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 Amphidinolide N (1, Figure 1), which was isolated 

from the cultured Amphidinium sp. (Y-5 strain) by the 

Kobayashi group in 1994, is the most potent cytotoxic 

member of the amphidinolide family discovered so far, and 

its IC50 values against murine lymphoma L1210 and human 

epidermoid carcinoma KB cells are 0.05 and 0.06 ng/mL, respectively.1) The gross 

structure of amphidinolide N, including its partial stereochemical assignment, was 

proposed on the basis of 2D NMR spectroscopic studies. The structure has recently been 

revised, and the relative configuration has been reported.2) Amphidinolide N consists of a 

26-membered macrolide skeleton containing a six-membered hemiacetal, 

2,5-trans-disubstituted tetrahydrofuran, allylic epoxide, and 13 stereogenic centers. 

Although several synthetic studies of amphidinolide N have been reported to date,3) 

complete stereostructure of 1 has not been elucidated yet. We previously reported the 

synthesis of the tetrahydrofuran 2.4) However, it was unable to establish the synthetic route 

to the C8–C29 segment of 1. 

Here the author reports his efforts toward a stereocontrolled synthesis of the C8–

C29 model compound 3, which involves the construction of the challenging six-membered 

acetal unit of amphidinolide N (Scheme 1). The key features of the synthesis are a Tebbe 

methylenation/ring-closing metathesis sequence5) to construct a dihydropyran ring 4 and a 

late-stage introduction of the oxygen functionalities at C15 and C16 with m-CPBA.6) 
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Scheme 1. Synthesis of the C8–C29 model compound 3
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Figure 1. amphidinolide N (1)



Goniodomin A (8, Figure 2) is a marine polyether 

macrolide, which was isolated as a potent antifungal substance 

from the dinoflagellate Alexeandrium hiranoi by Murakami and 

coworkers.7) We previously assigned the complete stereostructure 

of 8 on the basis of 2D NMR analysis, degradation experiments of 

the authentic sample, and synthesis of model compounds.8) Aiming at the determination of 

complete stereostructure of goniodomin A, we have been engaged in the total synthesis 

of 8.9) Although we have achieved the synthesis of a seco-acid, our previous efforts on its 

macrolactonization were fruitless.10)  

Here the author reports his studies toward the total synthesis of goniodomin A 

based on newly devised convergent strategy, which featured a palladium-catalyzed 

coupling11) of vinylstannane 9 with thioester 10, and an intramolecular Nozaki–Hiyama–

Kishi (NHK) reaction12) for the construction of the macrocyclic skeleton 11 (Scheme 2). 

 

 

 

The author established scalable synthetic routes to vinylstannane 9 and 

carboxylic acid 12. The synthesis of vinylstannane 9 involved a Wittig reaction and a 

reductive cycloetherification for the construction of the dihydropyran ring.13) The 

synthesis of carboxylic acid 12 utilized a titanium-enolate mediated aldol reaction14) for 

stereocontrolled installation of the acyclic moiety with a correct configuration of the C7 

stereogenic center (Scheme 3).  
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The author next focused his attention on the formation of the macrocyclic 

skeleton of goniodomin A. Palladium-catalyzed cross-coupling11) of vinylstannane 9 with 

thioester 10 gave advanced intermediate 30, which was further elaborated to aldehyde 36 

in 16 steps. Intramolecular NHK reaction12) of 36 successfully afforded the corresponding 

cyclization product, which was oxidized to give enone 11. Desilylation and subsequent 

acid treatment led to the corresponding spiroacetal as a mixture of diastereomers. The two 

diastereomers were separated by column chromatography on silica gel after silylation to 

afford natural (11S)-spiroacetal 37. Formation of a hemiacetal, followed by removal of the 

acetyl group provided alcohol 39 as an inseparable mixture of isomers. Unfortunately, the 

1H NMR spectrum of 39 was different from that of the authentic derivative.8) The author 
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Scheme 3. Synthesis of vinylstannane 9 and carboxylic acid 12



inferred that the originally proposed relative configuration of goniodomin A might be 

incorrectly assigned.  
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