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Abstract

The present thesis is divided into two parts, which are loosely connected.

Dualities in string theory and M-theory

In the first part, we analyze the underlying mathematical structures of T-duality in toroidal

compactifications of string theory and U-duality in M-theory compactifications. The analysis

is conducted by using supergeometric methods on graded symplectic manifolds.

We derive a fully twisted Courant algebroid, which encodes all T-dual H- and F - as well as

non-geometric Q- and R-fluxes and analyze its underlying cohomology. Then, we construct

the underlying graded symplectic manifold, which encodes all generalized fluxes of double field

theory, and propose a definition of T-duality in the graded manifold framework. Reductions

of the graded manifold correspond to twisted Courant algebroids living on T-dual frames.

After that, we analyze the structure of the Poisson-Courant algebroid, a Courant algebroid

on a Poisson manifold, as a model for non-geometric R-flux. We compute its cohomology

and relate it to standard Courant algebroid cohomology. Furthermore, we work out its

relation to double field theory as a T-duality frame. We construct a topological membrane

model, a topological string sigma model and a current algebra based on the Poisson-Courant

algebroid with R-flux. Then, we construct a transformation, called flux duality, between

Courant algebroid with H-flux and the Poisson-Courant algebroid with R-flux, which lifts to

an isomorphism of Courant algebroid cohomologies and topological sigma models.

Finally, we investigate the local symmetry L∞-algebras of higher abelian gerbes underlying

several structures related to T-duality and U-duality geometry: Bn-generalized geometry and

exceptional generalized geometry.

Higher gauge theory and multiple M5-branes

In the second part, we analyze classes of 2-form higher gauge theories and propose a method to

construct higher gauge theories that circumvent the fake curvature condition, called off-shell

covariantization. Using this method we successfully construct an off-shell covariant 2-form

higher gauge theory, which is related to the system of multiple M5-branes compactified on a

circle. The method is based on supergeometry via graded symplectic manifolds.
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Chapter 1

Introduction

Veritatem inquirenti, semel in vita de omnibus, quantum fieri potest, esse dubitan-

dum.

– René Descartes, Principia philosophiae (1644)

The present thesis Dualities and generalized gauge structures in string and M-theory is divided

into two main parts, which are thematically loosely connected. For the sake of brevity, the

following introduction shall serve the very reader as superficial orientation regarding where

the two main parts are allocated in the realm of string theory and M-theory. Each of the

two parts provides a specialized introduction into the respective subject.

String theory is the most developed candidate for a theory of quantum gravity as of now. Not

only it contains a graviton in its spectrum, but also it is free from UV-divergences. However,

supersymmetric string theory, or superstring theory, must be formulated in 9 + 1 spacetime

dimensions in order to be anomaly-free on quantum level. To make contact with our 4-

dimensional observable world, 6 of the 9 spatial dimensions have to be compactified. It turns

out that compactified string theory exhibits a special symmetry, which arises due to the fact

that its fundamental objects are 1-dimensional strings. This symmetry is called T-duality.

Strings perceive space and geometry differently compared to point-objects. This fact leads

to mysterious compactification spaces, which lie beyond the ordinary concept of manifolds.

New mathematical techniques have to be developed in order to capture the characteristics of

this novel stringy geometry.

It furthermore turned out, that there are many different string theories, which are all in-

carnations of a single underlying 11-dimensional theory. This theory is called M-theory.

Although its UV-completion is unknown as of now, its low-energy effective theory is known
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Chapter 1. Introduction

as 11-dimensional supergravity. In M-theory, T-duality is combined with another (strong-

weak coupling) symmetry of string theory, called S-duality, to the fundamental symmetry of

M-theory, U-duality.

There is no notion of strings in M-theory. However, it contains stable soliton solutions,

the so-called M2- and M5-branes. These are dynamic objects, extended in 2 and 5 spatial

dimensions, respectively. As of now, the dynamics of multiple M2-branes are already very

well understood. However, the correct description of the dynamics of multiple M5-branes

is still unknown. It is believed that it is governed by a non-abelianization of a gerbe. The

underlying mathematical theory is believed to be a so-called higher gauge theory. A higher

gauge theory is a generalization of ordinary Yang-Mills gauge theory by making use of higher

categorification and contains arbitrary n-form gauge fields and higher field strengths that

take values in categorified Lie algebras.

In the first part Dualities in string theory and M-theory we head off to analyze the under-

lying mathematical structures of T-duality in string theory and U-duality in M-theory. It is

based on the published papers [1, 2, 3] and the preliminary results of [4], which is work in

progress. In the second part Higher gauge theory and multiple M5-branes we will investigate

higher gauge theories and their relation to multiple M5-brane systems in M-theory. More

precisely, we will construct a 2-form higher gauge theory, which can be related to a system

of multiple M5-branes compactified on a circle, using our newly proposed method of off-shell

covariantization. It is based on the published paper [5].

12



Structure of the thesis

The present thesis is divided into 5 chapters and an appendix.

1. Introduction
2. String theory: A synopsis

3. Dualities in string theory and M-theory
4. Higher gauge theory and multiple M5-branes

5. Discussion and outlook
Appendix

After the Introduction, the preliminary chapter on string theory shall serve the reader as

overview of the foundations on which the two main chapters of this thesis, Dualities in string

theory and M-theory and Higher gauge theory and multiple M5-branes, shall be built. The

chapter Discussion and outlook recalls and discusses the main results of both main chapters

as well as open problems and projects directions of future work.

Each of the main chapters are structured as follows.

1. Introduction
2. Physical preliminaries
3. Mathematical preliminaries
4. Analysis and results
5. Summary

The Introduction sets the stage for each main chapter and serves as a physical and mathemat-

ical orientation. It is followed by the Physical preliminaries and Mathematical preliminaries,

which provide in a self-consistent manner not only the string and M-theoretical setting sur-

rounding the main content, but also the mathematical groundwork. Due to its beauty and

charm, the mathematical sections are especially designed to stress the many relations among

the various subjects. The sections after the preliminaries contain the Analysis and results,

which constitute the heart of this thesis. The final Summary can be seen as assembly of the

various results obtained and shall serve the reader as magnifying glass on the main extract

of the respective main chapter.
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Chapter 2

String theory: A synopsis

Es ist so bequem, unmündig zu sein. Habe ich ein Buch, das für mich Verstand

hat, einen Seelsorger, der für mich Gewissen hat, einen Arzt, der für mich die Diät

beurtheilt u.s.w., so brauche ich mich ja nicht selbst zu bemühen. Ich habe nicht

nöthig zu denken, wenn ich nur bezahlen kann.

– Immanuel Kant, Beantwortung der Frage: Was ist Aufklärung?

In this chapter, we provide a superficial overview of the foundations of string theory and its

main ingredients. We start by clarifying why we are in need of a theory of quantum gravity

and why string theory is an excellent candidate for such a theory. Then, we introduce string

sigma models and comment on bosonic string theory. After that, we provide a small survey

on the various incarnations of string theory. This is followed by short expositions on dualities

and D-branes. Finally, we touch M-theory, which underlies all string theory incarnations.

Standard references are [6, 7, 8, 9]. Further excellent introductions are [10, 11].

Setting the stage

The last century with its many physical breakthroughs and paradigm changes cannot be

underestimated in its significance. The emergence of the standard model of particle physics,

which governs the physics on tremendously small scales, and the formulation of general

relativity, providing us with an amazingly exact theory for unimaginably large scales, brought

with it not only practical, but also cultural progress.

The standard model of particle physics is the result of huge developments over decades. Its

final form is the renormalizable SU(3)×SU(2)×U(1) gauge theory with spin-1 gauge bosons
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Chapter 2. String theory: A synopsis

mediating three of the four fundamental forces: electromagnetic force, weak force and strong

force. Although it is a remarkably exact theory with an incredible power to predict the

physics on very small scales, there are several indications that it is not the final theory.

First, there are between 18 and 25 free parameters in the standard model Lagrangian, which

have to be fine-tuned by experiments. It turns out that some of parameters differ by several

orders of magnitude posing the so-called naturalness problem. For aesthetic reasons, a natural

theory should possess the property, that ratios of the parameters used in its formulation are

of order 1. Second, in the standard model with Higgs boson, the comparison of the strength

of the gravitational force and the electro-weak interaction poses the question, why the Planck

scale and the electro-weak scale are differing by 16 orders of magnitude. This is called the

hierarchy problem and is closely related to the naturalness problem. Third, the standard

model of particle physics does not incorporate gravity. The näıve approach to quantize

gravity leads to a non-renormalizable theory. It contains short-distance divergences.

What we are seeking for is a natural principle from which a consistent theory can be derived,

which can explain all the fundamental interactions on quantum level. Such a theory would

reproduce and generalize the success of the standard model of particle physics as a quantum

field theory and combine it with general relativity in a manner that it stays consistent after

quantization. The resulting theory would be a theory of quantum gravity. Among other

approaches arrive at a consistent theory of quantum gravity, string theory turns out to be

the best candidate at present. One remarkable property of string theory is that it does not

contain any free parameters.

In contrast to ordinary quantum field theory, the fundamental objects of string theory are

1-dimensional strings, which can be open or closed. Due to the fact that the fundamental

objects gain one dimension compared to ordinary particles, the interaction vertices between

strings are not located at one distinct spacetime point, but smeared out in spacetime. This

ultimately cures the UV-divergences. However, we trade locality for this property. So we

conclude, that the worldline of ordinary particles in spacetime generalizes to a worldsheet of

strings. Ordinary Feynman graphs of particle interactions generalize to interaction surfaces,

which can have various topologies.

The zoo of particles, which we try to analyze using the standard model of particle physics,

becomes nothing but the many different energy states of open and closed strings traveling

through spacetime. Due to their 1-dimensionality, strings contain internal oscillatory ex-

16



citations, which contribute to their overall energy. To each state, an emergent particle is

associated. It turns out, that on quantum level string theory naturally contains a massless

spin-2 state, which can be associated with the graviton, the quantum field of gravity. In the

low-energy limit, the interaction surfaces can be approximated with Feynman diagrams and

ordinary general relativity emerges.

The anomaly-free formulation of the bosonic part of string theory requires 25 + 1 spacetime

dimensions. In the superstring theory case, 9 + 1 spacetime dimensions are required for a

consistent formulation on quantum level. In order to relate string theory to our 4-dimensional

observable world, 6 dimensions of the spatial 9 dimensions are compactified. This leads to a

theory with 4 non-compact and 6 compact dimensions. The topology of the 6-dimensional

internal space governs the physics on the non-compact space.

String sigma models

The string as 1-dimensional object sweeps out a 2-dimensional surface, called worldsheet.

To get warmed up, let us discuss the embedding of a string worldsheet into a d-dimensional

target spacetime M being a smooth manifold with Minkowski metric ηµν . The embedding

functions Xµ depend on local coordinates (τ, σ) of the worldsheet Σ and the index µ runs

from 1 to d. Then, the embedding is described by the Nambu-Goto action,

SNG = − 1

2πα′

∫
Σ

dτ ∧ dσ
√
−h, (2.1)

where h = det(hab) is the determinant of the induced metric,

hab = ηµν
∂Xµ

∂ya
∂Xν

∂yb
, (2.2)

where a and b run over 1 and 2 and (y1, y2) = (τ, σ). The parameter α′ denotes the Regge

slope and is related to the string tension T and string length lS by

T =
1

2πα′
, lS =

√
α′. (2.3)

This is the simplest invariant action, which describes the embedding of a 2-dimensional

string worldsheet into a target space manifold, thus generalizing the worldline embeddings

of particle trajectories in general relativity. It is invariant under Poincaré transformations of

17



Chapter 2. String theory: A synopsis

the target space as well as worldsheet diffeomorphisms. Furthermore, it is equivalent to the

so-called Polyakov action,

SP = − 1

4πα′

∫
Σ

dτ ∧ dσ
√
−γγab∂aXµ∂bX

νηµν , (2.4)

where γab is an independent metric on the worldsheet. Upon elimination of γ, the Nambu-

Goto action can be recovered. The Polyakov action is invariant under Poincaré transforma-

tions of the target spacetime, worldsheet diffeomorphisms and local Weyl transformations of

the worldsheet metric. After gauge fixing the diffeomorphism and Weyl invariance by setting

γab = ηab, the Polyakov action gives

S ′P = − 1

4πα′

∫
Σ

dτ ∧ dσ∂aXµ∂aXµ, (2.5)

which is an action of free scalar fields. It turns out, that the quantum theory associated

with the Polyakov action contains a Weyl anomaly if the dimension of the target spacetime

is different from 26. In the case of the critical dimension 26, Weyl invariance is restored at

quantum level, which leads to an anomaly-free quantum theory of the string.

When investigating the lowest excitations of the quantum string, it turns out that the ground

state is tachyonic with mass

m2 = − 1

α′
d− 2

6
. (2.6)

However, upon introducing supersymmetry, the tachyonic ground state can be cured. This

is the starting point of superstring theory. Recall that supersymmetry introduces fermionic

excitations such that the freeness of anomalies on quantum level is restored if the target

spacetime dimension is 10.

The next higher excitations beyond the tachyon are the massless states living in the irre-

ducible representations of the 24⊗ 24 of SO(24). In the symmetric traceless representation,

we find a massless spin-2 particle, given by the field gµν , which can be associated with the

spacetime metric and yields the graviton. In the anti-symmetric representation we find the

so-called Kalb-Ramond field or B-field, given by the antisymmetric tensor Bµν . In the trace

representation we find a scalar field φ, which is called the dilaton.

Let us shortly summarize. The critical dimension of bosonic string theory is 26 and the

lowest excitations are a ground state tachyon, the metric g, the B-field and the dilaton φ.

When we use the target spacetime metric gµν instead of the Minkowski metric ηµν in the

18



Polyakov action, we arrive at the action of a non-linear sigma model,

Sσ =
1

4πα′

∫
Σ

dτ ∧ dσ√γγabgµν(X)∂aX
µ∂bX

ν . (2.7)

This action can be generalized to incorporate also B-field and dilaton excitations of the

string,

Sσ =
1

4πα′

∫
Σ

dτ ∧ dσ√γ
(
γabgµν(X)∂aX

µ∂bX
ν + iεabBµν(X)∂aX

µ∂bX
ν + α′Rφ(X)

)
. (2.8)

Here, εab is the 2-dimensional epsilon-tensor and R denotes the Ricci scalar with respect to

the worldsheet metric. Computation of the β-functions of the worldsheet theory at linear

order in α′ in critical dimension d = 26 gives [6]

βgµν = α′Rµν + 2α′∇µ∇νφ−
α′

4
HµλρH

λρ
ν , (2.9)

βBµν = −α
′

2
∇ρHρµν + α′∇ρφHρµν , (2.10)

βφ = −α
′

2
∇2φ+ α′∇ρφ∇ρφ− α′

24
HµνλH

µνλ, (2.11)

where ∇ denotes the covariant derivative and Rµν is the Ricci tensor with respect to the

spacetime metric. The tensor H is the 3-form field strength of the 2-form B-field, related

by H = dB. Weyl invariance of the worldsheet theory then implies the vanishing of the

β-functions,

βgµν = 0, βBµν = 0, βφ = 0. (2.12)

The β-functions can also be implied by variation of the following spacetime supergravity

action, which describes the so-called NS-NS sector of type II (closed) superstring theory,

SII =

∫
M

ddx
√
ge−2φ

(
R + 4∂µφ∂

µφ− 1

12
HµνλH

µνλ

)
. (2.13)

This action is invariant under diffeomorphisms induced by Lie derivative Lξ, where ξµ is an

infinitesimal vector, and B-field gauge transformations by a 1-form λ,

B 7→ B + dλ. (2.14)

It turns out that in the closed string case, the string coupling constant gS is related to the

dilaton by gS = eφ. Therefore, it is not an independent parameter in string theory and can

be dynamical.
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Chapter 2. String theory: A synopsis

If the bosonic worldsheet action of the string is extended to include matter fermions, it

leads to an N = (1, 1) superconformal 2-dimensional field theory. In this case, there are

two different periodicity conditions for the matter fermions. The periodic one refers to the

Ramond boundary conditions (R), whereas the antiperiodic one refers to the Neveau-Schwarz

boundary conditions (NS). Since there are two different center-of-mass modes associated with

the fermionic matter, it leads to 2 × 2 = 4 different Hilbert spaces on the circle, referred to

as NS-NS, NS-R, R-NS and R-R sectors. In closed string theory, the NS-NS and R-R states

are bosons, whereas the NS-R and R-NS states are fermions. As we will see in the following,

there are various gauge potentials in superstring theory, which are associated to the R-R

sector.

Incarnations of string theory

Let us put the action (2.13) into context by presenting the various incarnations of super-

symmetric string theories, or superstring theories for short. As stated before, the use of

supersymmetry brings us into the position to add fermions and cures the tachyonic ground

state. The critical dimension of superstring theory is 10. However, there are 5 different

consistent superstring theories in critical dimension.

The so-called type II string theory contains left- and right-moving fermions, 32 supercharges

(N = 2 supersymmetry) and describes the closed oriented string. There are two versions

of type II string theories, the non-chiral type IIA string theory with N = (1, 1) supersym-

metry and the chiral type IIB string theory with N = (2, 0) supersymmetry. Furthermore,

there are the so-called heterotic string theories. They describe the closed string and con-

tain right-moving fermions with 16 supercharges (N = 1 supersymmetry). In contrast to

type II string theories, heterotic string theories contain an additional gauge group in 10 di-

mensions. The vanishing of the quantum anomaly restricts the only possible gauge groups

to be SO(32) and E8 × E8. We conclude, that two different heterotic string theories, the

heterotic SO(32) string theory (HO) and the heterotic E8 × E8 string theory (HE) exist. Fi-

nally, there is the type I string theory, which contains an additional SO(32) N = 1 super-

symmetric Yang-Mills gauge group and describes open and closed unoriented strings in 10

dimensions.

In any case, the low-energy excitation spectrum that we described above, containing metric
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g, Kalb-Ramond field B and dilaton φ, are part of all superstring theories. However, through

the introduction of supersymmetry, the field content grows. The low-energy approximations

of above superstring theories are the so-called type II, type I and heterotic supergravities.

Let us shortly summarize their massless spectra [11].

Massless sector of the type IIB superstring

Sector SO(8) rep. prod. Field

NS-NS 1 + 28V + 35V (φ,Bµν , gµν)
NS-R 8S + 56S (χ1

α, ψ
1,α
µ )

R-NS 8S + 56S (χ2
α, ψ

2,α
µ )

R-R 1 + 28C + 35C (C(0), C(2), C(4))

Massless sector of the type IIA superstring

Sector SO(8) rep. prod. Field

NS-NS 1 + 28V + 35V (φ,Bµν , gµν)
NS-R 8C + 56C (χ1α, ψ1

µα)

R-NS 8S + 56S (χ2
α, ψ

2,α
µ )

R-R 8V + 56V (C(1), C(3))

Massless sector of the heterotic superstring

Sector SO(8) rep. prod. Field

NS 1 + 28V + 35V (φ,Bµν , gµν)
R 8S + 56S (χα, ψ

α
µ)

Gauge bosons In 8V and 8V Gauge bosons of SO(32) or E8 × E8

Gauginos In 8C and 8C Gauge boson superpartners

Massless sector of the type I superstring

Sector SO(8) rep. prod. Field

NS-NS 1 + 35V (φ, gµν)
NS-R+R-NS 8S + 56S (χα, ψµα)

R-R 28C C(2)

Vector boson Aµ

The representations of the fields are products of SO(8)-representations. The closed string

sector of the type I superstring is defined by orientifolding the type IIB superstring by the

worldsheet parity operator Ω. Then, the vector boson Aµ has to be included to cancel the

RR-tadpole at 1-loop level. The vector boson arises by coupling a certain open string sector

to the orientifold of type IIB. The resulting type I superstring theory is free of anomalies.

As noted above, g denotes the graviton, B the 2-form Kalb-Ramond field and φ the dilaton

field. The χ denote dilatini, whereas the ψ denote gravitini. The k-forms C(k) denote the
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Chapter 2. String theory: A synopsis

so-called Ramond-Ramond (R-R) gauge potentials with associated field strengths F (k+1) =

dC(k). In the case of type IIB supergravity, the 5-form field strength has to be self-dual,

F (5) = ?F (5). The field strengths associated with the gauge potentials are gauge invariant

under the transformation

C(k) 7→ C(k) + dλ(k−1), (2.15)

where λ(k−1) is a (k − 1)-form. The heterotic string theories contain 496 gauge bosons.

Dualities

The various superstring theories are related through a web of dualities, which are called T-

duality and S-duality. In the case of M-theory, S-duality and T-duality combine to U-duality,

which will be explained in section 3.2.9 in detail. Here, we shortly discuss T- and S-duality.

T-duality is a perturbative target space duality and relates different compactifications of

string theory. It arises due to the ability of closed strings to wrap around closed cycles

of a string compactification. On the one hand, wrapping modes count how often a closed

string wraps around a distinct cycle. On the other hand, the momentum of the string in

the compact dimension is quantized, leading to momentum modes. T-duality is a symmetry

that exchanges the winding modes with the momentum modes while inverting the length

scale of the compactification. It turns out that type IIA string theory compactified on a

circle with radius R is physically equivalent to type IIB string theory compactified on a

circle with radius 1/R. In the case of type IIA-IIB T-duality, the transformation acts as

a spacetime parity operator on the fermionic right-movers, changing the chirality of the

groundstate. More precisely, it transforms the massless spectra as follows: The graviton and

Kalb-Ramond field are transformed into each other according to the Buscher rules [12, 13],

which will be explained in detail in section 3.2.2. Furthermore, the R-R gauge potentials

of type IIA transform into the R-R gauge potentials of type IIB, and vice versa. The two

heterotic string theories HO and HE are related by T-duality to all orders in perturbation

theory.

S-duality relates different coupling limits of string theory. It turns out, that type IIB

supergravity is invariant under the map

(C(0), C(2), g, φ, B) 7→ (C(0), B, eφg,−φ,C(2)), (2.16)
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which changes the string coupling via gS 7→ 1
gS

. The conclusion is, that type IIB string theory

at weak coupling is related to a dual type IIB string theory at strong coupling. S-duality is

part of a larger SL(2;Z)-group under which type IIB supergravity is invariant. It transforms

the Kalb-Ramond field B and 2-form gauge potential C(2) as(
B
C(2)

)
7→
(
a b
c d

)(
B
C(2)

)
, (2.17)

while acting on the complex coupling τ = C(0) + ie−φ by

τ 7→ aτ + b

cτ + d
. (2.18)

All other fields are kept invariant. Upon quantization, the discrete subgroup of SL(2,R),

which is SL(2,Z), becomes an exact symmetry of string theory.

In the case, where the 0-form gauge potential C(0) vanishes, the complex coupling becomes

proportional to the string coupling. Then, SL(2,R)-invariance of type IIB string theory

points at a strong-weak duality of type IIB.

D-branes

We discussed the various incarnations of string theory and their spectra arising from the

lowest excited states of closed and open strings traveling through spacetime. Aside from

strings, it turns out, that there exist solitonic solutions of the supergravity actions, that

have their own dynamics. These so-called D-branes arise as hypersurfaces of spacetime on

which the endpoints of open strings can be confined to. Two string endpoints can live on

different D-brane worldvolumes, leading to the conclusion, that D-branes interact by open

strings extended between them.

The emergence of D-branes can be very well understood, when investigating the boundary

conditions of open strings traveling through spacetime. While Neumann boundary condi-

tions imposed on the string endpoints do not break Poincaré invariance, the specification of

Dirichlet boundary conditions confines the string endpoints to spatial hypersurfaces. The

”D” in D-branes originates from ”Dirichlet”. The term Dp-brane refers to a D-brane, which

extends in p spatial dimensions.

An object, extended in p spatial dimensions can naturally couple to a (p + 1)-form gauge

potential. In this sense, the 1-brane, or fundamental string, couples to the Kalb-Ramond
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2-form. In general, let Mp+1 be the worldvolume of the Dp-brane, then it couples to the

(p+ 1)-form gauge potential C(p+1) via

S = Tp

∫
Mp+1

dp+1σ C
(p+1)
i1···ip+1

εj1···jp+1∂j1X
i1 · · · ∂jp+1X

ip+1 , (2.19)

where Tp is the tension of the Dp-brane.

In type II supergravity, D-branes couple to the Ramond-Ramond gauge potentials and their

Hodge duals. In type IIA supergravity, there are the gauge fields strengths F (2) and F (4) as

well as their Hodge duals F (8) = ?F (2) and F (6) = ?F (4). The Hodge dual field strengths

have associated gauge potentials, C(5) and C(7). Associated with the gauge potentials, we

find electrically coupled D0-, D2- and magnetically coupled D4- and D6-branes in type IIA

supergravity.

Type IIB supergravity contains the gauge field strengths F (1), F (3) and F (5) and their Hodge

duals F (9) = ?F (1) and F (7) = ?F (3). Recall that F (5) = ?F (5). So we find a D(−1)-brane

associated with the scalar gauge potential C(0), a D1-brane, D3-brane, D5-brane and a D7-

brane. The D(−1)-brane is 0-dimensionally extended in spacetime and hence an instanton,

the so-called D-instanton. The D3-brane couples electrically to C(4), which is the gauge

potential of the self-dual field strength. Therefore, the D3-brane couples also magnetically

to the 4-form gauge potential, leading to self-duality.

To summarize, the stable branes in type IIA string theory are Dp-branes for p an even number,

whereas the stable branes in type IIB string theory are Dp-branes for p an odd number. T-

duality transforms Dirichlet boundary conditions into Neumann boundary conditions, and

vice versa. Since D-branes are associated with hypersurfaces on which the open strings can

end, T-duality maps IIA and IIB gauge potentials and D-branes into each other.

M-theory

As we pointed out, the various incarnations of string theory are related by a web of du-

alities. It turned out, that the 10-dimensional superstring theories are limits of one single

underlying theory, which is called M-theory. While its low-energy approximation is known

as 11-dimensional supergravity containing metric and 3-form tensor, the complete theory

remains a mystery. The dynamical objects in M-theory are M2-branes and M5-branes and

the string theory S- and T-dualities combine to a U-duality transformation as underlying
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symmetry structure of M-theory. Type II supergravity arises as circle compactification of

11-dimensional supergravity. The heterotic E8 × E8 supergravity theory turns out to arise

when 11-dimensional supergravity is compactified on an interval, S1/Z2. For the sake of

brevity, we postpone the detailed account on M-theory and U-duality to 3.2.9 in the first

part of this thesis. The second part of the thesis revolves around M5-branes in M-theory.

Therefore, we postpone the detailed account on M-branes to the preliminary section 4.2 in

the second part of this thesis.
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Chapter 3

Dualities in string theory and
M-theory

All is flux, nothing is stationary.

– Heraclitus of Ephesus

3.1 Introduction

This chapter constitutes the first of the two main parts of this thesis. It concerns the inves-

tigation of the extended symmetry structures associated with T-duality in string theory and

U-duality in M-theory.

Toroidally compactified bosonic type IIB supergravity exhibits a T-duality symmetry, which

mixes the target space metric and Kalb-Ramond field. Through this mixing, it is a symmetry,

which transforms the geometry of the underlying compactification. T-duality transformations

of spaces, which exhibit a Killing isometry, have been investigated in the early days in articles

of Buscher [12, 13], where the mixing of the metric and B-field components was observed.

The T-duality group in the case of a toroidal string compactification on a D-dimensional torus

is given by O(D,D;Z). In this case, the background exhibits several isometry directions and

different T-duality transformations are possible. It turns out that after successive T-duality

transformations dual theories emerge, which clearly need a mathematical treatment that goes

beyond ordinary differential geometry [14, 15, 16].

As we discussed in the beginning, the spectrum of string theory contains various polyform

potentials, which can wrap the internal closed cycles of the compactification space. Starting

with a toroidal compactification with constant H-flux wrapping an internal 3-torus, after each
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T-duality transformation new kinds of fluxes emerge [14, 15] : the geometric f -flux being

related to the Weitzenböck connection on the compactification manifold; the non-geometric

Q-flux, which is related to compactifications exhibiting monodromies; the non-geometric R-

flux related to mysterious compactifications, which cease to be treatable by ordinary manifold

techniques. Spaces associated with Q- and R-fluxes are called non-geometric spaces. The

geometric f -flux being related to the Weitzenböck connection of the internal space directly

influences the geometry of the compactified space. The monodromies associated with Q-

flux have to be patched by full T-duality transformations. The R-flux case is even beyond

monodromies. A geometry, that unifies backgrounds with geometric and non-geometric fluxes

has been proposed in [16]. A relation between non-geometric fluxes and so-called exotic branes

has been examined in [17, 18].

Generalized geometry [19, 20, 21] is a formulation, which treats the metric and the B-field

on an equal footing by extending the tangent bundle by a cotangent part to the generalized

tangent bundle, TM ⊕ T ∗M → M , which has natural O(D,D)-structure. The metric and

B-field are combined into a so-called generalized metric on the generalized tangent bundle

and it turns out to be the appropriate groundwork for T-duality on H-flux backgrounds. The

heart of generalized geometry is the Courant algebroid [22, 23] on the generalized tangent

bundle, also called standard Courant algebroid, which is the underlying structure of T-duality

geometry. The standard Courant algebroid exhibits a natural 3-form freedom, which can be

associated with the H-flux, and captures the local symmetries of H-flux backgrounds. Its

structure is naturally invariant under so-called B-field transformations, for which dB = 0.

The analysis T-dual supergravity compactifications using generalized geometry also points

towards non-geometric backgrounds [24]. However, for the analysis of general non-geometric

backgrounds, the standard Courant algebroid with H-flux turns out to be insufficient.

Double field theory [25] is a field theory, which makes the O(D,D)-structure manifest by

doubling the degrees of freedom. Early ideas underlying double field theory can be found in

[26, 27, 28]. In addition to the D-torus of the compactification, a dual D-torus is introduced,

which parameterizes the winding sector of the closed strings. Then, the T-duality group acts

onto the doubled set of coordinates making the T-duality symmetry manifest. It provides

a natural framework to investigate T-duality in toroidal compactifications, which also leads

to some understanding of the mysterious non-geometric spaces and their associated non-

geometric fluxes [29, 30, 31]. However, since the degrees of freedom are doubled, a so-
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called strong constraint has to be imposed in order to restrict the theory again to a physical

subspace. Each solution of the strong constraint is associated with a different T-duality

frame.

Contrary to the Courant algebroid on the generalized tangent bundle, the Poisson-Courant al-

gebroid [32], a Courant algebroid on a Poisson manifold with Poisson tensor Π, exhibits a nat-

ural 3-vector freedom, which can be associated with the non-geometric R-flux. In the Courant

algebroid of generalized geometry, H-flux can be naturally induced by B-transformation, giv-

ing H = dB. In the case of the Poisson-Courant algebroid, a bivector β plays the role of the

potential for the R-flux via dΠβ = R, where dΠ is the Lichnerowicz-Poisson differential. The

Poisson-Courant algebroid type generalized geometry is called Poisson-generalized geometry

[33] and is a proposal for a model for non-geometric R-flux. The non-geometric R-flux back-

grounds that arise in double field theory also are sourced by the β-potential. However, the

mechanism is different. We have to clarify the significance of the Poisson-Courant algebroid

with R-flux in light of the double field theory proposal.

In M-theory or its low-energy limit, 11-dimensional supergravity, the T-duality symmetry

combines with S-duality to U-duality. In toroidally compactified 11-dimensional super-

gravity, the U-duality groups are given by split real forms of exceptional Lie groups Ed(d)

[34, 35, 36, 37, 38]. Motivated by the success of generalized geometry in the setting of

toroidal string theory compactifications, exceptional generalized geometry [39, 40, 41] is a

rather new research area, which attempts to provide a geometrization of U-duality symmetry

of toroidally compactified 11-dimensional supergravity. In the same way as the generalized

tangent bundle of generalized geometry encodes the winding modes of strings, the exceptional

tangent bundles encode the winding modes of M-branes and symmetries of KK-monopoles in

M-theory. Associated with U-duality, new sets of geometric and non-geometric backgrounds

are to be discovered. Exceptional generalized geometry is a field in its early stage and the

underlying mathematical structures of U-dual backgrounds are still to be explored.

In Physical preliminaries, we begin by recalling the emergence of the T-duality symmetry

from toroidal compactifications of the string worldsheet theory. After that, we discuss the

relation of T-duality in toroidal compactifications of closed string theory to the emergence of

non-geometric spaces. Then, we investigate Kaluza-Klein reductions of type II supergravity

and their relation to so-called gauged supergravities. This is followed by expositions on

Scherk-Schwarz reduction with and without flux and T-duality twisted reductions. After that,
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we scratch the surface on the emergence of non-geometric fluxes from orbifold CFTs. Then,

we go on and survey generalized geometry as underlying geometry of T-duality backgrounds

with H-flux. After that, an introduction to double field theory is provided. We discuss how all

geometric and non-geometric fluxes naturally appear as components of a so-called covariant

flux. Then, we step into the realm of M-theory and give an introduction to its fundamental

symmetry, U-duality. Finally, we provide an introduction to exceptional generalized geometry

as a generalized geometry of M-theory.

The present part consists of 4 main sections. In Twisted Courant algebroids and fluxes we

construct a twisted Courant algebroid, which naturally encodes the local expressions of all

geometric and non-geometric fluxes as well as their Bianchi identities in a simultaneous man-

ner. This is done by making use of graded symplectic manifolds [42, 43] and provides the

underlying generalized gauge structure associated with T-duality geometry. Furthermore, we

provide an analysis of the cohomological structures associated with non-geometric spaces. In

Double field theory and T-duality we lift our construction up to a O(D,D)-manifest refor-

mulation and recover all generalized fluxes that appear in double field theory. Motivated by

this result, we provide a consistent definition of T-duality in the graded symplectic manifold

setup. In Poisson-Courant algebroid we provide a thorough investigation of a Courant alge-

broid structure on a Poisson manifold. We reconstruct it in the supergeometric setting and

analyze its cohomology and relation to double field theory and T-duality. We construct a

topological membrane with R-flux along the lines of AKSZ sigma models [44]. The boundary

theory of the membrane turns out to be a string sigma model with R-flux WZW term. On

the loop space of string embeddings, we construct current algebras with R-flux and Poisson-

Courant algebroid structure. The resulting current algebras are of Alekseev-Strobl type [45].

Furthermore, we find a duality transformation between the standard Courant algebroid with

H-flux and Poisson-Courant algebroid with R-flux, which we call flux duality. We analyze

the flux duality on 3 levels: as symplectomorphism between graded symplectic manifolds, as

isomorphism between cohomologies and as relation between induced membrane sigma mod-

els. In Generalized geometries, we provide a construction of several higher algebra structures

underlying type IIB toroidal compactifications (generalized geometry) and heterotic compact-

ifications (Bn-generalized geometry). Then, we step into the realm of M-theory constructing

higher algebra structures related with several exceptional generalized tangent bundles with

U-duality symmetry. Using our reconstruction, we compute the associated local symmetry
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L∞-algebras of the underlying higher gerbes governing the generalized gauge structures.

For the understanding of the Poisson-Courant algebroid section, we provide an introduction

to Poisson geometry, cohomology and connections. L∞-algebras and their algebroid gener-

alizations are the underlying symmetry algebras of all structures in this part. Therefore, a

reading of the respective section is strongly recommended. In Courant algebroids we discuss

all incarnations of Courant algebroids and also their higher generalizations. The section

Graded manifolds and supergeometry lies at the heart of all calculations and is inevitable

for the understanding. In AKSZ sigma models we provide an introduction to the construc-

tion of AKSZ topological sigma models based on graded manifolds. In Current algebras, we

discuss how to construct Poisson algebras from graded manifolds and how to promote them

to current algebras. In Deligne cohomology and n-gerbes, we introduce the description of

higher gerbes as Čech-Deligne cocycles, which will be important when we construct the local

symmetry L∞-algebras underlying the higher gerbe structures appearing in T-duality and

U-duality symmetric bundles in the section Generalized geometries.

3.2 Physical preliminaries

3.2.1 Toroidal compactification of string theory and T-duality

The crucial difference between ordinary particle theories and string theory is that the funda-

mental objects gain one internal dimension. This leads to the fact that two versions of string

exist: open strings and closed strings. The special property of closed strings is that they can

wind around compact dimensions. This leads to the conclusions that strings experience ge-

ometry and topology in a fundamentally different way compared to ordinary point-particles.

Since consistent superstring theory is formulated in 9 + 1 spacetime dimensions, in order to

make contact to our observable world, 6 spatial dimensions have to be compactified. This

leads to a high-dimensional internal space, which contains compact cycles around which closed

strings can wind and brings us into the position to study the behavior of closed strings travel-

ing in such geometries. In the simplest way, the difference to point-particles can be explored

when considering string theory compactified on a circle or higher-dimensional torus. Here, a

novel symmetry emerges which is not inherent in ordinary particle theories. This symmetry

relates the winding of closed strings and their momentum in these compact dimensions with

the geometry of the internal space and is called T-duality.
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Our investigations revolve around the T-duality symmetry of toroidal string backgrounds.

However, before turning to the analysis of its underlying structures, we will have to cover the

groundwork. In this section, we discuss general toroidal compactifications of string theory,

their invariance properties and the emergence of T-duality. We start with the example of

T-duality in the case of a circle compactification and then go on to general D-dimensional

torus compactifications. This section is based on [46, 47]. A further excellent introduction is

[48]. For information on lattices that appear when considering toroidal compactifications we

refer to [49].

To get started, let us consider the circle compactification with radius R of the bosonic string.

For simplicity, we focus on the internal directions. The worldsheet action is given by

S =
1

4πα′

∫
dτdσηαβ∂αX∂βX, (3.1)

where we fixed the worldsheet metric to ηαβ. The embedding functions X are periodic,

X ∼ X + 2πRw, (3.2)

where w denotes the so-called winding number. The equation of motion of the field X is the

free wave equation, which is solved by

X(σ, τ) = XR(σ − τ) +XL(σ + τ), (3.3)

XR(σ − τ) = xR −
√
α′

2
pR(σ − τ) + i

√
α′

2

∑
k 6=0

1

k
αke

ik(σ−τ), (3.4)

XL(σ + τ) = xL −
√
α′

2
pR(σ + τ) + i

√
α′

2

∑
k 6=0

1

k
α̃ke

−ik(σ+τ). (3.5)

Here, we have

x = xL + xR, pR =
1√
2

(√
α′

R
n− R√

α′
w

)
, pL =

1√
2

(√
α′

R
n+

R√
α′
w

)
, (3.6)

where the integer n results from momentum quantization. The canonical conjugate momen-

tum of X is given by

P =
1

2π
√

2α′

(
pL + pR +

∑
k 6=0

αke
ik(σ−τ) +

∑
k 6=0

α̃ke
−ik(σ+τ)

)
, (3.7)
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leading to the total momentum

Ptot =

∫ 2π

0

dσP =
1√
2α′

(pL + pR). (3.8)

We find the canonical commutation relations,

[xL, pL] = i

√
α′

2
, [xR, pR] = i

√
α′

2
, [αm, αn] = mδm,−n, [α̃m, α̃n] = mδm,−n, (3.9)

and the normal ordered Hamiltonian composed of the zero-modes of the left and right Vira-

soro operators,

H = L0 + L̃0, (3.10)

where

L0 =
1

2
p2
R +

∞∑
k=1

α−kαk, L̃0 =
1

2
p2
L +

∞∑
k=1

α̃−kα̃k. (3.11)

The Virasoro operators are invariant under the transformation

T :

(
R√
α′
7→
√
α′

R
,m 7→ w,w 7→ m

)
. (3.12)

This invariance property is called target space duality or T-duality. More explicitly, we find

T (pL) = pL, T (pR) = −pR, T (α̃k) = α̃k, T (αk) = −αk, T (ẊL) = ẊL, T (ẊR) = −ẊR.

The total energy of the string is invariant under T-duality. It can be checked for partition

functions with higher-genus contributions and turns out to be a perturbative symmetry of

whole string theory. Furthermore, we note that string theory compactified on a small circle

with R/
√
α′ � 1 is equivalent to string theory compactified on a large circle with

√
α′/R� 1,

when the dilaton VEV is transformed via φ 7→ φ+ 2 log(R).

Now let us go on and consider the compactification on a D-dimensional torus TD parame-

terized by local coordinates xi for i = 1, . . . , D. A flat torus TD can be written by a quotient

of RD as follows,

TD = RD/ ∼, (3.13)

where the equivalence relation ∼ is defined by

X i ∼ X i + 2πwi, (3.14)

and the wi ∈ Z denote the winding numbers around the various circles.
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The worldsheet action in the case of a D-dimensional toroidal background is given by

S =
1

4π

∫
dσdτ

(
√
γγαβgij∂αX

i∂βX
j + εαβBij∂αX

i∂βX
j − 1

2

√
γφR

)
. (3.15)

Here, R denotes the worldsheet Ricci scalar and the indices i, j run over 1, . . . , d. γ denotes

the worldsheet metric and gij the target space metric. The antisymmetric tensor Bij denotes

the Kalb-Ramond B-field. The embedding functions X i are periodic,

X i ∼ X i + 2πwi. (3.16)

The underlying CFT is described by D2 couplings encoded in the so-called background matrix

E, which combines metric gij and Kalb-Ramond field Bij,

E = g +B. (3.17)

We fix the worldsheet metric to ηαβ. The gauge fixed action is given by

S =
1

4π

∫
dσdτ(ηαβgij∂αX

i∂βX
j + εαβBij∂αX

i∂βX
j). (3.18)

The mode expansion of X i is given by

X i(σ, τ) = xi +wiσ + τgij(pi −Bijw
j) +

i√
2

∑
k 6=0

1

k
(αik(E)e−ik(τ−σ) + α̃ik(E)e−ik(τ+σ)) (3.19)

with oscillators αik and α̃ik. The canonical momentum density of X i is given by

2πPi(σ, τ) =
δS

δẊ i

= gijẊ
j +BijX

j′

= pi +
1√
2

∑
k 6=0

(ET
ijα

j
k(E)e−ik(τ−σ) + Eijα̃

j
k(E)e−ik(τ+σ)). (3.20)

Here, ET
ij = gij − Bij. We recognize that the canonical momentum can be written as a sum

of center of mass momentum pi and oscillator contributions. The center of mass momentum

is quantized pi = mi ∈ Z.

We can evaluate the canonical equal-time commutators

[X i(σ, τ), Pj(σ
′, τ)] = iδijδ(σ − σ′), (3.21)

leading to

[xi, pj] = iδij, [α(E)in, α(E)jm] = mgijδm,−n, [α̃(E)in, α̃(E)jm] = mgijδm,−n. (3.22)

34



3.2. Physical preliminaries

The Hamiltonian density is given by

H = L0 + L̃0

=
1

4π

∫ 2π

0

((2πPi)g
ij(2πPj) +X ′i(g −Bg−1B)ijX

′j +X ′iBikg
kjPj)

=
1

4π

∫ 2π

0

dσ(P 2
L + P 2

R), (3.23)

where the left and right momentum have the form

PLa = (2πPi + (g −B)ijX
j′)e∗ia , PRa = (2πPi − (g +B)ijX

j′)e∗ia . (3.24)

Here, we introduced vielbeins eai and their duals e∗ia . They can be regarded as generators of

the non-degenerate D-dimensional lattice Λ and its dual Λ∗, respectively, defined by

Λ = {eaiwi|wi ∈ Z}, Λ∗ = {e∗aimi|mi ∈ Z}, (3.25)

and obey the relations

eaie
b
jδab = 2gij, eaie

∗j
b δ

b
a = δij, e∗ia e

∗j
b δ

ab =
1

2
gij. (3.26)

Then, the D-dimensional torus can be written as the quotient

TD = RD/πΛ. (3.27)

The Hamiltonian can be written in the following form,

H =
1

4π

∫ 2π

0

dσ

(
X ′

2πP

)T (
g −Bg−1B Bg−1

−g−1B g−1

)(
X ′

2πP

)
, (3.28)

which makes the O(D,D)-structure manifest in the following sense. Elements g ∈ O(D,D;R)

act on 2D × 2D by conjugation and leave the matrix

J =

(
0 id
id 0

)
, (3.29)

invariant, gTJg = J . Here, id is the D ×D identity matrix.

In contrast to the (D×D)-matrix E that appears in the Lagrangian formulation, the matrix

appearing in the Hamiltonian formulation,

H(E) =

(
g −Bg−1B Bg−1

−g−1B g−1

)
, (3.30)
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is a 2D × 2D-matrix and called generalized metric.

The zero-mode component of the Hamiltonian can be expressed as

H = L0 + L̃0

=
1

2
(p2
L + p2

R)

=
1

2
(mig

ijmj + wi(g −BgB)ijw
j + 2wiBikg

kjmj)

=
1

2

(
wi

mi

)T
H(E)

(
wi

mi

)
, (3.31)

where the zero-modes of the left and right momenta are given by

pRa = (mi + wk(B − g)ki)e
∗i
a , pLa = (mi + wk(B + g)ki)e

∗i
a , (3.32)

and the vector

Z =

(
wi

mi

)
(3.33)

combines winding and momentum modes and is called generalized momentum. The left and

right momenta form an even self-dual Lorentzian lattice, denoted by Γ(D,D). It is called

Lorentzian, since the metric on the lattice has signature (D,D). Furthermore, it is called

even, since its length is even,

p2
L − p2

R = 2wimi ∈ 2Z. (3.34)

Finally, since Γ(D,D) = (Γ(D,D))∗ the lattice is called self-dual. All even self-dual Lorentzian

lattices Γ(D,D) are related by O(D,D;R)-transformations and each Γ(D,D) is associated to a

distinguished toroidal background.

The zero-mode component of the Hamiltonian is invariant under O(D;R)×O(D;R)-transfor-

mations, which rotate pL and pR. This corresponds to the internal rotations of the vielbeins

accompanying pL and pR on which O(D;R) × O(D;R) acts from the right. Therefore, it

turns out that the moduli space of toroidal compactifications is isomorphic to the coset

O(D,D;R)/(O(D;R)×O(D;R)). (3.35)

Here, O(D;R)×O(D;R) is the maximal compact subgroup of O(D,D;R). Since the dimen-

sion of O(D,D;R) is D(2D−1) and the dimension of O(D;R) is D(D−1)/2, the dimension

of the coset turns out to be D2, which agrees with the number of scalars from gij and Bij.
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Now we have to investigate the transformation behavior of the oscillators. The complete

Hamiltonian has the form

H =
1

2
ZTMZ +N + Ñ , (3.36)

where N and Ñ are the number operators,

N =
∑
k>0

αi−kgijα
j
k, Ñ =

∑
k>0

α̃i−kgijα̃
j
k. (3.37)

The coset O(D,D;R)/(O(D;R) × O(D;R)) parameterized by the background matrix E =

g +B embeds into O(D,D;R) by

gE =

(
e B(eT )−1

0 (eT )−1

)
, (3.38)

where e is a vielbein obeying eeT = g. Then, O(D,D;R) acts on a D × D matrix M by

fractional linear transformation,

g(M) = (aM + b)(cM + d)−1, (3.39)

where

g =

(
a b
c d

)
∈ O(D,D;R). (3.40)

We note gE(id) = g +B = E. Since

H(E) = gEg
T
E, (3.41)

gE is also referred to as generalized vielbein. Then, the background matrix E = g + B

transforms under O(D,D;R) as

E 7→ g(E) = (aE + b)(cE + d)−1. (3.42)

We remark that O(D,D;R) acts from the left on the background moduli.

The whole spectrum of the theory is invariant under O(D,D;Z)-transformations, generated

by the following 3 operations. Firstly, it is invariant under the shift of the B-field by an

antisymmetric integral (D ×D)-matrix Θ by the transformation

hΘ =

(
id Θ
0 id

)
. (3.43)

If the shift is integer, it does not contribute to the path integral. It leads to a total derivative

and therefore shifts the B-field by an integer multiple of 2π.
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Secondly, the whole spectrum is invariant under the change of the compactification lattice Λ

parameterized by an integral matrix A ∈ GL(D;Z) via

hA =

(
A 0
0 (AT )−1

)
. (3.44)

It parameterizes a basis change.

Thirdly, the whole spectrum is invariant under so-called factorized dualities, parameterized

by elements

hDk =

(
id− ek ek
ek id− ek

)
, (3.45)

where ek is a (D×D)-matrix with all components zero except for the (k, k)-component, which

is 1. This transformation generalizes the transformation of the circle compactification case

in the sense that it inverts the radius of the k-th circle in the torus, Rk 7→ 1
Rk

, interchanging

the momentum and winding modes, mk ↔ wk. By investigation of the action of a factorized

duality hDk on the metric gij and the Kalb-Ramond field Bij, we recover the so-called Buscher

rules [12, 13],

gkk 7→
1

gkk
, gki 7→

Bki

gkk
, gij 7→ gij −

gkigkj −BkiBkj

gkk
,

Bki 7→
gki
gkk

, Bij 7→ Bij −
gkiBkj −Bkigkj

gkk
.

(3.46)

Above three transformations generate the discrete group O(D,D;Z).

Let us investigate the transformation behavior of the number operators N and Ñ under

O(D,D;Z)-transformations. Under a transformation of the background matrix E 7→ g(E) =

E ′ we find the following relations between metric g and dual metric g′,

(d+ cE)Tg′(d+ cE) = g, (d− cET )Tg′(d− cET ) = g. (3.47)

Using the mode expansions of X i and Pi and the invariance of the canonical commutators

under the duality one finds the transformation behavior of the oscillators,

αk(E) 7→ (d− cET )−1αk(E
′), α̃k(E) 7→ (d+ cE)−1α̃k(E

′). (3.48)

We conclude, that the number operators N and Ñ are invariant under O(D,D;Z). Together

with the invariance of the zero-mode part we find the whole spectrum to be O(D,D;Z)-

invariant.

38



3.2. Physical preliminaries

The group O(D,D;Z) is called the T-duality group for a D-dimensional torus compactifi-

cation. Dividing out invariance of the spectrum under the right-action of the local Lorentz

transformations O(D;R) × O(D;R) and the left-action of the T-duality group O(D,D;Z)

from the group O(D,D;R), we are left with the moduli space for toroidal compactifications,

O(D,D;Z)\O(D,D;R)/(O(D;R)×O(D;R)), (3.49)

which is called the Narain moduli space.

3.2.2 T-duality and non-geometric spaces

Having understood the emergence of T-duality in toroidal string compactifications from the

worldsheet point-of-view we now can go on and discuss the relation between T-duality and

the mysterious non-geometric spaces. The analysis of these spaces and their underlying

geometries play a prominent role in the main part of the present thesis.

In this section, we shortly review T-duality on toroidal string backgrounds in order to discuss

the emergence of so-called non-geometric spaces. Details on T-duality can be found in [6, 7].

A very well presented survey is contained in [50]. A good reference for non-geometric flux

compactifications and non-geometric backgrounds in general is [14].

T-duality

T-duality is a symmetry of compactified closed string theory that relates the winding modes of

closed strings wrapping internal cycles of the compactification with their momentum modes.

In the case of an S1-compactification, where the circle radius is given by R, the mass spectrum

of the closed string is given by [6]

m2 =
n2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2), (3.50)

where n is the momentum mode of the closed string in S1-direction and w is the winding

number associated with how often the closed string wraps around the S1-direction. N and

Ñ are the numbers of oscillators in either direction on the closed string, more precisely,

the eigenvalues of the number operators. The first contribution is the energy originating

from the momentum quantized in S1-direction. The second contribution is the potential

energy associated with the winding of the closed string. The last contribution consists of
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the oscillation states of the string in either direction on the string and the vacuum energy.

Furthermore, the oscillation states are constrained by the so-called level matching condition,

nw = N − Ñ . (3.51)

Above two relations are also called the mass-shell conditions, which arise from the zero-mode

Virasoro operators L0 and L̃0 associated to the oscillator states on the closed string.

Let us investigate some limits of above formula. In the infinite radius limit, R→∞, we find

that the dominant contribution comes from the potential energy of the winding modes. This

is natural, since in the decompactification limit of the S1 a closed string needs an infinite

amount of energy to wrap the S1. However, the quantized momenta become a continuous

spectrum.

In the small radius limit, R → 0, the dominant contribution comes from the compact mo-

menta. For very small radia R, the center-of-mass energy of a closed string traveling in the

S1-direction becomes very high. However, the winding state spectrum becomes continuous.

We recognize, that for both opposite limits, the behavior of the compact momentum spectrum

and the winding state spectrum is symmetric. The physically interesting observable is the

energy. Therefore, both limits are identical from the physical perspective. We furthermore

recognize, that the mass formula is invariant under the transformation

T :

(
R 7→ α′

R
, n 7→ w, w 7→ n

)
. (3.52)

The transformation T inverts the radius of the S1-compactification while exchanging winding

and momentum modes. Furthermore, two successive transformations give identity, T 2 =

id. Due to the invariance of the mass formula under T , we conclude that closed string

theory compactified on an S1 with radius R is physically equivalent to closed string theory

compactified on an S1 with inverse radius and momentum and winding modes exchanged.

This duality is called T-duality. T-duality symmetry of string theory is one of the crucial

differences to ordinary point-particle theory, where winding modes w are non-existent.

Let us now consider a toroidal compactification on a D-dimensional torus, TD = S1 ×
· · · × S1, with constant internal metric gij and antisymmetric tensor field Bij. In this case,

the T-duality transformation T is generalized to elements of the toroidal T-duality group

O(D,D;Z). The elements of the O(D,D;Z)-group are given by matrices that keep the

metric ηMN invariant,

h P
M ηPQh

Q
N = ηMN , (3.53)
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where

ηMN =

(
0 δij
δ j
i 0

)
(3.54)

and the capital indices M , N ,. . . run from 1 to 2D. Note that ηMNηNL = δML and the raising

and lowering of O(D,D)-indices is done by η. Let the momentum modes in the various

S1-directions be denoted by the vector pi. Furthermore, let the winding mode associated

with each of the S1-directions be denoted by wi. Then, we can combine pi and wi into the

so-called generalized momentum

PM =

(
wi
pi

)
. (3.55)

The mass formula of a closed string traveling in the toroidal compactification can be written

in terms of the generalized momentum

m2 = PMPNHMN + (N + Ñ − 2), (3.56)

where HMN denotes the so-called generalized metric,

HMN =

(
gij −gikBkj

Bikg
kj gij −Bikg

klBlj

)
. (3.57)

In the mass formula, the last term contains the contribution from the oscillators as well as

the vacuum energy. The first term is crucial. It is O(D,D;Z)-covariant. The generalized

metric contains not only the ordinary metric gij, but also the B-field Bij. The level matching

condition is generalized to

N − Ñ =
1

2
PMPM . (3.58)

The generators of O(D,D) can be represented as follows. Diffeomorphisms are block-diagonal

matrices,

h N
M =

(
Ei

j 0

0 E j
i

)
, (3.59)

where E ∈ GL(D). Off-diagonal transformations, or shifts, are given by B-transformations

h N
M =

(
δij 0

Bij δ j
i

)
(3.60)

and β-transformations

h N
M =

(
δij βij

0 δ j
i

)
, (3.61)
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where Bij and βij are antisymmetric tensors. Finally, since D different S1-directions are

available, for each direction there is an associated T-duality transformation. These are called

factorized T-dualities,

h
(k) N
M =

(
δij − tij tij

tij δ j
i − t

j
i

)
, (3.62)

where (tij) = diag(0, . . . , 0, 1, 0, . . . , 0). The 1 in (tij) is at the k-th position. The factorized

T-duality transformations recover the so-called Buscher rules relating T-dual metric and

B-field on toroidal compactification under T-duality along an isometry direction, in which

metric and B-field are constant. The Buscher rules for a T-duality transformation along an

isometry direction xk is given by [12, 13]

gkk 7→
1

gkk
, gki 7→

Bki

gkk
, gij 7→ gij −

gkigkj −BkiBkj

gkk
,

Bki 7→
gki
gkk

, Bij 7→ Bij −
gkiBkj −Bkigkj

gkk
.

(3.63)

For a simple S1-compactification, the Buscher rules condense to the T-duality transformation

T in (3.52).

The diffeomorphisms generate basis changes of the torus lattice, whereas the factorized T-

duality transformations exchange the circle radius with its dual. Diffeomorphisms and B-

transformations generate the so-called geometric subgroup of the T-duality group, given by

O(D,D)geometric ⊂ O(D,D). Obviously, the mass formula is invariant under the T-duality

transformations,

H 7→ h P
M h

Q
N HPQ, PM 7→ hMNP

N , (3.64)

where the matrices h N
M are elements of O(D,D;Z).

As we explained above, the space of inequivalent torus lattices is given by the so-called Narain

moduli space [51, 52]

O(D,D;Z)\O(D,D;R)/(O(D;R)×O(D;R)), (3.65)

where the remaining Lorentz transformations O(D,R) × O(D,R) as well as the discrete

subgroup O(D,D,Z) are factorized out. The subgroup O(D,D,Z) takes the torus lattice

into itself, while permuting the lattice points.

The D-dimensional string coupling constant is given by g
(D)
S = eφ, where φ is the dilaton.

Under S1-compactification we find the (D−1)-dimensional string coupling constant given by
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g
(D−1)
S = R

lS
g

(D)
S . Invariance of the dilaton scattering amplitudes under T-duality then gives

the transformation property of the dilaton,

φ 7→ φ− log

(
R

lS

)
. (3.66)

We can construct a T-duality invariant d from the dilaton and the metric by

e−2d =
√
ge−2φ. (3.67)

Non-geometric spaces

The simplest compactifications of string theory are toroidal compactifications. However, as

made clear above, in the case of the compactification on a D-torus, several successive T-

duality transformations are be possible, in general. We follow the description of [14, 15].

Furthermore, in the case of a B-field generating an NS-NS 3-form H-flux, which is a class

in third integral de Rham cohomology over the compactification M , H ∈ H3
de Rham(M ;Z),

the H-flux can wrap any compact 3-cycle of M . It is in integral cohomology due to the

quantization condition.

Let us discuss the example of a 3-torus T 3, parameterized by local coordinates xi, where

i = 1, 2, 3, and put N units of H-flux on the whole T 3,

H =
1

3!
Hijkdx

i ∧ dxj ∧ dxk = Ndx1 ∧ dx2 ∧ dx3, (3.68)

so that H123 = N ∈ Z. Let the periods of the torus be 1. Then we choose the identification

of local coordinates via

(x1, x2, x3) ∼ (x1 + 1, x2, x3) ∼ (x1, x2 + 1, x3) ∼ (x1, x2, x3 + 1). (3.69)

The torus is now given by the quotient space T 3 = R3/ ∼. Now, we assume that the internal

metric on the 3-torus is flat,

g = gijdx
i ⊗ dxj = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3. (3.70)

Having a look at the string equations of motion associated with this setup, we recognize, that

a flat metric with non-zero H-flux is not a solution. However, as a conceptual example to

clarify the emergence of non-geometric spaces it will suffice. If the 3-torus is complemented
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by a fibration of over a more intricate space, one can generate setups that obey the string

equations of motion. In the next step, we choose a gauging of the H-flux,

B =
1

2
Bijdx

i ∧ dxj = Nx3dx1 ∧ dx2. (3.71)

Note that dB = H is satisfied. The metric is obviously globally defined. It does not produce

an inconsistency as we go around the torus. The B-field also does not change if we go around

the x1- or x2-directions. However, We need a local patching of the B-field if we go around

x3-direction in order to get a globally well-defined H-flux. Therefore, this space can also be

seen as fiber bundle T 3 → S1 with fiber T 2.

As is clear by now, we have two isometry directions at hand, x1 and x2. Therefore, we can

apply the Buscher rules and compute the T-dual in x1-direction. This magically eliminates

the H-flux in favor of a metric twist,

g = (dx1 −Nx3dx2)⊗ (dx1 −Nx3dx2) + dx2 ⊗ dx2 + dx3 ⊗ dx3, (3.72)

and B = 0. This space is an example of a so-called twisted torus or nilmanifold. If we try

to think of the resulting torus in the same way as before, as the quotient T 3 = R3/ ∼, we

recognize that the metric is globally ill-defined. The topology of the torus has changed and

with it the equivalence relation, which becomes

(x1, x2, x3) ∼′ (x1 + 1, x2, x3),

(x1, x2, x3) ∼′ (x1, x2 + 1, x3),

(x1, x2, x3) ∼′ (x1 +Nx2, x2, x3 + 1).

