P. vittata and P. cretica has also shown significant 

transportation of arsenic to frond [Fig 4.15 (a) (b)]. 

 

 

4.3.6 Design for the treatment of total leachate that comes from the Akaishi 

dumping site 

Final target is to treat the total leachate that comes from the Akaishi dumping site by 

using phytoremediation method. According to my laboratory results P. multifida will 

be the most effective fern for As removal from this temperate zone, northern part of 

Japan having high accumulation efficiency and cold tolerance.  

 

The size of previously used trail tank was only 1.62m2 where flow rate was 0.5L/min. 

Comparing with the total flow rate 30L/min, the area required for the total treatment 

was calculated as 97.2m2. For getting the highest efficiency, this large sized tank 

should be applied for three times continuously. Three tanks should be connected to 

each other so that treated leachate from first tank will go to the second one and so on 
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until the final removal to the environment. The design of future tank for the treatment 

of total leachate is given below-  

                                

                           

                          

                                 

                         

                        

 

                           

                        

                              Fig 4.16: Design for the treatment of total leachate 
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4.4 Conclusion 

This is the first time to apply temperate zone ferns as well as tropical zone ferns in As 

contaminated leachate at Akaishi, Miyagi, Sendai, the temperate zone of northern part 

of Japan. Leachate that produced from dumped treated soil such as construction soil 

generated by construction work etc. might be contaminated with harmful 

environmental pollutants. During the construction of Sendai City Subway Tozai Line 

which opened on December 6, 2015, about 600,000 m3 excavated soil was dumped at 

Akaishi area from 2008 to 2014 that may dissolve arsenic and produce arsenic 

contaminated leachate that exceed the arsenic concentration of Japanese water quality 

standard (10 μg/L). This target dumping site generates about 30 L leachate water/ min 

which contains 20 to 30 μg As / L water. P. vittata as well as P. cretica removed arsenic 

from that contaminated leachate although removal efficiency was fluctuating each and 

every day with the fluctuation of flow rate of leachate water. At July 2015, P. vittata 

has applied firstly without greenhouse and damaged by cold stress. To protect plants 

from cold stress, simple type greenhouse has applied at July 2016 which kept P. vittata 

as well as P. cretica healthy. This greenhouse protected plants from heat loss by wind, 

kept proper humidity and also increased water temperature to ensure effective 

accumulation of arsenic from leachate. The very first application of P. cretica also 

showed that it has accumulated arsenic from leachate, gained maximum amount of 

arsenic in frond although the initial biomass was lower for this time. The growth rate 

and maximum accumulation capacity of temperate fern P. cretica was lower than 

tropical fern. Further investigations are recommended to ensure the mechanism of 

arsenic accumulation by temperate zone ferns. 
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Chapter 5 

Conclusion 

Ferns are promising for phytoremediation of widely spread arsenic contaminated site. Although 

P. vittata is the most studied fern, it is limited to its cold tolerance. In this research, temperate 

zone fern P. multifida and P. cretica were introduced for highlighting their heavy metal 

accumulating potential at low temperature. Comparative potential of mostly studied tropical zone 

fern P. vittata was also determined to search the suitable fern for successful phytoremediation at 

low temperature. However, accumulated arsenic release tendency of those three ferns under cold 

stress has also been investigated. To date, there is no published data about the effect of low 

temperature on arsenic accumulation and release by ferns. In addition, temperate zone fern as 

well as tropical zone fern was applied for arsenic removal from leachate produced from Akaishi 

dumping site, Miyagi, Sendai for the first time. However, survival of the ferns under cold stress 

and continuous arsenic removal was a big challenge at this application. 

 

In chapter-2, toxic heavy metal (arsenic, lead and cadmium) removal potential of temperate zone 

ferns (P. multifida and P. cretica) has determined. P. multifida and P. cretica were chosen 

because of their high cold tolerance in the field. The potential of P. multifida and P. cretica to 

remove As(III), Pb and Cd from solution and comparison with P. vittata was reported here for 

the first time. Our results showed that during the hydroponic experiment, heavy metal 

concentrations in the solution decreased continuously with time. P. multifida accumulated 90%, 

36% and 50% of Pb, Cd and As, respectively, where P. cretica accumulated 90%, 71% and 43% 

of Pb, Cd and As, respectively from the mixed metal solution. The hydroponic experiment 
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comparing temperate ferns and tropical fern revealed that 33% and 43% of As(III) was removed 

by P. multifida and P. cretica respectively, whereas P. vittata could not accumulate As(III) at all 

within 5 days’. As was transported to the frond and some Pb and Cd was also transported to the 

rhizome from the root during the hydroponic experiment. The results of the long-term (3 months) 

pot soil experiment provided confirmation of the As(V), Pb and Cd uptake and transportation 

potential of P. multifida. After 3 months, P. multifida grown in metal-spiked soil stored 

significantly higher concentrations of As, Pb and Cd compared with the control plants (P < 0.01). 

