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ABSTRACT. The diet and feeding ecology of Eastern Canada – West Greenland bowhead whales were examined using fatty 
acid (FA) composition of the outer blubber layer of 50 individuals sampled during the summers of 2008 and 2009. Bowhead 
blubber was rich in the following FAs: 14:0, 16:0, 16:1n – 7, 18:0, 18:1n – 11, 18:1n – 9, 18:1n – 7, 20:1n – 11, 20:1n – 9, 20:1n – 7, 
20:5n – 3, 22:1n – 11, 22:1n – 9, 22:5n – 3, and 22:6n – 3, which together accounted for 91% of total FAs identified. Four groups of 
bowhead whales were identified from their FA signatures using multivariate analysis. Long-chain monounsaturated fatty acids 
(MUFAs) (20:1n – 9, 20:1n – 11, 22:1n – 9, and 22:1n – 11) and polyunsaturated fatty acids (PUFAs) (20:5n – 3, 22:5n – 3, 22:6n – 3) 
accounted for most of the variance among groups. Whales from a single sampling site segregated into different groups, 
some of which included whales from other sampling sites, suggesting summer mixing of whales from different wintering 
areas and prey assemblages, or alternatively, selective feeding. FA composition was similar in males and females and among 
whales of different age classes, which suggests that these different groups shared foraging areas and had similar diets. The 
blubber of bowhead whales from the eastern Canadian Arctic was composed of high proportions of calanoid copepod markers 
(20:1n – 9 and 22:1n – 11), especially compared to the adipose tissue of western Arctic bowhead whales. This finding suggests 
that Calanus spp. were likely a major prey item. Given the expected change in Arctic zooplankton assemblages with climate 
warming, bowhead whales, through their FA biomarkers, may serve as sentinels of change in Arctic ecosystems.
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RÉSUMÉ. Afin d’approfondir les connaissances sur la diète et l’écologie alimentaire de la baleine boréale de la population 
EC-WG, nous avons examiné la composition en acides gras de la couche de graisse sous-cutanée de 50 animaux échantil-
lonnés durant les étés 2008 et 2009. Les baleines boréales étaient riches en certains acides gras (AG) notamment 14:0, 16:0, 
16:1n-7, 18:0, 18:1n-11, 18:1n-9, 18:1n-7, 20:1n-11, 20:1n-9, 20:1n-7, 20:5n-3, 22:1n-11, 22:1n-9, 22:5n-3 et 22:6n-3. Ces 15 acides 
gras constituaient 91 % de tous les acides gras identifiés. Nous avons identifié quatre groupes de baleines à l’aide d’une analyse 
composée principale dans une analyse de fonction discriminante. Les acides gras monoinsaturés à longue chaîne (MUFAs) 
(20:1n-9, 20:1n-11, 22:1n-9 et 22:1n-11) et les acides gras Oméga-3 polyinsaturés (PUFAs) (20:5n-3, 22:5n-3 et 22:6n3) 
étaient responsables de la majorité de la variance entre les groupes de baleines. Chacun des quatre groupes de baleines était 
constitué d’animaux provenant d’une même région ainsi que de régions différentes. Ces résultats suggèrent que des baleines 
boréales avec des sites d’hivernage différents partagent un même site d’alimentation estival et/ou que les baleines boréales 
ont une alimentation sélective. La composition en acide gras du tissu adipeux était semblable chez les mâles et les femelles 
ainsi qu’entre les individus de différentes classes de tailles, ce qui suggère une diète similaire ou des aires d’alimentation 
communes. Le tissu adipeux des baleines boréales de l’Arctique de l’Est canadien était constitué d’une plus grande proportion 
de marqueurs spécifiques de copépodes calanoides (20:1n – 9 et 22:1n – 11) comparativement aux baleines boréales de l’Arctique 
de l’Ouest. Les résultats de notre étude suggèrent que Calanus spp. est une proie importante de la diète des baleines boréales 
de la population de l’est du Canada et de l’ouest du Groenland. Compte tenu de l’évolution attendue dans les assemblages de 
zooplancton de l’Arctique en raison du réchauffement climatique, les baleines boréales, par leurs biomarqueurs AG, peuvent 
servir de sentinelles des changements dans les écosystèmes.

Mots clés : Arctique, acides gras, baleine boréale, Balaena mysticetus, couche de graisse, copépodes calanoides, diète, écologie 
alimentaire, lipides, zooplancton
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INTRODUCTION

Feeding ecology of bowhead whales (Balaena mysticetus) 
has been assessed in two different Arctic populations. The 
diet of the Eastern Canada-West Greenland (EC−WG) pop-
ulation consists primarily of calanoid copepods, mysids, 
and euphausids, and was inferred using short-term, indirect, 
and qualitative approaches, such as surface feeding obser-
vations, stomach content analysis, plankton net sampling, 
dive data, and stable isotope ratios (Finley, 2001; Lowry et 
al., 2004; Lee et al., 2005; Laidre et al., 2007; Pomerleau 
et al., 2011a, 2012). In the western Arctic, the diet of the 
Bering−Chukchi−Beaufort (BCB) bowhead whale popula-
tion has been characterized previously using stable isotopes 
and stomach contents (Lowry et al., 2004; Lee et al., 2005). 
Recently, fatty acid composition was also examined and 
proved to be a useful complement to the other approaches 
to improving our understanding of BCB bowhead whale 
diet (Budge et al., 2008a); however, fatty acid composition 
has not yet been investigated for the EC – WG population. 