(3.73)

The torus after T-duality is given by T 3 = R3/ ∼′ with metric (3.72) and zero H-flux. Due

to the twist in the equivalence relation, this torus is called a twisted torus.

The N units of H-flux have been transformed into N units of a ”metric twist”. How can we

describe it formally? A formalization is possible by employing vielbein fields, that diagonalize

the metric. Let us introduce the covectors of the tetrad formalism by ea = eaidx
i, where the

index a = 1, 2, 3 denotes the Lorentz frame. Then the metric can be rewritten as

gij = δabe
a
ie
b
j. (3.74)

Obviously, the covectors are given by

e1 = dx1 −Nx3dx2, e2 = dx2, e3 = dx3. (3.75)
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The 1-forms ea are called Maurer-Cartan coframe. They are subject to the

Maurer-Cartan equation,

dea =
1

2
fabce

b ∧ ec, (3.76)

where fabc are the structure constants of the Lie algebra associated with the Maurer-Cartan

frame ea = e i
a ∂i. Acting with the de Rham differential on (3.76), we find the Jacobi identity

f ed[af
d
bc] = 0. Recall, that the vielbein compatibility is given by

∇ie
j
a = ∂ie

j
a + Γjike

k
a −W b

iae
j
b = 0, (3.77)

where Γjik is the Christoffel connection and W b
ia the spin connection. We find

W b
ia = Ωb

cae
c
i + Γkije

j
a e

b
k, (3.78)

where Ωb
ca is called the Weitzenböck connection and is given by

Ωb
ca = e i

c ∂ie
j
a e

c
j. (3.79)

The main property of the Weitzenböck connection is that it has vanishing curvature, but in

general non-vanishing torsion. In contrast to that, the Christoffel connection has vanishing

torsion, but in general non-vanishing curvature. Then, the structure constants fabc are related

to the antisymmetric part of the Weitzenböck connection via

fabc = 2Ωa
[bc]. (3.80)

In this way, fabc can be associated with the antisymmetrization of the projected part of the

torsion-less spin connection.

In our example, f 1
23 = N so that we recognize that the H-flux got transformed to the

antisymmetric part of the Weitzenböck connection, which is responsible for the twist in the

torus geometry. Therefore, the coefficients fabc are also called geometric f -flux and one says

that H-flux transforms to f -flux.

Investigating the isometry directions of the twisted torus, we still find x1 and x2 as isometries.

A T-duality transformation along x1 would take us back to the flat T 3 with H-flux. Therefore,

we choose to T-duality transform in x2-direction. Applying the Buscher rules, we find an

intricate structure for the metric and the B-field,

g =
1

1 + (Nx3)2
(dx1 ⊗ dx1 + dx2 ⊗ dx2) + dx3 ⊗ dx3, (3.81)

B =
Nx3

1 + (Nx3)2
dx1 ∧ dx2. (3.82)
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Upon going around the x3-circle, both fields require to be patched by a transformation. This

transformation is not an ordinary gauge transformation anymore, but the whole T-duality

group comes into play as structure group. In order to arrive at a globally well-defined metric

and B-field, a T-duality transformation has to be applied when going around the x3-direction.

This ultimately mixes metric and B-field and constitutes the crucial difference to ordinary

compactifications. Such spaces, where monodromies appear, that need to be patched by the

full T-duality group, are called T-folds or globally non-geometric and to them, a new, globally

non-geometric Q-flux is associated. In our case, the metric f -flux has been transformed to

the non-geometric Q-flux in the sense N = f 1
23 7→ Q12

3 .

In [14] it was argued that although in the Q-flux background there is no isometry direction

left, in which T-duality could be applied, the T-duality invariance of the type IIA superpoten-

tial in an orientifold compactification on a twisted torus hints to new locally non-geometric

flux coefficients and associated non-geometric backgrounds. Application of several T-duality

transformations lead to the emergence of coefficients in the superpotential, which are argued

to belong to the T-dual of the Q-flux background. Requiring duality-invariance of the su-

perpotential is directly related to the existence of these coefficients. The associated flux is

named R-flux and is related to locally non-geometric backgrounds, where even locally a geo-

metric description of the background fails. Arguing along this line, in our example, a further

application of T-duality in x3-direction transforms the Q-flux into R-flux, N = Q12
3 7→ R123.

However, the mathematical groundwork of this R-flux is still highly mysterious and will be

one crucial element to be discussed in the main part of this thesis.

Summarizing all backgrounds, that occur through the successive application of T-duality

transformations in our toroidal background, we are lead to the well-known T-duality chain

[14],

H123
T1←→ f 1

23
T2←→ Q12

3
T3←→ R123.

From the perspective of topology, investigations of T-duality on circle or more generally

principal torus bundles with H-flux have been conducted in [53, 54]. It turned out that T-

duality exchanges the first Chern class c1(E) of the circle bundle E with the 3-form H-flux. T-

duality action on this configuration leads to a dual bundle Ê, with dual Kalb-Ramond field Ĥ.

Both bundles are related by c1(Ê) = π∗H and c1(E) = π∗Ĥ. It can be shown, that T-duality

in this setting is an isomorphism of Courant algebroids Γ(TE ⊕ T ∗E)S1 → Γ(TÊ ⊕ T ∗Ê)S1 ,

where the subscript S1 means S1-equivariance [55].
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Conformal field theory calculations involving T-dual backgrounds with R-flux have been

conducted in [56]. There, non-geometric R-flux backgrounds are believed to be related to

non-associative geometries leading to a 3-bracket

[X i, Xj, Xk] = Rijk(X). (3.83)

3.2.3 Kaluza-Klein reduction and gauged supergravity

We recalled how the T-duality group appears in the case of toroidal compactifications of

string theory from the worldsheet perspective and constructed the Narain moduli space of

inequivalent compactifications. Now, we can go on and consider the toroidal compactification

of the low-energy effective field theory of string theory. More precisely, we reduce the low-

energy field theory of string theory on a D-dimensional torus along the lines of Kaluza-Klein,

which is called Kaluza-Klein reduction. We will observe how a global continuous O(D,D;R)-

symmetry arises in the reduced theory. Part of the symmetry can be gauged using a gauge

group G. This is done by the method of the so-called embedding tensor and leads to what

is known as gauged supergravities. The structure constants of the gauge algebra of gauged

supergravity turn out to be related to the integrated geometric as well as non-geometric

fluxes. In the main part of the present thesis we will be able to construct the most general

non-abelian gauged supergravity algebra by making use of twisted Courant algebroids. These

twisted Courant algebroids encode the underlying local symmetries of backgrounds with flux.

In this section, we discuss the Kaluza-Klein reduction of the bosonic part of the low-energy

effective field theory theory of string theory on a D-dimensional torus and the emergence of

gauged supergravities. It is based on [57, 58, 59]. More information on gauged supergravities

can be found in [60].

The bosonic part of the low-energy effective field theory of string theory in d dimensions is

given by

S =

∫
ddx
√
−Ge−φ

(
R+ (∇φ)2 − 1

12
HµνρHµνρ

)
, (3.84)

where φ denotes the dilaton, H the field strength of the Kalb-Ramond field B and G the

spacetime metric. R denotes the Ricci scalar of the spacetime metric. The Kaluza-Klein

reduction of this theory on a D-dimensional torus, TD, is given by

S =

∫
dd−Dx

√
−g
(
R + (∇φ)2 − 1

12
HµνρH

µνρ +
1

8
Lab∇µK

bcLcd∇µKda − 1

4
F a
µνLabK

bcLcdF
dµν

)
.

(3.85)
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Here, the vector fields V M
µ and BµM from the reduction of the metric and B-field respectively

have been assembled in the vector field Aaµ = (V M
µ , BµM) with abelian field strength F a =

dAa. The capital indices M , N run over 1, . . . , D and the indices a, b run over 1, . . . , 2D. The

vector field Aaµ transforms in the fundamental representation of O(D,D) and Lab denotes the

O(D,D)-invariant metric. The scalar fields that arise in the reduced theory take values in

the coset O(D,D)/(O(D)×O(D)) and are assembled in the symmetric traceless matrix Kab,

LabK
ab = 0. The gauge bosons and the scalars transform under O(D,D) as

Aa 7→Ma
bA

b, Kab 7→Ma
cM

b
dK

cd. (3.86)

We conclude, that the resulting theory has global O(D,D)-symmetry and U(1)2D gauge

symmetry.

In order to arrive at a formulation of gauged supergravities, we introduce a 2D-dimensional

subgroup of O(D,D) and promote it to a local symmetry of the theory. When G is em-

bedded into O(D,D), the fundamental representation of O(D,D) has to become the adjoint

representation of G. Then, the gauge bosons transform in the adjoint representation. We can

denote the generators of O(D,D) as antisymmetric matrices tab. Let us furthermore denote

the generators of G by T a. They obey the relation

[Ta, Tb] = if cabTc (3.87)

with structure constants f cab. Then, the so-called embedding tensor method is used to embed

the group G into O(D,D) via

Ta =
1

2
Θ bc
a tbc, (3.88)

where Θ bc
a is called the embedding tensor. Then, the deformed action is given by

S =

∫
dd−Dx

√
−ge−φ

(
R + (∇φ)2 +

1

8
LabDµK

bcLcdD
µKda − 1

4
F a
µνLabK

bcLcdF
dµν

− 1

12
HµνρH

µνρ − g2W (K)

)
,

(3.89)

where g is the gauge coupling constant and W (K) is a gauge-invariant scalar potential. Dµ

denotes the covariant derivative and F is the non-abelian field strength of A. Furthermore,

the H-flux is shifted by a non-abelian Chern-Simons term of the gauge field A. The gauged

action becomes invariant under O(D,D)-transformations if the structure constants of G

transform as

f cab 7→M d
a M

e
b M

c
ff

f
de, (3.90)
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changing the embedding by O(D,D)-transformations.

We can decompose T a into generators ZM and XM relate it to the gauge bosons V M and

BM , respectively. The most general gauge algebra is then given by

[ZM , ZN ]Lie = fPMNZP +HMNPX
P , (3.91)

[ZM , X
N ]Lie = −f̃NMPX

P +QNP
M ZP , (3.92)

[XM , XN ]Lie = Q̃MN
P XP +RMNPZP . (3.93)

The structure constants are subject to Jacobi identities and are interpreted as integrated

geometric as well as non-geometric fluxes from the perspective of compactification.

When considering a compactification of string theory on a background with isometries, the

resulting theory is expected to inherit the transformation properties of the uncompactified

theory under T-duality. T-duality covariance of the non-abelian gauge algebra above then

requires the existence of the full set of structure constants.

Ordinary compactifications of supergravity correspond to geometric compactifications, where

only the geometric flux f and the H-flux are turned on. However, general gaugings cannot

be obtained by an ordinary compactification of a higher-dimensional supergravity theory.

Nevertheless, seen from the invariance property of the lower-dimensional theory, general

gaugings should exists and correspond to realizations intrinsically possible only in string

theory. Such realizations arise as asymmetric orbifold compactifications or elliptically twisted

reductions to be introduced below.

3.2.4 Scherk-Schwarz reduction

In the former section we discussed ordinary Kaluza-Klein reduction of the low-energy effective

action of string theory. If the internal metric is taken to depend on the internal coordinates

in a certain way parameterized through a so-called twist matrix, then the reduction process

is generalized to what is called Scherk-Schwarz reduction. So in general, one can say that

Scherk-Schwarz reduction is a twisted reduction scheme which leads to non-abelian gauge

symmetries. The compactification manifold becomes a group manifold. In the case of a torus

reduction, it leads to a so-called twisted torus. It turns out that twisted torus reductions of

string theory lead to consistent backgrounds with non-zero geometric f -flux. In the main

part of the thesis, we will show how to invoke the geometric f -flux by a certain twist of a

Courant algebroid with generalized frame bundle. A reduction of the Courant algebroid to a
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Lie algebra then derives the associated non-abelian gauge algebra. This section is based on

[61, 58, 59, 57]. Also see [62].

We start with the Scherk-Schwarz reduction on a D-dimensional torus TD, which switches

on geometric f -flux in the gauge algebra. It is a generalization of ordinary Kaluza-Klein

reduction. For convenience, we divide our discussion into Scherk-Schwarz reduction without

and with flux. Scherk-Schwarz reduction in the presence of 3-form flux will be interesting

from the string theory perspective.

Without flux

Let the torus be parameterized by local coordinates yI , whereas the non-compact direction

is parameterized by coordinates xµ. In the Scherk-Schwarz reduction scheme, a twist matrix

σIJ(y) is defined, which depends on the internal coordinates y. Then, the internal metric is

decomposed by

gKL(x, y) = g′IJ(x)σIK(y)σJL(y). (3.94)

The whole metric is then described in terms of vielbein fields eI = σIJ(y)dyJ and given by

ds2 = gµνdx
µ ⊗ dxν + g′IJ(x)(eI + AI)⊗ (eJ + AJ). (3.95)

Here, the 1-forms AI correspond to the gauge bosons of the reduction of the metric. When

taking the twist matrices to be identity, we come back to an ordinary Kaluza-Klein reduction.

Therefore, Scherk-Schwarz reduction is also called twisted reduction, since the vielbein frames

eI are twisted with respect to the ordinary frames dyI . A general twisted torus reduction

can be described as an ordinary torus reduction with non-trivial spin-connection, or torsion.

The vielbein fields obey the relation

deI = −1

2
f IJKe

J ∧ eK , (3.96)

with structure constant f IJK and therefore model a group manifold. The gauge group of the

lower-dimensional theory corresponds group of right-translations. Applying the de Rham

differential to above equation yields the Jacobi identity for the structure constants. Dually,

they correspond to the structure constants of the gauge group of generators ZI corresponding

to the gauge bosons of the reduction of the metric,

[ZI , ZJ ]Lie = fKIJZK . (3.97)
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With flux

Now, let us include a 3-form flux in our discussion. Again, for the internal manifold, we

specify a basis of vielbein fields eM so that

deM = −1

2
fMJKe

J ∧ eK . (3.98)

Then, we make an ansatz for the internal metric

ds2 = GMNe
MeN (3.99)

and internal B-field

B =
1

2
BMNe

M ∧ eN + ϕ (3.100)

so that BMN and GMN are independent of the internal coordinates yM . The 2-form ϕ gives

rise to the constant 3-form

dϕ = − 1

3!
HMNKe

M ∧ eN ∧ eK . (3.101)

The constants fNMK and HMNK are structure constants of the resulting non-abelian gauge

algebra given by

[XM , XN ]Lie = 0, (3.102)

[ZM , X
N ]Lie = −fNMKX

K , (3.103)

[ZM , ZN ]Lie = fKMNZK +HMNKX
K . (3.104)

Again, the generator XM arises from the B-field reduction, whereas the generator ZM arises

from the metric reduction. The moduli BMN and GMN give rise to D2 scalar fields.

3.2.5 Reduction with duality twists

We understood that Kaluza-Klein reduction of the bosonic part of type II supergravity in gen-

eral leads to gauged supergravities with a non-abelian gauge algebra in which the integrated

fluxes appear as structure constants. Furthermore, we discussed how to generate geometric

flux by Scherk-Schwarz reduction on a group manifold, and how additional contributions to

the gauge algebra arise if the reduction of the 3-form flux is also considered.

Here, we show the simplest example of a reduction, where the so-called non-geometric Q-

flux arises as non-trivial structure constant of the gauge algebra. This reduction is called
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reduction with duality twists and its possibility is an intrinsic feature of string theory. In

the main section of the present thesis, we will show how to generate the twisted Courant

algebroid, which reduces to the non-abelian gauge Lie algebra underlying such backgrounds.

For this part, we refer to the articles [61, 58, 59, 57].

Let us reduce string theory in two steps. In the first step, we reduce string theory on a D-

dimensional torus TD. Then, we know that the resulting theory exhibits global O(D,D;Z)-

symmetry. The next step leads to the crucial difference compared to the formerly described

reductions. We reduce the theory again on a circle, S1. However, the reduction is accompa-

nied by a twist by the T-duality group O(D,D;Z). So we can say, we consider a reduction

on TD × S1 with a twist. The result is a fiber bundle TD over the base S1.

Let us decompose the local coordinates by xM = (xI , y) and let the radius of the base circle

to be R. Then the coordinate y has the periodicity

y ∼ y + 2πR. (3.105)

The crucial difference is now, that compared to the other reductions the gauge bosons from

the metric and the B-field are twisted by a monodromy matrix taking values in toroidal

T-duality group. Any field in the fundamental of O(D,D;Z), Ψ, depends on the internal

circle coordinate y via

Ψ(xµ, y) = exp

(
My

2πR

)
Ψ(xµ). (3.106)

Obviously, the resulting fields exhibit a monodromy expressed by

M = exp(M) ∈ O(D,D;Z), (3.107)

which is called monodromy matrix.

In the following, let us investigate the resulting non-abelian gauge group. For this, we

decompose the gauge bosons from the reduction of the metric and B-field according to TD×S1

via V M = (V I , V y) and BM = (BI , By). The corresponding generators of the gauge group

decompose as ZM = (ZI , Zy) and XM = (XI , Xy). Let us regroup the gauge generators by

Ta = (Zy, X
y, Tα), Tα = (ZI , X

I). (3.108)

Then, the generators Tα are O(D,D)-fundamentals. The resulting gauge algebra is given by

[Zy, Tα]Lie = M β
α Tβ, (3.109)
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where the mass matrix decomposes as

M β
α =

(
W J
I UIJ

V IJ −(W T )IJ

)
. (3.110)

Here, UIJ and V IJ are antisymmetric matrices. The matrix M takes values in the Lie algebra

of O(D,D). The non-abelian gauge algebra then decomposes as

[Zy, ZI ]Lie = W J
I ZJ + UIJX

J , (3.111)

[Zy, X
I ]Lie = −W I

J X
J + V IJZJ , (3.112)

and all other commutators zero. In the special case for vanishing V IJ we recover the gauge

algebra of Scherk-Schwarz reductions in the presence of 3-form flux. We find the following

geometric and non-geometric fluxes as gaugings of the algebra,

HyIJ = UIJ , fJyI = f̃JyI = W J
I , QIJ

y = V IJ . (3.113)

It turns out that V IJ is related to non-geometric Q-flux. In the case where V IJ 6= 0, the

reduction is non-geometrically twisted and the resulting internal space is called a T-fold. The

generator W I
I is in the Lie algebra of GL(D;R). It corresponds to a geometric twist. The

generator UIJ corresponds to B-field shifts. In conclusion, the possibility of a reduction on a

T-fold is what distinguishes string theory from ordinary particle theory. In the next section,

we discuss reductions on T-folds and even more involved non-geometric reductions from the

viewpoint of conformal field theories.

3.2.6 Non-geometric fluxes from orbifold CFTs

It turns out that the non-abelian gauge algebras with geometric and non-geometric fluxes

can be derived from exact CFT descriptions at the orbifold point. Such a construction is

possible since compactifications with elliptic monodromies admit freely-acting symmetric as

well as asymmetric orbifold descriptions at special points of the moduli space [59, 57]. In

this section, we will only scratch the surface and refer to details on the CFT computations to

[57]. For further CFT computations involving non-geometric fluxes see [63, 64]. In the main

section of the present thesis, it will turn out that certain non-geometrically twisted Courant

algebroids reduce to the non-abelian gauge Lie algebras described in this section.

Let us go back to the example of a reduction on TD × S1, where the reduction on S1 is

twisted by a flux matrix M . In this case, the metric g and Kalb-Ramond field B depend
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on the S1-coordinate y. Therefore, a T-duality transformation in circle direction along the

lines of Buscher is not possible due to the lack of isometry. However, it turns out that at the

orbifold point T-duality can exactly be computed on the level of conformal field theories [57].

This is because the dependence on y is only through the boundary conditions. The former

gauge algebra

[Zy, Tα]Lie = M β
α Tβ (3.114)

transforms via T-duality along y at the orbifold point exchanging Zy 7→ Xy and Xy 7→ Zy to

[Xy, Tα]Lie = M β
α Tβ. (3.115)

In this way, the resulting integrated fluxes, which are switched on, are f̃ , Q, Q̃ and R leading

to a non-geometric background. However, this is not a true R-flux background, since it

emerges from a Q-flux background by T-duality.

A true non-geometric R-flux background requires an additional asymmetry in the base S1.

This is done by considering an Zn×Zm orbifold action, where the Zn action is supplemented

by a y coordinate shift and the Zm action is supplemented by a dual coordinate ỹ shift. The

resulting gauge algebra is given by

[Xy, Tα]Lie = M̃ β
α Tβ, (3.116)

[Zy, Tα]Lie = M β
α Tβ, (3.117)

and it has been shown that the corresponding twist of all involved fields Ψ is given by

Ψ(xµ, y, ỹ) = exp

(
My

2πR

)
exp

(
M̃ỹ

2πR̃

)
Ψ(xµ). (3.118)

When we decompose the flux matrices by

M β
α =

(
W J
I UIJ

V IJ −(W T )IJ

)
, M̃ β

α =

(
W̃ J
I ŨIJ

Ṽ IJ −(W̃ T )IJ

)
, (3.119)

then we find the decomposed non-abelian gauge algebra

[Xy, ZI ]Lie = W̃ J
I ZJ + ŨIJX

J , (3.120)

[Xy, XI ]Lie = −W̃ I
J X

J + Ṽ IJZJ , (3.121)

[Zy, ZI ]Lie = W J
I ZJ + UIJX

J , (3.122)

[Zy, X
I ]Lie = −W I

J X
J + V IJZJ , (3.123)
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and the associated integrated fluxes

HyIJ = UIJ , RyIJ = Ṽ IJ ,

fJyI = f̃JyI = W J
I , f̃ yIJ = −ŨIJ ,

QyJ
I = −Q̃yJ

I = −W̃ J
I , QIJ

y = V IJ .

(3.124)

Such a background has been reconstructed as a freely-acting asymmetric Z4×Z2 orbifold in

[57] to which we refer for details on the conformal field theory calculations. The conclusion

is that true non-geometric R-flux backgrounds require the introduction of a dependence on

the dual variables ỹ in the twist.

3.2.7 Generalized geometry

Since our analysis is based on generalized geometry and Courant algebroids, in this section,

we will provide an introduction to generalized geometry, which treats the metric g and the

B-field on an equal footing and therefore is a formidable tool to analyze T-duality. More

generally, it can be used to study flux compactifications of type II supergravity. We will also

clarify its relation to Courant algebroids. The section devoted to Courant algebroids can be

found in the mathematical preliminaries. Generalized geometry was proposed by Hitchin in

[21]. It turned out to be the appropriate tool to capture the geometry faced by T-duality. It

was developed further in [20]. Good reviews are [19, 65]. From the mathematical perspective,

the lecture notes [55] can also be recommended. The relation between generalized geometry

and T-duality has been discussed in [66]. Investigations towards non-geometric spaces can

be found in [24].

Let M be a smooth manifold of dimension D. In contrast to ordinary differential geometry,

where the metric is defined with respect to the tangent bundle TM → M , generalized

geometry follows the ansatz to combine tangent and cotangent vectors into one object. The

resulting vector bundle is then given by the so-called generalized tangent bundle,

TM ⊕ T ∗M →M. (3.125)

More precisely, it can be described of an extension of the tangent bundle by the cotangent

bundle. It fits into the following short exact sequence,

0→ T ∗M → E
ρ−→ TM → 0. (3.126)
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A section of the generalized tangent bundle is given by X + α ∈ Γ(TM ⊕ T ∗M). We can

define a natural pairing on the generalized tangent bundle, given by the fiber metric

〈X + α, Y + β〉 =
1

2
(ιXβ + ιY α). (3.127)

This fiber metric has a natural O(D,D)-structure, which makes it useful for the purpose of

T-duality, as we will see below. As described above, the generators of the O(D,D)-group are

given by diffeomorphisms, B- and β-transformations. Under finite B- and β-transformations,

the sections transform as

eB(X + α) = X + α + ιXB, eβ(X + α) = X + ιαβ + α. (3.128)

We will now show, how this structure is related to a gerbe with connective structure. Let

{Uα} be a good cover of M , then the transition from one patch Uα to another patch Uβ on

the double-overlap Uαβ = Uα ∩ Uβ is given by

X(α) + α(α) = A(αβ)X(β) + A−T(αβ)α(β) − ιA(αβ)X(β)
B(αβ), (3.129)

where A(αβ) and A−T(αβ) denote the diffeomorphisms on the tangent and cotangent bundles,

respectively. Due to the extension by the cotangent bundle, the transition function is sup-

ported by a B-transformation by B(αβ). This reduces the initial O(D,D)-structure to its

geometric subgroup GB o GL(D), where GB is generated by the B-transformations. Since

B(αβ) = −dΛ(αβ) on double-overlaps, one finds after several applications of the Poincaré

theorem

Λ(αβ) + Λ(βγ) + Λ(γα) = g(αβγ)dg(αβγ) (3.130)

on the triple-overlap Uαβγ = U(α) ∩ U(β) ∩ U(γ), where g(αβγ) = eiφ ∈ U(1). This is a classical

example of an abelian gerbe with globally defined 3-form field strength H = dB.

The gauge structure on the generalized tangent bundle is resembled by the Courant bracket,

[X + α, Y + β]C = [X, Y ]Lie + LXβ − LY α−
1

2
d(ιXβ − ιY α), (3.131)

which is invariant under the geometric subgroup of O(D,D), if the B-transformation is

induced by a closed form, dB = 0. In the case, where dB = H, the Courant bracket is

twisted by the 3-form H,

e−B[X + α, Y + β]C = [e−B(X + α), e−B(Y + β)]C − ιXιYH. (3.132)
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The resulting bracket is called the H-twisted Courant bracket. Let ρ : TM ⊕ T ∗M → TM

be the projection to the tangent bundle component. We find, that it preserves the bracket

structure,

ρ([X + α, Y + β]C) = [ρ(X + α), ρ(Y + β)]Lie. (3.133)

Such a map is called bundle morphism. The 4-tuple (TM ⊕ T ∗M → M, 〈−,−〉, ρ, [−,−]C)

is called an exact Courant algebroid.

Since above short sequence is exact, we find an isotropic splitting ρ∗ : TM → E obeying

〈ρ∗X, ρ∗Y 〉 = 0 and ρ ◦ ρ∗ = id. Let a generalized metric on TM ⊕ T ∗M be a self-adjoint

orthogonal endomorphism H, such that 〈H(X + α), X + α〉 > 0 for all sections [55]. The

most general H can be defined by two orthogonal isotropic splittings,

s+(X) = X + (g +B)(X), (3.134)

s−(X) = X + (g −B)(X), (3.135)

where g is a symmetric matrix and B an antisymmetric matrix. This leads to the two

orthogonal graphs

C+ = {X + (g +B)(X)|X ∈ Γ(TM)}, (3.136)

C− = {X + (g −B)(X)|X ∈ Γ(TM)}. (3.137)

Then, we can construct the generalized metric by imposing the eigenvalue equation C± =

ker(H ∓ 1), which is possible since H is self-adjoint. This gives the well-known generalized

metric on the generalized tangent bundle, if we understand g as metric on M and B as B-field

of the H-flux.

The metric and the B-field can also be seen as parameterizing the coset space

O(D,D)

O(D)×O(D)
, (3.138)

since bundles with O(D,D)-structure are reducible to O(D)×O(D)-bundles.

3.2.8 Double field theory

In this section, we will provide an introduction to double field theory, a T-duality manifest

formulation of the closed string traveling in a torus background. In the main section, we will

derive the double field theory gauge algebra and its twisted versions by making use of graded

symplectic manifolds.
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Chapter 3. Dualities in string theory and M-theory

The T-duality group of closed string theory compactified on aD-dimensional torus TD is given

by O(D,D;Z). Double field theory [25] is formulated such that it contains the O(D,D;R)-

symmetry on the field theory level. This is done by introduction of a doubled set of coor-

dinates, which are assigned to the winding modes of closed strings wrapping the D-torus.

Related early ideas can already be found in [28, 27, 26]. A review can be found in [50]. The

so-called doubled formalism was pioneered in [16].

Let us consider n-dimensional closed string theory compactified on a D-torus, TD. Let the

torus be parameterized by local coordinates xi, where the index i runs from 1 to D. The

non-compact directions may be denoted by xµ, where the index µ runs from D + 1 to 10.

Double field theory works in the regime of modes of the closed string, which become massless

in the decompactification limit. This is given by the cancellation of the oscillator contribu-

tions with the vacuum energy in the mass formula,

N + Ñ = 2. (3.139)

Taking the level matching condition into account, the solution that works for PMPM = 0 is

given by N = Ñ = 1, which corresponds to the field content of metric gij, B-field Bij and

dilaton φ. The generalized momenta have to be orthogonal.

Since double field theory employs O(D,D)-invariance on the field-theoretical level, the gen-

eralized metric HMN now consists of non-constant metric gij and B-field Bij. The raising

and lowering of indices is done by using the O(D,D)-invariant metric ηMN . The metric and

the dilaton together give the O(D,D;Z)-invariant scalar d via (3.67).

The first crucial step to arrive at an O(D,D)-invariant field theory is to introduce a dual

torus T̃D in addition to the torus of the compactification, TD. This dual torus is locally

parameterized by coordinates x̃i, which are the conjugate coordinates of the winding modes

wi. Recall that the ordinary coordinates xi are conjugate to the momentum modes pi. Let

us for consistency denote the winding modes by p̃i = wi. As the momentum and winding

modes combine into a generalized momentum, the ordinary and dual torus coordinates can

be combined into a generalized coordinate,

XM =

(
x̃i
xi

)
. (3.140)

Now, we have written everything in terms of O(D,D)-fundamentals.
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The second crucial step is to let all fields depend on the double set of coordinates, H(x) →
H(X) and d(x)→ d(X). The generalized coordinates transform under T-duality via

XM 7→ hMNX
N , (3.141)

where h ∈ O(D,D;Z), so that the generalized metric and the dilaton, which depends now

on the double set of coordinates, transforms according to

H(X) 7→ h P
M h

Q
N HPQ(hX), d(X) 7→ d(hX), (3.142)

where h ∈ O(D,D;Z). In this formulation, T-duality transformations in isometry as well as

non-isometry directions are possible.

The introduction of the dual coordinates x̃i on the dual torus T̃D is a means of producing

elements that are O(D,D;Z)-fundamentals. However, physically this doubling of the degrees

of freedom is artificial. In order to return to a physical subspace in the double configuration

space TD × T̃D, the number of degrees of freedom has to be cut in half. This process

is performed by demanding that the physical fields live on the subspace specified by the

solution of the so-called weak section condition,

ηMN∂M∂NΨ(X) = 0, (3.143)

where Ψ is any field depending on the generalized coordinates. The generalized derivative

is given by ∂N = (∂̃i, ∂i), where ∂̃i = ∂
∂x̃i

. This condition is implied by the level matching

condition

(L0 − L̃0)Ψ = 0, (3.144)

where L0 and L̃0 are the Virasoro operators. The weak section condition is also called

weak constraint. If we demand the weak constraint for products of fields,

ηMN∂M∂N(Ψ(X)Φ(X)) = 0,

we arrive at the strong constraint,

ηMN(∂MΨ(X))(∂NΦ(X)) = 0, (3.145)

where Ψ and Φ are any fields. The strong constraint implies the weak constraint. Note that

the weak section condition is O(D,D;Z)-invariant. It can be rewritten in the form

∂i∂̃
iΨ(X) = 0. (3.146)
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A field theory that lives on a D-dimensional subspace specified by the constraint is called a

frame. An obvious reduction of double field theory to a physical subspace is by elimination

of the dependence on all the dual coordinates x̃i. In this D-dimensional subspace, the su-

pergravity coordinates xi survive and the associated frame is called the supergravity frame.

Contrary to that, the reduction by elimination of the dependence on all ordinary coordinates

xi leaves us with the winding frame, which may contain intricate non-geometric structures.

Of course, mixed choices of dependence are also possible and each solution to the section

constraint corresponds to a different T-duality frame.

The metric g and the B-field have been combined into the generalized metric. Since the

metric is diffeomorphism invariant and the B-field as 2-form gauge field inherits a gauge

invariance, we combine both transformations into one generalized gauge transformation Lξ
with generalized gauge parameter ξM = (ξ̃i, ξ

i). A generalized vector V M transforms under

generalized Lie derivative via

LξV M = ξP∂PV
M + (∂MξP − ∂P ξM)V P + ω(V )∂P ξ

PV M , (3.147)

where ω(V ) is the weight of the generalized vector V M . The generalized diffeomorphism

action on the generalized metric HMN and the scalar d is given by

LξHMN = XQ∂QHMN + (∂MX
Q − ∂QXM)HQN + (∂NX

Q − ∂QXN)HNQ, (3.148)

Lξ(e−2d) = ∂M(ξMe−2d). (3.149)

The gauge invariant action of double field theory is given by [67]

SDFT =

∫
dDxdDx̃ e−2d

(
4HMN∂Md∂Nd− 2∂Md∂NHMN

−1

2
HMN∂NHKL∂LHMK +

1

8
HMN∂MHKL∂NHKL

)
. (3.150)

It reduces to the bosonic NS-NS type II supergravity action (2.13), when the section condition

is solved in favor of the ordinary coordinates xi.

The closure of the gauge transformations,

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2]C , (3.151)

is obeyed when, the strong constraint is solved. Here, the so-called C-bracket is defined by

[ξ1, ξ2]MC = [ξ1, ξ2]MLie + ηMPηNQξ
Q
[1∂P ξ

N
2] . (3.152)
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The C-bracket can be found via antisymmetrization of the D-bracket,

[ξ1, ξ2]D = Lξ1ξ2. (3.153)

The generalized metric H can be decomposed using generalized vielbeins EA
M ,

HMN = EA
MSABE

B
N , (3.154)

where the indices A,B,... denote flat indices and run from 1 to 2D and

SAB =

(
ηab 0
0 ηab

)
. (3.155)

The generalized vielbeins satisfy

ηMN = EA
MηABE

B
N , (3.156)

where ηAB is used to raise and lower flat O(D,D)-indices. More precisely, ηAB is given by

ηAB =

(
0 δ b

a

δab 0

)
. (3.157)

In terms of D-dimensional vielbeins e i
a and B-field, the generalized vielbeins are written as

EA
M =

(
e i
a e j

a Bji

0 eai

)
, (3.158)

where gij = eaiηabe
b
j. The transformation behavior of the generalized vielbeins under gener-

alized diffeomorphisms is given by

LξE
A
M = ξP∂PE

A
M + (∂Mξ

P − ∂P ξM)EA
P . (3.159)

If we switch on the β-field, possible non-geometries can be accommodated and the generalized

vielbein is given by [68]

EA
M =

(
e i
a e j

a Bji

eajβ
ji eai + eajβ

jkBki

)
. (3.160)

Finally, the generalized fluxes are defined using the scalar d and the generalized vielbein via

[50]

FABC = ECNLEAE
N
B = 3Ω[ABC], (3.161)

FA = −e2dLEAe
−2d = ΩB

BA + 2E N
A ∂Nd, (3.162)
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where

ΩABC = E M
A ∂ME

N
B ECN = −ΩACB (3.163)

is the generalized Weitzenböck connection. The geometric as well as non-geometric fluxes

arise as components of FABC [69, 68],

Habc = Fabc = 3
(
∇[aBbc] −Bd[a∇̃dBbc]

)
, (3.164)

F c
ab = F cab = 2Γc[ab] + ∇̃cBab + 2Γmc[a Bb]m + βcmHmab, (3.165)

Qab
c = Fabc = 2Γ[ab]

c + ∂cβ
ab +Bcm∂̃

mβab + 2F [a
mcβ

b]m −Hmncβ
maβnb, (3.166)

Rabc = Fabc = 3
(
β[am∇mβ

bc] + ∇̃[aβbc] +Bmn∇̃nβ[abβc]m + β[amβbn∇̃c]Bmn

)
+ βamβbnβclHmnl, (3.167)

where the covariant and contravariant derivatives are given by

∇aBbc = ∂aBbc − ΓdabBdc − ΓdacBbd, (3.168)

∇aβ
bc = ∂aβ

bc + Γbadβdc + Γcadβ
bd, (3.169)

∇̃aBbc = ∂̃aBbc + Γadb Bdc + Γadc Bbd, (3.170)

∇̃aβbc = ∂̃aβbc − Γabd β
dc − Γacd β

bd, (3.171)

and the covariant and contravariant connections defined by

Γcab = e i
a ∂ie

j
b e

c
j, Γabc = eai∂̃

iebje
j
c . (3.172)

Solving the strong constraint reduces the generalized fluxes to the fluxes on the physical

subspace associated to a T-dual configuration. The T-duality chain can be recovered by

rotation of the internal components of FABC .

3.2.9 M-theory and U-duality

In this section, we provide an account in M-theory and U-duality. Together with the next

section on exceptional generalized geometry, this will set the stage for our investigation of

higher gerbe structures in M-theory in section 3.7. The underlying structure of this section

consists of the very rich survey [70] and the excellent lecture notes [71].

All superstring theories are defined as asymptotic expansions in the string coupling constant

gS. In other words, each theory is an asymptotic expansion around a different vacuum
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of an 11-dimensional non-perturbative theory, which is named M-theory and whose low-

energy limit is 11-dimensional supergravity [34]. 11-dimensional supergravity contains 32

supercharges. Spacetime dimensions lower or equal to 11 allow for supersymmetry with spin-

n fields, where n ≤ 2. However, for higher spacetime dimensions undesired higher spin fields

appear. Naively, M-theory can be understood as patch-wise defined, so that on each patch

there lives a different superstring theory. These superstring theories are related by dualities,

more precisely, T- and S-dualities. When lifted to 11-dimensional supergravity, they combine

to U-duality, which is the underlying symmetry of M-theory.

M-theory unifies all superstring theories. We learned that the IIB string theory is self-dual

under the inversion of the coupling constant, which is called the strong-weak duality, or S-

duality. However, although type IIB and type IIA are related by T-duality, it is not true

that for type IIA string theory there exists a dual theory in the strong coupling limit. This

is the starting point of M-theory, the strong coupling limit of the type IIA superstring. The

argument is very nicely outlined in [11]: Type IIA superstring contains Dp-branes for p even.

The D0-brane is charged under the C(1) gauge potential leading to a mass

mD0 =
k

gS
, (3.173)

where k is the charge. We observe, that the mass is inverse to the string coupling, so that in

the strong coupling limit produces an infinite tower of massless states. The reinterpretation

is, that the string coupling is nothing but the radius of the S1-compactification of an 11-

dimensional theory, R = gS. In this way, the type IIA superstring in the strong coupling

limit corresponds to the decompactification limit of the 11-dimensional supergravity theory

and the mD0 states arise via Kaluza-Klein compactification.

The spectrum of 11-dimensional supergravity is given by the 11-dimensional metric g, the 3-

form gauge potential C3, its dual C6, and a gravitino ψµ. The bosonic action of 11-dimensional

supergravity is given by [72]

S =
1

2κ2

∫
d11x

(√
−gR− 1

2
F4 ∧ ?F4 −

1

6
C3 ∧ dC3 ∧ dC3

)
, (3.174)

where C3 ∈ Ω3(M) is the 3-form gauge potential with curvature F4 = dC3 and κ2 is a

constant. R denotes the Ricci scalar. 11-dimensional supergravity does not contain any scalar

fields and all couplings are dimensionful. Therefore, M-theory does not have a perturbative

expansion, with which to prove UV-finiteness. 11-dimensional supergravity should be seen as

63



Chapter 3. Dualities in string theory and M-theory

low-energy effective theory, whose underlying theory is not known at present time. However,

the existence of a UV-completion of 11-dimensional supergravity is conjectured and proposed

to be related to the strong coupling limit of the full type IIA superstring. The equations of

motion of (3.174) are given by [72]

Rµν =
1

12

(
F4,µερσF

ερσ
4,ν −

1

12
gµνF

2
4

)
, (3.175)

0 = d(?F4) +
1

2
F4 ∧ F4. (3.176)

The object Rµν denotes the Ricci tensor.

Type IIB supergravity can be reached from M-theory in the following limit. Consider T 2-

compactification of M-theory, where the two radia are denoted by R10 and R11. The coupling

constant of type IIA string theory, g
(A)
11 , is recovered by g

(A)
11 = R

3
2
11 in the decompactification

limit R11 → ∞. Since type IIA on S1 with radius R10 is related by T-duality to type IIB

on S1 with inverse radius, one finds the uncompactified type IIB string theory with coupling

constant g
(B)
S = R11

R10
in the singular limit (R11 → 0, R10 → 0).

Finally, the strong coupling limit of E8 × E8 heterotic supergravity is related to a compact-

ification of 11-dimensional supergravity on an interval, I = S1/Z2. This compactification is

called Hořava-Witten theory. The radius of the interval is related to the string coupling of

heterotic supergravity via R = gS. As in the type IIA string theory case, the strong coupling

limit corresponds to the decompactification limit of Hořava-Witten theory.

There exist BPS-solutions of 11-dimensional supergravity, which are the M2- and M5-branes.

We postpone the detailed description of these objects to the second part of this thesis, Higher

gauge theory and multiple M5-branes.

When 11-dimensional supergravity is Kaluza-Klein compactified on a d-dimensional torus

T d, continuous non-compact global symmetries emerge, which have the structure of split real

forms of the exceptional Lie groups Ed(d) [35, 36, 37, 38]. In contrast to T-duality, these

so-called exceptional symmetries mix weak and strong coupling regimes. It has been pro-

posed, that the discrete subgroup of the exceptional symmetry groups remain an exact non-

perturbative symmetry on quantum level of the whole M-theory. This discrete symmetry is

named U-duality and the associated discrete subgroups Ed(d)(Z) are called U-duality groups,

which combine the T-duality and S-duality groups. After commenting on the emergence of

U-duality in string theory in more detail in the next section, we will describe the program

of geometrization of U-duality, which is called exceptional generalized geometry, also called
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M-geometry. It can be regarded as parallel to generalized geometry, which geometrizes the

T-duality symmetry in toroidal string compactifications of type II string theory.

3.2.10 On the emergence of U-duality

M-theory is the underlying theory of all 5 consistent superstring theories. Although its

complete description is still unknown, its low-energy effective description is given by 11-

dimensional supergravity. It turns out that toroidal compactification of 11-dimensional

supergravity exhibits global continuous symmetries that combine S-duality and T-duality

groups in a non-commutative way. The resulting groups turn out to be exceptional Lie

groups and are termed U-duality. The appearance of U-duality symmetries can already be

observed when compactifying type IIB string theory on a torus. In this section, we comment

on the emergence of exceptional symmetries in toroidal compactifications of type IIB string

theory and M-theory. This section is based on [11, 70].

Let us consider type IIB string theory compactified on a 6-dimensional torus, T 6. From

T-duality investigations, we know that there emerge 62 = 36 scalars from the metric gij and

Kalb-Ramond field Bij, which parameterize the Narain moduli space.

Furthermore, there are the dilaton φ and 0-form gauge field C(0) from the 10-dimensional

theory. They parameterize the coset

SL(2;R)

U(1)× SL(2;Z)
. (3.177)

Then, the Ramond-Ramond 2-form and 4-form gauge fields C(2) and C(4) contribute 15

scalars, respectively. Finally, the duals of the 2-forms Bµν and C
(2)
µν in the non-compact 4

dimensions contribute 2 scalars. In sum, we have 36 + 2 + 15 + 15 + 2 = 70 moduli. It turns

out that they locally parameterize the coset

E7/SU(8). (3.178)

The group E7 is generated by SO(6, 6) and SL(2). We conclude, that in the supergravity

approximation, the action has a continuous symmetry of E7 acting on above coset. Further-

more, there arise 56 gauge bosons from the metric and forms, which transform in the 56 of

the classical symmetry group E7. Due to charge quantization, the continuous symmetry of

E7 cannot be an exact symmetry of the quantum theory. However, it is conjectured that

its discrete subgroup, which leaves the charge lattice invariant, is the exact symmetry of
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the complete theory. It is denoted by E7(Z) and termed U-duality group. It contains the

T-duality group and S-duality group O(6, 6;Z) and SL(2;Z). So the moduli space is in the

end given by
E7

SU(8)× E7(Z)
, (3.179)

the U-duality analog of the Narain moduli space.

Let us now go on an discuss the symmetries, which emerge from toroidal compactification

of M-theory. Upon compactification on a D-dimensional torus, the 11-dimensional N = 1

supersymmetry algebra decomposes under SO(1, 11) → SO(1, 10 − D) × SO(D). Here,

SO(1, 10−D) is the Lorentz group of the non-compact directions and SO(D) is the so-called

R-symmetry. On field theory level, the R-symmetry is enhanced.

The fields of the NS and R sectors of type IIA string theory combine when going to the 11-

dimensional supergravity description. In the case of a D-dimensional torus compactification,

the NS and R sectors mix under the emerging symmetry group SL(D;R). The continuous

symmetry group of the low-energy effective theory is given by

ED(D) = SO(D − 1, D − 1;R) on SL(D;R). (3.180)

Here, on expresses the fact, that ED(D) is generated by two non-commuting subgroups. The

symbol ED(D) is used since it turned out that the emerging groups correspond to the so-called

ED(D)-series, where ED(D) is the so-called normal real form of the exceptional group ED. In

the normal real form, all Cartan generators and positive roots are non-compact. The scalars

of the toroidally compactified theory, which emerge from the metric, the 3-form and its dual,

parameterize the coset ED(D)/HD, where HD denotes the maximal compact subgroup of

ED(D). It corresponds to the enhanced R-symmetry. As we stated already in the case of type

IIB string theory, the continuous symmetry ED(D)(R) cannot be a symmetry of the quantum

theory due to charge quantization. The discrete subgroup of ED(D)(R), which leaves the

charge lattice invariant, is denoted by ED(D)(Z). The charges arise from the Kaluza-Klein

momenta along the torus and the wrapping modes of M2- and M5-branes on internal cycles

of the torus. It is conjectured, that the U-duality group of M-theory on a D-dimensional

torus is generated by T-duality of type IIA string theory on a (D− 1)-dimensional torus and

the modular group of TD, leading to the conjectured structure

ED(D)(Z) = SO(D − 1, D − 1;Z) on SL(D,Z). (3.181)
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The second component emerges from the reparameterization invariance on the D-dimensional

torus.

3.2.11 Exceptional generalized geometry

This section describes the idea of exceptional generalized geometry and its relation to M-

theory in an economical manner. It serves as orientation for the analysis conducted in 3.7. For

the sake of brevity, we cannot be exhaustive at this point. Selected background information

will be provided during the analysis in 3.7. This section is partly based on the pioneering

article of M-geometry [40]. Further important development can be found in the articles

[73, 74, 75, 76].

As described before, the bosonic field content of 11-dimensional supergravity consists of an

11-dimensional metric and a bosonic matter 3-form. When compactified on a d-torus, the

field theory exhibits a natural symmetry under the discrete action of split real forms of

exceptional Lie groups Ed(d)(Z). This symmetry is called U-duality and can be shown to be

composed of S-duality and T-duality.

When we considered T-duality in the context of toroidally compactified string theory, it

turned out that the generalized tangent bundle E = TM⊕T ∗M together with the generalized

metric made out of g and B can capture T-dual geometry astonishingly well due to its natural

O(D,D)-structure. The cotangent bundle part captures the wrapping modes of closed strings

on the torus.

In M-theory, there no strings are present. However, depending on the dimension of the torus,

on which 11-dimensional supergravity is compactified, M2-brane charges, M5-brane charges

or even KK6-monopole charges can arise. This suggests a generalized tangent bundle, which

contains an additional 2-form cotangent part to accommodate the M2-brane wrapping modes,

a 5-form cotangent part to accommodate the M5-brane wrapping modes and a 6-vector part

for the Kaluza-Klein monopole charge,

E = TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M ⊕ ∧6TM. (3.182)

This bundle is an example of a so-called exceptional generalized tangent bundle and trans-

forms in the adjoint of Ed(d). The U-duality action mixes momentum and winding modes of

M2- and M5-branes. The 2-form twists of generalized geometry become 3- and 6-form twists

in exceptional generalized geometry.
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In generalized geometry, the metric and the B-field parameterize the coset space (3.138).

Let Hd be the maximal compact subgroup of Ed(d). In exceptional generalized geometry, the

coset space is given by Ed(d)/Hd, which is naturally parameterized by the 11-dimensional

metric g, the 3-form gauge field C3 and its Hodge dual C6, depending on the dimension of

the torus compactification.

We understand that non-geometric spaces like the T-folds associated with Q-flux and even

more intricate spaces associated with R-flux arise in toroidal string compactifications by T-

duality transformation. The transition functions of T-folds take values in the full O(D,D)-

group, not just its geometric subgroup, and lead to non-geometric fluxes. In the same manner,

non-geometric fluxes and non-geometric spaces can arise from U-duality transformations on

toroidal compactifications of 11-dimensional supergravity. Such spaces, whose transition

functions take values in the full U-duality group are named U-folds.

Exceptional generalized geometry attempts to construct an Ed(d)-covariant generalized formu-

lation of geometry, which captures the underlying symmetry of 11-dimensional supergravity

backgrounds, along the lines of generalized geometry. In the same way as generalized geom-

etry provides a geometry for generic T-dual flux backgrounds, the exceptional generalized

geometry shall provide a geometric perspective on general U-dual flux compactifications of

M-theory. This is done by the introduction of so-called exceptional generalized metrics on

the exceptional generalized tangent bundle.

The exceptional generalized tangent bundles that transform in the adjoint representation

under the respective exceptional Lie groups are summarized in table 3.1. It is partly composed

of information taken from [70, 40, 77]. ”Dec.” means decomposition under SL(d;R). In the

cases d = 2, 3, 4, there are no M5-brane modes, since they cannot be accommodated by a

d-torus for d < 5. However, the appropriate ∧5T ∗M -component emerges for d = 5 and

higher. For the case d = 7 and higher, an additional symmetry due to dual diffeomorphisms

emerges, accommodated by the intricate ∧6TM ∼= (T ∗M ⊗∧7T ∗M)-part. In the case d = 8,

the structure becomes more intricate, due to the emergence of dual components associated

with so-called exotic branes, which are sourced by non-geometric fluxes. On each exceptional

tangent bundle, an exceptional generalized metric is defined, which contains both the original

metric and the gauge potentials.

We follow the argument in [78] relating M-theory with exceptional generalized geometry on

the algebraic level. The equations of motion of 11-dimensional supergravity incorporate a
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relation between the 4-form field strength F4 of the gauge potential C3 and its Hodge dual

F7 = ?F4,

dF4 = 0, (3.183)

d(F7) +
1

2
F4 ∧ F4 = d

(
F7 +

1

2
C3 ∧ F4

)
= 0. (3.184)

Introducing the local potential C6 with

dC6 = F7 +
1

2
C3 ∧ F4, (3.185)

we find

F4 = dC3, F7 = dC6 −
1

2
C3 ∧ dC3. (3.186)

This system of equations in invariant under action of the semi-direct product of the dif-

feomorphism group with a group that parameterizes closed 3- and 6-form twists. It turns

out, that the correct generalized tangent bundle, which transforms in the adjoint under the

invariance group of the equations of motion is given by

E = TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M. (3.187)

The sections of the bundle transform infinitesimally under 3-form and 6-form twists as

A3 B (X + σ + σ) = ιXA3 − A3 ∧ σ, (3.188)

A6 B (X + σ + σ) = −ιXA6 ∧ σ, (3.189)

where X + σ + σ ∈ Γ(TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M). In analogy to the Dorfman bracket in

generalized geometry, there is a natural bracket on the generalized tangent bundle, which

is invariant under diffeomorphisms and closed form twists. It generates the generalized

symmetries of the bundle and is given by

[X + σ + σ, Y + γ + γ]D = [X, Y ]Lie + LXγ − ιY dσ + LXγ − ιY dσ + dσ ∧ γ, (3.190)

where X + σ + σ,X + γ + γ ∈ Γ(TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M). As the Dorfman bracket in

generalized geometry can be twisted by a 3-form H-flux, the exceptional Dorfman bracket

can be twisted by the 4-form and 7-form field strengths F4 and F7,

[X + σ + σ, Y + γ + γ]D,F4,F7 = [X, Y ]Lie + LXγ − ιY dσ + LXγ − ιY dσ + dσ ∧ γ

+ ιXιY F4 + ιXιY F4 ∧ γ, (3.191)
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where F4 ∈ Ω4(M) and F7 ∈ Ω5(M). The Leibniz identity of the twisted Dorfman bracket

then requires the equations of motion (3.183) and (3.184). The resulting algebroid captures

underlying local symmetries of toroidally compactified 11-dimensional supergravity with M2-

and M5-branes wrapping closed cycles. From the perspective of dg-Leibniz algebras induced

by R[n]-bundles, the structure of the generalized tangent bundles of E6(6)-generalized geom-

etry has been studied in [79]. The structure of E7(7)-generalized geometry has been studied

in [39] and investigations on associated U-dual non-geometric fluxes can be found in [41].

3.3 Mathematical preliminaries

This section serves as an introduction to the various mathematical fields touched in the first

part of this thesis. Due to fact, that all these fields are intertwined, we provide additional

information on how certain mathematical structures can be seen from different perspectives

using different mathematical tools. The study of such relations is interesting in its own right.

However, our approach should provide adequate knowledge so that the very reader does not

get lost in the vast number of mathematical structures.

3.3.1 Poisson geometry, cohomology and connections

In this section, we give an introduction to Poisson manifolds, their Lichnerowicz-Poisson co-

homology and contravariant connections. Furthermore, we discuss the isomorphism between

de Rham and Lichnerowicz-Poisson cohomology in the case of a non-degenerate Poisson

structure. The background will become important in the analysis of the Poisson-Courant

algebroid and its relation to the standard Courant algebroid of generalized geometry. It is

mainly based on the excellent lecture notes [80] and the article [81]. Useful information on

the Lichnerowicz-Poisson cohomology associated to a Poisson manifold can be found in [82].

Standard results are presented in the textbook [83]. A very good review that relates various

incarnations of Poisson geometry to Lie algebroid theory can be found in [84].

We start with the definition of a Poisson algebra.

Definition 3.3.1 (Poisson algebra) Let A be an associative algebra over a field k. Fur-

thermore, let {−,−} : A⊗ A→ A be a Lie bracket, that satisfies the Leibniz identity,

{f, {gh}} = g{f, h}+ {f, g}h. (3.192)
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The bracket {−,−} is called a Poisson bracket and the 2-tuple (A, {−,−}) is a Poisson algebra.

Through the Leibniz identity, the Poisson bracket acts as a derivation of the product in A.

The Poisson manifold is a Poisson algebra on a space of smooth functions.

Definition 3.3.2 (Poisson manifold) Let M be a smooth manifold. Let {−,−} : C∞(M)⊗
C∞(M) → C∞(M) be a Poisson bracket on the associative algebra of smooth functions on

M with point-wise multiplication. The bracket is called a Poisson structure and the 2-tuple

(M, {−,−}) is called a Poisson manifold.

Two Poisson manifolds are related by a Poisson map.

Definition 3.3.3 (Poisson map) Let (M1, {−,−}1) and (M2, {−,−}2) be two Poisson man-

ifolds. A map Ψ : M1 →M2 is called a Poisson map, if it preserves the Poisson bracket.

If we have a Poisson manifold, we can define a Hamiltonian vector field with associated

Hamiltonian function.

Definition 3.3.4 (Hamiltonian vector field) Let (M, {−,−}) be a Poisson manifold. Fur-

thermore, let Θ ∈ C∞(M) be a smooth function on M . We define the Hamiltonian vector field

associated to Θ as

XΘ(f) = {Θ, f}, (3.193)

for all f ∈ C∞(M). In this case, Θ is called a Hamiltonian function.

There is a natural bracket on the space of polyvector fields, the Schouten bracket.

Definition 3.3.5 (Schouten bracket) Let M be a smooth manifold. Furthermore, let X ∈
Xi(M) and Y ∈ Xj(M) be i- and j-vector fields. The Schouten bracket between polyvector

fields is defined as

[X, Y ]S = X ◦ Y − (−1)(i−1)(j−1)Y ◦X, (3.194)

where

Y ◦X(df1, . . . , dfi+j−1) =
∑
σ

(−1)σY (d(X(dfσ(1), . . . , dfσ(i))), dfσ(i+1), . . . , dfσ(i+j−1)), (3.195)

where σ are (i, j − 1)-shuffles.
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As we will see in the following, a choice of bivector field Π on M , Π ∈ X2(M), can be used

to induce a Poisson structure. Interpreting general k-vectors Ξ on a smooth manifold M ,

Ξ ∈ Xk(M), as totally antisymmetric multilinear maps on the space of 1-forms by contraction,

Ξ : Ω1(M)⊗k → C∞(M), (3.196)

one can induce the following multilinear map on the space of smooth functions on M

Ξ̂ : C∞(M)⊗k → C∞(M) (3.197)

via the identification

Ξ̂(f1, . . . , fk) = Ξ(df1, . . . , dfk), (3.198)

where fi ∈ C∞(M) for i = 1, . . . , k. Then, with a choice of a 2-vector field Π ∈ X2(M), the

following bracket bracket can be induced,

{f, g}Π = Π(df, dg), (3.199)

where f, g ∈ C∞(M). The Schouten bracket of Π with itself gives the Jacobi identity of the

induced bracket,

1

2
[Π,Π]S(df, dg, dh) = {{f, g}Π, h}Π + {{h, f}Π, g}Π + {{g, h}Π, f}Π. (3.200)

We are lead to the following proposition.

Proposition 3.3.6 Let M be a smooth manifold. Furthermore, let Π ∈ X2(M) be a bivector

field, that induces the bracket {−,−}Π : C∞(M) ⊗ C∞(M) → C∞(M). Then, the 2-tuple

(M, {−,−}Π) is a Poisson manifold, if [Π,Π]S = 0.

Such a Π is called Poisson structure or Poisson tensor. A Poisson manifold (M, {−,−}Π) can

also be denoted by (M,Π).

Using a bivector field Π ∈ X2(M) we can define a map between the cotangent and tangent

bundles over M via the musical isomorphism,

Π] : T ∗M → TM, (3.201)

defined by Π] : α 7→ ιαΠ. Then, the Hamiltonian vector field XΘ associated to a Hamiltonian

function Θ can be written by

XΘ = Π](dΘ). (3.202)
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Definition 3.3.7 (Non-degenerate bivector field) Let Π ∈ X2(M) be a bivector field.

Π is called non-degenerate, if Π]
x is an isomorphism for all x ∈M .

If Π is non-degenerate, then the matrix (Πij) is invertible, and vice versa.

In a symmetric manner, we can associate a map between the tangent and cotangent bundles

over M with a 2-form ω ∈ Ω2(M) using via

ω[ : TM → T ∗M, (3.203)

defined by ω[ : X 7→ ιXω.

Definition 3.3.8 (Non-degenerate 2-form) Let ω ∈ Ω2(M) be a 2-form on M . ω is

called non-degenerate, if ω[x is an isomorphism for all x ∈M .

We find an important relation between Π and ω in the non-degeneracy case.

Proposition 3.3.9 Let Π ∈ X2(M) and ω ∈ Ω2(M) be a non-degenerate bivector field and

a non-degenerate 2-form. Then, we have the one-to-one correspondence,

ω[ = (Π])−1 ↔ Π] = (ω[)−1. (3.204)

In this case, we have the relation

[Π,Π](α, β, γ) = −2dω(Π](α),Π](β),Π](γ)), (3.205)

where α, β, γ ∈ T ∗M .

We now establish a relation between symplectic structures and Poisson structures. First

recall some definitions regarding symplectic structures.

Definition 3.3.10 (Symplectic structure) Let M be a smooth manifold. Furthermore,

let ω ∈ Ω2(M) be a 2-form on M . ω is called a symplectic structure, if it is closed, dω = 0,

and non-degenerate.

