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Abstract 

 

This thesis, which describes the systematic study on development of high functional tapping tool coated with 

Ni–P/abrasive particle composite film, consists of seven chapters. The principal results in these chapters are 

summarized as follows: 

 

The first chapter describes the background and purposes of the thesis.  

The second chapter explains the development and the tribological properties of Ni–P/abrasive particles 

composite film. Ni–P/abrasive particle composite films were deposited on an HSS disk specimen using cBN 

particulates with a mean diameter of 10 m or SiC particulates with mean diameters of 5.0 m or 1.0 m.  The 

hardness and adhesion strength of the composite films and the friction coefficient under lubrication by emulsion 

cutting were investigated. The analysis clarified that the hardness of the Ni–P film was about 9 GPa and higher 

than the steam treatment (conventional treatment), and the composite film had excellent peeling resistance, 

which no film separation was observed. The friction coefficient for the composite films was greater than 0.15 

and sliding velocities under emulsion-oil lubrication (0.05-0.25 m/s) that were higher than those for the other 

specimens by the abrasive particles in the film.  

The third chapter demonstrated the development of tapping tools coated with the Ni–P/abrasive particle 

composite film and the cutting performance, such as the cutting resistance and the quality of the thread hole, of 

the tapping tool. A spiral-cut tapping tool (M6×1) was coated with the Ni–P/abrasive particle composite films. 

The tapping test was conducted using a vertical machining center. The workpiece material was rolled structural 

steel (JIS SS400). The cutting speed was 10, 30, or 50 m/min. The cutting torque and thrust force were measured 

using a dyanamometer. In addition, to evaluate the quality of thread hole, the surface of thread hole was 

observed using SEM and the shapes of thread hole were tested using screw thread-limiting gauge. The results 

showed that the tapping tool coated with the Ni–P/abrasive particle composite films satisfied the standard for 

thread gauge at high cutting speed condition. However, the Ni–P/cBN film caused the severe adhesion with 

plastic flow at the surface of thread hole at all cutting speed. Furthermore, the cutting torque produced by the 

tapping tool coated with the Ni–P/cBN film (d̅ = 10 m) was the highest value in comparison with the other 

tapping tools. In contrast, the thrust force of the tapping tool coated with the Ni–P/abrasive particle composite 

films were lower than that of the others. Thus, these results suggested the optimal size of the SiC particles used 

in the composite film was less than 5.0 m, as an excessively rough tool surface may cause damage and decrease 

the dimensional accuracy of the thread hole. 

The fourth chapter suggested whether the tapping tool coated with Ni–P/abrasive particle composite film was 

able to prevent the chip snarling at high cutting speeds and increase the tool service life. The tapping tests for 



SS400 were conducted at high cutting speeds. Furthermore, the mean friction coefficient was estimated from the 

measured cutting torque and thrust force. The results demonstrated that the chip snarling rate of the tapping tool 

coated with Ni–P/abrasive particle composite film was lower than that of the other tapping tools. The chip 

snarling rate increased as the chip curl diameter increased. The rate of chip snarling exceeded 40% at a 

dimensionless chip curl diameter of approximately 1.0. The chip curl diameter decreased with increasing of the 

mean friction coefficient. The mean friction coefficient of the tapping tool coated with Ni–P/abrasive particle 

composite film was higher than that of other tapping tools. Additionally, the tool service life of tapping tool 

coated with Ni–P/SiC film (d̅ = 1 m) was 1.6 times greater than that of conventional tapping tool at 50 m/min.  

 The fifth chapter discussed the effect of the local friction coefficient at the sliding zone on chip curl 

diameter and the secondary shear zone thickness on the chip curl diameter. The local friction coefficient at the 

sliding zone and the secondary shear zone thickness were estimated using the sticking–sliding friction model. 

The results indicated that the chip curl diameter decreased as the local friction coefficient at the sliding zone 

increased. The local friction coefficient at the sliding zone of the tapping tool coated with the Ni–P/abrasive 

particle composite films was over 1.58 and higher than that of the other tapping tools. The secondary shear zone 

was affected by the local friction coefficient at the sliding zone; the secondary shear zone thickness increased 

with increase of the local friction coefficient.  

The sixth chapter clarified the effect of workpiece materials on chip snarling for tapping tool coated with 

Ni–P/abrasive particle composite film. The tapping test was conducted on the workpiece material made from 

chrome molybdenum steel (JIS SCM440) and carbon steel (JIS S25C and S45C). The temperature at the primary 

shear zone was estimated to investigate the thermal effect on the chip curl diameter. The results indicated that the 

dimensionless chip curl diameter of the tapping tool coated with Ni–P/SiC film (d̅ = 1 m) was less than 0.9 for 

all workpiece material and the rate of chip snarling of the tapping tool coated with Ni–P/SiC film was less than 

10%. Additionally, the chip curl diameter was affected by the cutting speed, i.e. temperature at the primary shear 

zone, and decreased as the temperature decreased. The dimensionless chip curl diameter was less than 0.6 when 

the secondary shear zone thickness was as least 23 m and the temperature at the primary shear zone was lower 

than 495 K. 

 The seventh chapter summarized the results of the thesis and main conclusions are presented. As the results 

of the study, the tapping tool coated with Ni–P/SiC film (d̅ = 1 m) prevented the chip snarling on the tapping 

tool at high cutting speed and increased the tool service life at 50 m/min.  
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Nomenclature 

 

Aall resultant cutting area of all cutting edges [mm2] 

Anth cutting area of nth cutting edge [mm2] 

As area of primary shear plane [mm2] 

Astick contact area at sticking zone [mm2] 

e effective rake angle [degree]  

n rake angle [deg]  

b mean width of the cut chip [mm] 

bb width of the chip near rake face [mm] 

bt width of the free surface of the chip [mm] 

 chamfer angle [degree] 

c specific heat capacity [J/(kg∙K)] 

 secondary shear zone thickness [mm] 

d tapping tool diameter [mm] 

d̅ mean particle diameter [mm] 

Dc  chip curl diameter [mm] 

Dd dimensionless chip curl diameter 

Ei Young’s modulus of indenter [Pa] 

EIT Young’s modulus [N/mm2] 

F resultant friction force of all cutting edges [N] 

Fn resultant normal force of all cutting edges [N] 

Fnth friction force of nth cutting edge [N] 

Fn_nth normal force of nth cutting edge [N] 

Fn_slid normal force at sliding zone [N] 

Fn_stick normal force at sticking zone [N] 

FM circumferential force [N] 

Fmax maximum load [N] 

Fslid friction force at sliding zone [N] 

Fstick friction force at sticking zone [N] 

FT axial force [N] 

Fx cutting force in x direction on rake face [N] 

Fy cutting force in y direction on rake face [N] 

Fz cutting force in z direction on rake face [N] 

FZ* radial force [N] 

 shear angle [degree] 

 lead angle [degree] 

s shear strain in primary shear plane [1/s] 

hc measured indentation depth [mm] 

