
Mechanical Properties and Reliability of
Lead-Fee Solder Joints with Various Surface
Finishes

著者 Kim Kyoung-Ho
学位授与機関 Tohoku University
学位授与番号 11301甲第17587号
URL http://hdl.handle.net/10097/00121581



 

博士學位論文 

 

 

 

 

 

 

 

Mechanical Properties and Reliability of 

Lead-free Solder Joints with Various Surface Finishes 

 

 

 

 

 

 

 

2016年 

金 勁鎬 

 



 

Doctoral Dissertation  

submitted in partial fulfillment of the requirements for the degree of 

 DOCTOR of ENGINEERING 

in the Department of Materials Processing, 

Graduate School of Engineering, 

TOHOKU UNIVERSITY 

 

 

 

 

 

 

Kyoung-Ho Kim 

 

 

 

 

Thesis Committee:  Professor Junichi Koike, Chair 

Professor Hiroyuki Kokawa 

Professor Akira Kawasaki 

Professor Akihiko Chiba 

Associate Professor Yuji Sutou 

Associate Professor Yutaka S. Sato 



1 

 

CONTENTS 

 

Chapter 1  Introduction ............................................................................................ 14 

1.1 Electronic packaging ....................................................................................... 14 

1.2 Lead-free solder ............................................................................................... 15 

1.3 Surface finishes ................................................................................................ 16 

1.4 Mechanical properties .................................................................................... 18 

1.5 Literature review ............................................................................................. 19 

1.5.1 Electronic packaging ................................................................................ 19 

1.5.2 Lead-free solder alloy .............................................................................. 21 

1.5.2.1. Sn ................................................................................................... 22 

1.5.2.2. Sn-Ag ............................................................................................. 23 

1.5.2.3. Sn-Cu ............................................................................................. 23 

1.5.2.4. Sn-Bi .............................................................................................. 23 

1.5.2.5. Sn-In ............................................................................................... 24 

1.5.2.6. Sn-Zn ............................................................................................. 24 

1.5.2.7. Sn-Ag-Cu ....................................................................................... 24 

1.5.2.8. Sn-Ag-Bi ........................................................................................ 25 

1.5.2.9. Sn-Ag-Zn ....................................................................................... 25 

1.5.3 Surface finish types .................................................................................. 26 

1.5.3.1. Hot air solder leveling (HASL) ..................................................... 27 

1.5.3.2. Organic solderability preservative (OSP) ...................................... 27 

1.5.3.3. Electroless Ni immersion Au (ENIG) and electroless Ni electroless 



2 

 

Pd immersion Au (ENEPIG) ...................................................................... 28 

1.5.3.4. Electroless Ni auto-catalytic Au (ENAG) ..................................... 29 

1.5.3.5. Immersion Sn and Ag .................................................................... 30 

1.5.4 Chemistry of ENIG and ENEPIG surface finishes .................................. 30 

1.5.5 Interfacial reactions .................................................................................. 38 

1.5.5.1. Sn-Ni-based reaction ..................................................................... 38 

1.5.5.2. Sn-Cu-based reaction ..................................................................... 40 

1.5.5.3. Sn-Ag-Cu/Ni-based reactions ........................................................ 41 

1.5.5.4. Sn-Ag-Cu/Cu-based reaction ......................................................... 42 

1.5.6 Black pad formation during ENIG surface finishing ............................... 42 

1.5.6.1. Black pad mechanism .................................................................... 43 

1.5.6.2. Factors influencing black pad formation ....................................... 45 

1.6 Thesis structure ............................................................................................... 48 

1.7 Figures .............................................................................................................. 50 

1.8 References ........................................................................................................ 70 

Chapter 2  Effect of Ni-Sn interfacial microstructure on brittle fracture of solder 

joint ............................................................................................................................... 79 

2.1 Introduction ..................................................................................................... 79 

2.2 Experimental ................................................................................................... 81 

2.2.1 PCB design and surface finish ................................................................. 81 

2.2.2 Metal turn over (MTO) ............................................................................ 82 

2.2.3 Soldering process ..................................................................................... 82 

2.2.4 Mechanical properties .............................................................................. 83 

2.2.4.1. Solder joint strength and brittle fracture ........................................ 83 



3 

 

2.2.4.2. Drop shock reliability .................................................................... 84 

2.3 Results and discussion .................................................................................... 85 

2.3.1 HSS strength and brittle fracture behavior .............................................. 85 

2.3.1.1. ENIG surface finish ....................................................................... 85 

2.3.1.2. ENEPIG surface finish .................................................................. 86 

2.3.1.3. Main effect and interaction ............................................................ 87 

2.3.2. Microstructure and IMC thickness.......................................................... 88 

2.3.2.1. Nanovoids ...................................................................................... 90 

2.3.3 Brittle fracture mechanism of ENIG surface finish with increasing MTO

 ........................................................................................................................... 92 

2.3.4 Dependence of brittle fractures on nanovoid size .................................... 94 

2.3.5 Drop shock reliability .............................................................................. 94 

2.4 Summary .......................................................................................................... 95 

2.5 Figures .............................................................................................................. 97 

2.6 Bibliography .................................................................................................. 127 

Chapter 3  Effect of multiple heat-treatments on Sn-Cu interfacial reactions.. 131 

3.1 Introduction ................................................................................................... 131 

3.2 Experimental ................................................................................................. 133 

3.2.1 PCB design and surface finishes ............................................................ 133 

3.2.2 Wetting force and time ........................................................................... 134 

3.2.3 Soldering and multiple heat treatments ................................................. 135 

3.2.4 Mechanical properties ............................................................................ 136 

3.3 Results and discussion .................................................................................. 136 

3.3.1 Corrosion resistance with multiple heat treatments ............................... 136 



4 

 

3.3.2 HSS strength and brittle fracture behavior with multiple heat treatment

 ......................................................................................................................... 137 

3.3.3 Evaluation of wettability ........................................................................ 138 

3.3.4 Microstructural observations ................................................................. 140 

3.3.5 Effect of multiple heat treatment on shear force and soldering area ..... 142 

3.3.6 Cu oxidation resistance of plasma surface finish ................................... 144 

3.4 Summary ........................................................................................................ 146 

3.5 Figures ............................................................................................................ 148 

3.6 References ...................................................................................................... 171 

Chapter 4  Solder printability of a stencil with a hydrophobic organic coating

 ..................................................................................................................................... 176 

4.1 Introduction ................................................................................................... 176 

4.2 Experimental procedures ............................................................................. 177 

4.2.1 PCB design and hydrophobic coating .................................................... 177 

4.2.2 Printing process and solder volume measurements ............................... 178 

4.2.3 Microstructural observation of stencil aperture ..................................... 179 

4. 3 Results and discussion ................................................................................. 179 

4.3.1 Hydrophobic coating on stencil ............................................................. 179 

4.3.2 Improvement of bridging rate ................................................................ 180 

4.3.3 Printing efficiency .................................................................................. 181 

4.3.4 Continuous printing ............................................................................... 182 

4.3.5 Hydrophobic stencil ............................................................................... 183 

4.3.6 Lifetime of the hydrophobic stencil ....................................................... 184 

4.4 Summary ........................................................................................................ 186 



5 

 

4.5 Figures ............................................................................................................ 188 

4.6 Bibliography .................................................................................................. 205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

List of Tables 

 

Chapter 1 

Table 1.1 Mechanical properties of selected binary alloys [6]. ........................ 51 

Table 1.2 Comparison of thermal properties of lead-free solder alloys [39]. ... 52 

Table 1.3 Properties of different PCB surface finishes. .................................... 53 

Table 1.4 Ionization trend and standard reduction potential of reactions 

commonly observed in plating. ................................................................... 54 

Table 1.5 Typical characteristics of the ENIG surface finish method [50]. ...... 55 

Table 1.6 Composition of electroless Pd solutions. .......................................... 56 

Table 1.7 Room temperature properties of intermetallic compounds determined 

here. ............................................................................................................. 60 

 

Chapter 2 

Table 2.1  Experimental conditions and equations for drop tests. ................ 103 

 

Chapter 4 

Table 4.1 Printing parameters. ........................................................................ 190 

Table 4.2 Surface roughness of the aperture wall measured by AFM for 

uncoated and coated stencils. .................................................................... 200 

 

 

 

 



7 

 

List of Figures 

 

Chapter 1 

Figure 1.1 The hierarchy of electronic packaging. Reproduced from Tummala, 

2001 [34]. .................................................................................................. 50 

Figure 1.2 Plating thickness of surface finishes. .............................................. 57 

Figure 1. 3 Potential-pH diagram; (a) HCOO--HCO3 and (b) H2PO2
-, HPO3

2-, 

and PO4
3-. .................................................................................................... 57 

Figure 1. 4 Sn-Ni binary phase diagram. .......................................................... 58 

Figure 1. 5 Sn-Cu binary phase diagram. ......................................................... 59 

Figure 1.6 Schematic diagrams showing black pad formation mechanisms; (a) 

voltage induced black pad formation, and (b) micro-galvanic cell formation 

at sharp nodule boundaries [31]. ................................................................. 61 

Figure 1.7 Schematic diagram showing the size-effect induced concentration 

cell formation [32]. ..................................................................................... 62 

Figure 1.8 Schematic diagrams showing corrosion induced by secondary-phase 

precipitation during Ni(P) film growth [58]. .............................................. 63 

Figure 1.9 Simulated Au layer growth modes at (a) high reactivity and (b) low 

reactivity. The values shown on both the x and y axes are of arbitrary 

dimensionless form, where only the relative geometric ratio is important. 

Cross-sectional SEM images (20k×) of the corresponding Ni-P/Au 

interfaces are also shown. [59]. .................................................................. 64 

Figure 1.10 TEM image showing micro-galvanic corrosion induced by 

concentration gradients in P across Ni(P) nodules [60]. ............................. 65 

Figure 1.11 Changes in the surface morphology of Ni(P) as a function of P 

concentration. .............................................................................................. 66 

Figure 1.12 SEM micrographs showing contamination induced by Ni(P) 

oxidation. .................................................................................................... 67 



8 

 

Figure 1.13 TEM images showing corrosion of the Ni(P) layer resulting from 

organic impurities. (a) Surface morphology and (b) cross-sectional image.

..................................................................................................................... 68 

Figure 1.14 Changes in the Cu substrate morphology as a result of organic 

impurities. ................................................................................................... 69 

 

Chapter 2 

Figure 2.1 Photograph of the PCB tested for joint strength measurements. ..... 97 

Figure 2.2 Schematic images of the test substrates. (a) ENIG surface finish, 

and (b) ENEPIG surface finish. .................................................................. 98 

Figure 2.3 Schematic diagram of the PCB used for the drop shock tests. ........ 99 

Figure 2.4 Schematic diagrams of the daisy chains in this study. (a) Ball side, 

(b) test PCB side, and (c) after mounting to the PCB. .............................. 101 

Figure 2.5 Schematic showing the metal turn over (MTO) of the plating 

solution. ..................................................................................................... 101 

Figure 2.6 Temperature vs. time reflow profile for the Sn-3.0Ag-0.5Cu solder.

................................................................................................................... 102 

Figure 2.7 Optical micrographs of the SAC305 solder balls on the surface-

finished test PCB. ..................................................................................... 102 

Figure 2.8 Schematic showing the HSS test setup. ......................................... 102 

Figure 2.9 Definition of the percentage of brittle fracture ranges. ................. 103 

Figure 2.10 Photograph showing the BGA mounting configuration on the test 

PCB. .......................................................................................................... 104 

Figure 2.11 High-speed shear strength as a function of shear speed for 

SAC/ENIG samples with different bath lives of Ni(P). ........................... 105 

Figure 2.12 Percentage of brittle fracture rate as a function of shear speed for 

the SAC/ENIG samples with different bath lives of Ni(P)....................... 106 



9 

 

Figure 2.13 High-speed shear strength as a function of shear speed for 

SAC/ENEPIG samples with different bath lives of Ni(P). ....................... 107 

Figure 2.14 Percentage of brittle fracture as a function of shear speed for the 

SAC/ENEPIG samples with different bath lives of Ni(P). ....................... 108 

Figure 2.15 SEM images showing the microstructure of bulk solder for the 

ENIG and ENEPIG samples. .................................................................... 109 

Figure 2.16 Cross-sectional SEM micrographs of the SAC/ENIG for a bath life 

of (a) 0 MTO and (b) 3 MTO.................................................................... 110 

Figure 2.17 Cross-sectional SEM micrographs of the SAC/ENIG for a bath life 

of (a) 0 MTO and (b) 3 MTO.................................................................... 111 

Figure 2.18 Comparison of IMC thickness for ENIG and ENEPIG samples 

with different plating solution lifetimes.................................................... 112 

Figure 2.19 Cross-sectional TEM micrographs of as-deposited ENIG samples. 

(a) 0 MTO and (b) 3 MTO. ....................................................................... 113 

Figure 2.20 Cross-sectional TEM micrographs of as-deposited ENEPIG 

samples. (a) 0 MTO and (b) 3 MTO. ........................................................ 114 

Figure 2.21 Cross-sectional TEM micrographs of SAC/ENIG samples. (a) 0 

MTO and (b) 3 MTO. ............................................................................... 115 

Figure 2.22 Cross-sectional TEM micrographs of SAC/ENEPIG samples. (a) 0 

MTO and (b) 3 MTO. ............................................................................... 116 

Figure 2.23 Cross-sectional TEM micrographs of SAC/ENIG after thermal 

aging at 150 °C for 100 h. (a) 0 MTO and (b) 3 MTO. ............................ 117 

Figure 2.24 Cross-sectional TEM micrographs of SAC/ENEPIG after thermal 

aging at 150 °C for 100 h. (a) 0 MTO and (b) 3 MTO. ............................ 118 

Figure 2.25 Optical micrographs of the fracture surfaces after HSS testing for 

(a) 0 MTO and (b) 3 MTO samples. ......................................................... 119 

Figure 2.26 SEM images and EDS maps of the fracture surfaces after HSS 

testing for (a) 0 MTO and (b) 3 MTO samples. ........................................ 120 



10 

 

Figure 2.27 Cross-sectional SEM image of a representative section of the 

fracture surface (away from the circular features). ................................... 121 

Figure 2.28 Cross-sectional TEM micrograph of a circular feature on the 

fracture surface shown in Fig. 6. .............................................................. 122 

Figure 2.29 (a) Nanovoid size as a function of thermal aging time. (b) 

Percentage of brittle fracture with increasing strain rate. ......................... 123 

Figure 2.30 Results of drop shock tests of ENIG samples. ............................ 124 

Figure 2.31 Results of drop shock tests of ENEPIG samples. ........................ 125 

Figure 2.32 Cross-sectional SEM images of the fractures generated after drop 

shock tests of (a) ENIG and (b) ENEPIG samples under 0 MTO and 3 

MTO conditions. ....................................................................................... 126 

 

Chapter 3 

Figure 3.1 Schematics showing the multiple heat treatment process. ............ 148 

Figure 3.2 Schematic illustration of the test samples used in this study, 

showing the FR-4 PCB, photo solder resist (PSR), Cu pads, and surface 

finish layers. .............................................................................................. 149 

Figure 3. 3 Schematic of the plasma surface finish process. .......................... 150 

Figure 3.4 Temperature vs. time reflow profile for the Sn-3.0Ag-0.5Cu solder.

................................................................................................................... 151 

Figure 3.5 Optical microscopy images of the Cu pad after salt spray test for 

OSP and plasma samples, after (a) 0, (b) 6, and (c) 15 h. ........................ 152 

Figure 3.6 Shear strength as a function of shear speed for OSP- and plasma-

finished samples after a single heat treatment. ......................................... 153 

Figure 3. 7 Brittle fracture rate of OSP- and plasma-finished sample after a 

single reflow. ............................................................................................. 154 

Figure 3.8 SEM micrographs comparing the morphology of the IMC layers of 

the (a) OSP- and (b) plasma-finished samples after a single heat treatment.



11 

 

................................................................................................................... 154 

Figure 3.9 Comparison of high-speed shear strengths of OSP- and plasma-

finished samples as a function of shear speed after five heat treatment 

cycles. ....................................................................................................... 155 

Figure 3.10 Percentage of brittle fracture of OSP- and plasma-finished sample 

after five reflow cycles. ............................................................................ 156 

Figure 3.11 Cross-sectional SEM micrographs comparing the IMC layers of 

the OSP- and plasma-treated samples after multiple heat treatments. ..... 156 

Figure 3.12 Wetting forces of the plasma and OSP surface finishes as a 

function of heat treatment cycle. .............................................................. 157 

Figure 3.13 Wetting times of the plasma and OSP surface finishes as a function 

of heat treatment cycle. ............................................................................. 158 

Figure 3.14 OM images of the test coupons after wetting tests. (a) OSP and (b) 

plasma surface finishes subjected to 0, 2, or 4 heat treatment cycles before 

wetting. ..................................................................................................... 159 

Figure 3.15 (a) Schematic illustration of the solder spreadability test. (b) OM 

images of the soldered PCBs after spreading tests for OSP- and plasma-

finished samples subjected to multiple heat treatments. ........................... 160 

Figure 3.16 Cross-sectional TEM micrographs of the (a) OSP and (b) plasma 

surface finished Cu substrates, where the surface finish layers are the white 

films. ......................................................................................................... 161 

Figure 3.17 Cross-sectional TEM images of the (a) OSP and (b) plasma surface 

finished samples after soldering showing the formation of IMC grains. . 162 

Figure 3.18 Cross-sectional SEM micrographs of the SAC305 solder joints 

with different surface finishes after multiple reflows. .............................. 163 

Figure 3.19 Average thicknesses of the IMC layers within the SAC305 solder 

joints for the OSP and plasma surface finishes as a function of reflow heat 

treatments. ................................................................................................. 164 

Figure 3.20 Average shear force of the SAC305 solder joints with different 



12 

 

surface finishes after multiple reflows. ..................................................... 165 

Figure 3.21 Cross-sectional SEM micrographs of the multiple-reflow SAC305 

solder joints with different surface finishes. The white dashed lines indicate 

the Cu pad, the white arrows indicate the unreacted area of the Cu pad, and 

the black arrows indicate voids developed at the interfaces. .................... 166 

Figure 3.22 SEM micrographs of the fracture surfaces of the solder joints after 

shear testing. The white dashed circle indicates the area of the Cu pad, the 

white arrows indicate the unreacted area with the Cu pad, and the black 

arrow indicates the direction of shear. ...................................................... 167 

Figure 3.23 FITR analysis of the plasma surface finish layer. ....................... 168 

Figure 3.24 FTIR analysis of the Cu2O peaks for the OSP-finished sample after 

multiple heat treatments. ........................................................................... 169 

Figure 3.25 FTIR analysis of the Cu2O peaks for the plasma surface finish after 

multiple heat treatments. ........................................................................... 170 

 

Chapter 4 

Figure 4.1 Schematic showing the design of the test PCB for the solder 

printability, bridging, and BGA tests. ..................................................... 188 

Figure 4.2 Schematic showing the design of the PCB pads for the solder 

bridging test. ............................................................................................. 189 

Figure 4.3 Schematic of the cross-section of the test PCB. ............................ 189 

Figure 4.4 Water droplet test images of the (a) uncoated and (b) coated stencils, 

showing the contact angles. ...................................................................... 191 

Figure 4.5 Cross-sectional TEM micrographs of the SUS304 laser-cut stencil: 

(a) uncoated stencil surface, (b) uncoated stencil aperture wall, (c) coated 

stencil surface, and (d) coated stencil aperture wall. ................................ 192 

Figure 4.6 Optical micrograph of the solder bridging test sample. ................ 193 

Figure 4.7 Percentage of bridged pads as a function of pad length for uncoated 

and coated stencils. ................................................................................... 194 



13 

 

Figure 4.8 (a) Schematic showing observation of solder paste printing through 

the glass plate. (b) Micrographs of the printed solder paste observed 

through the glass plate for uncoated and coated stencils. ......................... 195 

Figure 4.9 Schematics showing the solder printing process through (a) an 

uncoated stencil and (b) a coated stencil. ................................................. 196 

Figure 4.10 Printing efficiency for uncoated and coated stencils as a function 

of pad type. ............................................................................................... 197 

Figure 4.11 Results of continuous printing with various pad types. ............... 198 

Figure 4.12 SEM micrographs of the microstructure of the side walls of the 

aperture for (a) uncoated and (b) coated stencils. ..................................... 199 

Figure 4.13 SEM micrograph showing solder paste adhering to the squeezing 

side of the aperture. ................................................................................... 200 

Figure 4.14 (a) SEM micrographs of … . (b) Schematic of solder paste 

separation. ................................................................................................. 201 

Figure 4.15 SEM micrographs of the surface and aperture of (a) uncoated and 

(b) coated SUS stencils. ............................................................................ 202 

Figure 4.16 (a) Schematic of the method for verifying the quality of the 

hydrophobic coating using an LED lamp. (b) SEM micrographs showing 

the different optical patterns for the uncoated and coated stencils. .......... 203 

Figure 4.17 Schematic diagram showing the method for verifying the quality 

of the hydrophobic coating based on the solid edge effect. ...................... 204 

 

 

 

 

 



14 

 

Chapter 1 

 

Introduction 

1.1 Electronic packaging 

Since the invention of the transistor in 1947, electronic packaging technology has 

had a great influence on modern society. It has grown into a large industry with a 

market of more than one trillion USD with very rapid growth and development 

compared to other industries. The development of electronic packaging technology 

followed Moore’s law until the 1990s. Recently, it has reached the physical limit of 

semiconductor integration processes due to the miniaturization of electronic products, 

such as smartphones. Thus, current semiconductor package technology needs to satisfy 

miniaturization, and be multifunctional, highly integrated, low cost, and have excellent 

electrical properties. 