Fatty acids (FAs) can be used both qualitatively and 
quantitatively to infer feeding ecology of free-ranging 
predators (Iverson, 2009). While some FAs can be used as 
markers for ingestion of specific prey, it is often the rela-
tive abundance of some specific long-chain FAs that is used 
to infer predator-prey relationships and food web structure 
(Iverson et al., 1997, 2004; Dahl et al., 2000; Hooker et al., 
2001; Best et al., 2003; Dalsgaard et al., 2003; Thiemann 
et al., 2008). However, some specific long-chain polyunsat-
urated FAs (PUFA), biosynthesized by primary producers 
(Sargent et al., 1987) are transferred in a relatively con-
servative way to consumers (Dalsgaard et al., 2003). For 
instance, the FAs 20:5n – 3 (EPA) and 22:6n – 3 (DHA) are a 
diatom and a dinoflagellate marker, respectively (Kates and 
Volcani, 1966; Graeve et al., 1994), and the ratio of these 
FAs may provide information on the relative importance of 
the food webs derived from these phytoplankton resources. 
Similarly, long chain monounsaturated FAs (MUFAs) 
of 20:1 and 22:1 are formed de novo in calanoid cope- 
pods (Kattner and Hagen, 1995). Thus, direct consumption 

FIG. 1. Sampling locations for bowhead whales (n = 50) in the eastern Canadian Arctic. The five sampling regions are Admiralty Inlet, Gulf of Boothia, Northern 
Foxe Basin, Southern Foxe Basin, and Hudson Strait.
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of copepods or consumption of copepod predators can be 
inferred from the relative importance of specific FAs in 
consumers at higher trophic levels. Also, cetaceans are gen-
erally gregarious (Whitehead and Lusseau, 2012), and FAs 
can be used to gain insights into dietary patterns among 
whales of different age or sex classes in feeding areas.

Blubber in marine mammals is a dynamic tissue that 
serves several functions, including insulation and fat stor-
age (Iverson et al., 1995). Marine mammal blubber reflects 
the diet composition and dietary intake of prey over a 
period of weeks to months (Iverson et al., 1995, 2004). Ver-
tical stratification of FAs in the blubber layer of marine 
mammals has been documented in pinnipeds (Best et al., 
2003; Thiemann et al., 2004) and cetaceans (Thiemann et 
al., 2008; Strandberg et al., 2008), although the degree of 
stratification appears to be less in larger cetaceans (Hooker 
et al., 2001; Koopman, 2007). In general, the outer blubber 
layer is composed of a larger proportion of biosynthesized 
components and MUFAs less than 18 carbons in length 
than the inner blubber layer, which is more metabolically 
active and contains greater amounts of MUFAs with 18 
carbons or more, non-branched saturated FAs (SFAs), and 
PUFAs (Koopman et al., 1996; Smith and Worthy, 2006). 
In bowhead whales, the FA compositions of the inner and 
outer layers differ, but the extent of the stratification is rela-
tively small, and one can make reliable general inferences 
about diet based on the outer layer alone (Budge et al., 
2008a). Here we assess the feeding ecology and diet of EC−
WG bowhead whales by examining how the FA composi-
tion of the outer blubber layer varies among individuals.

METHODS

Study Area and Sample Collection

Bowhead whale blubber samples (n = 50) were collected 
in July−September of 2008 (n = 7) and 2009 (n = 43) in five 
regions within the summer range of the EC−WG bowhead 
whale population in the eastern Canadian Arctic (Fig. 1; 
Table 1). The vast majority (n = 39) of the samples came 
from northern Foxe Basin. Blubber samples consisted of the 
outer layer and were obtained from live individuals using 
a crossbow darting system (n = 45) (Brown et al., 1991), 
or from dead carcasses through subsistence harvests (n = 
5). Samples from the outer blubber layer of dead whales 
were measured from beneath the attached epidermis (not 
included). Average length of all blubber was approximately 
1 cm. Samples were preserved frozen in liquid nitrogen 
or at –80˚C until lipid analysis. Age class was assessed 
visually (by length) in the field. The sample of 50 whales 
included 15 adults (> 13 m long), 22 subadults (8 – 13 m 
long), 12 immature whales (< 8 m long), and one individual 
of unknown age. Sex was determined genetically (Shaw et 
al., 2003; Petersen et al., 2011) for 46 of the 50 whales (19 
females and 27 males) (Table 1).

TABLE 1. Data collected for bowhead whale specimens: Whale 
identity number, year, month, and geographical region of sample 
collection, sex, maturity status, and group identity. Region codes: 
AI  –  Admiralty Inlet, GB  –  Gulf of Boothia, HS  –  Hudson 
Strait, NFB  –  northern Foxe Basin, and SFB  –  southern Foxe 
Basin (See Fig. 1). “U” under Sex means undetermined. Group 
identity was determined through a discriminant analysis of 
principal components (See Fig. 2). 