 

 

∆hc measured indentation depth [mm] 

hr intersection point between indentation-depth 

axis and tangential line [mm] 

HIT indentation hardness [Pa] 

Hmax_a maximum height of frank face of advancing 

side [m] 

Hv Vickers hardness [Pa] 

 chip flow angle [degree] 

k heat transfer coefficient [W/(m∙K)] 

kchip shear stress in chip at sticking zone [Pa] 

 thermal conductivity [kw/m/K] 

L sliding zone [mm] 

Lc chip contact length [mm] 

Lslid chip contact length at sliding zone [mm] 

Lstick chip contact length at sticking zone [mm] 

̅ mean (global) friction coefficient  

slid local friction coefficient at sliding zone 

0 initial local friction coefficient 

 Poisson’s rate 

i Poisson’s ratio of specimen 

s Poisson’s ratio of indenter 

OB̅̅ ̅̅        length of front cutting edge [mm] 

P pitch of thread hole [mm] 

q total hear quantity per unit time and unit area 

[J/(mm2∙s)] 

        torsion angle [degree] 

’       half angle of thread of screw [degree] 

r cutting ratio 

R cutting resistance [N] 

Rc rate of chip snarling [%] 

Rnth cutting resistance of nth cutting edge [N] 

Rh heat volume ratio [%]

 density [kg/mm3] 

c normal stress on rake face [Pa] 

s normal stress in shear plane [Pa] 

0 normal stress in tool tip [Pa] 

t1 uncut chip thickness [mm] 



 

 

t2 chip thickness [mm] 

c shear stress at the sticking zone [Pa] 

s shear stress in primary shear zone [Pa] 

Tshear temperature at primary shear zone [K] 

V        sliding velocity [m/s] 

Vr        cutting speed [m/min] 

Vc        chip flow velocity [m/min] 

w width of cutting edge [mm] 

w1        front cutting edge width [mm] 

w2        side cutting edge width [mm] 

Wad adhesion strength [N] 

Wmin minimum normal load [N] 

Wmax maximum normal load [N] 

Wt width of helical flute width [mm] 

 characteristic value of pressure distribution 

z distance from the tool cutting tip [mm]  
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Chapter 1  

Introduction 

 

1.1 Background 

Joining processes are an essential component of manufacturing and assembly operations. Joining 

processes fall into three groups: welding, adhesive bonding, and mechanical fastening [1]. Mechanical 

fastening includes traditional joining or fastening methods that use bolts, nuts, screws, pins, and a 

variety of other fasteners. Such methods are advantageous over others due to the ease of 

manufacturing, ease of assembly and transportation, ease of disassembly, maintenance, and parts 

replacement, and the lower cost of manufacturing the product [1]. Screws are one of the most 

commonly used threaded fasteners, and there are numerous related standards and specifications. 

Threaded holes are machined using the tapping process. The tapping process influences the quality of 

the threaded holes; poor quality can lead to the loosening of bolted joints [2, 3]. Figure 1.1 shows tool 

production in Japan in 2014 [4], and it can be seen that the production of tap and die tools was the 

largest among special steel tool manufacturing. This is because these tools are frequently replaced due 

to breakage.  

To produce a threaded hole, machining using a tapping tool is the most common method [5]. 

Tapping tools generally fall into two types: a cut tapping tool and a roll tapping tool, as shown in 

Table 1.1. Each cut tapping tool usually has three or four chip evacuation flutes. Cut tapping tools are 

classified according to the geometry of their flutes. Hand taps, which are used to cut brittle materials, 

have straight flutes. Spiral pointed taps, often called gun taps, have a negative rake angle. Because of 

this unique flute shape, spiral pointed taps are able to discharge chips from the bottom of the threaded 

hole. Therefore, chip clogging, an issue resulting in the breakage of taps, is largely mitigated with this 

type of tapping tool. However, the use of spiral pointed taps and hand taps is limited because these 

taps require a through or blind hole with sufficient chip room for the prepared hole [5]. On the other 
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hand, spiral taps, which have spiral flutes, can be applied to each type of hole (i.e., through holes and 

blind holes) because the chips are discharged upward to the top of the threaded hole. In contrast, roll 

taps machine threaded holes by plastic deformation; thus, roll taps avoid chip issues [6]. However, roll 

taps often cause large tapping torques and require a high degree of accuracy of the prepared hole.  

 In order to meet the need for a tapping process suitable for high machining efficiency, 

improvements in tapping tools are required to allow for their functioning at high cutting velocities and 

to extend tool service life. However, at high cutting velocities, conventional cut tapping tools cause a 

decrease in the chip discharge ability, which results in chip snarling [7, 8] and chip clogging [9, 10]. 

These chip discharge problems cause both damage to the workpiece materials and chip packing, 

resulting in tool breakage [11, 12], as shown in Fig. 1.2. Since snarled and clogging chips must be 

removed manually, machining efficiency is reduced. Thus, chip snarling must be prevented to increase 

cutting velocity as well as to extend tool service life. 

 

  

Fig. 1.1 Production of tools in Japan in 2014 [4] 

Total production: 86.1 billion yen 

Tap·Die

35.6%

(30.6 billion 

yen)

Drill

21.6%

(18.6 billion 

yen)

Broach

15.5% (13.3 

billion yen)

Other

27.3%

(23.5 billion 

yen)



Chapter 1 

 3 

 
T

ab
le

 1
.1

 T
ap

p
in

g
 t

o
o
ls

 
 

*
T

h
es

e 
p

ic
tu

re
s 

w
er

e 
p
ro

v
id

ed
 b

y
 M

IY
A

G
IT

A
N

O
I 

M
F

G
. 

C
O

.,
 L

T
D

 

K
in

d
 o

f 
ta

p
p

in
g

 t
o

o
l

U
s

e
D

is
a

d
v
a

n
ta

g
e

C
u

t 

ta
p

p
in

g
 

to
o

l

H
a

n
d

 t
a

p

▪
H

ig
h

h
a

rd
n

e
s

s
 

m
a

te
ri

a
l

s
h

o
u

ld
 b

e
 

u
s

e
d

.

▪
S

u
ff

ic
ie

n
t 

c
h

ip
 r

o
o

m
 

is
 r

e
q

u
ir

e
d

.

S
p

ir
a

l

p
o

in
te

d
 

ta
p

▪
L

o
n

g
 c

h
ip

s
 a

re
 

d
is

c
h

a
rg

e
d

.

▪
L

e
s

s
 c

h
ip

 t
ro

u
b

le
.

▪
N

e
e

d
s

 t
h

ro
u

g
h

 h
o

le
.

(n
o

t 
a

p
p

li
c

a
b

le
 t

o
 a

 

b
li

n
d

 h
o

le
)

S
p

ir
a

l 
ta

p

▪
T
a

p
p

in
g

 p
ro

c
e

s
s

 i
s

p
o

s
s

ib
le

 i
n

 b
li

n
d

 

h
o

le
 o

r 
th

ro
u

g
h

 h
o

le
.