Definition 3.3.11 (Symplectic manifold) Let M be a smooth manifold equipped with a

symplectic structure ω. The 2-tuple (M,ω) is called a symplectic manifold.

The following proposition relates symplectic structures with Poisson structures. It is impor-

tant for the analysis of the Poisson-Courant algebroid.
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Proposition 3.3.12 Let M be a smooth manifold. Then, non-degenerate Poisson structures

on M are in one-to-one correspondence to symplectic structures on M .

Their matrix elements are related by inversion, (ωij(x)) = (Πij(x))−1, or ω = Π−1 for short.

Having understood Poisson manifolds and their relation to symplectic manifolds, we can now

go on and define the cohomology associated to Poisson manifolds. With a choice of Poisson

structure Π, we can define a natural differential on the complex of polyvectors.

Definition 3.3.13 (Lichnerowicz-Poisson cohomology) Let Π be a Poisson structure

on a smooth manifold M . We define the so-called Lichnerowicz-Poisson differential as con-

traction of the Poisson structure with the Schouten bracket,

dΠ = [Π,−]S, (3.206)

acting on polyvector fields dΠ : Xk(M) → Xk+1(M). The nilpotency of the differential is

equivalent to the Poisson condition of Π,

d2
Π = 0⇔ [Π,Π]S = 0. (3.207)

Therefore, we can define the cohomology of the complex (dΠ,X
•(M)),

Hk
LP(M,Π) =

ker(dΠ : Xk(M)→ Xk+1(M))

im(dΠ : Xk−1(M)→ Xk(M))
. (3.208)

This cohomology is called the Lichnerowicz-Poisson cohomology.

Obviously, Π defines a fundamental class [Π] in H2
LP(M,Π).

The Koszul bracket can be regarded as the Lie bracket on 1-forms. It plays a crucial role in

the definition of the Poisson-Courant algebroid.

Definition 3.3.14 (Koszul bracket) Let (M,Π) be a Poisson manifold. We can define a

natural bracket on the space of 1-forms by

[α, β]Π = LΠ](α)β − LΠ](β)α− d(Π(α, β)), (3.209)

where α, β ∈ Ω1(M) and L• denotes the Lie derivative. The bracket [−,−]Π is called the

Koszul bracket and becomes a Lie bracket on Ω1(M), since Π is a Poisson structure.
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We conclude, that for a Poisson manifold (M,Π), the space (Ω1(M), [−,−]Π) is a Lie algebra.

The musical isomorphism Π] : T ∗M → TM can be extended to polyforms via

Π] : Ωk(M)→ Xk(M), (3.210)

in local coordinates

Π]α =
1

k!
Π]αi1···ikdx

i1 ∧ · · · ∧ dxik

=
1

k!
αj1···jkΠ

j1i1 · · ·Πjkikdxi1 ∧ · · · ∧ dxik . (3.211)

Note that the use the same symbol Π] for any degree k. In the literature it is some-

times denoted by ∧kΠ]. This provides us with a relation between de Rham cohomology

and Lichnerowicz-Poisson cohomology over M , given by

dΠ(Π]α) = Π](dα), (3.212)

for any k-form α ∈ Ωk(M). We recognize, that d-coboundaries map to dΠ-coboundaries and

d-cocycles map to dΠ-cocycles. In the case of a non-degenerate Poisson tensor, the inverse

defines a symplectic manifold and this relation becomes an isomorphism, which lifts to an

isomorphism between de Rham and Lichnerowicz-Poisson cohomology,

Π] : H•de Rham(M)→ H•LP(M,Π). (3.213)

For completeness, let us define a deformation of the Poisson manifold in presence of a closed

3-form H [85, 86].

Definition 3.3.15 (Twisted Poisson manifold) Let M be a smooth manifold and let Π ∈
X2(M) a bivector such that

1

2
[Π,Π]S = Π]H, (3.214)

where H ∈ Ω3(M) is a closed 3-form, dH = 0. Then, the 3-tuple (M,Π, H) is called a

twisted Poisson manifold and Π is called a twisted Poisson structure.

Finally, let us discuss connections on a Poisson manifold associated with the Poisson tensor.

Such connections are called contravariant connections. We start by defining the Poisson

module according to [87].
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Definition 3.3.16 (Poisson module) Let A be a Poisson algebra and k a field. Let E be

an A-module equipped with a k-linear map λ : A× E → E that satisfies

λ({a, b}, e) = λ(a, λ(b, e))− λ(b, λ(a, e)), (3.215)

{a, b}e = aλ(b, e)− λ(b, ae), (3.216)

where a, b ∈ A and e ∈ E. The 2-tuple (E, λ) is called a Poisson module.

Then, we can define a Poisson vector bundle according to [88].

Definition 3.3.17 (Poisson vector bundle) Let E →M be a vector bundle and let Γ∞(E)

be the space of smooth sections of E seen as projective C∞(M)-module. Then, E → M has

the structure of a Poisson vector bundle, if Γ∞(E) is a Poisson module.

We arrive at the definition of a contravariant connection.

Definition 3.3.18 (Contravariant connection) Let E → M be a vector bundle. Fur-

thermore, let D : Ω1(M)× Γ∞(E)→ Γ∞(E) be a bilinear map such that

Dfαs = fDαs, (3.217)

Dα(fs) = fDαs− α(Xf )s, (3.218)

where α ∈ Ω1(M), f ∈ C∞(M) and s ∈ Γ∞(E). Then, D is a contravariant connection on

the vector bundle E →M .

Recall, that α(Xf ) = α(Π](df)) = −(Π]α)(f).

An important special case of the contravariant connection is the linear contravariant connec-

tion appearing in relation with the Poisson-Courant algebroid.

Definition 3.3.19 (Linear contravariant connection) Let F ∗(M)→M be a vector bun-

dle over an n-dimensional manifold M with structure group GL(n), so that F ∗(M) is the

coframe bundle over M .

A contravariant connection on F ∗(M)→M is called a linear contravariant connection.

In the case of a linear contravariant connection, Γ∞(E) is given by the space of sections on

T ∗M and the linear operator is given by D : Ω1(M)× Ω1(M)→ Ω1(M).
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Let U ⊂M be an open subset of M . Then, the contravariant Christoffel symbols are locally

defined by

Ddxidx
j = Γijk dx

k. (3.219)

Under coordinate transformations, the contravariant Christoffel symbols transform as

Γ̃lmn =
∂yl

∂xi
∂ym

∂xj
∂xk

∂yn
Γijk +

∂yl

∂xi
∂2ym

∂xj∂xk
∂xj

∂yn
Πik. (3.220)

One recognizes the contribution by the Poisson tensor Π, which is in contrast to ordinary

Christoffel connections on frame bundles. The action of the contravariant derivative Dα along

a 1-form α onto a general tensor T i1···irk1···ks is given by

(DαT )i1···irk1···ks = ΠklαkT
i1···ir
k1···ks −

r∑
a=1

Γkian αkT
i1···n···ir
k1···ks +

r∑
a=1

ΓknkaαkT
i1···ir
k1···n···ks . (3.221)

In the case, where we have a vector bundle E → M equipped with an ordinary connection

∇, we can define a contravariant connection by

Ddfα = ∇Xfα, (3.222)

where α ∈ Ω1(M). The curvature and torsion tensors are defined by

R(α, β)γ = DαDβγ −DβDαγ −D[α,β]Πγ, (3.223)

T (α, β) = Dαβ −Dβα− [α, β]Π. (3.224)

Locally, they can be written by

Rijk
l = 2Γ

[i|r|
l Γj]kr + 2Π[i|r|∂rΓ

j]k
l − ∂rΠ

ijΓrkl , (3.225)

T ijk = 2Γ
[ij]
k − ∂kΠ

ij. (3.226)

Finally, we define a special linear contravariant connection, the Poisson connection.

Definition 3.3.20 (Poisson connection) Let (M,Π) be a Poisson manifold.

A Poisson connection is a linear contravariant connection on M , such that DΠ = 0, where

D is the contravariant derivative.

A Poisson tensor, for which DΠ = 0, is called parallel.
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3.3.2 L∞-algebras

The structures of L∞-algebras lie at the heart of many analyses conducted in this thesis.

Especially, in section 3.7 we construct L∞-algebras, which encode the local symmetries of

higher gerbes as they appear in the generalized geometries associated with T- and U-duality,

by making use of graded symplectic manifolds. Therefore, this section provides a short

introduction to the realm of L∞-algebras supplemented by some pedagogical examples.

The concept of an L∞-algebras was first introduced in [89]. An introduction to this subject

can be found in [90]. We start by defining the notion of a graded vector space.

Definition 3.3.21 (Graded vector space) A graded vector space V is a vector space, which

is a direct sum decomposition, given by

V =
⊕
k

Vk, (3.227)

such that elements v ∈ Vk have degree |v| = k.

An L∞-algebra is then a graded vector space with certain maps, that satisfy certain condi-

tions.

Definition 3.3.22 (L∞-algebra) Let L =
⊕

k Lk be a graded vector space. Furthermore,

for n ≤ 1, let µn :
⊗n L→ L be graded antisymmetric multilinear maps of degree |µn| = n−2.

The graded antisymmetry of µn is expressed by the appearance of the Koszul sign,

µn(lσ(1), . . . , lσ(n)) = χ(σ; l1, . . . , ln)µn(l1, . . . , ln). (3.228)

Then, for homogeneously graded elements l1, . . . , ln, such that n ≤ 1, the maps µn obey the

so-called homotopy Jacobi identities,∑
i+j=n

∑
σ

χ(σ; l1, . . . , ln)(−1)ijµj+1(µi(lσ(1), . . . , lσ(i)), lσ(i+1), . . . , lσ(n)) = 0. (3.229)

The permutations σ are so-called (i, j)-unshuffles, which are permutations of (i+ j) elements

such that σ(1) < · · · < σ(i) and σ(i+ 1) < · · · < σ(i+ j).

The graded vector space L together with the maps µn is called an L∞-algebra.

An L∞-algebra is also referred to as strong homotopy Lie algebra. One calls an L∞-algebra

concentrated in degrees {i1, . . . , im}, if all Lk are trivial except for the degrees {i1, . . . , im}.
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Definition 3.3.23 (n-term L∞-algebra) An n-term L∞-algebra is an L∞-algebra, which

is concentrated in degrees {0, . . . , n− 1}.

An n-term L∞-algebra is categorically equivalent to a semistrict Lie n-algebra. If the highest

multilinear map µn+1 vanishes, then it is called a strict Lie n-algebra. Let us now give some

examples.

Example 3.3.1 (Lie algebra) Let L = L0 be an L∞-algebra concentrated in degree 1.

Since |µ1| = −1, obviously µ1 = 0. The only non-trivial map is µ2, which is of degree zero,

µ2 : L0 ⊗ L0 → L0. (3.230)

The map µ2 is antisymmetric by construction and the only non-trivial homotopy Jacob

identity is given by

µ2(µ2(l1, l2), l3) = µ2(µ2(l1, l3), l2)− µ2(µ2(l2, l3), l1), (3.231)

which is the usual Jacobi identity. We conclude, that the L∞-algebra concentrated in degree

1, (L0, µ2), is a Lie algebra. It can also be called a 1-term L∞-algebra or a Lie 1-algebra.

Example 3.3.2 (dg-Lie algebra) Let L =
⊕

i Li be an L∞-algebra, such that all maps

µk, for k ≥ 3, are trivial. The homotopy Jacobi identities implies the nilpotency of µ1,

µ1 ◦ µ1 = 0, (3.232)

the graded Jacobi identity of µ2,

µ2(l1, µ2(l2, l3)) = µ2(µ2(l1, l2), l3) + (−1)|l1||l2|µ2(l2, µ2(l1, l3)), (3.233)

and that µ1 is a graded derivation of µ2,

µ1(µ2(l1, l2)) = µ2(µ1(l1), l2) + (−1)|l1|µ2(l1, µ1(l2)). (3.234)

The graded Jacobi identity can also be read in the sense, that the adjoint action µ2(l1,−) is

a graded derivation of µ2. The resulting structure (L =
⊕

i Li, µ1, µ2) is called a differential

graded Lie algebra, or dg-Lie algebra. We conclude, that L∞-algebras, which have all maps

µk for k ≥ 3 trivial, are dg-Lie algebras.
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The Lie crossed module is the governing structure of parallel transport of 1-dimensional

objects and the starting point of our analysis the second part of this thesis. Let us therefore

in the following discuss how the differential crossed module, the infinitesimal approximation

of the Lie crossed module, fits into the realm of L∞-algebras.

Example 3.3.3 (Differential crossed module as dg-Lie algebra) Let (g, h, t, α) be a

differential crossed module. We can construct a dg-Lie algebra L =
(
h[1]

t−→ g
)

, where µ1 is

identified with t, µ2 : g⊗ g→ g is the Lie bracket on g, µ2 : g⊗ h[1]→ h[1] is identified with

α by

µ2(g, h) = α(g)(h). (3.235)

The object (h[1]
t−→ g, µ2) defines a dg-Lie algebra. We conclude, that the homotopy Jacobi

identities of the associated dg-Lie algebra are equivalent to the conditions of the differential

crossed module.

We furthermore conclude, that a differential crossed module is an example of a strict L∞-

algebra, more precisely, a strict Lie 2-algebra. In order to clarify the difference between strict

and semistrict Lie n-algebras, we discuss the example of a semistrict Lie 2-algebra.

Example 3.3.4 (Semistrict Lie 2-algebra) Let L = L0 ⊕ L1 be an L∞-algebra concen-

trated in degrees 0 and 1. In this case, the maps µ1 : L1 → L0, µ2 : L0 ⊗ L0 → L0,

µ2 : L0 ⊗ L1 → L1 and µ3 : L0 ⊗ L0 ⊗ L0 → L1 are non-trivial. Similar to the strict case,

the unary bracket µ1 (differential) is a nilpotent derivation of the binary bracket µ2, which

in form of µ2 : L0⊗L0 → L0 is a Lie bracket. The part µ2 : L0⊗L1 → L1 encodes an action

of L0 on L1. The non-trivial 3-bracket µ3, called the Jacobiator ”Jac”, distinguishes the

strict Lie 2-algebra from a semistrict Lie 2-algebra. For non-trivial µ3, we get the following

deformed or additional homotopy Jacobi identities,

µ1(µ3(x1, x2, x3)) = −µ2(µ2(x1, x2), x3) + µ2(µ2(x1, x3), x2)− µ2(µ2(x2, x3), x1) (3.236)

µ3(µ1(y), x1, x2) = −µ2(µ2(x1, x2), y)− µ2(µ2(y, x1), x2) + µ2(µ2(y, x2), x1) (3.237)

− µ2(µ3(x1, x2, x3), x4) + µ2(µ3(x1, x2, x4), x3)− µ2(µ3(x1, x3, x4), x2)

+ µ2(µ3(x2, x3, x4), x1) = −µ3(µ2(x1, x2), x3, x4)− µ3(µ2(x2, x3), x1, x4)− µ3(µ2(x3, x4), x1, x2)

− µ3(µ2(x1, x4), x2, x3) + µ3(µ2(x1, x3), x2, x4) + µ3(µ2(x2, x4), x1, x3). (3.238)
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The first equation is the Jacobi identity broken by the differential of the Jacobiator. The

second equation is called the action property. The last equation is the so-called coherence

property of the Jacobiator.

For vanishing Jacobiator the semistrict Lie 2-algebra condenses to a strict Lie 2-algebra.

3.3.3 Courant algebroids

In this section, we will give an introduction into the realm of Courant algebroids. They

will serve as a crucial ingredient in the analysis of the Poisson-Courant algebroid, T-duality

presentation in the graded symplectic manifold setup and T-dual non-geometric flux back-

grounds. Their higher analogues appear in the analysis of exceptional generalized geometry

with M2-branes.

We start with the definition of a general Courant algebroid.

Definition 3.3.24 (Courant algebroid) Let E →M be a vector bundle over E, where M

is a smooth manifold. Furthermore, let the vector bundle E be equipped with a fiber metric

〈−,−〉 : E ⊗ E → R and a binary bracket [−,−]D : E ⊗ E → E. Finally, let ρ : E → TM

be a bundle map to the tangent bundle over M . The bundle map is also referred to as

anchor map. Then, the 4-tuple (E → M, 〈−,−〉, ρ, [−,−]D) constitutes a Courant algebroid,

if the operations obey the conditions

[e1, [e2, e3]D]D = [[e1, e2]D, e
3]D + [e2, [e1, e3]D]D, (3.239)

ρ(e1)〈e2, e3〉 = 〈[e1, e2]D, e
3〉+ 〈e2, [e1, e3]D〉, (3.240)

ρ(e1)〈e2, e3〉 = 〈e1, [e2, e3]D + [e3, e2]D〉, (3.241)

where e1, e2, e3 ∈ Γ(E). The binary bracket [−,−]D is called Dorfman bracket.

The antisymmetrization of the Dorfman bracket is called the Courant bracket,

[e1, e2]C =
1

2
([e1, e2]D − [e2, e1]D). (3.242)

Special subclasses of Courant algebroids are the transitive Courant algebroid [91] and the

exact Courant algebroid. The transitive Courant algebroid appears in heterotic string theory,

where in addition to the metric and a 2-form field a non-abelian gauge field emerges. The

exact Courant algebroid has been discussed in relation with generalized geometry. For the

relation of Courant algebroids to Lie bialgebroids see [22].
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Definition 3.3.25 (Transitive Courant algebroid) Let (E → M, 〈−,−〉, ρ, [−,−]D) be

a Courant algebroid. The Courant algebroid is called transitive, if the bundle map ρ is sur-

jective.

Definition 3.3.26 (Exact Courant algebroid) A Courant algebroid on E is called exact,

if it fits into the short exact sequence,

0→ T ∗M → E
ρ−→ TM → 0. (3.243)

Exact Courant algebroids are examples of transitive Courant algebroids.

Let us in the following discuss important examples of Courant algebroids: the standard

Courant algebroid on TM ⊕ T ∗M , the H-twisted standard Courant algebroid, the Poisson-

Courant algebroid and its R-twisted version.

Example 3.3.5 (Standard Courant algebroid) Let M be a smooth manifold. Let us

take as the vector bundle the direct product of tangent and cotangent bundle, E = TM ⊕
T ∗M . This vector bundle is called the generalized tangent bundle. Any section of the gen-

eralized tangent bundle, e ∈ Γ(TM ⊕ T ∗M), can be written in the form e = X + α, where

X ∈ TM and α ∈ T ∗M . The fiber metric 〈−,−〉 is the paring between the form and vector

components,

〈X + α, Y + β〉 = ιXβ + ιY α, (3.244)

where X+α, Y +β ∈ Γ(TM⊕T ∗M). The bundle map is chosen to be the natural projection

to the tangent component,

ρ(X + α) = X, (3.245)

where X + α ∈ Γ(TM ⊕ T ∗M). Finally, the Dorfman bracket is given by

[X + α, Y + β]D = [X, Y ]Lie + LXβ − ιY dα. (3.246)

Above operations obey the conditions for a Courant algebroid and the 4-tuple (TM⊕T ∗M →
M, 〈−,−〉, ρ, [−,−]D) is called the standard Courant algebroid.

It turns out that standard Courant algebroids are classified by a 3-form, H ∈ H3(M,R)

[92]. This class is also referred to as Ševera class of the Courant algebroid. This independent

degree of freedom can be introduced as a twist of the standard Courant algebroid as follows.
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Example 3.3.6 (H-twisted standard Courant algebroid) Let TM⊕T ∗M →M be the

generalized tangent bundle. The fiber metric as well as the anchor map are the same as in

the case of the untwisted standard Courant algebroid. However, the Dorfman bracket gains

an additional term,

[X + α, Y + β]D,H = [X + α, Y + β]D + ιXιYH

= [X, Y ] + LXβ − ιY dα + ιXιYH, (3.247)

where X + α, Y + β ∈ Γ(TM ⊕ T ∗M) and the closed 3-form H ∈ Ω3(M) with dH = 0

is the Ševera class. Note that we introduced the H-twisted Dorfman bracket [−,−]D,H in

order to distinguish it from the untwisted Dorfman bracket, [−,−]D. Then, the 4-tuple

(TM ⊕ T ∗M →M, 〈−,−〉, ρ, [−,−]D,H) is called the H-twisted standard Courant algebroid.

The H-twisted Courant bracket is defined by antisymmetrization of the H-twisted Dorfman

bracket,

[X + α, Y + β]C,H =
1

2
([X + α, Y + β]D,H − [Y + β,X + α]D,H). (3.248)

A particularly useful type of Courant algebroid for the analysis of non-geometric R-flux

geometries in string theory is the so-called Poisson-Courant algebroid, which is a Courant

algebroid defined on a Poisson manifold. It has been used in the definition of Poisson-

generalized geometry as a model for non-geometric R-flux [32]. A contravariant version of

topological T-duality based on the Poisson-Courant algebroid has been developed in [33].

Definition 3.3.27 (Poisson-Courant algebroid, [32]) Let M be a smooth manifold, that

is equipped with a Poisson tensor Π ∈ Γ(∧2TM), so that (M,Π) becomes a Poisson manifold.

Furthermore, let E = TM ⊕ T ∗M → M be the generalized tangent bundle over (M,Π). We

define the three Courant algebroid operations as follows. The fiber metric on E is given as

usual,

〈X + α, Y + β〉 = ιXβ + ιY α, (3.249)

where X + α, Y + β ∈ Γ(E). The bundle map ρ : E → TM is defined by

ρ(X + α) = Π](α) = Πijαi∂j, (3.250)

where Π] : T ∗M → TM denotes the musical isomorphism. Furthermore, the Dorfman bracket

is defined by

[X + α, Y + β]πD = [α, β]Π + LΠ
αY − ιβdΠX, (3.251)
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where X + α, Y + β ∈ Γ(E). The bracket [−,−]Π : T ∗M ⊗ T ∗M → T ∗M denotes the Koszul

bracket with respect to the Poisson tensor Π, LΠ
α = ιαdΠ +dΠια denotes the contravariant Lie

derivative associated to Π and ια is the contravariant interior product acting on polyvectors.

Finally, dΠ = [Π,−]S denotes the Lichnerowicz-Poisson differential.

The 4-tuple (TM⊕T ∗M → (M,Π), 〈−,−〉, ρ, [−,−]ΠD) is called a Poisson-Courant algebroid.

Theorem 3.3.28 The Poisson-Courant algebroid is a Courant algebroid.

The physically and string theoretically appealing feature of the Poisson-Courant algebroid

is the natural 3-vector freedom. In the same sense, as standard Courant algebroids can be

twisted and are classified by a d-closed 3-form H, Poisson-Courant algebroids can be twisted

by and are classified by a dΠ-closed 3-vector R. This fact leads to the following definition.

Definition 3.3.29 (R-twisted Poisson-Courant algebroid, [32]) Let (TM ⊕ T ∗M →
(M,Π), 〈−,−〉, ρ, [−,−]ΠD) be a Poisson-Courant algebroid. Furthermore, let R ∈ Γ(∧3TM)

be a 3-vector field on M , which is dΠ-closed, where dΠ is the Lichnerowicz-Poisson differential

associated with Π.

The fiber metric on TM ⊕T ∗M and the anchor map are the same as in the Poisson-Courant

algebroid case. However, the Dorfman bracket is twisted by the 3-vector R,

[X + α, Y + β]πD,R = [X + α, Y + β]πD + ιαιβR

= [α, β]Π + LΠ
αY − ιβdΠX + ιαιβR, (3.252)

where X + α, Y + β ∈ Γ(E). The 4-tuple (TM ⊕ T ∗M → (M,Π), 〈−,−〉, ρ, [−,−]ΠD,R) is

called an R-twisted Poisson-Courant algebroid.

Theorem 3.3.30 The R-twisted Poisson-Courant algebroid is a Courant algebroid with Ševera

class R.

A direct comparison of the standard Courant algebroid and Poisson-Courant algebroid leads

to the insight that due to the existence of the Poisson structure the 1-forms can be lifted to

1-vectors in such a manner that the Courant algebroid structure is preserved. In other words,

the Poisson-Courant algebroid is the standard Courant algebroid of contravariant geometry

in which the roles of tangent and cotangent bundles are exchanged. In this sense, we can

call the Poisson-Courant algebroid a contravariant Courant algebroid. We will elucidate this

relation during the main analysis of this part.
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For convenience, we define Dirac structures associated to standard Courant algebroids.

Definition 3.3.31 (Dirac structure) Let (TM⊕T ∗M →M, 〈−,−〉, ρ, [−,−]D) be a stan-

dard Courant algebroid. A Dirac structure L is a half-rank subbundle L→M of TM⊕T ∗M ,

which satisfies

[Γ(L),Γ(L)]D ⊂ Γ(L) Integrability, (3.253)

〈L,L〉 = 0 Maximal isotropicity. (3.254)

Finally, let us discuss higher Courant algebroids [93, 94], which are important for the analysis

of exceptional generalized geometry. We follow the definition according to [94].

Definition 3.3.32 (Courant algebroid of degree n) Let M be a smooth manifold. Let

En = TM ⊕∧nT ∗M →M be a vector bundle over M . Furthermore, let 〈−,−〉 : En⊗En →
∧n−1T ∗M be a symmetric fiber metric. Let [−,−]D : En⊗En → En be a bilinear map, which

we call the Dorfman bracket of degree n. Finally, let ρ : En → TM be the projection to TM .

If the fiber metric and Dorfman bracket are defined as

〈X + α, Y + β〉 = ιXβ + ιY α, (3.255)

[X + α, Y + β]D = [X, Y ]Lie + LXβ − ιY dα, (3.256)

then they satisfy the relations

[e1, [e2, e3]D]D = [[e1, e2]D, e
3]D + [e2, [e1, e3]D]D, (3.257)

[e1, fe2] = f [e1, e2] + ρ(e1)(f)e2, (3.258)

[fe1, e2] = f [e1, e2]− ρ(e2)(f)e1 + df ∧ 〈e1, e2〉, (3.259)

where e1, e2, e3 ∈ En, f ∈ C∞(M), and define a Courant algebroid of degree n.

The associated higher Courant bracket is given by antisymmetrization of the higher Dorfman

bracket,

[X + α, Y + β]C =
1

2
([X + α, Y + β]D − [Y + β,X + α]D)

= [X, Y ]Lie + LXβ − LY α−
1

2
d(ιXβ − ιY α). (3.260)

We recognize, that the crucial difference between the standard Courant algebroid and higher

Courant algebroid is that they accommodate forms of different degree. The 1-form component
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in the standard Courant algebroid serving as a freedom to accommodate the winding modes

of closed strings in toroidal compactifications and closely related to generalized geometry

is generalized to an n-form component. For n = 2 the generalized tangent bundle can

accommodate the wrapping modes of M2-branes, and for n = 5 even the wrapping modes

for M5-branes. However, in the toroidally compactified 11-dimensional supergravity setting,

both M2- and M5-branes might be present simultaneously. In this case, a higher Courant

algebroid is insufficient. We will analyze this situation in this part of the thesis from the

perspective of graded symplectic manifolds.

We end this section by stating the following theorem that relates higher Courant algebroids

to L∞-algebras. It makes use of and generalizes the construction in [95].

Theorem 3.3.33 ([94]) Let M be a smooth manifold. The complex

C∞(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn−2 d−→ Γ(En−1) = TM ⊕ ∧n−1T ∗M (3.261)

has a Lie n-algebra structure with the following operations. µ1 is given by the de Rham

differential. µ2 is given by the Courant bracket of degree n− 1 on sections of Γ(En−1),

µ2(−,−) = [−,−]D : En−1 ⊗ En−1 → En−1 (3.262)

and for X + α ∈ Γ(En−1) and β ∈ Ω•<n−1(M) given by the Lie derivative,

µ2(X + α, ξ) =
1

2
LXξ. (3.263)

Then, µ3 is given by

µ3(X + α, Y + β, Z + γ) = − 1

3!
(〈[X + α, Y + β]C, Z + γ〉 ± perm.), (3.264)

where X + α, Y + β, Z + γ ∈ Γ(En−1) and by

µ3(ξ,X + α, Y + β) = −1

6

(
1

2
(ιXLY − ιYLX) + ι[X,Y ]Lie

)
ξ, (3.265)

where X + α, Y + β ∈ Γ(En−1) and ξ ∈ Ω•<n−1(M). The brackets µn for n ≥ 4 are given by

µn(X1 + α1, . . . , Xn + αn) =
∑
i

[X1, . . . , αi, . . . , Xn], (3.266)

where

[α,X1, . . . , Xn−1] =
(−1)

n+1
2 12Bn−1

(n− 1)(n− 2)

∑
1≤i<j≤n−1

(−1)i+j+1ιXn−1 · · · ι̂Xj · · · ι̂XiιX1 [α,Xi, Xj],

(3.267)
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for sections of Γ(En−1). For ξ ∈ Ω•<n−1(M), the maps are given by

[ξ,X1+α1, . . . , Xn−1+αn−1] =
(−1)

n+1
2 12Bn−1

(n− 1)(n− 2)

∑
1≤i<j≤n−1

(−1)i+j+1ιXn−1 · · · ι̂Xj · · · ι̂XiιX1 [ξ,Xi, Xj].

(3.268)

Here, Bn denote the Bernoulli numbers.

3.3.4 Graded manifolds and supergeometry

In this section, we will give an introduction in graded manifolds and supergeometry. An

introduction to supergeometry from the mathematical perspective can be found in [96]. The

lecture notes [97] cover also the physical perspective. A good introduction with helpful

examples, which also covers the relation to so-called R[n]-bundles can be found in [79].

Furthermore, we recommend [98, 99] for more details on the underlying structures to be

introduced.

Supergeometry is an extremely useful method to rewrite mathematical structures and study

their properties. We will make use of it in order to gain understanding of the underlying

structures of T-duality and U-duality. The presentation of this mathematical subject is sup-

plemented by many introductory examples always stressing the relations to other important

mathematical constructions. In the end, this section culminates in the analysis of Courant

algebroids, their higher generalizations and twists of Courant algebroids from the superge-

ometric point of view. It will bring us into the position to generate deformed versions of

Courant algebroids, which are related to double field theory and T-duality.

Let us start with the definition of a graded manifold and explain what grading is.

Definition 3.3.34 (Graded Manifold) Let M be a smooth manifold. A graded manifold

M is a locally ringed space (M,OM), which is locally isomorphic to (U, C∞(U)∧W ∗), where

U is an open subset of Rn and W is a vector space of finite dimension. The isomorphism is

such that the parity is preserved,

⊕
k

C∞(U)⊗ ∧kW ∗ → Z2, f ⊗ x 7→ |f ⊗ x| = |x| = k mod 2. (3.269)

A graded manifold with Z2-grading is called a supermanifold. Locally, a graded manifold

consists of open subsets of Rn complemented with odd coordinates from W ∗. The algebra
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of smooth functions over M is denoted by C∞(M). Homogeneous elements f, g ∈ C∞(M)

have an associated degree, denoted by |f | and |g|, such that

fg = (−1)|f ||g|gf. (3.270)

Having the graded manifold at hand, we can equip it with a differential, denoted by Q.

Definition 3.3.35 (Differential graded manifold) Let M be a graded manifold. Fur-

thermore, let Q be a vector field of degree 1 on M, Q ∈ X1(M), so that it is homological,

Q2 = 0. Then, the resulting structure (M, Q) is called differential graded manifold.

In general, a vector field Q ∈ X1(M) is called homological, if Q2 = 0. A Differential graded

manifolds is also called dg-manifold or Q-manifold.

An important class of Q-manifolds are the non-negatively graded ones. This leads to the

following definition.

Definition 3.3.36 (NQ-manifold) Let (M, Q) be a dg-manifold. The 2-tuple (M, Q) is

called an NQ-manifold, if M is non-negatively graded.

Let us consider a simple example of an NQ-manifold, which encodes the structure of a de

Rham complex.

Example 3.3.7 (De Rham complex) Let M be an ordinary smooth manifold. Let us

consider the graded manifoldM = T [1]M . The object T [1] takes the tangent bundle, so that

the degree of the tangent fiber coordinates is shifted by 1. Then,M can locally be described

by coordinates (xi, ξi) of degrees (0, 1), where the index runs over i = 1, 2, . . . dim(M). The

coordinates xi denote the local coordinates on M , whereas ξi denote the local coordinates

on the fiber. Furthermore, we choose the homological vector field Q = ξi ∂
∂xi

. The space of

smooth functions on M can be decomposed by degree,

C∞(M) =
∞⊕
k=0

C∞k (M), (3.271)

where C∞k (M) denotes the subset of smooth functions on M, which are of degree k. More

precisely, these spaces are given by

C∞k (M) =

{
1

k!
αi1···ikξ

i1 · · · ξik |αi1···ik ∈ C∞(M)

}
. (3.272)
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The homological vector field Q raises the degree by 1,

Q

(
1

k!
αi1···ikξ

i1 · · · ξik
)

=
1

k!
∂i1αi2···ik+1

ξi1 · · · ξik+1 (3.273)

and the homological condition, Q2 = 0, is trivially satisfied. Therefore, we find the complex

0→ C∞0 (M)
Q−→ C∞1 (M)

Q−→ C∞2 (M)
Q−→ · · · Q−→ C∞dim(M)(M)

Q−→ 0. (3.274)

Let us define an injection map j : T ∗M → M from the cotangent bundle over M to the

graded manifold M by

j : (xi, dxi) 7→ (xi, ξi), (3.275)

so that the pullback of an element α ∈ C∞k (M) along j is given by

α =
1

k!
αi1···ikξ

i1 · · · ξik 7→ j∗(α) =
1

k!
αi1···ikdx

i1 ∧ · · · ∧ dxik ∈ Ωk(M). (3.276)

Furthermore, the homological vector field is related to the de Rham differential d on Ω•(M)

via j∗ ◦ Q = d ◦ j∗, so that the whole complex (3.274) can be pulled back to the de Rham

complex over M ,

0→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · d−→ Ωdim(M)(M)

d−→ 0. (3.277)

We conclude, that the structure induced by the Q-manifold (T [1]M,Q = ξi ∂
∂xi

) encodes the

de Rham complex over M .

In general, the so-called shift functor [n] shifts the degrees of objects it is applied to. For

example, an element v of an ordinary vector space V has degree |v| = 0. However, if we apply

the shift functor, we find the graded vector space V [n] with elements v of degree |v| = n.

In the same sense, if we have a vector bundle E → M and apply the shift functor to give

E[n] → M , then the local coordinates of the fiber of E are shifted in degree by n. Locally,

the shifted vector bundle is given by F [n]× U , where U is an open subset of M and F [n] is

the degree shifted fiber of E[n]. The shift of the tangent bundle is denoted by T [n]M and

the local fiber coordinates gain the degree n. The shift of the cotangent bundle, which is

denoted by T ∗[n]M , produces local fiber coordinates of degree n.

Finally, let us consider the double fibration, T ∗[n]T [m]M . In this case, local coordinates xi

on M are of degree 0. When treating the first fiber T [m], we find local fiber coordinates

ξi of degree m. Now, we take a second fiber T ∗[n] over T [m]M . To each local coordinate
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(xi, ξi) on T [m]M we assign a dual coordinate on the fiber, where the degree is shifted by m.

Therefore, we find coordinates pi dual to xi of degree m− 0 = m and coordinates ζi dual to

ξi of degree m− n. The degree of the initial coordinate has to be subtracted, since we take

the cotangent fiber, which is dual to the tangent fiber.

Now let us endow the Q-manifold with an additional graded symplectic structure.

Definition 3.3.37 (Symplectic NQ-manifold) Let (M, Q) be an NQ-manifold. Equip

M with a graded symplectic structure ω of degree n and demand the compatibility condition

LQω = 0. Then, (M, Q, ω) is called a symplectic NQ-manifold of degree n.

A symplectic NQ-manifold is also called QP-manifold, where ”Q” refers to the homological

vector field Q and ”P” to the graded Poisson structure, which is induced by the graded

symplectic structure as follows. The graded symplectic structure induces a graded Poisson

bracket on the space of smooth functions on M, {−,−} : C∞(M)⊗ C∞(M)→ C∞(M), via

{f, g} = (−1)|f |+n+1ιXf ιXgω, (3.278)

where f, g ∈ C∞(M) and |f | denotes the degree of f . The object Xf denotes the Hamiltonian

vector field of f and is defined by

ιXfω = −δf, (3.279)

where δ is the de Rham differential onM. If we are given a QP-manifold (M, Q, ω) of degree

n, then there exists a function Θ ∈ C∞(M) of degree n+ 1, such that

{Θ, f} = Qf, (3.280)

for any f ∈ C∞(M). This function Θ is called Hamiltonian function associated to the homo-

logical vector field Q. The property of the vector field to be homological is then expressed

by the classical master equation,

Q2 = 0⇔ {Θ,Θ} = 0. (3.281)

The Hamiltonian function is also called homological function. The 2-tuple (M, ω) can be

referred to as P-manifold, where ω is the so-called P-structure. The vector field Q is referred

to as Q-structure.

QP-manifolds lie at the heart of this thesis. They serve as the underlying structure in

almost all investigations conducted in this thesis. QP-manifolds are deeply related with the
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Batalin-Vilkoviski formalism [42, 43]. For details on the mathematics surrounding graded

mathematics, we refer to appendix B.

It will turn out, that the analysis of double field theory using the supergeometric point of

view needs a slight generalization of the QP-manifold. Let us give the definition of this

weaker version of the QP-manifold, which has been first established in [100].

Definition 3.3.38 (Pre-QP-manifold) Let M be a graded manifold. Let furthermore M
be equipped with a graded symplectic structure ω of degree n. Finally, let Q be a vector field

defined on M such that LQω = 0. The 3-tuple (M, Q, ω) is called pre-QP-manifold of degree

n.

A pre-QP-manifold can also be referred to as symplectic pre-NQ-manifold. The vector field

Q can arise from a Hamiltonian function Θ via Q = {Θ,−}. However, the classical master

equation is not satisfied,

{Θ,Θ} 6= 0. (3.282)

This is in contrast to the ordinary QP-manifold.

We define Lagrangian submanifolds in the graded symplectic manifold setting for convenience.

Definition 3.3.39 (Lagrangian submanifold) Let (M, ω) be a graded symplectic mani-

fold. A Lagrangian submanifold L of (M, ω) is a submanifold of M such that the restriction

of the graded symplectic structure to L is vanishing, ω|L = 0, and the dimension of L is half

of the dimension of M.

The strength of QP-manifolds is that they capture the structure of intricate mathematical

objects in a clean and convenient manner. Let us start with the simplest example an observe

how a QP-manifold encodes a Lie algebra structure.

Example 3.3.8 (Lie algebra) Let V be a finite-dimensional vector space with generators

ei over a field k. Let ei be the generators of its dual V ∗. Let us consider the graded manifold

M = T ∗[n]V [1] ∼= V [1] ⊕ V ∗[n − 1], locally parameterized by coordinates (vi, vi) of degrees

(1, n−1), where n ∈ N. Furthermore, may the graded manifold be equipped with the graded

symplectic structure

ω = (−1)nδvi ∧ δvi. (3.283)
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Finally, let the homological function be

Θ = −1

2
f ijkv

jvkvi, (3.284)

where f ijk is a constant. The classical master equation, {Θ,Θ} = 0, is equivalent to the

Jacobi identity, f i[jkf
m
l]i = 0. Using derived brackets we find the Lie bracket,

[X, Y ]Lie = j∗{{Θ, j∗(X)}, j∗(Y )}

= X iY jfkijek, (3.285)

where the injection map j is defined as

j : V ⊕ V ∗ → V [1]⊕ V ∗[n− 1],

j : (ei, e
i) 7→ (vi, v

i).
(3.286)

So we have the assignment

j∗(X
iei) = X ivi, j∗(Yie

i) = Yiv
i, (3.287)

whereX i and Yi are coefficients are elements of the field k. We conclude that the QP-structure

(M,Θ, ω) induces a Lie algebra structure on V , (V, [−,−]).

The crucial point in reconstructing the mathematical object from the QP-manifold is the

use of derived brackets [101] and an injection map that identifies coordinates on the graded

manifold with elements of the mathematical object, which shall be reconstructed. Derived

brackets involve a contraction of elements of the graded manifold with the Hamiltonian

function using two or more graded Poisson brackets. Therefore, the structure of the QP-

manifold, which is encoded in the Hamiltonian function, directly influences the structure of

the mathematical object to be reconstructed.

A slight change in perspective allows us to reconstruct the dual model of a Lie algebra, the

Lie coalgebra, using the same underlying QP-manifold.

Example 3.3.9 (Lie coalgebra) Let V be a finite-dimensional vector space with gener-

ators ei over a field k. Let V ∗ denote its dual with generators ei. The QP-structure

(M,Θ, ω) is the same as in the former example. From the dual vector space being en-

coded inM = T ∗[n]V [1] ∼= V [1]⊕ V ∗[n− 1] and the fact that we could induce a Lie algebra

structure on V , we will be able to find a Lie coalgebra structure on the dual.
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The homological vector field Q = {Θ,−} induces a nilpotent derivation d of degree 1 on the

exterior algebra of V ∗ in the following way,

d = (−1)n+1j∗ ◦Q ◦ j∗, (3.288)

so that

dY = j∗({Θ, Yivi}) =
1

2
Yif

i
jke

jek, (3.289)

for Y = Yie
i ∈ V ∗ and the coefficient Yi is element of the field k.

Another important example is the following generalization of a Lie algebra.

Definition 3.3.40 (Lie algebroid) Let E →M be a vector bundle over a smooth manifold

M . May E be endowed with a Lie algebra structure [−,−] : Γ(E) ⊗ Γ(E) → Γ(E) and a

bundle map from the vector bundle E to the tangent bundle over M , ρ : E → TM . If the

two operations satisfy the relations

[ρ(e1), ρ(e2)] = ρ([e1, e2]Lie), (3.290)

[e1, fe2] = f [e1, e2] + (ρ(e1)f)e2, (3.291)

where e1, e2 ∈ Γ(E) and f ∈ C∞(M), then the 3-tuple (E → M, [−,−], ρ) is called a

Lie algebroid.

It can be easily reconstructed using a QP-manifold.

Example 3.3.10 (Lie algebroid) Let M = T ∗[n]E[1] be a graded manifold, where E →
M is a vector bundle over a smooth manifold M . The degree shift in E[1] refers to the fiber

coordinates being shifted in degree by 1. Therefore, the local coordinates onM are given by

(xi, ξa, ζa, pi) of degrees (0, 1, n − 1, n). xi is a local coordinate on M , ξa a local coordinate

on the fiber of E[1], and ζa as well as pi the conjugate coordinates associated with ξa and xi.

Let the graded symplectic structure on M be defined as

ω = −δxi ∧ δpi + (−1)nδξa ∧ δζa, (3.292)

and the Hamiltonian function given by

Θ = ρiapiξ
a − 1

2
fabcξ

bξcζa, (3.293)
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where ρia, f
a
bc ∈ C∞(M). The crucial difference to the Lie algebra is the existence of the

function ρia and the fact that the structure constants become structure functions. We define

the injection map j as follows,

j : E ⊕ TM →M,

j : (xi, ea, ∂i) 7→ (xi, ζa, pi),
(3.294)

where the coordinate ξa is in the kernel of j∗. A section X = Xaea ∈ Γ(E) can then be

pushed forward to

X = Xaea 7→ j∗(X
aea) = Xaζa (3.295)

and corresponds to an element of degree n + 1 on M. Then, derived brackets induce the

bundle map and the bracket of the Lie algebroid,

ρ(X)f = j∗{{Θ, j∗(X)}, j∗(f)}, (3.296)

[X, Y ] = j∗{{Θ, j∗(X)}, j∗(Y )}, (3.297)

and the classical master equation, {Θ,Θ} = 0, is equivalent to the conditions on the two

operations. We conclude, that the QP-manifold (M,Θ, ω) induces the structure of a Lie

algebroid on E →M .

The most important example for a QP-manifold of degree 1 is the Poisson-Lie algebroid.

Example 3.3.11 (Poisson-Lie algebroid) LetM = T ∗[1]M be a graded manifold, which

consists of the cotangent bundle over a smooth manifold M with fiber degree shifted by 1.

Locally, M can be described by coordinates (xi, ζi) of degrees (0, 1). Coordinates on M are

denoted by xi and coordinates on the fiber are denoted by ζi. The decomposition of the space

of smooth functions on M by degree is given by

C∞(M) =
∞⊕
k=0

C∞k (M), (3.298)

where

C∞k (M) =

{
1

k!
X i1···ikζi1 · · · ζik |X i1···ik ∈ C∞(M)

}
. (3.299)

We introduce a symplectic structure

ω = δxi ∧ δζi, (3.300)
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which induces the graded Poisson bracket

{f, g} =
f
←
∂

∂xi

→
∂g

∂ζi
− f

←
∂

∂ζi

→
∂g

∂xi
. (3.301)

Since the QP-manifold is of degree 1, the Hamiltonian function has to be of degree 2. The

most general form of the Hamiltonian function is given by

Θ =
1

2
Πijζiζj, (3.302)

where Πij ∈ C∞(M). Since the coordinates ζi are Grassmann odd, ζiζj = −ζjζi, the matrix

(Πij) is antisymmetric. We can define an injection map j : TM → M from the tangent

bundle over M to the graded manifold M,

j : (xi, ∂i) 7→ (xi, ζi). (3.303)

The pullback of the degree k part in the decomposition of C∞(M) along j is the space of

k-vectors over M , j∗(C∞k (M)) = ∧kTM . Then, the pullback of the Hamiltonian function Θ

along j is a bivector j∗(Θ) = 1
2
Πij∂i∂j ∈ ∧2TM . The homological vector field is given by

contraction of the Hamiltonian function with the graded Poisson bracket,

Q = {Θ,−} =
1

2
∂kΠ

ijζiζj

→
∂

∂ζk
− Πijζi

→
∂

∂xj
. (3.304)

Note that the degree of the Poisson bracket is (−1), so that Q has degree 2 − 1 = 1 as

expected. In this case, the classical master equation is not trivially solved,

{Θ,Θ} = QΘ = −Πin∂nΠjkζiζjζk. (3.305)

Since the coordinates ζi are Grassmann odd, the classical master equation is solved, if the

product (Πin∂nΠjk) is totally antisymmetric in the indices [ijk], leading to the condition

Π[i|n|∂nΠjk] = 0. (3.306)

The equation (3.306) can be rewritten in the form

[Π,Π]S = 0, (3.307)

where [−,−]S denotes the Schouten bracket on the space of polyvectors over M , [−,−]S :

∧iTM ⊗ ∧jTM → ∧i+j−1TM . This equation can be seen as the pullback of the classical

96



3.3. Mathematical preliminaries

master equation along j. We conclude, that (M, Q, ω) is a QP-manifold if the bivector Π is

a Poisson tensor. In other words, (M,Π) is a Poisson manifold. The Poisson bracket on M

induced by Π is reconstructed by a derived bracket,

{f, g}Π = Πij∂if∂jg ≡ −j∗{{j∗(f),Θ}, j∗(g)}, (3.308)

where f, g ∈ C∞(M) and j∗ denotes the pushforward along j. The classical master equation

then demands that {−,−}Π obeys the Jacobi identity. We conclude, that the structure on

the QP-manifold (M, Q, ω) is transported to (TM, {−,−}Π), the Poisson bracket {−,−}Π

can be seen as (local) Lie bracket on the tangent bundle TM . Therefore, this structure is

called Poisson-Lie algebroid.

Finally, let us investigate the pullback of the complex

0→ C∞0 (M)
Q−→ C∞1 (M)

Q−→ C∞2 (M)
Q−→ · · · Q−→ C∞dim(M)(M)

Q−→ 0 (3.309)

along j, where Q is a nilpotent differential if the classical master equation is satisfied. The

pullback of Q along j relates to the Lichnerowicz-Poisson differential dΠ = [Π,−]S via j∗◦Q =

−dΠ ◦ j∗, so that the complex (3.309) is pulled back to the Lichnerowicz-Poisson complex of

(M,Π),

0→ ∧0TM
dΠ−→ ∧1TM

dΠ−→ ∧2TM
dΠ−→ · · · dΠ−→ ∧dim(M)TM

dΠ−→ 0. (3.310)

The nilpotency of the Lichnerowicz-Poisson differential, d2
Π = 0, is guaranteed by the pullback

of the classical master equation, [Π,Π]S = 0. We conclude, that the QP-manifold (M, Q, ω)

encodes the Lichnerowicz-Poisson complex of polyvectors over (M,Π).

Let us state the following important theorem about QP-manifolds of degree 1.

Theorem 3.3.41 ([102]) QP-manifolds of degree 1 are in one-to-one correspondence with

Poisson manifolds.

Now we step into the realm of Courant algebroids. For this, we have to consider QP-manifolds

of degree 2. To get started, we state two important theorems relating Lie 2-algebras, QP-

manifolds of degree 2 and Courant algebroids.

Theorem 3.3.42 ([103]) A Courant algebroid gives rise to a Lie 2-algebra.

Theorem 3.3.43 ([102]) QP-manifolds of degree 2 are in one-to-one correspondence with

Courant algebroids.
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In the next example, we directly show the equivalence between QP-manifolds of degree 2

and Courant algebroids. Courant algebroids from the perspective of graded manifolds and

derived brackets have been introduced in [104]. A very recommendable survey on Courant

algebroids and related objects can be found in [84].

Example 3.3.12 (Courant algebroid) Let M = T ∗[2]E[1] be a graded manifold, where

E → M is a vector bundle over the smooth manifold M . The local fibers of E are denoted

by F . The object E[1] then expresses that the fiber coordinates of E are shifted in degree

by 1, so that the local fibers can be written by F [1]. Let us denote local coordinates on M

by xi, which have degree 0. The coordinates on F [1] are denoted as ξa and have degree 1.

The index a runs from 1 to rank(E). Now, we fiber the vector bundle again over T ∗[2]. We

introduce fiber coordinates on T ∗[2] with respect to xi and denote them by pi. The degree of

pi is 2. Finally, the fiber coordinates in T ∗[2] with respect to ξa live in F ∗[1] and are denoted

by ζa. Their degree is 1. We introduce a fiber metric 〈−,−〉 on E[1], so that we can identify

F [1] with F ∗[1] and combine ξa and ζa by introduction of a new variable ηa = (ξa, ζa). Then,

M can be locally described by coordinates (xi, ηa, pi) of degrees (0, 1, 2).

In the next step, we introduce the graded symplectic structure by

ω = −δxi ∧ δpi +
1

2
kabδη

a ∧ δηb, (3.311)

where the coefficient kab is related to the fiber metric 〈ηa, ηb〉 = kab by (kab) = (kab)−1. The

induced graded Poisson bracket is given by

{f, g} = − f
←
∂

∂xi

→
∂g

∂pi
+
f
←
∂

∂pi

→
∂g

∂xi
+
f
←
∂

∂ηa
kab

→
∂g

∂ηb
. (3.312)

Since we are constructing a QP-manifold of degree 2, the Hamiltonian function is of degree

3. The most general Hamiltonian function on this space is given by

Θ = ρiapiη
a +

1

3!
Cabcη

aηbηc, (3.313)

where ρia, Cabc ∈ C∞(M). The function ρia will be related to the anchor map of the Courant

algebroid, whereas the function Cabc will turn out to be the Ševera class. Let us investigate

the degree-decomposition of C∞(M) first,

C∞(M) =
∞⊕
k=0

C∞k (M). (3.314)
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We are interested in the first two spaces, which are given by

C∞0 (M) ∼= C∞(M), (3.315)

C∞1 (M) = {Xaη
a|Xa ∈ C∞(M)}. (3.316)

We introduce an injection map, that relates the Courant algebroid to the graded manifold

M,

j : E ⊕ TM →M,

j : (xi, ea, ∂i) 7→ (xi, ηa, pi),
(3.317)

where ea denote sections of E. We conclude, that the pullback of C∞1 (M) along j is the space

of sections of E,

X = Xaη
a 7→ j∗(X) = Xae

a ∈ Γ(E). (3.318)

We reconstruct the Courant algebroid structure in terms of the three operations, fiber metric,

anchor map and Dorfman bracket, via pullback along j and derived brackets as follows. The

fiber metric on E, 〈−,−〉 : E ⊗ E → R, is given by the pullback of the graded Poisson

structure along j,

〈X, Y 〉 ≡ j∗{j∗(X), j∗(Y )}, (3.319)

where X, Y ∈ Γ(E). The anchor map, ρ : E → TM , is reconstructed via derived bracket,

ρ(X)f ≡ j∗{{Θ, j∗(X)}, j∗(f)}, (3.320)

where X ∈ Γ(E) and f ∈ C∞(M). Finally, the C-twisted Dorfman bracket is reconstructed

by

[X, Y ]D,C ≡ j∗{{Θ, j∗(X)}, j∗(Y )}. (3.321)

The C-twisted Courant bracket is then given by the antisymmetrization,

[X, Y ]C,C ≡
1

2
(j∗{{Θ, j∗(X)}j∗(Y )} − j∗{{Θ, j∗(Y )}j∗(X)}) . (3.322)

The classical master equation, {Θ,Θ} = 0, leads to relations among the two functions ρia

and Cabc, which are equivalent to the Courant algebroid conditions. We conclude, that the

QP-manifold of degree 2, (M,Θ, ω), induces a Courant algebroid structure on E with Ševera

class C.
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We pointed out the importance of the H-twisted standard Courant algebroid in generalized

geometry and the analysis of T-duality geometry. Let us therefore discuss how the H-twisted

standard Courant algebroid fits into the framework of QP-manifolds of degree 2. This will

bring us into the position to introduce twist operations on the QP-manifold, to be described

below.

Example 3.3.13 (H-twisted standard Courant algebroid) The H-twisted Courant al-

gebroid is defined on the generalized tangent bundle E = TM⊕T ∗M . For the reconstruction,

we start with the graded manifold M = T ∗[2]T [1]M , where M is a smooth manifold. Lo-

cally, M can be described by coordinates (xi, ξi, ζi, pi) of degrees (0, 1, 1, 2). Compared to

the example on the general Courant algebroid, we split ηa = (ξi, ζi) and take the fiber metric

as k =

(
0 id
id 0

)
. The graded symplectic form then condenses to

ω = −δxi ∧ δpi + δξi ∧ δζi, (3.323)

inducing the graded Poisson bracket

{f, g} = − f
←
∂

∂xi

→
∂g

∂pi
+
f
←
∂

∂pi

→
∂g

∂xi
+
f
←
∂

∂ξi

→
∂g

∂ζi
+
f
←
∂

∂ζi

→
∂g

∂ξi
. (3.324)

Furthermore, we choose ρia = (δij, 0) and only the component Hijk in Cabc non-vanishing.

The Hamiltonian function then condenses to

ΘH = piξ
i +

1

3!
Hijkξ

iξjξk. (3.325)

Since we will make use of this function in the analysis of the main part of this thesis, we

will denote the Hamiltonian function by ΘH . It is directly related to the H-twisted standard

Courant algebroid. The derived brackets induce the anchor map as the natural projection

to the tangent bundle part and the H-twisted Dorfman bracket. The pullback of the graded

Poisson bracket induces the correct form of the fiber metric. The classical master equation

leads to

{Θ,Θ} = 0⇒ dH = 0, (3.326)

demanding that H be a closed 3-form on M , H ∈ H3(M,R), as expected from the Courant

algebroid structure.

For the special case of H = 0 we find the standard Courant algebroid.
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Example 3.3.14 (Standard Courant algebroid) Let M be a smooth manifold andM =

T ∗[2]T [1]M a graded manifold locally described by coordinates (xi, ξi, ζi, pi) of degrees (0, 1, 1, 2).

If the graded symplectic structure and Hamiltonian function are defined as

ω = −δxi ∧ δpi + δξi ∧ δζi, (3.327)

Θ0 = piξ
i, (3.328)

then the classical master equation is trivially solved and the derived bracket construction

recovers the standard Courant algebroid (TM ⊕ T ∗M →M, 〈−,−〉, ρ, [−,−]D).

Note that, we denote the Hamiltonian function, that induces the untwisted standard Courant

algebroid, by Θ0.

Higher Courant algebroids turn out to be important in the study of exceptional general

generalized geometry, where the M2-brane wrapping modes become integral part of the tan-

gent bundle construction. We will introduce special QP-manifolds of n, which induce higher

Courant algebroids, since they will play the main role in our analysis of exceptional gener-

alized geometry with M2-branes. The crucial structures are called Vinogradov algebroids,

which have been studied in [105] and are integral part in the analysis of [106].

Definition 3.3.44 (Vinogradov Lie n-algebroid) Let M be a smooth manifold. Let Vn

be the graded manifold defined by

Vn = T ∗[n]T [1]M, (3.329)

locally parameterized by coordinates (xi, ξi, ζi, pi) of degrees (0, 1, n − 1, n). Equip Vn with a

graded symplectic structure,

ω = −δxi ∧ δpi + (−1)nδξi ∧ δζi. (3.330)

Finally, define the Hamiltonian function Θ ∈ Vn via

Θ = ξipi. (3.331)

Then, the classical master equation, {Θ,Θ} = 0, is automatically satisfied. The 3-tuple

(Vn,Θ, ω) is called a Vinogradov Lie n-algebroid.
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Obviously, a Vinogradov Lie 2-algebroid induces a standard Courant algebroid structure. In

general, the degree n− 1 subspace of C∞(Vn) can be identified with the space of sections of

a Courant algebroid of degree n− 1 by the injection map j,

j : (TM ⊕ ∧n−1T ∗M)⊕ TM → Vn,

j : (xi, ∂i, dx
i1 ∧ · · · ∧ dxin−1 , ∂i) 7→ (xi, ζi, ξ

i1 · · · ξin−1 , pi),
(3.332)

leading to

j∗
(
X iζi +

1

(n− 1)!
αi1···in−1ξ

i1 · · · ξin−1

)
= X i∂i+

1

(n− 1)!
αi1···in−1dx

i1∧· · ·∧dxin−1 . (3.333)

The higher Courant bracket, higher Dorfman bracket and projection map are reconstructed

via derived brackets. The fiber metric is given as the pullback of the symplectic structure.

We are lead to the following theorem.

Theorem 3.3.45 A Vinogradov Lie n-algebroid induces the structure of a Courant algebroid

of degree (n− 1).

In the following we define an operation that can be used to manipulate general QP-manifolds.

Definition 3.3.46 (Canonical transformation) Let (M,Θ, ω) be a QP-manifold of de-

gree n. Fix a function α ∈ C∞(M) so that |α| = n. The canonical transformation by α is

defined by exponential adjoint action,

exp(δα)f = f + {f, α}+
1

2
{{f, α}, α}+ · · · , (3.334)

where f ∈ C∞(M) of any degree. Since the degree of the symplectic structure is |ω| = n,

and therefore the degree of the induced Poisson bracket is |{−,−}| = −n, this action is

degree-preserving. Furthermore, The exponential adjoint action preserves the graded Poisson

bracket,

{exp(δα)f, exp(δα)g} = exp(δα){f, g}, (3.335)

where f, g ∈ C∞(M).

Since the canonical transformation preserves the graded Poisson bracket, it can be called

a symplectomorphism. A different terminology is to refer to canonical transformations as

twists or twisting [107], as will become evident below. Canonical transformations are an

important tool to explore the classes of solutions of classical master equations, since

{Θ,Θ} = 0⇒ {exp(δα)Θ, exp(δα)Θ} = exp(δα){Θ,Θ} = 0. (3.336)
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Let us consider the twist of the standard Courant algebroid by a 2-form B-field. We will see

that no additional condition arises due to the property (3.336).

Example 3.3.15 (B-Twist of the standard Courant algebroid) Let us start by con-

sidering the QP-manifold (M = T ∗[2]T [1]M,Θ = piξ
i, ω), which induces the standard

Courant algebroid. The symplectic structure is of degree 2. Therefore, any function α ∈
C∞(T ∗[2]T [1]M), for which |α| = 2, defines a twist of the QP-manifold.