Specimen ID	 Year	 Month	 Region	 Sex	 Status	 Group

1	 2009	 August	 AI	 F	 Subadult	 3
2	 2009	 August	 AI	 M	 Adult	 4
3	 2009	 August	 AI	 F	 Subadult	 4
4	 2009	 August	 AI	 M	 Adult	 4
5	 2009	 August	 AI	 F	 Immature	 3
6	 2008	 September	 GB	 M	 Subadult	 4
7	 2009	 August	 HS	 F	 Adult	 4
8	 2009	 September	 HS	 M	 Adult	 3
9	 2008	 August	 HS	 M	 Adult	 4
10	 2009	 July	 NFB	 M	 Subadult	 3
11	 2009	 July	 NFB	 M	 Subadult	 4
12	 2009	 July	 NFB	 F	 Subadult	 4
13	 2009	 July	 NFB	 F	 Subadult	 1
14	 2009	 July	 NFB	 M	 Immature	 3
15	 2009	 July	 NFB	 F	 Immature	 3
16	 2009	 July	 NFB	 F	 Immature	 3
17	 2009	 July	 NFB	 M	 Subadult	 3
18	 2009	 July	 NFB	 M	 Immature	 3
19	 2009	 July	 NFB	 F	 Immature	 4
20	 2009	 July	 NFB	 M	 Immature	 4
21	 2009	 July	 NFB	 F	 Immature	 1
22	 2009	 July	 NFB	 M	 Adult	 3
23	 2009	 July	 NFB	 M	 Subadult	 3
24	 2009	 July	 NFB	 M	 Subadult	 3
25	 2009	 July	 NFB	 M	 Subadult	 2
26	 2009	 July	 NFB	 M	 Subadult	 3
27	 2009	 July	 NFB	 F	 Adult	 2
28	 2009	 July	 NFB	 U	 Subadult	 3
29	 2009	 July	 NFB	 F	 Immature	 4
30	 2009	 July	 NFB	 U	 Immature	 4
31	 2009	 July	 NFB	 F	 Adult (cow)	 3
32	 2009	 July	 NFB	 M	 Immature	 4
33	 2009	 July	 NFB	 M	 Adult	 2
34	 2009	 July	 NFB	 M	 Subadult	 3
35	 2009	 July	 NFB	 F	 Adult (cow)	 1
36	 2009	 July	 NFB	 F	 Subadult	 4
37	 2009	 July	 NFB	 F	 Adult	 3
38	 2009	 July	 NFB	 U	 Adult	 1
39	 2009	 July	 NFB	 M	 Subadult	 1
40	 2009	 July	 NFB	 M	 Subadult	 1
41	 2009	 July	 NFB	 F	 Adult	 3
42	 2009	 July	 NFB	 M	 Immature	 2
43	 2009	 July	 NFB	 M	 Subadult	 4
44	 2009	 July	 NFB	 M	 Subadult	 4
45	 2008	 July	 NFB	 F	 Subadult	 3
46	 2008	 July	 NFB	 M	 Unknown	 4
47	 2008	 July	 NFB	 F	 Subadult	 2
48	 2008	 July	 NFB	 M	 Adult	 1
49	 2009	 August	 SFB	 F	 Adult	 2
50	 2008	 September	 SFB	 U	 Subadult	 4

Fatty Acid Extraction

Lipids were extracted from 0.5 g of the outer blubber 
layer using a 2:1 chloroform-methanol solution containing 
0.01% butylated hydroxytoluene (BHT) (v/v/w) (Folch et 
al., 1957). Gas chromatographic analyses were performed 
following the method developed by Thurnhofer and Vet-
ter (2005). We identified 69 fatty acids with verification via 
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ion mass spectroscopy and known standard mixtures and 
report these as percent weight of total FAs. The shorthand 
nomenclature of A:Bn – X is used to describe each FA, with 
A representing the number of carbon atoms, B the number 
of double bonds, and X the position of the double bond clos-
est to the terminal methyl group. 

Statistical Analyses

Statistical analyses were performed using R version 
2.15.1 (R Development Core Team, 2010). Only the most 
abundant FAs known to be associated with diet (Iverson et 

al., 2004) were used in our analyses. We retained 15 FAs 
(> 1.0% of total FA content) that accounted for ~ 91% of 
total FAs for statistical analyses: 14:0, 16:0, 16:1n – 7, 18:0, 
18:1n – 11, 18:1n – 9, 18:1n – 7, 20:1n – 11, 20:1n – 9, 20:1n – 7, 
20:5n – 3, 22:1n – 11, 22:1n – 9, 22:5n – 3, and 22:6n – 3 
(Table 2). Values for the selected FAs were renormalized 
over 100%. Then proportional FA data were transformed 
using the centered log ratio transformation (Aitchison, 
1983, 1986; Budge et al., 2008a): xt = log (xi/g(x)), where xi 
is a given FA expressed as percent of total FAs, g(x) is the 
geometric mean of the FA data for the sample, and xt repre-
sents the transformed FA data. 

TABLE 2. Blubber fatty acid (FA) composition of 45 bowhead whales. Mean (± SE) values of the 42 FAs that contributed more than 0.1% 
of total FA weight are given for each of three age classes of males and females. SFAs = saturated fatty acids, MUFAs = monounsaturated 
fatty acids, and PUFAs = polyunsaturated fatty acid.