▪
C

h
ip

tr
o

u
b

le
 o

ft
e

n
 

o
c

c
u

rs
.

R
o

ll
 t

a
p

p
in

g
 t

o
o

l
▪
N

o
 c

h
ip

 t
ro

u
b

le
.

▪
N

e
e

d
s

 h
ig

h
 

a
c

c
u

ra
c

y
o

f 

p
re

p
a

re
d

 h
o

le
. 

* * * *



Chapter 1 

 4 

Fig. 1.2 Problems caused by chip snarling during the tapping process  

Scratch damage Snarled chip must be 

removed manually
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Machining efficiency

Tool breakage

Tapping 

tool

Chip 
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At high cutting velocity (50 m/min)
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1.2 Previous studies 

1.2.1 Tapping process 

Many studies of tapping processes have been performed with the aim of improving thread quality 

and machining efficiency [13-27]. Previous studies on tapping processes are summarized in Table 1.2. 

In most of these studies, the thrust forces and cutting torques measured during the tapping process are 

used for analysis because a real cutting point is not accessible and direct observation is difficult. 

Thrust force is used to evaluate how much the tapping tool is fed into the workpiece [14, 15]. A high 

thrust force often causes an over-sized or defective thread shape. Cutting torque is the cutting moment 

in the radial direction. The torque during the tapping process is mainly used to estimate the cutting 

performance or tool wear [21-23, 26]. Yamaoka et al. [21] suggested that the cutting torque is suitable 

for abnormality detection during tapping because the change in cutting torque is larger than the thrust 

force when abnormalities such as chip packing occur during tapping. In fact, the amount of literature 

on cutting torque is greater than that on thrust force [21, 26]. Lorenz [28] investigated the effect of 

cutting condition and tool geometry on the cutting torque of hand taps. He showed that the cutting 

torque is significantly affected by the interaction between the cutting speed and the chamfer relief 

angle. An oblique cutting test is used to observe the cutting force components on the rake face of the 

tapping tool [29, 30]. Watanabe [29] conducted oblique cutting tests with a cutting tool and developed 

a model of the edge of the tapping tool. Then, the cutting forces on the rake face of the tapping tool 

were estimated, as shown in Fig. 1.3. This study attempted to produce a design guideline for tapping 

tools on the basis of the relation between chip geometry and the calculated cutting force components.  
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Furthermore, some researchers have attempted to apply the cutting force model for other cutting 

processes, such as turning and drilling [31], to the tapping process [32, 33]. Armarego and Chen [32] 

numerically analyzed the relation between tapping tool geometry and cutting velocity in order to 

construct a predictive tapping model. With this predictive model, the cutting torque, thrust force, and 

unbalanced side force can be calculated for a tapping tool with a straight flute. In contrast, Kumabe 

and Daimon [34, 35] demonstrated that the specific cutting resistance values differ among each 

cutting edge of the tapping tool. As shown in Fig. 1.4, the specific cutting resistance values were 

markedly different for the different cutting edge positions.  

As mentioned above, there have been many studies regarding tapping processes; however, chip 

snarling on the tapping tool has not been well investigated to date. 

  

Fig. 1.3 Three-dimensional cutting forces of a tapping tool [29]  
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1.2.2 Chip discharge in turning and drilling processes 

Chip discharge is an important factor in the tapping process and is related to chip clogging and 

chip snarling, which result in tool breakage. In a spiral tap, cutting chips are disposed at the top of the 

threaded hole via spiral flutes on the tapping tool. Therefore, the chip discharge property is affected by 

the relation between chip geometry and the flutes [5]. However, since the depth of the flutes on the 

tapping tool is designed to provide tool strength, controlling chip geometry is an important 

consideration in improving cutting chip disposability because it is difficult to enlarge flute size only 

for chip discharge.  

Chip geometries are classified into several types based on the curl type formed during the cutting 

process, as shown in Fig. 1.5 [36]. During the tapping process, it is known that the up-curling tubular 

chip is mainly generated [37]. There is much research on chip deformation and chip geometry [38-55]. 

A cutting process removes extra portions of a workpiece using a cutting tool. During the removal 

process, the cutting chip is deformed by the force in the shear domain [38, 39, 44, 45] and the rake 

Fig. 1.4 Relation between cutting resistance and edge position of a tapping tool [34]  
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face of the tool [40-43]. Generally, chip geometry, i.e., the diameter of the spiral shape, pitch, and 

inclining angle of the central axis, is uniquely determined by the combination of up-curl, side-curl, 

and chip flow direction, as shown in Fig. 1.6 [40, 46, 47].  

Nakayama et al. [41] proposed two mechanisms for the generation of chip up-curl in metal 

cutting. One is deformation by the bending moment caused by a chip breaker or build-up-edge. The 

other is deformation by secondary flow, which corresponds to plastic deformation in the region of the 

chip adjacent to the tool surface. As a mechanism for the enhancement of up-curl, Takeshima et al. 

[44] proposed the expansion of the chip surface due to frictional heat. They carried out orthogonal 

cutting tests over a wide range of cutting velocity conditions and chip flow was observed. It was 

shown that up-curl diameter decreased with an increase in cutting velocity because the chip surface 

expands with frictional heat between the chip surface and tool rake face.  

In addition, some literature has shown that chip up-curl is generated by the velocity gradient on 

the boundary-line of the shear domain [38, 39, 44, 45]. Okushima and Hitomi [45] investigated the 

shear domain distribution and velocity distribution in the domain and indicated that the end of the 

boundary-line of the shear domain was upward convex. 

As listed above, there are many studies on the chip curl mechanism, such as in-situ observation of 

the chip-tool interface during orthogonal cutting or machining simulations [48-50]. However, it is 

impossible to dissociate these mechanisms in order to explain the chip curl because the chip curl is an 

instability phenomenon occurring at high temperature, high pressure, and a high strain rate [51, 52].  
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Chip discharge has been investigated in turning and drilling processes. [52]. In turning processes, 

cutting chips are easily observed because the periphery of the cylindrical workpiece is cut and the 

cutting chip is immediately evacuated outside the workpiece–tool interface. The effects of tool 

geometry and cutting conditions on chip curl phenomena have also been investigated [52-54]. Since 
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tool geometry and cutting conditions of the cutting tool are not strictly restricted in the turning process, 

chip discharge can be easily controlled by machining conditions such as feed rate, cutting velocity, 

and uncut chip thickness [52, 55, 56]. In drilling processes, the tool cuts inside the prepared hole and 

the remaining chips, which are not evacuated outside the hole, cause chip clogging and chip packing; 

however, it is difficult to directly observe whether a cutting chip is evacuated through the flute of the 

tool or remains inside the hole. Therefore, the chip flow direction at the edge of the drilling tool 

[57-63] and the binding force applied on the chip in the helical flute [64, 65] have been investigated. 