Wire bonding and tape automated bonding (TAB) methods have been adapted for 

chip bonding in conventional semiconductor and electronic packaging fields. However, 

these methods have been reported to exhibit reliability problems, such as low chip 

integration, delay in the transmission of electrical signals, and high heat generation 

rates. To overcome these problems, the flip-chip bonding method has been studied 

worldwide to increase the number of I/Os and enable high-speed signal processing 
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using solder bumps [1-2]. The ball grid array (BGA) package, which is mainly used in 

the flip-chip bonding method, accounts for a significant portion of the market share [3]. 

Due to the high importance of the BGA package as an interconnection material, many 

studies have investigated solder joint properties, interfacial reactions with the metal 

layer, mechanical deformation behavior of solder joints, thermal-mechanical properties, 

and thermal fatigue properties of the solder [4]. 

 

1.2 Lead-free solder 

In the early days of electronic packaging development, 63Sn-37Pb and Pb-Sn-based 

alloys were extensively used as materials for mechanical, thermal, and electrical 

connections. However, now Pb and its compounds are subjected to environmental 

regulations (such as the restriction of hazardous substances (RoHS), waste electrical 

and electronic equipment (WEEE), and end-of-life vehicles (ELV) directives) due to 

their toxicity and environmental pollution problems [4]. Hence, an eco-friendly and 

high performance lead-free solder alloy should be employed to replace the Sn-Pb-

based solder. The melting point, wetting properties, and economic feasibility of the 

solder alloy should be considered for solder joint applications, which are critical for 

the quality of electronics parts. According to Kang [5] and Glazer [6], the Sn-52In 

alloy has the advantages of a low melting point and outstanding ductility, while it has 

the disadvantage of high cost due to the scarcity of In. The Sn-57Bi alloy achieved 

joint formation at low temperature, but it resulted in low contact. The Sn-3.5Ag alloy 
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exhibits excellent mechanical and creep properties. However, many studies have been 

conducted to add a third element, such as Bi, In, Cu, and Zn, to fabricate a three-

element alloy in an attempt to lower the melting point and improve wetting properties 

[7-10]. 

In addition to the solder alloy, it is important to study the under bump metallization 

(UBM) method. Cu-based UBM is most commonly employed in conventional Pb-Sn 

solder bonding technology. However, the Cu is rapidly diffused into the solder, 

resulting in a highly brittle intermetallic compound (IMC) in the current lead-free 

solder bonding technology. The interfacial reaction between the solder and UBM has a 

significant effect on the mechanical properties of electronic packaging and many 

reports of this phenomenon have been published [11]. In addition, studies regarding 

methods to replace the Cu-based UBM have been conducted. It has been revealed that 

Ni-based UBM have relatively low diffusion into the solder and can replace the 

conventional Cu-based UBM [12]. Currently, much research is being conducted on 

electroless Ni(P) and interest in this material is growing [13]. 

 

1.3 Surface finishes 

ENIG, a Ni-based surface finish, has been used extensively in ball grid array (BGA) 

packaging for the past fifteen years. However, an increase in brittle fractures at the 

solder joint with an ENIG surface finish has been reported when the Pb-Sn solder was 

replaced with lead-free solders [14-16]. Such brittle fractures originated from thermal 
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stresses occurring at the solder joint as a result of the accelerated IMC growth and low 

creep rate of the lead-free solder with increasing soldering temperature. Much research 

continues to be devoted to solving this problem. Recently, many studies on PCB 

surface finishes were performed in order to reduce brittle fractures; the surface finish 

significantly affects the mechanical and electrical reliability of a solder joint. Mei et al. 

[17] reported the fracture mechanism in the IMC region of an SAC/ENIG joint. The 

three proposed mechanisms of failure were (1) weakening of the inner joint due to P 

segregation, (2) weakening of the joint due to defects from contamination and 

oxidation during or after plating process, and (3) continuous nanovoid formation at the 

interface between the Ni(P) and IMC layers. In general, Ni3P, Ni12P5 + Ni3P, Ni12P5, 

Ni2Pn, Ni2SnP, and Ni3Sn were formed as IMCs during interfacial reactions between 

Ni(P) and Sn [18-19]. Since nanovoids existed in the Ni2SnP layer located between the 

Ni3Sn4 and Ni3P layers, it was highly vulnerable to failure via crack propagation 

through the voids [20-21]. To suppress nanovoid formation and P segregation, 

ENEPIG surface finishes have been prepared by plating an electroless Pd layer onto an 

electroless Ni layer, which can reduce Ni diffusion [22-23]. ENEPIG surface finishes, 

unlike ENIG systems, have a Pd layer between the Ni (P) and Au layers which inhibits 

Ni from diffusing toward the solder during the soldering process. Thus, the ENEPIG 

layer deters overgrowth of the IMC and gives it high levels of reliability [24-26]. This 

type of surface treatment also makes wire bonding possible [27]. Currently, a soft Au 

process is used for wire bonding, but since the formed Au layer must be thick, it makes 
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the process costly. Since Au and Al wire bonding and solder bonding can be used 

simultaneously [28], it is possible to reduce the cost by replacing Au with Al. There 

are several studies which have highlighted stability problems with the palladium 

compound, and further research is needed to improve the durability [29-30]. 

 

1.4 Mechanical properties 

In addition to investigating solder compounds in the electronic packaging field, 

many studies have evaluated the mechanical properties. Since electronic devices have 

recently evolved from desktop to hand-held products, the importance of good drop 

shock properties of portable products, such as smartphones, is increasing [31]. The 

drop shock characteristics of solder joints in mobile devices are reduced with 

miniaturization and high integration. Thus, the demand for devices with drop shock 

resistance is increasing. Brittle fractures are generally observed as the failure mode of 

solder joints during drop shock [32]. The conventional shear strength test has been 

performed at velocities below 300 µm/s. Only low strain rates can be used to 

characterize bulk solder properties at solder joints. Song reported that the high-speed 

shear test can adequately simulate drop shock [11]. With increasing strain rate, the 

failure mode transitioned from ductile fracture in the solder to brittle fracture in the 

IMC region. The shock that occurs when actual electronic devices are dropped is 

instantaneous. Thus, many studies have been performed in accordance with the 

increasing interest in high-speed shear strength tests to determine the mechanical 
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properties of electronic packaging of small mobile electronic devices by applying 

rapid impacts (unlike conventional test methods) [11, 33]. 

 

1.5 Literature review 

1.5.1 Electronic packaging 

The term “electronic packaging” refers to all hardware in the electronics industry, 

except for internal chips (ICs). Meanwhile, it means to fill the box and organize the 

form according to the dictionary. Electronic packaging can also be defined as the final 

commercialization stage of semiconductor and electronic devices that are packed with 

plastic resin and ceramics for mounting the microcircuit chip on a substrate. There are 

four main functions of electronic packaging in the field of semiconductor and 

electronic devices: (1) The packaging protects the ICs from the external environment. 

For example, it is difficult to maintain a stable state when even small changes in 

environmental conditions are present, since the ICs, having the size about 1/1000 the 

thickness of a human hair, contain a patterned microcircuit. Therefore, the packaging 

is required to protect the microcircuit. (2) The electronic packaging acts as an 

electrical connection between the ICs and other components. A direct electrical 

connection is difficult due to the small chip, which cannot be discriminated by the 

naked eye. (3) The packaging acts as a heat conductor to cool the internal circuitry 

during chip operation. Internal heating is directly responsible for the deterioration in 
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performance and reliability in electronic devices. When the temperature of a chip 

increases by 10 °C, the lifetime and switching delay were decreased by 50% and 2%, 

respectively. Hence, optimum performance cannot be achieved and the electronic 

devices cannot be used for long periods when the internal heat generated by highly 

integrated large-capacity chips is not effectively released to the external environment. 

(4) The electric packaging supplies power to operate the chip. 

In the past, advanced electronic packaging was not required as its main purpose was 

to provide an electrical connection and protect the chip from the external environment. 

Over time, the demand for highly integrated high-performance chips has been 

increasing. Accordingly, high thermal and electrical performances are also required. 

Currently, complete systems consisting of the chip, packaging, and device are common 

and the growing demand is not limited to high performance and miniaturization of the 

previously mentioned electronic devices. In addition, a low production cost is desired. 

To fulfill these requirements, through-hole mountings were replaced by highly 

integrated surface mountings for semiconductor packages. At the same time, the fine 

pitch of the internal pin gap was developed based on the demand for small and 

lightweight pins to enable a higher number of pins with increasing I/O number and 

facilitate high integration. Electronic packaging can be classified into four levels, as 

shown in Figure 1.1. The zeroth level packaging refers to the interconnection at the 

chip level, while the first level packaging is the interconnection forming a single- or 

multi-chip module [34]. Second level packaging refers to bonding the first level 
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packaging on a printed circuit board (PCB), and third level packaging is the final stage 

of bonding to a mother board. As previously mentioned, electronic devices such as 

smartphones and main frames of computers are examples of electronic packaging. 

 

1.5.2 Lead-free solder alloy 

After the first development of lead-free solder, various kinds of solder alloys have 

been proposed. Most studies have been conducted on binary and ternary metals alloy 

[35-37] with a few investigating quaternary metals alloy [38]. The lead-free solder 

alloy material must be environmentally friendly and have a similar melting point to the 

conventional Pb-Sn solder. In addition, the material should possess outstanding 

wettability, electrical and thermal conductivity, and have similar mechanical strength 

and reliability to the conventional Pb-Sn solder. In terms of cost, an inexpensive 

material is preferred. The requirements for lead-free solder materials in the electronic 

packaging field are as follows. 

1) Melting point: the temperature of reflow should not exceed 255 °C, in order to 

maintain thermal stability of the components and PCB materials. 

2) Process suitability: the selected materials should be easily made into bars, paste, 

and wire. 

3) Toxicity: it should not pose any threats to human health or the environment. 

4) Physical, mechanical and electrochemical properties: the material should have 
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outstanding electrical and thermal conductivity, high wettability on the metal 

substrate, and excellent mechanical properties (e.g. fatigue properties). In 

addition, it should have outstanding corrosion and oxidation resistance. 

5) Cost: the solder alloy material should be inexpensive, as higher costs in the 

electronic device and electronic packaging industries will increase the product 

cost.  

 

Sn-based lead-free solder, which is produced by the addition of small amount of 

various elements (e.g. In, Bi, Zn, Ag, Sb, and Cu) into Sn, is the most-studied lead-free 

solder alloy for substituting the existing Pb-Sn solder. The characteristics of the 

candidate solder alloys mentioned in the literature and the potential candidates for 

lead-free solder compositions are presented in Table 1.1 and 1.2, respectively [39]. 

These will be described in detail here. 

 

1.5.2.1. Sn 

Sn has outstanding wetting properties and hence has been traditionally used as the 

main component of most solder materials for electronic components. Sn has a melting 

point of 231 °C and two different crystal structures in the solid state. The stable 

diamond structure of α-Sn can be found at temperatures below 13 °C. When the 

temperature drops below 1 °C, a phase transition known as ‘tin-pest’ occurs, to β-Sn (a 

body-centered tetragonal structure). 
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1.5.2.2. Sn-Ag 

The eutectic composition of Sn-Ag-based alloys is Sn-3.5Ag. Compared to the 

conventional Pb-Sn solder, it has a higher melting point of 221 °C. The microstructure 

of Sn-3.5Ag solder is composed of Sn dendrites and a Ag3Sn IMC. The tensile 

strength is higher than that of Pb-Sn eutectic solder and its susceptibility to 

deformation has been reported to be low [6]. Recently, Sn-3.5Ag has been actively 

studied as the most promising candidate to substitute Pb-Sn-based alloys. However, it 

has the disadvantage of lower wettability compared to the Pb-Sn eutectic solder. To 

overcome this problem, ternary solders are being developed [5]. 

 

1.5.2.3. Sn-Cu 

The eutectic composition of Sn-Cu-based alloys is Sn-0.7Cu and the melting point 

is 227 °C, which is slightly higher than the common Pb-Sn solder. There are only few 

studies related to this alloy to date, most being performed by companies such as 

Motorola. Although the creep properties are lower compared to the conventional Pb-

Sn solder, it has an outstanding fatigue life and low cost [5-6, 40] 

 

1.5.2.4. Sn-Bi 

The eutectic composition of Sn-Bi-based alloys is Sn-58Bi. It is a low-temperature 
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solder alloy with a melting point of 138 °C. The solubility is reduced with decreasing 

temperature and the Bi forms coarse precipitates during solidification, which has 

adverse effects on the mechanical properties [5-6]. 

 

1.5.2.5. Sn-In 

The eutectic composition of Sn-In-based alloys is Sn-52In and it has a very low 

melting point of 117 °C. It has excellent ductility and wettability, but widespread 

commercialization is difficult due to the scarcity and high cost of In [5]. 

 

1.5.2.6. Sn-Zn 

The eutectic composition of Sn-Zn-based alloys is Sn-9Zn and it has a melting 

point of 198 °C, which is similar to the common Pb-Sn eutectic solder. It has 

disadvantages of low wettability [41] and high reactivity (easy oxidization of Zn). To 

improve the wettability and mechanical properties, many studies are being conducted 

to add third, fourth, and fifth elements [42-43]. 

 

1.5.2.7. Sn-Ag-Cu 

The melting point of the Sn-3.5Ag alloy can be lowered, while the wettability and 

mechanical strength can be improved, by the addition of Cu. Thus, this alloy has 

become one of the most commonly used solders. In the case of the Sn-3.5Ag-0.7Cu 
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solder, the melting point (217 °C) is lower than Sn-3.5Ag. Moreover, the mechanical 

properties, such as tensile strength, thermal fatigue and creep, are superior to the Pb-Sn 

eutectic solder [10]. It has also been shown that the formation of the Ag3Sn IMC 

within the solder can be inhibited by optimizing the amount of added Ag [44]. 

 

1.5.2.8. Sn-Ag-Bi 

The addition of Bi into the Sn-3.5Ag alloy has the advantage of lowering the 

melting point and improving the wettability and mechanical properties [10]. In 

particular, Bi concentrations less than 2% can significantly improve the strength 

through solid-solution strengthening. When the Bi concentration was increased, fine 

precipitates of Bi, which was not incorporated into Sn, were formed within the solder 

alloy during cooling, resulting in higher brittleness and lower ductility. 

 

1.5.2.9. Sn-Ag-Zn 

In the case of the Sn-3.5Ag alloy, a Ag3Sn IMC was formed within the solder. 

When stress was focused on the IMC, the mechanical properties deteriorated due to 

crack generation between the solder matrices. In order to prevent this phenomenon, 

many studies are being performed where Zn is added into the Sn-Ag-based solder. The 

most promising composition among the Sn-Ag-Zn-based alloys is Sn-3.5Ag-1.0Zn, 

with a melting point of about 217 °C. Zn can be used to improve the strength and 

creep resistance of the Sn-3.5Ag solder alloy with a low mutual solubility; it has good 
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solubility in Ag and negligible solubility in Sn. However, its application for soldering 

is limited due its low corrosion resistance and wettability, since Zn is readily oxidized 

in an ambient atmosphere. Recently, soldering using this material has been performed 

under a nitrogen gas atmosphere and flux manufacturing technology was developed to 

overcome the Zn oxidation problem. Thus, the applicability of this material has 

increased. It has also been reported that the addition of Zn into Sn-3.5Ag can result in 

excellent mechanical properties by suppressing dendrite formation and refining Ag3Sn 

[8]. 

 

1.5.3 Surface finish types 

Surface finishing can be defined as the surface processing (before the router process 

or after shipment inspection in the PCM manufacturing) to achieve specific objectives. 

Surface finishing is carried out for preventing oxidation of the Cu pad in the insert 

mount technology (IMT) and surface mount technology (SMT) processes and 

improving the mounting of components. In addition, it enhances the solderability by 

removing the heat and flux in the soldering process. Surface finish technologies that 

are currently employed in the electronic component industries can be classified as 

either hot air solder leveling (HASL), organic solderability preservative (OSP), 

electroless Ni immersion Au (ENIG), electroless Ni electroless Pd immersion Au 

(ENEPIG), electroless Ni auto-catalytic Au (ENAG), immersion Sn, or immersion Ag. 

A comparison of the characteristics and cost according to the type of surface finish is 
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shown in Table 1.3, and these technologies will be discussed in more detail in the 

following sections. 

 

1.5.3.1. Hot air solder leveling (HASL) 

HASL is one of the common surface finish methods for the process using Pb-Sn-

based alloys. After melting, the alloy is buried in the substrate which is moved using a 

conveyor belt under a stream of hot air to produce a solder layer with uniform 

thickness. However, it is difficult to control the thickness of Sn-Ag-Cu-based alloy 

using hot air since its melting point is higher than the Pb-Sn-based alloy. When using 

hot air, the thickness of the surface finish film deposited on the Cu pad of a PCB is not 

uniform, preventing mounting of the components with defects in the SMT process. 