		  Male			   Female
FA	 Adult	 Subadult	 Immature	 Adult	 Subadult	 Immature
	 (n = 7)	 (n = 13)	 (n = 5)	 (n = 7)	 (n = 7)	 (n = 6)

SFAs:
14:0	 3.08 ± 0.14	 3.28 ± 0.07	 3.20 ± 0.04	 3.53 ± 0.26	 3.13 ± 0.07	 2.82 ± 0.2
14:0 iso	 0.11 ± 0.02	 0.09 ± 0.00	 0.10 ± 0.00	 0.10 ± 0.01	 0.09 ± 0.00	 0.12 ± 0.1
15:0	 0.17 ± 0.01	 0.17 ± 0.00	 0.17 ± 0.00	 0.18 ± 0.01	 0.17 ± 0.00	 0.16 ± 0.0
16:0	 4.64 ± 0.24	 5.34 ± 0.12	 5.16 ± 0.20	 5.23 ± 0.39	 4.79 ± 0.22	 4.68 ± 0.3
18:0	 0.89 ± 0.07	 1.17 ± 0.06	 1.12 ± 0.12	 0.96 ± 0.11	 1.08 ± 0.10	 1.17 ± 0.3
20:0	 0.11 ± 0.01	 0.11 ± 0.00	 0.10 ± 0.00	 0.13 ± 0.01	 0.10 ± 0.01	 0.11 ± 0.0
23:0	 0.22 ± 0.03	 0.24 ± 0.02	 0.23 ± 0.03	 0.24 ± 0.04	 0.27 ± 0.02	 0.25 ± 0.1
Subtotal	 9.22 ± 0.38	 10.40 ± 0.21	 10.08 ± 0.37	 10.37 ± 0.70	 9.63 ± 0.37	 9.31 ± 0.26
MUFAs:
14:1n – 5	 0.62 ± 0.03	 0.61 ± 0.03	 0.58 ± 0.05	 0.72 ± 0.07	 0.62 ± 0.06	 0.59 ± 0.03
16:1n – 11	 0.42 ± 0.05	 0.39 ± 0.02	 0.38 ± 0.01	 0.36 ± 0.04	 0.39 ± 0.02	 0.49 ± 0.05
16:1n – 9	 0.27 ± 0.01	 0.29 ± 0.01	 0.27 ± 0.01	 0.26 ± 0.01	 0.30 ± 0.02	 0.34 ± 0.02
16:1n – 7	 18.90 ± 0.68	 19.90 ± 0.44	 19.55 ± 0.37	 20.64 ± 1.66	 19.21 ± 0.81	 19.49 ± 0.44
16:1n5	 0.26 ± 0.00	 0.28 ± 0.01	 0.29 ± 0.01	 0.29 ± 0.02	 0.28 ± 0.01	 0.25 ± 0.01
18:1n – 11	 4.68 ± 0.37	 4.26 ± 0.13	 4.22 ± 0.18	 3.85 ± 0.27	 4.72 ± 0.20	 5.10 ± 0.21
18:1n – 9	 9.82 ± 0.59	 10.48 ± 0.34	 9.84 ± 0.54	 9.83 ± 0.59	 10.45 ± 0.59	 11.76 ± 0.56
18:1n – 7	 2.85 ± 0.11	 3.25 ± 0.10	 3.16 ± 0.16	 3.07 ± 0.28	 3.30 ± 0.21	 3.20 ± 0.26
18:1n – 5	 0.56 ± 0.01	 0.61 ± 0.01	 0.63 ± 0.04	 0.58 ± 0.02	 0.63 ± 0.03	 0.62 ± 0.03
20:1n – 11	 3.65 ± 0.32	 3.51 ± 0.09	 3.55 ± 0.06	 3.32 ± 0.30	 3.90 ± 0.28	 4.05 ± 0.26
20:1n – 9	 17.08 ± 0.71	 15.84 ± 0.47	 16.30 ± 0.62	 16.80 ± 1.20	 15.59 ± 0.97	 16.16 ± 1.04
20:1n – 7	 1.96 ± 0.07	 1.89 ± 0.05	 1.98 ± 0.07	 1.99 ± 0.16	 1.98 ± 0.13	 1.97 ± 0.06
22:1n – 11	 10.21 ± 0.85	 9.12 ± 0.69	 9.68 ± 1.01	 9.80 ± 1.27	 8.83 ± 1.11	 7.43 ± 1.13
22:1n – 9	 2.29 ± 0.14	 1.96 ± 0.12	 2.02 ± 0.20	 2.19 ± 0.33	 1.92 ± 0.26	 1.87 ± 0.23
22:1n – 7	 0.42 ± 0.03	 0.36 ± 0.02	 0.37 ± 0.04	 0.38 ± 0.07	 0.36 ± 0.05	 0.31 ± 0.03
24:1n – 9	 0.10 ± 0.01	 0.11 ± 0.01	 0.10 ± 0.01	 0.12 ± 0.03	 0.12 ± 0.01	 0.10 ± 0.01
Subtotal	 74.10 ± 1.69	 72.84 ± 0.87	 72.93 ± 1.42	 74.21 ± 1.03	 72.58 ± 1.61	 73.75 ± 1.83
PUFAs:
16:2n – 4	 0.56 ± 0.02	 0.59 ± 0.02	 0.59 ± 0.03	 0.58 ± 0.03	 0.59 ± 0.02	 0.52 ± 0.02
16:3n – 4	 0.18 ± 0.01	 0.19 ± 0.01	 0.19 ± 0.01	 0.20 ± 0.01	 0.18 ± 0.01	 0.15 ± 0.00
16:4n – 3	 0.09 ± 0.01	 0.11 ± 0.00	 0.10 ± 0.01	 0.09 ± 0.01	 0.12 ± 0.01	 0.12 ± 0.01
16:4n – 1	 0.32 ± 0.03	 0.32 ± 0.02	 0.31 ± 0.03	 0.34 ± 0.03	 0.29 ± 0.01	 0.23 ± 0.01
18:2n – 6	 0.80 ± 0.08	 0.87 ± 0.04	 0.84 ± 0.04	 0.94 ± 0.10	 0.82 ± 0.04	 0.82 ± 0.05
18:2n – 4	 0.11 ± 0.01	 0.12 ± 0.00	 0.12 ± 0.01	 0.12 ± 0.01	 0.12 ± 0.01	 0.11 ± 0.01