Hanasaki [65] observed chip deformation in a helical flute and revealed that a bending moment was 

applied to the chips at the machined hole surface. Furthermore, the control of chip geometry, rather 

than the control of flute geometry, edge geometry of the drilling tool, and cutting conditions (cutting 

velocity, lubrication, etc.) [66-68], was verified as effective in preventing chip issues (chip clogging, 

chip packing, etc.). 

As mentioned above, much research on chip curl and chip evacuation during the turning and 

drilling processes has been conducted. However, there are few studies on chip curl and chip 

evacuation during tapping processes [21, 37, 69]; thus, it remains unclear how to prevent chip snarling 

on the tapping tool during tapping.  

Fig. 1.6 Chip formation: up-curl, side-curl, and flow direction [41]  
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1.2.3 Surface treatment of the tapping tool 

The demands of a cutting tool are to produce a superior cutting performance and provide a long 

service life. However, it is very difficult to simultaneously realize these demands because tool edge 

strength decreases as the tool edge is sharpened. One approach to solve this problem is a coating film 

for the cutting tool [70-74]. As shown in Fig. 1.7, several coating films have been developed since 

1970. Each coating film provides excellent mechanical properties, such as low friction and high 

resistance to wear, adhesion, oxidation, and corrosion resistance, to the cutting tool [70, 75, 76]. 

Recently, the use of a combination of different layers, each with excellent mechanical properties, has 

been developed. As such, coating film technology has made remarkable advances and these films are 

essential for high-speed and high-efficiency machining. 

Coating films are also used for tapping tools and there are many studies on hard coating and 

lubricant films (or their composite films) [77-83]. Reiter et al. [78] conducted tapping tests in 

austenitic stainless steel using a high-speed steel (HSS) tap coated with various hard coating films or 

lubricant films and investigated the wear resistance of the coating film and the cutting performance. In 

order to investigate the wear resistance, a ball-crater test was conducted. The abrasive wear rates for 

each coating film are shown in Fig. 1.8. TiCN, AlCrN (70/30), and diamond like carbon (DLC) films 

exhibited good wear resistance. The tapping test was conducted using a tapping tool coated with these 

films. The results showed that wear resistance and tool service life exhibit a positive correlation. This 

result indicates that a coating film with excellent wear resistance increases tool service life because 

damage to the tool edge is prevented. Furthermore, a combination film of a hard TiCN coating film 

base layer overlaid by a low-friction DLC layer was produced and a tapping tool coated with this film 

was developed. A coating film with excellent adhesion resistance has also been developed in order to 

conduct the tapping test on a workpiece; this film easily adheres to tool surfaces [81-83]. 

Recently, a dry tapping process has been investigated with the aim of preventing environmental 

pollution by lubricant oil. However, this approach has a disadvantage in that the cooling properties are 
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considerably poorer than those of the wet approach. In order to solve this problem, Bhowmick [82] 

investigated the tapping process of Al-Si alloys using a tapping tool coated with DLC film, which has 

excellent adhesion resistance. A dry tapping test was conducted and machining performance was 

investigated. Figure 1.9 shows the change in the cutting torque during the tapping process with respect 

to the number of tapping holes. The cutting resistance of the DLC coated tool was lower than that of 

the HSS tapping tool without coating under both dry and minimum quantity lubricant (MQL) 

conditions. This tapping test indicated that a tapping tool coated with a DLC coating film is effective 

in cutting a workpiece under dry conditions. 

Jin et al. [83] developed a tapping tool coated with cubic boron nitride (cBN), which has good 

wear resistance. The tool was developed for cutting a beta-type titanium alloy, which is known as a 

hard-to-cut material. In order to investigate the adhesion resistance, a ball-on-disk friction test was 

conducted. Figure 1.10 shows the sliding time until adhesion occurred. This result indicates that the 

cBN coating film has a higher adhesion resistance than other coating films. As a result, the tool 

service life for the tapping tool coated with cBN coating film was three times that of a tapping tool 

with a conventional surface treatment. 

Coating films contribute to the improvement of various cutting tool mechanical properties. 

However, chip clogging and chip snarling issues on the tapping tool [7] are inevitable for 

conventional coating films and surface treatments. Therefore, it is necessary to develop a new tapping 

tool coating film that will provide both a long service life of the tool and good chip discharge ability. 
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Fig. 1.9 Average forward torques for each tapping test [82]  
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1.2.4 Electrodeposited plating 

 A composite film of nickel-phosphorus (Ni-P)/abrasive particles is a plating film containing 

abrasive particles, such as diamond, cBN, or silicon carbide (SiC), which are deposited by electro 

plating methods or electroless plating methods [84]. In general, because a tool coated with a 

composite film can be reused after re-plating, the tool cost is low and the tool can be used for the 

precision grinding of brittle materials such as ceramic or glass [85-90]. Good mechanical properties 

such as wear resistance, corrosion resistance, and self-lubrication of the Ni-P/abrasive particle 

composite film can be obtained by changing the plating particle, particle size, or plating solution [84], 

[91-95]. Balaraju et al. [84] developed composite plating films with different particles and indicated 

that the structure of the base film material can be varied by co-depositing particles. For titanium 

carbide (TiC), silicon nitride (Si3N4), cerium oxide (CeO2), and titanium oxide (TiO2), structural 

change of the base material (i.e., Ni) was not observed. On the other hand, in the case of boron carbide 

(B4C) particles, the orientation of the Ni structure was changed, and the structural stability of the 

composite film increased when using SiC particles. Furthermore, with heat treatment, the Ni-P phase 

of the Ni-P/SiC composite film changes from an amorphous to a crystalline structure, which 

significantly increases the hardness of the composite film (i.e., 1.6 times that of the composite film 

without heat treatment). In the case of a Ni-P/hard particle composite film, the hard particles plow the 

counterpart materials, resulting in a high degree of friction. In the case of a Ni-P/soft particle 

composite film, since the soft particles adhere to the counterpart material and the shear stress at the 

interface decreases, the friction coefficient decreases. The wear rate of electroless Ni-P/particle 

composite films versus carbon steel is shown in Fig. 1.11. This result indicates that the wear resistance 

of the Ni-P/hard particle composite film is almost equivalent to that of a hard chromium plating film.  

 In coming years, Ni-P/abrasive particle composite films are expected to be of use in the precision 

processing of metal materials [88, 89]. Ko et al. [90] developed a milling tool covered with diamond 

particles using electrodeposition, as shown in Fig. 1.12. They conducted a cutting test on zirconia 
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ceramics using this milling tool. The results indicated that the milling tool cut with a flow-type 

continuous chip shape. Furthermore, since the composite film had good wear resistance, wear of the 

tool edge was extremely low.  

 

  

100 mm

Fig. 1.12 Milling tool covered with diamond particles [90]  

 (a) Snap shot  (b) SEM image of tool edge 

Fig. 1.11 Abrasive wear index of electroless Ni–P/particle composite films [84]  
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A chip trouble during tapping process was caused by a low friction at chip-tool such as hard 

coating [7]. However, in order to improve tool service life, the tool surface needs to be coated with a 

high wear resistance film. Therefore, a Ni-P/abrasive particle composite film was focued. The 

abrasive particles in the composite film should abrade the chip surface such that the abraded chips are 

easily broken. Thus, it is expected that the composite film prevents chip snarling on the tapping tool 

and extends tool service life at high cutting velocities. 