Moreover, the problem of solder bridging occurs with narrow pad spacings due to the 

high circuit density of substrates with fine pitch patterns [45-47]. 

 

1.5.3.2. Organic solderability preservative (OSP) 

OSP surface finishing has been widely used to replace the HASL technique. In this 

method, an organic compound (such as alkyl imidazole) is selectively deposited with a 

thickness of 0.2–0.5 µm on the Cu pad to prevent oxidation. Since the organic 

compound is similar to flux, it also can be referred to as a pre-flux finish. This surface 

finish method is highly suitable for fine pitch patterns since the film is selectively 

formed on the Cu pad. As the use of mobile devices, such as smart phones, personal 
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digital assistants (PDA), and portable multi-media players (PMP) increases, superior 

impact resistance is required. The OSP method has been widely used owing to its low 

cost and relatively low waste generation during surface finishing with the plating 

method, which is an advantage in terms of environmental impacts. 

When a scratch was generated on a Cu pad with organic compound deposited onto 

it from careless handling of the products, the exposed Cu easily oxidized in ambient 

air. This results in reliability problems for long term storage [45-47]. Moreover, it is 

highly vulnerable to multiple heat treatments when mounting different types of 

packages. 

 

1.5.3.3. Electroless Ni immersion Au (ENIG) and electroless Ni electroless Pd 

immersion Au (ENEPIG) 

ENIG surface finishing is generally carried out by plating an electroless Ni(P) layer 

with a thickness of 3–6 µm on a Cu pad. Subsequently, a thin Au layer with a 

thickness of 50–100 nm was plated on top of the nickel layer. This method overcomes 

some of the disadvantages of HASL and OSP methods and has outstanding 

handleability, storability, and solderability. It accounts for about 15% of the current 

surface finish market and the market share is still gradually increasing. The plated 

Ni(P) layer is used to prevent the rapid diffusion into Cu layer during Au substitution 

plating. In addition, it helps to prevent reliability problems due to IMC overgrowth 

since it suppresses the diffusion reaction between Cu and Sn. Brittle fractures were 
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observed at the interface of the solder and Ni/Au layer originating from the black pad 

defect phenomenon due to galvanic corrosion of Ni in the P-rich layer formed between 

the IMC and the Ni(P) layer during soldering [16-19]. According to Jang [19], an 

increase in P concentration can be observed when the amount of impurities in the Ni(P) 

plating solution increases due to partial segregation of P atoms. Accordingly, this 

affects the solderability by promoting the oxidation of Au and Ni atoms during Au 

substitution plating. A recent international standard recommended a minimum plating 

thickness of 3 µm and P concentration of 8–10% for the electroless plated Ni(P) layer. 

In an attempt to resolve the black pad problem, the ENEPIG surface finish method 

is being actively studied to replace ENIG. The ENEPIG method involves plating a Au 

layer with a thickness of 50–100 nm over an electroless Pd layer of 50–100 nm plated 

on a 3–6 µm electroless Ni(P). This method has the advantage of wide applicability as 

both Au and Al wire bonding and soldering can be performed. However, due to 

stability problems with Pd compounds, many studies are being focused on improving 

the reliability and up-scaling this technique [22-23]. 

 

1.5.3.4. Electroless Ni auto-catalytic Au (ENAG) 

The ENAG surface finish method is carried out by plating a 0.1–0.3 µm Au layer 

on top of an ENIG Au layer using an auto-catalytic method. The Au layer of ENAG is 

a suitable surface finish for wire bonding. As a cyanide-free process, it can improve 

the corrosion resistance by inhibiting void formation. However, there exist only few 
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studies reporting the effect of Ni(P) plating, P concentration, and Au thickness on the 

reliability of the xxxx. 

 

1.5.3.5. Immersion Sn and Ag 

The immersion Sn surface finish method can generate a film with uniform surface 

roughness. It is suitable for high-density circuit applications since Sn, with good 

wettability, is used. However, typical problems, such as Sn plating and the formation 

of whiskers, cannot be prevented, resulting in a cavity or temporary short circuit. 

Several limitations of this method have been reported in previous studies, related to the 

components falling out of the PCB after the SMT process and soldering not being 

possible due to very poor wetting behavior after multiple heat treatments. If the surface 

is touched due to careless handling, oxidation occurs rapidly due to salt from the hands 

and scratches can be easily formed due to the low strength of Sn [45-47]. Moreover, it 

has limited practical application due to the high cost of Ag. 

 

1.5.4 Chemistry of ENIG and ENEPIG surface finishes 

Methods to form a metal film on a substrate by reducing metal ions from a metal 

salt solution can be categorized as electroplating, where metal ions are deposited by 

means of an external power supply, or electroless plating, which does not require an 

external power supply. Depending on the mechanism through which metal ions 
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acquire electrons, electroless plating can be subcategorized into immersion plating 

(galvanic displacement), in which electrons are acquired by substitution reactions, and 

autocatalytic plating (commonly called electroless plating because it is a representative 

electroless plating method), in which electrons are acquired from a reducing agent. 

Electroless plating has the following advantages: it enables plating on a non-

conductive surface, it does not require an external power supply, the target surface can 

be plated with a uniform thickness regardless of the current distribution, it lends itself 

well to mass production, and it has excellent adhesion and wear resistance. The main 

drawbacks are a high production cost, because the source of metal ions is chemical 

precursors, and the short service life of the plating solution due to contamination by 

the reaction byproducts [48-49]. Electroless nickel plating (EN) was introduced by 

Brenner and Riddell in 1946. While a range of reducing agents, such as sodium 

hypophosphite (NaH2PO2·H2O), sodium boron (NaBH4), and boronized 

dimethylamine (DMAB), can be used for EN, sodium hypophosphite is the most 

commonly used due to its low cost and convenient handling [50-51]. Characteristics of 

the two aforementioned methods of electroless plating are as follows. 

 

1) Immersion plating 

If two metals with different ionization tendencies are in contact, the metal with 

higher ionization tendency emits electrons, thereby being oxidized into metal ions, 

while ions of the metal with lower ionization tendency gain electrons and are reduced 
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into metal [48]. The larger the difference in standard reduction potential values 

between the two materials, the greater the plating rate. Immersion plating is based on 

this mechanism of electron transfer between metals triggered by different ionization 

tendencies. Since an immersion plating bath does not need any extra reducing agent, 

its main components are metal ions, acid, complexing agent, antioxidant, and pH 

adjusting agent. As the thickness of the plating film increases, the plating rate 

decreases towards zero. Table 1.4 shows the ionization tendencies of some metals 

commonly used in immersion plating. 

 

2) Electroless plating 

In the electroless plating technique, the plating metal is deposited onto the target 

surface catalyzed by reducing metal ions, i.e. transferring electrons, in a plating 

solution using a reducing agent. The mechanism of electroless plating can be divided 

into an oxidization stage, in which the reducing agent loses electrons to the plating 

solution and becomes oxidized, and the deposition stage in which metal ions receive 

electrons and are deposited onto the target surface forming a metal film [48]. 

 

reducing agent → oxide (of the reducing agent) + xe- (electron) 

Mx+ (metal ion) + xe- (electron) → M (metal film) 
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The above two equations are combined as follows: 

Mx+ (metal ion) + reducing agent → M (metal film) + oxide (of the reducing agent)  

 

An electroless plating solution is composed of metal ions, reducing agent, pH 

adjusting agent, and catalytic poison (to prevent the plating tank and pump from being 

plated) [49]. 

 

3) Chemical reactions involved in electroless Ni(P) plating 

The equations below show the chemical reactions taking place during the ENIG and 

ENEPIG surface finish methods using sodium hypophosphite as the reducing agent. 

 

Main reactions: 

  Ni2+ + H2PO2
- + H2O → Ni + H2PO3

- + 2H+   (1) 

  H2PO2
- + H2O → H2PO3

- + H2     (2) 

 

2nd-order reactions: 

  2H+ + 2e- → H2      (3) 

  H2PO2
- + H → P + OH- + H2O    (4) 
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Equations (1)–(4) represent Ni reduction, sodium hypophosphite consumption, 

hydrogen generation, and P generation, respectively. The potential and pH at which 

electroless plating occurs can be predicted by examining the reduction potential of Ni 

and sodium hypophosphite given in Equation (1) using the Pourbaix diagram [52]. The 

pH and potential ranges where Ni and H2PO3
- ions are in a stable state are pH 2–7 and 

-0.3–-0.8 vs. SHE, respectively, as can be determined from Equation (1), whereby the 

utilization efficiency of sodium hypophosphite is lower than 50% (not all of the 

H2PO3
- ions are consumed for reducing Ni). Table 1.5 summarizes the advantages and 

disadvantages of the ENIG surface finish method [50]. 

 

4) Chemical reactions involved in electroless Pd plating 

In the ENEPIG surface finish method, the plating solution in contact with the Ni(P) 

layer is an autocatalytic electroless Pd plating solution based on an ethylenediamine-

Pd complex using salts of formate, phosphite, or hypophosphite and a reducing agent. 

Table 1.6 shows an example of a standard composition of electroless Pd plating 

solution, and Figure 1.2 compares the thickness of the plating film of each surface 

finish method. 

 

a) Electroless Pd plating using formate as reducing agent 

Figure 1.3(a) shows a potential–pH diagram for an electroless plating 

solution of ethylenediamine with formic acid (HCOOH) as reducing agent. It 
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can be seen that Pd ions are in a stable state, bound with ethylenediamine, in 

the range of pH 5.5–12. This suggests that it is thermodynamically possible 

to implement electroless Pd plating using formic acid as the reducing agent. 

Factors influencing the deposition rate are Pd concentration and the 

temperature of the plating solution. In this plating solution, carbonate is 

generated as a result of a side reaction which depends on the progress of the 

plating reaction. However, even when hydrogen carbonate ions are 

accumulated, the deposition rate is rarely affected. Consequently, a film with 

uniform surface finish and high density is formed and the plating solution 

exhibits excellent stability. The equations below show the chemical reactions 

involved in Pd plating using formate as the reducing agent. 

 

  RCOOH + H2O → CO2 + ROH + 2H+ + 2e-   (5) 

  Pd2+ + 2e- → Pd      (6) 

 

b) Electroless Pd plating using phosphite as reducing agent 

In the electroless Pd-P plating solution using phosphite as the reducing agent, 

the P content is lower than that in the solution using hypophosphite as the 

reducing agent. The P content is positively correlated with the deposition 

rate. A decrease in the deposition rate with increasing hypophosphite 



36 

 

concentration results in both a decrease in adsorption of Na2PO3 on the 

precipitate and in the activity of the precipitate, due to an increase in P 

content.  

Figure 1.3 (b) shows the potential-pH diagram of hypophosphite along with 

hypophosphite. The equations below show the chemical reactions involved 

in the Pd plating using phosphite as the reducing agent. 

 

 H3PO3 + H2O → H3PO4 + 2H+ + 2e-    (7) 

 H3PO2 + 3H+ + 3e- → P + 3H2O    (8) 

 Pd2+ + 2e- → Pd      (9) 

 

c) Electroless Pd-P plating using hypophosphite as reducing agent 

Figure 1.3 (b) shows the potential–pH diagram showing the electroless Pd plating 

solution of ethylenediamine using hypophosphite as reducing agent. It can be seen that 

Pd ions exist as compounds with ethylenediamine in the range of pH 5.5–12. Hence, 

electroless Pd plating is thermodynamically possible using hypophosphite and 

phosphite as reducing agents. While the deposition rate increases with increasing Pd 

concentration, the P content decreases. In contrast, while the deposition rate is not 

significantly influenced by pH, the P content decreases as pH increases. In addition, 

the pH affects the surface quality of the plated film; uniform films are formed under 
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normal conditions and cracks are likely to occur under low concentrations of reducing 

agent or high pH conditions. The equations below show the chemical reactions 

involved in Pd plating using hypophosphite as the reducing agent. 

 

  H3PO2 + H2O → H3PO3 + 2H+ + 2e-    (10) 

  H3PO2 + H+ + e- → P + 2H2O    (11) 

  Pd2
+ + 2e- → Pd      (12) 

 

In the above redox reactions, the standard potential of the reducing agent (formic 

acid) is -0.20 V, the reduction potential of phosphite is -0.28 V, and the potential of the 

hypophosphite-type reducing agent is -0.50 V. Hypophosphite has the highest 

reactivity because it has the lowest potential. In addition to the reduction reaction, P is 

generated when phosphite or hypophosphite is used as the reducing agent, and a Pd–P 

alloy layer is formed during Pd plating as a result of the eutectoid reaction. When a 

carboxylic acid (e.g. formic acid) is used, a pure Pd plating layer is formed. 

 

d) Chemistry of immersion Au plating 

The equation below shows the chemical reaction involved in immersion Au plating. 
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  2Au+ + 2e- → 2Au0      (13) 

 

1.5.5 Interfacial reactions 

An IMC is generally formed between UBM and Sn-based solder by the 

interdiffusion of Sn and UBM atoms. The UBM is classified as Cu- or Ni-based. When 

the UBM reacts with the solder in reflow, Sn-Cu and Sn-Ni IMCs are generated. The 

Sn-Ni binary phase diagram is presented in Figure 1.4 and the Sn-Cu binary phase 

diagram is presented in Figure 1.5. The characteristics of each IMC are shown in Table 

1.7. 

 

1.5.5.1. Sn-Ni-based reaction 

The IMCs formed by the interfacial reaction between Sn and Ni are Ni3Sn, Ni3Sn2, 

and Ni3Sn4, and these are discussed in detail in the following text.  

1) Ni3Sn: As shown in Figure 1.4, this IMC is divided into high-temperature Ni3Sn 

and low-temperature Ni3Sn. The low-temperature Ni3Sn exists at room 

temperature and has a regular Mg3Cd(D019)-type hexagonal close packed (hcp) 

structure with lattice constants a = 0.4286 Å and c = 0.4242 Å. The high-

temperature Ni3Sn occurs above 920.5 °C and has an Fe3Al(D03) type cubic 

structure. 

2) Ni3Sn2: This IMC has a NiAs-type hexagonal structure at room temperature with 
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lattice constants a = 0.4081 Å and c = 0.5174 Å. At high temperature, the 

presence of either hexagonal or orthorhombic structures has been reported in the 

literature.  

3) Ni3Sn4: This compound has a CoSn(B35)-type monoclinic structure consisting 

of 14 atoms per unit cell. The lattice constants are a = 1.2222 Å, b = 0.4064 Å, c 

= 0.5225 Å, and β = 103.48˚. 

 

Following Ni3Sn4 formation by reaction between Sn and Ni, Ni3Sn2 is formed  

from the reaction between Ni3Sn4 and Ni. Finally, Ni3Sn is formed by the reaction 

between Ni3Sn2 and Ni. However, the Ni3Sn4 IMC is mostly found as the result of an 

interfacial reaction between Sn-based solder and Ni UBM. According to Haimovich 

[53], this phenomenon is related to the higher driving force for Ni3Sn2 and Ni3Sn 

formation compared to Ni3Sn4 at 250 °C. However, Ni3Sn4 is generally formed and 

grown at the interface between Ni and Sn-3.5Ag solder due to the significant effect of 

the interfacial energy with the matrix generated during nucleation growth and the 

thermodynamic driving force during formation of Ni-Sn intermediates. The activation 

energy barrier for nucleation growth is proportional to (3 × interfacial energy)/(2 × 

driving force). 
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1.5.5.2. Sn-Cu-based reaction 

The IMCs formed through interfacial reactions between Sn and Cu are Cu6Sn5 and 

Cu3Sn, which are discussed in detail here.  

1) Cu6Sn5 (η-phase): As can be seen in Figure 1.5, the η’-phase is the η-phase at 

room temperature. At temperatures above 186 °C, this compound has a simple 

superlattice of NiAs(B81)-type hexagonal symmetry with a = 4.2 Å and c = 5.09 

Å, consisting of 20% copper and 80% vacancies. In addition, a long period 

superlattice η’-phase having a five times larger lattice constant is formed at 

temperatures below 186 °C. The melting point of the η-phase is 676 °C and 

metal bonding is mainly formed between Cu and Sn. 

2) Cu3Sn (ε-phase): The high temperature phase has a structure with Cu0Ti-type 

orthorhombic symmetry with lattice constants of a = 2.755 Å and b = 4.722 Å. 

The melting point is 415 °C and the rules for a long period superlattice are as = 

2a, bs = 8b, and cs = c. 

 

Cu6Sn5 is likely to grow inwards towards the solder rather than towards the UBM 

Cu. Tu [54] showed that the rearrangement for Cu6Sn5 growth took place at the 

Cu6Sn5/Sn interface and the IMC growth occurred within the solder due to interstitial 

diffusion of Cu inside Sn and the higher diffusion of Cu compared to Sn in Cu6Sn5. 

Cu3Sn was not observed due to difficult nucleation during room temperature aging, 

while Cu6Sn5 was observed. When the two layer specimen was aged for a long period 
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at 150 °C (after Sn was completely consumed at room temperature), the Cu3Sn 

infiltrated the layer Cu6Sn5 at the interface of the two layers and grew with a parabolic 

dependence on time. The growth of Cu3Sn is a diffusion-controlled reaction. 

 

1.5.5.3. Sn-Ag-Cu/Ni-based reactions 

The IMC formed between Sn-Ni is usually Ni3Sn4. However, Hwang, et al. [55] 

reported a very thin (around 50 nm) Ni3Sn2 IMC below a Ni3Sn4 layer resulting from 

the interfacial reaction between electrolytic Ni and Sn-3Ag-6Bi. Kao and Duh [12] 

observed the effect of Cu addition on the interfacial reaction between electrolytic Ni 

UBM by fixing the Ag amount at 3.9 wt%. When 0.2 wt% Cu was added, only (Ni1-

xCux)3Sn4 IMC was observed. Two types of IMC, (Ni1-xCux)3Sn4 and (Cu1-yNiy)6Sn5, 

could be obtained by the addition of 0.4 wt% Cu and (Cu1-yNiy)6Sn5 was observed with 

the addition of more than 0.6 wt% Cu. In the case of electroless Ni(P)/Au UBM, a 

(Ni1-xCux)3Sn4 IMC was formed when the Cu within the solder was less than 0.5 wt%. 

Two types of IMC, (Ni1-xCux)3Sn4 and (Cu1-yNiy)6Sn5, were found for 0.5 wt% Cu 

addition and the (Cu1-yNiy)6Sn5 IMC was observed for more than 0.5 wt% Cu. Sohn et 

al. [56] investigated the dependence of the morphology of the IMC layer and spalling 

phenomena on the solder deposition method, P concentration in Ni(P), and solder 

thickness. A higher P concentration enhanced spalling due to increased solder volume. 

Needle-shaped IMC morphologies exhibited higher spalling compared to chunk-

shaped ones due to the increasing number of channels for Sn penetration in needle-
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shaped structures. The Sn that penetrated into the IMC reacted with Ni3P, resulting in a 

Ni3SnP layer. On the other hand, Ni3Sn4 delaminated from the Ni3SnP surface. 