18:3n – 6	 0.14 ± 0.01	 0.14 ± 0.01	 0.14 ± 0.01	 0.16 ± 0.01	 0.12 ± 0.01	 0.12 ± 0.01
18:3n – 4	 0.14 ± 0.03	 0.17 ± 0.01	 0.18 ± 0.03	 0.13 ± 0.01	 0.18 ± 0.02	 0.17 ± 0.03
18:3n – 3	 0.29 ± 0.02	 0.31 ± 0.01	 0.33 ± 0.02	 0.30 ± 0.01	 0.35 ± 0.03	 0.34 ± 0.03
18:4n – 3	 0.78 ± 0.09	 0.73 ± 0.05	 0.80 ± 0.06	 0.79 ± 0.08	 0.75 ± 0.05	 0.65 ± 0.07
18:4n – 1	 0.38 ± 0.05	 0.45 ± 0.03	 0.47 ± 0.07	 0.36 ± 0.03	 0.49 ± 0.06	 0.41 ± 0.07
20:2n – 9	 0.11 ± 0.00	 0.12 ± 0.00	 0.13 ± 0.00	 0.12 ± 0.01	 0.13 ± 0.01	 0.12 ± 0.00
20:2n – 6	 0.14 ± 0.01	 0.16 ± 0.01	 0.17 ± 0.00	 0.17 ± 0.01	 0.17 ± 0.01	 0.16 ± 0.02
20:3n – 6	 0.12 ± 0.01	 0.12 ± 0.00	 0.12 ± 0.001	 0.12 ± 0.01	 0.12 ± 0.01	 0.12 ± 0.01
20:4n – 6	 0.27 ± 0.01	 0.28 ± 0.01	 0.28 ± 0.00	 0.28 ± 0.02	 0.29 ± 0.01	 0.32 ± 0.02
20:4n – 3	 0.43 ± 0.06	 0.40 ± 0.03	 0.43 ± 0.06	 0.36 ± 0.03	 0.46 ± 0.06	 0.45 ± 0.07
20:5n – 3	 6.02 ± 0.74	 5.50 ± 0.31	 5.71 ± 0.58	 5.06 ± 0.35	 5.99 ± 0.64	 5.64 ± 0.68
22:5n – 3	 1.74 ± 0.19	 1.93 ± 0.12	 1.86 ± 0.13	 1.62 ± 0.08	 2.24 ± 0.24	 2.14 ± 0.29
22:6n – 3	 3.08 ± 0.29	 3.02 ± 0.59	 3.14 ± 0.12	 2.62 ± 0.24	 3.43 ± 0.30	 3.40 ± 0.36
Subtotal	 15.72 ± 1.49	 15.53 ± 0.71	 15.92 ± 1.02	 14.36 ± 0.70	 16.81 ± 1.30	 15.99 ± 1.59
Total	 99.04 ± 0.07	 98.77 ± 0.05	 98.93 ± 0.08	 98.94 ± 0.06	 99.02 ± 0.05	 99.05 ± 0.03
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Differences between genders and between different age 
classes were tested using a two-way multiple analysis of 
variance (MANOVA) on FA signatures (all 15 FAs simul-
taneously). Since no significant differences were found 
between genders or age classes, a discriminant analysis 
of principal components (DAPC) was performed to iden-
tify individuals with similar FA composition. We used this 
method to identify relationships among groups of individ-
ual whales (Jombart et al., 2010). First, a principal compo-
nent analysis (PCA) (covariance matrix) was used on the 
15 transformed FAs to reduce the dataset to a set of uncor-
related principal components retaining most of the vari-
ance in the original data. The scree test (scree plot) as part 
of the DAPC analysis and Kaiser’s criterion (eigenvalues 
> 1) were used to determine the number of principal compo-
nents best describing our dataset. Once eigenvectors were 
extracted from the covariance matrix, they were ordered by 
eigenvalue (highest to lowest) to assess the best low-dimen-
sional space. The number of clusters best describing our 
dataset and membership of individual whales in those clus-
ters were determined using a k-means cluster analysis and 
the Bayesian Information Criterion (BIC). The variables 
included in a DAPC are the principal component scores for 
each individual. The linear combinations of the original 15 
FAs best separating the bowhead whale groups identified 
through the k-means cluster analysis were determined using 
a linear discriminant function analysis. 