Let us for simplicity take the function B = 1
2
Bijξ

iξj. Pullback along j shows that B is a

2-form, j∗(B) = 1
2
Bijdx

idxj. The twist of the Hamiltonian Θ by exp(δB) leads to

exp(δB)Θ = Θ + {Θ, B}+ · · ·

= piξ
i +

1

2
∂iBjkξ

iξjξk. (3.337)

Higher order adjoint actions are vanishing so that the series converges. Comparison to the H-

twisted Courant algebroid shows that we actually induced a dB-twisted Courant algebroid.

Naturally, the classical master equation is still trivially solved, since d(dB) = 0 due to d2 = 0.

The 2-form can be associated with the Kalb-Ramond field, while the H-flux is the associated

field strength. In the case of the standard Courant algebroid there are more twists available,

which become important in our analysis.

3.3.5 AKSZ sigma models

The AKSZ method [44] due to Alexandrov, Kontsevich, Schwarz and Zaboronsky is a pre-

scription to generate topological sigma models from QP-manifold structures. The resulting

topological sigma models are called AKSZ sigma models and induce a BV-BRST formalism

of quantum field theories. The target space of the topological sigma models constructed

in this way inherit the structure induced by the QP-manifold. The BV-BRST formalism

will be conveniently described using superfield formalism. The superfields are expanded in

Grassmann odd coordinates and the various components encode not only the physical fields,

but also the ghosts and antifields. We recommend the lecture notes [97], which provides an

introduction to the subject of AKSZ sigma models from the physical point of view.

Let us assume, we want to construct a topological sigma model. For this, we have to specify

the worldvolume manifold of the dynamical object to be described. This is the manifold,

which will be embedded. Then, we have to specify the target space manifold, in which
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the worldvolume shall be embedded. The embedding functions, that determine how the

embedding is realized and which structure the target space has to have, live on the embedding

space.

We now introduce an abstract language to formalize this process. Let X be the worldvolume

on which the sigma model will be defined. We promote X to a graded manifold χ = T [1]X,

which locally is parameterized by coordinates (σµ, θµ) of degrees (0, 1). The coordinates

σµ are Grassmann even, whereas the coordinates θµ are Grassmann odd. Furthermore, we

introduce a differential d = θµ∂µ on χ as well as a d-invariant non-degenerate measure

µχ. Here, the derivative is denoted by ∂µ = ∂
∂σµ

. Then, the 3-tuple (χ,d, µχ) is a dg-

manifold with d-invariant non-degenerate measure µχ. We showed above, that a dg-manifold

of type (T [1]X, θµ∂µ) serves as a model of the de Rham complex over X. We conclude, we

constructed a superworldvolume dg-manifold (χ,d, µχ), which we embed into a super target

space in the next step. Recall, that the expression super refers to the superfield formalism

of the associated BV-BRST formalism of topological sigma models. It is not related to

supersymmetry.

Let the target space be denoted by M . The space of embeddings of X to M is denoted by

Map(X,M). We promote M to a QP-manifold (M, Q, ω) so that the target space inherits

the structure of the QP-manifold. In turn, we lift the space of embeddings of X to M to the

space of superembeddings Map(χ,M). Using the AKSZ method, we will be able to construct

a BV action on the mapping space between the two graded manifolds χ and M, which is

subject to a classical master equation on the mapping space. The respective differentials d

on χ and Q on M lift to ď and Q̌ on Map(χ,M) via

ď(z, f) = d(z)δf(z), Q̌(z, f) = Qf(z), (3.338)

where z ∈ χ and f ∈ Map(χ,M) a superembedding function.

In the next step, we lift structures from the target space QP-manifold to the mapping space.

The mapping space will become a QP-manifold itself and the Hamiltonian function is given

by the BV action of the associated BV-BRST formalism. The lift of the graded Poisson

bracket becomes the BV antibracket. In order to construct the lift, we have to define two

maps, the evaluation map and the chain map. The combination of both gives the desired lift

in terms of the so-called transgression map.

Definition 3.3.47 (Evaluation map) Let (χ,d, µ) and (M, Q, ω) be as defined above. We
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define the evaluation map ev that evaluates a function f ∈ Map(χ,M) at z ∈ χ via

ev : χ×Map(χ,M)→M, (z, f) 7→ f(z). (3.339)

Definition 3.3.48 (Chain map) Let (χ,d, µ) and (M, Q, ω) be as defined above. We de-

fine the chain map µ∗ as follows,

µ∗ : Ω•(χ×Map(χ,M))→ Ω•(Map(χ,M)),

µ∗ω(f)(v1, . . . , vk) =

∫
χ

µχ(z)ω(z, f)(v1, . . . , vk),
(3.340)

where vi ∈ X1(χ). The object
∫
χ
µχ denotes the Berezin integration on χ.

Having understood the evaluation map and the chain map, we combine them to the trans-

gression map.

Definition 3.3.49 (Transgression map) The transgression map is defined via composi-

tion of the evaluation map and chain map,

µ∗ev∗ : Ω•(M)→ Ω(Map(χ,M)). (3.341)

The transgression map is used to transport the QP-structure on M to the mapping space

Map(χ,M). The graded symplectic structure on the mapping space is the direct transgres-

sion of the graded symplectic structure on M,

Ω = µ∗ev∗ω. (3.342)

Since ω is non-degenerate and closed and the transgression map preserves these properties,

Ω is non-degenerate and closed. Ω induces a graded Poisson bracket on Map(χ,M), which

we denote by {−,−}Ω. It gives the BV antibracket of the associated BV-BRST formalism.

The homological function on Map(χ,M) is defined as

S = S0 + S1 = ιďµ∗ev∗ϑ+ µ∗ev∗Θ, (3.343)

where ϑ = −δω denotes the Liouville 1-form with respect to the graded symplectic structure

on M and Θ is the homological function on M. The homological function S gives the BV

action of the associated BV-BRST formalism and consist of two parts. The first part is

the transgression of the Liouville 1-form, where the de Rham differential is exchanged by
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the differential d on the worldvolume graded manifold. It gives the kinetic term in the BV

action. The second part is the transgression of the homological function onM and gives the

interaction term. Using the homological function S, we can define a degree 1 homological

vector field on Map(χ,M),

Q = {S,−}Ω. (3.344)

The homological vector field Q is the BRST operator of the BV-BRST formalism, or the

BRST-BV charge. We can show the following theorem.

Theorem 3.3.50 ([44]) The 3-tuple (Map(χ,M),Q,Ω) is a QP-manifold, i.e., the vector

field Q is homological,

Q2 = 0. (3.345)

Since the BRST operator is nilpotent, it induces a BRST complex and the associated BRST

cohomology of the BV-BRST formalism. The result is a topological field theory on the

mapping space.

Let us analyze the degree of the mapping space QP-manifold (Map(χ,M),Q,Ω). If the

worldvolume X is d-dimensional, then the chain map µ∗ has degree (−d). The evaluation map

is degree-preserving. Let the target space QP-manifold (M, Q, ω) be of degree n. By degree-

counting, the transgressed graded symplectic structure Ω is of degree (n− d). Therefore, the

mapping space QP-manifold (Map(χ,M),Q,Ω) is of degree (n− d).

Now, there are two cases of importance. In the case, where the dimension of the worldvolume

X matches the degree of the target space QP-manifold, the mapping space QP-manifold has

vanishing degree. The induced structure is equivalent to a Batalin-Fradkin-Vilkovisky (BFV)

formalism [108, 109] and the bracket induced by Ω is an ordinary Poisson bracket, which we

will denote by {−,−}Ω → {−,−}PB.

The second case comes into play, when the worldvolume X has dimension d = n+1, where n

is the degree of the target space QP-manifold. In this case, the mapping space QP-manifold

has degree n− (n+ 1) = −1. The induced structure is equivalent to the Batalin-Vilkovisky

(BV) formalism [110, 111] modeling a topological sigma model and the bracket induced by

Ω is the BV bracket, which we denote by {−,−}Ω → {−,−}BV. The associated ghosts and

antifields are naturally included in the graded objects on the mapping space as we will see

in the following.
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Definition 3.3.51 (ASKZ sigma model) The 3-tuple (Map(χ,M),Q,Ω) constructed out

of the data above, where the target space QP-manifold has degree n and the worldvolume

dimension is (n+ 1), is called an ASKZ sigma model.

Therefore, a AKSZ sigma model is a BV formalism on the superembedding space.

Let us discuss the construction of the Poisson sigma model as an introductory example.

The underlying structure is the Poisson-Lie algebroid, which is a QP-manifold of degree 1.

Therefore, the resulting topological sigma model is a topological string. For details on the

mapping space calculus we refer to appendix B.

Example 3.3.16 (Poisson sigma model) Let (M = T ∗[1]M,Θ, ω) be the target space

QP-manifold inducing the Poisson-Lie algebroid, defined by

ω = δxi ∧ δζi, Θ =
1

2
Πijζiζj, (3.346)

where the local coordinates (xi, ζi) are of degrees (0, 1). The Liouville 1-form ϑ is given by

ϑ = −ζiδxi. (3.347)

Let X be the 2-dimensional worldsurface, so that the superworldsurface becomes χ = T [1]X.

The kinetic term of the BV action is the lift of the Liouville 1-form to the mapping space,

S0 =

∫
χ

µχζidx
i, (3.348)

where ζi = ζi(σ, θ) and xi = xi(σ, θ) are mapping space superfields associated with the local

coordinates on M via the pullback along the evaluation map ev. The measure µχ is given

by µχ = dσ1dσ2dθ2dθ1. Note the reverse order of the Berezin measure. The interaction term

of the BV action is given by transgression of the Hamiltonian function on M,

S1 =

∫
χ

µχ
1

2
Πij(x)ζiζj. (3.349)

We find the BV action of the Poisson sigma model on χ by adding up the kinetic and the

interaction term,

S =

∫
χ

µχ

(
ζidx

i +
1

2
Πij(x)ζiζj

)
. (3.350)

The physical fields, ghost, ghost-of-ghosts and antifields are encoded in the components of

the superfields.
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Recall that QP-manifolds of degree 1 are in one-to-one correspondence with Poisson mani-

folds. We conclude, that the most general AKSZ sigma model in 2 dimensions is given by

the Poisson sigma model.

Since it will be important for our analysis, let us introduce the ASKZ sigma model associated

with the H-twisted Courant algebroid, the Courant sigma model with H-flux Wess-Zumino

term. We start with a standard Courant algebroid structure. Let M be the target space

manifold, which we promote to the QP-manifold structure of a H-twisted standard Courant

algebroid on the graded manifoldM = T ∗[2]T [1]M . We take a Liouville 1-form ϑ associated

with the graded symplectic structure

ω = −δxi ∧ δpi + δξi ∧ δζi, (3.351)

via −δϑ = ω by

ϑ = −piδxi − ξiδζi. (3.352)

The Hamiltonian function is given by

Θ = piξ
i +

1

3!
Hijkξ

iξjξk. (3.353)

We consider the embedding of the membrane superworldvolume χ = T [1]X into M, where

X is the 3-dimensional membrane worldvolume. The local coordinates on χ are denoted by

(σµ, θµ) of degrees (0, 1). The associated sigma model on the mapping space Map(χ,M) is

defined via transgression of the target space data. The Hamiltonian on Map(χ,M) consists

of two parts,

S = S0 + S1 = ιďµ∗ev∗ϑ+ µ∗ev∗Θ. (3.354)

The transgression of the graded symplectic structure ω is given by

Ω =

∫
χ

µχ(−δxi ∧ δpi + δξi ∧ δζi), (3.355)

where µχ = dσ1dσ2dσ3dθ3dθ2dθ1. Using the relation −δϑ = Ω on the mapping space, we

find the transgression of the Liouville 1-form,

ϑ =

∫
χ

µχ(piδx
i + ξiδζi). (3.356)

Then, the kinetic term of the BV action is given by

S0 =

∫
χ

µχ(−pidxi − ξidζi). (3.357)
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The interaction part of the BV action is the transgression of the Hamiltonian function of the

target space,

S1 =

∫
χ

µχ(piξ
i +

1

3!
Hijk(x)ξiξjξk), (3.358)

so that the full BV action on the mapping space is given by

S =

∫
χ

µχ(−pidxi − ξidζi + piξ
i +

1

3!
Hijk(x)ξiξjξk). (3.359)

The variation of (3.359) gives

δS =

∫
χ

µχ

(
−δpidxi − pidδxi − δξidζi − ξidδζi + δ

(
piξ

i +
1

3!
Hijkξ

iξjξk
))

=

∫
∂χ

µ∂χ(ξiδζi − piδxi) (3.360)

+

∫
χ

µχ

(
−δpidxi + dpiδx

i − δξidζi − dξiδζi + δ

(
piξ

i +
1

3!
Hijkξ

iξjξk
))

.

The vanishing of the boundary variation,∫
∂χ

µ∂χ(ξiδζi − piδxi),= 0 (3.361)

fixes the boundary conditions, ξi|∂χ = pi|∂χ = 0, corresponding to the Lagrangian submani-

fold of the zero locus of the Liouville 1-form ϑ. The classical master equation gives

{S, S}BV =

∫
∂χ

µ∂χ

(
−pidxi − ξidζi + piξ

i +
1

3!
Hijkξ

iξjξk
)
, (3.362)

which is satisfied on the Lagrangian submanifold. Let us derive the boundary sigma model

by integrating out the auxiliary variable pi from (3.359), giving the relation dxi = ξi and

leading to

S =

∫
χ

µχ

(
−dxidζi +

1

3!
Hijkdx

idxjdxk
)

=

∫
∂χ

µ∂χ(ζidx
i) +

1

3!

∫
χ

µχHijkdx
idxjdxk, (3.363)

which is a Poisson sigma model with H-flux Wess-Zumino term and vanishing Poisson struc-

ture. In the following, we extract the ghost-free action by expanding the superfields in the

Grassmann odd coordinates and integrating over the Berezin measure while keeping only the

physical components. The superfield expansion is given by

xi(σ, θ) = xi,(0)(σ) + xi,(1)
µ (σ)θµ + xi,(2)

µν (σ)θµθν , (3.364)

ζi(σ, θ) = ζ
(0)
i (σ) + ζ

(1)
i,µ (σ)θµ +

1

2
ζ

(2)
i,µν(σ)θµθν . (3.365)
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After projection to the physical components by integration over the Grassmann odd coordi-

nates we find

Sghostfree =

∫
∂X

ζi ∧ dxi +

∫
X

H, (3.366)

where we denote ζi = ζ
(1)
i,µdσ

µ and xi = xi,(0). In our analysis we will show that this sigma

model is dual to the contravariant Poisson sigma model with R-flux Wess-Zumino term,

which will be derived in the main calculations.

In the remainder of this section, we discuss the case, where the worldvolume X has a bound-

ary, ∂X 6= 0. In this case, boundary terms can be generated by twist of the BV action using

special classes of canonical transformations, the canonical functions.

Definition 3.3.52 (Canonical function) Let (M, Q, ω) be a QP-manifold and L be a La-

grangian submanifold of (M, ω). Furthermore, let α be a twist defined on (M, Q, ω). The

twist α is a canonical function with respect to L if exp(δα)Θ|L = 0.

The function α is also called a Poisson function [112].

Definition 3.3.53 (AKSZ sigma model with boundary) Let (Map(χ,M),Q,Ω) be a

QP-manifold which arises from (M, Q, ω) by transgression. Furthermore, let the superworld-

volume χ have a boundary, ∂χ 6= 0. Finally, let L be the Lagrangian submanifold defined by

the zero locus of the Liouville 1-form ϑ and α be a canonical function with respect to L. We

call the 5-tuple (Map(χ,M),Q,Ω,L, α) an AKSZ sigma model with boundary.

Theorem 3.3.54 ([113]) The twisted BV-action S = µďµ∗ev∗ϑ + µ∗ev∗ exp(δα)Θ satisfies

the classical master equation, {S, S}BV = 0.

The BV action of the AKSZ sigma model with boundary is considered to be a twisted version

of the initial BV action S = S0 + S1,

Sα = exp(−δα̂)(S0 + µ∗ev∗ exp(δα)Θ)

= exp(−δα̂)S0 + S1, (3.367)

where α̂ denotes the associated twist on the mapping space by transgression, α̂ = µ∗ev∗α.

The classical master equation is deformed in the following way,

{Sα, Sα} = exp(−δα̂)(ιďµ∂χ∗(i∂ × id)∗ev∗ϑ+ µ∂χ∗(i∂ × id)∗ev∗ exp(δα)Θ), (3.368)
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where µ∂χ denotes the boundary measure on ∂χ. The map i∂ denotes the inclusion of the

boundary, i∂ : ∂χ→ χ.

In the special case, where {α, α} = 0, we find

Sα = S − µ∂χ∗(i∂ × id)∗ev∗α = S0 + S1 − {S0, α̂}BV. (3.369)

It turns out that the additional term introduces a boundary term,

−{S0, α̂}BV =

∫
∂χ

µ∂χev∗(α). (3.370)

We conclude, that the twist of a BV action of a AKSZ sigma model with boundary by a

canonical function α̂, for which {α, α} = 0, introduces a boundary term proportional to the

twist α̂.

3.3.6 Current algebras

This section concerns the construction of current algebras from general target space QP-

manifolds. This is done in two steps. First, we derive a Poisson algebra from the respective

QP-manifold transgression. We describe the method in Poisson algebras from QP-manifolds

below. Second, the current algebra is the Poisson algebra on a special subspace of smooth

functions on the QP-manifold. This step is described in Current algebras from QP-manifolds.

The method has been described in the published paper [1].

Poisson algebras from QP-manifolds

We start with a target space QP-manifold (M,Θ, ω) of degree n. Furthermore, we denote

the embedded superworldvolume as χ = T [1]X, where X is the d-dimensional worldvolume,

dim(X) = d. As already discussed above, we derive a Poisson algebra with Poisson bracket

{−,−}PB on the mapping space (Map(χ,M),Q,Ω) by transgression µ∗ev∗ if the dimension

of the worldvolume and the degree of the target space QP-manifold are related by d = n. This

leads to the fact, that the (graded) Poisson bracket on the mapping space has zero degree, i.e.,

it condenses to a usual Poisson bracket. One recognizes that the resulting Poisson bracket is

constructed by transgression of the graded symplectic structure on the target space without

making use of the Hamiltonian function Θ. Therefore, we employ a different method that

also incorporates the Q-structure generating twisted versions of Poisson brackets.
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Let L be a Lagrangian submanifold with respect to ω, which we want to consider as target

space of physical canonical quantities. Furthermore, we denote the natural projection from

M to L as prL : M → L. The derived bracket on (M,Θ, ω) given by {{f,Θ}, g}, where

f, g ∈ C∞(M), is of degree n + 1 − n − n = −n + 1. Let us define the restriction of the

derived bracket to L by

{f, g}L ≡ {{pr∗f,Θ}, pr∗g}|L, (3.371)

where f, g ∈ C∞(L) and pr∗ denotes the pullback along the projection to the Lagrangian

submanifold L. The degree of {−,−}L is (−n+ 1). We can prove the following theorem.

Theorem 3.3.55 Let (M,Θ, ω) be a QP-manifold and let L be a Lagrangian submanifold

with respect to the graded symplectic structure ω. Furthermore, let prL : M → L be the

natural projection to the Lagrangian submanifold. Then, the bracket {−,−}L defined on L
by the derived bracket construction is a graded Poisson bracket.

In the next step, we consider the transgression of {−,−}L to the mapping space Map(χ,M),

where χ = T [1]X is the supervolume associated with a (d = n− 1)-dimensional worldvolume

X. The transgression is given by

µ∗ev∗{f, g}L = µ∗ev∗{{pr∗f,Θ}, pr∗g}|L

= {{p̂r∗µ∗ev∗f, µ∗ev∗Θ}Ω, p̂r∗µ∗ev∗g}Ω|L̂
= {{p̂r∗µ∗ev∗f, S1}Ω, p̂r∗µ∗ev∗g}Ω|L̂, (3.372)

where L̂ is the transgression of the Langrangian submanifold to the mapping space, i.e.,

a Lagrangian submanifold of the transgressed graded symplectic structure Ω = µ∗ev∗ω.

Furthermore, p̂r∗ denotes the pullback along the projection from the mapping space to the

transgressed Lagrangian submanifold, p̂r : Map(χ,M)→ L̂.

The resulting bracket on the mapping space is extended to be defined on arbitrary functions

on Map(χ,M), that are not in the image of the transgression µ∗ev∗. Finally, we arrive at

the desired Poisson bracket,

{F,G}PB,L̂ = {{F, S1}Ω, G}Ω|L̂, (3.373)

where F,G ∈ Map(χ,M).

Let us confirm, that the resulting bracket indeed has degree zero. The bracket {−,−}Ω is

the transgression of the graded Poisson bracket on the target QP-manifold. Its degree can
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be found by investigation of the degrees of

µ∗ev∗{f, g} = {µ∗ev∗f, µ∗ev∗g}Ω, (3.374)

where f, g ∈ C∞(M). The map µ∗ introduces the Berezin measure over χ = T [1]X, where

dim(X) = n− 1, so that |µ∗| = −(n− 1). So we find that |{−,−}Ω| = −(n− 1)− n+ (n−
1)− (n− 1) = 1. Furthermore, the degree of the transgression of the Hamiltonian function,

S1 = µ∗ev∗Θ, is given by −(n − 1) + (n + 1) = 2. Therefore, the degree of the resulting

bracket is |{−,−}PB,L̂| = 2− 1− 1 = 0. We are lead to the following theorem.

Theorem 3.3.56 The bracket {−,−}PB,L̂ on Map(χ,M) is an ordinary Poisson bracket.

We now have a Poisson bracket at hand that is directly related to the Q-structure of the target

space QP-manifold. In the following, we will use it to generate current algebras associated

to various sigma models.

First, let us discuss an easy example.

Example 3.3.17 (H-flux Poisson bracket) This example makes use of the QP-manifold

of degree 2 that induces the standard Courant algebroid with H-flux, with graded symplectic

structure

ω = δxi ∧ δpi + δξi ∧ δζi (3.375)

and Hamiltonian function

ΘH = piξ
i +

1

3!
Hijkξ

iξjξk. (3.376)

The resulting Poisson bracket is defined on the cotangent space of the loop space Map(S1, T ∗M).

The superworldvolume of the boundary theory of the membrane is T [1]X, where we choose

X = S1 × R to be decomposed into spatial and temporal direction. We define
◦
χ = T [1]S1,

so that the mapping space of superloops into the target space graded manifold is given by

Map(
◦
χ,M). Since Lagrangian submanifolds with respect to the graded symplectic structure

are candidates for boundary theories, we consider the transgression of the target space graded

Poisson bracket restricted to a Lagrangian submanifold L to the mapping space Map(
◦
χ,M).

This results in the Poisson bracket of canonical quantities.

For simplicity, we start with the Lagrangian submanifold L defined by pi = ξi = 0. The
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derived brackets of non-zero quantities on L are given by

{{xi,Θ}, xj} = 0, (3.377)

{{xi,Θ}, ζj} = δij, (3.378)

{{ζi,Θ}, ζj} = −Hijkξ
k. (3.379)

Obviously, the pullback of the derived bracket to L projects out the contribution by the H-

flux. Therefore, a twist of L by a canonical transformation will be used on the mapping space

in order to generate the correct Poisson brackets with H-flux. First, we find the transgressed

derived bracket on the mapping space to be

{{xi(z), S1}Ω,x
j(z′)}Ω = 0, (3.380)

{{xi(z), S1}Ω, ζj(z
′)}Ω = δijδ(z − z′), (3.381)

{{ζi(z), S1}Ω, ζj(z
′)}Ω = −Hijk(x(z))ξk(z)δ(z − z′), (3.382)

where δ(z − z′) = δ(σ − σ′)δ(θ − θ′) and z = (σ, θ). For details on the calculations please

refer to the functional analytic conventions on the mapping space, which can be found in the

appendix.

In order to generate the Poisson bracket with H-flux, we have to deform the initial Lagrangian

submanifold L by a twist. The symplectic structure that induces the derived brackets on L
is given by

ωL = δxi ∧ δζi. (3.383)

The Liouville 1-form of ωL such that L is in the zero locus of ϑ is given via −δϑL = ωL,

ϑL = −ζiδxi. (3.384)

Twist of the coordinates by the transgression of the Liouville 1-form,

α ≡ ιďµ∗ev∗ϑL =

∫
◦
χ

µ◦χζidx
i, (3.385)

deforms

ξi 7→ exp(α)ξi = ξi − dxi, (3.386)

keeping the other coordinates invariant. The exponential adjoint action is defined with

respect to the transgressed graded Poisson bracket, {−,−}Ω. On the α-twisted Lagrangian
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submanifold L̂α, the condition ξi = 0 is deformed to ξi − dxi = 0. This gives the derived

brackets pulled back on L̂α,

{{xi(z), S1}Ω,x
j(z′)}Ω|L̂α = 0, (3.387)

{{xi(z), S1}Ω, ζj(z
′)}Ω|L̂α = δijδ(z − z′), (3.388)

{{ζi(z), S1}Ω, ζj(z
′)}Ω|L̂α = −Hijkdx

kδ(z − z′), (3.389)

and therefore the desired Poisson brackets on the superfields,

{xi(z),xj(z′)}PB,L̂α = 0, (3.390)

{xi(z), ζj(z
′)}PB,L̂α = δijδ(z − z′), (3.391)

{ζi(z), ζj(z
′)}PB,L̂α = −Hijkdx

kδ(z − z′). (3.392)

In the final step, we project onto the physical components via Berezin integration. For this,

we expand the superfields in the supercoordinate θ,

xi(σ, θ) = x(0),i(σ) + x(1),i(σ)θ, (3.393)

ζi(σ, θ) = ζ
(0)
i (σ) + ζ

(1)
i (σ)θ. (3.394)

The ghost-degree zero components are the physical fields, which we denote by xi = x(0),i and

ζi = ζ
(1)
i . The Poisson brackets of the physical canonical quantities are the ghost-number

zero components of above relations,

{xi(σ), xj(σ′)}PB,L̂α = 0, (3.395)

{xi(σ), ζj(σ
′)}PB,L̂α = δijδ(σ − σ′), (3.396)

{ζi(σ), ζj(σ
′)}PB,L̂α = −Hijk∂σx

kδ(σ − σ′). (3.397)

The symplectic structure, which induces these relations, is given by

ωH =

∫
S1

dσδxi ∧ δζi +
1

2

∫
S1

dσHijk(x)∂σx
iδxj ∧ δxk. (3.398)

We derived the Alekseev-Strobl type symplectic structure of a Poisson bracket twisted by

H-flux [45].
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Current algebras from QP-manifolds

Above, we showed how to construct consistent Poisson algebras with QP-manifold structure.

In this section, we use these Poisson algebras to construct current algebras of Noether currents

on the loop space associated with QP-manifolds.

Let (M,Θ, ω) be a QP-manifold of degree n. Let L be a Lagrangian submanifold with

respect to ω. Finally, let χ = T [1]X be the superworldvolume, where dim(X) = n−1. Then,

Map(χ,M) is the space of maps from χ toM. The transgression of L to the mapping space

be denoted by L̂. Let us furthermore recall, that the transgression of the derived bracket on

the target space to the mapping space and restricted to L̂ is an ordinary Poisson bracket,

|{−,−}PB,L̂| = 0.

We can decompose the space of smooth functions on M by degree,

C∞(M) =
∞⊕
i=0

C∞i (M). (3.399)

The current algebra associated to the target space QP-manifold emerges from the transgres-

sion of
⊕n−1

i=0 C∞i (M).

Definition 3.3.57 (Current algebra) The current algebra associated with a target space

QP-manifold (M,Θ, ω) of degree n and transgressed Lagrangian submanifold L̂ is the Poisson

algebra on the space of transgressed elements of
⊕n−1

i=0 C∞i (M) equipped with Poisson bracket

{−,−}PB,L̂.

Let us compute the current algebra associated with the H-twisted standard Courant alge-

broid.

Example 3.3.18 (H-twisted Courant algebroid current algebra) Let (M,Θ, ω) be

the QP-manifold of the H-twisted Courant algebroid. For constructing the current algebra,

the degree zero and 1 subspaces of the space of smooth functions on the graded manifoldM
are sufficient,

C∞0 (M) ∼= C∞(M), C∞1 (M) ∼= TM ⊕ T ∗M. (3.400)

To each element of a subspace, we associate a precursor for a current via

j[(0),f ] = f, j[(1),X+α] = X iζi + αiξ
i, (3.401)
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where f,X i, αi ∈ C∞(M). The derived brackets between the associated precursors are given

by

{{j[(0),f ],Θ}, j[(0),g]} = 0, (3.402)

{{j[(1),X+α],Θ}, j[(0),g]} = −ρ(X)j[(0),g], (3.403)

{{j[(1),X+α],Θ}, j[(1),Y+β]} = −j[(1),[X+α,Y+β]D,H ]. (3.404)

Here, [X + α, Y + β]D,H denotes the H-twisted Dorfman bracket on the generalized tangent

bundle of the standard Courant algebroid. From these elements, the current algebra on the

mapping space is constructed via transgression. We take the Lagrangian submanifold L as

the hypersurface where pi = ξi = 0. Define as usual
◦
χ = T [1]S1. The transgression of the

precursor currents give the supercurrents on the superloopspace Map(T [1]S1, T ∗[2]T [1]M),

J[(0),f ](ε(1)) = µ∗ε(1)ev∗j[(0),f ] =

∫
◦
χ

µ◦χε(1)f(x(σ)), (3.405)

J[(1),X+α](ε(0)) = µ∗ε(0)ev∗j[(1),X+α] =

∫
◦
χ

µ◦χε(0)(X
i(x(σ))ζi + αi(x(σ))ξi), (3.406)

where we introduced test functions εi of degree i on
◦
χ. At this step, we encounter the same

problem as previously. Namely, that on the Lagrangian submanifold L̂ some information gets

lost. In order to anticipate this problem and generate a current algebra twisted by H-flux, we

twist by α = ιďµ∗ev∗ϑL to deform the Lagrangian submanifold L̂ → L̂α. The supercurrents

on L̂α become

J[(0),f ](ε(1)) =

∫
◦
χ

µ◦χε(1)f(x(σ)), (3.407)

J[(1),X+α](ε(0)) =

∫
◦
χ

µ◦χε(0)(X
i(x(σ))ζi + αi(x(σ))dxi). (3.408)

The Poisson brackets of the supercurrents can then be computed in a similar fashion as above

{J[(0),f ](ε), J[(0),g](ε
′)}PB,L̂α = 0, (3.409)

{J[(1),X+α](ε), J[(0),g](ε
′)}PB,L̂α = ρ(X)J[(0),g](εε

′), (3.410)

{J[(1),X+α](ε), J[(1),Y+β](ε
′)}PB,L̂α = J[(1),[X+α,Y+β]D,H ](εε

′) +

∫
◦
χ

µ◦χdε(0)ε
′
(0)〈X + α, Y + β〉.

(3.411)

Finally, we expand the superfields in θ and project to the degree zero component by Berezin

117



Chapter 3. Dualities in string theory and M-theory

integration, giving the physical current algebra on loop space twisted by H-flux,

{j[(0),f ](σ), j[(0),g](σ
′)}PB,L̂α = 0, (3.412)

{j[(1),X+α](σ), j[(0),g](σ
′)}PB,L̂α = −ρ(X)j[(0),g](σ)δ(σ − σ′), (3.413)

{j[(1),X+α](σ), j[(1),Y+β](σ
′)}PB,L̂α = −j[(1),[X+α,Y+β]D,H ](σ)δ(σ − σ′) + 〈X + α, Y + β〉(σ′)∂σδ(σ − σ′).

(3.414)

We derived the Alekseev-Strobl type generalized currents, which were described in [45].

3.3.7 Deligne cohomology and n-gerbes

(Non-)abelian n-gerbes with connective structure appear in various areas of string theory

and M-theory. The 3-form field strength H of the Kalb-Ramond B-field is the curvature of

an abelian 1-gerbe. Non-abelian higher gerbes with connective structures are closely related

with multiple M5-brane systems, as we will elucidate in the second main part Higher gauge

theory and multiple M5-branes of this thesis. Higher gauge theories of M-brane systems as

they appear in M-theory are governed by non-abelian n-gerbes. We are interested in the

local symmetry L∞-algebra associated with abelian higher gerbes with connective structure

associated with the generalized as well as exceptional generalized geometries. Therefore, we

provide a straightforward introduction in abelian n-gerbes as Čech-Deligne cocycles in Deligne

cohomology. This will provide the background for our calculations in Generalized geometries.

A standard reference, in which Deligne cohomology is discussed as a hypercohomology, is

[114].

We start by constructing the Deline complex from the total complex of the Čech-de Rham

double complex. Let M be a smooth manifold of dimension m. Furthermore, let {Uα} be a

good open cover of M . Then, let Y = tαUα be the disjoint union of open sets of the cover.

The k-th fibered product of Y with itself is defined by

Y [k] = Y ×M · · · ×M Y = {(x1, . . . , xk) ∈ Y × · · · × Y |σ(x1) = · · · = σ(xk)}, (3.415)

where σ : Y → M is a surjective submersion. We can define face maps fk−1
j : Y [k] → Y [k−1]

for j = 0, . . . , k via

fk−1
i−1 (x1, . . . , xk) = (x1, . . . , x̂i, . . . , xk), (3.416)

where hat means omission. Note that ({Y [k]}, {fk−1
j }) forms a simplicial manifold, a simpli-

cial object in the category of differentiable manifolds. We can define the Čech cohomology
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over M using the coboundary operator δ̌ : Ωn(Y [k])→ Ωn(Y [k+1]), defined by

(δ̌α)(x) =
k−1∑
j=0

(−1)j((fk−1
j )∗α)(x). (3.417)

Here, x ∈ Y [k+1] and α ∈ Ωn(Y [k]). Since the coboundary operator is nilpotent, δ̌2 = 0, we

can define the associated Čech cohomology.

Now we let us consider forms taking values in an abelian group, denoted by U(1), and

complement the Čech complex with the de Rham complex with de Rham differential d to

the Čech-de Rham double complex.

...
...

...
...

...xδ̌ xδ̌ xδ̌ xδ̌ xδ̌
C∞(Y [4], U(1))

d log−−−→ Ω1(Y [4])
d−−−→ Ω2(Y [4])

d−−−→ Ω3(Y [4])
d−−−→ · · · d−−−→ Ωm(Y [4])xδ̌ xδ̌ xδ̌ xδ̌ xδ̌

C∞(Y [3], U(1))
d log−−−→ Ω1(Y [3])

d−−−→ Ω2(Y [3])
d−−−→ Ω3(Y [3])

d−−−→ · · · d−−−→ Ωm(Y [3])xδ̌ xδ̌ xδ̌ xδ̌ xδ̌
C∞(Y [2], U(1))

d log−−−→ Ω1(Y [2])
d−−−→ Ω2(Y [2])

d−−−→ Ω3(Y [2])
d−−−→ · · · d−−−→ Ωm(Y [2])xδ̌ xδ̌ xδ̌ xδ̌ xδ̌

C∞(Y, U(1))
d log−−−→ Ω1(Y )

d−−−→ Ω2(Y )
d−−−→ Ω3(Y )

d−−−→ · · · d−−−→ Ωm(Y )

The Deligne complex is constructed out of the total complex of the Čech-de Rham double

complex. Let us define Ci,0 = C∞(Y [i+1], U(1)) and Ci,j = Ωj(Y [i+1]) for j = 2, . . . ,m, where

Y [1] = Y . Then, the total complex Tot(C)• is given by the chain complex

Tot(C)n =
⊕
i+j=n

Ci,j. (3.418)

The differential on the total complex is given by the total differential D, which is the sum of

the de Rham differential and Čech differential, defined by

D = d+ (−1)kδ̌, (3.419)

where k denotes the form degree of the object on which D is acting. For any function

g ∈ C∞(Y [i], U(1)), we define

Dg =
1

2πi
d log g + δ̌(g). (3.420)

Obviously, D is nilpotent. We are lead to the following definition.
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Definition 3.3.58 (Deligne complex) The complex (Tot(C)•, D) is called the

Deligne complex of degree m.

The associated cohomology is called the Deligne cohomology of degree m, which is denoted

by Hm+1
conn (M,Z). We can now define the notion of a n-gerbe.

Definition 3.3.59 (n-gerbe with connective structure) Let Hm+1
conn (M,Z) be the Deligne

cohomology of degree m over M . An n-gerbe with connective structure is a Čech-Deligne co-

cycle in degree n+ 2.

Deligne cohomology encodes gauge transformations of abelian n-gerbes as we will see in the

following. The equivalence classes of n-gerbes are governed by Čech-Deligne coboundaries.

The curvature of an n-gerbe is given by the gauge-invariant F = dA, where A ∈ Ωn+1(Y ).

Let us compute some examples.

Example 3.3.19 ((−1)-gerbe) A (−1)-gerbe is a Čech-Deligne cocycle in degree 1. It

defines a class in H1
conn(M,Z). It consists of functions {ga} ∈ C∞(Y, U(1)), such that δ̌(g) =

gbg
−1
a = 1 on double-overlaps Uab. Its curvature is given by the 1-form G = 1

2πi
d log g.

Example 3.3.20 (0-gerbe) A 0-gerbe is a Čech-Deligne cocycle in degree 2. In this case,

it defines a class in H2
conn(M,Z) and consists of functions {gab} ∈ C∞(Y [2], U(1)) and 1-forms

{Aa} ∈ Ω1(Y ), that satisfy

δ̌(g) = 1, δ̌(A)− 1

2πi
d log gab = 0, (3.421)

leading to

gabgbcgca = 1, Aa − Ab =
1

2πi
d log gab, (3.422)

on triple overlaps Uabc and double-overlaps Uab, respectively. The curvature of the 0-gerbe is

given by the 2-form F = dA. We conclude, that a 0-gerbe encodes the connective structure of

ordinary gauge theory with abelian structure group, a principal U(1)-bundle with connection.

Two 0-gerbes G and G̃ are related by a coboundary γ ∈ Tot0 = C∞(Y, U(1)) such that

Dγ = G− G̃. The equation can be rewritten by

δ̌(γ) = g − g̃, dγ = A− Ã, (3.423)
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leading to

γ−1
a g̃abγb = gab, dγa + Ãa = Aa, (3.424)

on double-overlaps Uab and on open subsets Ua, respectively.

Example 3.3.21 (1-gerbe) A 1-gerbe, or just gerbe, is a Čech-Deligne cocycle in degree

3. It is a class in H3
conn(M,Z). It consists of functions {gabc} ∈ C∞(Y [3], U(1)), 1-forms

{Aab} ∈ Ω1(Y [2]) and 2-forms {Ba} ∈ Ω2(Y ), that satisfy

δ̌(g) = 1, δ̌(A)− 1

2πi
d log g = 0, δ̌(B) + dA = 0. (3.425)

This gives

gabcg
−1
abdgacdg

−1
bcd = 1, Aab + Abc + Aca =

1

2πi
d log gabc, Bb −Ba = dAab, (3.426)

on 4-overlaps Uabcd, triple-overlaps Uabc and double-overlaps Uab, respectively. The curvature

of the gerbe is given by the 3-form H = dB. This structure is also called bundle gerbe with

connection.

This ends the preliminary sections. From now, we will enter the main calculations.

3.4 Twisted Courant algebroids and fluxes

We understand, which important role the standard Courant algebroid plays in generalized

geometry as a geometrization of T-duality H-flux backgrounds. However, we also understand,

that other crucial fluxes are to expected, when trying to find a unified description of all

toroidal T-duality backgrounds. Aside from the H-flux, we encounter the geometric f -flux

and the mysterious non-geometric Q- and R-fluxes. In this section, we want to answer the

question of How far can we exhaust the Courant algebroid structure to serve as an object that

unifies all these fluxes? The method to arrive at an answer to this question is to deform

the untwisted Courant algebroid using representations of the generators of O(D,D). This

will introduce not only geometric but also non-geometric flux freedom into the Courant

algebroid in a covariant way and even provide the correct generalized flux Bianchi identities

as consistency equations of the Courant algebroid. More precisely, since the analysis is done

using graded symplectic manifolds, the generalized flux Bianchi identities naturally arise

from the classical master equation. The resulting fully fluxed Courant algebroid, which we
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will construct, then encodes the local symmetries of toroidal compactifications with H-, f -,

Q- and R-fluxes.

In 3.4.1, we recall the graded symplectic manifold setup underlying the untwisted Courant

algebroid. This serves as the base for the analysis conducted in this section. In 3.4.2, we

discuss the insufficiencies of the Courant algebroid where a 3-vector R-flux is introduced

by hand. It will motivate us to dig deeper and investigate all possible twists in this setup

in 3.4.3. In 3.4.4, we produce an intermediate result by the construction of a β-twisted

Courant algebroid and analyze its cohomology. For the introduction of the geometric f -flux,

we need to introduce a generalization of the Courant algebroid structure by a frame bundle,

constructed in 3.4.5 and used in 3.4.6 to generate geometric f -flux. In 3.4.7, we construct the

final result of the Courant algebroid twisted by all fluxes appearing in toroidal closed string

compactifications. As a nice feature, we find the generalized flux Bianchi identities directly

by the classical master equation of the underlying graded symplectic manifold. This section

is based on the published papers [2, 3].

3.4.1 Graded symplectic manifold

During the entire discussion, we will merely be making use of graded symplectic manifolds

of degree 2. These are equivalent to Courant algebroids.

Let M = T ∗[2]T [1]M be a graded manifold, where M is a smooth manifold. M plays the

role of the target spacetime. We use the same local parameterization as above, coordinates

(xi, ξi, ζi, pi) of degrees (0, 1, 1, 2). Let us choose the graded symplectic structure as

ω = −δxi ∧ δpi + δξi ∧ δζi. (3.427)

A general Hamiltonian on M is of degree 3. The simplest non-trivial Hamiltonian is given

by

Θ0 = ξipi. (3.428)

It has been shown above, how the derived bracket construction using this Hamiltonian leads

to the untwisted standard Courant algebroid on the generalized tangent bundle TM⊕T ∗M →
M . The introduction of H-flux to this setup is given by a small modification of the Hamil-

tonian function,

ΘH = ξipi +
1

3!
Hijk(x)ξiξjξk, (3.429)
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which gives the H-twisted standard Courant algebroid on the generalized tangent bundle via

the derived bracket construction.

3.4.2 Courant algebroid with trivial R-flux

In a similar way as H-flux can be introduced in Θ0, a 3-vector freedom in form of an R-flux

is also possible by

Θ = ξipi +
1

3!
Rijk(x)ζiζjζk, (3.430)

where R ∈ X3(M). However, the classical master equation requires the R-flux to be trivial.

The authors of [115] used the AKSZ procedure to generate a sigma model based on above

Hamiltonian function, which according to their discussion provides a model for a string

propagating in non-geometric R-space. The resulting action is a sigma model of a string

embedding into the contangent bundle T ∗M → M , whose phase space Poisson structure

becomes quasi-Poisson due to the R-flux. Quantization of such a phase space structure leads

to a non-associative star product.

3.4.3 Classification of twists

We showed above that an H-flux dB = H can be locally induced by a B-twist of the

Hamiltonian function. On a QP-manifold of degree 2, any degree-preserving twist is of

degree 2. In the next step, we investigate all possible twists of our Hamiltonian function

and we will recognize that we can generate all geometric as well as non-geometric fluxes by

a certain succession of transformations.

The possible twists are given by

exp(δB) = exp

(
1

2
Bij(x)ξiξj

)
, exp(δβ) = exp

(
1

2
βij(x)ζiζj

)
,

exp(δf ) = exp

(
1

2
f i
j (x)ξjζi

)
, exp(δa) = exp

(
ai(x)pi

)
,

(3.431)

where Bij, β
ij, f i

j , a
i ∈ C∞(M). The first and second exponential actions generate B-twist,

β-twist. The third turns out to generate diffeomorphisms. The fourth generates local trans-

lations and will therefore by ignored in the further analysis. The first three twists leave the

inner product on the Courant algebroid invariant and therefore are in one-to-one correspon-

dence with generators of local O(D,D)-transformations.
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3.4.4 Non-geometric β-twisted Courant algebroid and cohomology

Let us now discuss the β-twisted Hamiltonian, which turns out to be

exp(δβ)Θ0 = piξ
i + βijpiζj +

1

2
∂iβ

jkξiζjζk −
1

2
βin∂nβ

jkζiζjζk. (3.432)

We can rewrite the resulting Hamiltonian by

Θβ = piξ
i + βijpiζj +

1

2
Qjk
i ξ

iζjζk −
1

3!
Rijkζiζjζk, (3.433)

so that the classical master equation fixesR = 1
2
[β, β]S orRijk = 3β[i|n|∂nβ

jk] andQjk
i = ∂iβ

jk.

We recognize that the β-twist of the standard Courant algebroid naturally introduces Q-flux

and R-flux contributions.

Furthermore, we can split the Hamiltonian into two parts

Θβ = Θ0 + ΘPoisson, (3.434)

so that under the assumption that [β, β]S = 0,

ΘPoisson = βijpiζj +
1

2
∂iβ

jkξiζjζk (3.435)

induces a Poisson cohomology on ∧•TM with Lichnerowicz-Poisson differential given by the

β-bivector field, dβ = [β,−]S, via

dβ = j∗ ◦QPoisson ◦ j∗, (3.436)

where QPoisson = {ΘPoisson,−}. The condition [β, β]S = 0 requires β to be a Poisson tensor.

Then, the differential dβ is nilpotent, d2
β = 0. The fact that {Θ0,ΘPoisson} = 0 then leads to

a factorization of the classical master equation,

Q2
β = (Q0 +QPoisson)2 = Q2

0 +Q2
Poisson = 0, (3.437)

where Q0 = {Θ0,−}, so that Q2
β induces the total cohomology of the Poisson-de Rham double

complex with total differential

D = d+ dβ = j∗ ◦ (Q0 +QPoisson) ◦ j∗, (3.438)

acting on elements of ∧•(TM ⊕ T ∗M). The resulting cohomology can be generalized to the

so-called Courant algebroid cohomology on M, [102].
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If the R-flux contribution is non-zero, then the Poisson condition is deformed to 1
2
[β, β]S = R.

In other words, the Poisson bracket associated to β is given by

{f, g}β = βij∂if∂jg, (3.439)

where f, g ∈ C∞(M) does not satisfy the Jacobi identity,

{{f, g}β, h}β + {{h, f}β, g}β + {{g, h}β, f}β = Rijk∂if∂jg∂kh. (3.440)

Such a structure is called quasi-Poisson structure. The Q-flux contribution introduced by

the β-twist can then be rewritten as [116]

{xi, xj}β =

∫
Qij
k dx

k, (3.441)

leading to an interpretation as non-commutativity that the closed string perceives traveling

through non-geometric space.

The classical master equation of the β-twisted Hamiltonian, {Θβ,Θβ} = 0, leads to the

generalized flux Bianchi identities,

∂[mQ
[jk]
i] = 0, (3.442)

3β[i|m|∂mQ
jk]
n − ∂nR[ijk] + 3Q[i|m|

n Qjk]
m = 0, (3.443)

β[i|m|∂mR
jkl] − 3

2
R[ij|m|Qkl]

m = 0. (3.444)

Introducing bases of the cotangent bundle ei ∈ T ∗M and their image under β] in the tangent

bundle, ei] = β]ei = βij∂j, and ∂i = ei ∈ TM being the dual of ei, we find that above relations

coincide with the Jacobi identities of the generalized commutation relations,

[ei, ej]Lie = 0, (3.445)

[ei, e
j
] ]Lie = Qjn

i en, (3.446)

[ei], e
j
] ]Lie = Rijnen +Qij

n e
n
] . (3.447)

We follow the notation of [116]. We can compute the associated β-twisted standard Courant

algebroid on the generalized tangent bundle via the derived bracket construction. The in-

duced anchor map is given by

ρ(X + α)f = j∗{{Θβ, j∗(X + α)}, j∗(f)} = (X − β](α))(f), (3.448)

125



Chapter 3. Dualities in string theory and M-theory

where X +α ∈ Γ(TM ⊕ T ∗M) and f ∈ C∞(M). We find the β-twisted Dorfman bracket via

[X + α, Y + γ]D = j∗{{Θβ, j∗(X + α)}, j∗(Y + γ)}

= [X, Y ]Lie + LXγ − ιY dα− [α, γ]β − LβαY + ιγdβX − ιαιγR. (3.449)

Here, LβαY denotes the Poisson-Lie derivative along the 1-form α, defined by

LβαY = dβιαY + ιαdβY, (3.450)

and [α, γ]β denotes the Koszul bracket, given by

[α, γ]β = Lβ](α)ιαY + ιαdβY. (3.451)

The fiber metric is invariant under the β-twist, since it emerges from the graded symplectic

form,

〈X + α, Y + γ〉 = j∗{j∗(X + α), j∗(Y + γ)}

= ιXγ + ιY α. (3.452)

Let us summarize our findings in the following theorem.

Theorem 3.4.1 (β-twisted standard Courant algebroid) The QP-manifold (M,Θβ, ω)

induces the generalized flux Bianchi identities as well as the local description of the Q-

and R-fluxes in terms of the β-potential. Furthermore, its associated Courant algebroid

(TM ⊕ T ∗M, 〈−,−〉, ρ, [−,−]D) realizes the operations

〈X + α, Y + γ〉 = ιXγ + ιY α,

ρ(X + α) = X − β](α),

[X + α, Y + γ]D = [X, Y ]Lie + LXγ − ιY dα− [α, γ]β − LβαY + ιγdβX − ιαιγR.

In the special case, where the R-flux is vanishing, the Q-structure induces the total cohomology

of the Poisson-de Rham double complex on Γ(∧•(TM ⊕ T ∗M)).

3.4.5 Courant algebroid with frame bundle

In order to discuss spaces with non-trivial curvature or torsion, we introduce a frame bundle

over our graded manifold M. We showed that under the injection map j, the coordinates
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3.4. Twisted Courant algebroids and fluxes

(ξi, ζj) correspond to the basis of the generalized tangent bundle, (dxi, ∂j). We introduce a

frame bundle of T [1]M ⊕ T ∗[1]M for (ξi, ζj). Let V = RD be a flat vector space of the same

dimension asM . Then, the frame bundle is given by V [1]⊕V ∗[1] with local coordinates (ξa, ζb)

corresponding to a flat frame. A general frame is then given by (ξi, ζj) on T [1]M ⊕ T ∗[1]M .

Twists by functions that locally relate flat frames with general frames are made out of the

coordinates (ξi, ζj, ξ
a, ζb) on the direct product T [1]M ⊕ T ∗[1]M ⊕ V [1]⊕ V ∗[1]. Such twists

have the form

exp(δe) = exp
(
e i
a (x)ξaζi

)
, exp(δe−1) = exp

(
eai(x)ξiζa

)
, (3.453)

where e i
a , e

a
i ∈ C∞(M). The graded Poisson brackets are given by {ξa, ζb} = δab and {ξi, ζj} =

δij. All other combinations among the coordinates vanish. It turns out that a certain order of

twists acts as a transition from flat to curved frame and vice versa. Therefore, we can think

of the functions e i
a as sections of the frame bundle over M , or vielbeins.

Having enlarged our space of local coordinates by the flat frame, we introduce an enlarged

injection map from the generalized tangent bundle with frame bundle to the corresponding

graded manifold,

j : TM ⊕ (TM ⊕ T ∗M)⊕ V ⊕ V ∗ → T ∗[2]T [1]M ⊕ V [1]⊕ V ∗[1](
∂

∂xi
, xi, dxi, ∂i, u

a, ua

)
7→ (pi, x

i, ξi, ζi, ξ
a, ζa).

(3.454)

3.4.6 Courant algebroid with geometric flux

We shall now discuss, how we can make use of the additional coordinates due to the introduc-

tion of the frame bundle in order to induce geometric f -flux. This flux is associated with the

torsion-less part of the projected spin connection of the compactification the string travels

through.

The T-dual of a 3-dimensional torus on which H-flux is wrapped is given by a so-called

nilmanifold or twisted torus, formulated as S1-bundle over S2 realizing a non-trivial spin

connection. In the next step, we will show how to induce the geometric flux associated with

such a spin connection by manipulation of the Hamiltonian function of our QP-manifold.

In terms of a vielbein e i
a , the f -flux is given by

fabc = 2e i
[c∂ie

a
je

j
b] . (3.455)
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Recall, that the indices i, j, k, . . . denote curved coordinates, whereas indices a, b, c, . . . denote

flat coordinates. It is easy to show, that the Hamiltonian

Θf = e i
c piξ

c − 1

2
f cabξ

aξbζc (3.456)

induces the appropriate relations by the classical master equation,

e j
[b ∂je

i
a] = −1

2
e i
c f

c
ab, e j

[d∂jf
c
ab] = f c[abf

c
|e|d]. (3.457)

If we introduce an inverse eai of e i
b , such that eaie

i
b = δab , then we can find the defining

relation of the f -flux.

Until now, we introduced the local expressions for the fluxes by twist of the Hamiltonian,

whereas for the Hamiltonian, that realizes f -flux, the local expression is encoded in the

classical master equation. Therefore, our next task is to find an appropriate twist such that

the correct form of the f -flux emerges. For doing so, we make use of the transformations

corresponding to the diffeomorphism generators of O(D,D). It turns out that the appropriate

twist is of the form

D ≡ exp(−δe) exp(δe−1) exp(−δe). (3.458)

We find

DΘ0 = e n
a ξ

apn − e n
a ∂ne

i
b e

b
jξ
jξaζi − e n

a ∂ne
i
b e

c
iξ
aξbζc. (3.459)

Since

Dξi = e i
a ξ

a, Dζi = eaiζa, (3.460)

we understand that the part which directly contributes to the anchor map received a coeffi-

cient proportional to the vielbein. We can read off the f -flux from the twisted Hamiltonian,

1

2
f cab = e i

[a∂ie
j
b] e

c
j = e i

[b∂ie
c
je

j
a] . (3.461)

The second term in the twisted Hamiltonian corresponds to a connection on the frame bundle.

In terms of a vielbein basis on the tangent bundle e i
a ∂i ∈ TM , the f -flux can be expressed

by the Lie commutator,

[ea, eb]Lie = f cabec. (3.462)

Let us summarize our findings in the following theorem.

Theorem 3.4.2 (f-twisted standard Courant algebroid) The QP-manifold

(M,DΘ0, ω) realizes a local formulation of an f -flux background.
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3.4. Twisted Courant algebroids and fluxes

By successive deformation of the Hamiltonian Θ0 by B-transformation and diffeomorphic

twist we find the covariant formulation of H-flux on a background twisted by f -flux,

D exp(δB)Θ0 = e n
a ξ

apn−e n
a ∂ne

i
b e

b
jξ
jξaζi−e n

a ∂ne
i
b e

c
iξ
aξbζc+

1

2
∂iBjke

i
a e

j
b e

k
c ξ

aξbξc. (3.463)

We find the correct local expression of H-flux in flat coordinates,

Habc = 3∂iBjke
i

[ae
j
b e

k
c] = 3(∂[aBbc] − fd[abB|d|c]) ≡ 3∇[aBbc], (3.464)

where we introduced the covariant derivative ∇.

3.4.7 Fully fluxed Courant algebroid

In this section, we derive the Courant algebroid that realizes all geometric as well as non-

geometric fluxes in a covariant manner from a twisted QP-manifold. Consistency of the

QP-manifold directly leads to the generalized flux Bianchi identities. The procedure also

derives the correct local expressions for all fluxes.

In order to find the appropriate Hamiltonian function, we first twist byB- and β-transformation,

giving

exp(δβ) exp(δB)Θ0 = exp(δβ)

(
piξ

i +
1

2
∂iBjkξ

iξjξk
)

= piξ
i + pmβ

miζi +
1

2
∂nBrsξ

nξrξs + (∂mBns +
1

2
∂sBmn)βsiζiξ

mξn

+

[
1

2
∂iβ

hk − 1

2
∂iBrsβ

shβrk + ∂rBisβ
shβrk

]
ξiζhζk

−
[
−1

2
∂lβ

ihβlk +
1

2
∂nBrsβ

siβrhβnk
]
ζiζhζk. (3.465)
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The vielbein is introduced by twisting by D,

D exp(δβ) exp(δB)Θ0

= pie
i
b ξ

b + pmβ
mleblζb − e m

b ∂me
j
a e

a
iζjξ

iξb − βmlebl∂me j
a e

a
iζjξ

iζb

− e m
c ∂me

j
a e

b
jξ
aζbξ

c − βmlecl∂me j
a e

b
jξ
aζbζc

+
1

2
∂nBrse

n
a e

r
b e

s
c ξ

aξbξc + (∂mBns +
1

2
∂sBmn)βsieaie

m
b e n

c ζaξ
bξc

+

[
1

2
∂iβ

hk − 1

2
∂iBrsβ

shβrk + ∂rBisβ
shβrk

]
e i
a e

b
he
c
kξ
aζbζc

−
[
−1

2
∂lβ

ihβlk +
1

2
∂nBrsβ

siβrhβnk
]
eaie

b
he
c
kζaζbζc

= e i
b piξ

b + βmleblpmζb + βmlebl∂me
j
a e

a
i ξiζjζb − e m

b ∂me
j
a e

a
iξ
iξbζj

+
1

2
∂nBrse

n
a e

r
b e

s
c ξ

aξbξc −
[
e m
b ∂me

j
c e

a
j − (∂mBns +

1

2
∂sBmn)βsieaie

m
b e n

c

]
ζaξ

bξc

+

[
−βmlecl∂me j

a e
b
j +

[
1

2
∂iβ

hk − 1

2
∂iBrsβ

shβrk + ∂rBisβ
shβrk

]
e i
a e

b
he
c
k

]
ξaζbζc

−
[
−1

2
∂lβ

ihβlk +
1

2
∂nBrsβ

siβrhβnk
]
eaie

b
he
c
kζaζbζc. (3.466)

We can rewrite the resulting Hamiltonian via

ΘBβe = e i
b ξ

bpi − eblβlmζbpm − eblβlm∂me j
a e

a
iξ
iζjζb − e m

b ∂me
j
a e

a
iξ
iξbζj

+
1

3!
Habcξ

aξbξc − 1

2
F a
bcζaξ

bξc +
1

2
Qbc
a q

aζbζc −
1

3!
Rabcζaζbζc, (3.467)

by defining

Habc = 3∇[aBbc], (3.468)

F a
bc = fabc −Hmnsβ

sieaie
m
b e n

c , (3.469)

fabc = 2e m
[b ∂me

j
c] e

a
j, (3.470)

Hmns = 3∂[mBns], (3.471)

Qbc
a = ∂aβ

bc + f badβ
dc − f cadβdb +Hisrβ

shβrke i
a e

b
he
c
k, (3.472)

Rabc = 3(β[a|m|∂mβ
bc] + f [a

mnβ
b|m|βc]n)−Hmnsβ

miβnhβskeaie
b
he
c
k. (3.473)

The resulting Hamiltonian encodes the local expressions of all fluxes in terms of the potentials

B, β and e. Furthermore, the classical master equation of the Hamiltonian encodes the Jacobi
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3.4. Twisted Courant algebroids and fluxes

identities for the commutators

[ea, eb]Lie = F c
abec +Habce

c
], (3.474)

[ea, e
b
]]Lie = Qbc

a ec − F b
ace

c
], (3.475)

[ea] , e
b
]]Lie = Rabcec +Qab

c e
c
], (3.476)

and the H-flux Bianchi identity. The basis elements in flat coordinates are defined by ea ≡
e i
a ∂i and ea] = β]ea = βabeb with βab ≡ eaie

b
jβ

ij following [116]. The full generalized flux

Bianchi identities, that follow from the classical master equation, are given by

e m
[a ∂|m|Hbcd] −

3

2
F e

[abH|e|cd] = 0, (3.477)

e
[a
lβ
|lm|∂mR

bcd] − 3

2
Q[ab
e R|e|cd] = 0, (3.478)

edlβ
ln∂nH[abc] − 3e n

[a ∂nF
d
bc] − 3He[abQ

ed
c] + 3F d

e[aF
e
bc] = 0, (3.479)

−2e
[c
lβ
|ln|∂nF

d]
[ab] − 2e n

[a ∂nQ
[cd]
b] +He[ab]R

e[cd] +Q[cd]
e F e

[ab] + F
[c
e[aQ

|e|d]
b] = 0, (3.480)

3e
[b
lβ
|ln|∂nQ

cd]
a − e n

a ∂nR
[bcd] + 3F [b

eaR
|e|cd] − 3Q[bc

e Q
|e|d]
a = 0. (3.481)

They correspond to the closure conditions of the non-abelian gauge algebra of gauged su-

pergravities. Note that the condition of vanishing R-flux is equivalent to a twisted Poisson

structure, [Π,Π]S = Π]H. On the space of polyvectors, the resulting homological function

induces a twisted Poisson differential, dΠ,H = dΠ + (∧2Π ⊗ 1)(H), [85, 86]. In the next

step, we will compute the associated Courant algebroid realizing the entire flux freedom

at once in a consistent manner. Since we are now working on the frame bundle associ-

ated with the generalized tangent bundle, we take sections of the generalized frame bundle,

X + α = Xa∂a + αadx
a.