 

1.5.5.4. Sn-Ag-Cu/Cu-based reaction 

For Sn-Ag and Sn-Ag-Cu solder, the IMCs formed by the interfacial reaction with 

the Cu UBM are Cu6Sn5 and Cu3Sn. Only Cu6Sn5 was observed at room temperature, 

while Cu3Sn was generated in the Cu UBM and Cu6Sn5 was formed within the solder 

during high-temperature aging. In addition, voids were generated in the Cu3Sn 

intermetallic compound when the reaction temperature was high. As the volume of the 

solder became larger, the consumption of Cu increased and the thickness of the IMC 

reduced [57]. 

 

1.5.6 Black pad formation during ENIG surface finishing 

With increasing demand for ENIG as a PCB surface finish, related problems have 

increasingly been reported (accompanied by extensive research activities to address 

such limitations). Among the problems reported thus far, the most serious one is the 

black pad phenomenon occurring in the Ni(P) layer, which results in brittle fractures 

and is the major factor lowering package reliability [31-32, 58-60]. The name “black 

pad” comes from the black color observed on the Ni(P) layer [31]. This phenomenon 

has been investigated for about a decade by a consortium in the PCB industry in an 
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attempt to eliminate the problem by identifying the mechanism and root causes. Kim 

[32] demonstrated that the black pad phenomenon is ascribable to enhanced corrosion 

occurring during the immersion Au process. The difference in potential between Au+ 

ions on the Ni(P) layer leads to the formation of Ni2
+ ions. Excessive generation of 

Ni2
+ ions while bonding to Au+ ions results in corrosion. Excessive consumption of Ni 

ions while bonding can also induce corrosion. Furthermore, excessive consumption of 

Ni ions on the Ni(P) layer causes the P content to increase accordingly. In the 

subsequent soldering process, the elevated P content deteriorates wettability and 

adhesion. 

 

1.5.6.1. Black pad mechanism 

Currently known causes of the black pad defects can be summarized as follows: 

1) According to Biunno [31], the rate of Au grain growth is relatively slow at a 

nodule boundary or junction. Since the concentration of Au ions is not 

homogeneous in a nodule boundary, crevices are formed along the boundaries or 

at junctions. Therefore, the Au layer grows non-uniformly, and micro-galvanic 

cells are formed between the Ni(P) and Au layers, making the boundaries prone 

to corrosion. Figure 1.6(a) shows a schematic of black pad formation and Figure 

1.6(b) shows how black pads can be formed by applying a 1 V potential. 

Furthermore, excessive consumption of the Ni ions from the Ni(P) layer in the 

immersion Au process results in increasing the P content in the consumed region. 
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From these results, it was concluded that the current flowing through the PCB 

increases the corrosion activity at the Ni(P) layer, thus accelerating oxidation. 

 

2) Kim et al. [32] noted that corrosion starts at a nodule boundary as it is the place 

where substitution of Ni atoms for Au atoms occurs more intensely; the 

corrosion then expands towards the interior of the nodule. Accordingly, major 

and minor spikes are found at the nodule boundaries and interiors, respectively. 

In the immersion Au plating process, it was also observed that concentration 

cells are formed when the plating solution circulates, and corrosion occurs in the 

pad spikes. The smaller the pad area, the larger the region where the plating 

solution cannot circulate, resulting in a growth of the black pad. Figure 1.7 is a 

schematic of the size-effect induced concentration cell formation. 

 

3) Osenbach et al. [58] stated that low-density interfaces are formed during the 

Ni(P) growth due to secondary-phase precipitation, and corrosion occurs during 

the immersion Au process, resulting in mud cracks appearing on the Ni(P) 

surface. Figure 1.8 shows a schematic of the corrosion caused by secondary-

phase precipitation. 

 

4) Won et al. [59] reported that an uneven Au layer is formed due to the adsorption 

of excess citrate ions along the nodule boundary, resulting in black spots. It was 
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also noted that this tendency increased as the pH of the Au plating solution 

decreased. Figure 1.9 depicts the phenomenon of an uneven Au layer leading to 

black pad formation. 

 

5) Kim et al. [60] reported that nodules on a Ni(P) layer having different P contents 

induced the formation of micro-galvanic cells, whereby a nodule with lower P 

content undergoes corrosion during the immersion Au process. Figure 1.10 

depicts this process of micro-galvanic corrosion. 

 

1.5.6.2. Factors influencing black pad formation 

The following outlines the causative factors for black pad formation [32, 60-61]. 

Variables such as the amount of Ni(P) plating solution used, P concentration, oxidation 

of Ni (P) layer, organic impurities, and galvanic reaction, are known to be associated 

with black pad formation. 

1) The use of larger amounts of Ni(P) plating solution are related with a higher 

likelihood for black pad formation. Since Ni ions are consumed in a Ni(P) 

plating solution through the reduction reaction, these Ni ions should be replaced 

in the solution to enable continuous use. This Ni ion supplementation is called 

metal turn over (MTO). As the MTO increases, phosphite is generated as a 

reaction byproduct, which reduces the deposition rate of Ni plating. Moreover, 

as the number of plating cycles increases, the P content increases and organic 
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impurities are generated in the photo solder resist (PSR), both of which induce 

oxidation of the Ni surface and result in black pad formation on the Ni surface 

during the immersion Au process. 

2) The P concentration of a Ni(P) plating solution is categorized into high-range (≥

10 wt.%), mid-range (6–9 wt.%), and low-range (≤ 5 wt.%) concentrations. 

The P content in a Ni(P) plating solution was found to change depending on the 

pH and types of additives and complexing agents. As a general rule, the higher 

the P concentration, the higher the likelihood for oxidation. Figure 1.11 shows 

the changes in the surface structure of a Ni(P) layer depending on P 

concentration. 

 

3) The black pad phenomenon related to the oxidation of the Ni(P) surface occurs 

due to exposure to air before undergoing the immersion Au process. Hence, it 

has been suggested that the time between Ni(P) and immersion Au processes 

should be reduced as much as possible and that contamination should be 

avoided by supplying sufficient pure water during the water cleaning process. 

Figure 1.12 shows the surface defects induced by Ni(P) oxidation. 

 

4) The organic impurity-induced contamination of the Ni(P) layer is the root cause 

of the black pad phenomenon. Most of the impurities in a Ni(P) plating solution 
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come from the PSR ink on the surfaces of the dry film and PCB used in the 

process. The amount of organic impurities increases in proportion to the amount 

of plating solution used. As the amount of organic impurities increases, the 

plated surface shows an increasingly needle-like structure, which affects the 

anti-corrosion property of the crystalline Ni(P) coating. As a result, the 

substitution reaction in the immersion Au process accelerates, resulting in 

spalling phenomenon that reduces adhesion. Figure 1.13 shows corrosion of the 

Ni layer due to organic impurities eluted from the PSR. 

The Cu pad surface of a PCB is greatly influenced by the pre-treatment for the 

ENIG surface finish. In particular, organic impurities from the chemical pre-

treatment remain on the Cu surface. When Pd is added as a catalyst in the 

subsequent process, the Ni(P) plating density is lowered, resulting in black pads 

and spalling during the immersion Au process. Figure 1.14 depicts the changes 

in the Cu surface morphology caused by the adsorption of organic impurities. 

 

5) The black pad effect occurs from galvanic corrosion (as a result of the difference 

in potential between two metals in electrical contact when exposed to a 

corrosive solution). Here, galvanic corrosion occurs due to the difference in 

potential arising from different sized PCB pads during the immersion Au 

process, where the smaller pad is more prone to corrosion. 
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1.6 Thesis structure 

This thesis consists of five chapters, which will be outlined here. 

 

In Chapter 1, the role and structure of electronic packaging are explained and the 

different surface finishes described. Current development priorities in the field, such as 

lead-free solder, are also discussed. Also included are the chemical reactions involved 

during the surface finishing methods relevant to this study, as well as interfacial 

reactions. Finally, an overview of the issues of current interest is provided. 

In Chapter 2, the solder strength and brittle failure characteristics of Sn-3.0Ag-

0.5Cu (SAC305) solder and Ni-based surface finishes (ENIG and ENEPIG) are 

evaluated. The dependence of the mechanical properties on the number of MTOs of a 

Ni(P) plating solution is evaluated by means of high-speed shear strength (HSS) tests, 

drop tests, and analysis of the brittle failure, as categorized into five ranges. In 

particular, the reason for the sudden decrease in mechanical reliability after three MTO 

cycles for ENIG surface finishes is elucidated. 

In Chapter 3, a novel plasma-type surface finish is evaluated as a solution for the 

deterioration of the mechanical properties resulting from multiple heat treatments, 

which is often identified as a weakness of the Cu-based surface finish. It is shown that 

the performance of the proposed plasma surface finish was maintained up to five heat 

treatment cycles by measuring wettability and spreadability. Furthermore, the 

superiority of the plasma surface finish is demonstrated by comparing its performance 
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with that of the state-of-the-art OSP surface finish. 

In Chapter 4, the processability of the plasma surface finish is evaluated after 

coating a metal mask for SMT processing as a possible application. The enhanced 

post-coating characteristics are demonstrated by means of bridge and printability 

testing, and the related mechanisms are discussed. Furthermore, a method of detecting 

the presence of a coating film, which is not detectable by visual inspection or optical 

observation, is presented so that coating layers can be conveniently analyzed without 

requiring extra equipment in industrial settings. 

Finally, Chapter 5 provides an overall summary and the conclusions of this 

dissertation. 
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1.7 Figures 

 

 

 

 

 

 

 

Figure 1.1 The hierarchy of electronic packaging. Reproduced from Tummala, 2001 

[34]. 
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Table 1.1 Mechanical properties of selected binary alloys [6]. 

 
Sn-Bi Sn-In Sn-Ag 

Elongation Strain rate sensitive 

Inferior to Pb-Sn in 

most respects 

Acceptable 

ductility at high 

strain rate 

Creep resistance 
Exceed Sn-Pb 

(20-65oC) 

Extremely creep 

resistant 

Isothermal fatigue 
Extremely good at 

low strain 

Excellent at large 

strain amplitude 

Thermal fatigue 
Perform better at 

low cycle 

Perform extremely 

well 
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Table 1.2 Comparison of thermal properties of lead-free solder alloys [39]. 
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Table 1.3 Properties of different PCB surface finishes. 

 

Types of surface finish 

ENIG ENEPIG OSP 
Immersion 

Ag 

Immersion 

Sn 

Reflow ○ ○ △ ○ △ 

Wire 

bonding 
○ ○ X △ X 

Flip chip 

bonding 
○ ○ X △ X 

Joint strength △ ○ ○ ○ X 

Lead-free 

type 
○ ○ ○ ○ ○ 

Cost X X ○ X △ 

 

○: good, △: normal, X: bad 
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Table 1.4 Ionization trend and standard reduction potential of reactions commonly 

observed in plating. 

Ionization trend Reaction Reduction potential (V) 

High ionization 

 

 

-2.93 

 

-2.868 

 

-1.185 

 

-0.762 

 

-0.560 

 

-0.250 

 

-0.136 

Reference 
 

0.000 

 
Low ionization 

 

+0.071 

 

+0.110 

 

+0.522 

 

+0.800 

 

+0.915 

 

+1.188 

 

+1.830 
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Table 1.5 Typical characteristics of the ENIG surface finish method [50]. 

Advantage Disadvantage 

Coated film 

- Uniformed thickness 

- High hardness 

- Good corrosion resistance 

- Good wear resistance 

- Low ductility 

- Slow deposition rate than 

electroplating 

- Brittle deposit 

Process 

- No electrical connection 

- No power supplies needed 

- Coating on non-conducting 

substrate 

- High temperature process (90 °C) 

- Short bath life 

- Careful analytical control of bath is 

required 
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Table 1.6 Composition of electroless Pd solutions. 

 
Chemicals Role of chemicals 

Metallic 

salt 
Pd Supply for deposited metal 

Reducing 

agent 

Formic acid 

Hypophosphorous acid 

Phosphorous acid 

Etc. 

Reducing metal that the metal ions by 

injection electrons 

Complexing 

agent 

Ethylenediamine 

Citric acid 

Potassium 

Potassium stannate 

EDTA 

Etc. 

Complex with metal ions and remains 

ionic state stable in plating solution. 

Stabilizer 

Amine 

Sulfur 

Heavy metal 

Etc. 

Acts to suppress the reduction reaction of 

other than the surface to be plated 

/  

Prevents: generated hydrogen gas from 

reaction the precipitate and reducing agent 

be caused by aging plating solution. 

pH 

adjusters 

Sodium hydroxide 

Sulfuric acid 

Etc. 

Adjust plating speed, reduction efficiency, 

stability and etc.  
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Figure 1.2 Plating thickness of surface finishes. 

 

 

(a)                                (b) 

Figure 1. 3 Potential-pH diagram; (a) HCOO--HCO3 and (b) H2PO2
-, HPO3

2-, and 

PO4
3-. 

3 ~ 6 µm 

0.1 ~ 0.15 µm 

0.1 ~ 0.15 µm 

Ni(P) 

Pd 

Au 
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Figure 1. 4 Sn-Ni binary phase diagram. 
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Figure 1. 5 Sn-Cu binary phase diagram. 
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Table 1.7 Room temperature properties of intermetallic compounds determined here. 

 
Cu6Sn5 Cu3Sn Ni3Sn 

Vickers Hardness (kg/mm2) 378 ± 55 343 ± 47 365 ± 7 

Toughness (MPa․m-1/2) 1.4 ± 0.3 1.7 ± 0.3 1.2 ± 0.1 

Youngs Modulus (GPa) 85.56 ± 1.65 108.3 ± 4.4 133.3 ± 5.6 

Poisson's Ratio 0.309 ± 0.012 0.299 ± 4.4 0.330 ± 0.015 

Thermal Expansion (ppm/°C) 16.3 ± 0.3 19.0 ± 0.3 13.7 ± 0.3 

Thermal Diffusivity (cm2/s) 1.045 ± 0.015 0.240 ± 0.024 0.083 ± 0.008 

Heat Capacity (J/g․deg) 0.286 ± 0.012 0.326 ± 0.012 0.272 ± 0.012 

Resistivity (µΩ ․cm) 17.5 ± 0.1 8.93 ± 0.10 28.5 ± 0.1 

Density (mg/cc) 8.28 ± 0.02 8.90 ± 0.02 8.65 ± 0.02 

Thermal Conductivity 

(W/cm․deg) 
0.341 ± 0.051 03704 ± 0.098 0.196 ± 0.019 
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(a) 

 

 

(b) 

 

Figure 1.6 Schematic diagrams showing black pad formation mechanisms; (a) voltage 

induced black pad formation, and (b) micro-galvanic cell formation at sharp nodule 

boundaries [31]. 
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Figure 1.7 Schematic diagram showing the size-effect induced concentration cell 

formation [32]. 
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Figure 1.8 Schematic diagrams showing corrosion induced by secondary-phase 

precipitation during Ni(P) film growth [58]. 
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Figure 1.9 Simulated Au layer growth modes at (a) high reactivity and (b) low 

reactivity. The values shown on both the x and y axes are of arbitrary dimensionless 

form, where only the relative geometric ratio is important. Cross-sectional SEM 

images (20k×) of the corresponding Ni-P/Au interfaces are also shown. [59]. 
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Figure 1.10 TEM image showing micro-galvanic corrosion induced by concentration 

gradients in P across Ni(P) nodules [60]. 
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(a) P content: under 5% 

 

(b) P content: 6 – 9% 

 

(c) P content: upper 12% 

Figure 1.11 Changes in the surface morphology of Ni(P) as a function of P 

concentration. 
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Figure 1.12 SEM micrographs showing contamination induced by Ni(P) oxidation. 
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(a) Corrosion of Ni(P) surface 

 

 

(b) Cross-sectional observation 

 

Figure 1.13 TEM images showing corrosion of the Ni(P) layer resulting from organic 

impurities. (a) Surface morphology and (b) cross-sectional image. 
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Figure 1.14 Changes in the Cu substrate morphology as a result of organic impurities. 
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Chapter 2 

 

Effect of Ni-Sn interfacial microstructure on brittle 

fracture of solder joint 

 

 

 

 

 

2.1 Introduction 

ENIG and ENEPIG methods have been widely adopted for surface finishing Cu 

bond pads due to their effectiveness as diffusion barriers against fast reaction with Sn-

rich solder alloys [1-2]. The structure of the IMC layer at the interface between the Sn-

3.0Ag-0.5Cu (SAC) solder and ENIG or ENEPIG layer is complex; the interface has 

been shown to be composed of (Cu, Ni)6Sn5, Ni-Sn-P, and P-rich layers (Ni3P or Ni2P) 
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[3]. The thickness of the Ni-Sn-P layer located between (Cu,Ni)6Sn5 and a P-rich layer 

was about a few tenths of a nanometer and the Ni-Sn-P layer possessed nanovoids with 

diameters of 10–20 nm [4]. Previous studies showed that brittle fracture at the 

interface resulted from poor adhesion of the P-rich layer and/or nanovoids formed in 

the Ni-Sn-P layer [5]. During solder reflow, the Au from the ENIG process was 

dissolved into the molten SAC solder, resulting in Ni(P) being exposed to the molten 

solder and subsequent formation of interfacial phases composed of Sn and Ni(P). 

Hence, the plating conditions of the Ni(P) affected the interfacial microstructure, 

which was related to the brittle fracture behavior of the solder joints. 

In this chapter, the bath life (an important plating condition for Ni(P)) was varied 

and the microstructure of the SAC solder joint on the ENIG and ENEPIG surface 

finish was evaluated. The bath lives of the Ni(P) in this study were defined by MTOs 

(of 0 or 3) which indirectly represented the bath life. An MTO of 0 is a freshly made 

bath where no additional metal was supplemented. An MTO of 3 represented a bath 

with three times the amount of metal as the original concentration, which was almost a 

waste bath. In industry, a long bath life (or high MTO) is considerably important since 

it reduces costs related to preparing the bath and increases productivity of the plating. 

However, there exist no guidelines regarding how long the plating bath can be used 

before reliability problems occur after solder reflow of the Ni-based surface finish. 

To understand the relationships between the bath life of Ni(P) in the ENIG and 

ENEPIG surface finish processes and reliability of the solder joint, and interfacial 
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microstructure, the brittle fracture behavior of SAC solder joints on ENIG and 

ENEPIG surface finishes were evaluated with different Ni(P) bath lives. The brittle 

fracture behavior was determined using high-speed shear (HSS) tests. In addition, the 

interfaces of SAC/ENIG and SAC/ENEPIG samples were observed with field 

emission scanning electron microscope (FE-SEM) and transmission electron 

microscope (TEM); the results are presented in this chapter. 