RESULTS

A total of 69 FAs were identified from the outer blub-
ber layer of bowhead whales. The 42 most abundant FAs 
(> 0.1%) are presented for males and females of three dif-
ferent maturity classes (Table 2). MUFAs were the most 
abundant FAs, averaging 73.4 ± 3.9% of the total FA con-
tent. The most abundant MUFAs were 16:1n – 7, 20:1n – 9, 
18:1n – 9, and 22:1n – 11. PUFAs comprised 15.6 ± 3.0% 
of the total FA content and were dominated by 20:5n – 3, 
22:6n – 3, and 22:5n – 3. SFAs were the least abundant 
class of FAs, averaging 9.9 ± 0.4% of total FA content, and 
16:0, 14:0, and 18:0 were the dominant SFAs. A two-way 
MANOVA with gender and age class as independent vari-
ables indicated no significant difference in FA composition 
between males and females (Pillai = 0.389, F = 1.059, p = 
0.436) or the three age classes (Pillai = 0.905, F = 1.434,  

p = 0.125). The interaction between these two treatments 
was also not significant (Pillai = 0.485, F = 0.747, p = 0.803).

Regional patterns in FA composition could not be inves-
tigated, given the small sample size for all regions except 
northern Foxe Basin. A PCA reduced the 15 FAs to three 
uncorrelated principal components (PCs), retaining 89% 
of the total variance (Table 3). The first PC separated indi-
viduals largely on the basis of their levels of 22:5n – 3, 18:0, 
and 20:5n – 3, which had a strong negative correlation with 
content in 22:1n – 11, 22:1n – 9, and 20:1n – 9. FAs strongly 
correlated with PC2 included 18:1n – 11, 20:1n – 11, and 18:0 
(positive correlation) and 22:1n – 11, 14:0, and 22:1n – 9 (neg-
ative correlation). For PC3, 22:6n – 3, 20:5n – 3, and 22:5n – 3 
were positively correlated, while 18:1n – 9, 16:1n – 7, and 
18:1n – 7 were negatively correlated with this factor. 

Four distinct groups of bowhead whales, compris-
ing approximately equal numbers of males and females, 
were identified using PC scores in a k-means cluster anal-
ysis (Table 1, Fig. 2). All individuals of Group 1 (n = 7) 
and Group 2 (n = 6) were sampled in Foxe Basin, whereas 
groups 3 and 4 had a mixture of individuals sampled in 
different regions. Group 3 encompassed 18 individuals: 
15 from Foxe Basin, two from Admiralty Inlet, and one 
from Hudson Strait. Group 4 (n = 19) was similar in size 
to Group 3 and included 13 whales from Foxe Basin, three 
from Admiralty Inlet, one from the Gulf of Boothia, and 

TABLE 3. Summary of the key variables contributing to the first three principal components of the principal component analysis of 15 
FAs in 50 bowhead whales.

PC	 Loading	 Variable	 Proportion of variance (%)	 Cumulative variance (%)

PC1	 +	 22:5n – 3, 18:0, 20:5n – 3	 57.4	 57.4
	 −	 22:1n – 11, 22:1n – 9, 20:1n – 9
PC2	 +	 18:1n – 11, 20:1n – 11, 18:0	 17.9	 75.3
	 −	 22:1n – 11, 14:0, 22:1n – 9
PC3	 +	 22:6n – 3, 20:5n – 3, 22:5n – 3	 13.4	 88.7
	 −	 18:1n – 9, 16:1n – 7, 18:1n – 7

FIG. 2. Discriminant analysis of principal components using the 15 most 
abundant FAs identifying four groups of bowhead whales (see Table 3). 
Scatterplot shows the first two discriminant functions, which explain 94.4% 
of the variance. Each circle represents a group of whales. 
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two from Hudson Strait. None of these four groups was 
biased towards one particular gender or age class.

The first two discriminant functions of the DAPC 
accounted for 94.4% of separation among the four groups 
of whales. The FAs that had the highest discrimination 
power were the long-chain MUFAs 20:1n – 9, 20:1n – 11, 
and 22:1n – 11, along with 16:0, for the first discriminant 
axis (55.9% separation), and FAs 16:0, 18:0, 18:1n – 11, and 
20:1n – 9 for the second axis (38.5%). While all four groups 
of whales comprised mostly individuals from Foxe Basin, 
they varied in FA composition (Table 4). Overall, Group 2 
had the highest proportion of PUFAs (11.8%) but the lowest 
proportion of long-chain MUFAs (29.4%) compared to all 
other groups. Group 4 had the highest proportion (34.5%) of 
long-chain MUFAs (e.g., 20:1n – 9, 22:1n – 9, and 22:1n – 11). 