Since by construction all the twists leave the Courant algebroid inner product invariant, we

are still left with the standard fiber metric on the generalized tangent bundle,

〈X + α, Y + γ〉 = j∗{j∗(X + α), j∗(Y + γ)}

= ιXγ + ιY α, (3.482)

where X + α, Y + γ ∈ TM ⊕ T ∗M . The anchor map is given by

ρ(X + α)f ≡ j∗{{ΘBβe, j∗(X + α)}, j∗(f)}

= (Xae m
a ∂m − αaβam∂m)f

= (X − β](α))f, (3.483)
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where X + α ∈ TM ⊕ T ∗M and f ∈ C∞(M). Finally, we derive the Dorfman bracket step

by step. The Dorfman bracket of two vectors is given by

[X, Y ]D ≡ j∗{{ΘBβe, j∗(X)}, j∗(Y )}

= [X, Y ]∇Lie − β](ιXιYH) + ιXιYH

= [X, Y ]∇H + ιXιYH. (3.484)

Here, we find that the introduction of the f -flux leads to a covariant Lie bracket [X, Y ]∇

with covariant derivative ∇aX
b = ∂aX

b + ΓbaeX
e. The Weitzenböck connection Γbae is related

to the geometric f -flux via f bae = 2Γb[ae]. The bracket

[X, Y ]∇H ≡ [X, Y ]∇Lie − β](ιXιYH) (3.485)

denotes the covariant H-twisted Lie bracket. In the next step, we compute the Dorfman

bracket on two 1-forms, giving

[α, γ]D ≡ j∗{{ΘBβe, j∗(α)}, j∗(γ)}

= −L∇β](α)γ + ιβ](γ)∇α + ιβ](α)ιβ](γ)H − ιαιγR

= −[α, γ]∇β,H − ιαιγR. (3.486)

Above equations involve a covariant H-twisted Koszul bracket, which we define by

[α, γ]∇β,H ≡ [α, γ]∇β − ιβ](α)ιβ](γ)H. (3.487)

Furthermore, the covariant Koszul bracket is defined by

[α, γ]∇β ≡ L∇β](α)γ − ιβ](γ)∇α, (3.488)

where L∇X denotes the covariant Lie derivative along the vector X acting on forms, given by

L∇X = ∇ιX + ιX∇, (3.489)

where ∇ acts on a 1-form γ by ∇γ = ∂aγbdx
a ∧ dxb − Γdabγddx

a ∧ dxb. Finally, the Dorfman

brackets of vector and 1-form are given by

[α, Y ]D ≡ j∗{{ΘBβe, j∗(α)}, j∗(Y )}

= −ιY∇α + ιβ](α)ιYH − L∇,βα Y − β](ιβ](α)ιYH), (3.490)

[X, γ]D ≡ j∗{{ΘBβe, j∗(X)}, j∗(γ)}

= L∇Xγ + ιXιβ](γ)H + ιγ∇βX − β](ιXιβ](γ)H). (3.491)
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3.4. Twisted Courant algebroids and fluxes

Here, the symbol L∇,βα denotes the covariant Poisson-Lie derivative defined by

L∇,βα ≡ ∇βια + ια∇β, (3.492)

where ∇β is the covariant Lichnerowicz-Poisson differential. Having understood all con-

stituents of the Dorfman bracket separately, we can now write down the full induced Dorfman

bracket on the generalized tangent bundle supported by geometric and non-geometric flux,

[X + α, Y + γ]D = [X, Y ]∇H − [α, γ]∇β,H + ιγ∇βX − ιY∇α + L∇Xγ − L∇,βα Y + ιXιYH

+ ιβ](α)ιYH + ιXιβ](γ)H − β](ιβ](α)ιYH)− β](ιXιβ](γ)H)− ιαιγR.
(3.493)

It turns out that the reduction of the twisted Courant algebroid along the twisted anchor ρ for

integer fluxes leads to the most general non-abelian gauge algebra of gauged supergravities

described in the preliminary sections.

Let us summarized our findings in a theorem.

Theorem 3.4.3 (Fully twisted standard Courant algebroid) The QP-manifold

(M,ΘBβe, ω) realizes a Courant algebroid structure (TM ⊕ T ∗M, 〈−,−〉, ρ, [−,−]D) on the

generalized tangent bundle with geometric H- and F - as well as non-geometric Q- and R-flux

contribution, with operations

〈X + α, Y + γ〉 = ιXγ + ιY α,

ρ(X + α) = X − β](α),

[X + α, Y + γ]D = [X, Y ]∇H − [α, γ]∇β,H + ιγ∇βX − ιY∇α + L∇Xγ − L∇,βα Y + ιXιYH

+ ιβ](α)ιYH + ιXιβ](γ)H − β](ιβ](α)ιYH)− β](ιXιβ](γ)H)− ιαιγR.

Furthermore, the classical master equation of the QP-manifold induces the full generalized

flux Bianchi identities. The reduction of this structure along ρ yields the non-abelian gauge

algebra of gauged supergravities. Then, the classical master equation is equivalent to the

closure condition.

We derived the Courant algebroid, that encodes the local symmetries of toroidal string com-

pactifications that exhibit NS-NS H-flux, geometric f -flux and non-geometric Q- and R-

fluxes.
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3.5 Double field theory and T-duality

Double field theory is a manifestly T-duality invariant field theory under actions of the

toroidal T-duality group. To achieve this feature, double field theory introduces a dual torus

T̃ in addition to the torus T of the compactification. The dual torus is parameterized by

double coordinates associated with the winding modes of closed strings. In this setting,

T-duality becomes a transformation on the generalized coordinates.

In this section, we take our former analysis of the fully twisted Courant algebroid as a stepping

stone to lift our graded symplectic manifold structure to a construction from which we can

derive the local gauge algebra, the generalized fluxes, the generalized Bianchi identities and

the T-duality presentation of double field theory. The section is based on the published

papers [2, 3].

We introduce the graded symplectic manifold setup, which will need for a generalization of

the notion of a QP-manifold to a pre-QP-manifold in 3.5.1. There, we derive the generalized

gauge algebra of double field theory from the pre-QP-manifold. In section 3.5.2, we derive

the double field theory fluxes and generalized Bianchi identities from the twisted pre-QP-

manifold. In section 3.5.3, we derive the fluxes and generalized Bianchi identities on the

physical winding space after projecting out the ordinary coordinate dependence. Finally, in

section 3.5.4 we present a formulation of T-duality in the graded symplectic manifold setup

and compute some examples associated to toroidal compactifications of closed string theory.

To accommodate double field theory, we double the dimension of our underlying manifold

M to M̂ = M × M̃ in order to incorporate the winding space. For this, we introduce a new

notation. Elements V̂ with a hat will be related to the full double space, whereas elements

Ṽ with a tilde will be related purely to the winding space. Elements V without hat or tilde

will remain ordinary.

3.5.1 Pre-QP-manifold

Graded symplectic manifold constructions associated with double field theory have first been

discussed in [117]. Further analysis along the lines of extended Riemannian geometry has been

conducted in [100]. Our initial pre-QP-manifold construction is based on these investigations.

Let M̂ = M × M̃ be the double space manifold, where M is the usual space manifold and

M̃ denotes the winding space manifold. Let both manifolds M and M̃ be D-dimensional, so
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3.5. Double field theory and T-duality

that dim(M̂) = 2D. Local coordinates on M are denoted by xi and local coordinates on M̃

are denoted by x̃i. Note that the index structure is opposite. On M̂ , we can combine both

local coordinates via xM = (xi, x̃i). We introduce capital O(D,D;R)-indices M,N,K, . . .

which run over the whole 2D-dimensional space. In the next step, we define the double space

graded manifold that will inherit a Courant algebroid structure under certain conditions by

M̂ = T ∗[2]T [1]M̂ . The local coordinates on M̂ are denoted by (xM = (xi, x̃i), ξ
M = (ξi, ξ̃i),

ζM = (ζi, ζ̃
i), pM = (pi, p

i)) and are of degrees (0, 1, 1, 2).

We take the graded symplectic structure ω̂ such that

ω̂ = −δxi ∧ δpi + δx̃i ∧ δp̃i + δξi ∧ δζi + δξ̃i ∧ δζ̃ i. (3.494)

The resulting structure is defined on the doubled generalized tangent bundle,

Ê = TM̂ ⊕ T ∗M̂ = T (M × M̃)⊕ T ∗(M × M̃). (3.495)

Therefore, a general section is given by

X + α = X i(x, x̃)∂i +Xi(x, x̃)∂̃i + αi(x, x̃)dxi + αi(x, x̃)dx̃i. (3.496)

Recall that ∂̃i = ∂
∂x̃i

denotes the basis of the tangent bundle over the winding space manifold,

TM̃ → M̃ . We introduce an injection map ĵ relating the doubled generalized tangent bundle

with the graded manifold M̂, given by

ĵ : TM̂ ⊕ (TM̂ ⊕ T ∗M̂)→ M̂,

ĵ :

(
∂

∂xi
,
∂

∂x̃i
, xi, x̃i, dx

i, dx̃i, ∂i, ∂̃
i

)
7→ (pi, p̃

i, xi, x̃i, ξ
i,−ξ̃i, ζi,−ζ̃ i).

(3.497)

Please note the signs, that appear for technical reasons. Finally, we define the untwisted

double field theory Hamiltonian function via

Θ̂0 = pM(ξM + ηMNζM)

= pi(ξ
i + ζ̃ i) + p̃i(ζi + ξ̃i). (3.498)

Let us introduce a polarized section, which plays the role of a double field theory generalized

vector, as

X = XN∂N = X i(x, x̃)∂i +Xi(x, x̃)∂̃i. (3.499)

Its pushforward along ĵ is given by

ĵ∗(X) = X i(x, x̃)ζi −Xi(x, x̃)ζ̃ i, (3.500)
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where the minus sign appears due to our convention. It turns out that the derived bracket

construction on this pre-QP-manifold yields the double field theory D-bracket [117],

[X, Y ]D = ĵ∗{{Θ̂0, ĵ∗(X)}, ĵ∗(Y )}. (3.501)

The C-bracket is then simply the antisymmetrization,

[X, Y ]C =
1

2
(ĵ∗{{Θ̂0, ĵ∗(X)}, ĵ∗(Y )} − ĵ∗{Θ̂0, ĵ∗(Y )}, ĵ∗(X)}). (3.502)

An easy calculation shows that the classical master equation, {Θ̂0, Θ̂0} = 0, is not solved

trivially [117, 100],

{Θ̂0, Θ̂0} ∼ pip̃
i = 0. (3.503)

Therefore, we can induce the double field theory strong constraint by

{{Θ̂0, Θ̂0}, f}, g} ∼ ∂if∂̃
ig + ∂̃if∂ig = 0, (3.504)

where f, g ∈ C∞(M̂). We recognize, that the algebroid structure induced by this Hamiltonian

function does not directly constitute a Courant algebroid on the whole space, but merely upon

solving the strong constraint. Solving the strong constraint can be done by reducing the

graded manifold to a half-rank graded submanifold by a projection map. A simple example

would be the projection to the supergravity frame via

π : M̂ →M,

π : (pi, p̃
i, xi, x̃i, ξ

i, ξ̃i, ζi, ζ̃
i) 7→ (pi, 0, x

i, 0, ξi, 0, ζi, 0),
(3.505)

reducing the graded symplectic structure as well as the Hamiltonian to familiar objects,

Θ̂0|π(M̂) = Θ0, (3.506)

ω̂|π(M̂) = ω, (3.507)

on π(C∞(M̂)) = C∞(M) ⊂ C∞(M̂). Clearly, the projected Hamiltonian solves the classical

master equation, {Θ̂0|π(M), Θ̂0|π(M)} = 0.

Another extreme choice for a projection would be to the graded winding submanifold via

π̃ : M̂ → M̃ = T ∗[2]T [1]M̃,

π̃ : (pi, p̃
i, xi, x̃i, ξ

i, ξ̃i, ζi, ζ̃
i) 7→ (0, p̃i, 0, x̃i, 0, ξ̃i, 0, ζ̃

i).
(3.508)
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The resulting projected objects are given by

Θ̂0|π̃(M̂) = Θ̃0 = ξ̃ip̃
i, (3.509)

ω̂|π̃(M̂) = ω̃ = δx̃i ∧ δp̃i + δξ̃i ∧ ζ̃ i. (3.510)

This structure induces an untwisted Courant algebroid on the winding space. The induced

differential,

d̃ = j̃∗ ◦ Q̃0 ◦ j̃∗, (3.511)

acting on k-forms α = 1
k!
αi1···ik(x̃)dx̃i1 ∧ · · · ∧ dx̃ik ∈ Ωk(M̃) on the winding space, is the de

Rham differential on the winding space, where j̃ = π̃ ◦ ĵ. More precisely, we have

j̃ : TM̃ ⊕ (TM̃ ⊕ T ∗M̃)→ M̃,

j̃ :

(
∂

∂x̃i
, x̃i, dx̃i, ∂̃

i

)
7→ (p̃i, x̃i,−ξ̃i,−ζ̃ i).

(3.512)

Furthermore, the vector field Q̃0 is defined by Q̃0 = {Θ̃0,−}. More involved half-rank

projections that solve the strong constraint are possible. We will study the projection to the

Poisson-Courant algebroid in section 3.6. We summarize the extract of this section in the

following theorem.

Theorem 3.5.1 (Double field theory pre-QP-manifold) The 3-tuple (M̂, Θ̂, ω̂) is a pre-

QP-manifold, which induces the gauge structure of double field theory. A strong constraint

solving projection to a half-rank submanifold induces a Courant algebroid structure, which

lives on a T-duality frame.

3.5.2 Generalized fluxes

In this section, we show how to introduce geometric as well as non-geometric fluxes into the

graded manifold formalism of double field theory by twist of the Hamiltonian function Θ̂0.

The result leads to H-, F -, Q- and R-fluxes treated from an O(D,D;R)-covariant perspective

and therefore on the same footing.

First, we start with a classification of the possible twists. Since we doubled all coordinates

of the graded symplectic manifold, more transformations are possible. The twists can be
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classified in transformations, that entirely work in the supergravity frame,

exp(δB) = exp

(
1

2
Bij(x, x̃)ξiξj

)
, exp(δβ) = exp

(
1

2
βij(x, x̃)ζiζj

)
,

exp(δf ) = exp

(
1

2
f i
j (x, x̃)ξjζi

)
, exp(δa) = exp

(
1

2
ai(x, x̃)pi

)
,

(3.513)

transformations, that entirely work in the winding frame,

exp(δ̃B) = exp

(
1

2
Bij(x, x̃)ζ̃ iζ̃j

)
, exp(δ̃β) = exp

(
1

2
βij(x, x̃)ξ̃iξ̃j

)
,

exp(δ̃f ) = exp

(
1

2
f ji(x, x̃)ξ̃j ζ̃

i

)
, exp(δ̃a) = exp

(
1

2
ai(x, x̃)p̃i

)
,

(3.514)

and finally transformations, that mix both frames,

exp(δ̂B) = exp

(
1

2
Bij(x, x̃)ζ̃ iξj

)
, exp(δ̂β) = exp

(
1

2
βij(x, x̃)ζiξ̃j

)
,

exp(δ̂f ) = exp

(
1

2
f ji(x, x̃)ζj ζ̃

i

)
, exp(δ̂g) = exp

(
1

2
gji(x, x̃)ξ̃jξ

i

)
.

(3.515)

For now, it will be sufficient to perform twists in the supergravity frame and investigate the

new contributions due to the x̃i-dependence. After that, we develop a notion of T-duality,

with which to isomorphically map the supergravity frame result into any other.

In order to be able to introduce also geometric f -flux contributions depeding on the dou-

ble space, we enlarge the doubled generalized tangent bundle by a frame bundle. Let

(ξi, ξ̃i, ζi, ζ̃
i) ∈ T [1]M̂ ⊕ T ∗[1]M̂ ⊂ M̂ be associated with a general frame. We introduce

flat vector spaces V̂ = V ⊕ Ṽ , where V = RD and Ṽ = RD, such that an associated flat

frame is given by (ξa, ξ̃a, ζa, ζ̃
a) ∈ V̂ [1] ⊕ V̂ ∗[1]. Then, we can define the following injection

map of the generalized frame bundle into the graded manifold supplied with the flat vector

spaces,

ĵ : TM̂ ⊕ (TM̂ ⊕ T ∗M̂)⊕ V̂ ⊕ V̂ ∗ → T ∗[2]T [1]M̂ ⊕ V̂ [1]⊕ V̂ ∗[1], (3.516)(
∂

∂xi
,
∂

∂x̃i
, xi, x̃i, dx

i, dx̃i, ∂i, ∂̃
i, ua, ua, ũa, ũ

a

)
7→ (pi, p̃

i, xi, x̃i, ξ
i, ξ̃i, ζi, ζ̃

i, ξa, ζa, ξ̃a, ζ̃
a).

Now we have access to twists introducing vielbein fields,

exp(δe) = exp
(
e i
a (x, x̃)ξaζi

)
, exp(δe−1) = exp

(
eai(x, x̃)ξiζa

)
,

exp(δ̃e) = exp
(
e i
a (x, x̃)ζ̃aξ̃i

)
, exp(δ̃e−1) = exp

(
eai(x, x̃)ζ̃ iξ̃a

)
,

D ≡ exp(−δe) exp(δe−1) exp(−δe), D̃ ≡ exp(−δ̃e) exp(δ̃e−1) exp(−δ̃e).

(3.517)
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In the following, we perform the B-, β and D-twists in the same order as we did in section 3.4.

This leads to the local expressions of the H-, F -, Q- and R-fluxes in terms of the potentials

B, β and vielbein in the doubled space. Direct computation of the B- and β-twist gives

exp(δβ) exp(δB)Θ̂0

= (pi +Bmip̃
m)ξi + (p̃i + pmβ

mi + p̃nBnmβ
mi)ζi

+
1

2

[
−Bin∂̃

iBrs + ∂nBrs

]
ξnξrξs

−
[

1

2
∂̃iBmn + (Blm∂̃

lBns − ∂mBns +
1

2
Bls∂̃

lBmn −
1

2
∂sBmn)βsi

]
ζiξ

mξn

+

[
1

2
∂iβ

hk − 1

2
Bli∂̃

lβhk + ∂̃hBinβ
nk

− 1

2

[
−Bli∂̃

lBrs + ∂iBrs −Bls∂̃
lBir + ∂sBir +Blr∂̃

lBis − ∂rBis

]
βshβrk

]
ξiζhζk

−
[

1

2
∂̃iβhk − 1

4
∂lβ

ihβlk − 1

4
βli∂lβ

hk +
1

4
Bln∂̃

lβihβnk

+
1

4
Blnβ

ni∂̃lβhk − 1

2
∂̃iBmnβ

nhβmk

+
1

3!
(−Bln∂̃

lBrs + ∂nBrs −Bls∂̃
lBnr + ∂sBnr +Blr∂̃

lBns − ∂rBns)β
siβrhβnk

]
ζiζhζk

+ piζ̃
i + p̃iξ̃i +

1

2
(∂iBjkζ̃

i − ∂̃iBjkξ̃i)ξ
jξk +

1

2
(∂iβ

jkζ̃ i − ∂̃iβjkξ̃i)ζjζk

+ ∂iBjkβ
kmζ̃ iξjζm − ∂̃iBjkβ

kmξ̃iξ
jζm +

1

2
∂iBjkβ

jmβknζ̃ iζmζn −
1

2
∂̃iBjkβ

jmβknξ̃iζmζn.

(3.518)
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Further twist by D leads to

D exp(δβ) exp(δB)Θ̂0

= e i
d piξ

d + e i
d Bmip̃

mξd + eclp̃
lζc + βmleclpmζc + eclBnmβ

mlp̃nζc

− e i
d (∂i +Bim∂̃

m)e j
a e

a
kζjξ

kξd + ecl(∂̃
l + βlm∂m + βlmBmn∂̃

n)e j
a e

a
kζjξ

kζc

+
1

2

[
−Bin∂̃

iBrs + ∂nBrs

]
e n
a e

r
b e

s
c ξ

aξbξc

−
[
e i
b (∂i +Bim∂̃

m)e j
c e

a
j +

1

2
∂̃iBmn+

+(Blm∂̃
lBns − ∂mBns +

1

2
Bls∂̃

lBmn −
1

2
∂sBmn)βsi

]
eaie

m
b e n

c ζaξ
bξc

+

[
ecl(∂̃

l + βlm∂m + βlmBmn∂̃
n)e j

a e
b
j +

1

2
∂iβ

hk − 1

2
Bli∂̃

lβhk + ∂̃hBinβ
nk

− 1

2

[
−Bli∂̃

lBrs + ∂iBrs −Bls∂̃
lBir + ∂sBir +Blr∂̃

lBis − ∂rBis

]
βshβrk

]
e i
a e

b
he
c
kξ
aζbζc

−
[

1

2
∂̃iβhk − 1

4
∂lβ

ihβlk − 1

4
βli∂lβ

hk +
1

4
Bln∂̃

lβihβnk +
1

4
Blnβ

ni∂̃lβhk − 1

2
∂̃iBmnβ

nhβmk

+
1

3!
(−Bln∂̃

lBrs + ∂nBrs −Bls∂̃
lBnr + ∂sBnr +Blr∂̃

lBns − ∂rBns)β
siβrhβnk

]
eaie

b
he
c
kζaζbζc

+ (pi − ∂ie j
a e

a
kζjξ

k − ∂ie j
a e

b
jξ
aζb)ζ̃

i + (p̃i + ∂̃ie j
a e

a
kζjξ

k + ∂̃ie j
a e

b
jξ
aζb)ξ̃i

+
1

2
(∂iBjkζ̃

i − ∂̃iBjkξ̃i)e
j
a e

k
b ξ

aξb +
1

2
(∂iβ

jkζ̃ i − ∂̃iβjkξ̃i)ebjeckζbζc

+ ∂iBjkβ
kme j

b e
c
mζ̃

iξbζc − ∂̃iBjkβ
kme j

b e
c
mξ̃iξ

bζc +
1

2
∂iBjkβ

jmβknebme
c
nζ̃

iζbζc

− 1

2
∂̃iBjkβ

jmβknebme
c
nξ̃iζbζc, (3.519)

which can be rewritten by

Θ̂Bβe = e i
d piξ

d + e i
d Bmip̃

mξd + eclp̃
lζc + βmleclpmζc + eclBnmβ

mlp̃nζc

− e i
d (∂i +Bim∂̃

m)e j
a e

a
kζjξ

kξd + ecl(∂̃
l + βlm∂m + βlmBmn∂̃

n)e j
a e

a
kζjξ

kζc

+ (pi − ∂ie j
a e

a
kζjξ

k − ∂ie j
a e

b
jξ
aζb)ζ̃

i + (p̃i + ∂̃ie j
a e

a
kζjξ

k + ∂̃ie j
a e

b
jξ
aζb)ξ̃i

+
1

2
(∂iBjkζ̃

i − ∂̃iBjkξ̃i)e
j
a e

k
b ξ

aξb +
1

2
(∂iβ

jkζ̃ i − ∂̃iβjkξ̃i)ebjeckζbζc

+ ∂iBjkβ
kme j

b e
c
mζ̃

iξbζc − ∂̃iBjkβ
kme j

b e
c
mξ̃iξ

bζc +
1

2
∂iBjkβ

jmβknebme
c
nζ̃

iζbζc

− 1

2
∂̃iBjkβ

jmβknebme
c
nξ̃iζbζc

+
1

3!
Habcξ

aξbξc − 1

2
F a
bcζaξ

bξc +
1

2
Qbc
a ξ

aζbζc −
1

3!
Rabcζaζbζc, (3.520)
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by defining

Habc = 3(∇[aBbc] +B[a|m|∂̃
mBbc] + f̃mn[a Bb|m|Bc]n), (3.521)

F a
bc = fabc −Hmnsβ

sieaie
m
b e n

c + ∂̃aBbc + f̃adb Bdc − f̃adc Bdb, (3.522)

Qbc
a = f̃ bca + ∂aβ

bc + f badβ
dc − f cadβdb +Hisrβ

shβrke i
a e

b
he
c
k

+Bam∂̃
mβbc + ∂̃[bBaeβ

e|c] + 2B[a|ef̃
be
d] β

dc − 2B[a|ef̃
ce
d] β

db, (3.523)

Rabc = 3(β[a|m|∂mβ
bc] + f [a

mnβ
b|m|βc]n + ∂̃[aβbc] − f̃ [ab

d β|d|c]

+Bln∂̃
lβ[abβ|n|c] + ∂̃[aBedβ

|e|bβ|d|c] + f̃ [a|e|
n Bedβ

|n|b|β|d|c])

−Hmnsβ
miβnhβskeaie

b
he
c
k, (3.524)

Hmns = 3(∂[mBns] +B[m|l|∂̃
lBns]), (3.525)

f̃abc = 2e[a
m∂̃

me
b]
je

j
c . (3.526)

We conclude, that the above procedure induces all the local geometric and non-geometric

fluxes of double field theory. The classical master equation induces the following identities

between the fluxes,

e i
[aBin∂̃

nHbcd] + e m
[a ∂|m|Hbcd] −

3

2
F e

[abH|e|cd] = 0, (3.527)

(e[a
n + e

[a
lβ
lmBmn)∂̃nRbcd] + e

[a
lβ
|lm|∂mR

bcd] − 3

2
Q[ab
e R|e|cd] = 0, (3.528)

(edn + edlβ
lmBmn)∂̃nH[abc] − 3e i

aBin∂̃
nF d

bc + edlβ
ln∂nH[abc]

−3e n
[a ∂nF

d
bc] − 3He[abQ

ed
c] + 3F d

e[aF
e
bc] = 0, (3.529)

−2(e[c
n + e

[c
lβ
lmBmn)∂̃nF

d]
[ab] − 2e i

[aBin∂̃
nQ

[cd]
b] − 2e

[c
lβ
|ln|∂nF[ab]

−2e n
[a ∂nQ

[cd]
b] +He[ab]R

e[cd] +Q[cd]
e F e

[ab] + F
[c
e[aQ

|e|d]
b] = 0, (3.530)

3(e[b
n + e

[b
lβ
lmBmn)∂̃nQcd]

a − e i
aBin∂̃

nR[bcd]

+3e
[b
lβ
ln∂nQ

cd] − e n
a ∂nR

[bcd] + 3F [b
eaR

|e|cd] − 3Q[bc
e Q

|e|d]
a = 0, (3.531)

which are obeyed on a half-rank submanifold on which the strong constraint is solved. In

general, these equations are not solved, since they emerge from equations that were not

satisfied from the beginning, the classical master equation {Θ̂0, Θ̂0} 6= 0. Let us summarize

our findings in the following theorem.

Theorem 3.5.2 The twist of the double field theory Hamiltonian by B-field, β-bivector and

diffeomorphism leads to the local expressions of all geometric and non-geometric fluxes en-
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coded in the pre-QP-manifold structure. A half-rank projection that solves the strong con-

straint leads to an associated twisted Courant algebroid on the respective T-duality frame that

encodes the allowed fluxes and their Bianchi identities.

3.5.3 Non-geometric Courant algebroids

In this section, we construct two examples of twisted Courant algebroids on non-geometric

T-duality frames that arise as half-rank projections of the twisted double field theory Hamil-

tonian.

We start with the winding space Courant algebroid which emerges from a half-rank projection

of the Hamiltonian function Θ̂0 after several twists in the sector spanned by ξ̃i, ζ̃
i, ξ̃a, ζ̃

a ∈
T [1]M̃ ⊕ T ∗[1]M̃ ⊕ Ṽ [1]⊕ Ṽ ∗[1]. The twisted Hamiltonian has the structure

D̃ exp(δ̃β) exp(δ̃B)Θ̂0|π̃(M̂) = · · ·+ 1

3!
Habcζ̃

aζ̃bζ̃c − 1

2
F a
bcξ̃aζ̃

bζ̃c +
1

2
Qbc
a ζ̃

aξ̃bξ̃c −
1

3!
Rabcξ̃aξ̃bξ̃c,

(3.532)

which encodes the local expressions for the fluxes,

Habc = 3(B[a|m∂̃
mBbc] + f̃mn[a Bb|m|Bc]n), (3.533)

F a
bc = Hmnsβ

sieaie
m
b e n

c + ∂̃aBbc + f̃adb Bdc − f̃adc Bdb, (3.534)

Qbc
a = f̃ bca +Hisrβ

shβrke i
a e

b
he
c
k +Bam∂̃

mβbc + ∂̃[bBaeβ
e|c]

+ 2B[a|ef̃
be
d] β

dc − 2B[a|ef̃
ce
d] β

db, (3.535)

Rabc = 3(∂̃[aβbc] − f̃ [ab
d β|d|c] +Bln∂̃

lβ[abβ|n|c] + ∂̃[aBedβ
|e|bβ|d|c]

+ f̃ [a|e|
n Bedβ

|n|b|β|d|c])−Hmnsβ
miβnhβskeaie

b
he
c
k, (3.536)

Hmns = 3B[m|l∂̃
lBns], (3.537)

f̃abc = 2e[a
m∂̃

me
b]
je

j
c , (3.538)

on the winding frame. The classical master equation of the twisted projected Hamiltonian
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induces the generalized flux Bianchi identities on the winding frame,

e i
[aBin∂̃

nHbcd] −
3

2
F e

[abH|e|cd] = 0, (3.539)

(e[a
n + e

[a
lβ
lmBmn)∂̃nRbcd] − 3

2
Q[ab
e R|e|cd] = 0, (3.540)

(edn + edlβ
lmBmn)∂̃nH[abc] − 3e i

[aBin∂̃
nF d

bc] − 3He[abQ
ed
c] + 3F d

e[aF
e
bc] = 0, (3.541)

−2(e[c
n + e

[c
lβ
lmBmn)∂̃nF

d]
[ab]

−2e i
[aBin∂̃

nQ
[cd]
b] +He[ab]R

e[cd] +Q[cd]
e F e

[ab] + F
[c
e[aQ

|e|d]
b] = 0, (3.542)

3(e[b
n + e

[b
lβ
lmBmn)∂̃nQcd]

a − e i
aBin∂̃

nR[bcd] + 3F [b
eaR

|e|cd] − 3Q[bc
e Q

|e|d]
a = 0. (3.543)

By construction, this QP-manifold induces a consistent twisted Courant algebroid encoding

the local symmetries of the respective T-dual frame.

The second example is given by projecting (3.520) to the supergravity frame (p̃i = 0) with

Bij = 0 leading to the fluxes

Habc = 0, (3.544)

F a
bc = fabc, (3.545)

Qbc
a = ∂aβ

bc + f badβ
dc − f cadβdb, (3.546)

Rabc = 3(β[a|m|∂mβ
bc] + f [a

mnβ
b|m|βc]n). (3.547)

The associated twisted Courant algebroid encodes the local symmetries of a non-geometric

supergravity frame with vanishing B-field, which is relevant for β-supergravity [118]. This

example has also been discussed in [119].

3.5.4 T-duality

In this section, we discuss the presentation of T-duality in the setting of QP-manifolds and

Courant algebroids from the perspective of the Hamiltonian function Θ̂0 and twists thereof.

First, we note that any Hamiltonian function can be split into two parts Θ = ΘDiff + ΘFlux.

The first part ΘDiff induces the generalized derivatives and is first order in pi or p̃i, respectively.

The second part ΘFlux is zeroth order in pi or p̃i and contains the Ševera class. In our case

it contains the local information of the geometric as well as non-geometric fluxes.

For the understanding of this section it will be sufficient to only consider the generalized

derivative inducing part. It turns out, that the twist of the Hamiltonian function Θ̂0 in the
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geometric as well as the non-geometric sectors, i.e., variables (ξi, ξ̃i, ζi, ζ̃
i, ξa, ξ̃a, ζa, ζ̃

a) ∈ M̂
leads to a manifest expression in terms of the generalized vielbein depending on all potentials

B, β and ordinary vielbein. To see this, we perform the twist

D̃ exp(δ̃β) exp(δ̃B)D exp(δβ) exp(δB)Θ̂0 = Θ̂Diff + Θ̂Flux, (3.548)

which we split as described above. Further inspection of ΘDiff, we find that it can be rewritten

in the following form,

Θ̂Diff = e i
a pi(ξ

a + ζ̃a)− e l
aBlip̃

i(ξa + ζ̃a) + (eai + ealBimβ
ml)p̃i(ζa + ξ̃a)− ealβlipi(ζa + ξ̃a)

= E i
a pi(ξ

a + ζ̃a) + Eaip̃
i(ξa + ζ̃a) + Ea

ip̃
i(ζa + ξ̃a) + Eaipi(ζa + ξ̃a), (3.549)

where we recognize that the generalized vielbein components emerge,

E i
a ≡ e i

a , Eai ≡ −e l
aBli, Ea

i ≡ eai + ealBimβ
ml, Eai ≡ −ealβli. (3.550)

We can reassemble them into the generalized vielbein

EA
M =

(
E i
a Eai

Eai Ea
i

)
=

(
e i
a −e l

aBli

−ealβli eai + ealBimβ
ml

)
, (3.551)

and rewrite the Hamiltonian in an O(D,D)-covariant form,

Θ̂Diff = EA
I(e, β, B)P I(ZA + Ξ̃A), (3.552)

where we introduced P I = (pi, p̃
i), ZA = (ζa, ζ̃

a) and Ξ̃A = (ξa, ξ̃a). A physical background is

described by the functions B, β and vielbein. Therefore, a choice of a physical background

fixes Θ̂Diff, which in turn fixes Θ̂Flux by the classical master equation after half-rank projec-

tion. Therefore, it is sufficient to manipulate only the generalized differential inducing part

of a twisted Hamiltonian defined on the double space in order to relate it T-dual frames.

We associate a background with a choice of Θ̂Diff. Having understood the structure of the

Hamiltonian we can give a definition of T-duality transformations in the graded manifold

setting.

Definition 3.5.3 (T-duality) Let (M̂, ω̂) be the graded symplectic manifold as defined above.

Furthermore, let

Θ̂ = Θ̂Diff(B, β, e) + Θ̂Flux(H,F,Q,R) (3.553)
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3.5. Double field theory and T-duality

be any Hamiltonian function fixed by the background potentials B, β and vielbein.

A T-duality transformation Ti along the direction i is the discrete transformation

Ti : (xi, pi, ξ
i, ζi)↔ (x̃i,−p̃i,−ξ̃i,−ζ̃ i). (3.554)

The T-duality transformation along i-direction of any Hamiltonian describing a distinct back-

ground,

TiΘ̂ = Θ̂′ = Θ̂Diff(B′, β′, e′) + Θ̂Flux(H
′, F ′, Q′, R′), (3.555)

describes the background which emerges by T-duality transformation along i-direction.

Note that T2
i = 1 as expected. In order to get accommodated with the meaning of above

definition, let us compute two examples of T-duality in this setting: T-duality on backgrounds

with S1-isometry and the well-known T-duality chain on T 3.

Example 3.5.1 (S1-isometry) The first example concerns T-duality transformation of an

S1-compactification without any background potential. Let R be the radius of the S1-

isometry. We can write down the associated Hamiltonian function

Θ̂ = e 1
1 p1(ξ1 + ζ̃1) + e1

1p̃
1(ζ1 + ξ̃1)

= Rp1(ξ1 + ζ̃1) +R−1p̃1(ζ1 + ξ̃1). (3.556)

The projections to the supergravity frame and its T-dual are given by

Θ̂|π(M̂) = Rp1ξ
1, Θ̂|π̃(M̂) = R−1p̃1ξ̃1. (3.557)

We therefore first note that Θ̂ contains information on all T-dual hypersurfaces at once.

Depending on how we read off the information decides which T-duality frame we are treating.

We further notice, that both projections are related by the T-duality transformation T1,

T1

(
Θ̂|π(M̂)

)
= Θ̂|π̃(M̂). (3.558)

We can also see it by comparison of

Θ̂|π(M̂) = Rp1ξ
1 (3.559)

with

(T1Θ̂)|π(M̂) = R−1p1ξ
1 (3.560)

We conclude, that T-duality inverts the radius R↔ R−1, which is consistent.
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The next example concerns the well-known T-duality chain on a 3-torus with H-flux.

Example 3.5.2 (T-duality chain on T 3) Let T 3 be a 3-torus locally parameterized by

coordinates xi, where i = 1, 2, 3. Let furthermore be H ∈ Ω3(T 3) the H-flux wrapping the

3-torus such that H123 = N ∈ Z. Finally, let the metric on the 3-torus be flat. Therefore,

the background data is given by

eai =

1 0 0
0 1 0
0 0 1

 , B12 = Nx3 = −B21, H123 = ∂3B12 = N,

leading to the following differential inducing part,

Θ̂Diff = e i
i pi(ξ

i + ζ̃ i)− e 1
1 B12p̃

2(ξ1 + ζ̃1)− e 2
2 B21p̃

1(ξ2 + ζ̃2) + ei ip̃
i(ξi + ζ̃i)

= pi(ξ
i + ζ̃ i)−Nx3p̃2(ξ1 + ζ̃1) +Nx3p̃1(ξ2 + ζ̃2) + p̃i(ζi + ξ̃i). (3.561)

Note that we restrict the discussion to the differential inducing part. In this case, the flux

part is non-zero and consists of the H-flux contribution.

There are two isometry directions along which we can T-duality transform, x1 and x2. We

start with a transformation in x1-direction, giving

T1Θ̂ = pi(ξ
i + ζ̃ i)−Nx3p1(ξ2 + ζ̃2) + p̃i(ζi + ξ̃i) +Nx3p̃2(ζ1 + ξ̃1). (3.562)

The background data of the transformed background is given by

B = 0, eai =

1 Nx3 0
0 1 0
0 0 1

 , gij =

 1 Nx3 0
Nx3 1 + (Nx3)2 0

0 0 1

 , f 1
23 = 2e m

[2 ∂me
j

3]e
1
j = N,

and describes a so-called twisted torus. In the next step we transform along x2. We find

T2T1Θ̂ = pi(ξ
i + ζ̃ i) + p̃i(ζi + ξ̃i) +Nx3p1(ζ2 + ξ̃2)−Nx3p2(ζ1 + ξ̃1), (3.563)

realizing the transformed background data

eai =

1 0 0
0 1 0
0 0 1

 , β12 = Nx3, Q12
3 = ∂3β

12 = N.

The metric twist turned into the non-geometric potential β by the second T-duality trans-

formation. Finally, transformation in x3-direction leads to

T3T2T1Θ̂ = pi(ξ
i + ζ̃ i) + p̃i(ζi + ξ̃i) +Nx̃3p1(ζ2 + ξ̃2) +Nx̃3p2(ζ1 + ξ̃1), (3.564)
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realizing the background data

eai =

1 0 0
0 1 0
0 0 1

 , β12 = Nx̃3, R123 = ∂̃3β12 = N.

We conclude, that the chain of transformations

Θ̂
T1←→ Θ̂′

T2←→ Θ̂′′
T3←→ Θ̂′′′

realizes the well-known T-duality chain [14]

H123
T1←→ f 1

23
T2←→ Q12

3
T3←→ R123

in the graded symplectic manifold setting.

Arbitrary non-geometric backgrounds and their T-duals can be computed and investigated in

the setup presented above. Furthermore, any half-rank projection introduced above can be

interpreted as realizing a Courant algebroid on a T-dual hypersurface. Then, the T-duality

transformation is nothing but an isomorphism of QP-manifolds of degree 2 realizing different

(non-)geometric background data.

Any half-rank projection leads to a twisted Courant algebroid associated with a T-duality

frame. We conclude, that on each T-duality frame there lives a twisted Courant algebroid

that encodes all allowed geometric and non-geometric fluxes and their flux Bianchi identities.

Let us summarize our findings in the following theorem.

Theorem 3.5.4 The fully twisted double field theory Hamiltonian encodes the local expres-

sions for all geometric as well as non-geometric fluxes H, F , Q and R in a T-duality covariant

way. A half-rank projection that solves the strong constraint thus leads to a twisted Courant

algebroid on an associated T-duality frame that encodes not only all fluxes that live on the

respective frame in a consistent way, but also the flux Bianchi identities.

Having understood the underlying gauge algebra of the T-duality manifest formulation of

double field theory twisted by geometric as well as non-geometric fluxes, we will go on in the

following section to investigate the significance of the Poisson-Courant algebroid as model

for non-geometric flux.
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3.6 Poisson-Courant algebroid

This section concerns the analysis of the Poisson-Courant algebroid as an object that exhibits

natural trivector freedom through the introduction of a Poisson tensor Π. When the trivector

freedom is associated to non-geometric R-flux, the Poisson-Courant algebroid may serve

as model for T-dual non-geometric spaces. Among several investigations concerning the

Poisson-Courant algebroid itself and its induced cohomology, we will analyze its relation

to the standard Courant algebroid and double field theory. Along the way, we derive a

topological membrane sigma model with R-flux, that exhibits a sigma model of a string

traveling in Poisson-Courant algebroid background on its boundary. Furthermore, we derive

the associated Poisson algebra and R-twisted current algebra on the loopspace of string

embeddings into a target space with Poisson-Courant algebroid structure.

In 3.6.1, we will show how to reconstruct the Poisson-Courant algebroid from a QP-manifold.

In 3.6.2, we compute the Poisson-Courant algebroid cohomology as well as the standard

Courant algebroid cohomology on special subspaces. In 3.6.3, a duality transformation be-

tween the QP-manifolds of the Poisson-Courant algebroid with R-flux and the standard

Courant algebroid with H-flux is derived and the symmetry of their construction is investi-

gated. This duality transformation is named flux duality. Section 3.6.4 lifts the flux duality

of the associated QP-manifolds to an isomorphism of associated cohomologies. The embed-

ding of the Poisson-Courant algebroid into double field theory as a non-trivial T-duality

subspace realizing R-flux freedom is computed in 3.6.5. In 3.6.6, a topological membrane

sigma model on a Poisson-Courant algebroid background is constructed. From that, a topo-

logical sigma model of a string traveling in R-flux background with Poisson-Courant algebroid

structure is derived. Through the introduction of a kinetic term, a string sigma model action

with R-flux is constructed. Section 3.6.7 concerns the investigation of flux duality on the

level of topological sigma models. The Poisson algebra of observables on the loop space with

Poisson-Courant algebroid structure is computed in 3.6.8. From that, the current algebra

on the loop space with Poisson-Courant algebroid structure is derived in section 3.6.9. This

section is based on the published papers [1, 2, 3].

3.6.1 Supergeometry of the Poisson-Courant algebroid

In this section, we work out the supergeometric description of the Poisson-Courant algebroid.
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Let M be a smooth manifold. Furthermore, let M = T ∗[2]T [1]M be a graded manifold

locally described by coordinates (xi, ξi, ζi, pi) of degrees (0, 1, 1, 2). We equip M with the

graded symplectic structure

ω = −δxi ∧ δpi + δξi ∧ δζi, (3.565)

which induces the graded Poisson structure

{f, g} = − f
←
∂

∂xi

→
∂g

∂pi
+
f
←
∂

∂pi

→
∂g

∂xi
+
f
←
∂

∂ξi

→
∂g

∂ζi
+
f
←
∂

∂ζi

→
∂g

∂ξi
, (3.566)

where f, g ∈ C∞(M). Finally, we define the Hamiltonian function by

ΘR = Πijζipj −
1

2

∂Πij

∂xk
ξkζiζj +

1

3!
Rijkζiζjζk, (3.567)

where Πij, Rijk ∈ C∞(M). Obviously, (Πij) and (Rijk) are totally antisymmetric tensors.

Furthermore, the injection map j : (TM ⊕ T ∗M)⊕ TM →M is given by

j :

(
xi, ∂i, dx

i,
∂

∂xi

)
→ (xi, ζi, ξ

i, pi), (3.568)

and relates elements of C∞1 (M) with elements of Γ(TM ⊕ T ∗M),

X iζi + αiξ
i 7→ j∗(X iζi + αiξ

i) = X i∂i + αidx
i = X + α ∈ Γ(TM ⊕ T ∗M), (3.569)

where X i, αi ∈ C∞(M). The classical master equation, {ΘR,ΘR} = 0, translates to the two

conditions [Π,Π]S = 0 and [Π, R]S = 0. Therefore, Π is a Poisson tensor and R is a trivector

which is dΠ-closed. Finally, the Poisson-Courant algebroid operations are reconstructed via

pullback and derived brackets. The fiber metric on TM ⊕T ∗M is the pullback of the graded

Poisson bracket,

〈X + α, Y + β〉 = j∗{j∗(X + α), j∗(Y + β)}, (3.570)

where X + α, Y + β ∈ Γ(TM ⊕ T ∗M). The anchor map is reconstructed via

ρ(X + α)f = j∗{{ΘR, j∗(X + α)}, f}, (3.571)

where X + α ∈ Γ(TM ⊕ T ∗M) and f ∈ C∞(M). Finally, the R-twisted Dorfman bracket is

reconstructed by

[X + α, Y + β]ΠD,R = j∗{{ΘR, j∗(X + α)}, j∗(Y + β)}, (3.572)
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where X + α, Y + β ∈ Γ(TM ⊕ T ∗M). The R-twisted Courant bracket is then given by

antisymmetrization of the Dorfman bracket,

[X + α, Y + β]ΠC,R =

1

2
(j∗{{ΘR, j∗(X + α)}, j∗(Y + β)} − j∗{{ΘR, j∗(Y + β)}, j∗(X + α)}). (3.573)

We can summarize the result of this section in the following theorem.

Theorem 3.6.1 (Poisson-Courant algebroid) The QP-manifold (M,ΘR, ω) induces an

R-twisted Poisson-Courant algebroid structure (TM ⊕ T ∗M → (M,Π), 〈−,−〉, ρ, [−,−]ΠD,R).

We found the correct graded symplectic manifold description of the Poisson-Courant alge-

broid. In the following, begin by the investigation of its properties.

3.6.2 Poisson-Courant algebroid cohomology
versus standard Courant algebroid cohomology

In this section, we derive the Poisson-Courant algebroid cohomology as well as the standard

Courant algebroid cohomology on special subspaces.

The Poisson-Courant algebroid as well as the standard Courant algebroid are defined on the

same graded manifoldM. Let us decompose the space of smooth functions onM by degree,

C∞(M) =
∞⊕
k=0

C∞k (M). (3.574)

The homological vector fields of the Poisson-Courant algebroid and standard Courant alge-

broid are given by

QR = {ΘR,−} (3.575)

= −∂m(ΘR)

→
∂

∂pm
+ Πijζi

→
∂

∂xj
+ Πijpj

→
∂

∂ξi
− ∂kΠijξkζi

→
∂

∂ξj
− 1

2

∂Πij

∂xk
ζiζj

→
∂

∂ζk
+

1

2
Rijkζiζj

→
∂

∂ξk
,

QH = {ΘH ,−} (3.576)

= −∂m(ΘH)

→
∂

∂pm
+ ξi

→
∂

∂xi
+ pi

→
∂

∂ζi
+

1

2
Hijkξ

iξj
→
∂

∂ζk
.

If [Π,Π]S = [Π, R]S = 0, then the classical master equation is satisfied and the operator QR

is nilpotent. Furthermore, if dH = 0, then Q2
H = 0. Therefore, we get the following two

complexes

0→ C∞0 (M)
QH ,QR−−−−→ C∞1 (M)

QH ,QR−−−−→ C∞2 (M)
QH ,QR−−−−→ · · · . (3.577)
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Then, we can define the associated Courant algebroid cohomologies,

Hk
PCA(M,QR) =

ker(QR : C∞k (M)→ C∞k+1(M))

im(QR : C∞k−1(M)→ C∞k (M))
, (3.578)

Hk
SCA(M,QH) =

ker(QH : C∞k (M)→ C∞k+1(M))

im(QH : C∞k−1(M)→ C∞k (M))
. (3.579)

Instead of analyzing the cohomologies in full generality, we will show how they are related

to well-known cohomologies on certain hyperspaces.

Let us start with the standard Courant algebroid cohomology on the subspace T [1]M ⊂M,

locally described by coordinates (xi, ξi) of degrees (0, 1). The space of smooth functions on

this subspace can be associated to the space of polyforms, j∗(C∞(T [1]M)) = Ω•(M). The

pushforward of a general section γ ∈ Ωk(M) can be written by

j∗(γ) =
1

k!
γi1···ikξ

i1 · · · ξik .

The homological vector field of the standard Courant algebroid acts as the de Rham differ-

ential on this subspace,

(j∗ ◦QH ◦ j∗)γ = dγ. (3.580)

We conclude, that the restriction of the standard Courant algebroid cohomology to functions

on C∞(T [1]M) is equivalent to the de Rham cohomology over M ,

Hk
SCA(M,QH)|C∞(T [1]M)

∼= Hk
de Rham(M,d). (3.581)

Let us now investigate a special restriction of the Poisson-Courant algebroid cohomology.

We consider the subspace T ∗[1]M ⊂ M, locally parameterized by coordinates (xi, ζi). The

decomposition of the space of smooth functions on this subspace by degree is isomorphic to

the space of polyvectors, j∗(C∞(T ∗[1]M)) = X•(M). So we can write the pushforward of a

general section V ∈ Xk(M) as

j∗(V ) =
1

k!
V i1···ikζi1 · · · ζik . (3.582)

On this subspace, we find that the Poisson-Courant algebroid homological vector field acts

as the Lichnerowicz-Poisson differential,

(j∗ ◦QH ◦ j∗)V = dΠV. (3.583)
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We conclude, that the Poisson-Courant algebroid cohomology restricted to the functions on

the subspace C∞(T ∗[1]M) is equivalent to the Lichnerowicz-Poisson cohomology of polyvector

fields over M ,

Hk
PCA(M,QH)|C∞(T ∗[1]M)

∼= Hk
LP(M,dΠ). (3.584)

We are lead to the following theorem.

Theorem 3.6.2 We have the following isomorphisms between cohomologies,

Hk
SCA(M,QH)|C∞(T [1]M)

∼= Hk
de Rham(M,d),

Hk
PCA(M,QH)|C∞(T ∗[1]M)

∼= Hk
LP(M,dΠ).

3.6.3 Flux duality I: QP-manifolds

In this section, we derive the duality transformation between the Poisson-Courant algebroid

with R-flux and standard Courant algebroid with H-flux on the level of QP-manifolds. After

that, we investigate the symmetry of both constructions.

We recognize that the R-twisted Poisson-Courant algebroid and H-twisted standard Courant

algebroid are defined with respect to the same graded manifold M and graded symplectic

structure ω. The only difference is the choice of the Hamiltonian function. Having this in

mind, we will proof that both algebroids are related by a symplectomorphism if the Poisson

structure is invertible.

Theorem 3.6.3 (Flux duality) Let (M,ΘH , ω) and (M,ΘR, ω) be QP-manifolds that in-

duce the H-twisted standard Courant algebroid and R-twisted Poisson-Courant algebroid,

respectively. Furthermore, let us assume, that the Poisson structure Π is invertible.

Then, both algebroids are related by the symplectomorphism T : ΘH 7→ ΘR,

T : ΘH 7→ exp

(
−1

2
Πijζiζj

)
exp

(
1

2
Π−1
ij ξ

iξj
)

exp

(
−1

2
Πijζiζj

)
ΘH = ΘR, (3.585)

where R = Π]H.1

The transformation behavior of the local coordinates is given by

T : (xi, ξi, ζi, pi) 7→
(
xi,Πjiζj,Π

−1
ij ξ

j, pi −
∂Πjk

∂xi
Π−1
kl ζjξ

l

)
. (3.586)

1In local coordinates, this is Rijk = ΠimΠjnΠklHmnl.
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We conclude, that the base manifold itself is not transformed. However, the space of 1-forms

is bijectively mapped to the space of 1-vectors, and vice versa. A section of the generalized

tangent bundle transforms as

j∗(X + α) = X iζi + αiξ
i 7→ X iΠ−1

ij ξ
j − αiΠijζj = j∗(−Π](α) + (Π−1)[(X)). (3.587)

Here, (Π−1)[ : TM → T ∗M is the musical isomorphism, locally described by (Π−1)[(X) =

Π−1
ij X

idxj, where Π−1 ∈ ∧2T ∗M . The map T is invertible and its inverse is given by

T−1 = exp

(
1

2
Πijζiζj

)
exp

(
−1

2
Π−1
ij ξ

iξj
)

exp

(
1

2
Πijζiζj

)
. (3.588)

By further comparison of the associated Hamiltonian functions one recognizes the substantial

symmetries,

Πijζipj −
1

2

∂Πjk

∂xi
ξiζjζk ⇔ piξ

i,

1

3!
Rijkζiζjζk ⇔ 1

3!
Hijkξ

iξjξk,

dΠR = [Π, R]S = 0 ⇔ dH = 0,

[Π,Π]S = 0 ⇔ d2 = 0.

(3.589)

The first line generates the Poisson-Lichnerowicz and de Rham differentials, respectively. The

Poisson-Courant algebroid as a contravariant model naturally provides 3-vector flux freedom,

whereas the standard Courant algebroid serves as a model for 3-form flux. The 3-vector flux

is a cohomology class in Poisson cohomology, whereas the 3-form flux represents a class in de

Rham cohomology. The last line expresses the nilpotency of the both differentials, respec-

tively. Finally, the β-twist of the Poisson-Courant algebroid naturally induces R-flux freedom

by R = dΠβ = [Π, β]S ∼ R, whereas the B-twist of the standard Courant algebroid induces

H-flux, dB ∼ H. We conclude, that the Poisson-Courant algebroid realizing contravariant

geometry is the most natural way to encode 3-vector freedom in a symmetric manner com-

pared to the standard Courant algebroid with H-flux. However, the existence of a Poisson

tensor is inevitable.

3.6.4 Flux duality II: Cohomologies

In this section, we show that the symplectomorphism T induces an isomorphism between the

standard Courant algebroid and Poisson-Courant algebroid cohomologies in full generality.
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In the former section, we showed that if Π is an invertible Poisson tensor, then T : ΘH 7→ ΘR

is a symplectomorphism and invertible. We find

QHf = {ΘH , f} = {T−1(ΘR), f} = T−1{ΘR, T f} = T−1(QR(Tf)). (3.590)

Therefore, for a QH-cocycle,

QHf = 0⇔ QR(Tf) = 0, (3.591)

and for a QH-coboundary,

QHf = g ⇔ Tg = QR(Tf). (3.592)

In other words, if f is a QH-cocycle, then Tf is a QR-cocycle and if f is a QH-coboundary,

then Tf is a QR-coboundary. So we find that the flux duality map of the complexes T :

C•(M)→ C•(M) lifts to a isomorphism of general Courant algebroid cohomologies,

T : Hk
SCA(M,QH) ∼= Hk

PCA(M,QR). (3.593)

This is a generalization of the famous theorem, that the map Π] : Ωk(M)→ ∧kTM induces

a homomorphism between de Rham cohomology and Lichnerowicz-Poisson cohomology,

Π] : Hk
de Rham(M,d)→ Hk

LP(M,dΠ), (3.594)

which condenses to an isomorphism, if Π−1 is symplectic,

Π−1 is symplectic⇒ Π] : Hk
de Rham(M,d) ∼= Hk

LP(M,dΠ). (3.595)

From the perspective of the isomorphism between the Poisson and standard Courant al-

gebroids, the map T gives an isomorphism of subspaces C∞(T [1]M) ∼= C∞(T ∗[1]M) and

therefore an isomorphism of restricted Poisson and standard Courant algebroid cohomologies

to the respective polyform and polyvector subspaces.

Theorem 3.6.4 Flux duality T lifts to an isomorphism of Courant algebroid cohomologies,

T : Hk
SCA(M,QH) ∼= Hk

PCA(M,QR).

As a result of the last two sections, we are lead to the conclusion, that the natural coho-

mology theory for the contravariant 3-vector flux is given by Poisson cohomology. Then, the

formulation of 3-form and 3-vector theories is totally symmetric.
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3.6.5 Embedding in double field theory

In this section, we shall show how the Poisson-Courant algebroid can be seen as a reduction

of the double field theory Hamiltonian, i.e., a special solution to the section condition.

We start with the untwisted double field theory Hamiltonian,

Θ̂0 = pi(ξ
i + ζ̃ i) + p̃i(ζi + ξ̃i). (3.596)

Let us recall the untwisted Poisson-Courant algebroid depending on coordinates (yi, ρi, ηi, qi)

of degrees (0, 1, 1, 2),

ΘR = Πijηiqj −
1

2

∂Πij

∂yk
ρkηiηj. (3.597)

The following reduction of Θ̂0,

ξ̃i = ρi, ζ̃i = ηi, p̃i = Πij(y)qj +
1

2

∂Πik

∂yj
ρjηk, (3.598)

under the projection to the winding frame by (pi = ξi = ζi = 0) leads to the Poisson-Courant

algebroid Hamiltonian ΘR. The base manifold coordinates are related by

x̃i =
1

2

∫
Π−1
ji (y)dyj. (3.599)

From this perspective, we can conclude, that the Poisson-Courant algebroid solves the section

condition as a Courant algebroid on the winding frame. However, for the case of a non-

constant Poisson tensor, the contribution (−1
2
∂Πij

∂yk
ρkηiηj) corresponds to the torsion of the

associated linear contravariant connection. Therefore, the Poisson-Courant algebroid lives in

the winding space, which is deformed by a non-constant Poisson tensor inducing a non-trivial

connection.

This can be made precise, when investigating the reduction of the graded symplectic structure

ω̂, which does not reduce to the ordinary graded symplectic structure of the Poisson-Courant

algebroid,

ω = −δyi ∧ δqi + δρi ∧ δηi, (3.600)

but receives a deformation parameterized by the non-constant Poisson tensor Π. In the

constant case, the deformation vanishes and the graded symplectic structure reduces correctly.

Let us summarize our findings in the following theorem.
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Theorem 3.6.5 The Poisson-Courant algebroid is a reduction of the untwisted double field

theory pre-QP-manifold to the winding frame, if the Poisson tensor Π is constant. If the

Poisson tensor is non-constant, the winding space is deformed through the emergence of a

linear contravariant connection with torsion.

We conclude, that the Poisson-Courant algebroid serves as a model of the double field theory

winding space, which is deformed by the existence of a global Poisson tensor. Motivated by

this result, we construct physical models of topological membranes and string sigma models in

Poisson-Courant algebroid backgrounds as well as associated Poisson and R-twisted current

algebras.

3.6.6 Poisson-Courant sigma model

In this section, we derive the topological sigma model associated to the Poisson-Courant

algebroid using the AKZS procedure for BV models. We show that for non-zero worldvolume

boundary, the boundary theory realizes a topological closed string model with R-flux Wess-

Zumino-Witten term. By the introduction of a kinetic term we find the sigma model of a

closed string traveling in R-space with Poisson-Courant algebroid target space structure.

We consider a membrane embedded into a QP-manifold target space with Poisson-Courant

algebroid structure. The membrane worldvolume is denoted by X and has 3 dimensions. We

promote it to the superworldvolume χ = T [1]X, which locally is described by coordinates

(σµ, θµ) of degrees (0, 1) and the index µ runs from 1 to 3. The coordinates σµ locally

parameterize X, whereas the Grassmann odd coordinates θµ parameterize the graded tangent

bundle fiber.