 

2.2 Experimental 

2.2.1 PCB design and surface finish 

The PCB used in this study was a solder mask defined (SMD)-type FR-4 board, as 

shown in Figure 2.1. The diameter and thickness of a Cu pad on the test PCB were 400 

μm and 10 μm, respectively. The thickness of the photo-imageable solder mask (PSR) 

of the test PCB was 15 μm. The Cu pad was finished using either the ENIG or 

ENEPIG method. The thickness of Ni and Au for ENIG was 5 μm and 0.05 μm, 

respectively. The ENEPIG surface finish was carried out similarly to the ENIG 

process up to the Ni(P) plating step. Subsequently, the surface was finished using a Pd 

layer and then a Au layer, both with thicknesses of 0.05 μm. The bath life of Ni(P) was 

either 0 or 3 MTO. The P concentrations of the Ni(P) were 6.98 and 7.74 wt% for 0 

and 3 MTO, respectively. The process flow diagram of the ENIG and ENEPIG 

methods is shown in Figure 2.2. 
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The PCB design for the drop shock test is illustrated in Figure 2.3. The PCB for the 

drop shock test was manufactured based on JEDEC Standard D22 B111 [6]. A daisy 

chain was mounted to determine a pass/failure of the test. The configuration of the 

daisy chain on the PCB for the drop shock test is shown in Figure 2.4. The dimensions 

of the substrate and Cu pad opening were 132 × 77 mm and 400 μm, respectively. The 

BGA (AssemTech) contained 62 balls, a size of 450 μm, and pitch of 0.8 mm. 

 

2.2.2 Metal turn over (MTO) 

The MTO represents the amount of Ni ions added to compensate for those 

consumed by the reduction reaction. This is necessary as the plating quality 

deteriorates during the plating process. A higher MTO resulted in lower precipitation 

efficiency due to phosphite formation in the Ni(P) plating solution. In addition, an 

increase in the concentration of P and organic impurities from the PSR ink of the PCB 

were found to reduce the quality of the Ni(P) plated layer [7-9]. Figure 2.5 shows a 

schematic diagram of the Ni(P) plating solution with increasing MTO. The bath lives 

of the Ni(P) in this study had MTO values of 0 and 3, which represent the amount of 

supplemented metal. 

 

2.2.3 Soldering process 

Solder balls were mounted on the ENIG- and ENEPIG-finished Cu pads. For the 
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solder ball mounting, Sn-3.0wt%Ag-0.5wt%Cu (SAC305) solder paste (Senju, M705-

SHF) was printed on the surface finished Cu pad and then a SAC305 solder ball 

(Ducsan Hi-Metal) with a diameter of 450 μm was mounted on the printed SAC305 

solder paste. After solder ball mounting, the test PCB was reflowed in a reflow oven 

(Heller, 1809UL) with a peak temperature of 251 ºC. Figure 2.6 shows the SAC305 

reflow profile and Figure 2.7 shows optical micrographs of the test sample after reflow. 

 

2.2.4 Mechanical properties 

2.2.4.1. Solder joint strength and brittle fracture 

The shear strength and brittle fracture behavior was evaluated with a high-speed 

shear tester (Dage, 4000HS) [10-11]. The distance between the shear tool and the top 

of the PSR on the test PCB was 50 μm. The shear speed (i.e., strain rate) of the HSS 

test was varied from 0.1 to 2.0 m/s. An average shear strength was calculated from 

measurements of 25 samples for each experimental condition. Figure 2.8 shows a 

schematic of the HSS test layout. After the HSS test, the fracture surface was observed 

using optical microscopy and an FE-SEM (FEI Inspect F). The fracture surface was 

classified into five different ranges (100%, 75%, 50%, 25%, and 0%) corresponding to 

the fraction of the area over which a brittle fracture was observed. The 75%, 50%, 

25%, and 0% brittle fracture represented the ranges 75–100%, 50–75%, 25–50%, and 

0–25%, respectively. An average brittle fracture rate was calculated from the results 
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for 25 samples for each test condition. Figure 2.9 shows each classified modes and 

constant of brittle fracture. In this study, the brittle fracture rate was defined as follows: 

Brittle fracture rate (%) =
∑(𝐴𝑖∙𝑁𝑖) 

𝑁𝑡𝑜𝑡
 ×  100                      (1) 

where Ai, Ni, and Ntot are a brittle fracture parameter and number of samples for each 

brittle fracture mode (i), and the total number of samples, respectively. Here, Ai was 

designated as 1, 0.75, 0.5, 0.25, or 0 for the 100%, 75–100%, 50–75%, 25–50%, and 

0–25% brittle fracture modes, respectively. For example, the numbers of samples 

corresponding to each fracture mode for the 0 MTO sample for a 0.3 m/s condition 

were 1, 4, 8, 5, and 7 for 100%, 75–100%, 50–75%, 25–50%, and 0–25%, respectively. 

Cross-sectional imaging of the joint interface was also observed using FE-SEM with 

energy dispersive spectroscopy (EDS) and TEM (JEOL JEM 4010). The TEM sample 

was prepared using a focused ion beam system (FIB, Helios 600). 

 

2.2.4.2. Drop shock reliability 

Drop shock testing was performed based on JEDEC standard xxx under the 

conditions shown in Table 2.1. The pulse duration and impact acceleration were 0.5 

ms and 1500 G, respectively, according to the most widely used B test condition [12]. 

The failure criterion was defined as when the resistance at the daisy chain was more 

than 100 Ω. The BGA was mounted using the SMT process and a photograph of the 

prepared sample is shown in Figure 2.10. The BGAs were mounted at U2, U4, U8, 
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U12, and U14. It was revealed that the U8 package had the most PCB warpage due to 

the shock. 

 

2.3 Results and discussion 

2.3.1 HSS strength and brittle fracture behavior 

2.3.1.1. ENIG surface finish 

The HSS strengths of the SAC/ENIG with different MTO values of Ni(P) are 

shown in Figure 2.11, for strain rates between 0.1 and 2.0 m/s. The HSS strength 

decreased as the strain rate increased for all samples. In general, the strength of the Sn-

base solder increased with increasing strain rate (i.e. strain rate hardening occurred). 

As the strain rate increased, the solder matrix was strengthened and the fracture site 

moved to the weaker IMC layer. Higher shear speeds resulted in more fractures 

occurring in the IMC layers. Therefore, the shear strength of SAC/ENIG joints 

decreased with increasing shear speed. For the solder joint of the 0 MTO sample, the 

average shear strength was 6.51 kgf/mm2 which decreased to 5.43 kgf/mm2 as the 

strain rate increased from 0.1 to 2.0 m/s. It has been reported that the shear strength of 

a SAC solder joint decreased with strain rate when the strain rate was higher than 0.1 

m/s [13]. Sn-based solders have been shown to experience strain rate hardening during 

shear tests [14]. We observed the failure site moving from the solder to the weaker 

IMC layers as the strain rate increased, which resulted in decreasing shear strength 
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with increasing strain rate. The HSS strength was dependent on the bath life of Ni(P). 

The 0 MTO samples showed a higher HSS strength than the 3 MTO samples; the 

average HSS strength at 2.0 m/s was 5.79 kgf/mm2 and 4.74 kgf/mm2 for 0 and 3 MTO, 

respectively. 

To understand the effect of the Ni(P) bath life on the fracture behavior of 

SAC/ENIG, the fracture surface after the HSS test was observed using SEM. EDS 

analyses showed that the ductile fracture surface was mainly composed of Sn and the 

brittle fracture surface was composed of Ni, Sn, P, and Cu, which indicated that the 

ductile fracture occurred at the solder region and the brittle fracture occurred at the 

IMC layer. Since the total number of samples was 25, the brittle fracture rate derived 

from Eq. (1) was 37.0% for the 0 MTO sample under a strain rate of 0.3 m/s. Figure 

2.12 shows the brittle fracture rate of the SAC solder joint on ENIG (0 and 3 MTO) 

with varying strain rate. The brittle fracture rate increased as the strain rate increased. 

Under a strain rate of 0.5 m/s, the 0 MTO samples showed a lower brittle fracture rate 

than the 3 MTO samples. As the strain rate increases to 2.0 m/s, most samples showed 

almost 100% brittle failure due to the high strain rate. 

 

2.3.1.2. ENEPIG surface finish 

The HSS strengths of SAC/ENEPIG as a function of MTO are shown in Figure 2.13. 

The joint strength of both 0 and 3 MTO samples showed a tendency to decrease within 
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1.0 kgf/mm2 when the strain rate increased. The 0 MTO samples showed a higher HSS 

strength than the 3 MTO samples; the average HSS strength at 2.0 m/s was 6.82 

kgf/mm2 and 6.54 kgf/mm2 for 0 and 3 MTO, respectively. 

The brittle fracture rate of the ENEPIG surface finish was calculated using Eq. (1) 

and is shown as a function of strain rate in Figure 2.14. At 0 MTO, the brittle fracture 

rate was 0% up to 0.3 m/s strain rate and increased to 30% at strain rates above 2.0 m/s. 

Although the 3 MTO samples exhibited a higher brittle fracture rate, the 0 MTO 

samples reached 70% at a strain rate of 2.0 m/s, indicating a higher brittle fracture rate 

than the ENIG samples. The strength and brittle fracture properties of 0 MTO were 

superior to those of 3 MTO for both ENIG and ENEPIG surface finishes. As the bath 

life of the Ni(P) plating solution increased, the mechanical properties of the solder 

joint deteriorated. 

 

2.3.1.3. Main effect and interaction 

The main effect and interaction were analyzed in accordance with joint strength and 

brittle fracture properties of ENIG and ENEPIG surface finishes. The joint strength of 

the ENEPIG surface finish was better than that of the ENIG finish. Furthermore, the 

ENEPIG surface finish exhibited a lower decrease in strength with increasing strain 

rate. In conclusion, the best mechanical properties were observed for the ENEPIG 

surface finish at 0 MTO. 

 



88 

 

2.3.2. Microstructure and IMC thickness 

The SAC305 solder has a melting point of 217 °C [15] and consists of an inner 

primary Sn phase, a Ag3Sn-type dendrite structure, and a Cu6Sn5 phase [16]. As the 

distribution of the Ag3Sn-type dendrite structure and Cu6Sn5 phase increases, the 

solder becomes brittle [17]. Figure 2.15 shows the internal solder system deposited 

onto ENIG and ENEPIG surface finishes. From FE-SEM/EDS observations, a similar 

distribution of the inner primary Sn, Ag3Sn, and Cu6Sn5 phases was found for both 

types of surface finished samples. Thus, the effect of surface finish on the inner solder 

structure was negligible. Figures 2.16 and 2.17 show cross-sectional SEM micrographs 

of the IMC layer for the SAC/ENIG and SAC/ENEPIG systems. In this study, the 

thickness of the Au layer was 0.05 μm, which was thin enough to dissolve into the 

molten SAC solder during reflow. Therefore, no Au compound was formed in the 

solder matrix or at the interface. After Au dissolution into the SAC solder, the Ni(P) 

was exposed to molten SAC solder, which resulted in (Cu,Ni)6Sn5 formation at the 

joint interface. The thickness of the (Cu,Ni)6Sn5 layer in the SAC/ENIG system 

depended on the bath life of the Ni(P) plating solution. The average thickness of the 

(Cu,Ni)6Sn5 layer was 1.24 μm for the 0 MTO sample and 2.71 μm for the 3 MTO 

sample. Both 0 and 3 MTO samples showed shallow pits at the solder joint interface 

and the pit size of the 3 MTO sample was larger than that of the 0 MTO sample. Image 

analysis calculated areas of the P-rich layer for the 0 and 3 MTO samples of 4.59 and 

6.65 μm2, respectively. Hence, the thickness of the P-rich layer for the 3 MTO sample 
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was higher than that of the 0 MTO sample. Since the P-rich layer was formed by Ni 

diffusion toward the (Cu,Ni)6Sn5 IMC layer, the thickness of the P-rich layer 

correlated with that of the IMC thickness. The thick IMC and P-rich layers of the 3 

MTO sample indicated that the amount of Ni diffusion through the interface was 

higher for this sample than that of the 0 MTO sample. In addition, the shallow pitted 

region of the 3 MTO sample had a thicker P-rich layer than rest of the interfacial 

region, indicating that more Ni diffusion occurred in this region. Therefore, these 

shallow pits played a role as a fast diffusion path for Ni.  

On the other hand, the IMC thickness in the ENEPIG surface finish samples was 

1.07 μm for the 0 MTO sample and 1.22 μm for the 3 MTO sample. An increase in 

IMC thickness was observed in both ENIG and ENEPIG samples with increasing 

MTO where that of the ENEPIG sample was about 1.2 times higher than for the ENIG 

sample. Figure 2.19 and Figure 2.20 show TEM micrographs of IMCs grown in the 

ENIG and ENEPIG systems, respectively for both MTO conditions. These results 

indicated significant growth of the IMC layer in the ENEPIG surface finish system. 

The P-rich layer of the ENEPIG surface finish sample was found to be thinner than 

that of the ENIG surface finish sample. The P-rich layer was generated from the 

remaining concentration of P, which showed a relative increase due to Ni ion diffusion 

(and IMC formation) in the Ni(P) layer. Hence, a thinner P-rich layer indicates better 

control of the Ni diffusion. Accordingly, thinner IMC and P-rich layers were formed in 

the Pd layer of the ENEPIG surface finish due to the controlled Ni, Sn, Cu diffusion 
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compared to the ENIG system, resulting in a lower brittle fracture rate since the 

growth of the brittle IMC layer was inhibited. 

 

2.3.2.1. Nanovoids 

In order to understand the decrease in joint strength and increase in brittle fracture 

behavior with increasing MTO, the microstructure after surface finishing was analyzed. 

Figures 2.19 and 2.21 show the microstructure as a function of the MTO of the surface 

finish for ENIG and ENEPIG systems. Figure 2.19 shows that Au ions diffuse into the 

Ni(P) layer for both ENIG 0 MTO and 3 MTO conditions. On the contrary, Figure 

2.21 shows that for the ENEPIG samples, the diffusion of the Au ions into the Ni(P) 

layer is prevented by the Pd layer. However, the diffusion of Pd ions into the Ni(P) 

layer under 3 MTO conditions for the ENEPIG system was observed. In the process of 

soldering, the Au and Pd layers were dissolved into the solder, and then the IMC was 

formed as the Ni(P) layer on the Ni(P)/SAC interface decayed. However, an uneven 

Ni(P) layer caused a decrease in solderability. Yoon et al. [18] showed that the nodule 

size of the Ni(P) layer changed with variations in pH of the plating bath, and 

solderability decreased with increasing RMS of the film. Therefore, it is very 

important to maintain a stable plating quality of the Ni(P) layer. 

To understand the brittle fracture behavior of the Ni(P) plating solution as a 

function of MTO, the ENIG and ENEPIG surface finish samples were analyzed by 

TEM after soldering. Figure 2.21 shows the cross-sectional microstructure analyzed by 
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TEM of the (Cu,Ni)6Sn5 IMC and P-rich layers of the ENIG surface finish sample as 

functions of MTO. Nanovoids were observed in the NiSnP layer formed between P-

rich and (Cu,Ni)6Sn5 layer for both the 0 MTO and 3 MTO samples. The nanovoids in 

the 3 MTO sample were larger than those of the 0 MTO sample; 20–40 nm and 5–10 

nm, respectively. Figure 2.22 shows TEM images of the microstructure of cross-

sections of ENEPIG surface finish sample. No nanovoids were observed, regardless of 

the MTO condition. Three mechanisms for nanovoid formation are proposed; (1) the 

Kirkendall void mechanism resulting from the difference in Sn and Ni diffusivity 

during the solder reflow process [4,7,19], (2) the result of incorporated organic 

material [3], and (3)…. Laurila et al. [3] reported that nano-sized features, which 

appeared to be “voids” were actually organic nano-particles when analyzed by high-

resolution phase contrast TEM. Such organic nanoparticles on the PCB surface  

probably originated from the Ni(P) plating bath. The plating bath for the 3 MTO 

sample was almost a waste solution, which possessed more organic contaminants than 

the 0 MTO sample. If the number of nanovoids increases due to organic contaminants 

falling from the PSR ink onto the surface of the PCB, then the number of nanovoids 

should increase with the size of the PCB. Therefore, the nanovoids should increase, 

not only for 3 MTO, but also for MTOs of 1 and 2. However, this is unlikely, as the 

degradation in the mechanical properties was observed only for an MTO of 3, as 

shown in Figures 2.11 and 2.13. Lastly, Chung et al. [19] have reported that nanovoid 

generation is a result of galvanic corrosion caused by the potential differences between 
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the Ni(P) and Au layers. They also stated that the P content in that case was 5–9 wt.%. 

In this study, nanovoids were observed, as shown in Figure 2.17(b), where the P 

content of the 3 MTO was 9.62 wt.%. Therefore, it is proposed that the reason the 

number of nanovoids increased for the ENIG 3 MTO sample was galvanic corrosion 

between the Ni(P) and Au layers in the immersion Au plating process.  

In contrast, even though a defect in the Ni(P) layer was observed for the ENEPIG 3 

MTO in Figure 2.19(b), nanovoids were not observed in Figure 2.20(b). In order to 

understand this phenomenon more clearly, thermal aging was carried out for 100 h at 

150 °C. After the thermal aging, nanovoids was observed on the ENEPIG sample. A 

cross-sectional TEM micrograph of the 0 MTO ENEPIG sample is shown in Figure 

2.24(a), where nanovoids with a diameter of about 5 nm were observed, while 

nanovoids with a diameter of about 10–20 nm were found for the 3 MTO sample 

shown in Figure 2.24(b). The reason for the larger nanovoids in the as-reflowed 

sample was that Kirkendall voids grew during the process of diffusion of internal 

microstructure. Both Figures 2.23 and 2.24 indicate that the size of the nanovoids was 

greater for the 3 MTO sample than for the 0 MTO sample, for both ENIG and 

ENEPIG surface finishes. This is consistent with the results of the analyses of the 

mechanical properties and microstructures of the as-deposited samples. 

 

2.3.3 Brittle fracture mechanism of ENIG surface finish with increasing MTO 

The fracture surface after the HSS test was observed using optical microscopy, as 
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shown in Figure 2.25. For the 3 MTO sample, circular features were observed on the 

fracture surface. We prepared another fracture surface sample and SEM with EDS 

mapping was carried out, as shown in Figure 2.26. In the EDS mapping of the 3 MTO 

sample (b), the circular features were clearly observed in the Sn map, however the  

brightness within the circular features was very low, indicating that these features did 

not contain Sn. The interfacial phase that did not contain Sn was the P-rich layer 

(Ni3P). Therefore, it is concluded that the circular features on the fracture surface of 

the 3 MTO sample were P-rich. Figure 2.27 shows a cross-sectional SEM micrograph 

of the fracture surface region outside the circular features, where the fracture occurred 

mainly in the (Cu,Ni)6Sn5 IMC and at Ni-Sn-P layers. To confirm the phase of the 

circular features, a cross-section of one of these features on the fracture surface was 

observed using TEM, as shown in Figure 2.28, where it can be seen that the circle was 

mainly composed of P-rich material. The Ni-Sn-P phase was also observed in the 

cross-section. For the circular feature on the fracture surface, the crack propagated 

mainly through the P-rich layer. Such features were possibly formed due to the thick 

P-rich layer in the 3 MTO sample. In summary, the fracture in the 0 MTO sample 

occurred in (Cu,Ni)6Sn5 and Ni-Sn-P layers the fracture in the 3 MTO sample occurred 

in these layers as well as the P-rich layer. Previous studies reported that the brittle 

fracture at the interface resulted from weak adhesion of the P-rich layer and/or 

nanovoids formed in the Ni-Sn-P layer [20-21]. 

In conclusion, the 3 MTO sample had thicker (Cu,Ni)6Sn5 and P-rich layers than the 
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0 MTO sample. The thick P-rich layer of the 3 MTO sample resulted in circular 

features on the fracture surface. In addition, the 3 MTO sample showed large 

nanovoids at the solder joint interface. Hence, the interface of the 3 MTO sample was 

weaker than that of the 0 MTO sample and showed enhanced brittle fracture behavior. 