 

1.3 Purpose of study 

 On the basis of the background mentioned above, the purpose of this thesis is to develop a 

tapping tool coated with a composite film composed of Ni-P/abrasive particles and investigate 

whether the tapping tool prevents chip snarling and increases tool service life even at high cutting 

velocity conditions.  
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1.4 Structure of thesis 

 The structure of the thesis is described as follows (Fig. 1.13): 

 Chapter 1 presents the introduction. 

 Chapter 2 describes the mechanical properties and tribological properties of Ni–P/abrasive 

particle composite films. 

 Chapter 3 describes the development of a tapping tool coated with the Ni–P/abrasive particle 

composite films and assesses cutting performance. 

 Chapter 4 describes the prevention of chip snarling and extension of tool service life for the 

developed tapping tool.  

 Chapter 5 describes the effect of friction coefficient at the sliding zone of chip–tool interface on 

chip curl diameter during the tapping process. 

 Chapter 6 describes the effect of workpiece materials on chip snarling for tapping tool coated 

with Ni–P/abrasive particle composite film. 

 Chapter 7 outlines the conclusions of this study. 
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Fig. 1.13 Outline of this study 
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Chapter 2 

Tribological properties of  

Ni–P/abrasive particle composite film 

 

2.1 Introduction 

 To improve the service life of tapping tools, hard coating films and lubricant films, which have 

excellent wear resistance and lubricity, are often used on the cutting surface. However, coating a 

tapping tool with these films causes chip snarling and chip packing because the low friction that these 

coating films induce leads to a long chip being produced [1]. To address this problem, a coating film 

that has excellent wear resistance but does not cause chip snarling must be developed. In this study, 

the development of a nickel-phosphorus (Ni–P)/abrasive particle composite film, which is also known 

as an electroless plating film, was focused. This composite film generates high friction because of the 

increase in plowing friction caused by the abrasive particles [2-4]. In addition, its mechanical 

properties can be controlled by varying the particle size and type of the material used [2]. Therefore, 

using this composite film offers an approach for improving the service life of a tool while preventing 

chip snarling during tapping. 

 In this chapter, the formation of electroless composite films on a high-speed steel (HSS) plate 

using cubic boron nitride (cBN) and silicon carbide (SiC) as the abrasive particles is reported. The 

hardness and adhesion strength of the composites and the friction coefficient under lubrication by 

emulsion cutting oil are investigated.    
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2.2 Preparation of an electroless plating composite film 

  There are two types of plating: electro plating and electroless plating. In the electro plating process, 

a metal film is formed by passing a positively charged electrical current through a solution containing 

metal ions dissolved from the anode and a negatively charged electrical current through the part to be 

plated (the cathode). In the electroless plating process, a metal film is formed on the substrate without 

using an external electrical charge. Electroless plating is particularly appropriate when working with 

nonconductive materials because no energization is needed [5]. Furthermore, electroless plating 

produces a completely uniform deposit even on workpieces with a complex shape. Therefore, in this 

study, electroless plating was used to apply the composite film to the tapping tool surface. 

 Table 2.1 shows the mechanical properties of the abrasives that are commonly used as 

codepositing particles in electroless plating [6-9]. As can be seen, diamond and cBN particles have the 

highest hardness and thermal conductivity. In particular, cBN particles exhibit high heat resistance, 

thermal conductivity, and chemical stability [6]. In this study, cBN was used for codepositing because 

diamond is incompatible with steel materials at high temperatures [10]. SiC particles exhibit superior 

characteristics than the particles of other materials such as Al2O3 and Si3N4. The Ni–P/SiC particle 

composite film is also known to possess excellent mechanical properties [2]. Therefore, in this study, 

SiC particles were also used as codepositing particles.  

 Figures 2.1 and 2.2 show the schematics of the deposition processes for the Ni–P/cBN and Ni–

P/SiC films, respectively. These composite films were deposited onto an HSS disk specimen with a 

Vickers hardness of 7.4 GPa, Young’s modulus of 220 GPa, and surface roughness of approximately 

0.1 m. In the case of the Ni–P/cBN film, a two-step deposition process was employed. First, the HSS 

disk specimen was buried in cBN particles within the Ni–P plating solution, as shown in Fig 2.1 (a). In 

this process, the cBN particles adhered to the specimen surface, creating a Ni–P plating film with a 

thickness of 3–4 m. Then, as shown in Fig. 2.1(b), the Ni–P plating film was grown until the film 

thickness was 60% of the mean diameter of the cBN particles. In the case of the Ni–P/SiC film, the 
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composite film was deposited onto the HSS disk in a Ni–P plating solution containing SiC particles, as 

shown in Fig. 2.2. The cBN particles had a mean diameter 𝑑̅ of 10 m, whereas SiC particles of two 

different diameters, 5.0 m and 1.0 m, were used. After heat-treatment at 300 °C, the hardness of the 

Ni–P layer approximately doubled [2]. 

Table 2.1 Mechanical properties of abrasive particles [6-9] 

Vickers

hardness Hv, 

GPa

Young’s 

modulus E, 

GPa

Poisson’s 

rate n

Thermal 

conductivity 

l, kw/m·K

Diamond 56-102 1050 0.04-0.11 0.17-0.19

cBN 35-40 587-680 0.15-0.22 0.044-0.1

SiC 29.4-34.3 43.9 0.18-0.19 0.006

Al2O3 25.5-26.7 50-59.3 0.21-0.27 0.013

Si3N4 8.0-19.0 14.5-47.1 0.24 0.033-0.034
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(a) First step (cBN particles adhere to the substrate) 

(b) Second step (growth of the Ni-P plating layer) 

Fig. 2.1 Electroless plating process for the Ni-P/cBN particle composite film 
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Fig. 2.2 Electroless plating process for the Ni-P/SiC particle composite film 

Plating solution 

(Ni–P)

Specimen 

(High speed steel)

High speed steel

SiC particles 
Ni–P plating

layer
SiC particles 



Chapter 2 

 35 

2.3 Experimental methods 

2.3.1 Disk specimens 

 The test specimens were disks with a diameter of 42.5 mm and thickness of 5.4 mm. Steam 

treatment was used to create an iron oxide (Fe3O4) layer on the HSS disk surface [11]. Other 

specimens were coated with a titanium carbo-nitride (TiCN) film. Figure 2.3 shows the scanning 

electron microscope (SEM) images of each specimen’s disk surface. The thickness of the Ni–P/cBN 

film (𝑑̅ = 10 m) was 20 m; moreover, the thickness of both the Ni–P/SiC film (𝑑̅ = 5 m) and the 