The target space structure is induced by the QP-manifold (M = T ∗[2]T [1]M,ΘR, ω) as

described in the former sections. Having fixed both, the superworldvolume and the target

space QP-manifold, we now construct the AKSZ topological sigma model on the mapping

space Map(χ,M). For the details on the differential geometry on the mapping space and

how the associated objects are defined locally, we refer to the sections B.3, B.4 and B.5 in

the appendix. The graded symplectic structure on the mapping space is given by

Ω =

∫
χ

µχ(−δxi ∧ δpi + δξi ∧ δζi), (3.601)

locally expressed by elements of Map(χ,M). These elements are images of the local coordi-
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nates on M under the pullback along the evaluation map ev,

ev∗ : (xi, pi, ξ
i, ζi) 7→ (xi,pi, ξi, ζi). (3.602)

The fields (xi,pi, ξi, ζi) are functions on χ and therefore superfields, whose components

contain physical components, ghosts and antifields. The interaction term of the BV action

on the mapping space is given by

S1 =

∫
χ

µχ

(
Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

)
. (3.603)

Here, the measure is given by µχ = dσ1dσ2dσ3dθ3dθ2dθ1. Taking the Liouville 1-form ϑ =

−piδxi − ζiδξi, the associated Liouville 1-form on the mapping space is given

ϑ =

∫
χ

µχ(piδx
i + ζiδξ

i), (3.604)

so that the kinetic term of the BV action becomes

S0 =

∫
χ

µχ(−pidxi − ζidξi), (3.605)

where d = θµ∂µ is the superdifferential and ∂µ denotes the derivative with respect to σµ.

Summing up, we find the full BV action of a Poisson-Courant sigma model on the mapping

space

S = S0 + S1

=

∫
χ

µχ

(
−pidxi − ζidξi + Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

)
. (3.606)

Definition 3.6.6 (Poisson-Courant sigma model) The 3-tuple (Map(χ,M), S,Ω), where

χ = T [1]X and dim(X) = 3, M = T ∗[2]T [1]M and

S =

∫
χ

µχ

(
−pidxi − ζidξi + Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

)
,

Ω =

∫
χ

µχ(−δxi ∧ δpi + δξi ∧ δζi),

is called the Poisson-Courant sigma model. It is a model of a topological membrane traveling

in a target space with Poisson-Courant algebroid structure.
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This sigma model can be referred to as contravariant Courant sigma model, since it realizes

contravariant geometry.

Let us now derive the sigma model action of a closed string traveling in R-flux background

induced from the Poisson-Courant algebroid structure on the target space. This can be

derived from the membrane Poisson-Courant algebroid sigma model. The variation of (3.606)

is given by

δS =

∫
χ

µχ
(
−δpidxi − pidδxi − δζidξi − ζidδξi

+δ

(
Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

))
=

∫
∂χ

µ∂χ(ζiδξ
i − piδxi) +

∫
χ

µχ
(
−δpidxi + dpiδx

i − δζidξi − dζiδξi

+ δ(Πij(x)ζipj −
1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk)

)
. (3.607)

The measure µ∂χ denotes the boundary measure on ∂χ. The boundary variation term has

to vanish. Therefore, the boundary of the membrane inherits the structure of the Poisson-

Courant algebroid restricted to the Lagrangian submanifold L, which is the zero locus of the

Liouville 1-form ϑ.

The classical master equation on (Map(χ,M), S,Ω) is given by

{S, S}BV = (3.608)∫
∂χ

µ∂χ

(
−pidxi − ζidξi + Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

)
,

which vanishes upon employment of the boundary conditions pi|∂χ = ζi|∂χ = 0. From

the perspective of the target space QP-manifold, this choice corresponds to pi = ζi = 0,

so that sections of the generalized tangent bundle get reduced to the cotangent subspace,

TM ⊕ T ∗M → T ∗M , which is a Dirac structure of the Poisson-Courant algebroid.

In the next step, we consider the introduction of a boundary term by twist via −1
2
Bijξ

iξj,

where B ∈ Ω2(M). Since {−1
2
Bijξ

iξj,−1
2
Bijξ

iξj} = 0, we find the twisted homological

function

SB = S +
1

2

∫
∂χ

µ∂χBij(x)ξiξj. (3.609)

Investigating the boundary variation of SB, we find, that the boundary conditions have been
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twisted,

δSB =

∫
∂χ

µ∂χ

(
ζiδξ

i − piδxi +
1

2

∂Bij

∂xk
(x)ξiξjδxk −Bij(x)ξjδξi

)
+

∫
χ

µχ
(
−δpidxi + dpiδx

i − δζipξi − dζiδξi

+δ

(
Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

))
. (3.610)

The vanishing of the boundary variation leads to the boundary conditions

pi|∂χ =
1

2

∂Bjk

∂xi
(x)ξjξk|∂χ, ζi|∂χ = Bij(x)ξj|∂χ. (3.611)

Upon solving the Liouville part via the boundary conditions, the twisted master equation

gives

{SB, SB}BV =

[
Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

]
∂χ

= 0. (3.612)

From the perspective of the target space, above equation is equivalent to the condition that

the homological function Θ vanishes on the Lagrangian submanifold specified by the boundary

conditions,

Θ|LB =

[
Πijζipj −

1

2

∂Πij

∂xk
ξkζiζj +

1

3!
Rijkζiζjζk

]
LB

= 0, (3.613)

where

LB =

{
(xi, ξi, ζi, pi) ∈M

∣∣∣∣ pi =
1

2

∂Bjk

∂xi
ξjξk and ζi = Bijξ

j

}
. (3.614)

This condition is satisfied if [B,B]Π = B[R, where the Koszul bracket has been extended

over the space of polyforms via the Leibniz rule.2 The 2-form Koszul commutator is twisted

by a 3-vector.

In the special case, where B = Π−1, we find

H = dB = B[R. (3.615)

Finally, we derive the string sigma model with R-flux on the boundary of the twisted Poisson-

Courant sigma model. This is done by integrating out the auxiliary superfield pi. We start

from (3.609) and use the equation of motion for pi leading to

ζi = −Π−1
ij (x)dxj, (3.616)

2Locally, we can write B[R = 1
3!BimBjnBklR

mnldxi ∧ dxj ∧ dxk
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under the assumption that Π is non-degenerate. The integral over χ is given by∫
χ

µχ

(
Π−1
ij dx

jdξi − 1

2

∂Π−1
ij

∂xk
ξkdxidxj − 1

3!
RijkΠ−1

il Π−1
jmΠ−1

kndx
ldxmdxn

)
. (3.617)

Under the assumption that Π−1 is symplectic, we can apply Stokes theorem to obtain the

boundary string sigma model with R-flux,

S =

∫
∂χ

µ∂χ

(
−Π−1

ij ξ
idxj +

1

2
Bijξ

iξj
)
− 1

3!

∫
χ

µχR
ijkΠ−1

il Π−1
jmΠ−1

kndx
ldxmdxn. (3.618)

This is a Poisson sigma model with Wess-Zumino term H = Π]R.

Above action is written using superfields that contain ghosts and antifields. In order to obtain

the ghost-free part of (3.618), we expand all the fields in supercoordinates and project out

the ghost contribution by integration over the Berezin measure. The fields are expanded as

xi(σ, θ) = x(0),i(σ) + x(1),i
µ (σ)θµ +

1

2
x(2),i
µν (σ)θµθν , (3.619)

ξi(σ, θ) = ξ(0),i(σ) + ξ(1),i
µ (σ)θµ +

1

2
ξ(2),i
µν (σ)θµθν , (3.620)

ζi(σ, θ) = ζ
(0)
i (σ) + ζ

(1)
i,µ (σ)θµ +

1

2
ζ

(2)
i,µν(σ)θµθν . (3.621)

The physical component is the ghost-number zero component. If we insert the expansions

and take the (σ1, θ1)-boundary, the relevant part is given by

SB,ghost-free =∫
∂χ

dσ1dσ2dθ2dθ1

(
−Π−1

ij ξ
(1),i
µ θµθν∂νx

j +
1

2
Bijξ

(1),i
µ θµξ(1),j

ν θν
)

−
∫
χ

dσ1dσ2dσ3dθ3dθ2dθ1

(
1

3!
RijkΠ−1

il Π−1
jmΠ−1

knθ
µθνθρ∂µx

l∂νx
m∂ρx

n

)
=

∫
∂X

(
−Π−1

ij ξ
i ∧ dxj +

1

2
Bijξ

i ∧ ξj
)
− 1

3!

∫
X

RijkΠ−1
il Π−1

jmΠ−1
kndx

l ∧ dxm ∧ dxn, (3.622)

where we denoted xi = x(0),i and defined ξi = ξ
(1),i
µ dσµ. Finally, we obtain the action of a

string sigma model of a closed string traveling in R-flux background of the Poisson-Courant

algebroid target space when adding the kinetic term,

S =

∫
∂X

(
−Π−1

ij ξ
i ∧ dxj +

1

2
Bijξ

i ∧ ξj +
1

2
Gijdx

i ∧ ?dxj
)

− 1

3!

∫
X

RijkΠ−1
il Π−1

jmΠ−1
kndx

l ∧ dxm ∧ dxn. (3.623)
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Starting from the Poisson-Courant sigma model we found a closed string sigma model by a

twist of the boundary conditions as the boundary theory of a topological membrane model

with Poisson-Courant algebroid structure.

3.6.7 Flux duality III: Courant sigma models

In this section, we discuss how flux duality on the target space transforms the membrane

Courant sigma models. We find that from the viewpoint of the membrane sigma model, the

realization of the boundary theory as a Poisson sigma model with H-flux Wess-Zumino term

or contravariant Poisson sigma model with R-flux Wess-Zumino term is crucially related to

the choice of boundary conditions. In order to come to an understanding, we compare the

derivation of both sigma models.

In both cases, the starting point is the graded manifold M = T ∗[2]T [1]M with graded

symplectic structure

ω = −δxi ∧ δpi + δξi ∧ δζi. (3.624)

However, we can observe two differences. The first difference is given by the choice of Hamil-

tonian functions,

ΘH = piξ
i +

1

3!
Hijkξ

iξjξk, (3.625)

ΘR = Πijζipj −
1

2

∂Πij

∂xk
ξkζiζj +

1

3!
Rijkζiζjζk, (3.626)

which are related by the canonical transformation T : ΘH 7→ ΘR. The second difference,

which is crucial for the derivation of the appropriate boundary sigma model, is the choice of

Liouville 1-form ϑ,

ϑH = −piδxi − ξiδζi, (3.627)

ϑR = −piδxi − ζiδξi, (3.628)

where we introduce the subscript H or R for convenience. The resulting Courant sigma

models are then given by

SH =

∫
χ

µχ

(
−pidxi − ξidζi + piξ

i +
1

3!
Hijk(x)ξiξjξk

)
, (3.629)

SR =

∫
χ

µ

(
−pidxi − ζidξi + Πij(x)ζipj −

1

2

∂Πij

∂xk
(x)ξkζiζj +

1

3!
Rijk(x)ζiζjζk

)
. (3.630)
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The Poisson sigma model with H-flux Wess-Zumino term is realized in the zero locus of ϑH ,

whereas the contravariant Poisson sigma model with R-flux Wess-Zumino term is realized

in the zero locus of ϑR. Recognizing that the duality transforms T : ϑH 7→ ϑR, we come

to the conclusion that T not only relates the Hamiltonian functions if Π is nondegenerate

and R = Π]H, but also transforms the Lagrangian submanifolds related to both zero loci.

Since the boundary theory of the membrane sigma model is mapped into the Lagrangian

submanifold specified by the respective zero loci, we arrive at the following theorem.

Theorem 3.6.7 From the perspective of the membrane theory, the Poisson sigma model with

H-flux Wess-Zumino term and the contravariant Poisson sigma model with R-flux Wess-

Zumino term are dual to each other by the transformation T in the sense that they are

realized by dual boundary conditions.

3.6.8 Contravariant Poisson algebra

In this section, we derive the Poisson algebra of physical canonical coordinates associated to

the target space QP-manifold of the Poisson-Courant algebroid with R-flux.

The Poisson-Courant sigma model is a topological membrane model, which realizes R-flux

freedom by a Wess-Zumino term. The associated boundary theory is the contravariant Pois-

son sigma model of a topological string. Let the worldsheet of the string be Σ = S1×R, where

R denotes the time direction. Then, the Poisson algebra will be constructed on the mapping

space from
◦
χ = T [1]S1 to the target superspace M, Map(

◦
χ,M). Let

◦
χ be locally param-

eterized by the coordinates (σ, θ) of degrees (0, 1). The supermapping space Map(
◦
χ,M)

will in the end be reduced to the space of maps from the string to the cotangent bundle,

T ∗LM = Map(S1, T ∗M), locally parameterized by coordinates xi(σ) on M and ξi(σ) on the

cotangent fiber. Thus, we are lead to the Poisson algebra on T ∗LM .

Please note that we use the following graded symplectic structure,

ω = δxi ∧ δpi + δξi ∧ δζi. (3.631)

To get started, we choose the Lagrangian submanifold L on which pi = ζi = 0. The derived
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bracket does not close on L,

{{xi,ΘR}, xj} = 0, (3.632)

{{xi,ΘR}, ξj} = −Πij, (3.633)

{{ξi,ΘR}, ξj} =
∂Πij

∂xk
ξk −Rijkζk. (3.634)

The Poisson bracket on the transgressed Lagrangian submanifold L̂ ⊂ Map(
◦
χ,M) is then

given by

{xi(z),xj(z′)}PB,L̂ = 0, (3.635)

{xi(z), ξj(z′)}PB,L̂ = −Πij(x(z))δ(z − z′), (3.636)

{ξi(z), ξj(z′)}PB,L̂ =
∂Πij

∂xk
(x(z))ξkδ(z − z′), (3.637)

where z = (σ, θ) and δ(z−z′) = δ(σ−σ′)δ(θ−θ′). One recognizes that the R-flux contribution

has been projected out on L̂. In order to generate the R-flux Poisson algebra, we twist by

the Liouville 1-form on L, α ≡ ιďµ∗ev∗ϑL, where

ϑL = Π−1
ij ξ

iδxj − · · · , (3.638)

where · · · contain terms without ξi, so that

α ≡ −
∫
◦
χ

µ◦χΠ−1
ij ξ

idxj + · · · . (3.639)

The twist transforms the coordinate ζi via

exp(α)ζi = ζi − Π−1
ij dx

j, (3.640)

so that the Lagrangian submanifold is twisted L̂ → L̂α, on which ζi − Π−1
ij dx

j = 0. We

therefore find the following Poisson algebra with respect to Lα,

{xi(z),xj(z′)}PB,L̂α = 0, (3.641)

{xi(z), ξj(z′)}PB,L̂α = −Πij(x(z))δ(z − z′), (3.642)

{ξi(z), ξj(z′)}PB,L̂α =

(
∂Πij

∂xk
(x(z))ξk −Rijk(x(z))Π−1

kl dx
l

)
δ(z − z′). (3.643)

In order to derive the physical Poisson brackets, we expand the superfields in the Grassmann

variables and project out the ghost-degree zero component. The superfield expansions are
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given by

xi(σ, θ) = x(0),i(σ) + x(1),i(σ)θ, (3.644)

ξi(σ, θ) = ξ(0),i(σ) + ξ(1),i(σ)θ, (3.645)

ζi(σ, θ) = ζ
(0)
i (σ) + ζ

(1)
i (σ)θ, (3.646)

where we denote the physical components by

xi = x(0),i, ξi = ξ(1),i, ζi = ζ
(1)
i . (3.647)

After reduction to the ghost-degree zero component, the Poisson brackets on the space of

physical canonical quantities are then given by

{xi(σ), xj(σ′)}PB,L̂α = 0, (3.648)

{xi(σ), ξj(σ′)}PB,L̂α = −Πij(x(σ))δ(σ − σ′), (3.649)

{ξi(σ), ξj(σ′)}PB,L̂α = −
(
−∂Πij

∂xk
(x(σ))ξk +Rijk(x(σ))Π−1

kl ∂σx
l

)
δ(σ − σ′). (3.650)

We can easily read off the symplectic form that induces the resulting Poisson algebra on the

space of physical canonical quantities,

ω = −
∫
S1

dσΠ−1
ij δx

i ∧ δξj +
1

2

∫
S1

(
−∂Πij

∂xk
ξk +RijkΠ−1

kl ∂σx
l

)
Π−1
imδx

m ∧ Π−1
jn δx

n. (3.651)

This symplectic form induces the contravariant Poisson algebra with R-flux on the space of

physical canonical quantities (xi, ξi). It is the phase space symplectic structure of a closed

string traveling in R-space on a Poisson-Courant algebroid background.

3.6.9 Contravariant current algebra

In this section, we discuss the construction of the contravariant R-flux current algebra on

the Poisson algebra derived above, based on the Poisson-Courant algebroid with R-flux.

The relevant subspaces of the space of smooth functions on M are given by

C∞0 (M) ∼= C∞(M), C∞1 (M) ∼= TM ⊕ T ∗M. (3.652)

As in the standard Courant algebroid case, we assign to each element of a subspace an object,

that will be transgressed to a current on the mapping space,

j[(0),f ] = f, j[(1),X+α] = X iζi + αiξ
i, (3.653)
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where f,X i, αi ∈ C∞(M). The derived brackets between these elements are given by

{{j[(0),f ],ΘR}, j[(0),g]} = 0, (3.654)

{{j[(1),X+α],ΘR}, j[(0),g]} = −Π](α)(g), (3.655)

{{j[(1),X+α],ΘR}, j[(1),Y+β]} = −j[(1),[X+α,Y+β]ΠD,R]. (3.656)

In the next step, we compute the transgression to the mapping space Map(
◦
χ,M), where

◦
χ = T [1]S1. The supergeometric currents on the superloop space are given by

J[(0),f ](ε(1)) = µ∗ε(1)ev∗j[(0),f ] =

∫
◦
χ

µ◦χε(1)f(x), (3.657)

J[(1),X+α](ε(0)) = µ∗ε(1)ev∗j[(0),X+α] =

∫
◦
χ

µ◦χε(1)(X
i(x)ζi + αi(x)ξi), (3.658)

where we introduced ε(1) and ε(0) of degrees 1 and zero. On the transgression of the La-

grangian submanifold defined by pi = ζi = 0, some part of the currents gets projected

out. Therefore, we twist L by the Liouville 1-form as in the previous section leading to the

following supercurrents on L̂α,

J[(0),f ](ε(1))|L̂α = µ∗ε(1)ev∗j[(0),f ]|L̂α =

∫
◦
χ

µ◦χε(1)f(x), (3.659)

J[(1),X+α](ε(0))|L̂α = µ∗ε(1)ev∗j[(0),X+α]|L̂α =

∫
◦
χ

µ◦χε(1)(X
i(x)Π−1

ij dx
j + αi(x)ξi). (3.660)

The Poisson algebra of supercurrents on the transgressed twisted Lagrangian submanifold

L̂α is then given by

{J[(0),f ](ε),J[(0),g](ε
′)}PB,L̂α = 0, (3.661)

{J[(1),X+α](ε),J[(0),g](ε
′)}PB,L̂α = Π](α)J[(0),g](εε

′), (3.662)

{J[(1),X+α](ε),J[(1),Y+β](ε
′)}PB,L̂α = J[(1),[X+α,Y+β]ΠD,R](εε

′)

+

∫
◦
χ

µ◦χdε(0)ε
′
(0)〈X + α, Y + β〉(x). (3.663)

Finally, we find the physical contravariant R-flux current algebra by restriction to the ghost-

number zero component,

{J[(0),f ](σ), J[(0),g](σ
′)}PB,L̂α = 0, (3.664)

{J[(1),X+α](σ), J[(0),g](σ
′)}PB,L̂α = −Π](α)J[(0),g](σ)δ(σ − σ′), (3.665)

{J[(1),X+α](σ), J[(1),Y+β](σ
′)}PB,L̂α = −J[(1),[X+α,Y+β]ΠD,R](σ)δ(σ − σ′)

+ 〈X + α, Y + β〉(σ′)∂σδ(σ − σ′), (3.666)
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where the generalized physical currents are given by

J[(0),f ](σ) = f(x(σ)), (3.667)

J[(1),X+α](σ) = X i(x(σ))Π−1
ij ∂σx

j(σ) + αi(x(σ))ξi(σ). (3.668)

We successfully derived the current algebra on the cotangent bundle of the loop space

T ∗LM = Map(S1, T ∗M) of a closed string traveling in R-space associated with the Poisson-

Courant algebroid. Two currents close on a third, which is computed by the R-twisted

Courant bracket of the Poisson-Courant algebroid. The anomalous term is given by the

fiber product on the generalized tangent bundle and vanishes on a Dirac structure of the

Poisson-Courant algebroid.

This ends the analysis of the Poisson-Courant algebroid and its relevance as a non-geometric

background of toroidally compactified string theory. In the remainder of the first part of this

thesis, we investigate general duality structures in string theory and M-theory.

3.7 Generalized geometries

In this section, we investigate the local symmetry L∞-algebras of higher gerbe structures

associated with the various generalized geometries, which underly the duality structures of

string theory and M-theory in terms of T-duality and U-duality. This section is based on

calculations done associated with [4], which is still work in progress. Exceptional generalized

structures and Bn generalized geometry have also been studied from the standpoint of Leibniz

algebroids in [78] and from the standpoint of dg-manifolds in [79] to which we will compare

our construction.

Section 3.7.1 concerns ordinary generalized geometry appearing as the geometry of toroidal

closed string compactifications with H-flux and should be considered as a warm-up. Then,

in section 3.7.2 we discuss the structure associated with the tensor product of the generalized

tangent bundle with a line bundle. If the line bundle is exchanged by an adjoint bundle of

a non-abelian Lie algebra, then this case is related to T-duality in heterotic string theory,

where there is an additional 1-form gauge field present. In 3.7.3 and 3.7.4, we investigate the

higher gerbe structures associated with exceptional generalized tangent bundles appearing,

when considering U-duality symmetry in M-theory. The section 3.7.3 concerns exceptional

tangent bundles, which can accommodate M2-brane wrapping modes. Then, in section 3.7.3,
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exceptional tangent bundles will be discussed, which can accommodate both M2- and M5-

brane wrapping modes.

In section 3.3.7, we described abelian n-gerbes in terms of Čech-Deligne cocycles. By in-

specting the structure of the total cohomology, in which the respective cocycle is located, one

recognizes that the local symmetries of the n-gerbe is encoded in the following L∞-algebra,

C∞(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · d−→ Ωn−1(M)

d−→ Γ(TM ⊕ ∧nT ∗M), (3.669)

where M is the smooth manifold over which the n-gerbe is defined. The complex encodes

the symmetries-of-symmetries of the associated n-gerbe. Comparing to theorem 3.3.33 in

section 3.3.3, we recognize that this constitutes a Lie (n + 1)-algebra, which is associated

with Courant algebroids of degree n.

3.7.1 Generalized geometry

As we described in the preliminary sections, at the heart of generalized geometry lies the

exact Courant algebroid, which captures the transformation behavior of the metric and B-

field under T-duality. Such a Courant algebroid has a description as QP-manifold of degree

2. The associated semistrict Lie 2-algebra structure is defined on the complex

C∞(M)
d−→ Γ(TM ⊕ T ∗M) (3.670)

and captures the local symmetries of the 1-gerbe with curvature dB = H.

3.7.2 Bn-generalized geometry

Bn-generalized geometry was introduced in [78]. It turns out that it is an version of general-

ized geometry related to T-duality in string theory with Yang-Mills gauge field, e.g. heterotic

string theory or type I string theory [120]. We shortly describe the underlying construction.

The notion Bn comes from the special orthogonal group Bn = SO(n+1, n), which is reflected

by signature of the fiber metric, we define in the following.

Let M be a smooth manifold of dimension n. Let us consider the vector bundle E =

TM ⊕ T ∗M ⊕ 1→M and endow it with the fiber metric

〈X + α + f, Y + β + g〉 = ιXβ + ιY α + fg, (3.671)
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where X, Y ∈ TM , α, β ∈ T ∗M and f, g ∈ C∞(M). Furthermore, we define the Dorfman

bracket by

[X + α + f, Y + β + g]D = [X, Y ]Lie +X(g)− Y (f) + LXβ − ιY α + gdf. (3.672)

Finally, we have the bundle morphism ρ : E → TM , defined by projection to TM ,

ρ(X + α + f) = X. (3.673)

The 4-tuple (E, 〈−,−〉, ρ, [−,−]D) defines a transitive Courant algebroid. The adjoint bundle

of the vector bundle E is given by

∧2E = ∧2TM ⊕ TM ⊕ End(TM)⊕ T ∗M ⊕ ∧2T ∗M. (3.674)

The Lie algebra of endomorphisms of E, that preserve ρ is given by

End(TM)⊕ T ∗M ⊕ ∧2T ∗M, (3.675)

where End(TM) induces diffeomorphisms and T ∗M as well as ∧2T ∗M induce 1-form and

2-form twists, respectively. The infinitesimal actions by the twists are given by

A B (X + α + f) = ιXA− Af, (3.676)

B B (X + α + f) = −ιXB, (3.677)

where A ∈ Ω1(M) and B ∈ Ω2(M). The the Courant algebroid (E, 〈−,−〉, ρ, [−,−]D) is

invariant under diffeomorphisms, and twists by closed 1-forms and closed 2-forms.

In the next step, we reconstruct the Courant algebroid associated with Bn-generalized ge-

ometry using symplectic NQ-manifolds. Let M be a smooth manifold. Furthermore, let

M = T ∗[2](T [1]M ⊕ R[1]) be a graded manifold over M . We associate local coordinates

(xi, ξi, τ, ζi, pi, τ) of degrees (0, 1, 1, 1, 2, 1) to M. The coordinates (xi, ξi) parameterize

T [1]M , while τ parameterizes R[1]. Then, we associate conjugate coordinates (pi, ζi, τ) to

(xi, ξi, τ). For now, we simplify the structure by identifying τ = τ ≡ θ.

Then, we equip M with the graded symplectic structure

ω = −δxi ∧ δpi + δξi ∧ δζi +
1

2
δθ ∧ δθ. (3.678)

Finally, we define the Hamiltonian function by

Θ = ξipi. (3.679)
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The associated homological vector field is given by

Q = ξi
→
∂

∂xi
+ pi

→
∂

∂ζi
. (3.680)

The sections of the bundle E = TM⊕T ∗M⊕1 are given by the degree 1 subspace of C∞(M).

We can define the injection map

j : (TM ⊕ T ∗M ⊕ 1)⊕ TM →M,(
xi, ∂i, dx

i, 1,
∂

∂xi

)
7→ (xi, ζi, ξ

i, θ, pi),
(3.681)

so that a section is given by the pullback of elements of C∞1 (M) along j,

j∗(X iζi + αiξ
i + fθ) = X i∂i + αidx

i + f ∈ Γ(E). (3.682)

The fiber metric is reconstructed by the pullback of the symplectic structure,

〈X + α + f, Y + β + g〉 = j∗{j∗(X + α + f), j∗(Y + β + g)}

= ιXβ + ιY α + fg. (3.683)

The anchor map ρ : E → TM , is reconstructed via derived bracket,

ρ(X + α + f)(g) = j∗{Qj∗(X + α + f), j∗(g)}

= X(f). (3.684)

Finally, the Dorfman bracket is induced by

[X + α + f, Y + β + g]D = j ∗ {Qj∗(X + α + f), j∗(Y + β + g)},

= [X, Y ]Lie + LXβ − ιY α +X(g)− Y (f) + gdf. (3.685)

The classical master equation, Q2 = 0, is obviously trivially solved. We are lead to the

following theorem.

Theorem 3.7.1 The QP-manifold (M, Q, ω) induces the Courant algebroid associated to

Bn-generalized geometry.

Now, let us investigate the 1-form and 2-form twists from the parabolic subalgebra of the

adjoint bundle. These are easily reconstructed by

exp(δA) = exp(Aiξ
iθ), (3.686)

exp(δB) = exp

(
1

2
Bijξ

iξj
)
, (3.687)
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where A ∈ Ω1(M) and B ∈ Ω2(M). The twist is defined as usual via exponential adjoint

action on the degree 1 subspace of C∞(M). The non-parabolic part of the adjoint bundle can

also be represented in a similar way,

exp(δΞ) = exp(Ξiζiθ), (3.688)

exp(δβ) = exp

(
1

2
βijζiζj

)
, (3.689)

where Ξ ∈ X1(M) and β ∈ X2(M). This leads to the first order transformation behavior

Ξ B (X + α + f) = ιΞα− fΞ, (3.690)

β B (X + α + f) = ιαβ. (3.691)

We summarize our findings in the following theorem.

Theorem 3.7.2 The adjoint bundle of E = TM ⊕ T ∗M ⊕ 1 is represented by twists of the

QP-manifold (M, Q, ω).

Let us investigate the degree decomposition of C∞(M) in order to derive the associated Lie

2-algebra. The important subspaces are of degree 0 and 1,

C∞0 (M) ∼= C∞(M), (3.692)

C∞1 (M) ∼= Γ(TM ⊕ T ∗M ⊕ 1). (3.693)

The associated Lie 2-algebra is then given by the complex

C∞(M)
µ1−→ Γ(TM ⊕ T ∗M ⊕ 1), (3.694)

where µ1 is induced by Q and gives the de Rham differential, µ1 = d. The map µ2 is

reconstructed by the derived bracket and gives

µ2(X + α + f, Y + β + g) = [X + α + f, Y + β + g]C, (3.695)

µ2(X + α + f, h) = ρ(X + α + f)(h) = X(h), (3.696)

where [X + α + f, Y + β + g]C is the antisymmetrization of the Dorfman bracket, X + α +

f, Y + β + g ∈ Γ(E) and h ∈ C∞(M). Finally, µ3 defined by

µ3(X + α + f,Y + β + g, Z + γ + h) =

1

3!
({{Q(X + α + f), Y + β + g}, Z + γ + h} ± perm.), (3.697)
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gives the Jacobiator of an ordinary Courant algebroid, since the functions do not contribute

for this choice of homological vector field. However, for twisted homological functions, there

might be a non-trivial contribution. We will investigate twisted homological functions below.

First, we summarize our findings in the following theorem.

Theorem 3.7.3 The QP-manifold (M, Q, ω) associated with Bn-generalized geometry in-

duces the structure of a Lie 2-algebra on the complex

C∞(M)
d−→ Γ(TM ⊕ T ∗M ⊕ 1),

with multilinear products defined above.

This Lie 2-algebra encodes the local gauge structure of a metric, 2-form gauge potential and

Yang-Mills U(1)-gauge field. It corresponds to the symmetry L∞-algebra of a 0-1-gerbe.

Let us investigate the twisted versions. Introducing curvatures of the U(1)-gauge field A

and 2-form B-field by F ∈ Ω2(M) and H ∈ Ω3(M), we can define the twisted Hamiltonian

function

Θ′ = ξipi +
1

2
Fijξ

iξjθ +
1

3!
Hijkξ

iξjξk. (3.698)

The classical master equation, {Θ′,Θ′} = 0, is equivalent to

dF = 0, (3.699)

dH + F ∧ F = 0. (3.700)

The anchor map is not twisted and remains ρ(X +α+ f)(g) = X(g). However, the Dorfman

bracket is twisted to

[X + α + f, Y + β + g]D = [X, Y ]Lie + LXβ − ιY α +X(g)− Y (f) + gdf

+ ιXιY F + ιXιYH + gιXF − fιY F. (3.701)

Here, H and F are the curvatures of the associated 0-1-gerbe and equations (3.699) and

(3.700) the consistency conditions on the two cocycles. This is an example of a transitive

Courant algebroid of the form [121]

E = TM ⊕ T ∗M ⊕ G, (3.702)
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where G = ker(ρ)/ ker(ρ)⊥ is bundle of Lie algebras [120]. Special transitive Courant alge-

broids are heterotic Courant algebroids [122], which under the existence of a splitting yield

a decomposition of the bundle by

E = TM ⊕ T ∗M ⊕ gP , (3.703)

with bundle map ρ(X + α + f) = X and fiber metric

〈X + α + f, Y + β + g〉 = ιXβ + ιY α + 〈f, g〉gP , (3.704)

where gP is the adjoint bundle of a G-principal bundle P and 〈−,−〉gP is a metric on gP . A

natural choice would be the Killing metric. Requiring consistency then gives us a relation

between the curvature of the 1-gerbe and the first Pontriyagin class of the G-principal bundle.

We found the construction in the case of an abelian structure group. The L∞-algebra, that

we derived, encodes the local structure of a 0-1 gerbe with 3-form curvature and abelian

Yang-Mills field strength F . It corresponds to generalized geometry with a U(1)-gauge field.

The lift to the non-abelian construction is work in progress.

3.7.3 Exceptional generalized geometry with M2-branes

Now, let us step into the realm of U-duality in M-theory. The exceptional tangent bundle,

which incorporates the modes of M2-branes, is given by

E = TM ⊕ ∧2T ∗M, (3.705)

where M is a smooth manifold. This includes the cases E2, E3 and E4. With anchor map,

Dorfman bracket and fiber metric it gains the structure of a Courant algebroid of degree 2,

(E, 〈−,−〉, ρ, [−,−]D). As explained in the previous sections, there is an associated semistrict

Lie 3-algebra structure on the complex

C∞(M)
d−→ Ω1(M)

d−→ Γ(TM ⊕ ∧2T ∗M). (3.706)

We can define a Vinogradov Lie 3-algebroid structure on M = T ∗[3]T [1]M with local coor-

dinates (xi, ξi, ζi, pi) of degrees (0, 1, 2, 3). The untwisted Hamiltonian is given by

Θ = ξipi. (3.707)
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The twisted Hamiltonian is given by

Θ′ = ξipi +
1

4!
F4,ijklξ

iξjξkξl, (3.708)

where F4 ∈ Ω4(M). The classical master equation requires F4 to be closed, dF4 = 0. There

is a natural 3-form twist on this bundle by A3 ∈ Ω3(M),

exp(δA3) = exp

(
1

3!
A3,ijkξ

iξjξk
)
. (3.709)

The parabolic subalgebra of the adjoint bundle acting on E consists of diffeomorphisms and

3-form twists. The associated untwisted Courant bracket,

[X + σ, Y + γ]C =
1

2
(j∗{Qj∗(X + σ), j∗(Y + γ)} − j∗{Qj∗(Y + γ), j∗(X + σ)}), (3.710)

is invariant under the diffeomorphisms and closed 3-form twists. The resulting Lie 3-algebra

encodes the local symmetry structure of a 2-gerbe with curvature F4 = dA3.

3.7.4 Exceptional generalized geometry with M2- and M5-branes

In this section, we compute the L∞-algebra of local symmetries associated with the excep-

tional generalized geometry on exceptional tangent bundles, which accommodate M2-brane

as well as M5-brane modes. We start with exceptional tangent bundles, which transform

irreducibly under the exceptional group E5 and E6. It arises as the gauge group of the

Kaluza-Klein compactification of 11-dimensional supergravity on a 5- or 6-torus. In the re-

mainder of this section, we comment on the issues associated with E7, when trying to fit it

into the framework of QP-manifolds.

Let us shortly state the Leibniz algebroid structure of exceptional generalized geometry with

E6-adjoint bundle according to [78]. The adjoint bundle decomposes as

Eadj = ∧6TM ⊕ ∧3TM ⊕ End(TM)⊕ ∧3T ∗M ⊕ ∧6T ∗M. (3.711)

We see that the parabolic subalgebra incorporates 3-form and 6-form twists, which are the

potentials associated to M2- and M5-branes. The associated bundle transforms in the 27 of

Eadj, which decomposes under GL(6) as

E = (TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M)⊗ (∧6T ∗M)−
1
3 , (3.712)
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where the determinant line bundle arises to ensure the triviality of the determinant bundle of

E. As described in [78], if M is orientable, then a choice of volume form reduces the bundle

to

E = TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M. (3.713)

The Dorfman bracket on E is given by

[X + σ + σ, Y + γ + γ]D = [X, Y ] + LXγ − ιY dσ + LXγ − ιY dσ + dσ ∧ γ, (3.714)

where X, Y ∈ TM , σ, γ ∈ Ω2(M) and σ, γ ∈ Ω5(M). The anchor map is defined as projection

to TM ,

ρ(X + σ + σ) = X. (3.715)

The 3-form and 6-form twists from the parabolic subalgebra of the adjoint bundle act in-

finitesimally by

A3 B (X + σ + σ) = ιXA3 − A3 ∧ σ, (3.716)

A6 B (X + σ + σ) = −ιXA6. (3.717)

The Dorfman bracket is invariant under diffeomorphism as well as closed 3-form and closed

6-form twists.

Let us now construct the graded symplectic manifold, which derives this structure. Let M be

a smooth manifold. The graded manifoldM is defined asM = T ∗[6](T [1]M ⊕R[3]), locally

parameterized by coordinates (xi, ξi, τ, pi, ζi, τ) of degrees (0, 1, 3, 6, 5, 3). We again combine

τ = τ ≡ θ and define the graded symplectic form as

ω = −δxi ∧ δpi + δξi ∧ δζi +
1

2
δθ ∧ δθ. (3.718)

We start with the untwisted Hamiltonian, which we define by

Θ = ξipi, (3.719)

yielding the Q-structure

Q = ξi
→
∂

∂xi
+ pi

→
∂

∂ζi
. (3.720)

In the next step, we define the injection map j by

j : (TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M)⊕ TM →M,

(xi, ∂i, dx
i ∧ dxj, dxi ∧ dxj ∧ dxk ∧ dxl ∧ dxm, ∂

∂xi
) 7→ (xi, ζi, ξ

iξjθ, ξiξjξkξlξm, pi).
(3.721)

174



3.7. Generalized geometries

A section on the bundle X + σ + σ ∈ Γ(E) is then given by the pullback,

j∗
(
X iζi +

1

2
σijξ

iξjθ +
1

5!
σijklmξ

iξjξkξlξm
)

= X + σ + σ. (3.722)

We can induce a fiber metric 〈−,−〉 : E ⊗ E → Ω1(M) ⊕ Ω4(M) by pullback of the graded

symplectic structure,

〈X + σ + σ, Y + γ + γ〉 = j∗{j∗(X + σ + σ), j∗(Y + γ + γ)}

= ιX(γ + γ) + ιY (σ + σ) + σ ∧ γ. (3.723)

The anchor map is induced by the derived bracket,

ρ(X + σ + σ)(f) = j∗{Qj∗(X + σ + σ), j∗(f)}

= X(f). (3.724)

The Dorfman bracket is reconstructed by the following derived bracket,

[X + σ + σ, Y + γ + γ]D = j∗{Qj∗(X + σ + σ), j∗(Y + γ + γ)}

= [X, Y ]Lie + LXγ − ιY dσ + LXγ − ιY dγ + dσ ∧ γ. (3.725)

The classical master equation, Q2 = 0, is trivially solved. The parabolic subalgebra of

the adjoint bundle contains 3-form and 6-form twist. On the QP-manifold their action is

represented by twist,

exp(δA3) = exp

(
1

3!
A3,ijkξ

iξjξkθ

)
, (3.726)

exp(δA6) = exp

(
− 1

6!
A6,ijklmnξ

iξjξkξlξmξnθ

)
. (3.727)

Via exponential adjoint action on the space of sections, we find the first order transformation

behavior, that matches the action of the parabolic subalgebra of the adjoint bundle. We note,

that the implementation of the non-parabolic twists, which are associated to M-theoretically

non-geometric fluxes, is not obvious in this case, in contrast to the Bn-generalized geometry

case.

The Hamiltonian function can be twisted by the curvatures F4 ∈ Ω4(M) and F7 ∈ Ω7(M) of

the higher gauge fields A3 and A6. It is given by

Θ′ = ξipi +
1

4!
F4,ijklξ

iξjξkξlθ +
1

7!
F7,ijklmnoξ

iξjξkξlξmξnξo. (3.728)
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The classical master equation, {Θ′,Θ′} = 0, induces the relations between the curvatures,

dF4 = 0, (3.729)

dF7 +
1

2
F4 ∧ F4 = 0. (3.730)

By twist of the Hamiltonian Θ by 3- and 6-form we find the local symmetries of the curvatures.

Twist by A3 induces F4 = dA3 and F7 = −1
2
dA3∧A3, whereas twist by A6 induces F7 = dA6.

The fiber metric as well as the anchor map are invariant under the twists. However, the

Dorfman bracket changes,

[X + σ + σ, Y + γ + γ]D = j∗{Q′j∗(X + σ + σ), j∗(Y + γ + γ)}

= [X, Y ]Lie + LXγ − ιY dσ + LXγ − ιY dγ + dσ ∧ γ

+ ιXιY F4 + ιXιY F7 + ιXF4 ∧ γ. (3.731)

Let us summarize our findings in the following theorem.

Theorem 3.7.4 The QP-manifold (M, Q, ω) and its twisted version (M, Q′, ω) induces the

local structure of E6-generalized geometry. The parabolic subalgebra of the adjoint bundle is

representable via exponential adjoint action on the QP-manifold.

Let us now compute the associated L∞-algebra of local symmetries of the associated 2-5-

gerbe. This will be an L∞-algebra concentrated in degrees {0, 1, 2, 3, 4, 5}, or semistrict Lie

6-algebra. The relevant degree subspaces C∞(M) are given by

C∞0 (M) ∼= C∞(M), (3.732)

C∞1 (M) ∼= Ω1(M), (3.733)

C∞2 (M) ∼= Ω2(M), (3.734)

C∞3 (M) ∼= Ω3(M)⊕ C∞(M), (3.735)

C∞4 (M) ∼= Ω4(M)⊕ Ω1(M), (3.736)

C∞5 (M) ∼= X1(M)⊕ Ω5(M)⊕ Ω2(M). (3.737)

The Lie 6-algebra structure is defined on the following complex,

L(M) =
(
C∞(M)

µ1−→ Ω1(M)
µ1−→ Ω2(M)

µ1−→ Ω3(M)⊕ C∞(M)

µ1−→ Ω4(M)⊕ Ω1(M)
µ1−→ X1(M)⊕ Ω5(M)⊕ Ω2(M)

)
. (3.738)
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The unary map is induced by the untwisted homological vector field Q via

µ1(α) = j∗ ◦Q ◦ j∗(α) = dα, (3.739)

where α ∈ L(M). We recognize, that it acts as de Rham differential d. In the case of the

twisted homological vector field Q′, µ1 becomes the F4-twisted de Rham differential d+F4∧
on the lower form degree component in C∞3 (M) and C∞4 (M). As required by the homotopy

Jacobi identities, the de Rham and the F4-twisted de Rham differential are nilpotent since

dF4 = 0 by the classical master equation.

Let us give the results for some of the maps µ2 in the case of the untwisted homological

vector field. The action of the bundle Γ(E) onto the lower subspaces is given by

µ2 : Γ(E)⊕ C∞(M) 7→ C∞(M), µ2(X + σ + σ, f) ∼ LXf, (3.740)

µ2 : Γ(E)⊕ Ω1(M) 7→ Ω1(M), µ2(X + σ + σ, ω1) ∼ LXω1, (3.741)

µ2 : Γ(E)⊕ Ω2(M) 7→ Ω2(M), µ2(X + σ + σ, ω2) ∼ LXω2, (3.742)

µ2 : Γ(E)⊕ Ω3(M)⊕ C∞(M) 7→ Ω3(M)⊕ C∞(M), (3.743)

µ2(X + σ + σ, ω3 + f) ∼ LXω3 + LXf + dσ ∧ f,

µ2 : Γ(E)⊕ Ω4(M)⊕ Ω3(M) 7→ Ω4(M)⊕ Ω3(M), (3.744)

µ2(X + σ + σ, ω4 + ω1) ∼ LXω4 + LXω1 − dσ ∧ ω1,

and the action of the bundle onto itself is given by the exceptional Courant bracket,

µ2 : Γ(E) ∧ Γ(E) 7→ Γ(E), µ2(X + σ + σ, Y + γ + γ) = [X + σ + σ, Y + γ + γ]C, (3.745)

where

[X + σ + σ, Y + γ + γ]C =
1

2
([X + σ + σ, Y + γ + γ]D − [Y + γ + γ,X + σ + σ]D)

= [X, Y ]Lie + LX(γ + γ)− LY (σ + σ)− 1

2
d(ιX(γ + γ)

− ιY (σ + σ)) +
1

2
(dσ ∧ γ − dγ ∧ σ). (3.746)

The resulting semistrict Lie 6-algebra encodes the local symmetries of the 2-5-gerbe with

curvatures F4 and F7, which underlies exceptional generalized geometry that accommodates

modes of M2-branes as well as M5-branes.
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Comment on E7(7)

The case of exceptional generalized geometry with E7(7)-structure was investigated in [78]

from the algebraic perspective. The generalized tangent bundle is given by

E = TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M ⊕ (∧7T ∗M ⊗ T ∗M), (3.747)

where M is a 7-dimensional smooth manifold. The (∧7T ∗M ⊗ T ∗M)-part arises due to the

duals of diffeomorphism vectors of KK-monopoles. The adjoint bundle is given by

E = ∧6TM ⊕ ∧3TM ⊕ End(TM)⊕ ∧3T ∗M ⊕ ∧6T ∗M. (3.748)

The 3- and 6-form twists act as follows on the sections of the bundle,

A3 B (X + σ + σ + u) = ιXA3 − A3 ∧ σ + A3 � σ, (3.749)

A6 B (X + σ + σ + u) = −ιXA6 + A6 � σ. (3.750)

The diamond operation � is defined by � : ∧kT ∗M ⊗ ∧8−kT ∗M → ∧7T ∗M ⊗ T ∗M so that

(α � β)(X) = ιXα ∧ β. (3.751)

The untwisted Dorfman bracket is given by

[X + σ + σ + u, Y + γ + γ]D = [X, Y ]Lie + LXγ − ιY dσ + LXγ − ιY dσ

+ dσ ∧ γ + LXv − dσ � γ + dσ � γ. (3.752)

It can be twisted by the field strengths F4 ∈ Ω4(M) and F7 ∈ Ω7(M) associated with both

gauge potentials, giving the twisted Dorfman bracket

[X + σ + σ + u, Y + γ + γ]D = [X, Y ]Lie + LXγ − ιY dσ + LXγ − ιY dσ

+ dσ ∧ γ + LXv − dσ � γ + dσ � γ + ιXιY F4

+ ιXιY F7 + ιXF4 ∧ γ − (ιXF4) � γ + (ιXF7) � γ. (3.753)

The antisymmetrization of the Dorfman bracket is called the exceptional Courant bracket.

Due to the (∧7T ∗M ⊗ T ∗M)-component in the bundle structure and the resulting diamond

product, a supergeometric reconstruction is problematic. A generalization of the approach

becomes necessary as we will discuss below.
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3.8 Summary

Let us summarize the main results of the first chapter of this thesis. We started by recalling

the graded symplectic manifold setup of the standard Courant algebroid with H-flux and

encountered insufficiencies of the ansatz when näıvely trying to insert other fluxes by hand.

After investigation of the twists that are available we constructed the β-twisted Courant

algebroid as an example for a non-geometric background with non-trivial Q- and R-fluxes.

We analyzed its consistency conditions, which implied the flux Bianchi identities, and found

that the associated cohomology is the total cohomology of the Poisson-de Rham double

complex. The β-twisted Courant algebroid encodes the local symmetry structure of a non-

geometric background with Q- and R-flux sourced by β-potential.

Motivated by this result, we extended the symplectic NQ-manifold by a generalized frame

bundle, that brought us into the position to generate metric f -flux. After that, we constructed

the f -twisted Courant algebroid of a nilmanifold background.

In the next step, we combined our knowledge about the H-twisted, β-twisted and f -twisted

Courant algebroids to construct the fully twisted Courant algebroid, which encodes the lo-

cal symmetry structure of a background, which is sources by geometric H-, F - as well as

non-geometric Q- and R-fluxes in a consistent manner. The consistency condition of the

twisted Courant algebroid naturally induces the flux Bianchi identities among all fluxes. The

reduction of the twisted Courant algebroid along its twisted anchor for integer fluxes yields

the general form of the non-abelian gauge algebra of gauged supergravities. The classical

master equation is induces the closure condition of the gauge algebra.

Then, we lifted the whole construction to the double space of double field theory. We pre-

pared the underlying graded symplectic manifold that induces local symmetries of double

field theory. The associated graded symplectic manifold does not trivially solve the strong

constraint, but it turned out to be necessary to consider half-rank projections of the double

field theory QP-manifold. These half-rank projections are associated to Courant algebroids

on T-duality frames. We conducted an investigation of possible twists of the underlying setup

and extended it by the introduction of a double generalized frame bundle. This brought us

into the position to induce geometric flux contributions not only on the supergravity frame,

but also on the winding frame. After application of a succession of twists, we derived the

local expressions of all H-, F -, Q- and R-fluxes in terms of their potentials B, β and viel-
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bein in double space. We concluded, that any half-rank projection of the twisted setup that

solves the section condition leads to a twisted Courant algebroid on the respective T-duality

frame. On each T-duality frame, there lives a twisted Courant algebroid that realizes the

background fluxes in a consistent manner and encodes the local symmetry structure of that

background. We computed two examples in terms of the winding Courant algebroid with

fluxes and the non-geometric Courant algebroid in the supergravity frame. Finally, we con-

structed a presentation of T-duality in terms of maps between graded symplectic manifolds

and could reconstruct well-known examples like the T-duality chain on 3-torus backgrounds.

In our definition, T-duality is a discrete map between Hamiltonian functions that encode the

properties of a respective T-dual background.

In the next step, we analyzed the Poisson-Courant algebroid as a model for non-geometric

R-flux backgrounds. Our first result was the reconstruction of the Poisson-Courant alge-

broid with R-flux in the supergeometric setting. Then, we investigated the Poisson-Courant

algebroid cohomology and standard Courant algebroid cohomology on distinct subspaces.

We found an isomorphism between the Poisson-Courant algebroid cohomology and Poisson-

Lichnerowicz cohomology and between standard Courant algebroid cohomology and de Rham

cohomology under certain conditions. Then, we constructed a duality transformation, called

flux duality, between the QP-manifolds of the H-twisted standard Courant algebroid and

R-twisted Poisson-Courant algebroid and lifted it to an isomorphism of Courant algebroid

cohomologies. We found the Poisson-Courant algebroid as winding frame reduction from

double field theory, if the Poisson tensor is constant. For non-constant Poisson tensor, the

winding frame is deformed by a linear contravariant connection. Then, we computed the

Poisson-Courant sigma model of a membrane traveling in R-twisted Poisson-Courant alge-

broid target space by using the AKSZ procedure. After that, we derived string sigma model

with R-flux on the boundary of the membrane, which is equivalent to the Poisson sigma

model with Wess-Zumino term. We analyzed the flux duality on the level of Courant sigma

models and came to the conclusion, that the Poisson-Courant sigma model and the standard

Courant sigma model are equivalent theories, that realize dual boundary conditions. Then, we

computed the Poisson algebra and the current algebra associated with the Poisson-Courant

algebroid with R-flux. We found an Alekseev-Strobl type generalized current algebra, which

realizes Poisson-Courant algebroid symmetries and is anomaly-free on a Dirac structure of

the Poisson-Courant algebroid generalized tangent bundle.
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In the final section, we reconsidered various generalized geometries associated with T-duality

geometries of closed string compactifications and heterotic compactifications as well as U-

duality emerging from toroidal compactifications of 11-dimensional supergravity. We inves-

tigated the local symmetry L∞-algebras associated to the higher gerbes appearing in the

formulation of these (exceptional) generalized geometries and Bn-geometries using graded

symplectic manifold techniques.
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Chapter 4

Higher gauge theory and multiple
M5-branes

We believe that we know something about the things themselves when we speak of

trees, colors, snow, and flowers; and yet we possess nothing but metaphors for things

— metaphors which correspond in no way to the original entities.

– Friedrich Nietzsche, Über Wahrheit und Lüge im außermoralischen Sinn (1873)

4.1 Introduction

This chapter constitutes the second part of this thesis. We started by investigating the

intriguing mysteries surrounding T-duality and non-geometric backgrounds in string theory.

Then, we took a step back and investigated the local symmetry L∞-algebras of higher gerbe

structures of generalized geometry with U(1)-gauge field and exceptional tangent bundles in

M-theory. The exceptional tangent bundles encode the symmetry structures of toroidally

compactified 11-dimensional supergravity and therefore the wrapping modes of M2- and M5-

branes as well as KK6-modes.

For this chapter, we will stay in the realm of M-theory and devote ourselves to the thorough

investigation of the system of multiple M5-branes as a higher gauge theory, from the viewpoint

of higher categorification. The close relation between higher categorification, L∞-algebras

and higher gerbe structures will become very clear in the preliminary sections. This chapter

is based on the published paper [5].

In contrast to the system of multiple M2-branes, the analysis of systems of multiple M5-

branes is still a field which is not very well understood. What is known is that M5-branes
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interact by M2-branes, which extend between them. Then, the 1-dimensional boundaries of

the M2-branes turn out to be soliton solutions of a 6-dimensional superconformal N = (2, 0)

theory [123, 124]. Since these solutions are charged under a self-dual 2-form gauge field, they

are also called self-dual strings [125]. For the case of a single M5-brane, the dynamics of

the self-dual strings is governed by a so-called principal 2-bundle with with abelian gerbe

structure. The dynamics for multiple M5-branes is still unclear. However, it is believed that

the governing structure is a non-abelianization of the principal 2-bundle, or a non-abelian

gerbe.

The governing structure of the self-dual strings should incorporate a notion of parallel trans-

port of 1-dimensional objects. In ordinary Yang-Mills theory there is a notion of Wilson line,

or holonomy of point-objects, or ordinary parallel transport. Exactly the generalization of or-

dinary parallel transport and the consistent definition of associated higher principal bundles

is provided by the young mathematical field of higher gauge theory. Since it highly relies on

methods of higher categorification, we provide a compact introduction to category theory and

the derivation of 2-form higher gauge theories [126, 127, 128]. Using the viewpoint of higher

categorification, a notion of parallel transport of 1-dimensional objects has been defined in

[126]. It turned out that the underlying higher gauge structure is given by a so-called differ-

ential crossed module. This defines a non-abelian gerbe with 3-form curvature H, which is

believed to be the appropriate framework for the non-abelianization of the N = (2, 0) theory

governing the dynamics of multiple M5-branes [129, 130, 131].

The resulting 2-form higher gauge theory associated with the differential crossed module

incorporates the usual Yang-Mills 1-form gauge field A with 2-form curvature F and a 2-

form gauge field B with 3-form curvature H. However, it turns out that it is a generic feature

of higher gauge theories, that the consistent definition of a higher Wilson volume, or higher

parallel transport, requires all lower form curvatures but the highest form one to vanish. For

the 2-form higher gauge theory, it turns out that the covariant gauge transformation of H

requires F = 0. This is called fake curvature condition. This requirement highly restricts the

dynamics of possible Lagrangian theories. If we want to construct a Lagrangian with non-

abelian gauge symmetry of 2-form gauge fields, then the fake curvature condition restricts

the construction to a BF-type topological field theory leading to an essentially free theory

[126].

In this chapter, we propose a method, called off-shell covariantization, to circumvent
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the fake curvature condition towards a non-topologically interacting theory with non-abelian

gerbe structure. The method makes use of the prescription to construct higher gauge theories

from QP-manifold structures due to [132]. Off-shell covariantization introduces auxiliary

gauge freedom to the initial higher gauge theory of the non-abelian gerbe and constrains the

resulting system such that the residual gauge transformations lead to a non-abelian gerbe

structure, which does not inherit the fake curvature issue. We perform a detailed calculation,

which leads to a theory closely related to a system of multiple M5-branes compactified on

a circle [133, 134, 135]. For the investigation of off-shell gauge symmetries in the Poisson

sigma model see [136].

This chapter is structured as follows. In section 4.2, we provide an introduction to M-branes,

especially the recent development regarding M5-branes. Section 4.3 concerns the introduction

to category theory and higher gauge theory. Furthermore, we provide a description of the

method to generate higher gauge theories from graded symplectic manifolds. We refer to the

preliminary section graded manifolds of the first part of this thesis for a thorough introduction

to the underlying mathematical framework. Section 4.4 constitutes the main analysis. We

describe the method of off-shell covariantization and apply it successfully to a 2-form higher

gauge theory. The result is related to a system of multiple M5-branes compactified on a

circle. In section 4.5 we provide a final summary.

4.2 Physical preliminaries: M-branes

This section provides an introduction to M-theory branes and their relation to higher gauge

theory. Excellent reviews on M-branes are [137, 138]. The relation of M-branes with higher

gauge theory is pointed out and reviewed in [139].

The stable objects in M-theory are M2-branes and their magnetic duals, the M5-branes. They

are half-BPS states of 11-dimensional supergravity. The M2-brane is electrically charged

under the 3-form potential C3, whereas the M5-brane is charged under its dual, C6. The

dual of the field strength F4 is given by

F7 = ?F4 −
1

2
C3 ∧ F4. (4.1)

The magnetic charge is defined by

QM =

∫
S4

F4, (4.2)
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where the 4-sphere encloses the M5-brane. The electric charge

QE =

∫
S4

F7, (4.3)

is assigned to the M2-brane.

Under dimensional reduction of 11-dimensional supergravity, the M5-brane yields the D4-

and NS5-branes in type II supergravity. The M2-brane corresponds to fundamental strings

in type IIA supergravity and the 3-form potential C3 becomes the Kalb-Ramond B-field.

As such we can see the membrane as the M-theoretic analogue to the string in superstring

theory. All branes from type IIA string theory can be seen as reductions from branes of

M-theory.

The actions of a single M2-brane [140] and of a single M5-brane [141] have already been

studied in the old days. However, progress on systems of multiple M2- and M5-branes

was made recently. The research of the system of multiple M2-branes is substantially more

developed than the research on the system of multiple M5-branes. In the following, we

will shortly state the recent development on M2-brane actions and then turn to the many

difficulties faced when trying to understand M5-brane systems.

The system of 2 coincident M2-branes is described by the so-called BLG model [142, 143].

It is a superconformal gauge theory with SU(2) × SU(2) Chern-Simons-matter term in 3

dimensions and is based on a 3-algebra structure. This structure should not be confused

with a Lie 3-algebra in the L∞-algebra sense. The BLG model is conformally invariant, has

16 supersymmetries and SO(8) R-symmetry. Furthermore, it can explain the N
3
2 scaling of

the entropy of N coincident M2-branes.

The ABJM model [144] is a Chern-Simons theory with matter coupling, which generalizes

the BLG model. It is supposed to describe the worldvolume theory for N coincident flat M2-

branes with Zk-orbifold singularity and reduces to the BLG model for N = 2. In contrast to

the BLG model, supersymmetry is reduced to N = 6 due to orbifolding.

Now let us turn to the M5-brane. The worldvolume theory is supposed to be a 6-dimensional

superconformal field theory. It breaks the Lorentz symmetry via SO(1, 10) → SO(1, 5) ×
SO(5) and has SO(5) R-symmetry as well as N = (2, 0) supersymmetry. This theory can

also be called (2, 0)-theory for short. Breaking of translation invariance and supersymmetry

leads to 5 scalars and fermions that together with a self-dual 3-form field strength form a

supermultiplet with 16 supersymmetries. The bosonic field content of an M5-brane theory
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is given by a 2-form gauge potential of a self-dual 3-form curvature and scalars, that pa-

rameterize the fluctations of the M5-brane in the transverse directions. The system forms

a self-dual U(1)-gerbe in the free or abelian case, which is associated with the dynamics

of a single M5-brane. The non-abelianization of the theory is believed to yield a theory of

multiple interacting M5-branes. Since it is superconformal, it does not contain dimensionful

parameters. However, the fact that the theory contains a self-dual gauge field raises many

difficulties in writing down a Lagrangian [145, 146, 147, 148].

The problem of constructing the action of a self-dual U(1)-gerbe with 3-form curvature H in

6 dimensions can be observed [131], when investigating the natural action

S =

∫
M6

H ∧ ?H, (4.4)

which is zero due to the self-duality of H. Therefore, it is believed, that the system of

a self-dual gerbe is a non-Lagrangian theory and that self-dual gauge theories cannot be

formulated in a manifestly Lorentz-invariant manner without auxiliary fields. However, the

Bianchi identity and the self-duality equation of the curvature is classically as well as on

quantum level conformally invariant.