 

2.3.4 Dependence of brittle fractures on nanovoid size 

In order to more clearly understand the correlation between nanovoid size and 

brittle fracture behavior, the percentage of brittle fracture was plotted as a function of 

nanovoid size (measured from the TEM images), as shown in Figure 2.29. As shown 

in Figure 2.29 (a), the nanovoid size for the ENIG 0 MTO sample was around 15 nm 

for the initial condition and around 40 nm after thermal aging, while the ENEPIG 0 

MTO sample had nanovoids under 2 nm for the initial condition which did not grow 

significantly after thermal aging. The thickness was the highest for the ENIG 3 MTO 

sample, followed by ENIG 0 MTO, ENEPIG 3 MTO, and ENEPIG 0 MTO. The 

percentages of brittle fracture followed the same order as the thickness values,  

indicating a proportional relationship between nanovoid size and brittle facture. Table 

2.2 displays the nanovoid size and percentage brittle fracture data. 

 

2.3.5 Drop shock reliability 

According to the drop shock test results of SAC/ENIG and SAC/ENEPIG samples, 
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all failure occurred in the U8 package, as shown in Figure 2.30. The failure of the 

ENIG surface finish occurred after 4 cycles for the 0 MTO samples and 1 cycle for the 

3 MTO samples. Meanwhile, the failure of the ENEPIG surface finish occurred after 9 

cycles and 31 cycles for 0 MTO and 3 MTO samples, respectively. Hence, the 

SAC/ENEPIG joint had better drop shock reliability compared to the SAC/ENIG joint. 

Figure 2.32 shows SEM images of cross-sections of fracture regions after the drop 

shock tests. Cracks were observed at the interface between the (Cu,Ni)6Sn5 and P-rich 

layers in both ENIG and ENEPIG surface finish samples. The decrease in drop shock 

reliability with increasing MTO originated from increasing IMC thickness due to 

nanovoid formation in the NiSnP layer, which proportionally increased the brittleness. 

 

2.4 Summary 

The effect of the bath life of Ni(P) in ENIG on the brittle fracture behavior of the 

SAC solder joint was investigated in this study. After reflow, the 0 MTO sample had a 

lower (Cu,Ni)6Sn5 thickness than the 3 MTO sample. The thickness of the P-rich layer 

in the 3 MTO sample was higher than that of the 0 MTO sample. The 3 MTO sample 

had large shallow pits at the interface between the (Cu,Ni)6Sn5 and Ni(P) layers after 

reflow. The pitted region of the 3 MTO sample had a thick P-rich layer and possibly 

enhanced Ni diffusion, yielding the corresponding thick (Cu,Ni)6Sn5 layer. The brittle 

fracture behavior of the 0 MTO sample was superior to that of the 3 MTO sample. 

During the HSS testing, the fracture normally occurred at multiple sites in the 
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(Cu,Ni)6Sn5, Ni-Sn-P, and P-rich layers. However, the 3 MTO sample showed circular 

features on the brittle fracture surface which were identified as exposed P-rich layers. 

The size of the nanovoid in the Ni-Sn-P layer was higher in the 3 MTO sample than in 

the 0 MTO sample. The weak interfacial microstructures (thick P-rich layer and large 

nanovoids) appeared to increase the brittle fracture rate of the 3 MTO sample. 
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2.5 Figures 

 

 

 

 

 

 

 

 

Figure 2.1 Photograph of the PCB tested for joint strength measurements. 
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(a) ENIG surface finish 

 

 

 

(b) ENEPIG surface finish 

 

Figure 2.2 Schematic images of the test substrates. (a) ENIG surface finish, and (b) 

ENEPIG surface finish.  
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Figure 2.3 Schematic diagram of the PCB used for the drop shock tests.  
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(a) Ball side                                 (b) Test PCB side 

 

(c) After mounting to test PCB 
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Figure 2.4 Schematic diagrams of the daisy chains in this study. (a) Ball side, (b) test 

PCB side, and (c) after mounting to the PCB.   

 

 

 

 

 

Figure 2.5 Schematic showing the metal turn over (MTO) of the plating solution. 
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Figure 2.6 Temperature vs. time reflow profile for the Sn-3.0Ag-0.5Cu solder. 

 

 

Figure 2.7 Optical micrographs of the SAC305 solder balls on the surface-finished 

test PCB. 

 

 

 

Figure 2.8 Schematic showing the HSS test setup. 
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Figure 2.9 Definition of the percentage of brittle fracture ranges. 

 

 

 

Table 2.1  Experimental conditions and equations for drop tests. 

 

 

 

Brittle fracture constant classification with exposed pad 

   Class 1. 100% area : 1.0 

   Class 2. 75% to 99% area : 0.75 

   Class 3. 50% to 74% area : 0.5 

   Class 4. 25% to 49% area : 0.25 

   Class 5. 0% to 24% area : 0 

Brittle 

Ductile 

Class 4. 
25% to 50% 

<Example> 

Shear direction 
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Figure 2.10 Photograph showing the BGA mounting configuration on the test PCB. 
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Figure 2.11 High-speed shear strength as a function of shear speed for SAC/ENIG 

samples with different bath lives of Ni(P). 
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Figure 2.12 Percentage of brittle fracture rate as a function of shear speed for the 

SAC/ENIG samples with different bath lives of Ni(P). 
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Figure 2.13 High-speed shear strength as a function of shear speed for 

SAC/ENEPIG samples with different bath lives of Ni(P). 
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Figure 2.14 Percentage of brittle fracture as a function of shear speed for the 

SAC/ENEPIG samples with different bath lives of Ni(P). 
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Figure 2.15 SEM images showing the microstructure of bulk solder for the ENIG and 

ENEPIG samples. 
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(a) ENIG 0 MTO sample 

 

(b) ENIG 3 MTO sample 

 

Figure 2.16 Cross-sectional SEM micrographs of the SAC/ENIG for a bath life of (a) 

0 MTO and (b) 3 MTO. 
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(a) ENEPIG 0 MTO sample 

 

(b) ENEPIG 3 MTO sample 

 

Figure 2.17 Cross-sectional SEM micrographs of the SAC/ENIG for a bath life of 

(a) 0 MTO and (b) 3 MTO. 
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Figure 2.18 Comparison of IMC thickness for ENIG and ENEPIG samples with 

different plating solution lifetimes. 
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(a) ENIG 0 MTO sample 

 

(b) ENIG 3 MTO sample 

Figure 2.19 Cross-sectional TEM micrographs of as-deposited ENIG samples. (a) 0 

MTO and (b) 3 MTO. 
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(a) ENEPIG 0 MTO sample 

 

(b) ENEPIG 3 MTO sample 

Figure 2.20 Cross-sectional TEM micrographs of as-deposited ENEPIG samples. (a) 0 

MTO and (b) 3 MTO. 
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(a) ENIG 0 MTO sample 

 

 

(b) ENIG 3 MTO sample 

 

Figure 2.21 Cross-sectional TEM micrographs of SAC/ENIG samples. (a) 0 MTO and 

(b) 3 MTO. 
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(a) ENEPIG 0 MTO sample 

 

 

(b) ENEPIG 3 MTO sample 

 

Figure 2.22 Cross-sectional TEM micrographs of SAC/ENEPIG samples. (a) 0 MTO 

and (b) 3 MTO. 
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(a) ENIG 0 MTO sample 

 

 

(b) ENIG 3 MTO sample 

 

Figure 2.23 Cross-sectional TEM micrographs of SAC/ENIG after thermal aging at 

150 °C for 100 h. (a) 0 MTO and (b) 3 MTO. 
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(a) ENEPIG 0 MTO sample 

 

 

(b) ENEPIG 0 MTO sample 

 

Figure 2.24 Cross-sectional TEM micrographs of SAC/ENEPIG after thermal aging at 

150 °C for 100 h. (a) 0 MTO and (b) 3 MTO. 
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(a) 

 

 

(b) 

 

Figure 2.25 Optical micrographs of the fracture surfaces after HSS testing for (a) 0 

MTO and (b) 3 MTO samples. 
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(a) 

 

  

(b) 

 

Figure 2.26 SEM images and EDS maps of the fracture surfaces after HSS testing for 

(a) 0 MTO and (b) 3 MTO samples. 
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Figure 2.27 Cross-sectional SEM image of a representative section of the fracture 

surface (away from the circular features). 
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Figure 2.28 Cross-sectional TEM micrograph of a circular feature on the fracture 

surface shown in Fig. 6. 
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(a) Nanovoid size with thermal aging 
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(b) Percentage of brittle fracture with increasing strain rate 

Figure 2.29 (a) Nanovoid size as a function of thermal aging time. (b) Percentage of 

brittle fracture with increasing strain rate. 
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Figure 2.30 Results of drop shock tests of ENIG samples. 
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Figure 2.31 Results of drop shock tests of ENEPIG samples. 
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Figure 2.32 Cross-sectional SEM images of the fractures generated after drop shock 

tests of (a) ENIG and (b) ENEPIG samples under 0 MTO and 3 MTO conditions. 
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Chapter 3 

 

Effect of multiple heat-treatments on Sn-Cu interfacial 

reactions 

 

 

 

 

 

3.1 Introduction 

The soldering process and reliability of the joints between the components highly 

depend on the quality of the surface finish of a PCB [1-3]. To ensure high quality 

solder interconnects, the PCB surface finish should have high solderability, low 

processing cost, low thermal stress, and a long shelf life. In addition, the thickness of 

the IMC, composition, microstructure, mechanical properties, and reliability of solder 
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joints are strongly dependent on the surface finish layers [3-5]. Among conventional 

surface finishes (such as OSP, immersion Sn, immersion Ag, and electroless Ni 

immersion Au) OSP is the most common as it has a simple processing method, low 

cost, and adequate solderability, and is also considered to have low environmental 

impact [6-11]. However, the OSP surface finish has several disadvantages, such as a 

short shelf life, low corrosion resistance, and poor multiple soldering behavior [5, 12]. 

In particular, the latter is one of the most important parameters for the high quality 

assembly of complex electronic modules [13-14]. For example, double-sided PCBs are 

subjected to at least two reflow processes. During this procedure, the bottom side of 

the PCB is exposed to high temperature under an air atmosphere. If wave soldering 

and rework processes are used for the assembly of the electronic module, at least four 

heat treatments are required. Therefore, the surface finishes that are not soldered at 

each step of the process can be degraded by the oxidizing environment during heating. 

For these reasons, a PCB surface finish with high stability during multiple soldering 

steps is essential to ensure the reliability of solder joints. Figure 3.1 shows a schematic 

of a multiple heat treatment process. 

The plasma surface finish is a thin and protective coating that is a potential 

replacement for conventional surface finishes as it has several advantages. The shelf 

life of a plasma-finished PCB is over one year, and the corrosion resistance of the 

plasma finish layer is generally higher than those of conventional surface finishes. The 

plasma surface finish is more environmentally friendly than current wet chemical 
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processes, as it eliminates the use of water, precious and semi-precious metals 

including Au, Pd, and Ni, and is a safer process for operators [15]. Nevertheless, 

detailed studies regarding the reliability of the plasma finish and comparisons of the 

plasma and OSP finishes remain insufficient. Therefore, in this study, we investigate 

the effects of multiple heat treatments on the solderability (or wettability) of plasma-

and OSP-finished Cu coupons using a wetting balance test with Sn-3.0Ag-0.5Cu 

(SAC305) solder. In addition, we formed SAC305 solder balls on the two different 

PCB substrates and investigated the interfacial reactions and mechanical shear 

properties of solder joints formed during multiple reflow processes. The relationships 

between solderability, interfacial reactions, and shear force applied to the solder joints 

are discussed. 

 

3.2 Experimental 

3.2.1 PCB design and surface finishes 

The PCBs used in this study were SMD FR-4-type. A schematic of the test PCBs is 

shown in Figure 3.2. The diameter of the Cu pads on the PCB was 400 μm, and the 

thicknesses of the Cu pads and PSR were 10 and 15 μm, respectively. For the plasma 

surface finish, an organic thin film was deposited onto the Cu pad of the test PCB 

using PE-CVD (JESAGI Hankook Corp., Korea). Figure 3.3 shows a schematic of the 

plasma surface finish process. The precursor used in the plasma coating process was 
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fluorocarbon. Conventional OSP-finished PCBs were also used in this study as a 

reference for comparing the quality of the plasma surface finish. The microstructures 

of the plasma- and OSP-finished layers were analyzed using TEM (JEOL JEM 4010). 

 

3.2.2 Wetting force and time 

To understand the effects of the plasma and OSP surface finishes on the solder 

wetting properties, Cu wetting test coupons with dimensions of 1.0 × 3.0 × 0.3 mm3 

were prepared. The solderability of the two surface finishes was measured by a wetting 

balance tester (MALCOM, SP2). A SAC305 solder was used in the wetting test. The 

wetting temperature was 250 °C and the sample immersion speed, depth, and time 

were 5 mm/s, 5 mm, and 10 s, respectively. Ten measurements were made at each test 

condition in order to improve the statistical confidence level of the results. The 

maximum wetting force (Fmax) and zero-cross time (T0), were used to assess the 

wetting behavior of the surface finishes. To simulate the effect of multiple reflow 

processes (i.e., multiple heat treatments) on the solderability of the two surface 

finishes, the test coupons were heat treated in a reflow oven (Heller, 1890UL) under 

typical SAC305 reflow conditions (as described by the heating profile shown in Figure 

3.4). The peak temperature of the reflow profile was approximately 242 ºC. The 

wetting tests were performed after the samples had experienced either zero, two, or 

four heat treatments. In the solder spreading test, SAC305 solder paste was screen-

printed on the OSP- and plasma-finished PCBs, and then the PCBs were reflowed. The 
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diameters of the printed solder paste and Cu pads on the PCB were 300 and 400 μm, 

respectively. OM was used to observe the surfaces of the PCBs after testing. The 

spreading areas were characterized using image analysis software and the spreading 

ratios were calculated as the increase in area as a percentage. 

 

3.2.3 Soldering and multiple heat treatments 

Soldering was performed in order to evaluate the interfacial reactions and 

mechanical strength of the joints between the SAC305 solder alloy and the two 

different surface finishes. Firstly, SAC305 solder paste (Senju, M705-SHF type 5) was 

printed on the test PCB (Figure 3.2) using a stencil mask. Secondly, SAC305 solder 

balls (Duksan Hi-Metal, Korea) with a diameter of 450 μm were placed on the printed 

SAC305 solder paste. Then, the test PCB was heated in a reflow oven (Heller, 1890UL) 

using the temperature profile shown in Figure 3.4. To investigate the multiple 

solderability of the surface finishes, the test PCBs were heat treated various times in 

the reflow oven under the same conditions. After multiple heat treatments, solder paste 

and balls were applied to the test PCBs and reflowed to form solder joints. The 

multiple reflows were performed up to five times. For example, samples heat treated 

three times were subjected to two heat treatments without soldering, and finally a third 

reflow process with the solder alloy. After the reflow processes, cross-sectional 

samples were prepared for characterization of the interface. Common metallographic 

practices, grinding and polishing, were used to prepare the samples. The 
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microstructures and chemical compositions were analyzed using FE-SEM (FEI Inspect 

F) and TEM equipped with EDS. 

 

3.2.4 Mechanical properties 

Ball shear tests were performed on the reflowed samples using a shear tester (Dage 

4000) with a shear tool height of 50 μm and a shear speed of 300 μm/s. On the other 

hand, the high-speed shear strength and brittle fracture behavior were evaluated with a 

high-speed shear tester (Dage, 4000HS). The distance between the shear tool and the 

top of the PSR on the test PCB was 50 μm. The shear speed (strain rate) of the HSS 

test was varied from 0.1 to 2.0 m/s. The average shear strength of twenty-five solder 

balls, after the minimum and maximum outlier values had been removed, was recorded. 

After the ball shear testing, the fracture surfaces were investigated thoroughly using 

SEM and EDS. 

 

3.3 Results and discussion 

3.3.1 Corrosion resistance with multiple heat treatments 

To evaluate the corrosion resistance of the solder joints, a salt spray test was 

performed and the samples characterized after 0, 6, and 15 h. Figure 3.5 (a) shows 

optical microscopy images of the pads for OSP and plasma finishes at the initial 

conditions (before heat treatment).  Figure 3.5(b) shows that the corrosion had 
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progressed after 6 h, where the surface of the plasma-finished pad showed low 

corrosion. Figure 3.5(c) shows the corrosion after 15 h, where the pad of the OSP-

finished sample was corroded more than the plasma-finished one by the salt spray test.  

 

3.3.2 HSS strength and brittle fracture behavior with multiple heat treatment 

The shear strength of the solder joints on OSP- and plasma-finished samples were 

evaluated with high-speed shear testing by varying the strain rate (from 0.1 to 2 m/s), 

as shown in Figure 3.6. For the solder joint on the OSP finish, the shear strength was 

6.9 kgf/mm2 at a strain rate of 0.1 m/s and increased to 8.1 kgf/mm2 as the strain rate 

increased to 2.0 m/s. The shear strength of the solder joint on the plasma-finished 

sample was 6.9 kgf/mm2 at 0.1 m/s and increased to 7.6 kgf/mm2 as the strain rate 

increased to 2.0 m/s (i.e., similar values to that of the OSP sample). 

The fracture mode was determined by observing the fracture surface of twenty-five 

samples. In this study, the brittle fracture rate was defined as shown in Equation (1) of 

Chapter 2. Figure 3.7 shows the brittle fracture rate after single reflow. For the OSP- 

and plasma-finished samples, the brittle fracture rates were 30.6% and 38.9%, 

respectively. The brittle fracture rate of the plasma finish was similar to that of the 

OSP finish after single reflow. Figure 3.8 shows SEM micrographs of the cross-

sections of the OSP- and plasma-finished samples after the single reflow. The 

thicknesses of the IMC layers of the OSP- and plasma-finished samples were 3.2 µm 

and 2.9 µm, respectively. EDS analyses revealed that the IMC layers were Cu6Sn5 for 
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both samples. To investigate the effects of multiple reflow, the bare PCB with the OSP 

and plasma finishes were reflowed four times and then solder balls were attached and 

the sample reflowed (a total of five reflows). The solder joint properties were also 

examined using the HSS test. The shear strengths as a function of strain rate are shown 

in Figure 3.9. The shear strengths for both OSP- and plasma-finished samples were 

similar after multiple reflows, 36.1% and 44.4%, respectively, as shown in Figure 3.10. 

The plasma-finished samples showed lower brittle fracture than the OSP samples. 

Figure 3.11 shows cross-sectional SEM micrographs of the IMC layers, where the 

thicknesses were 4.2 µm and 5.0 µm for the plasma- and OSP-finished samples, 

respectively. 

Based on Equation (1), the total brittle fracture rate of the OSP finish was lower 

than that of the plasma finish. In addition, the percentage of brittle fracture for the OSP 

and plasma finishes tended to increase with multiple reflow [16]. Under single reflow 

conditions, the 100% brittle fracture rate of the plasma sample was higher than that of 

the OSP sample. However, the brittle fracture rate of the plasma finish after the fifth 

reflow was lower than that of the OSP finish. These trends demonstrate that the plasma 

finish has advantages during multiple reflows compared to the standard OSP finish. 