Ni–P/SiC film (𝑑̅ = 1 m) was 5 m and that of the other specimens was approximately 1 m. In the 

composite films, the abrasive particles appeared on the surface of the plating layer. Conversely, several 

small pits were observed on the surfaces of the disk specimens that were steam-treated. The TiCN 

coating film had a smooth surface. Table 2.2 lists the surface roughnesses of the specimens. The 

surface roughness of the composite films was higher than that of the stream treated and TiCN coated 

specimens. The surface roughness of the composite films increased with the diameter of the 

codepositing particles. Figures 2.4-2.6 show the profile curve and protrusion height for each Ni–

P/abrasive particle composite film. The protrusion height for the Ni–P/cBN film (𝑑̅ = 10 m), Ni–

P/SiC film (𝑑̅ = 5 m), or Ni–P/SiC film (𝑑̅ = 1 m) was 3.9 ± 0.7 m, 1.5 ± 0.4 m, or 0.4 ± 0.1 m, 

respectively. Thus, the ratio of protrusion height to the mean diameter of codepositing particle Rp was 

approximately 40 %.  

  

Table 2.2 Average roughnesses of the disk specimens 

Ni–P/cBN film

( = 10 m)

Ni–P/SiC film

( =  5 m)

Ni–P/SiC film

( = 1 m)

Steam

treatment
TiCN film

1.128

± 0.034 m

0.413

± 0.028 m

0.273

± 0.025 m

0.09

± 0.018 m

0.075

± 0.028 m
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Fig. 2.3 Scanning electron microscopy (SEM) images of the surfaces of the disk specimens 
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Fig. 2.4 Profile curve and protrusion height for Ni–P/cBN particle composite film  

(Mean particle diameter: 10 m) 

(a) Profile curve (b) Protrusion height 

Fig. 2.5 Profile curve and protrusion height for Ni–P/SiC particle composite film  

(Mean particle diameter: 5 m) 

(a) Profile curve (b) Protrusion height 

Fig. 2.6 Profile curve and protrusion height for Ni–P/SiC particle composite film 

 (Mean particle diameter: 1 m) 

(a) Profile curve (b) Protrusion height 
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2.3.2 Nanoindentation testing 

 A nanohardness tester (ENT-2100, ELIONIX INC.) was used to measure the hardness and 

Young’s modulus of each coating film and treatment surface, as shown in Fig. 2.7. A schematic of the 

nanoindentation test is shown in Fig. 2.8. The mechanical properties were measured according to the 

following procedure [12]: 

① Increasing the test load (0 ≤ F ≤ Fmax) 

② Maintaining the test load (F = Fmax) 

③ Decreasing the test load (Fmax > F ≥ 0) 

 The indentation hardness was used as the Vickers hardness in this study. It and the Young’s 

modulus of the coating film were obtained via Eqs. (2.1) and (2.3), respectively, using the depth of 

plastic deformation and the relationship between the load and the indentation depth, respectively. 

(1) Vickers hardness 

 The indentation hardness was calculated as follows: 

 

 

 

where Fmax is the maximum load [N], hc is the measured indentation depth [mm], ∆hc is the correction 

depth [mm], and hr is the intersection point between the indentation-depth axis and a tangential line 

[mm]. The indentation hardness [N/mm
2
] was converted into Vickers hardness [kgf/mm

2
] using the 

following transformation [13]:  

  

 

(2) Young’s modulus 

 The Young’s modulus EIT was obtained using the following equations: 

 

 

(2.1) 

(2.2) 

(2.4) 

(2.3). 
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where ns is the Poisson’s ratio of the indenter, ni is the Poisson’s ratio of the specimen, Ei is the 

Young’s modulus of the indenter, C is the compliance, and Cf is the flame compliance. 

 

  

(2.5) 

(2.6) 

Fig. 2.7 Nanoindentation tester used in this study 
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 The experimental conditions for the nanoindentation test are shown in Table 2.3. A disk specimen 

coated with a Ni–P plating film was used instead of the Ni–P/abrasive particle composite films 

developed herein because the abrasive particles might have obstructed the hardness measurement. A 

Berkovich indenter was used. The maximum test load at which the plastic-deformation depth reached 

10% of the film thickness was used. There were 500 partitions at a step interval of 20 ms. The holding 

time was 1000 ms. Each test was repeated five times under the same conditions. 

  

Fig. 2.8 Schematic of nanoindentation process 
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2.3.3 Scratch testing 

The adhesion strength of the composite films was measured via a scratch test using a 

load-fluctuation friction-abrasion tester (HHS-3000, SHINTO Scientific Co., Ltd.), as shown in 

Fig. 2.9. The normal load was increased in a linear manner with respect to the sliding distance. The 

sliding distance Lseparation for film separation was measured, and the value of the normal load when the 

film separation occurred was used to evaluate the adhesion strength Wad via the following equation: 

 

 

where Wmax is the maximum normal load and L is the sliding distance. 

The experimental conditions used in the scratch test are shown in Table 2.4. A diamond-pin 

specimen with a point angle of 60° and tip radius of 0.2 mm was used. The normal load W was 

increased in a linear manner from 0 N to 98.1 N (=Wmax), with an associated increase in the sliding 

distance L from 0 mm to 10 mm. The sliding velocity was 0.2 mm/s. The scratched surface was 

observed using a digital microscope (DSX510, Olympus Corporation). The separation point was 

determined by the exposure of the HHS substrate. The friction test was repeated three times under the 

same conditions.  

Table 2.3 Experimental conditions for the nanoindentation test 

(2.7) 

Disk specimen

Ni–P plating film

Steam treatment

TiCN film

Indenter Berkovich indenter

Maximum test load 

Fmax, mN
30, 100

Number of partition 

Np, times
500

Step interval, ms 20

Holding time Thold, ms 1000

Number of tests under the same 

condition N, times
5
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Fig. 2.9 Schematic of the load-fluctuation friction-abrasion tester 

Normal load

Sliding direction

(1)(2)

(3)

(4)(5)(6)

(1) Disk specimen (2) Pin specimen (3) Linear stage

(4) Pin holder (5) Control monitor (6) Amplifer

(7) Balance regulating weight

(7)

Table 2.4 Experimental conditions for the adhesion strength test 

Disk specimen

Ni–P/cBN film ( = 10 m)

Ni–P/SiC film ( = 5 m)

Ni–P/SiC film ( = 1 m)

Steam treatment

TiCN film

Indenter Diamond pin

Minimum indentation load 

Wmin, N
0

Maximum indentation load 

Wmax, N
98.1

Sliding velocity V, mm/s 0.2

Sliding distance L, mm 10

Number of tests under the 

same condition Nt , times
3
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2.3.4 Friction testing 

A pin-on-disk friction test (HEIDON Type20, SHINTO Scientific Co., Ltd.) was conducted to 

measure the friction coefficients of each disk specimen. A schematic of the test apparatus is shown in 

Fig. 2.10. The disk specimen was fixed onto a disk holder placed on a stage, and a diamond-pin 

specimen was fixed onto an upper arm using a pin holder. A normal load was applied using a weight, 

and the stage was rotated at a constant speed. Cutting oil was supplied through an automatic dropper to 

allow the friction test to be conducted under lubrication. The friction coefficient was calculated using 

the rotational radius, normal load, and friction torque measured using a torque meter mounted on the 

rotation shaft. 