The dynamics of multiple M5-branes is still unknown. However, it is believed, that the

non-abelian generalization of the (2, 0)-theory can be associated with the dynamics of such

a system. The resulting theory would go beyond ordinary Yang-Mills theory. A further hint

towards the necessity of a generalization is that the entropy of N coincident M5-branes scales

as N3, which cannot be achieved by ordinary Yang-Mills theory scaling as N2.

Two M5-branes interact by open M2-branes, whose boundaries are in the M5-brane world-

volume. The boundaries become closed strings. In the zero distance limit, the closed strings

in the M5-brane worldvolume become charged under the self-dual 2-form gauge field B yield-

ing so-called self-dual strings. Self-dual strings are tension-less and arise as soliton solu-

tions of the (2, 0)-theory. As described before, in the case of a single M5-brane, the gauge

sector of the theory is governed by a U(1)-gerbe. Although the gauge sector of multiple

M5-branes is expected to be governed by a non-abelianization of that gerbe structure, the

resulting mathematical structure is unclear. Non-abelian gerbes are associated with categori-

fied principal bundles. Categorified principal bundles encode a notion of parallel transport of

higher-dimensional objects, in this case, the parallel transport of self-dual strings. As we will

describe below, a higher parallel transport requires the existence of higher form gauge fields.
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In the case of the self-dual string, it would be a self-dual 2-form gauge field. In general, gauge

theories of higher gauge fields that are constructed via categorification of objects in ordinary

gauge theory are called higher gauge theories [126, 127, 128].

The setup of a D4-brane on which a fundamental string ends lifts to an M-theory configuration

of an M2-brane ending on an M5-brane. Open strings can end on D-branes. In the case of

a single D-brane, the endpoints of open strings induce an abelian 1-form gauge field on the

worldvolume of the D-brane. In the effective description, this leads to a gauge theory on

the D-brane worldvolume. In the case of a stack of N D-branes, the gauge theory becomes

non-abelian with gauge group U(N). When an open M2-brane ends on a M5-brane, then

the boundary in the M5-brane worldvolume becomes a self-dual string and is subject to an

abelian higher gauge theory.

Let us discuss the setup of a stack of D2-branes ending on a D4-brane in flat Minkowski space.

Let the D4-branes be extended in directions x1, x2, x3, x5 and the D2-branes in directions x5

and x9 while ending on the D4-brane in x9-direction. The setup is summarized in the following

table.

Brane 0 1 2 3 4 5 6 7 8 9
D4 × × × × ×
D2 × × ⊥

From the perspective of the D4-brane this yields the Bogomol’nyi monopole equation,

Fµν = εµνρ∇ρΦ, (4.5)

where µ, ν, ρ = 1, 2, 3 and F is the curvature of a U(N)-principal bundle. The scalar field Φ

is in the adjoint representation and describes the D4-position in x9-direction. The situation

is equivalently described from the perspective of the D2-branes by the Nahm equation,

∇x9Xµ =
1

2
εµνρ[Xν , Xρ], (4.6)

where the scalar fields Xµ describe the D2-position in the x1, x2, x3-directions. The equiv-

alence between both equations is given by the Nahm transform. A solution of the Nahm

equation is given by

Xµ =
1

x9
T µ, T µ = εµνρ[T ν , T ρ], (4.7)

which has the form of a fuzzy funnel. As one approaches the D4-brane, the fuzzy funnel

becomes a fuzzy 2-sphere with coordinates T µ in SU(2)-representation.
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Let us now describe the analogous setup with a single and multiple M2-branes ending on a

M5-brane, investigated in [149] and [125]. Let the spatial part of the M5-brane worldvolume

be extended in the directions x1, . . . , x5, with the self-dual string being extended in x5-

direction. The M2-branes are taken to be extended in x5- and x10-directions so that they

end at x10 = 0 on the M5-brane. The setup is summarized in the following table.

Brane 0 1 2 3 4 5 6 7 8 9 10
M5 × × × × × ×
M2 × × ⊥

Investigation of this system from the perspective of the worldvolume theory of a single M2-

brane ending on an M5-brane has been conducted in [125] and lead to the self-dual string

equation,

Hµνρ(r) = εµνρσ∂σΦ(r), (4.8)

where the Greek indices run over 1, . . . , 4. Here, H is the self-dual 2-cuvature of the abelian

1-gerbe, and r is the radial coordinate given by

r2 = (x1)2 + (x2)2 + (x3)2 + (x4)2 (4.9)

parameterizes the space transverse to the self-dual string inside the M5-brane worldvolume.

The scalar Φ is given by one of the coordinates transverse to the M5-brane. The solution,

called the self-dual string soliton, is half-BPS and is given by

Φ = Φ0 +
2Q

r2
, (4.10)

where Q is the charge of the self-dual string. The non-abelianization of the self-dual string

equation towards a theory of multiple M5-branes is one of the goals which to achieve by

higher gauge theory.

In [149], the authors propose an analogue equation to the Nahm equation relying on a 3-

algebra structure. This equation, called the Basu-Harvey equation, is given by

dXµ

dx10
=

1

3!
εµνρσ[Xν , Xρ, Xσ], (4.11)

where the Greek indices run over 1, . . . , 4 and denote the directions transverse to the M2-

branes. It is supposed to describe the M5-brane from the perspective of the worldvolume

theory of multiple M2-branes. The fields take values in a 3-Lie algebra. It has been shown

that the solutions of the Basu-Harvey equation form fuzzy 3-spheres,

Xµ(x10) =
T µ√
2x10

, T µ = εµνρσ[T ν , T ρ, T σ]. (4.12)
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With smaller distance to the M5-brane, the sphere radia diverge. Since this equation is a

proposal, a consistent derivation is missing. It is believed that these equations are related

to the quantization of a 3-sphere, which remains an open problem until today. Contrary to

the relation of the Bogomol’nyi equation with the Nahm equation by the Nahm transform in

the case of D-branes, there is no known relation between the solutions of the self-dual string

equation and Basu-Harvey equation, yet.

In [150, 151] it was shown that in the case of the BLG model for a stack of infinite M2-

branes with infinite-dimensional 3-Lie algebra, a description of a single M5-brane in a large

constant C-field background emerges [152]. It introduces a non-abelian self-dual gauge theory

based on a Nambu-Poisson structure. The Nambu bracket associated with the Nambu-

Poisson structure is associated with the 3-Lie algebra of the BLG model and defined on a

3-dimensional manifold, which is treated as the internal space of the M2-brane. It turns out,

that it can also be associated with a subspace of the emerging M5-brane worldvolume. See

also [153] for the construction of an action with non-abelian 2-form in 6 dimensions as a

proposal for the system of multiple M5-branes in flat space.

In [133, 134, 133] the theory of an S1-compactified system of M5-branes has been considered.

The model does not contain matter coupling and is free of supersymmetry. It turns out that

in the zero radius limit, R → 0, the M5-branes become D4-branes by double-dimensional

reduction and the system reduces to super Yang-Mills theory in 5 dimensions. Furthermore,

this model possesses the structure of a non-abelian gerbe with self-dual 2-form potential in

6 dimensions.

Since our construction will yield a 2-form higher gauge theory, which is closely related to

this system, we shortly describe this theory according to [134]. Let M = R5 × S1 be the

worldvolume of the M5-brane locally parameterized by coordinates xM , where M = 0, . . . , 5.

Let R be the radius of the circle. The S1-direction is parameterized by x5. The local

coordinates of the component R5 are denoted by xµ. The 2-form gauge field BMN and its

1-form gauge parameter µM take values in Lie(U(N)) in a flat background of N coincident

M5-branes. The 0-form gauge parameter ε is defined as the zero mode of µ,

ε =

∫
S1

dx5µ5 = 2πRµ
(0)
5 , (4.13)

so that ε ∈ Ω0(R5). The zero-mode of Bµ5 is identified with the 1-form gauge potential
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A ∈ Ω1(R5),

Aµ =

∫
S1

dx5Bµ5 = 2πRB
(0)
µ5 . (4.14)

The covariant derivative and associated field strength is given by

Dµ = ∂µ + Aµ, Fµν = [Dµ, Dν ]. (4.15)

The non-abelian gauge transformations of the 2-form gauge potential are defined by [134]

δBµ5 = [Dµ, µ5]− ∂5µµ + [B
(KK)
µ5 , ε], (4.16)

δBµν = [Dµ, µν ]− [Dν , λµ] + [Bµν , ε]− [Fµν , ∂
−1
5 µ

(KK)
5 ]. (4.17)

The 3-form field strength is defined by

Hµν5 =
1

2πR
Fµν + ∂5Bµν + 2[D[µ, B

(KK)
ν]5 ], (4.18)

Hµνρ = 3[D[µ, B
(KK)
νρ] ] + 3[F[µν , ∂

−1
5 B

(KK)
ρ]5 ]. (4.19)

The decomposition in KK-modes and zero-modes is given by

H
(KK)
µν5 = ∂5Bµν + 2[D[µ, B

(KK)
ν]5 ], (4.20)

H
(0)
µν5 =

1

2πR
Fµν , (4.21)

The action is defined by

S = − 1

2πR

∫
R5

d5x
1

4
Tr(FµνF

µν)−
∫
R5×S1

d6xTr(H̃µν5
(KK)(H

(KK)
µν5 − H̃

(KK)
µν5 )), (4.22)

where

H̃µν5 = −1

6
εµνλσρH

λσρ. (4.23)

The Yang-Mills equation is equivalent to the self-duality equation on the zero-modes of H.

The variation of the action then implies self-duality of the KK-modes of H. The self-duality

of the zero-modes is identical to the condition

H(0)
µνρ =

1

2
εµνρλσF

λσ. (4.24)

Higher gauge theory leads to a consistent definition of a Wilson surface and non-abelian 2-

form gauge theory governed by the structure of a differential crossed module. The categorified

principal bundle is given by a principal 2-bundle with structure Lie 2-group. However, the

consistency implies that the 2-form curvature of the non-abelian gerbe is zero reducing the

system to be free or the theory to a topological theory of BF-type. This constraint is called

fake curvature condition. In [135], a modification of the crossed module was proposed in order

to have the 2-form curvature transforming covariantly without fake curvature constraint.
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4.3 Mathematical preliminaries

4.3.1 Category theory and higher gauge theory

In this section, we provide an introduction to the realm of higher gauge theory from the

perspective of category theory. We will define fundamental structures, that will be used in

the main text. An excellent introduction, which underlies the structure of this section, is

given by [126].

Higher gauge theory generalizes ordinary 1-form gauge theory on G-principal bundles, where

G is the structure Lie group, to categorified principal bundles encoding higher form gauge

theory taking values in categorified gauge algebras. Crucial for the understanding of the

underlying structures is the method of categorification, which is one of the main topics of

this section. In this sense, categorification is an intuitive approach to arrive at generalized

gauge structures. It yields so-called n-bundles with structure n-groups as underlying gauge

structure of the associated higher form gauge fields. Higher gauge theory is the answer to

the question of how to consistently define parallel transport of higher-dimensional objects

analogous to the ordinary parallel transport in 1-form gauge theory, governed by the so-

called Wilson line. One main goal is therefore to define a Wilson surface, Wilson volume

and higher analogues. In this exposition, we will restrict ourselves to the case of parallel

transport of strings and associated 2-form gauge structures. Yielding a notion of parallel

transport of 1-dimensional objects, i.e. strings, it is reasonable to use the structures of

higher gauge theory to investigate string theory and M-theory. However, obviously it also

serves as the appropriate context to analyze the various branes that appear in string theory

and their M-theoretic colleagues, the M2- and M5-branes, from the perspective of higher

parallel transport. For a rigorous account on categorification [154], higher gauge theory

[127], 2-bundles [128], 2-connections [155], Lie 2-algebras [156] and 2-groups [157] we refer to

the respective reference.

We start with the definition of the fundamentals of category theory: category, object, mor-

phism and functor. After that, we develop a notion of holonomy from the category point

of view, as it is found in ordinary gauge theory as Wilson line. Then, we generalize this

notion using higher categories leading to parallel transport of 1-dimensional objects. Finally,

examples are in order.
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Definition 4.3.1 ((Small) Category) A category C consists of two sets, the object-set C0

and the morphism-set C1. Furthermore, it contains a source map s : C1 → C0 and a target

map t : C1 → C0. It is equipped with a binary operation (−,−) : C1 × C1 → C1, (f, g) = fg,

for pairs of morphisms f, g ∈ C1, for which t(f) = s(g). For example, a morphism f : x→ y

has the source s(f) = x and target t(f) = y. The maps have the following properties:

Compatibility of ◦ with the source and target maps,

s(g ◦ f) = s(f), t(g ◦ f) = t(g). (4.25)

Associativity of ◦,

f ◦ (g ◦ h) = (f ◦ g) ◦ h. (4.26)

Existence of an identity morphism 1x : x → x for every object x ∈ C0, such that for any

morphisms f, g

1x ◦ g = g, f ◦ 1x = f, (4.27)

where t(g) = x and s(f) = x.

The map (−,−) is called composition. All categories, we introduce, are small categories,

compared to large categories, where C0 and C1 are not ordinary sets but proper classes.

Morphisms are also called and denoted by arrows. Let us describe an introductory example.

Example 4.3.1 (A simple category) Let C be a category with 3 objects, C0 = {x, y, z},
and 2 morphisms besides the identity morphisms, C1 = {f : x → y, g : y → z, 1x, 1y, 1z}.
Since the target of f is equal to the source of g, t(f) = s(g), we can compute the composition

arrow gf : x→ z. We can depict this setup as follows.

x

y

z

f g

gf
1x

1y

1z

Let us give some easy examples of categories to get accommodated to this notion.
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Example 4.3.2 (Category of sets) The category of sets is denoted by Set. The objects

of Set are given by sets and the morphisms of Set are given by functions between sets. The

composition is given by concatenation of functions.

Example 4.3.3 (Category of groups) The category of groups is denoted by Grp. Its

objets are given by groups and its morphisms are given by group homomorphisms. Its

composition is given by concatenation of group homomorphisms.

Example 4.3.4 (Category of topological spaces) The category of topological spaces is

denoted by Top. The objects of Top are given by topological spaces and the morphisms of

Top are given by continuous maps between topological spaces. Its composition is given by

concatenation of continuous maps.

The first main goal of this section is the understanding of ordinary gauge theory from the

category point of view. For this, we have to introduce a notion of a categorified analogue of

a group. Such a groupoid is a category with one extra feature.

Definition 4.3.2 (Groupoid) A groupoid is a category, where every morphism is invert-

ible.

The simplest example of a groupoid is a category with a single object, where every morphism

is invertible. In this case, all morphisms start and end at the same object and therefore

can be concatenated with each other. Since furthermore all morphisms are invertible, we

conclude that the set of morphisms with composition becomes an ordinary group.

Having understood the meaning of category and groupoid, we now go on and define a map

between two categories, the functor.

Definition 4.3.3 (Functor) Let C and D be two categories. A map F : C → D, that

associates to each object x ∈ C0 and each morphism (f : a → b) ∈ C1 an object F (x) ∈ D0

and morphism (F (f) : F (a)→ F (b)) ∈ D1 such that it respects the composition

F (f ◦ g) = F (f) ◦ F (g), (4.28)

for any morphisms f, g ∈ C1, and the identity morphisms

F (1x) = 1F (x), (4.29)

for any object x ∈ C0. The map F is called functor.
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The functor is a means to transport structure from one category to another.

Example 4.3.5 (A simple functor) Let us consider our category C with 3 objects again.

If there exists a category D and a functor F : C → D, then the image of the C0 under F is

subset of D0 and the image of C1 under F is subset of D1. The identities and compositions

are preserved.

x

y

z

f g

gf

F (x)

F (y)

F (z)

F (f) F (g)

F (g)F (f)

F

F

F

F
F

F

From now, we develop a notion holonomy. For this, we need a category, which encodes paths

on a manifold, on the one hand, and a functor, that assigns to each path a group element, on

the other. This functor will become the holonomy functor and is comparable with a Wilson

line in ordinary gauge theory. The so-called path groupoid is what we are looking for. In the

following, M denotes a smooth manifold, which we associate with the spacetime manifold.

Definition 4.3.4 (Path groupoid) Let M be a smooth manifold. The path groupoid P1(M)

of M is defined as follows. The objects of P1(M) are given by the points x ∈ M . The mor-

phisms of P1(M) are given by thin homotopy classes of lazy paths in M .

A thin homotopy is a homotopy, which sweeps out a zero area surface, and a path γ : [0, 1]→
M is lazy, if γ is smooth and constant in a neighborhood around the two points t = {0, 1}.

The composition is defined as follows. If δ : [0, 1]→ M and γ : [0, 1]→ M are lazy paths in
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M , then the composition γδ : [0, 1]→M is given by

(γδ)(t) =

{
δ(2t) for 0 ≤ t ≤ 0.5

γ(2t− 1) for 0.5 ≤ t ≤ 1
. (4.30)

The inverse of a path γ : [0, 1]→M is defined by

γ−1(t) = γ(1− t). (4.31)

One can prove, that the path groupoid is indeed a groupoid.

In ordinary gauge theory with structure group G, there is a notion of holonomy. Let γ be

a path that a particle travels through spacetime. The Wilson line assigns to this path an

element of a group G,

hol(γ) = Pexp

(∫
γ

A

)
, (4.32)

where A is the 1-form gauge field talking values in Lie(G). The operation Pexp denotes the

path-ordered exponential. This group element encodes the transformation behavior of the

particle, when it travels along γ.

The map hol can be defined as a functor between the path groupoid P1(M) and the Lie group

G interpreted as a groupoid G with one object,

hol : P1(M)→ G,

hol(γ) = Pexp

(∫
γ

A

)
.

(4.33)

Since G only has a single object, which we denote by ? for convenience, all objects x ∈ M
of the path groupoid get mapped to ?. However, every homotopy class of lazy paths [γ] gets

mapped to a group element Pexp
(∫

γ
A
)

. It turns out, that hol preserves the composition

and identity and therefore is a functor. We state the following theorem of equivalence of the

gauge theoretical notion and the notion developed using category theory.

Theorem 4.3.5 ([126]) Let M be a smooth manifold and G a Lie group. Then, connections

on the trivial principal G-bundle over M are one-to-one with g-valued 1-forms on M are one-

to-one with smooth functors hol : P1(M)→ G.

The functor hol is smooth, if the composition of paths gives compositions of holonomies and

it depends smoothly on the paths.
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We conclude, that we now have a categorified notion of an ordinary connection. From now,

we will step into the realm of higher categorification in order to arrive at a notion of parallel

transport of 1-dimensional objects, or strings, and associated 2-bundles. For this, we need

a ”higher” category. In this case, a 2-category is sufficient, but for even higher parallel

transport general n-categories are needed.

Definition 4.3.6 (2-category) A 2-category C consists of a set of objects, C0. Further-

more, for each pair of objects x, y it consists of a category C(x, y), whose objects are mor-

phisms from x to y and whose morphisms are 2-morphisms α : f ⇒ g, where (f, g) : x→ y.

Therefore, 2-morphisms are also called morphisms between morphisms. The target of α is g

and the source of α is f .

x y

f

g

α

On the level of morphisms, we have the usual composition (−,−). However, on the level

of 2-morphisms, there are two different compositions available: vertical composition · and

horizontal composition ◦.
For three morphisms (f, g, h) : x → y and two 2-morphisms α : f ⇒ g and β : g ⇒ h, one

can compute the vertical composite β · α : f ⇒ h. For four morphisms f1, g1 : x → y and

f2, g2 : y → z and two 2-morphisms α1 : f1 ⇒ g1 and α2 : f2 ⇒ g2, we one can compute the

horizontal composite α2 ◦ α1 : (f2 ◦ f1)⇒ (g2 ◦ g1).

x y

f

g

h

α

β

β · α
x y z

f1 f2

g1 g2

f2f1

g2g1

α1 α2α2 ◦ α1
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Then, the following conditions have to hold:

• Associativity of the composition of morphisms and existence of an identity morphism

1x for any x ∈ C0.

• Associativity of the vertical composition of 2-morphisms and existence of a vertical

identity 2-morphism 1f for any morphism f .

• Associativity of the horizontal composition of 2-morphisms and existence a horizontal

identity 2-morphism 11x for any object x.

• The interchange law,

(α1 · β1) ◦ (α2 · β2) = (α1 ◦ α2) · (β1 ◦ β2). (4.34)

The interchange law guarantees the equivalence of two ways to contract the following diagram:

first vertically, then horizontally, or vice versa.

• • •

f1

f2

f3

g1

g2

g3

β2

α2

β1

α1

Having understood the notion of a 2-category, we can define the 2-groupoid.

Definition 4.3.7 (2-groupoid) A 2-groupoid is a 2-category, where every morphism is in-

vertible and every 2-morphism is vertically and horizontally invertible.

Finally, we can define the path 2-groupoid. A 2-functor between the path 2-groupoid of

a smooth manifold M to a 2-groupoid will be the main ingredient to define the notion of

parallel transport of 1-dimensional objects and the associated 2-form higher gauge theory.

Definition 4.3.8 (Path 2-groupoid) Let M be a smooth manifold. The path 2-groupoid

of M , P2(M), is a 2-groupoid, where the objects are the points x ∈ M , the morphisms are

thin homotopy classes of lazy paths in M , and the 2-morphisms are thin homotopy classes

of lazy surfaces in M .
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A homotopy Σ : [0, 1]2 → M between two paths (γ, δ) : x→ y is a lazy surface if each of the

paths in the 1-parameter family γs(t) = Σ(s, t) is lazy and γs = γ0 in a neighborhood of t = 0

and γs = γ1 in a neighborhood of t = 1.

A homotopy between lazy surfaces Σ and Ξ is a smooth map H : [0, 1]3 → M such that

H(0, s, t) = Σ(s, t) and H(1, s, t) = Ξ(s, t). This homotopy is thin if H does not sweep out a

volume.

Now, we understand the generalization of the path groupoid to the stringy picture. The

higher holonomy functor, which we define below involves a generalization of a Lie group to a

Lie 2-group, or crossed module of Lie groups. In other words, the gauge fields in the resulting

higher gauge theory take values in the Lie 2-algebra associated with a Lie 2-group. Let us

describe what this means. We start by defining the 2-group.

Definition 4.3.9 (2-group) A 2-group is a 2-groupoid with one object.

Since the definition of a 2-group is still quite abstract, we now define the structure of a

crossed module and discuss their equivalence.

Definition 4.3.10 (Crossed module) Let G and H be a pair of groups, that are endowed

with two group homomorphisms t : H → G and α : G → Aut(H), where Aut(H) is the

automorphism group over H. Let the two group homomorphisms satisfy the relations

α(t(h))(h′) = hh′h, (4.35)

t(α(g)(h)) = gt(h)g−1, (4.36)

where g ∈ G and h, h′ ∈ H. The 4-tuple (G,H, t, α) is called a crossed module.

This structure also turns out to be the underlying structure of higher-dimensional Yang-Mills

theory, where the Lie group is exchanged by a Lie 2-group [158].

Theorem 4.3.11 (Equivalence of crossed module and 2-group, [157]) Let (G,H, t, α)

be a crossed module. We can uniquely construct a 2-group G as follows.

Let G be the group of morphisms in G. To any set (g, h) ∈ G×H with g′ = t(h)g we assign

a 2-morphism α : g ⇒ g′. The vertical and horizontal composition of 2-morphism is then
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given by

(g, h) · (g′, h′) = (g′, hh′), (4.37)

(g, h) ◦ (g′, h′) = (gg′, hα(g)h′). (4.38)

Now, the other way. Let G be a 2-group. We can uniquely construct a crossed module

(G,H, t, α) as follows.

Let the group of morphisms in G be the group G. Let the group of 2-morphisms α with

s(α) = 1• be the group H. Let target map on 2-morphisms in H be the group homomorphism

t : H → G. Finally, let the action α : G→ Aut(H) be given by

α(g)H = 1g ◦ h ◦ 1g−1 . (4.39)

Let us remark, that the groupoids discussed here are so-called strict groupoids. We will omit

a detailed discussion on generalizations of these structures.

Definition 4.3.12 (Lie crossed module) A Lie crossed module is a crossed module

(G,H, t, α), where H and G are Lie groups.

A Lie crossed module is also referred to as Lie 2-group.

The infinitesimal object associated with a smooth crossed module is given by the differential

crossed module. It can be easily derived by Lie derivation.

Definition 4.3.13 (Differential crossed module) Let g and h be a pair of Lie algebras.

Furthermore, let the pair of Lie algebras be endowed with two Lie algebra homomorphisms

t : h→ g and α : g→ Der(h), where Der(h) is the Lie algebra of Lie derivations over h. The

homomorphisms obey

t(α(g)(h)) = [g, t(h)], (4.40)

α(t(h))(h′) = [h, h′], (4.41)

for all g ∈ g and h ∈ h. The 4-tuple (g, h, t, α) is called a differential crossed module.

The property of t and α to be homomorphisms leads to the additional conditions

t([h, h′]) = [t(h), t(h′)], (4.42)

α([g, g′]) = [α(g), α(g′)], (4.43)

α(g)([h, h′]) = [α(g)(h), h′] + [h, α(g)(h′)], (4.44)
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where g, g′ ∈ g and h, h′ ∈ h. The last equation is the derivation property. A differential

crossed module can be identified with a strict Lie 2-algebra, as we showed in the L∞-algebra

section.

Having generalized the path groupoid and the group to the stringy picture, we now have to

introduce a generalized version of the functor itself, the 2-functor. The 2-functor between the

path 2-groupoid and a Lie 2-group will then lead to the correct notion of parallel transport

of 1-dimensional objects. The resulting structure is called a 2-connection, in contrast to the

ordinary connection in 1-form gauge theory.

Definition 4.3.14 (2-functor) A 2-functor F : C → D between two 2-categories C and D

is a map of each object x ∈ C to F (x) ∈ D, each morphism (f : x → y) ∈ C to (F (f) :

F (x)→ F (y)) ∈ D and each 2-morphism (α : f ⇒ g) ∈ C to (F (α) : F (f)⇒ F (g)) ∈ D. It

has the following properties:

It preserves the composition of morphisms, vertical and horizontal composition of 2-morphisms

as well as all identities,

F (f ◦ g) = F (f) ◦ F (g), F (α · β) = F (α) · F (β), F (α ◦ β) = F (α) ◦ F (β),

F (1f ) = 1F (f), F (1x) = 1F (x).
(4.45)

Let us now state the most important theorem of this section, the equivalence between holon-

omy 2-functors and 2-form higher gauge theories with differential crossed module gauge

structure.

Theorem 4.3.15 ([128, 159, 160]) Let M be a smooth manifold and G be a Lie 2-group.

Then, 2-connections on the trivial principal G-2-bundle over M are one-to-one to pairs

(A,B) ∈ Ω1(M ; g)× Ω2(M ; h) such that

t(B) = dA+ A ∧ A, (4.46)

are one-to-one to smooth 2-functors hol : P2(M)→ G.

Roughly speaking, a smooth 2-functor depends smoothly on the parameter of smoothly pa-

rameterized families of lazy paths as well as lazy surfaces.

We now understand, that the differential crossed module is the underlying structure of parallel

transport of 1-dimensional objects. The holonomy of a surface requires the existence of both

a 1-form and a 2-form. This leads to 2-form higher gauge theory with differential crossed
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module gauge structure. The equation that is required for consistency when computing the

surface holonomy,

t(B) = dA+ A ∧ A, (4.47)

is called the fake curvature condition, F = t(B). The so-called fake curvature F can be

defined by

F = F − t(B). (4.48)

Then, for consistency, this curvature has to vanish, F = 0, in order to yield well-defined

higher parallel transport. In the main section of this part we will develop a method to

circumvent the fake curvature condition by using more intricate higher gauge algebras. This

ultimately leads to a higher gauge theory, that can be associated to a multiple M5-brane

system compactified on a circle.

A gauge transformation between two 2-connections (A,B) and (A′, B′) is parameterized by

a smooth function g : M → G and a 1-form a ∈ Ω1(M ; h) taking values in h,

A′ = gAg−1 + gdg−1 + t(a), (4.49)

B′ = α(g)(B) + α(A′) ∧ a+ da− a ∧ a. (4.50)

The 2-form curvature F transforms as

F ′ = gFg−1 + t(da) + [t(a), A′]− t(a) ∧ t(a). (4.51)

The 2-curvature H of the 2-connection is defined by

H = dB + α(A) ∧B. (4.52)

It describes the holonomy of the 2-connection over an infinitesimal 2-sphere. A 2-connection

is called flat, if its curvature and 2-curvature vanish.

It turns out, that a U(1)-gerbe is a 2-connection, where the Lie crossed module is given by

(G,H, t, α) with G trivial, H abelian and t and α trivial maps. The curvature of the U(1)-

gerbe is given by the 2-curvature of the 2-connection, H = dBi on Ui. On double-overlaps

Uij we have

Bi −Bj = daij, (4.53)

and on triple-overlaps Uijk we have

aij + ajk − aik = hijkdh
−1
ijk. (4.54)
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Also compare this construction to the abelian gerbes that arise as Čech-Deligne cocycles in

3.3.7.

For general differential crossed modules the connection of a so-called non-abelian gerbe arises,

where

aij + ρ(gij)ajk − hijkaikh−1
ijk = hijkα(Ai)h

−1
ijk + hijkdh

−1
ijk, (4.55)

on triple-overlaps Uijk. We summarize, the 2-form higher gauge theory on a G-2-bundle is

described by a connection of a non-abelian gerbe. As a remark, general non-abelian Čech

cocycles are encoded in n-functors from the so-called Čech n-groupoid to an n-groupoid. For

generalizations of higher gauge theory, where even the underlying manifold is categorified to

a so-called 2-space, we refer to [106].

4.3.2 Higher gauge theory from QP-manifolds

In this section, we show how to generate ordinary and higher gauge theories with gauge

structure induced by arbitrary QP-manifolds. The mathematical fundament is given by

supergeometry and can be applied in any dimension. The method is due to [132]. It relies

on the AKSZ method to generate a BV-BRST formalism on the mapping space between two

graded manifolds used in the first part of this thesis.

The gauge theory shall be constructed on a d-dimensional worldvolume manifold X. For this,

we promote the worldvolume to the superworldvolume χ = T [1]X. The local parameteriza-

tion of χ is given by coordinates σµ of degree zero on X and θµ of degree 1 on the fiber. The

Grassmann odd coordinates will be identified with the generators of the cotangent bundle

T ∗X → X. The index µ runs over µ = 1, . . . , d.

The gauge theory defined on the worldvolume inherits the structure of a QP-manifold by a

morphism of differential graded algebras, or dga-morphism, as follows. Let the QP-manifold

be denoted by (M,Θ, ω). Then, we can define a map a : χ → M between the graded

manifolds χ and M as follows. Let us fix a coordinate z of arbitrary degree |z|. The image

of the pullback of z along a is a superfield z ∈ C∞(χ) such that |z| = |z|. We can expand

the superfield in Grassmann odd coordinates,

a∗(z) = z(σ, θ) =
d∑
j=0

z(j)(σ, θ) =
d∑
j=0

1

j!
θµ1 · · · θµjz(j)

µ1···µj(σ). (4.56)
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The result is a superfield, which includes the gauge fields as well as the ghosts and antifields

of the induced BV formalism.

We are interested in the physical field, which is given by the ghost-number zero component.

Let us explain how the ghost-number is counted. For this, we first introduce the form-degree

| − |Form and assign |θµ|Form = 1 and |σµ|Form = 0 to the local coordinates of the superworld-

volume χ. Then, the ghost-number | − |Ghost of a superfield component z
(j)
µ1···µj is defined as

the difference |z(j)
µ1···µj |Ghost = |z|−|z(j)|Form. Therefore, the ghost number of the j-component

is given by |z(j)
µ1···µj |Ghost = |z| − j. The ghost-number zero component is a physical field. For

our superfield z, it means that the |z|-th component is physical, z
(|z|)
µ1···µ|z| . Furthermore, a

field, for which | − |Ghost > 0, is called a ghost, whereas a field, for which | − |Ghost < 0, is

called an antifield.

The ghost-number zero component of a superfield will be associated with a gauge field. More

explicitly, z
(|z|)
µ1···µ|z| will be associated with the components of a |z|-form gauge field on the

worldvolume X in the following way. We define a second map ã : χ→M, which associates

the corresponding gauge field on X to the ghost-number zero component via pullback. In

local coordinates, for the coordinate z of degree |z| on M we find by pullback along ã,

ã∗(z) =
1

|z|!
dσµ1 ∧ · · · ∧ dσµ|z|z(|z|)

µ1···µ|z| , (4.57)

so that ã∗(z) ∈ Ω|z|(X).

The ghost-number 1 component of the superfield z is the (|z| − 1)-form gauge parameter

z
(|z|−1)
µ1···µ|z|−1

associated with the |z|-form gauge field z
(|z|)
µ1···µ|z| .

The super field strength associated to the |z|-form gauge field z
(|z|)
µ1···µ|z| is given by

Fz = d ◦ a∗(z)− a∗ ◦Q(z), (4.58)

where d = θµ∂µ is the superdifferential as usual and Q = {Θ,−} is the homological vector

field associated with the Hamiltonian function Θ on the QP-manifoldM. Since the superdif-

ferential contributes one form-degree, one recognizes that the physical component in Fz is at

order 1 + |z(|z|)|Form = 1 + |z|,

Fz|1+|z| = [d ◦ a∗(z)− a∗ ◦Q(z)]1+|z|. (4.59)

By exchanging the map a with ã, we can define the physical field strength,

Fz = d ◦ ã∗(z)− ã∗ ◦Q(z), (4.60)
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where the superdifferential collapsed to the standard de Rham differential d.

Finally, let us define the infinitesimal gauge transformations. The information on this trans-

formation is encoded in the ghost-number 1 component of the super field strength,

δz = Fz||z| = [d ◦ a∗(z)− a∗ ◦Q(z)]|z|. (4.61)

In BV language, this is a BRST transformation with Grassmann odd ghost gauge parameter.

In order to extract this component with the ghost-number 1 gauge parameter z
(|z|−1)
µ1···µ|z|−1

, we

define a map of degree (−1), ã−1 : χ → M. The pullback of the local coordinate z on M
along ã−1 extracts the (|z| − 1)-form gauge parameter,

ã∗−1(z) =
1

(k − 1)!
dσµ1 ∧ · · · ∧ dσµ|z|−1z(|z|−1)

µ1···µ|z|−1
. (4.62)

Using this map, we can define the gauge transformation of the physical gauge field as

δã∗(z) = d ◦ ã∗−1(z)− ã∗−1 ◦Q(z). (4.63)

It turns out that the physical field strength obeys the Bianchi identity since the homological

vector field Q is nilpotent, Q2 = 0,

dFz = −F ◦Q(z) + ã∗ ◦Q2(z) = −F ◦Q(z), (4.64)

where F denotes the map

F :M→ Ω|z|+1(X),

F : z 7→ Fz.
(4.65)

Let us summarize the method. We choose a worldvolume manifold X and promote it to a

graded manifold χ = T [1]M . Then, we choose a QP-manifold (M,Θ, ω), which should serve

as the underlying structure of our (higher) gauge theory. Finally, to each coordinate on M
we associate a (higher) gauge field with (higher) field strength, gauge transformation and get

a consistent Bianchi identity for free, if Θ obeys the classical master equation on M.

Let us work out a simple example to get accommodated with the formalism. We show how

to recover ordinary gauge theory, if the underlying QP-manifold induces the structure of a

Lie algebra.

Example 4.3.6 (Ordinary gauge theory) In order to induce an ordinary gauge theory

with Lie algebra structure, we start from the QP-structure inducing an ordinary Lie algebra.
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Let M = T ∗[n]V [1] be a graded manifold, where V is a finite-dimensional vector space. Let

M be locally parameterized by coordinates (va, va) of degrees (1, n−1) and be endowed with

the following graded symplectic structure,

ω = (−1)nδva ∧ δva. (4.66)

Finally, let the Hamiltonian function be defined by

Θ =
1

2
f cabv

avbvc, (4.67)

where f cab is constant.

The local coordinates on M will correspond to gauge fields of the associated BRST-BV

formalism. We assign the physical 1-form gauge field Aa ∈ Ω1(M) to the coordinate va of

degree 1,

ã∗(va) = Aa(σ). (4.68)

The gauge parameter of ghost-degree 1 is given by a function εa,

ã∗−1(va) = εa(σ). (4.69)

The associated 2-form field strength is given by

F a = Fva = d ◦ ã∗(va)− ã∗ ◦Q(va)

= dAa − 1

2
fabcA

bAc, (4.70)

where Q = {Θ,−}. The gauge transformation of Aa is given by

δAa = d ◦ ã∗−1(va)− ã∗−1 ◦Q(va)

= dεa − fabcAbεc. (4.71)

The resulting gauge structure is an ordinary gauge theory with internal structure induced by

the QP-manifold equivalent to the Lie algebra (V, [−,−]).

For an application of the formalism to higher bundles associated with non-abelian supercon-

formal models in 6 spacetime dimensions see [161]. For an account on supergravity in string

theory from the perspective dual to supergeometry, using higher Cartan geometry we recom-

mend [162]. The picture in terms of so-called ∞-bundles with connections was established

in [163].

206



4.4. Higher gauge theories of multiple M5-branes

4.4 Higher gauge theories of multiple M5-branes

We clarified above, that there are strong hints that the dynamics of multiple M5-branes

is governed by a non-abelian version of higher gauge theory. However, the construction of

local actions with manifest Lorentz symmetry with non-trivially interacting self-dual gauge

fields poses problems. We described the ansatz of [126] to develop a notion of higher par-

allel transport from the viewpoint of category theory, which leads to a 2-form higher gauge

theory governed by a differential crossed module structure. The theory describes the par-

allel transport of 1-dimensional objects sweeping out a Wilson surface, the higher analogue

of a Wilson line in ordinary gauge theory. However, it turns out that the covariant gauge

transformation of the 3-form field strength H requires the lower 2-form field strength F to

vanish. This is called fake curvature condition. The resulting theory becomes topological

and dynamically highly restricted.

This section is devoted to the construction of a topologically non-trivial interacting covari-

antly transforming non-abelian higher gauge theory, which can be related to a system of

multiple M5-branes compactified on a circle along the lines of [133, 134, 135]. It is based on

the published article [5].

The crucial step to the success of our construction is our newly proposed method to generate

off-shell covariant (higher) gauge theories induced by graded symplectic manifolds, called off-

shell covariantization. The starting point of our journey is a Lie 2-algebra gauge theory,

which inherits the fake curvature issue. The underlying gauge Lie 2-algebra, will be extended

by additional structures, and auxiliary gauge fields will be added in a covariant manner.

By restricting the gauge transformations of the auxiliary gauge fields to a hypersurface,

the residual gauge transformations become covariant while circumventing the fake curvature

condition F = 0 (off-shell). This leads to an off-shell covariant higher gauge theory.

This section is structured as follows. In section 4.4.1, we describe our method of off-shell

covariantization. The graded symplectic manifold setup, which we use to construct the higher

gauge theory, is introduced in section 4.4.2. In Section 4.4.3, we define the graded symplectic

manifold, which induces a semistrict Lie 2-algebra as the basic structure of our higher gauge

theory. Section 4.4.4 concerns the derivation of the higher gauge theory with underlying

semistrict Lie 2-algebra gauge structure and discussion of the fake curvature condition. In

section 4.4.5, we explicitly construct the off-shell covariantized higher gauge theory, which
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circumvents the fake curvature condition and relate it to the system of multiple M5-branes

compactified on a circle along the lines of [133, 134, 135].

4.4.1 Off-shell covariantization

Off-shell covariantization is a method to covariantize the gauge transformation behavior of

the highest form field strength while keeping the lower form field strengths non-vanishing. It

is a way to circumvent the fake curvature condition. The modified field strengths after the

off-shell covariantization procedure can then be used to construct quadratic actions, which

are invariant under the modified gauge transformations.

We start by fixing a QP-manifold (M,Θ, ω), which serves as the underlying gauge structure of

the higher gauge theory. In general, the QP-manifold induces a the structure of a symplectic

L∞-algebroid. All gauge fields, field strengths, gauge parameters and gauge transformations

are derived using the local structure of the QP-manifold. The Hamiltonian function on the

QP-manifold directly induces the gauge structure of the resulting theory. In general, the

resulting gauge theory is on-shell covariant, which means that it inherits the fake curvature

issue. In such a case, our off-shell covariantization procedure can be applied.

The off-shell covariantization procedure makes use of the auxiliary gauge fields and field

strengths associated with the conjugate coordinates on the QP-manifold as follows. We

choose a QP-manifold of the structure M = T ∗[n]X , where X is another graded manifold.

Then, we use the local coordinates on X to induce the higher gauge fields and associated field

strengths. This gauge structure in general inherits the fake curvature issue. In the next step,

the gauge structure associated with the T ∗[n]-fiber coordinates is used to generate auxiliary

gauge fields with auxiliary field strengths. This auxiliary gauge freedom enters the gauge

transformation of the ordinary higher gauge theory. Thus, by constraining the auxiliary

gauge fields, the auxiliary gauge freedom can be used to deform the gauge transformations

and circumvent the fake curvature condition.

The underlying gauge structure is governed by a symplectic L∞-algebroid. It turns out

that in general the successful circumvention of the fake curvature issue by constraining the

auxiliary gauge fields leads to a reduction of the underlying gauge structure of the symplectic

L∞-algebroid to a subalgebroid.

We can summarize the off-shell covariantization procedure in the following recipe.
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Off-shell covariantization

1. Fix the QP-structure (M,Θ, ω).
2. Compute associated symplectic L∞-algebroid.
3. Derive full gauge structure.
4. Covariantize using the auxiliary gauge structure

and by reduction of the full gauge structure.
5. Check that field strengths transform off-shell

covariantly under the residual gauge symmetry.

4.4.2 Graded symplectic manifold setup and classification

In this section, we describe the graded symplectic manifold setup and fix the QP-manifold,

which we use as starting point of the off-shell covariantization procedure.

Let V and W be finite-dimensional vector spaces. We consider the family of graded manifolds

Mn = T ∗[n]X , where X = W [1] ⊕ V [2] and n ∈ N. Let W [1] be locally parameterized by

coordinates ξa of degree 1 and V [2] be locally parameterized by coordinates ζA of degree 2.

Then, we take conjugate coordinates with respect to the T ∗[n]-fiber to be (ξa, ζA) of degrees

(n − 1, n − 2). In a nutshell, Mn is parameterized by local coordinates (ξa, ζA, ξa, ζA) of

degrees (1, 2, n− 1, n− 2).

Let Mn be endowed with the following graded symplectic structure,

ω = (−1)nδξa ∧ δξa + δζA ∧ δζA. (4.72)

In the next step, we perform a classification of available Hamiltonian functions for each

n ∈ N. We can expand any Hamiltonian function Θ in conjugate coordinates (ξa, ζA),

Θ =
∑
i

Θ(i), (4.73)

where Θ(i) is i-th order in (ξa, ζA). Recall that the Hamiltonian function on a degree n

QP-manifold is of degree n + 1. The following table summarizes all available Hamiltonian

functions for any n ∈ N by degree counting.

Available Hamiltonian functions

n ∈ N Hamiltonian function Θ

n ≥ 6 Θ = Θ(0) + Θ(1)

n = 4, 5 Θ = Θ(0) + Θ(1) + Θ(2)

n = 3 Θ = Θ(0) + Θ(1) + Θ(2) + Θ(3) + Θ(4)

n = 2 Courant algebroid
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For the case n = 2, the degrees of the local coordinates (ξa, ζA, ξa, ζA) are given by (1, 2, 1, 0).

Therefore, the Hamiltonian function can contain arbitrary functions in ζA. We find

T ∗[2](W [1]⊕ V [2]) ∼= W [1]⊕ V [2]⊕W ∗[1]⊕ V ∗ ∼= T ∗[2](E[1]), (4.74)

which induces a Courant algebroid on the vector bundle E → V ∗ with fiber W .

4.4.3 Symplectic NQ-manifold of a semistrict Lie 2-algebra

In this section, we show that the QP-manifold (Mn,Θ, ω) contains a semistrict Lie 2-algebra

as substructure. This Lie 2-algebra serves as the underlying structure of the 2-form higher

gauge theory. However, it inherits the fake curvature issue, as we will show below.

The Hamiltonian function, which is first order in the conjugate coordinates, is given by

Θ(1) = taAζ
Aξa +

(−1)n

2
f cabξ

aξbξc + αBaAξ
aζAζB +

(−1)n

3!
TAabcξ

aξbξcζA, (4.75)

where taA, f cab, α
B
aA and TAabc are constant. Let ea denote the generators of the vector space V

and EA the generators of the vector space W . We can define the following injection map j,

j : W ⊕ V →M,

j : (ea, EA, 0, 0) 7→ (ξa, ζA, ξ
a, ζA).

(4.76)

Then, the operations of the semistrict Lie 2-algebra are recovered via

[ga1ea, g
b
2eb]Lie = (−1)n+1j∗{{Θ(1), j∗(g

a
1ea)}, j∗(gb2eb)} = f cabg

a
1g

b
2ec, (4.77)

t(hAEA) = j∗{Θ(1), j∗(h
AEA)} = taAh

Aea, (4.78)

α(gaea)(h
AEA) = (−1)nj∗{{Θ(1), j∗(g

aea)}, j∗(hAEA)} = αBaAg
ahAEB, (4.79)

Jac(ga1ea, g
b
2eb, g

c
3ec) = −j∗{{{Θ(1), j∗(g

a
1ea)}, j∗(gb2eb)}, j∗(gc3ec)} = TAabcg

agbgcEA. (4.80)

Here, Jac denotes the Jacobiator. The classical master equation, {Θ(1),Θ(1)} = 0, is equiva-

lent to the following algebraic equations,

1

2
fde[af

e
bc] −

1

3!
tdAT

A
abc = 0, tcAf

a
cb − taBαBbA = 0,

1

2
αBcAf

c
ab + αB[a|C|α

C
b]A +

1

2
tcAT

B
cab = 0,

3

2
f e[abT

A
cd]e + αA[a|B|T

B
bcd] = 0, αCa(At

a
B) = 0.

(4.81)

The first equation is the Jacobi identity, which is broken by a Jacobiator. The operations

together with the algebraic equations form the structure of a semistrict Lie 2-algebra. We

summarize our findings in the following theorem.
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Theorem 4.4.1 The QP-structure (Mn,Θ
(1), ω) induces the structure of a semistrict Lie

2-algebra.

In the case, where TAabc = 0, the structure collapses to a strict Lie 2-algebra, which is cate-

gorically equivalent to a differential crossed module.

The gauge structure induced by (Mn,Θ
(1), ω) serves as the basis for the 2-form higher gauge

theory. However, it naturally is subject to the fake curvature issue. This issue can be tackled

by enlarging the structure of the Lie 2-algebra by introduction of additional contributions to

the Hamiltonian function different from Θ(1).

4.4.4 Higher gauge theory of a semistrict Lie 2-algebra

In this section, we compute the associated 2-form higher gauge theory for the semistrict Lie

2-algebra. Let X be a smooth manifold. Then, let χ = T [1]X be the graded manifold,

on which the gauge theory shall be defined. Let χ be locally parameterized by coordinates

(σµ, θµ) of degrees (0, 1). Then, we associate 1-form and 2-form gauge fields to the basis

coordinates of degree 1 and 2 of Mn,

ã∗(ξa) = Aa = Aaµdσ
µ, (4.82)

ã∗(ζA) = BA =
1

2
BA
µνdσ

µ ∧ dσν . (4.83)

We find the associated field strengths to be

F a = Fξa = d ◦ ã∗(ξa)− ã∗({Θ(1), ξa}) = dAa − 1

2
fabcA

b ∧ Ac − (−1)ntaAB
A, (4.84)

HA = FζA = d ◦ ã∗(ζA)− ã∗({Θ(1), ζA}) = dBA + αAaCA
a ∧BC +

(−1)n

3!
TAabcA

a ∧ Ab ∧ Ac.
(4.85)

The ghost-number 1 gauge parameters are given by

εa = ã∗−1(ξa), µA = ã∗−1(ζA), (4.86)

where εa is a function and µA is a 1-form. Then, the gauge transformations are easily

computed,

δAa = dεa − fabcAbεc + taAµ
A, (4.87)

δBA = dµA + αAaBA
a ∧ µB − αAaCεaBC +

1

2
TAabcA

a ∧ Abεc. (4.88)
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Finally, we can compute the gauge transformations of the field strengths,

δF a = fabcF
bεc, (4.89)

δHA = αAaBH
Bεa − αAaBF a ∧ µB + TAabcA

a ∧ F cεb. (4.90)

From the transformation behavior of the 3-form field strength, we conclude that for the 3-

form field strength to transform covariantly, the 2-form field strength has to vanish, F a = 0.

Then, δH ∼ H and trivially δF ∼ F . This is the fake curvature condition. Without setting

F a = 0 it is impossible to introduce the associated kinetic terms of both field strengths when

constructing the Lagrangian of the resulting higher gauge theory.

4.4.5 Higher gauge theory of multiple M5-branes

In this section, we will apply the procedure of off-shell covariantization to the gauge struc-

ture induced by the QP-manifold (M4,Θ, ω) for n = 4. It turns out that the additional

structure provided by the term Θ(2) is crucial for a successful off-shell covariantization. We

will comment on the choice of n = 4 after showing the success of our proposed method.

Underlying QP-manifold

Let us shortly summarize the setup. We consider the QP-manifold (M4,Θ, ω), whereM4 =

T ∗[4](W [1]⊕V [2]) is locally parameterized by coordinates (ξa, ζA, ξa, ζA) of degrees (1, 2, 3, 2).

The most general Hamiltonian function is given by

Θ = Θ(0) + Θ(1) + Θ(2), (4.91)

where

Θ(0) =
1

5!
mabcdeξ

aξbξcξdξe +
1

3!
mabcAξ

aξbξcζA +
1

2
maABξ

aζAζB, (4.92)

Θ(1) =
1

2
f cabξ

aξbξc + taAζ
Aξa + αBaAξ

aζAζB +
1

3!
TAabcξ

aξbξcζA, (4.93)

Θ(2) = saAξaζA +
1

2
nABa ξaζAζB. (4.94)
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Here, all coefficients are constant. The classical master equation, {Θ,Θ} = 0, can be decom-

posed by order in conjugate coordinates,

{Θ(0),Θ(0)} = 0, (4.95)

{Θ(0),Θ(1)}+ {Θ(1),Θ(0)} = 0, (4.96)

{Θ(1),Θ(1)}+ {Θ(0),Θ(2)}+ {Θ(2),Θ(0)} = 0, (4.97)

{Θ(1),Θ(2)}+ {Θ(2),Θ(1)} = 0, (4.98)

{Θ(2),Θ(2)} = 0. (4.99)

Induced higher gauge theory

Here, we discuss the higher gauge theory induced by the QP-manifold (M4,Θ, ω).

We consider a higher gauge theory on the graded manifold χ = T [1]X, where X is a smooth

manifold of any dimension. The graded manifold χ is locally parameterized by coordinates

(σµ, θµ) of degrees (0, 1). We assign 1-form gauge field Aa and 2-form gauge field BA to the

coordinates of the base of M4,

Aa = ã∗(ξa) = Aaµdσ
µ, (4.100)

BA = ã∗(ζA) =
1

2
BA
µνdσ

µ ∧ dσν . (4.101)

The associated field strengths are given by

F a = Fξa = d ◦ ã∗(ξa)− ã∗({Θ, ξa})

= d ◦ ã∗(ξa)− ã∗({Θ(1), ξa})− ã∗({Θ(2), ξa}), (4.102)

HA = FζA = d ◦ ã∗(ζA)− ã∗({Θ, ζA})

= d ◦ ã∗(ζA)− ã∗({Θ(1), ζA})− ã∗({Θ(2), ζA}). (4.103)

We recognize, that the term Θ(0) does not contribute to the expressions for the field strengths.

Furthermore, as we discussed above, the term Θ(1) induces the gauge structure of a semistrict

Lie 2-algebra, which inherits the fake curvature issue. In the following, we will see how we

can use the additional structure provided by Θ(2) together with the auxiliary gauge fields

to circumvent the fake curvature condition. Note that without associating additional gauge

fields to the conjugate coordinates, the terms ã∗({Θ(2), ζA}) and ã∗({Θ(2), ξa}) are pulled

back to zero. So we are effectively still dealing with usual semistrict Lie 2-algebra higher

gauge theory.

213



Chapter 4. Higher gauge theory and multiple M5-branes

Analysis of the classical master equation

Since the term Θ(0) does not deform the expressions of the field strengths, we will omit it in

the following. The decomposition of the classical master equation simplifies to

{Θ(1),Θ(1)} = 0, {Θ(1),Θ(2)} = 0, {Θ(2),Θ(2)} = 0. (4.104)

The first equation induces the structure of a semistrict Lie 2-algebra. However, this structure

is deformed by the second equation. The third equation then is an intrinsic condition on the

deformation term Θ(2). Inserting the Hamiltonian function, we find the following full set of

algebraic relations,

1

2
fde[af

e
bc] −

1

3!
tdAT

A
abc = 0, tcAf

a
cb − taBαBbA = 0,

1

2
αBcAf

c
ab + αB[a|C|α

C
b]A +

1

2
tcAT

B
cab = 0,

3

2
f e[abT

A
cd]e + αA[a|B|T

B
bcd] = 0,

αCa(At
a
B) = 0, sa(AnBC)

a = 0, scAf bca + αAaBs
bB − tbBnABa = 0,

1

2
sc(AT

B)
abc +

1

4
nABc f cab + α

(A
[a|C|n

B)C
b] = 0, sa(Aα

B)
aC +

1

2
taCn

AB
a = 0, t

[a
As

b]A = 0.

(4.105)

The resulting structure is a 4-term L∞-algebra, which is trivial in degree 3. This is the

underlying structure of the full higher gauge theory including auxiliary fields associated with

the conjugate coordinates, which we will introduce below. Let us for convenience decompose

the space of smooth functions on the graded manifold M by degree,

C∞(M) =
⊕
i

C∞i (M). (4.106)

It is sufficient to analyze the decomposition until degree 3, since this is the degree of the

highest degree local coordinate on M. Let k be the underlying field. The spaces are given

by

C∞0 (M) = ∅, (4.107)

C∞1 (M) = {Xaξ
a|Xa ∈ k} (4.108)

C∞2 (M) =

{
1

2
Xabξ

aξb + YAζ
A + ZAζA

∣∣∣∣ Xab, YA, Z
A ∈ k

}
, (4.109)

C∞3 (M) =

{
1

3!
Xabcξ

aξbξc + YAaζ
Aξa + ZA

a ζAξ
a +Raξa

∣∣∣∣ Xabc, YAa, Z
A
a , R

a ∈ k
}
. (4.110)

The differential crossed module lives in the subalgebra

C∞2 (N )
t−→ C∞3 (N ), (4.111)
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over the subspace N ⊂ M parameterized by (ξa, ζA). In other words, we extended the

higher gauge structure to a 4-term L∞-algebra containing the differential crossed module.

The additional structure will be used below, to circumvent the fake curvature issue.

Introduction of auxiliary gauge fields

Let us now introduce auxiliary gauge fields associated with the conjugate coordinates (ξa, ζA)

in M4 in order to make use of the additional structure provided by Θ(2). Since (ξa, ζA) are

of degrees (3, 2), we get additional 3-form and 2-form auxiliary gauge fields,

ã∗(ξa) = Ca =
1

3!
Ca,µνρdσ

µ ∧ dσν ∧ dσρ, (4.112)

ã∗(ζA) = DA =
1

2
DA,µνdσ

µ ∧ dσν . (4.113)

The associated 4-form and 3-form auxiliary field strengths are given by

F (C)
a = dCa − f cabAb ∧ Cc − αAaBBB ∧DA −

1

2
TAabcA

b ∧ Ac ∧DA −
1

2
nABa DA ∧DB, (4.114)

F
(D)
A = dDA − taACa − αBaAAa ∧DB. (4.115)

The auxiliary gauge fields also enter the 2-form and 3-form field strengths F a and HA. The

deformed expressions are given by

F a = dAa − 1

2
fabcA

b ∧ Ac − taABA − saADA, (4.116)

HA = dBA + αAaBA
a ∧BB +

1

3!
TAabcA

a ∧ Ab ∧ Ac + sbACb + nABa Aa ∧DB. (4.117)

Assigning the ghost-number 1 gauge parameters to the auxiliary gauge fields,

ε′a = ã∗−1(ξa), µ′A = ã∗−1(ζA). (4.118)

The full gauge transformations are computed to be

δAa = dεa − fabcAbεc − taAµA − saAµ′A, (4.119)

δBA = dµA + αAaB(Aa ∧ µB + εaBB) +
1

2
TAabcA

a ∧ Abεc + sbAε′b

+ nABa (Aa ∧ µ′B + εa ∧DB), (4.120)

δCa = dε′a − f cab(Ab ∧ ε′c + εb ∧ Cc)− αAaB(BB ∧ µ′A + µB ∧DA)

− 1

2
TAabc(2A

b ∧DAε
c + Ab ∧ Ac ∧ µ′A)− nABa DA ∧ µ′B, (4.121)

δDA = dµ′A − taAε′a − αBaA(Aa ∧ µ′B + εaDB). (4.122)
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Using above equations, we can compute the gauge transformations of the 2-form and 3-form

field strengths,

δF a = fabcF
bεc, (4.123)

δHA = αAaBH
Bεa + nABa F

(D)
B εa + TAabcA

a ∧ F cεb − αAaBF a ∧ µB − nABa F a ∧ µ′B. (4.124)

We recognize that now there is more space to covariantize the gauge transformation behavior

of the 3-form field strength without having to impose F a = 0. For this, we restrict the auxil-

iary gauge fields and compute the restricted gauge transformations using a special subspace

of solutions of the classical master equation on M4.

Off-shell covariantization procedure

We will be using a special subset of solutions to the classical master equation for the off-shell

covariantization procedure. Based on this subset of solutions, the 3-form field strength HA

can be covariantized by constraining the auxiliary gauge fields without setting the 2-form

field strength F a to zero.

Let us in the following describe this special subset of solutions. For simplicity, we assume

TAabc = 0. We start by introducing the symmetric matrix Gab = saBtbB, which in general is

not invertible. In the next step, we assume that W is a metric vector space with metric gab,

which we use to introduce the new constant sAb = saAgab. Then, we assume sAa t
a
B = δAB and

introduce the projector P a
b = taAs

A
b . We find Gab = P a

c g
cb and conclude that the metric g is

in general not invertible in the image of P .

It turns out that the space of solutions under above assumptions is equivalent to the space

of solutions of the differential crossed module inducing Hamiltonian function Θ(1),

exp(δsaAsBa )(Θ(1)) = Θ(1) + Θ(2), (4.125)

exp(δsaAsBa )({Θ(1),Θ(1)}) = {Θ(1) + Θ(2),Θ(1) + Θ(2)}, (4.126)

so that

{Θ(1),Θ(1)} = 0⇒ {Θ(1) + Θ(2),Θ(1) + Θ(2)} = 0. (4.127)

Please find the detailed calculation in section A.1 of appendix A. On this subspace of solu-

tions, we will perform the procedure off-shell covariantization of the higher gauge theory.
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In the next step, we impose constraints on the auxiliary gauge fields Ca and DA. We choose

the ansatz given by

Ca = −KabcF
b ∧ Ac, DA = 0, (4.128)

leading to the field strengths

F a = dAa − 1

2
fabcA

b ∧ Ac − taABA, (4.129)

HA = dBA + αAaBA
a ∧BB − sbAKbcdF

c ∧ Ad. (4.130)

It turns out that the choice Kabc = gadt
d
Aα

A
bBs

B
c leads to the desired off-shell covariant field

strengths as we will show in the following. The resulting field strengths are given by

F a = dAa − 1

2
fabcA

b ∧ Ac − taABA, (4.131)

HA = dBA + αAaBA
a ∧BB − αAaBsBc F a ∧ Ac. (4.132)

We have to show that the residual gauge transformations on the hypersurface defined by the

constraints off-shell covariantize the higher gauge theory. This has been proven for a special

choice of vector spaces W and V . Let V be the Lie algebra h and let W be endowed with

the structure of a semi-direct product, W = g = K n h, where K is a Lie algebra with a

representation ρ on h. The Lie bracket on W is defined by

[(k, h), (k′, h′)] = ([k, k′], ρ(k)h′ − ρ(k′)h), (4.133)

where k, k′ ∈ K and h, h′ ∈ h. Furthermore, the maps α : g → Der(h), t : h → g and

s : g→ h are defined as

α((k, h))h′ = ρ(k)h′, t(h) = (0,Mh), s(k, h) = M−1h, (4.134)

where k ∈ K, h, h′ ∈ h and M is an invertible matrix.