 

3.3.3 Evaluation of wettability 

Excellent wetting properties are very important for solder alloys to ensure a reliable 

connection between the solder and the components. The solderability of the SAC305 
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alloy with different surface finishes was measured using a wetting balance test. This 

alloy system is technically important because it is generally recognized as the first 

choice for a Pb-free solder [4]. Figures 3.12 and 3.13 show the wetting force and zero-

cross time as a function of the number of heat treatments for the different surface 

finishes. For each surface finish, Fmax and T0 were calculated by averaging ten sets of 

wetting data (where the error bars represent the standard deviation of these data sets). 

In the case of the plasma surface finish, the wetting force did not change with further 

heat treatments. On the other hand, the wetting force of the OSP surface finish rapidly 

decreased with additional heat treatments. The zero-cross times for both surface 

finishes increased with increasing number of heat treatments, however, those for the 

OSP finish increased more rapidly than those of the plasma finish. The plasma-

finished samples had higher wetting forces and shorter zero-cross times than the OSP 

surface finish.  

Figure 3.14 shows OM images of the test coupons after the wetting tests, where 0, 2, 

and 4 refer to the number of heat treatment cycles before wetting. Interesting results 

were observed for the OSP samples. In the case of the sample heat treated four times, 

the wetting reaction did not occur, as shown in Figure 3.14 (a). On the other hand, the 

wetting reactions occurred for the plasma samples irrespective of the number of heat 

treatments, as shown in Figure 3.14 (b). These results are consistent with the wetting 

test results shown in Figures 3.12 and 3.13. These results indicate that the OSP surface 

finish degraded after multiple reflows. Similar results are reported in the literature [15, 
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17]. It has been reported that the solderability of the OSP finish reduced after two 

reflow cycles. On the other hand, we have demonstrated that the solderability of 

plasma-finished PCBs was still high after multiple reflow cycles, making it suitable for 

the fabrication of complex electronic devices. 

Figure 3.15 shows OM images of the spreading test samples for 1, 3, and 5 reflow 

cycles, along with a schematic diagram illustrating the reflow process for both the 

OSP- and plasma-finished PCBs. The percentages refer to the spreading ratios. In the 

case of the plasma-finished sample, the initial spread ratio was around 120%, which 

dropped slightly to around 115% after reflowing. The spread ratio of the initial OSP-

finished sample was similar to that of the plasma-finished sample, but decreased to 

around 108% after three reflow cycles and further to 77% after five reflows. 

 

3.3.4 Microstructural observations 

The morphologies of the OSP- and plasma-finished PCB substrates were analyzed 

using TEM. Figure 3.16 shows cross-sectional TEM images of the OSP- and plasma-

surface finished Cu substrates. The Cu substrates are the bulk regions of the right hand 

sides of the images and the white layers are the surface coatings. The Au, Pt, and C 

layers indicated on the images were deposited as protection layers for TEM sample 

preparation. In addition, the thicknesses of the OSP- and plasma-coated layers are 

indicated by red arrows in Figure 3.16 (a). The OSP layer was irregular and the 

thickness ranged from 5 to 70 nm. On the other hand, the plasma-coated layer had a 
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uniform thickness around 20 nm. The plasma coating process involved plasma 

polymerization, the formation of polymeric materials under the influence of plasma 

[18], which allows the deposition of continuous organic films from the gas phase on a 

metal substrate. The plasma process creates a dense and highly cross-linked polymer 

coating on metal substrates. 

In order to evaluate the effect of the surface finish on the soldering and interfacial 

reactions, a reflow process was conducted using the SAC305 solder. Figure 3.17 

shows cross-sectional TEM images of the OSP and plasma samples after soldering. 

The plasma surface finish was applied across the whole of the PCB and was removed 

by the soldering process only in the areas where flux and solder were applied. In this 

study, the plasma-coated layer was removed by the combined action of the flux and 

the high reflow temperature. As a result, the Cu layer beneath the plasma-coated layer 

was then in direct contact with the molten solder, resulting in the formation of Cu-Sn 

IMCs at the interface. The interfacial reactions and IMC formation in this solder 

system are well known and have been reported in previous studies [19-20]. During the 

reflow process, the SAC305 solder was in the molten state and typical scallop-shaped 

Cu6Sn5 IMCs formed at the interfaces. In addition, thin Cu3Sn layers were observed 

between the Cu6Sn5 IMC and the Cu substrate. Most Sn-based solder alloys form these 

two reaction layers (Cu6Sn5 and Cu3Sn) at the interface between the solder and Cu 

substrate. Consequently, similar interfacial structures were observed at the interfaces 

of the solder joints for both samples. 
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3.3.5 Effect of multiple heat treatment on shear force and soldering area  

Figure 3.18 shows cross-sectional SEM images of the multiple-reflow SAC305 

solder joints with the two different surface finishes. From the TEM results shown in 

Figure 3.17, we confirmed that Cu6Sn5 and Cu3Sn formed as reaction products at the 

interfaces. A close examination of the cross-sectional SEM images revealed that the 

thicknesses of the interfacial IMCs for the two surface finishes were similar (as shown 

in Figure 3.19). 

Figure 3.20 shows the results of the ball shear tests performed to evaluate the effect 

of the surface finish and interfacial reactions on the mechanical reliability of the 

SAC305 solder joints as a function of multiple heat treatments. In the case of the 

plasma coating, the shear force remained nearly constant at approximately 5.2 kgf 

despite multiple reflows. On the other hand, the shear force decreased rapidly after 

five reflow processes for the OSP substrate. The shear force for the single reflow OSP 

joint was approximately 4.7 kgf, which decreased slightly after three reflows, and 

finally decreased dramatically to a value of 3.2 kgf after five reflow cycles. Overall, 

the shear force for the plasma substrate was consistently higher than that for the OSP 

substrate. As the shear force is related to the force required to fracture the solder joint, 

a high value indicates a stronger joint.  

Figure 3.21 shows cross-sectional SEM images of the entire SAC305 solder joints 

areas with different surface finishes and reflow cycles. In the case of the plasma 
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substrate, the SAC305 solder alloy covered all of the Cu pad area (indicated by the 

white dashed line), even after multiple reflows. On the other hand, for the OSP 

substrate, the SAC305 solder did not perfectly cover (i.e., react with) the Cu pads. This 

was due to the deterioration of the OSP surface finish after multiple heat treatments. 

The un-reacted parts of the Cu are indicated by the white arrows in Figure 3.21 (c) and 

(e). These results are consistent with those from the wetting tests shown in Figures 

3.12–3.14. 

Another interesting observation of this study was that voids formed at the 

OSP/solder interfaces after multiple heat treatments (although not at the plasma 

finished interface). These voids are indicated by the black arrows in Figure 3.21. Yoon 

et al. studied the relationship between the interfacial reactions, void formation, and 

mechanical reliability of SAC305/OSP-finished Cu joints [20]. In that study, several 

voids formed at the interface of the OSP-finished Cu joint subjected to a temperature-

humidity test. The voids were caused by the oxidation of the OSP-finished Cu 

substrate during testing. Shear tests were also performed and it was found that the 

mechanical reliability of the solder joint was degraded by these voids at the interface. 

It is interesting to note that the formation of the Cu6Sn5 IMC in the SAC305 solder 

matrix was significantly retarded for the SAC305/plasma finish joint compared to the 

SAC305/OSP finish system where several relatively large Cu6Sn5 IMC features were 

observed in the OSP joints, as shown in Figure 3.21 (a), (c), and (e). 

The fracture surfaces after ball shear testing were examined using SEM in order to 
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verify the variations in the shear force. Figure 3.22 shows the fracture surfaces of the 

two types of SAC305 solder joints for 1, 3, and 5 reflow cycles. The direction of the 

shear is indicated by the black arrow in Figure 3.22. From these fracture surfaces we 

can conclude that the failure mode was consistently related to the bulk for the plasma-

finished substrate, regardless of the number of reflow cycles. Similarly, in the case of 

the OSP-finished substrate, bulk solder failures were observed for the samples 

subjected to one and three reflow cycles. However, a significantly different fracture 

surface was observed for the SAC305/OSP joint after five reflow cycles, where there 

were many voids observed at the interface. In addition, the shearing area decreased 

significantly for the OSP joint reflowed five times. In Figure 3.22(c), the area of the 

Cu pad is indicated by a white dashed circle and the area of the un-reacted Cu is 

shown by the white arrow. The results shown in Figure 3.22 are consistent with those 

of the interfacial microstructures from the cross-sectional SEM micrographs shown in 

Figure 3.21. In conclusion, the reduced bonding area and void formation resulted in an 

abrupt decrease in the shear force in the OSP joint after multiple heat treatments. 

 

3.3.6 Cu oxidation resistance of plasma surface finish 

It was observed that the plasma surface finish did not exhibit any change in the 

bond strength and soldering area after undergoing multiple heat treatments. In order to 

determine the reason for this, Fourier transform infrared spectroscopy (FTIR, Georgia 

Tech.) was carried out. Figure 3.23 shows the results of the FTIR analysis for the as-
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deposited plasma surface finish. This film was found to be a CF2 layer, identified by 

its characteristic peak at a wavenumber of 1200 cm-1. In addition, a carbonyl 

component at 1736 cm-1 and a CHx component at 2800 cm-1 were detected. 

Additionally, a cuprous oxide component was detected at a wavenumber of 640 cm-1 

from the plasma surface finish following surface treatment [21]. This component was 

found to be created when the CF2 layer was exposed to air before deposition in the 

surface treatment chamber. This issue regarding the formation of cuprous oxide would 

need to be addressed by adding a cleaning process before employing vacuum for 

plasma surface treatment. 

According to Ramirez, et al., as the number of heat treatments increases, the Cu 

ions of the PCB pad are found to diffuse to the inside of the OSP layer [22]. In 

addition, a number of previous studies on Cu oxidation have reported the limitations of 

OSPs [23-27]. In order to compare the Cu oxidation layer formed on the plasma 

surface finish and the OSP surface after multiple heat treatments, FTIR analysis was 

conducted and the results as a function of number of heat treatments are shown in 

Figures 3.24 and 3.25. As shown in Figure 3.24, when the number of heat treatments 

increases, increasing quantities of Cu2 oxide can be found on the OSP surface. In 

general, similar quantities of this oxide were observed up to the third heat treatment, 

but after the fourth treatment, the quantities increased drastically. As confirmed by the 

TEM micrograph shown in Figure 3.16, Cu transported from a thin region in the 

uneven OSP layer combined with oxygen to form a Cu2O layer. On the other hand, in 
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the plasma surface finish of Fig. 3.24, there was no change observed in the Cu2O peak, 

even after the fourth heat treatment. Hence, the plasma surface finish has high 

oxidation resistance for multiple heat treatments, and is verified as a Cu-based surface 

finish that could replace the common OSP material. 

 

3.4 Summary 

In this study, the effects of multiple heat treatments on the wettability, interfacial 

reactions, and mechanical reliability of SAC305 solder on plasma surface-finished 

PCBs were investigated, and the results compared to those for the SAC305/OSP 

system.  

Wetting and spreading tests showed that the plasma-finished samples had higher 

wetting forces and shorter zero-cross times than the OSP surface finish. The wetting 

force (and hence solderability) was not dependent on the number of heat treatment for 

the plasma surface finish, whereas the wetting force rapidly decreased with each 

additional heat treatments for the OSP surface finish. In the case of the multiple heat-

treated OSP sample, the wetting reaction did not occur due to the degradation of the 

OSP. 

The plasma-coated layer was uniformly formed on the Cu pad with a thickness of 

about 20 nm. This layer was removed by the combined action of the flux and the high 

reflow temperature used. This resulted in the Cu layer coming into direct contact with 

the molten solder and forming Cu-Sn IMCs at the interface. In the reflow reaction with 
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SAC305 solder, the morphology and thickness of the interfacial IMCs for the two 

surface finishes were similar. 

From ball shear tests it was found that the shear force for the plasma substrate was 

consistently higher than that for the OSP substrate. In the case of the plasma substrate, 

the shear force was independent of the number of reflows, while it decreased rapidly 

after five reflow cycles for the OSP substrate. The poor wettability, reduced bonding 

area, and void formation of the OSP finish after multiple heat treatments resulted in 

degradation of the joint. These results clearly indicate that the plasma surface finish 

was superior to the conventional OSP finish with respect to wettability and joint 

reliability.  

 

 

 

 

 

 

 

 

 

 

 



148 

 

3.5 Figures 

 

 

 

 

 

Figure 3.1 Schematics showing the multiple heat treatment process. 
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Figure 3.2 Schematic illustration of the test samples used in this study, showing the 

FR-4 PCB, photo solder resist (PSR), Cu pads, and surface finish layers. 
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Figure 3. 3 Schematic of the plasma surface finish process. 
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Figure 3.4 Temperature vs. time reflow profile for the Sn-3.0Ag-0.5Cu solder. 
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(a) Initial condition 

     

(b) After 6 hours 

     

(c) After 15 hours 

 

Figure 3.5 Optical microscopy images of the Cu pad after salt spray test for OSP and 

plasma samples, after (a) 0, (b) 6, and (c) 15 h.  
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Figure 3.6 Shear strength as a function of shear speed for OSP- and plasma-finished 

samples after a single heat treatment. 
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Figure 3. 7 Brittle fracture rate of OSP- and plasma-finished sample after a single 

reflow. 

 

    

(a) OSP finish                    (b) Plasma finish 

Figure 3.8 SEM micrographs comparing the morphology of the IMC layers of the (a) 

OSP- and (b) plasma-finished samples after a single heat treatment. 
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Figure 3.9 Comparison of high-speed shear strengths of OSP- and plasma-finished 

samples as a function of shear speed after five heat treatment cycles. 
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Figure 3.10 Percentage of brittle fracture of OSP- and plasma-finished sample after 

five reflow cycles. 

 

    

(a) OSP finish                    (b) Plasma finish 

Figure 3.11 Cross-sectional SEM micrographs comparing the IMC layers of the OSP- 

and plasma-treated samples after multiple heat treatments. 
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Figure 3.12 Wetting forces of the plasma and OSP surface finishes as a function of 

heat treatment cycle. 
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Figure 3.13 Wetting times of the plasma and OSP surface finishes as a function of 

heat treatment cycle. 
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(a) 

 

 

(b) 

 

Figure 3.14 OM images of the test coupons after wetting tests. (a) OSP and (b) plasma 

surface finishes subjected to 0, 2, or 4 heat treatment cycles before wetting. 
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Figure 3.15 (a) Schematic illustration of the solder spreadability test. (b) OM images 

of the soldered PCBs after spreading tests for OSP- and plasma-finished samples 

subjected to multiple heat treatments. 
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(a) 

 

 

(b) 

Figure 3.16 Cross-sectional TEM micrographs of the (a) OSP and (b) plasma surface 

finished Cu substrates, where the surface finish layers are the white films. 
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 (a) 

 

 

(b) 

Figure 3.17 Cross-sectional TEM images of the (a) OSP and (b) plasma surface 

finished samples after soldering showing the formation of IMC grains. 
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Figure 3.18 Cross-sectional SEM micrographs of the SAC305 solder joints with 

different surface finishes after multiple reflows. 
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Figure 3.19 Average thicknesses of the IMC layers within the SAC305 solder joints 

for the OSP and plasma surface finishes as a function of reflow heat treatments. 
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Figure 3.20 Average shear force of the SAC305 solder joints with different surface 

finishes after multiple reflows. 
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Figure 3.21 Cross-sectional SEM micrographs of the multiple-reflow SAC305 solder 

joints with different surface finishes. The white dashed lines indicate the Cu pad, the 

white arrows indicate the unreacted area of the Cu pad, and the black arrows indicate 

voids developed at the interfaces. 
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Figure 3.22 SEM micrographs of the fracture surfaces of the solder joints after shear 

testing. The white dashed circle indicates the area of the Cu pad, the white arrows 

indicate the unreacted area with the Cu pad, and the black arrow indicates the direction 

of shear. 
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Figure 3.23 FITR analysis of the plasma surface finish layer. 
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Figure 3.24 FTIR analysis of the Cu2O peaks for the OSP-finished sample after 

multiple heat treatments. 
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Figure 3.25 FTIR analysis of the Cu2O peaks for the plasma surface finish after 

multiple heat treatments. 
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Chapter 4 

 

Solder printability of a stencil with a hydrophobic organic 

coating 

 

 

 

 

 

4.1 Introduction 

The requirements of recent high-performance mobile devices have driven the use of 

miniaturized electronic components, such as 0603 (0.6 mm × 0.3 mm) and 0402 (0.4 

mm × 0.2 mm) passive chips and fine pitch BGA packages under 0.5 mm in pitch [1-

2]. The adoption of fine-pitch components in electronic circuitry necessitates the 

reduction of the stencil aperture size for solder paste stencil printing. Normally, a 

decrease in the stencil aperture size yields low solder printability, which is a potential 

source of soldering failures [3]. Therefore, the solder printing properties should be 
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enhanced to enable miniaturized components. To improve the printability of small 

pads, hydrophobic-organic-coated stencils have been widely studied [4-5]. Although 

recent studies showed the superiority of hydrophobic coatings, the detailed 

relationship between hydrophobicity and printability has not yet been reported. 

In this study, the effects of hydrophobic organic thin film coatings (i.e., the plasma 

surface finish method) on solder printability are presented, including their impact on 

printing efficiency and the solder bridging rate. The hydrophobic organic film was 

deposited onto the SUS304 stainless steel stencils by plasma-enhanced chemical vapor 

deposition (PECVD) [6]. The microstructure of the aperture wall was observed using 

SEM and TEM and the relationship between wall microstructure and printing 

efficiency is discussed. The solder bridging rate was also evaluated for hydrophobic-

thin-film-coated stencils in this study. 

 

4.2 Experimental procedures 

4.2.1 PCB design and hydrophobic coating 

Hydrophobic organic thin films were deposited on the conventional SUS304 laser-

cut stencil using PECVD [7]. The thickness of the SUS304 laser-cut stencil was 100 

µm. The stencil aperture size was the same as the pad size of the test PCBs. Figure 4.1 

shows the PCB land design used in this study. The test PCB had three sections: 0603 

and 0402 pads, BGA pads, and solder bridging test pads. The 0603/0402 pads and 
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BGA pads were designed for printing efficiency tests. The size of the 0603 pads was 

0.3  0.26 mm and that of the 0402 pads was 0.2  0.23 mm. The distance between the 

pads was 0.16 mm and 0.14 mm for 0603 and 0402, respectively. The BGA pads were 

circular with a diameter of 0.2 mm. The pitch size of the BGA was 0.35 mm. The total 

number of the pads per BGA circuit was 64. The specific design of the solder bridging 

test section shown in Figure 4.1 is shown more clearly in Figure 4.2. The lengths of 

the solder bridging test pads were varied from 0.5 to 1.5 mm and the width was 0.2 

mm. The pitch of the solder bridging test pads was varied from 0.25 to 1.2 mm. Figure 

4.3 shows a schematic of the cross-section of the test PCB. The PCB was of the non-

solder mask defined (NSMD)-type [8]. The final surface finish using the ENIG 

method was applied to the test PCB [9]. 