The experimental conditions are given in Table 2.5. The diamond-pin specimen ( = 1mm) was 

manufactured using rolled structural steel (JIS: SS400), and it had a surface roughness of Ra = 0.7 ± 

0.1 m. The normal load was 0.49 N, and the sliding velocities were 0.05 m/s, 0.15 m/s, or 0.25 m/s 

corresponding to 3.0 m/min, 9.0 m/min, or 15.0 m/min, respectively. This was done to simulate the 

friction coefficient between the chip and the surface of the tapping tool. The sliding distance was 10 m. 

Emulsion cutting oil was supplied at a rate of 2.25 ml/min. The friction test was conducted only once. 
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Fig. 2.10 Schematic of the pin-on-disk friction apparatus 

(1)

Rotating 

direction

Torque meter

(3)

(2)

(4)

(5)
(6) (7)

(10)

(8)

(9)
(11)

Cutting

oil

(1) Disk specimen (2) Stage (3) Disk holder

(4) Pin specimen (5) Pin holder (6) Weight

(7) Nozzle (8) Automatic-dropping-water device

(9) Amplifier (10) Recorder (11) Controller

Table 2.5 Experimental conditions for the friction test 

Pin specimen
Rolled-structure steel 

(JIS: SS400)

Disk specimen

Ni–P/cBN film ( = 10 m)

Ni–P/SiC film ( = 5 m)

Ni–P/SiC film ( = 1 m)

Steam treatment

TiCN film

Normal load W, N 0.49

Sliding velocity V, m/s 0.05, 0.15, 0.25

Sliding distance L, mm 10

Lubricant
Emulsion cutting oil

(n = 1.20 mPa·s at 21.6℃ ͐)
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2.4 Experimental results 

2.4.1 Vickers hardness and Young’s modulus of the composite films 

 Figure 2.11 shows the Vickers hardness for each coating film and surface treatment. The 

TiCN-coated film had the highest hardness (>36 GPa). The steam-treated and Ni–P films had 

hardnesses of approximately 11 and 6.3 GPa, respectively. The hardness of the composite film was not 

measured, but the hardness of the Ni–P layer of the Ni–P/abrasive-particle composite films was 

assumed to be equivalent to or higher than that of the Ni–P film [2]. These results suggest that 

composite films can be used as coating materials for tapping tools because the hardness of the Ni–P 

layer is higher than that of the conventional coating materials used for tapping tools; thus, the life of 

the tools should also increase. 

 Figure 2.12 shows the Young’s modulus for each coating film and surface treatment. The Young’s 

modulus of the TiCN-coated film specimen was the highest (~470 GPa). The Young’s modulus of the 

steam-treated and Ni–P film specimens were approximately 230 GPa and 180 GPa, respectively. 
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Fig. 2.11 Mean values of the Vickers hardness for each coating film.  

error bars represent standard deviations. 

Fig. 2.12 Mean values of the Young’s modulus for each coating  

film. Error bars represent standard deviations. 
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2.4.2 Adhesion strength of the composite films 

 Figure 2.13 shows the variation in the friction coefficient over time in the scratch tests. The 

separation point could not be determined from these variations because the coefficient for the 

composite films in the scratch test was unstable. This was because of the collisions between the 

diamond pin and abrasive particles in the composite film.  

Figures 2.14 and 2.15 show the optical microscope images and energy-dispersive X-ray 

spectroscopy (EDX) line scan images of the scratched surfaces of the disk specimens, respectively. 

The EDX line scan images correspond to the part of the surface labeled as “A” in Fig. 2.14. As shown 

in Fig. 2.15, in the composite films, the Ni film remains on the substrate; this suggests that no 

separation occurred. Conversely, the steam-treated and TiCN-coated disk specimens show film 

separation at 0.4 and 4.6 mm, respectively, because of the reduction in the amount of oxygen (in the 

oxide layer) and Ti (in the TiCN film) at the scratched point. Based on these results, the adhesion 

strength of each disk specimen is shown in Fig. 2.16. The composite films showed excellent peeling 

resistance, with values greater than 98.1 N. These values were higher than those exhibited by the 

steam-treated (4.2 N) and TiCN-coated (42.9 N) specimens. The steam-treated specimen exhibited the 

lowest adhesion strength among the five coating films because of its brittle iron oxide layer. 
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Fig. 2.14 Optical microscope images of the disk surfaces 

(a) Ni-P/cBN particle composite film (mean particle diameter: 10 m) 

(b) Ni-P/SiC particle composite film (mean particle diameter: 5 m) 
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Fig. 2.13 Relation between the friction coefficient and time in the scratch test 
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(c) Ni-P/SiC particle composite film (mean particle diameter: 1 m) 

1 mm

A

100 m

Sliding direction
A

(d) Steam treatment 
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Fig. 2.14 Optical microscope images of the disk surfaces 
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(a) Ni-P/cBN particle composite film  

(mean particle diameter: 10 m) 

Fig. 2.15 SEM and EDX line scan images of the scratched surface 
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2.4.3 Friction coefficient of the composite films 

 Figure 2.17 shows the relationship between the friction coefficient for each surface-treated disk 

specimen and the sliding distance in the friction tests. As can be seen, the friction coefficient for all the 

specimens is high during the initial stages and then decreases before eventually becoming constant. 

The mean friction coefficient at 8.0–10.0 m for each disk specimen is shown in Fig. 2.18. The 

mean friction coefficient for the composite films developed herein was greater than 0.15, higher than 

those of the steam-treated and TiCN-coated specimens at every sliding velocity. The Ni–P/cBN film (𝑑̅ 

= 10 m) had the highest friction coefficient among the composite films.  

  

Fig. 2.16 Separation load of the Ni-P/abrasive particle composite film 
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(b) V = 9 m/min 

(a) V = 3 m/min 

Fig. 2.17 Relation between the friction coefficient and sliding distance 
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Fig. 2.17 Relation between the friction coefficient and sliding distance 

(c) V = 15 m/min 

Fig. 2.18 Relation between the friction coefficient and sliding velocity 
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2.5 Discussion  

According to the results, the composite film developed herein using Ni–P/abrasive particle 

showed excellent adhesion strength. This may be because of the composite film had a Young’s 

modulus (230 GPa) similar to that of the HSS substrate (220 GPa); this may have produced an 

equivalent strain when the contacting load was applied during scratch testing. No delamination or 

peeling was observed in the composite film.  

The composite film had a higher friction coefficient than the steam-treated or TiCN-coated films 

under emulsion oil lubrication. Because the composite film included abrasive particles, the plowing 

effect may have increased the friction coefficient even if the adhesion friction would have been 

reduced by oil lubrication. To confirm this, the surface of each rolled-steel pin specimen was observed. 