In this setup, we can compute the higher gauge theory on the constraint surface with residual

gauge transformations denoted by δ̂,

F a = dAa − 1

2
fabcA

b ∧ Ac − taABA, (4.135)

HA = dBA + αAaBA
a ∧BB − αAaBsBc F a ∧ Ac, (4.136)

δ̂Aa = dε̂a − fabcAbε̂c − taAµ̂A, (4.137)

δ̂BA = dµ̂A + αAjB(Aj ∧ µ̂B + ε̂jBB)− αAjBsBc ε̂cF j, (4.138)

δ̂F a = fabcF
b(ε̂c − (P ε̂)c), (4.139)

δ̂HA = αAaBH
B(ε̂a − (P ε̂)a), (4.140)

217



Chapter 4. Higher gauge theory and multiple M5-branes

where the gauge parameters of the residual gauge transformations are denoted by ε̂a and µ̂A.

Please find the detailed calculation in section A.2 of the appendix.

Finally, we analyze the closure of the residual gauge transformations. First, we pull out the

ghost-number from the gauge transformations, giving

δ̃Aa = dε̃a − fabcAbε̃c + taAµ̃
A, (4.141)

δ̃BA = dµ̃A + αAjB(Aj ∧ µ̃B − ε̃jBB) + αAjBs
B
c ε̃

cF j, (4.142)

where we introduced the ghost-number zero gauge parameters ε̃a and µ̃A. Calculating the

commutator of two gauge transformations, we find

[δ̃1, δ̃2]Aa = dε̃a3 − fabcAbε̃c3 + taAµ̃
A
3 , (4.143)

[δ̃1, δ̃2]BA = dµ̃A3 + αAjB(Aj ∧ µ̃B3 − ε̃
j
3B

B) + αAjBs
B
c ε̃

c
3F

j + ΛA, (4.144)

where

ΛA = αAjBf
j
kes

B
c P

e
b (ε̃b1ε̃

c
2 − ε̃b2ε̃c1)F k (4.145)

and

ε̃a3 = −fabcε̃b1ε̃c2, µ̃A3 = αAbB(ε̃b1µ̃
B
2 − ε̃b2µ̃B1 ). (4.146)

Closure of the gauge transformations requires ΛA = 0, which could be solved by restricting

the theory on-shell, F a = 0, or by

αAjBf
j
kes

B
c P

e
b = αAjBf

j
kes

B
c t

e
Ds

D
b = 0. (4.147)

Our setup obeys equation (4.147). Therefore, we showed off-shell closure of the off-shell co-

variantized residual gauge transformations of the 2-form higher gauge theory. We successfully

circumvented the fake curvature condition by making use of the auxiliary gauge freedom. Our

result matches with the construction of a non-abelian gerbe by [135], which is related to the

system of multiple M5-branes compactified on a circle [133].

Context of the result

We follow the presentation in [135], in order to relate our result to the S1-compactified M5-

brane system. Let R5 × S1 the 6-dimensional worldvolume of the M5-brane system. We can

decompose the 1-form gauge fields Aa into K- and h-components, Aa = (Âa, Ãa). We do the

218



4.4. Higher gauge theories of multiple M5-branes

same for the 2-form curvature, F a = (F̂ a, F̃ a). Then, under the decomposition we find

F̂ a = dÂa − 1

2
fabcÂ

b ∧ Âc, (4.148)

F̃ a = dÃa − 1

2
fabcÃ

b ∧ Ãc −MBa. (4.149)

Let X = R5 be the decompactified 5-dimensional part of the M5-brane worldvolume. Then,

we can write down the gauge invariant action,

S =
1

4

∫
X

(
Tr(?F̂ ∧ F̂ ) + Tr(?F̃ ∧ F̃ )

)
+

1

12

∫
X

Tr(?H ∧H). (4.150)

Gauge fixing of Ã = 0 gives F̃ = −t(B) = −MB, leading to

S =
1

4

∫
X

(
Tr(?F̂ ∧ F̂ ) + Tr(?MB ∧MB)

)
+

1

12

∫
X

Tr(?H ∧H). (4.151)

The result is that the field B acquires mass proportional to the eigenvalues of spectral de-

composition of M according to an irreducible representation of h via Stückelberg mechanism.

It was furthermore noted in [135], that in the case of X being 5-dimensional one may impose

Hµνρ =
1

2
εµνρλσF̃

λσ, (4.152)

leading to

Hµνρ =
m(α)

2
εµνρλσB

(α)λσ (4.153)

at linear order. Here (α) labels the decomposition of the mass matrix M into irreducible

representations. When taking K = SU(N), identifying Ã and B with the Kaluza-Klein

modes of the 2-form gauge field in 6 dimensions emerging from S1-compactification and the

1-form gauge field A with the zero mode of Bµ5 in 6 dimensions, then this system can be

interpreted as a generalization of a non-abelian higher gauge theory of N coincident M5-

branes compactified on an S1 with self-dual 2-form gauge field [133]. The action is given by

(4.23) and the equation (4.152) arises from the self-duality of the zero-modes.

Why n = 4?

Let us take a look at the table, that summarizes all available Hamiltonian functions for any

n ∈ N. The term Θ(0) does not deform the expressions of the field strengths and the term

Θ(1) inherits the fake curvature issue. To extend the underlying algebraic structure in a

meaningful way, we need higher order terms Θ(i) for i ≥ 2. This renders the cases n ≥ 6
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useless. For n = 4, the off-shell covariantization procedure has been shown to be successful.

However, we cannot exclude that off-shell covariantization can also be successful in the case

n = 5. We can perform a simple analysis of the Hamiltonian function for this case. The

crucial part is Θ(2), which is given by

Θ(2) =
1

2
uABζAζB, (4.154)

where uAB is constant. Since in this case |ζA| = 3, we find a deformation of the 3-form

curvature,

HA = dBA + αAaBA
a ∧BB +

1

3!
TAabcA

a ∧ Ab ∧ Ac + uABDB, (4.155)

whereas the 2-from curvature F a remains undeformed contrary to the case n = 4. Here,

DB = ã∗(ζB) is the 3-form auxiliary gauge field. The additional algebraic conditions on uAB

are given by

taAu
AB = 0, α

[B
aAu

C]A = 0. (4.156)

Although, we cannot exclude that off-shell covariantization can be successful in this case, we

conclude that compared to the case n = 4, the additional structures are highly restricted.

In the case n = 3, the local coordinates (ξa, ζA, ξa, ζA) are of degrees (1, 2, 2, 1) and the avail-

able Hamiltonian functions provide a rich structure. Since the conjugate variables attain the

same degrees as the coordinates on X , there are strong deformations of F and H. Therefore,

a successful off-shell covariantization can be feasible.

The case n = 2 is special, since it leads to a Courant algebroid structure. The algebraic

structures become continuous in the conjugate coordinate ζA, which attains degree 0.

4.5 Summary

Although the dynamics of single M2- and M5-branes has already been studied for decades,

just recently there has been made progress in the study of the dynamics of multiple M2-

and M5-branes. However, whereas we now have a very good understanding of the system

of multiple M2-branes, the construction of action functionals that model the dynamics of

systems of multiple M5-branes is still a field surrounded by many unresolved mysteries.

Higher gauge theory from the perspective of higher categorification turns out to be the

appropriate framework to tackle these difficult questions towards a correct description of

multiple M5-branes.
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4.5. Summary

In general, higher gauge theory suffers from the fake curvature condition, which highly re-

stricts the dynamics of possible Lagrangian theories. It requires all lower form curvatures to

vanish leading to an essentially free system or a BF-type topological theory, where the fake

curvature condition is required by equation of motion (on-shell). We proposed a method to

circumvent the fake curvature condition, thus leading to a topologically non-trivially inter-

acting covariantly transforming higher gauge theory of non-abelian gerbes.

This method of off-shell covariantization makes use of the auxiliary gauge freedom. The

auxiliary gauge fields are restricted to a hypersurface, such that the residual gauge transfor-

mations lead to a higher gauge theory, where the fake curvature condition is circumvented.

We applied the procedure successfully for the QP-manifold (T ∗[4]W [1]⊕V [2],Θ(1) + Θ(2), ω)

and related the resulting system to the non-abelian gerbe theory of a system of multiple

M5-branes compactified on a circle along the lines of [133, 134, 135].
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Chapter 5

Discussion and outlook

You must learn all things, both the unshaken heart of persuasive truth, and the

opinions of mortals in which there is no true warranty.

– Parmenides

String theory and M-theory are not only physically but also mathematically tremendously

rich fields of research. In this thesis, we have come a long way through highly mathematical

terrain to arrive at various physical results. Without recalling each and every result, let us

shortly sketch the way we have come. Our journey started in 10 dimensions. We investigated

various symmetry structures associated to T-duality in string theory, the geometry of non-

geometric backgrounds and generalized flux algebras. Then, we climbed up to 11 dimensions

and investigated the higher gerbe structures associated with U-duality symmetric exceptional

tangent bundles in M-theory. Finally, we stepped over into the realm of branes in M-theory,

where we constructed a higher gauge theory, which can be associated with a system of multiple

M5-branes compactified on a circle, using our method of off-shell covariantization.

Dualities in string theory and M-theory

We found a way how to encode all geometric as well as non-geometric fluxes in one sin-

gle twisted Courant algebroid, summarized in theorem 3.4.3. The Courant algebroid is in-

duced by a QP-manifold, whose classical master equation is equivalent to the generalized

flux Bianchi identities. Under the restriction to Q- and R-fluxes with β being a Poisson

tensor, we discovered the total cohomology of the Poisson-de Rham double complex as asso-

ciated twisted Courant algebroid cohomology. It is very intriguing that the underlying graded
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manifold encodes various cohomological structures depending on the flux background. The

Courant bracket twisted by all H-, f -, Q- and R-fluxes encodes the deformed local symmetry

structure of the associated abelian gerbe of the fully twisted flux background. The reduction

of this Courant algebroid along the twisted anchor for integer fluxes yields the non-abelian

gauge algebra of gauged supergravities. When considering T-duality in toroidal string theory

compactifications, then also the dilaton transforms non-trivially. However, it is not clear

how to encode this transformation in our ansatz. It might be possible to pull a conformal

factor out of the metric, g 7→ e−φg, and the vielbein, eai 7→ e−
φ
2 eai, and mimic in this way

the dilaton transformation behavior in our ansatz.

When we lifted our construction to double field theory by doubling the underlying manifold

to incorporate the winding space, we could recover the local expressions for all geometric

as well as non-geometric fluxes in double space. The underlying graded manifold became

a pre-QP-manifold, which under reduction to a physical subspace condenses to a twisted

Courant algebroid on the respective T-duality hypersurface. The twisted Courant algebroid

encodes all local fluxes, generalized flux Bianchi identities and local symmetry structures of

the gerbe associated with the T-duality frame. We constructed a presentation of T-duality

based on the pre-QP-manifold, which induces an isomorphism of twisted Courant algebroids

realized on each T-dual subspace. The pre-QP-manifold encodes the local gauge structure

of double field theory, which reduces to the local gauge structure of the physical subspace

under reduction via strong constraint. It remains an open problem to extract the topological

information of T-duality covariant formulations from the pre-QP-manifold setup.

The Poisson-Courant algebroid is obviously the natural framework to introduce a 3-vector

freedom to a Courant algebroid structure in a symmetric fashion compared to the standard

Courant algebroid with H-flux. The standard Courant algebroid with H-flux as the under-

lying structure of generalized geometry captures the geometry of T-dual backgrounds with

H-flux. Therefore, it is a natural step to analyze the features of the Poisson-Courant alge-

broid and what role it plays as a T-duality frame realizing R-flux in string theory. We found

its supergeometric construction and a generalization of the well-known isomorphism between

Lichnerowicz-Poisson cohomology and de Rham cohomology to an isomorphism of Courant

algebroid cohomologies. More generally, we constructed a flux duality isomorphism between

the QP-manifolds of the standard Courant algebroid and the Poisson-Courant algebroid. Us-

ing the AKSZ method, we constructed a topological membrane model with Poisson-Courant
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algebroid structure and found a string sigma model with R-flux on its boundary. This string

sigma model is equivalent to a Poisson sigma model with Wess-Zumino term. The flux

duality isomorphism shows the equivalence between the Poisson sigma model with H-flux

Wess-Zumino term with the contravariant sigma model with R-flux Wess-Zumino term. Both

models are realized by dual boundary conditions. We constructed the contravariant current

algebra on the loop space with Poisson-Courant algebroid structure. It turned out to be the

contravariant version of the Alekseev-Strobl current algebra with H-flux. Finally, we found

that the Poisson-Courant algebroid can be interpreted as living in the winding space of double

field theory. One major question that remains is ”What is the physical origin of the Poisson

tensor Π?”. However, if there arises a Poisson structure from a certain flux compactification

of string theory, then the Poisson-Courant algebroid is the natural structure to analyze its

behavior under T-duality due to the natural O(D,D)-structure.

In the final section, we started by recalling the gerbe structure associated with the Courant

algebroid in generalized geometry. Then, we constructed the underlying graded manifold of

Bn-generalized geometry, which is related to T-duality in heterotic string compactifications.

The resulting structure is a heterotic Courant algebroid and we found the local symmetry Lie

2-algebra of an abelian 0-1-gerbe derived bracket construction. The gerbe contains a 2-form

curvature of a Yang-Mills U(1)-gauge field and a 3-form curvature of a 2-form gauge field. The

consistency of the underlying graded manifold requires the first Pontryagin class of the U(1)-

principal bundle to vanish. Then, we explored the realm of exceptional generalized geometry

starting with exceptional generalized tangent bundles, which can accommodate modes of

M2-branes. We recovered the underlying Lie 3-algebra of local symmetries of the associated

2-gerbe via derived bracket construction. Finally, we generalized the construction to also

accommodate modes of M5-branes and found the local symmetry Lie 6-algebra associated

with a 2-5-gerbe. The consistency condition of the underlying graded manifold is equivalent

to the relation between the 4- and 7-form curvatures from the equation of motion of 11-

dimensional supergravity.

When trying to incorporate the degrees of freedom from the KK6-monopole to the generalized

tangent bundle, the transformation under the adjoint of E7 becomes highly intricate. Despite

a lot of effort we did not yet discover a natural way to reconstruct the resulting bundle using

supergeometric structures. The whole analysis points towards a non-trivial generalization of

the underlying graded manifold structures. However, it is unclear what should be the starting
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point of the generalization program. If a good principle can be found from which to set off,

the whole analysis has to be reconsidered in light of the new principle. This will inevitably

lead to new and inspiring insights into the realm of underlying mathematical structures of

U-duality in M-theory.

Higher gauge theory and multiple M5-branes

We proposed a new method to generate higher gauge theories that are free of the fake

curvature issue. This method of off-shell covariantization makes use of the auxiliary gauge

freedom to deform the gauge transformations of the various n-form field strengths. We applied

the method to the setup of a 2-form higher gauge theory with differential crossed module

structure. After introduction of the auxiliary gauge freedom and restriction of the auxiliary

gauge fields to a hypersurface, we could derive a deformation of the differential crossed module

structure, which leads to a 2-form higher gauge theory without fake curvature issue. It turned

out that the resulting gauge theory is related to a system of multiple M5-branes compactified

on a circle forming a non-abelian gerbe. The starting point was a QP-manifold of the form

Mn = T ∗[n](W [1] ⊕ V [2]). Our calculation was based on the case n = 4. However, as

stated before, a successful off-shell covariantization might also be possible for other cases. It

crucially depends on the freedom provided by the extension of the differential crossed module

structure, since it is used to deform the initial gauge transformations. Furthermore, we could

show a successful off-shell covariantization only after assuming a certain structure on the

vector spaces W and V . It is unclear, if there might be other solutions. However, since the

off-shell covariantization was proven by hand, finding other solutions can be a cumbersome

task.

Outlook

Let us now elaborate on further open questions related to the analysis of this thesis.

Obviously, there is still a lot to explore regarding the underlying algebraic structures of ex-

ceptional generalized geometry. The analysis presented in this thesis is still work in progress.

One main point is that the constructed algebras only capture the local symmetry structure

of the underlying higher gerbes. There has to be made more effort to extract the topological

information from this construction. A way to to this is by using generalizations of Chern-Weil

226



theory. Furthermore, we apparently face problems when trying to construct E7-bundles and

higher using graded symplectic manifolds. Some generalization of the ansatz is necessary.

However, it still remains unclear where to start. For lower En-bundles, we have the construc-

tion. The next step is to recover generalized metric and if possible a generalized Riemannian

geometry that captures the U-duality symmetries.

In the generalized geometry case, we could reconstruct the geometric and non-geometric

fluxes. It would be intriguing if we could do the same for exceptional generalized bundles.

However, also here we face problems. It turns out that there is no problem in representing

the parabolic subalgebra of the adjoint bundle as transformation of the underlying graded

symplectic manifold. This would correspond to geometric orbits in the U-dual space. When

trying to introduce non-geometric twists, not being represented by the parabolic subalgebra,

there arise conceptual problems. One might tend to think that the problems regarding

the representability of the non-parabolic subalgebra is related to the problems with the

implementation of the KK6-monopole symmetry in E7 and higher. Maybe if we can solve

one of those problems, we get the solution of the other for free.

Finally, there is a closely related theory, which we did not touch at all in this thesis: ex-

ceptional field theory. Roughly spoken, it plays the role of double field theory in M-theory,

now with En-symmetry instead of O(D,D)-symmetry. Double field theory turns out to be

describable by the pre-QP-manifold generalization. So it is tempting to assume that a pre-

QP-manifold generalization of the graded symplectic manifolds with En-structure might lead

to a description of exceptional field theory. The reason, why we did not touch this terrain

in this thesis is that it does not seem to work. Double field theory is based on generalized

geometry, whose generalized tangent bundle TM ⊕ T ∗M is highly symmetric. Due to this

symmetry, a polarization of sections on TM̂ ⊕ T ∗M̂ after introduction of the double space is

possible leading to the tangent bundle structure of double field theory. However, En-bundles

do not possess such type of symmetry and polarization is impossible. A generalization of

the underlying graded symplectic manifold structure might lead out of the dilemma. If we

can overcome all these conceptual problems, we find insight in the underlying mathematical

structures of U-duality and U-duality symmetric field theories.

When studying the method of off-shell covariantization for the case n = 4 in more detail, one

recognizes that one of the auxiliary field strengths has the same form degree as the 3-form

field strength H. Recall, that the covariant gauge transformation of H induces the fake
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curvature issue. It is natural to consider a generalized variable that combines the degree

2 local coordinates in Mn. This generalized variable induces a generalized 3-form field

strength. What now happens during off-shell covariantization is that the generalized 3-form

field strength splits into H and the auxiliary 3-form field strength in a special way, that leads

to a covariant transformation behavior of H. This splitting can be analyzed on the level of

the associated L∞-algebra. When the mechanism of splitting can be understood from the

viewpoint of graded manifolds and L∞-algebras, then we could take it as the starting point

to off-shell covariantize even more complicated n-form higher gauge theories. This would

lead to new insight towards more intricate M-brane dynamics. A further generalization of

the ansatz is to promote the structure constants to structure functions, leading to algebroid

gauge theories [164]. Let us also note that the procedure of off-shell covariantization does

not automatically lead to a self-dual field strength. Investigations towards an integration

of the self-duality feature into the covariantization method would be one of the next goals.

Finally, there might be a way to facilitate the restriction process of the auxiliary gauge fields

as gauge fixing procedure.
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Appendix A

Detail calculations

A.1 Special subset of solutions

Proposition A.1.1 Let (M4 = T ∗[4](W [1]⊕V [2]),Θ(1)+Θ(2), ω) the QP-manifold as defined

in 4.4.5. Assume that TAabc = 0. Furthermore, assume that gab is a metric on W and

sAa t
a
B = δAB, where sAa = gabs

bA. Then,

exp(δsaAsBa )(Θ(1)) = Θ(1) + Θ(2). (A.1)

Proof Let us define Gab = taAs
bA, which is (ab)-symmetric. Furthermore, let us define the

projector P a
b = taAs

A
b . From {Θ(1) + Θ(2),Θ(1) + Θ(2)} = 0 we find

αAaB = sAb t
c
Bf

b
ca, (A.2)

nABa = 2sc(As
B)
b f

b
ca, (A.3)

0 = gdgs(A
g {sB)

e (δfc − P f
c )f ef [af

c
b]d}. (A.4)

The Hamiltonian function Θ = Θ(1) + Θ(1) generating this special subset of solutions can be

reached by canonical transformation of Θ(1),

exp(δsaAsBa )(Θ(1)) = Θ(1) + Θ(2). (A.5)

This finishes the proof. �

A.2 Residual gauge transformations on constraint sur-

face

Proposition A.2.1 Let (M4 = T ∗[4](W [1] ⊕ V [2]),Θ(1) + Θ(2), ω) be the QP-manifold as

defined in 4.4.5 under the assumptions of proposition A.1.1. Furthermore, let W = g = Knh,
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where K is a Lie algebra with a representation ρ on h, such that the Lie bracket is given by

[(k, h), (k′, h′)] = ([k, k′], ρ(k)h′ − ρ(k′)h), (A.6)

where k, k′ ∈ K and h, h′ ∈ h. Furthermore, let V = h and let the operations α : g→ Der(h),

t : h→ g and s : g→ h of the associated L∞-algebra be defined as

α((k, h))h′ = ρ(k)h′, (A.7)

t(h) = (0,Mh), (A.8)

s(k, h) = M−1h, (A.9)

where k ∈ K, h, h′ ∈ h and M is an invertible matrix. Then, the associated higher gauge

theory collapses on the constraint surface

Ca = −KabcF
b ∧ Ac, (A.10)

DA = 0, (A.11)

where Kabc = gadt
d
Aα

A
bBs

B
c to

F a = dAa − 1

2
fabcA

b ∧ Ac − taABA, (A.12)

HA = dBA + αAaBA
a ∧BB − αAaBsBc F a ∧ Ac, (A.13)

δ̂Aa = dε̂a − fabcAbε̂c − taAµ̂A, (A.14)

δ̂BA = dµ̂A + αAjB(Aj ∧ µ̂B + ε̂jBB)− αAjBsBc ε̂cF j, (A.15)

δ̂F a = fabcF
b(ε̂c − (P ε̂)c), (A.16)

δ̂HA = αAaBH
B(ε̂a − (P ε̂)a)., (A.17)

where δ̂ denotes the residual gauge transformations on the constraint hypersurface.

Proof The gauge transformation of the 3-form field strength HA is given by

δHA = αAaBH
Bεa − αAaBF a ∧ µB − nABa F a ∧ µ′B + nABa F

(D)
B εa (A.18)

≡ αAaBH
Bεa −4A. (A.19)

If we can show that 4A = 0 on the constraint hypersurface, then we show off-shell covari-

antization. We take the index convention ga = (gi, gI) ∈ K n h. We can decompose

4A = sAa t
b
Bf

a
jbF

j ∧ µB + (sbAsBa f
a
jb + sbBsAa f

a
jb)F

j ∧ µ′B
− nABj dDBε

j − nABj taBCaε
j − nABj αCaBA

a ∧DCε
j. (A.20)
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A.2. Residual gauge transformations on constraint surface

We make use of the freedom of the conjugate auxiliary fields Ca and DA and find

4A = sAa t
b
Bf

a
jbF

j ∧ µB + (sbAsBa f
a
jb + sbBsAa f

a
jb)F

j ∧ µ′B − nABj taACaε
j. (A.21)

In the next step, we introduce the gauge parameters ε̂a and µ̂A, which are associated with

the residual gauge symmetry. Then, we require, that the reduced gauge transformation of

the 1-form gauge field is given by

δAa = D0ε
a − taAµA − saAµ′A ≡ D0ε̂

a − taAµ̂A, (A.22)

where we introduced the covariant differential D0ε̂
a ≡ dε̂a − fabcAbε̂c. Applying (1 − P ) to

(A.22) Gives

(1− P )D0ε = (1− P )D0ε̂. (A.23)

Making use of the equation

faba′P
a′

d = P a
c f

c
ba′P

a′

d , (A.24)

we find

εa − ε̂a = (PX)a, (A.25)

which tells us that X is a function of ε̂ or zero. We apply P to (A.22),

saAµ′A + taAµ
A = taAµ̂

A + P a
b D0P

b
cX

c. (A.26)

Then, the solution of δDA = 0 is given by

P b
aε
′
b = P b

a [d(sAb µ
′
A)− fdbcAc(sAd µ′A)] ≡ P b

aD0s
B
b µ
′
B. (A.27)

Furthermore, by application of PD0 to (A.27) we find

P aa′D0P
b
a′ε
′
b = P abF if b

′

ibs
B
b′µ
′
B. (A.28)

Let us now investigate the second constraint equation δCa = −gadtdAαAb′BsBc δ(F b′ ∧ Ac). It is

sufficient to analyze the projected part of this condition. First, have a look at the left hand

side. Using (A.28), we can rewrite the projected part of the gauge transformation of Ca as

P a′

a δCa′ = P a′

a ε
jf cja′P

d
c Cd + P a′

a D0ε
′
a′ . (A.29)
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Now let us investigate the right hand side of the second gauge fixing equation. Under the

requirement, that the tensor part of the 1-form gauge field transforms homogeneously under

the gauge transformation

sAb δA
b = sAb D0ε

d − sAb (tbBµ
B + sbBµ′B) = −sAb f bacAaεc + Y A (A.30)

we find

δ(αAaBs
B
c F

a ∧ Ac) = εkαAkB′(α
B′

jBF
j ∧ Ac′sBc′ ) + αAjBF

j ∧ (−sBb D0P
b
cX

c − µ̂B). (A.31)

By hitting (A.31) with taB one derives

−δ(faiBF i ∧ ÃB) = εkfakc(f
c
jBF

j ∧ ÃB)− fajbF j ∧ tbB(−sBd D0P
d
cX

c − µ̂B), (A.32)

where ÃB = (PA)B denotes the projected part. We can now use (A.29) and (A.32) in order

to derive the covariance condition coming from the second constraint equation, leading to

P aa′D0ε
′
a′ = εjtaAt

c
Bn

AB
j Cc + fajbF

j ∧ tbB(−sBd D0P
d
cX

c − µ̂B). (A.33)

Using the covariance condition following from the first gauge fixing constraint (A.28), we

finally derive the condition on µ′ in terms of ε̂ and µ̂, which makes HA covariant

P abF if b
′

ibs
B
b′µ
′
B = εjtaAt

c
Bn

AB
j Cc + fajbF

j ∧ tbB(−sBd D0P
d
cX

c − µ̂B). (A.34)

Let us show this explicitly by investigating 4A,

4A = sAa t
b
Bf

a
jbF

j ∧ µB + (sbAsBa f
a
jb + sbBsAa f

a
jb)F

j ∧ µ′B − nABj taACaε
j (A.35)

= sAa f
a
jbF

j ∧ tbB(µ̂B + sBd D0P
d
cX

c) + sbAsBa f
a
jbF

j ∧ µ′B − nABj tbBCbε
j. (A.36)

It turns out that 4A = 0 if Xa = −ε̂a on the constraint hypersurface. The last condition

emerges from the orthogonal projection of the second constraint equationm

(1− P )baδCb = −(1− P )bagbdt
d
Aα

A
b′Bs

B
c δ(F

b′ ∧ Ac) = 0. (A.37)

This equation imposes (1 − P )ai ε
′
a = ε′i. Inserting the residual gauge parameters into the

gauge transformations, we find the residual gauge transformations. We showed that the

gauge fixing procedure leads to off-shell covariantization. This finishes the proof. �
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Appendix B

Conventions and formulas

In this section, we provide a detailed introduction to the (graded) mathematics underlying

this thesis.

B.1 Graded differential geometry

Here, we define the objects which we use for differential geometry on graded manifolds.

Let M be a graded manifold and let the local coordinates on M be denoted as zi. Let

f ∈ C∞(M) be a smooth function on the graded space M. Degrees of any objects defined

on and over M are denoted by | − |. We define the de Rham differential δ on M via

δf = δzi
→
∂f

∂zi
. (B.1)

We assign degree 1 to the de Rham differential, |δ| = 1, which is due to the fact that it raises

the form degree by one. Furthermore, a vector field X ∈ X1(M) over M is defined by

X = X i∂i, (B.2)

where we denote ∂i = ∂
∂zi

. Then, we define the interior product with respect to a vector field

X via

ιX = (−1)|X|X i

→
∂

∂δzi
, (B.3)

where |X| denotes the degree of X. The differential is defined such that

→
∂

∂δzi
δzj = δij. (B.4)

By degree counting, we easily find |δza| = |za|+ 1 and |ιX | = |X| − 1.
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In the next step, we compute the graded Lie commutator of vector fields over M. Let

X, Y ∈ X(M) be vector fields over M. Their graded Lie commutator is given by

[X, Y ] = X i

→
∂Y j

∂zi

→
∂

∂zj
− (−1)|X||Y |Y i

→
∂Xj

∂zi

→
∂

∂zj
, (B.5)

where the additional factor (−1)|X||Y | is due to the fact that the vector fields are graded. The

action of a graded vector field X on a function f ∈ C∞(M) is given by

Xf = (−1)|X|ιXδf = (−1)(|f |+1)|X|δf(X), (B.6)

where

δzi

 →
∂

∂zj

 = δij. (B.7)

Finally, the Lie derivative along a vector field X is defined by

LX = ιXδ − (−1)(|X|−1)διX = ιXδ + (−1)|X|διX , (B.8)

and has degree |LX | = |ιX |+ |δ| = |X| − 1 + 1 = |X|.

B.2 Graded symplectic geometry

Here, we will introduce the necessary tools to perform manipulations in graded symplectic

geometry.

Let (M, ω) be a graded manifold M with graded symplectic structure ω of degree n. First,

let us introduce Darboux coordinates (ξi, ζi) such that |ξi| + |ζi| = n. Then, the graded

symplectic form can be expanded via

ω = (−1)|ξ
i|(|ζi|+1)δξi ∧ δζi = (−1)|ζi|+1δζi ∧ δξi. (B.9)

In the next step, we introduce the Liouville 1-form by the defining relation

ω = −δϑ. (B.10)

A choice for the Liouville 1-form is given by

ϑ = (−1)|ζi|ζiδξ
i = −δζiξi. (B.11)
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B.2. Graded symplectic geometry

The Hamiltonian vector field Xf with respect to a function f ∈ C∞(M) is defined by the

equation

ιXfω = −δf, (B.12)

and its degree is given by |Xf | = |f |−n. Let us expand the vector field X locally in Darboux

coordinates by

X = Xi

→
∂

∂ζi
+ Y i

→
∂

∂ξi
. (B.13)

Then, we find the associated Hamiltonian vector field Xf as

Xf =
f
←
∂

∂ξi

→
∂

∂ζi
− (−1)|ξ

i||ζi|f
←
∂

∂ζi

→
∂

∂ξi
. (B.14)

Furthermore, we have the swapping rule

f
←
∂

∂ξi
= (−1)(|f |−|ξi|)|ξi|

→
∂f

∂ξi
. (B.15)

The graded Poisson bracket induced by the graded symplectic structure ω is defined by

{f, g} = Xfg = (−1)|f |−nιXfdg = (−1)|f |−n+1ιXf ιXgω. (B.16)

One can verify the graded antisymmetry, graded Leibniz rule and graded Jacobi identity of

the graded Poisson bracket,

{f, g} = −(−1)(|f |−n)(|g|−n){g, f}, (B.17)

{f, gh} = {f, g}h+ (−1)(|f |−n)|g|g{f, g}, (B.18)

{f, {g, h}} = {{f, g}, h}+ (−1)(|f |−n)(|g|−n){g, {f, h}}. (B.19)

Locally, the graded Poisson bracket is given by

{ξi, ζj} = δij, (B.20)

{ζj, ξi} = −(−1)|ξ
i||ζi|δij, (B.21)

for Darboux coordinates and

{f, g} =
f
←
∂

∂ξi

→
∂g

∂ζi
− (−1)|ξ

i||ζi|f
←
∂

∂ζi

→
∂g

∂ξi
, (B.22)

where f and g are smooth functions on M in Darboux coordinates.
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B.3 Graded functional analysis I: Fields and deriva-

tives

Here, we define the tools for the graded functional analysis on the supergeometric mapping

space.

Let χ = T [1]X be a graded manifold, where X is a d-dimensional smooth manifold. Locally,

χ is parameterized by coordinates (σµ, θµ) of degrees (0, 1) and µ = 1, . . . , d. The local coor-

dinates σµ parameterize X and the degree-shifted fiber is parameterized by local coordinates

θµ, which are Grassmann odd. For convenience, we might write the local coordinates in a

combined way, z = (σ, θ).

Let Ψ = Ψ(σ, θ) be a field of degree |Ψ|. We choose its expansion in Grassmann coordinates

in the following way,

Ψ(σ, θ) =
d∑
j=0

1

j!
ψµ1···µj(σ)θµ1 · · · θµj . (B.23)

Since |θµ| = 1, the field components have degree |ψµ1···µj | = |Ψ| − j.

In the next step, we find the local form of the functional right-derivative.

Proposition B.3.1 The form of the field expansion (B.23) and the requirement

→
δΨ(σ, θ)

δΨ(σ′, θ′)
= δd(σ′ − σ)δd(θ′ − θ) = δd,d(z′ − z) (B.24)

fixes the form of the functional right-derivative to be

→
δ

δΨ(σ, θ)
=

d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δ

δψµj+1···µd(σ)
, (B.25)

where ε denotes the Levi-Civita symbol. The components of the functional right-derivative

have degree

∣∣∣∣ →
δ

δψµj+1···µd (σ)

∣∣∣∣ = −(|Ψ| − d+ j).
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Proof
→
δΨ(σ, θ)

δΨ(σ′, θ′)
=

d∑
j=0

d∑
k=0

(−1)d−j

j!(d− j)!k!
θ′µ1 · · · θ′µjεµ1···µjµj+1···µd

→
δ

δψµj+1···µd(σ
′)

[ψν1···νk(σ)θν1 · · · θνk ]

=
d∑

j,k=0, j=d−k

(−1)d−j

j!(d− j)!k!
θ′µ1 · · · θ′µjεµ1···µjµj+1···µdδ

µ1
ν1
· · · δµdνk (k!)δd(σ − σ′)θν1 · · · θνk

=
d∑
j=0

(−1)d−j

j!(d− j)!
θ′µ1 · · · θ′µjεµ1···µjµj+1···µdθ

µj+1 · · · θµdδd(σ − σ′)

=
d∑
j=0

(−1)d−j

j!(d− j)!
1(
d
j

)εµ1···µd (all distributions of j θµi into d− j θ′µk) δd(σ − σ′)

=
d∑
j=0

(−1)d−j (all distributions of j θµi into d− j θ′µk (indices fixed in order 1 to d)) δd(σ − σ′)

= (−1)d
d∏

µ=1

(θµ − θ′µ)δd(σ − σ′)

= (−1)dδd(θ − θ′)δd(σ − σ′)

= δd(θ′ − θ)δd(σ′ − σ)

= δd,d(z′ − z) (B.26)

We used →
δψ(σ)

δψ(σ′)
= δd(σ − σ′). (B.27)

This finishes the proof. �

Note that the Grassmann odd d-dimensional δ-function is given by

δd(θ′ − θ) =
d∏
µ

(θ′µ − θµ). (B.28)

Using an additional requirement, we can now fix the functional left-derivative.

Proposition B.3.2 Let us require the following swapping rule between functional right- and

left-derivatives,
→
δF

δΨ
= (−1)|F |(|Ψ|−d)F

←
δ

δΨ
, (B.29)

where F is an arbitrary superfield. Then, we can fix the form of the left-derivative to be
←
δ

δΨ(σ, θ)
=

d∑
j=0

1

j!(d− j)!
(−1)|Ψ|+j(|Ψ|+d+1)

←
δ

δψµj+1···µd
θµ1 · · · θµjεµ1···µjµj+1···µd . (B.30)
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Proof The functional right-derivative can be manipulated as follows,

→
δF

δΨ(σ, θ)
=

d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δF

δψµj+1···µd(σ)

=
d∑
j=0

(−1)d−j+(|Ψ|−(d−j))((|Ψ|−(d−j))−|F |)

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

F
←
δ

δψµj+1···µd(σ)

=
d∑
j=0

(−1)d−j+(|Ψ|−(d−j))((|Ψ|−(d−j))−|F |)+j(|F |+(|Ψ|−(d−j)))

j!(d− j)!
F
←
δ

δψµj+1···µd(σ)
θµ1 · · · θµjεµ1···µjµj+1···µd .

(B.31)

The sign factor gives

d− j + (|Ψ| − (d− j))((|Ψ| − (d− j))− |F |) + j(|F |+ (|Ψ| − (d− j))) mod 2

= d+ j + |Ψ|+ d+ j + |Ψ||F |+ d|F |+ j|F |+ j|F |+ j|Ψ|+ jd+ jmod 2

= |Ψ|+ |Ψ||F |+ d|F |+ j|Ψ|+ jd+ jmod 2. (B.32)

In the next step, pull out (|F ||Ψ| − |F |d) to give

→
δF

δΨ(σ, θ)
= (−1)|F |(|Ψ|−d)

d∑
j=0

(−1)|Ψ|+j(|Ψ|+d+1)

j!(d− j)!
F
←
δ

δψµj+1···µd(σ)
θµ1 · · · θµjεµ1···µjµj+1···µd

= (−1)|F |(|Ψ|−d) F
←
δ

δΨ(σ, θ)
(B.33)

while we fixing the form of the functional left-derivative to be

F
←
δ

δΨ(σ, θ)
=

d∑
j=0

(−1)|Ψ|+j(|Ψ|+d+1)

j!(d− j)!
F
←
δ

δψµj+1···µd(σ)
θµ1 · · · θµjεµ1···µjµj+1···µd . (B.34)

This finishes the proof. �

Then, we can evaluate the action of the functional left- and right-derivatives along a function

on the function itself.

Proposition B.3.3 The following two equations hold

→
δΨ(σ, θ)

δΨ(σ′, θ′)
= δd,d(z′ − z), (B.35)

Ψ(σ, θ)
←
δ

δΨ(σ′, θ′)
= (−1)|Ψ|(1+d)+dδd,d(z − z′). (B.36)
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Proof The first equation was shown above. The second equation can be computed to give

Ψ(σ, θ)
←
δ

δΨ(σ′, θ′)
=

d∑
j=0

d∑
k=0

(−1)|Ψ|+j(|Ψ|+d+1)

j!(d− j)!k!
ψν1···νk(σ)θν1 · · · θνk

←
δ

δψµj+1···µd(σ
′)
θ′µ1 · · · θ′µjεµ1···µjµj+1···µd

=
d∑
j=0

(−1)|Ψ|+j(|Ψ|+d+1)+(|Ψ|−d+j)(d−j)

j!(d− j)!
θµj+1 · · · θµdθ′µ1 · · · θ′µjεµ1···µdδ

d(σ − σ′)

=
d∑
j=0

(−1)|Ψ|+jd+j|Ψ|+j+|Ψ|d+|Ψ|j+d+dj+dj+j+dj

j!(d− j)!
θ′µ1 · · · θ′µjθµj+1 · · · θµdεµ1···µdδ

d(σ − σ′)

= (−1)|Ψ|(d+1)+d

d∏
µ=1

(θµ − θ′µ)δd(σ − σ′)

= (−1)|Ψ|(d+1)+dδd,d(z − z′), (B.37)

where we used

Ψ(σ)
←
δ

δΨ(σ′)
= δd(σ − σ′). (B.38)

This finishes the proof. �

Let us summarize the degrees of the functional right- and left-derivatives.

Proposition B.3.4 The degrees of the functional right- and left-derivatives are given by∣∣∣∣∣∣
→
δ

δΨ(σ, θ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
←
δ

δΨ(σ, θ)

∣∣∣∣∣∣ = d− |Ψ|. (B.39)

Furthermore, for an arbitrary superfield F of degree |F | we find the following degrees,∣∣∣∣∣∣
→
δF

δΨ(σ, θ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ F
←
δ

δΨ(σ, θ)

∣∣∣∣∣∣ = |F |+ d− |Ψ|. (B.40)

Proof Thorough inspection of the objects involved suffices,

→
δ

δΨ(σ, θ)
=

d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δ

δψµj+1···µd(σ)
. (B.41)

As |θµ| = 1 and
∣∣∣ ~δ
δφµj+1···µd (σ)

∣∣∣ = −(|Φ| − (d − j)) and we have a product consisting of j θµ

we find the whole degree to be the sum

j − (|Ψ| − (d− j)) mod 2 = d− |Ψ|mod 2.
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The reasoning is of course also true for the right-functional derivative. In the case of an

action onto a superfield F , the degree rises by |F | to be |F |+d−|Φ|. This finishes the proof.

�

In the remainder of this section, we show the graded Leibniz rules.

Proposition B.3.5 The following left and right Leibniz rules hold for arbitrary superfields

F and G,

→
δ (FG)

δΨ
=

→
δF

δΨ
·G+ (−1)|F |(d−|Ψ|)F ·

→
δG

δΨ
(B.42)

(FG)
←
δ

δΨ
= F · G

←
δ

δΨ
+ (−1)|G|(d−|Ψ|)

F
←
δ

δΨ
·G. (B.43)

Proof The first equation has to be shown using the definition of the functional right-

derivative. The second equation can then be deduced from the first. The first equation

gives

→
δ (FG)

δΨ(σ, θ)
=

d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δ (FG)

δψµj+1···µd(σ)

=
d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δF

δψµj+1···µd(σ)
·G

+ (−1)|F |(|Ψ|−(d−j))
d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µdF ·

→
δG

δψµj+1···µd(σ)

=
d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δF

δψµj+1···µd(σ)
·G

+ (−1)|F |(|Ψ|−(d−j))+j|F |F ·
d∑
j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµjεµ1···µjµj+1···µd

→
δG

δψµj+1···µd(σ)

=

→
δF

δΨ(σ, θ)
·G+ (−1)|F |(d−|Ψ|)F ·

→
δG

δΨ(σ, θ)
. (B.44)
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The second equation follows via swapping rule,

→
δ (FG)

δΨ
=

→
δF

δΨ
·G+ (−1)|F |(d−|Ψ|)F ·

→
δG

δΨ

(−1)(d−|Ψ|)((|F |+|G|)+1) (FG)
←
δ

δΨ
= (−1)(d−|Ψ|)(|F |+1)F

←
δ

δΨ
·G+ (−1)|F |(d−|Ψ|)+(d−|Ψ|)(|G|+1)F · F

←
δ

δΨ

(FG)
←
δ

δΨ
= (−1)(d−|Ψ|)(|G|+|F |+1)+(d−|Ψ|)((|F |+|G|)+1)F · G

←
δ

δΨ

+ (−1)(d−|Ψ|)(|F |+1)+(d−|Ψ|)((|F |+|G|)+1)F
←
δ

δΨ
·G

(FG)
←
δ

δΨ
= F · G

←
δ

δΨ
+ (−1)|G|(d−|Ψ|)

F
←
δ

δΨ
·G. (B.45)

This finishes the proof. �

B.4 Graded functional analysis II: Graded symplectic

geometry

In this section, we explain the differential and symplectic geometry performed via graded

functional analysis on the supergeometric mapping space.

Let χ = T [1]X be a graded manifold, where X is a d-dimensional smooth manifold. Local

coordinates on χ are given by (σµ, θµ) of degrees (0, 1). Furthermore, Let (M,Θ, ω) be a

QP-manifold of degree n, such that Map(χ,M) is a supergeometric mapping space, i.e., the

space of embeddings of χ into M. Then, let zi be local coordinates of degrees |zi| on M.

The image of zi under the pullback along the evaluation map shall be denoted by boldface,

zi = ev∗(zi). The element zi = zi(σ, θ) is a function on the supergeometric mapping space

Map(χ,M) and since the evaluation map is degree-preserving, we have |zi| = |zi|. The local

coordinates zi on M become local basis superfields zi on Map(χ,M), whose differential

geometry we now want to describe.

A vector field X is defined by

X =

∫
χ

µχ(−1)d|X
i|X i(z(σ, θ))

→
δ

δzi(σ, θ)
. (B.46)

Then, we can define the interior product with respect to the vector field X via

ιX = (−1)|X|
∫
χ

µχ(−1)d|X
i|X i(z(σ, θ))

→
δ

δ(δzi)(σ, θ)
. (B.47)
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The interior product has total degree |ιX | = |X| − 1. The graded symplectic form Ω on the

mapping space arises as the transgression of the graded symplectic form on the target space

QP-manifold, Ω = µ∗ev∗ω. It has degree |Ω| = |ω| − d = n − d. Let the local expression of

ω in Darboux coordinates (ξi, ζi) be given by

ω = (−1)n|ξ
i|δξi ∧ δζi. (B.48)

Then, the transgressed graded symplectic form shall be given by

Ω =

∫
χ

µχ(−1)n|ξ
i|(δξi)(σ, θ) ∧ (δζi)(σ, θ), (B.49)

keeping the relative sign structure. Furthermore, we define the differential δ on a function

f ∈ Map(χ,M) via

δf =

∫
χ

µχ(−1)d(|z|+1)(δzi)(σ, θ)

→
δ f

δzi(σ, θ)
. (B.50)

The differential δ has total degree 1, which arises from the form degree |δ| = 1. Then, the

Hamiltonian vector field Xf associated with a function f ∈ Map(χ,M) is defined by

ιXfΩ = −δf. (B.51)

The degree of the Hamiltonian vector field is therefore |Xf | = |f |−d+n. Finally, the graded

Poisson bracket on the supergeometric mapping space is defined by

{f, g}Ω = Xfg. (B.52)

Proposition B.4.1 We find the local expression of the graded Poisson bracket given by

{f, g}Ω = (−1)d(n+1)+|ξi|
∫
χ

f←δ
δξi

µχ

→
δ g

δζi
+ (−1)(1+n)(1+|ξi|)f

←
δ

δζi
µχ

→
δ g

δξi

 , (B.53)

which collapses for d = n+ 1 to

{f, g}BV =

∫
χ

(−1)d+|ξi|

f←δ
δξi

µχ

→
δ g

δζi
+ (−1)d(1+|ξi|)f

←
δ

δζi
µχ

→
δ g

δξi

 , (B.54)

and for d = n to

{f, g}PB =

∫
χ

(−1)|ξ
i|

f←δ
δξi

µχ

→
δ g

δζi
+ (−1)(1+d)(1+|ξi|)f

←
δ

δζi
µχ

→
δ g

δξi

 . (B.55)
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Proof Let us prove the form of the brackets. We start by writing the Hamiltonian vector

field Xf in Darboux coordinates,

Xf =

∫
χ

µχ

Xi(ξ(σ, θ), ζ(σ, θ))

→
δ

δζi(σ, θ)
+ Y i(ξ(σ, θ), ζ(σ, θ))

→
δ

δξi(σ, θ)

 . (B.56)

The interior product of the Hamiltonian vector field is then given by

ιXf = (−1)|Xf |
∫
χ

µχ

Xi(ξ(z), ζ(z))

→
δ

δ(δζi)(z)
+ Y i(ξ(z), ζ(z))

→
δ

δ(δξi)(z)

 . (B.57)

Now we use the defining relation of the Hamiltonian vector field in order to fix the compo-

nents,

ιXfΩ = (−1)|Xf |+n|ξ
i|

∫
χ

µχXi(z)

→
δ

δ(δζi)(z)

∫
χ

µ′χδξ
j(z′) ∧ δζj(z′)

+

∫
χ

µχY
i(z)

→
δ

δ(δξi)(z)

∫
χ

µ′χδξ
j(z′) ∧ δζj(z′)


= (−1)|Xf |+n|ξ

i|
[
(−1)(d−(1+|ζi|))(−d+1+|ξi|)

∫
χ

µχXi(z)

∫
χ

µ′χδξ
i(z′)δd,d(z − z′)

+(−1)−d(d−(1+|ξi|))
∫
χ

µχY
i(z)

∫
χ

µ′χδ
d,d(z − z′)δζi(z′)

]
= (−1)|Xf |+n|ξ

i|
[
(−1)(d−(1+|ζi|))(−d+1+|ξi|)+d+d(1+|ξi|)

∫
χ

µχXi(z)δξi(z)

+(−1)−d(d−(1+|ξi|))+d
∫
χ

µχY
i(z)δζi(z)

]
= (−1)|Xf |+n|ξ

i|
[
(−1)(d−(1+|ζi|))(−d+1+|ξi|)+d+d(1+|ξi|)+|Xi|(1+|ξi|)

∫
χ

µχδξ
i(z)Xi(z)

+(−1)−d(d−(1+|ξi|))+d+|Y i|(1+|ζi|)
∫
χ

µχδζi(z)Y i(z)

]
. (B.58)

On the other hand,

−δf = −

∫
χ

µχ(−1)d(|ξi|+1)δξi(z)

→
δ f

δξi(z)
+

∫
χ

µχ(−1)d(|ζi|+1)δζi(z)

→
δ f

δζi(z)

 . (B.59)
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Setting both hand sides equal, we find

→
δ f

δξi(z)
= (−1)|ξ

i|+|ζi|d+f |ξi|Xi(z), (B.60)

→
δ f

δζi(z)
= (−1)1+n|ξi|+n−d|ξi|+f |ζi|Y i(z), (B.61)

where we used |Xf | = |f |+ d− n, |Xi| = |f |+ d− n+ |ζi| and |Y i| = f + d− n+ |ξi|. Using

the swapping rule we can bring the Hamiltonian vector field into the form

Xf = (−1)d(n+1)+|ξi|
∫
χ

f←δ
δξi

µχ

→
δ

δζi
+ (−1)(1+n)(1+|ξi|)f

←
δ

δζi
µχ

→
δ

δξi

 . (B.62)

Since {f, g}Ω = Xfg, finishes the proof. �

B.5 Graded functional analysis III: Integration

In this section, we develop some formulas concerning integration and Stokes theorem in

supergeometry.

The measure on χ is denoted by µχ and defined by

µχ = dσ1 ∧ · · · ∧ dσddθd · · · dθ1. (B.63)

Note the opposite order of the Berezin measure compared to the ordinary measure. Due to

this choice of ordering, the Berezin integration over a Grassmann odd δ-function comes out

conveniently, ∫
χ

µχδ
d(θ − θ′)Ψ(σ, θ) =

∫
X

dσ1 ∧ · · · ∧ dσdΨ(σ, θ′), (B.64)

where δd(θ − θ′) =
∏d

µ=1(θµ − θ′µ).

Proposition B.5.1 The following equation for the Grassmann odd δ-function holds,∫
χ

µχ,θδ
d(θ − θ′)Ψ(σ, θ) = Ψ(σ, θ′), (B.65)

where we restrict to the Grassmann odd variable measure µχ,θ = dθd · · · dθ1, for convenience.
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Proof∫
χ

µχ,θδ
d(θ − θ′)Ψ(σ, θ) =

∫
χ

dθd · · · dθ1

d∏
i=1

(θµ − θ′µ)
d∑

k=0

1

k!
ψν1···νk(σ)θν1 · · · θνk

=

∫
χ

dθd · · · dθ1

d∑
j=0

(−1)j

j!(d− j)!
θ′µ1 · · · θ′µjεµ1···µdθ

µj+1 · · · θµd
d∑

k=0

1

k!
ψν1···νk(σ)θν1 · · · θνk

=
d∑

k=0

d∑
j=0

(−1)j

k!j!(d− j)!

∫
χ

dθd · · · dθ1θ′µ1 · · · θ′µjεµ1···µdθ
µj+1 · · · θµdθν1 · · · θνkψν1···νk(σ)(−1)k(n−k)

=
d∑

k=0

(−1)j

(k!)2(d− k)!
dθd · · · dθ1θ′µ1 · · · θ′µkεµ1···µdθ

µk+1 · · · θµdθν1 · · · θνkψν1···νk(σ)(−1)k(n−k)

=
d∑

k=0

(−1)j

(k!)2(d− k)!
dθd · · · dθ1θν1 · · · θνkθµk+1 · · · θµdψν1···νk(σ)θ′µ1 · · · θ′µkεµ1···µd

=
d∑

k=0

(−1)j

(k!)2(d− k)!
dθd · · · dθ1εν1···νkµk+1···µdψν1···νk(σ)θ′µ1 · · · θ′µkεµ1···µd

=
d∑

k=0

1

(k!)2
ψν1···νk(σ)θ′ν1 · · · θ′νkδν1···νk

µ1···µk

=
d∑

k=0

1

k!
ψν1···νk(σ)θ′ν1 · · · θ′νk

= Ψ(σ, θ′), (B.66)

where δν1···νk
µ1···µk = k!δν1

[µ1
· · · δνkµk] denotes the generalized Kronecker delta. This finishes the proof.

�

We now collect some formulas regarding integration on manifolds with boundary.

Proposition B.5.2 Let χ a (d, d)-dimensional manifold, bounded in every Grassmann even

direction σµ, denoted by ∂χµ. Then, the following equation holds,

∫
χ

µχdΨ =
d∑
i=1

∫
∂χi

µ∂χi [Ψ]i, (B.67)

where the boundary measure is given by µ∂χi = dσ1 ∧ · · · ∧ dσ̂µ ∧ · · · ∧ dσddθd · · · dθ1 and the

symbol [Ψ]i denotes Ψ taken on the boundary of σµ, setting θµ = 0. Hat denotes omission.

For simplicity, we take all surface normals to be of order 1.
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Proof ∫
χ

µχdΨ =

∫
χ

dσ1 ∧ · · · ∧ dσddθd · · · dθ1θν∂νΨ

=
d∑

µ=1

(−1)µ−1

∫
χ

dσ1 ∧ · · · ∧ dσddθd · · · dθ̂µ · · · dθ1∂µΨθµ=0

=
d∑

µ=1

∫
∂χi

dσ1 ∧ · · · ∧ dσ̂µ ∧ · · · ∧ dσddθd · · · dθ̂µ · · · dθ1[Ψ]µ

=
d∑

µ=1

∫
∂χµ

µ∂χµ [Ψ]µ, (B.68)

where hat denotes omission. This finishes the proof. �

Proposition B.5.3 Let χ a (d, d)-dimensional dimensional manifold, bounded in every Grass-

mann even direction σµ, denoted by ∂χµ. Then, the following equation holds,

∫
χ

µχΨ · dΦ = (−1)|Ψ|
d∑

µ=0

∫
∂χµ

µ∂χµ [Ψ · Φ]µ − (−1)|Ψ|
∫
χ

µχdΨ · Φ. (B.69)

Proof∫
χ

µχΨ · dΦ =

∫
χ

dσ1 ∧ · · · ∧ dσddθd · · · dθ1Ψθν∂νΦ

= (−1)|Ψ|
d∑

µ=1

(−1)µ−1

∫
χ

dσ1 ∧ · · · ∧ dσddθd · · · dθ̂µ · · · dθ1(Ψ∂µΦ)

= (−1)|Ψ|
d∑

µ=1

∫
∂χµ

µ∂χµ [ΨΦ]µ − (−1)|Ψ|
d∑

µ=1

(−1)µ−1

∫
χ

dσ1 ∧ · · · ∧ dσddθd · · · dθ̂µ · · · dθ1∂µΨ · Φ

= (−1)|Ψ|
d∑

µ=1

∫
∂χµ

µ∂χµ [ΨΦ]µ − (−1)|Ψ|
∫
χ

µχdΨ · Φ. (B.70)

That finishes the proof. �

Corollary B.5.4 In the case, where χ does not have boundaries, ∂χµ = ∅, then above propo-

sition gives the usual partial integration rule for a degree 1 derivation,∫
χ

µχΨ · dΦ = −(−1)|Ψ|
∫
χ

µχdΨ · Φ. (B.71)
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Proposition B.5.5 Let χ be a supermanifold with boundary ∂χ1 6= ∅. Then, the following

equation holds, ∫
χ

µ′χ

∫
χ

µχd[δ(z − z′)Ψ(z)]Φ(z′) =

∫
∂χ1

µ∂χ1Ψ(z′∂χ1
)Φ(z′∂χ1

), (B.72)

where we took the σ1−boundary given by θ1 = 0 and evaluating the fields at σ1 = 0 and σ1 →
∞, where we take the fields vanishing at infinity. Furthermore, z∂χ1 = (0, σ2, · · · , σd, 0, θ2, · · · , θd)
and µ∂χ1 = dσ2 ∧ · · · ∧ dσddθd · · · dθ2.

Proof∫
χ

µ′χ

∫
χ

µχd[δd,d(z − z′)A(z)]Φ(z′) =

∫
χ

µ′χ

∫
χ

µχd[δd,d(z − z′)Ψ(z)Φ(z′)]

=

∫
χ

µ′χ

d∑
µ=1

∫
∂χµ

µ∂χµ [δd,d(z − z′)Ψ(z)Φ(z′)]µ

= −
∫
χ

µ′χ
[
δ(0− σ′1)δ(0− θ′1)Ψ(z′∂χ1

)Φ(z′)
]

=

∫
∂χ1

µ∂χ1Ψ(z′∂χ1
)Φ(z′∂χ1

). (B.73)

In the third line we took the σ1-boundary as described above. This finishes the proof. �
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[63] D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on

T-dual toroidal backgrounds, JHEP 1306 (2013) 021 [arXiv:1211.6437 [hep-th]].
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[121] Z. Chen, M. Stiénon and P. Xu, On regular Courant algebroids, Journal of Symplectic

Geometry 11 (2013), no. 1, 1-24 [arXiv:0909.0319 [math.DG]].

[122] D. Baraglia and P. Hekmati, Transitive Courant algebroids, string structures and T-

duality, ADV. THEOR. MATH. PHYS. Volume 19, Number 3, 613–672, 2015

[123] N. Lambert and C. Papageorgakis, Nonabelian (2,0) Tensor Multiplets and 3-algebras,

JHEP 08 (2010) 083 [hep-th/1007.2982].

[124] F. Bonetti, T. W. Grimm and S. Hohenegger, Non-Abelian Tensor Towers and (2,0)

Superconformal Theories, JHEP 05 (2013) 129 [1209.3017].

[125] P. S. Howe, N. D. Lambert and P. C. West, The Self-Dual String Soliton, Nucl. Phys.

B515 (1998) 203-216 [arXiv:hep-th/9709014].

[126] J. C. Baez and J. Huerta, An Invitation to Higher Gauge Theory, Gen. Rel. Grav. 43

(2011) 2335-2392 [hep-th/1003.4485].

[127] T. Bartels, Higher gauge theory I: 2-Bundles, (2004) [arXiv:math/0410328 [math.CT]].

[128] J. C. Baez and U. Schreiber, Higher Gauge Theory, in Categories in Algebra, Geom-

etry and Mathematical Physics, eds. A. Davydov et al, Contemp. Math. 431, AMS,

Providence, Rhode Island, (2007), pp. 7-30 [arXiv:math/0511710 [math.DG]].

[129] E. Witten, String Theory Dynamics In Various Dimensions, Nucl. Phys. B443 (1995)

85-126 [hep-th/9503124].

[130] E. Witten, Some Comments On String Dynamics, in Future perspectives in string the-

ory, Proceedings, Conference, Los Angeles, U.S.A., March 1995 [hep-th/9507121].

[131] E. Witten, Geometric Langlands From Six Dimensions, (2009) [hep-th/0905.2720].
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