 

4.2.2 Printing process and solder volume measurements 

The type 5 (size range: 15–25 µm) solder paste (Senju Metal; Sn 96.5 wt%, Ag 3.0 

wt%, and Cu 0.5 wt%) was printed on the PCBs through hydrophobic-film-coated-

stencils using a screen printer (Minami, MK-878Mx) [10]. The processing conditions 

for solder printing are shown in Table 4.1. 

The printing efficiency was calculated using the following equation: 

 

𝑃𝑟𝑖𝑛𝑡𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
  𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑖𝑛𝑡𝑒𝑑 𝑠𝑜𝑙𝑑𝑒𝑟  

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑎𝑠𝑘ℎ𝑜𝑙𝑒
   (1)  
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The volume of the printed solder paste was measured using a solder paste inspection 

machine (SPI, Koh Young Tech KY-3020). The solder bridging rate was defined as 

the number of the bridged PCBs divided by total number of PCBs. 

 

4.2.3 Microstructural observation of stencil aperture 

The microstructure of the stencil aperture was observed using OM and FE-SEM 

(FEI Inspect F). Cross-sectioned samples of the coated stencil were also observed with 

TEM (JEOL JEM 4010). The TEM sample was prepared using FIB techniques (Helios 

600). The surface roughness was measured with atomic force microscopy (AFM, Park 

Systems XE-100). 

 

4. 3 Results and discussion 

4.3.1 Hydrophobic coating on stencil 

The hydrophobic properties of the organic thin film on the stencil were evaluated 

using a water droplet contact angle test; the water droplet observed on the stencil is 

shown in Figure 4.4 [11]. The contact angle of the water droplet on the uncoated 

stencil was 66.5° while that on the coated stencil was 100.8°. The higher contact angle 

for the thin-film coating confirms that the coated stencil was more hydrophobic than 

the uncoated stencil. 
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The stencil surface and the aperture wall were observed by cross-sectional TEM, as 

shown in Figure 4.5, to determine the thickness of the hydrophobic organic thin film. 

The Au and Pt layers were deposited for preparing the TEM samples. The carbon layer 

observed in the TEM originated from oil that was used in the rolling process of the 

SUS304 stainless steel sheets. The thickness of the hydrophobic organic thin film was 

about 1450 nm on the stencil surface and about 500 nm on the aperture wall. 

 

4.3.2 Improvement of bridging rate 

The solder bridging rate values as a function of pitch size are shown in Figure 4.6. 

Solder bridging was evaluated by counting the number of PCBs that showed solder 

bridges [12-13]. The solder bridging rate was defined as the number of bridged 

samples within the ten total samples. Figure 4.7 shows the solder bridging rates for the 

uncoated and coated stencils. The solder bridging rate for the uncoated stencil was 40% 

for a pad length of 0.5 mm. As the pad length increased, the bridging rate increased. In 

addition, the coated stencil showed a lower bridging rate than the uncoated stencil. 

To observe the effect of hydrophobicity on the solder bridging properties, the solder 

paste was printed on a glass plate instead of the test PCB and observed through the 

glass just after printing (Figure 4.8). The width of the stencil aperture was 0.2 mm. 

The width of the solder paste printed through uncoated and coated stencils was 0.294 

mm and 0.265 mm, respectively. This indicates that the spread of the solder paste after 

printing was lower through the coated stencil than through the uncoated stencil. Figure 
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4.9 shows a schematic of the solder printing process through the coated and uncoated 

stencils. Due to the hydrophobicity, the solder paste passing through the aperture of 

the coated stencil had a high surface tension. Therefore, the solder paste printed on the 

PCB had a low spread width that resulted in a low bridging rate. 

 

4.3.3 Printing efficiency 

Figure 4.10 shows the printing efficiency of 0603, 0402, and BGA pads using 

coated and uncoated stencils [14]. The 0603 pad had the highest printing efficiency 

among the three types of pads studied because they had the highest ratio of aperture 

area to aperture wall area. The average printing efficiency of the 0603 pads was 76.9% 

and 84.1% for the uncoated and coated stencils, respectively. The 0.35-mm pitch BGA 

showed the lowest printing efficiency since its ratio of aperture area to aperture wall 

area was lower than those of the other pads. The average printing efficiency of the 

BGA pads was 62.3% and 65.5% for the uncoated and coated stencils, respectively. 

When the ratio of aperture area to aperture wall area is low, the possibility of solder 

particles adhering to the aperture wall increases, thus reducing the printed solder 

volume deposited onto the product surface. The printing efficiency of the coated 

stencils was slightly higher than that of the uncoated stencils. However, the dramatic 

enhancement in printing efficiency reported for coated stencils [5], was not observed 

here. 
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4.3.4 Continuous printing 

After applying the hydrophobic coating to the SUS stencil, the continuous printing 

process was carried out in order to emulate the real conditions of SMT processing. 

Figure 4.11 shows the results of up to thirty trials of continuous printing for the 0402, 

0603, and BGA pads. The printability of the 0402 pad shown in Fig. 4.11(a) was 76.7% 

for the uncoated stencil and 77.7% for the coated stencil; a difference of only 1%. 

These differences for the 0603 pad and BGA pad were approximately 6% (Fig. 4.11(b)) 

and 2% (Fig. 4.11(c)), respectively, where the coated stencils resulted in a high 

printing efficiency. In the continuous printing process, the performance of the 

hydrophobic coating did not meet initial expectations (only minor improvements were 

observed). In order to understand why, an analysis was performed on the coated region. 

Figure 4.12 shows SEM micrographs of the aperture wall of the uncoated and 

coated stencils. The upper regions of the SEM micrographs show the PCB side of the 

stencil aperture and the bottom regions show the squeezing side. On the aperture wall 

of the uncoated stencil (Figure 4.12 (a)), burrs from the laser cutting of the stencil 

aperture were observed at the PCB side. The marks from laser-cutting were also 

observed on the aperture wall. In addition, metal particles were observed on the 

aperture wall, which may also have been generated during the laser-cutting process. 

On the aperture wall of the coated stencil (Figure 4.12 (b)), the hydrophobic thin film 

covered the burrs and laser marks. However, the morphology of the thin film followed 

that of the underlying structure; therefore, the roughness was not reduced even though 
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the hydrophobic thin film covered the original surface of the aperture wall. 

The roughness of the aperture wall was measured using AFM and is presented in 

Table 4.2. The upper and lower parts of the aperture wall had higher roughness than 

the center of the aperture wall. In the center of the aperture wall, the surface roughness 

was 27.5 and 66.0 nm for the uncoated and coated stencils, respectively. The surface 

roughness of the squeezing side was 125 and 129 nm for the uncoated and coated 

stencils, respectively. The surface roughness of the PCB side was much higher than 

that in other regions, since the PCB side had burrs from laser-cutting. Owing to the 

high roughness of the PCB and squeezing sides of the aperture wall, the solder paste 

adhered to these parts. Figure 4.13 shows the solder paste adhering to the squeezing 

side of the aperture. The high roughness of the aperture wall degraded printing 

efficiency and the improvement achieved using the hydrophobic coating was not as 

high as expected. 

 

4.3.5 Hydrophobic stencil 

After applying the hydrophobic coating to the SUS stencil, the printing efficiency 

did not increase as much as expected. To elucidate this, the entire printing process was 

examined. As shown in Fig. 4.14(a), solder paste remained on the stencil after 

squeezing. In addition, the blocked aperture was found to open about 2–3 s later. After 

the solder paste inside broke apart at the center, a part of it was transferred to the PCB. 

That remaining on the stencil aperture spread to the aperture wall. As seen in Fig. 4.12, 
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burrs were found on both the upper and lower parts of the stencil aperture, which were 

created during laser cutting of the aperture. The breaking of the solder paste was 

confirmed to be a result of these burrs. As illustrated in Fig. 4.14(b), when the solder 

paste separates after squeezing, it breaks when the frictional force between the solder 

paste and the aperture wall becomes greater than the viscoelastic forces of the solder 

paste. Therefore, developments in the technology of the laser-cutting process would 

allow further improvements in the performance of the hydrophobic coating. This 

coating process reduced the roughness of the surface, but the thickness of the layer 

was insufficient to cover the burrs and dimples formed in the aperture. Figure 4.15 

shows the morphology of the SUS stencil surface and aperture. Before coating, some 

dimples can be seen on the surface, which are defects from rolling the SUS material. 

After applying the hydrophobic coating (Fig. 4.15(b)), the dimples under 500 nm on 

the surface were smoothly filled. However, the burrs formed on the aperture edge were 

still visible after coating. 

 

4.3.6 Lifetime of the hydrophobic stencil 

In the actual device production process, using complex analysis tools such as TEM 

for every part to identify the remaining quantity of hydrophobic coating is not viable. 

This chapter proposes a method for quality control of the coating that could be applied 

in a realistic production scenario. The first method involves dropping some water on 

the aperture of the coated stencil, shining an LED lamp on the water droplet formed on 
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the aperture, and observing the optical pattern generated by the interaction of the light 

with the droplet. As seen in the schematic diagram shown in Figure 4.16, light is 

reflected with a pattern of two concentric rings of points for the uncoated aperture 

where the formed water droplet is flat. On the other hand, for the coated stencil, the 

formed droplet is more spherical, due to the lower surface energy of the aperture, and 

the light is refracted to form as an outer ring with an inner ring of points. Hence, when 

this ring is observed, it can be concluded that there is some coating layer remaining. 

The second method is based on the contact angle differences shown in Fig. 4.4. 

Isopropyl alcohol (IPA; a cleaning agent used in stencil cleaning) is dropped on the 

coated stencil surface and observe the phenomenon of the alcohol spreading quickly 

through the aperture. The lower surface energy of the coated aperture helps to rapidly 

spread the IPA. The IPA does not flow easily into the uncoated aperture, due to the 

solid edge effect, which occurs when the contact angle of the droplet on the solid edge 

falls within the following range: 

 

  θ0 ≤ θ ≤ (180° − ϕ) + θ0     (1) 

 

where θ is the contact angle of the droplet on the solid edge, θ0 is the original contact 

angle on the surface, and ϕ is the geometrical angle of the solid edge. The droplet does 

not flow to the aperture wall when θ is less than or equal to 180°, but when it is greater 

than 180°, the droplet flows to the wall surface [15]. For example, for the uncoated 
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stencil shown in Fig. 4.4(a), θ0 is 66.5°, and the perpendicular wall is 90°, thus θ is 

156.5°, and the droplet will not flow. On the other hand, once a hydrophobic coating is 

formed on the stencil, θ0 becomes 190.8°, which allows the IPA to flow. Using this 

method, if the IPA remains on the surface, it implies that the properties of the coating 

layer are poor, and if it flows along the aperture, then the coated stencil is effective and 

can be used. Figure 4.17 shows a schematic diagram for each of these situations, 

where case 1 represents the uncoated stencil and case 2 the opposite side of the coated 

stencil. Case 3 represents the side of the coated stencil with the hydrophobic layer, 

which allows the IPA to flow. 

 

4.4 Summary 

The solder printing efficiency and solder bridging rate were evaluated for the 

hydrophobic-thin-film-coated stencils in this study. The printing efficiency of coated 

stencils was higher than that of uncoated stencils. As the pad size increased, the 

printing efficiency of both the uncoated and coated stencils increased. SEM 

observations of the aperture wall showed that the top and bottom had higher roughness 

than the middle. This roughness resulted in solder paste adhering to the aperture wall, 

which degraded the printing efficiency improvement expected from the hydrophobic 

thin film coating. The solder bridging rate of the coated stencil was lower than that of 

the uncoated stencil. The pattern of the printed solder paste that was pressed through 

the coated stencil was narrower than that using the uncoated stencil. An increase in the 
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surface tension of the solder paste with the coated stencil decreased the width (reduced 

the spreading) of the printed solder paste and therefore reduced undesirable bridging. 
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4.5 Figures 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic showing the design of the test PCB for the solder printability, 

bridging, and BGA tests. 
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Figure 4.2 Schematic showing the design of the PCB pads for the solder bridging test. 

 

 

 

 

Figure 4.3 Schematic of the cross-section of the test PCB. 
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Table 4.1 Printing parameters. 

Printing parameters Setting value Unit 

Squeezing speed 40 mm/s 

Squeeze angle 45 ° 

Clearance -0.5 mm 
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(a) 

 

(b) 

Figure 4.4 Water droplet test images of the (a) uncoated and (b) coated stencils, 

showing the contact angles. 

 

Contact angle: 66.5 ° 

Contact angle: 100.8 ° 
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(a)                                  (b) 

 

    

(c)                                (d) 

 

Figure 4.5 Cross-sectional TEM micrographs of the SUS304 laser-cut stencil: (a) 

uncoated stencil surface, (b) uncoated stencil aperture wall, (c) coated stencil surface, 

and (d) coated stencil aperture wall. 
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Figure 4.6 Optical micrograph of the solder bridging test sample. 
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Figure 4.7 Percentage of bridged pads as a function of pad length for uncoated and 

coated stencils. 
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(a) 

 

       

(b) 

 

Figure 4.8 (a) Schematic showing observation of solder paste printing through the 

glass plate. (b) Micrographs of the printed solder paste observed through the glass 

plate for uncoated and coated stencils. 
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(a) 

 

 

(b) 

 

Figure 4.9 Schematics showing the solder printing process through (a) an uncoated 

stencil and (b) a coated stencil. 
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Figure 4.10 Printing efficiency for uncoated and coated stencils as a function of pad 

type. 
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Figure 4.11 Results of continuous printing with various pad types. 
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(a) 

 

(b) 

Figure 4.12 SEM micrographs of the microstructure of the side walls of the aperture 

for (a) uncoated and (b) coated stencils. 
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Table 4.2 Surface roughness of the aperture wall measured by AFM for uncoated and 

coated stencils. 

 
PCB side 

(upper) 
Middle side 

Squeezing side 

(lower) 

Uncoated stencil 255.5 nm 27.5 nm 125.4 nm 

Coated stencil 302.6 nm 66.0 nm 119.8 nm 

 

 

 

 

 

Figure 4.13 SEM micrograph showing solder paste adhering to the squeezing side of 

the aperture. 
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(a)  

 

 

(b)  

 

Figure 4.14 (a) SEM micrographs of … . (b) Schematic of solder paste separation. 
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(a) Uncoated stencil 

 

    

(b) Coated stencil 

 

Figure 4.15 SEM micrographs of the surface and aperture of (a) uncoated and (b) 

coated SUS stencils. 
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(a)  

 

  

(b) 

 

Figure 4.16 (a) Schematic of the method for verifying the quality of the hydrophobic 

coating using an LED lamp. (b) SEM micrographs showing the different optical 

patterns for the uncoated and coated stencils.  
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Figure 4.17 Schematic diagram showing the method for verifying the quality of the 

hydrophobic coating based on the solid edge effect. 
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Chapter 5 

 

Conclusions 

 

In electronic packaging, the IMCs and interfacial reactions at the interface between the 

solder and substrate material can affect the reliability and properties of the solder joint. 

The substrate materials and surface-finishing materials on the joint pad can determine 

the interfacial reactions and IMCs formed, which affect the reliability and properties 

such as brittle fracture and shear strength after reflowing and during use of the device. 

Moreover, the requirements for high performance and high component density in 

electronic packaging are growing. Thus, a reduction in the stencil aperture size for 

solder printing on the surface-treated substrate is also important. In high-density 

electronics the decreasing stencil aperture size degrades solder printability, which 

results in processing failures during soldering. Therefore, a new technology is required 

for improving the solder printability. In this dissertation, new methods and approaches 

were demonstrated for improving the properties of the solder joint in electronic 

packaging. 

In Chapter 2, the effect of the bath life of Ni(P) in ENIG on the brittle fracture 

behavior of the SAC solder joint was investigated. During reflow, the thicknesses of 
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the (Cu,Ni)6Sn5 and P-rich layer for 0 MTO were higher than that for 3 MTO. The 3 

MTO sample showed large shallow pits at the interface between (Cu,Ni)6Sn5 and Ni(P) 

after reflow. The pitted region of the 3 MTO sample possessed a thick P-rich layer and 

the large pits of the 3 MTO sample possibly enhanced Ni diffusion, resulting in the 

formation of a thick (Cu,Ni)6Sn5 layer. The brittle fracture behavior of the 0 MTO 

sample was superior to that of the 3 MTO sample. During HSS tests, the fracture 

normally occurred at multiple sites in the (Cu,Ni)6Sn5, Ni-Sn-P, and P-rich layers. 

However, the 3 MTO sample showed circular features on the brittle fracture surface 

which were identified as exposed P-rich layers. The size of the nanovoid in the Ni-Sn-

P layer was higher in the 3 MTO sample than in the 0 MTO sample. The weak 

interfacial microstructures (thick P-rich layer and large nanovoids) appeared to 

increase the brittle fracture rate of the 3 MTO sample. 

In Chapter 3, the effects of multiple heat treatments (reflows) on the wettability, 

interfacial reactions, and mechanical reliability of the interface between the SAC305 

solder and plasma-finished PCBs were investigated and compared to those for the 

SAC305/OSP system. For wetting and spreading tests, the plasma-finished samples 

had higher wetting forces and shorter zero-cross times compared with the OSP surface 

finish. The wetting force (and hence solderability) was not dependent on the number of 

heat treatments for the plasma surface finish, whereas the wetting force for the OSP 

surface finish rapidly decreased with increasing number of heat treatments. In the case 

of the multiple heat-treated OSP sample, the wetting reaction did not occur due to the 
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degradation of the OSP. The plasma layer was uniformly coated on the Cu pad with a 

thickness of about 20 nm and removed by the combined action of the flux and the high 

reflow temperature during the reflow process. In that case, the Cu layer was in direct 

contact with the molten solder, resulting in the formation of Cu-Sn IMCs at the 

interface. Thus, in the reflow reaction with the SAC305 solder, differences in the 

morphology and thickness of the interfacial IMCs for the two surface finishes were not 

observed. From ball shear tests, it was found that the shear force for the plasma 

substrate was consistently higher than that for the OSP substrate. In the case of the 

plasma substrate, the shear force was independent of the number of reflows, while it 

decreased rapidly after five reflow cycles for the OSP substrate. The poor wettability, 

reduced bonding area, and void formation of the OSP finish after multiple heat 

treatments could degrade the joint properties. These results clearly indicated that the 

plasma surface finish was superior to the conventional OSP finish with respect to 

wettability and joint reliability. 

In Chapter 4, solder printing efficiency and solder bridging rate were evaluated for 

hydrophobic-thin-film-coated stencils. The printing efficiency of coated stencils was 

higher than that of uncoated stencils. The printing efficiency increased with increasing 

pad size, regardless of the hydrophobic coating. SEM observations of the aperture wall 

showed that the roughness of the top and bottom edges was higher than that of the 

inside. This roughness resulted in the solder paste adhering to the aperture wall and 

degraded the expected enhancement in printing efficiency from the hydrophobic 
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coating. Moreover, the solder bridging rate of the coated stencil was lower than that of 

the uncoated stencil. The pattern of the printed solder paste using the coated stencil 

was narrower than that using the uncoated stencil; this reduced spreading was 

attributed to the increased surface tension of the solder paste using the coated stencil. 

Therefore, The hydrophobic thin film coating on the stencil could reduce undesirable 

bridging. 