DISCUSSION

The FA composition of the outer blubber layer of bow-
head whales from the eastern Canadian Arctic was com-
posed of typical marine FAs and was similar to the common 
array of FAs found in other species of marine mammals, 
including pinnipeds (e.g., Iverson et al., 1997), odon-
tocetes (e.g., Dahl et al., 2000; Hooker et al., 2001; Smith 
and Worthy, 2006), and mysticetes (Lockyer et al., 1984; 
Borobia et al., 1995). Bowhead whales from the EC−WG 
population shared similarities in their blubber FA compo-
sition with whales from the BCB population (Budge et al., 
2008a), although differences were also noted. Several fac-
tors may explain the observed differences between the two 
populations of bowhead whales in outer blubber FA compo-
sition; these factors include sampling season (summer for 
EC – WG versus spring or autumn, or both, for BCB) and 
differences in FA metabolism according to nutritional sta-
tus (Budge et al., 2008a). The 15 most abundant FAs iden-
tified in the outer blubber layer of bowhead whales in this 
study were the same most abundant FAs found in the outer 
blubber of bowhead whales from the western Arctic (Budge 
et al., 2008a), although their proportions varied. SFAs and 
PUFAs accounted for a larger proportion of total FA in 

bowhead whales from the BCB than in those from the EC−
WG population. In contrast, for long-chain MUFAs such 
as 20:1n – 9 and 22:1n – 11, which are trophic markers of 
calanoid copepods, the proportion was higher in bowhead 
whales from the EC−WG population (~ 25%) than in those 
from the BCB population (~15%), suggesting that EC – WG 
whales consumed and incorporated a higher proportion of 
calanoid copepods than BCB whales. 

The outer blubber of bowhead whales from the BCB 
population (Budge et al., 2008a) showed a larger fraction of 
PUFAs than that of EC−WG whales. This was the case espe-
cially for 20:5n – 3 (9.4% ± 0.2% in BCB vs. 5.7% ± 1.4% 
in EC−WG), and to some extent for 22:6n – 3 (4.3% ± 0.1% 
in BCB vs. 3.1% ± 0.7% in EC−WG), resulting in a mean 
20:5n – 3/22:6n – 3 ratio of 2.2 in BCB whales, compared to 
1.8 in the EC – WG whales. Given that 20:5n – 3/22:6n – 3 
ratios were greater than 1 in both populations, bowhead 
whales in the Canadian Arctic probably rely more generally 
on diatom-derived as opposed to flagellate-derived food 
webs, and possibly even more so in the western Canadian 
Arctic. Marine diatoms, which comprise both ice algae and 
planktonic species, are rich in the FAs 14:0, 16:0, 16:1n – 7, 
and 20:5n – 3 (Kates and Volcani, 1966). In contrast, auto-
trophic flagellates and dinoflagellates tend to be poor in 
16:1n – 7, but rich in 22:6n – 3, 18:4n – 3, and 18:5n – 3 (Har-
rington et al., 1970; Graeve et al., 1994). Future research 
using techniques such as compound-specific stable isotope 
analysis (Budge et al. 2008b) may improve our understand-
ing of the relative contributions of ice algae and phyto-
plankton to the bowhead whale diet.

In marine mammals, the PUFAs 20:5n – 3, 22:5n – 3, 
and 22:6n – 3 and the long-chain MUFAs C20 and C22 are 
assimilated exclusively from the diet (Iverson et al., 2004). 
These long-chain MUFAs are formed de novo by calanoid 
copepods (e.g., C. hyperboreus, C. glacialis, and C. finmar-
chicus) (Kattner and Hagen, 1995). In our study, the long-
chain MUFAs 20:1n – 9 and 22:1n – 11 accounted for more 
than 25% of the fatty acids in the outer blubber layer of 
bowhead whale, suggesting herbivorous calanoid copep-
ods as a key food source (Sargent and Whittle, 1981; Lee 
et al., 2006). There is also some evidence that omnivorous 

TABLE 4. Values in percent weight (mean ± standard deviation) of the 15 FAs for each of the four groups of bowhead whales.

Fatty acids	 Gr 1 (n = 7)	 Gr 2 (n = 6)	 Gr 3 (n = 18)	 Gr 4 (n = 19)

