

Optimization of Business Continuity Management (BCM) in Natural Disaster-Prone Regions: A Case of the Automobile Parts Makers

著者	MONTSHIWA ABEDNICO LOPANG
学位授与機関	Tohoku University
学位授与番号	11301甲第17769号
URL	http://hdl.handle.net/10097/00122185

	もんちわ あべどにこ ろぱん								
氏 名	MONTSHIWA, Abednico Lopang								
研究科, 専攻の名称	東北大学大学院工学研究科(博士課程)技術社会システム専攻								
学位論文題目	Optimization of Business Continuity Management (BCM) in								
	Natural Disaster-Prone Regions: A Case of the Automobile Parts								
	Makers(自然災害多発地域における事業継続マネジメント(BCM)の								
	最適化:自動車部品企業の事例)								
論文審査委員	主查 東北大学教授 長平 彰夫 東北大学教授 須川 成利								
	東北大学教授 高橋 信								

```
論文内容要約
```

Recently, there are increased research initiatives on Business Continuity Management (BCM). As a way of contributing on the development of this relatively new study field, this thesis presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain, in which tier two companies are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain because, once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. This challenge partly emanates from literature, which asserted that Business Continuity Plan (BCP) consists of two main aspects, being Business Impact Analysis (BIA) and Risk Analysis (RA). However, this approach does not seem to be sufficiently addressing the complex and elaborate nature of supply chain network in the automobile industry. In order to address this challenge, a conceptual model is proposed, which provides a holistic approach towards BCM and covers four phases in the process, being contextual factors, BCP, BCM and success evaluation factors. The conceptual model is adopted from ISO 22301 (2012), but strikes a significant variation from the standard. It also has limited similarity with other proposed BCM conceptual models.

In this conceptual model, the first thing to consider is contextual factors. These are factors unique to every company's and usually influenced by the companies' culture, mission and vision. Once the contextual factors are identified and established, the model introduces the second phase, which is business continuity plan (BCP). The logic is that, no effective plan can be realized until a thorough command of the 'contextual factors' is established. Under this phase (BCP), I established that Cha et al. (2008)found that the relationship between Business Impact Analysis (BIA) and Risk Analysis (RA) was crucial because the results of BIA and RA are merged to develop a suitable BCP. This significantly shaped what constitute our BCP, being BIA, risk ranking and supply chain cooperation (SCC). BIA was adopted directly from Cha et al. and the following BIA hypotheses were made:

Hypothesis 10: BIA has positive effects on recovery time Hypothesis 11: BIA has positive effects on competitive advantages Hypothesis 12: BIA has positive effects on manmade risk ranking Hypothesis 13: BIA has positive effects on natural risk ranking Hypothesis 14: BIA has positive effects on BCM

Hypothesis 15: BIA has positive effects on supply chain cooperation

RA was modified into risk ranking. The reason for this modification was that, while I appreciate the value of RA in BCP, I realized it might be made cost effective. The study is of the view that risk ranking can be the common ground between companies' ambitions of maximizing profit and inventory consideration to ensure continued supply (customer satisfaction) even during and after disruption. For instance, a company's risk are to be ranked by taking a number of factors, which exposes it to risks like place of operation, complexity of supply chain, size of the company, and the company product. Risk ranking was further divided into 2 (manmade and natural risk ranking) for compatibility issues. The following hypotheses were developed;

Hypothesis 16: Manmade risk ranking has positive impact on BCM Hypothesis 17: Natural risk ranking has positive impact on BCM Hypothesis 18: Manmade risk ranking has positive impact recovery time Hypothesis 19: Natural risk ranking has positive impact recovery time

The last component under this phase is SCC. This is term possibly has great potential in informing the final BCP outcome. As is discussed earlier, companies are part of a huge supply chain networks and developing an effective BCP should take into consideration this view. The studies by Fujimoto et al. (2012) and MacKenzie et al. (2012) highlighted the integral significance of supply chain network during disruption. T was to that effect in our BCP. Given the importance of supply chain network in the flow of goods, services and information through the network in the automobile industry the study is of the view that introducing SCC is pivotal in BCP.

The study employed three analysis techniques been; correlation, regression and Structured Equation Model (Smart PLS 2.0) analyses. The reason three analysis techniques were used is due to their complementary nature. Concisely, while correlation analysis establishes association among individual variables, regression seeks to identify a causal relationship of these variables, while Smart PLS 2.0 finds out the direct and total effect multiple variables have on each other coupled with sensitivity analysis.