The heavy metal (As, Pb and Cd) accumulation capacity and transportation ability of temperate 

zone ferns were demonstrated in this study, providing evidence that it could be applied for the 

treatment of water and soil that are not only contaminated with As but also co-contaminated with 

Pb and/or Cd. 

 

In chapter-3 effect of low temperature on As accumulating and releasing tendency of temperate 

zone ferns were investigated. Results from this study demonstrated that at low temperature, 

temperate ferns removed As from hydroponic solution faster and more effectively than tropical 

fern P. vittata. For being a temperate zone fern, at low temperature like 100C or 150C, P. 

multifida accumulated significantly higher concentration of As (P<0.05) compared with most 

studied tropical zone fern P. vittata . At 5°C or 25°C accumulation capacity of P. multifida was 

also higher than P. vittata but not at a level of significance (P>0.05). Another temperate zone 

fern P. cretica also accumulated significantly higher concentration of As (P<0.05) compared 

with P. vittata at low temperature (100C), although the maximum accumulated As by this fern 

was significantly lower (P=0.005) that P. multifida or P. vittata. Maximum amount of As was 

transported in the frond at all temperature for all three ferns. Analysis of comparative release 
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properties showed that except 50C, initially released small concentration of As in Milli-Q water 

was accumulated again by P. multifida as well as P. cretica but tropical zone fern P. vittata could 

not accumulate total concentration of initially released As at 100C, 150C and 250C. Though 

temperate zone fern P. multifida and P. cretica released lower concentration than P. vittata at 

50C but 50C temperature is still critical for all plants. So further investigations are recommended 

to make plants sustainable even at ≤50C. Comparative potential of As accumulation, 

transportation and release of P. multifida, Pcretica and P. vitata in this study providing evidence 

that P. multifida could be the suitable fern for the treatment of As contaminated water at 

temperate zone area. 

 

In chapter-4, temperate zone ferns as well as tropical zone ferns were applied for the first time to 

an As contaminated leachate at Akaishi, Miyagi, Sendai, northern part of Japan. During the 

construction of Sendai City Subway Tozai Line which opened on 6th December, 2015, about 

600,000 m3 excavated soil was dumped at Akaishi area from 2008 to 2014 that may dissolve 

arsenic and produce arsenic contaminated leachate. At July 2015, P. vittata has applied firstly 

without greenhouse and damaged by cold stress. To protect plants from cold stress, simple type 

greenhouse has applied at July 2016 which kept P. vittata as well as P. cretica healthy. This 

greenhouse protected plants from heat loss by wind, kept proper humidity and also increased 

water temperature to ensure effective accumulation of arsenic from leachate. Our target dumping 

site generated about 30 L leachate water/ min containing 20 to 30 μg As / L water that exceed the 

arsenic concentration of Japanese water quality standard (10 μg/L). Tropical fern P. vittata as 

well as temperate fern P. cretica were applied to removed arsenic from that contaminated 

leachate. At low temperature (from November 2016 to May 2017) P. cretica as well as P. vittata 
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has removed almost 75% (maximum) As from the leachate although removal efficiency was 

fluctuating each and every day with the fluctuation of flow rate of leachate water. The very first 

application of P. cretica also showed that it has accumulated arsenic from leachate, transported 

maximum amount of arsenic in frond although the initial biomass was lower for this time. The 

growth rate and maximum accumulation capacity of temperate fern P. cretica was lower than 

tropical fern (chapter-3). Further investigations are recommended to ensure the mechanism of 

arsenic accumulation by temperate zone ferns. 

 

In conclusion, final goal of this present study was to determine arsenic removal potential of 

temperate zone ferns at low temperature and apply to a contaminated leachate. Laboratory 

experiments of this study clarified the As accumulating potentials of temperate zone ferns (P. 

multifida and P. cretica) at low temperature (100C) and first application of P. cretica also 

removed As from the leachate of Akaishi dumping site . As comparative investigations between 

two temperate ferns showed that P. multifida has higher As removal potential than P. cretica at 

low temperature. Thus, P. multifida was recommended to apply in future as a more efficient cold 

tolerance hyperaccumulator. 
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