14:0	 3.31 ± 0.52	 3.44 ± 0.75	 3.23 ± 0.35	 3.11 ± 0.35
16:0	 5.15 ± 0.54	 5.33 ± 0.72	 5.08 ± 0.60	 4.90 ± 0.66
18:0	 1.09 ± 0.24	 1.10 ± 0.22	 1.09 ± 0.27	 1.06 ± 0.28
16:1n – 7	 19.86 ± 2.36	 20.32 ± 1.03	 19.95 ± 2.48	 19.62 ± 2.31
18:1n – 11	 4.71 ± 0.73	 4.28 ± 1.25	 4.20 ± 0.93	 4.38 ± 0.69
18:1n – 9	 10.83 ± 1.77	 11.04 ± 0.59	 10.54 ± 1.87	 10.12 ± 1.26
18:1n – 7	 3.25 ± 0.39	 3.45 ± 0.45	 3.17 ± 0.59	 3.11 ± 0.51
20:1n – 11	 3.67 ± 0.61	 3.45 ± 0.90	 3.63 ± 0.83	 3.54 ± 0.55
20:1n – 9	 15.92 ± 1.43	 14.73 ± 2.32	 15.98 ± 2.61	 16.55 ± 2.33
20:1n – 7	 1.91 ± 0.22	 1.80 ± 0.32	 1.95 ± 0.30	 1.95 ± 0.23
22:1n – 11	 8.56 ± 2.73	 7.80 ± 1.83	 8.87 ± 2.52	 10.02 ± 2.85
22:1n – 9	 1.85 ± 0.48	 1.68 ± 0.35	 2.03± 0.56	 2.16 ± 0.58
20:5n – 3	 5.37 ± 0.71	 6.29 ± 1.43	 5.82± 1.26	 5.44± 1.70
22:5n – 3	 2.00 ± 0.40	 2.12 ± 0.37	 1.93 ± 0.50	 1.85 ± 0.59
22:6n – 3	 2.98 ± 0.88	 3.33 ± 0.87	 3.22 ± 0.65	 2.99 ± 0.66
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and carnivorous zooplankton may play a role in the diet 
of bowhead whales. Several FAs, including SFAs 16:0 and 
18:0 and MUFAs such as 16:1n – 7 and 18:1n – 9, can be 
produced endogenously and may also originate signifi-
cantly from dietary sources in marine mammals (Kirsch et 
al., 2000; Iverson, 2009). SFAs 16:0 and 14:0 are the most 
common alcohols of wax esters found in omnivorous and 
carnivorous zooplankton, and they were the most abun-
dant SFAs in bowhead whales. Similarly, the endogenously 
produced MUFA 18:1n – 9 (oleic acid) is also a major FA 
in omnivorous or carnivorous zooplankton, including 
euphausids and amphipods (Falk-Petersen et al., 2000), and 
was observed in bowhead whales (~ 10.5% of total FAs). 
The FA 18:1n – 9 may derive from the sympagic food web 
(Søreide et al., 2008) because ice-related amphipod spe-
cies, such as Apherusa sp., Gammarus sp., and Onisimus 
sp., are usually richer in 16:1n – 7 and 18:1n – 9 than herbiv-
orous copepods. However, even if the occurrence of 16:0, 
18:0, 16:1n – 7, and 18:1n – 9 in bowhead whales reflects prey 
intake, an unknown proportion of these FAs most likely 
also originated from biosynthesis. Since blubber samples 
were obtained primarily using a remote darting technique, 
this study was limited to the examination of the outer blub-
ber layer composition of whales. Although the extent of the 
stratification in the blubber of bowhead whale is relatively 
small (Budge et al., 2008a), the outer layer is composed of a 
larger proportion of biosynthesized components compared 
to the inner blubber layer, the most metabolically active 
layer.

Bowhead whales from different regions clustered 
together on the basis of their FA composition. However, 
further analyses of a larger dataset are needed for a proper 
assessment of geographical patterns in whale FA composi-
tion. Cluster analysis identified four groups of whales even 
though the vast majority of whales were sampled from 
northern Foxe Basin. One explanation for this pattern is that 
the diet is integrated over a time period when whales likely 
fed in different regions. Thus the different groups of whales 
might reflect feeding in other parts of their range in the 
eastern Canadian Arctic before their arrival in Foxe Basin, 
rather than specific dietary selection. Previous movement 
studies have shown that bowhead whales found on the same 
wintering grounds were not necessarily using the same 
summering grounds, but rather mixed widely in the eastern 
Canadian Arctic (Heide-Jørgensen et al., 2003). The rate 
of blubber FA turnover is approximately 1.5 to 3 months in 
pinnipeds (Nordstrom et al., 2008), but has not been estab-
lished in large whales. The outer layers of blubber are more 
structural and less metabolically active than the inner lay-
ers and therefore have slower turnover rates. The period of 
integration of diet in large mammals is expected to be at 
least the same or longer than in smaller mammals because 
of their lower mass-specific metabolic rate. Satellite telem-
etry data indicate that EC−WG bowhead whales under-
take extensive seasonal migrations throughout the eastern 
Canadian Arctic and West Greenland (Heide-Jørgensen 
et al., 2003). The species composition of zooplankton 

assemblages varied across the distribution range of EC−
WG bowhead whales (Pomerleau et al., 2011b). 

Quantitative fatty acid signature analysis (QFASA) has 
been recently developed through controlled feeding stud-
ies in captivity to permit statistical comparison of the FA 
signatures of a predator and those of various prey species 
(Iverson et al., 2007; Nordstrom et al., 2008). While this 
analysis was not possible in our study, the comparison of 
proportions of FAs among individuals provided a qualita-
tive understanding of bowhead whale feeding ecology, 
including basic information on likely prey. Our results are 
in accordance with the recent findings on bowhead whale 
diet from studies of stomach content and stable isotopes. 
Previous work on stomach contents revealed that bow-
head whales feed on pelagic and epibenthic preys and that 
stomach contents of males and females were nearly identi-
cal (Lowry et al., 2004; Pomerleau et al., 2011a). Similarly, 
FA and stable isotope results indicated that diet composi-
tion of males and females, adult and subadult whales were 
similar, but individual diets varied. The segregation among 
groups of whales in this study was based largely on diatom 
and copepod markers, suggesting different use of regional 
food webs. These results emphasize the value of using sev-
eral approaches in combination to assess feeding ecology 
and diet. 

The results of this study provide an important set of con-
temporary EC – WG bowhead whale biomarkers that will 
be of value in assessing changes in bowhead diet, behavior, 
and food web structure that might occur in the future. The 
FA data suggest that bowhead whales may have a social 
organization through the use of different feeding grounds 
that is being reflected in their adipose tissue. 
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