		Composite			
	AVE	Reliability	R Square	Cronbach's Alpha	Communality
Business Continuity Management	0.667	0.9231	0.7671	0.8998	0.667
Business Impact Analysis	0.6044	09131		0.8874	0.6044
Comparative Advantage	0.8688	0.9298	0.2934	0.8489	0.8688
Company Size	0.8046	0.925		0.8788	0.8046
Manmaderisk ranking	0.7884	0.8817	0.3405	0.7319	0.7884
Natural risk ranking	05525	0.8595	0.2074	0.8022	0.5525
Recovery time	0.6725	0.8911	0.3858	0.8383	0.6725
Supply Chain cooperation	0.7617	0.9274	0.5345	0.8952	0.7617

Table 1 Results for Measurement Model Evaluation Criteria

Note;*p <0.05,**p<0.01,***p<0.001

Note: Calculated with SmatPLS 2.0

Table 2 Latent variable correlations (calculation with Smart PLS 2.0)

	Business	Business				Natural		
	Continuity	Impact	Comparative	Company	Manmade	Risk	Recovery	Supply chain
	Management	Analysis	Advantages	size	Risk Ranking	Ranking	time	cooperation
Business Continuity								
Management	1							
Business Impact								
Analysis	0.8409	1						
Comparative								
Advantages	0.4019	0.2292	1					
Company size	0.0943	0.0043	0.3264	1				
Manmade Risk								
Ranking	0.4902	0.3833	0.3097	0.2053	1			
Natural Risk								
Ranking	0.374	0.3705	0.2027	0.1163	0.2377	1		
Recovery time	0.6014	0.4997	0245	0.1058	0.2734	0.258	1	
Supply chain								
cooperation	0.7606	0.7209	0.1997	0.1202	0.5661	0.4449	05371	1

Note;*p <0.05;**p<0.01;***p<0.001

Note: Calculated with SmatPLS 2.0

Table 3 Smart PLS 2.0 Direct and total effect Analysis results

Direct effects						Total effects				
Hypotheses	Original Sample	Sign level	Standard Deviation	Standard Error	T Statistics	Original Sample	Sig Level	Standard Deviation	Standard Error	T Statistics
1	0.1381		0.0932	0.0932	1.4816	0.2081		0.1066	0.1066	1.9523
2	0.0701		0.1234	0.1234	05679	0.1048		0.1383	0.1383	0.7573
3	0.0044		0.142	0.142	0.031	0.005		0.1397	0.1397	0.0358
4	0.1222		0.1436	0.1436	0.8511	0.1222		0.1436	0.1436	0.8511
5	0.5707	%	0.155	0.155	3.6811	0.5706	****	0.1669	0.1669	3.4195
6	0.3558	**	0.1425	0.1425	25977	0349	**	0.1363	0.1363	2.5602
7	0255		0.2309	0.2309	1.1043	0.3463		0.1979	0.1979	1.7503
8	0.2479	*ok	0.0943	0.0943	2.6295	0.3069	****	0.0904	0.0904	3.3968
9	-0.2387		0.1347	0.1347	1.7719	0.0073		0.1504	0.1504	0.0484
10	-0.0736		0.279	0.279	0.2638	0.5016	****	0.1066	0.1066	4.7035
11	-0.2343		0.153	0.153	1.5309	0.2272	*	0.1065	0.1065	2.1323
12	-0.0296		0.1735	0.1735	0.1706	0.3818	**	0.1091	0.1091	3.499
13	0.1116		0.1489	0.1489	0.7499	0.3685	****	0.1023	0.1023	3.6027
14	0.623	%	0.0741	0.0741	8.4053	0.8405	****	0.0391	0.0391	21.5247
15	0.7215	*okok	0.0607	0.0607	11.891	0.7208	****	0.0649	0.0649	11.1042
16	0.1029		0.0713	0.0713	1.443	0.103		0.0687	0.0687	1.4996
17	0.0154		0.0763	0.0763	02015	0.0154		0.0763	0.0763	0.2015
18	-0.1093		0.1266	0.1266	0.8637	-0.0552		0.131	0.131	0.4212
19	-0.0048		0.1187	0.1187	0.0402	-0.013		0.1209	0.1209	0.1077
Note; *p <0.05,	Note; *p <0.05, **p<0.01, ***p<0.001									

Note: Calculated with SmatPLS 2.0

In this study, significant correlation and regression analysis results among Risk Rankings (RR), SCC and BIA ascertain the value of the model by establishing both association and causation. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on RR and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated an increase of 20% yielded 10 significant levels of varying degree while the 20% reduction yielded 8 significant levels of varying degree. Comparing this with our unaltered study data, an increase of 20% seems to be more effective as it yields 10 significance levels while the unaltered study data yielded 9 significant correlation of varying degree. A reduction of 20% of company size is not effective as it lower than unaltered study data.