Figure 2.19 shows the optical microscope images of each specimen surface after the friction test. In 

the case of the composite films, the surface was plowed by the abrasive particles in the film, as 

indicated by the scratch marks on the surface. However, as can be seen in Fig. 2.19 (d) and (e), the pin 

specimens for the steam-treated and TiCN-coated films show partial contact with the disk specimens 

because the initial abrasion mark was observed. Because of this small contact area, these films 

exhibited a lower friction coefficient than the composite films. These results also demonstrate that the 

composite films cause heavier abrasive wear in their counterparts rolled-steel pins, which would result 

in breaking of the chip into small pieces if the composite film is used as the coating film for a tapping 

tool. 

 The Ni–P/abrasive particle composite films showed high hardness and excellent wear resistance. 

This could extend the service life of a tool.  
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Fig. 2.19 Optical microscope images of the rolled-steel pin specimen surfaces after the friction test 

(a) Ni-P/cBN particle composite film  

(mean particle diameter: 10 m) 

(b) Ni-P/SiC particle composite film  

(mean particle diameter: 5 m) 

(c) Ni-P/SiC particle composite film  

(mean particle diameter: 1 m) 

(d) Steam treatment (e) TiCN film 



Chapter 2 

 56 

 A pin-on-disk friction test was conducted to investigate the effect of the ratio of the protrusion 

height to the diameter of codepositing particles Rp on the friction coefficient. In this test, the cBN 

particles with mean diameter of 10 m were used for the codepositing particles. The HSS disk 

specimen coated with the Ni–P/cBN film with different Rp values (0%, 20%, and 40%) were prepared. 

The pin specimen ( = 1mm) was manufactured using carbon steel (JIS: S45C), and it had a surface 

roughness of Ra = 0.5 ± 0.1 m. The normal load was 19.8 N, and the sliding velocity was 0.5 m/s. 

The sliding distance was 10 m. Emulsion cutting oil was supplied at a rate of 2.25 ml/min.  

 Figure 2.20 show the effect of Rp values on the maximum friction coefficient. The maximum 

friction coefficient increased with increase of the Rp values. The results could be due to an increase of 

penetration of the abrasive particles onto the mating steel surface, which results in the increase of 

ploughing friction. These results indicated that the ratio of the protrusion height to the diameter of 

codepositing particles Rp should be 40 % in terms of high friction. 
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Fig. 2.20 Effect of RP values on the mean friction coefficient 
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2.6 Conclusions 

 Herein, Ni–P/abrasive particle composite films were formed on HSS disks using electroless 

plating. The hardness, adhesion strength, and friction coefficients of the composite-film coated, 

stream-treated, and TiCN-coated disk specimens were compared. The conclusions of this study are as 

follows: 

 

(1) Ni–P/abrasive particle composite films were deposited on an HSS disk specimen using cBN 

particulates with a mean diameter of 10 m or SiC particulates with mean diameters of 5.0 m or 

1.0 m. The surface roughness of the composite films was higher than that of the other specimens. 

(2) The hardness of the Ni–P plating film was ~11 GPa, which suggests that the composite film, which 

included the hard particles, was harder than the Ni–P plated film. 

(3) No film separation was observed in the composite films in the scratch tests, which exhibited a 

peeling resistance greater than that of the other surface-treated specimens.  

(4) The composite films showed friction coefficients greater than 0.15 at sliding velocities under 

emulsion-oil lubrication (0.05–0.25 m/s), which were higher than those of the other specimens. 

 

As noted above, the Ni–P/abrasive particle composite films exhibited excellent adhesion strength, 

wear resistance, and high friction coefficients under emulsion oil lubrication. This suggests that such 

composite films can be used as coating materials for tapping tools and may increase their service life 

without inducing chip snarling. 
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Chapter 3 

Development of tapping tool coated with Ni–P/abrasive 

particle composite film 

 

3.1 Introduction 

It has been shown that the Ni–P/abrasive particle composite film is high in hardness, has a high 

friction coefficient, and has excellent adhesion strength. This gives Ni–P/abrasive particle composite 

films excellent wear resistance. Composite films can also prevent chip snarling on the tapping tool 

because the polished chip surface produced by the abrasive particles causes the chip to break up.  

Maintaining the quality of the thread hole is as important as the prevention of chip snarling [1-3]. 

This is challenging to ensure when using a tapping tool coated with the Ni–P/abrasive particle 

composite film because the rough surface creates strong friction. This may increase the surface 

roughness and reduce the dimensional accuracy of the hole. In general, the quality of a thread hole is 

assessed from its appearance and size-tolerance [4]. The visual inspection of the thread surface is a 

qualitative assessment, whereas the size-tolerance examination provides a quantitative assessment of 

the thread geometry using screw thread-limiting gauges. Defects in thread holes may be caused by in 

appropriate selection of tools or the cutting conditions, such as the rotation speed or feed rate of the 

tapping tool. These must be controlled on the basis of the lead geometry of the thread hole. The 

driving force generated by the reaction force at the surface of the thread hole increases with the 

cutting speed so that the tapping tool may be excessively driven [5], [6].  

In this chapter, the development of a tapping tool coated with the Ni–P/abrasive particle composite 

film and discuss the cutting performance of the tool and the quality of the thread hole produced are 

described. 
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3.2 Development of a tapping tool coated with Ni–P/abrasive particle composite film 

 Figure 3.1 shows a schematic of the spiral-cut tapping tool developed in this study. It is evident 

from the figure that the tool comprised a body and shank. The body had a chamfer part and a complete 

thread part. The cutting edges, which had an angled chamfer, were located in the chamfer section. The 

tool had three helical flutes to eject the chips from the hole.  

   

Fig. 3.1 Schematic of spiral-cut tapping tool 

(1) Body (2) Shank (3) Chamfer part

(4) Complete thread part (5) Helical flute

(1)

(3)

(4)

(5)

(2)

A

b

g

q

A
P

A-A

an

P : Pitch Wt : Width of helical flute g : Lead angle

b : Chamfer angle q : Torsion angle an : Rake angle
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 Table 3.1 summarizes the specifications of the tap. It comprised three helical flutes and eight 

cutting edges. Figure 3.2 shows the geometry and position of each edge. As shown in Fig. 3.2(a), the 

uncut chip thickness of the second, third, fourth, fifth, sixth, and seventh cutting edges was 75 m in 

each case. Compared with the uncut chip thicknesses of other cutting edges, the uncut chip thickness 

of the first and eighth cutting edges were smaller, i.e., 29 and 12 m, respectively. The cutting widths 

increased as follows: eighth (64 m), first (114 m), seventh (224 m), sixth (317 m), second (411 

m), fifth (449 m), fourth (562 m), and third (620 m). On the edge face of each helical flute, 

cutting edges are formed (Figs. 3.2(b)–3.2(d)). The edge faces of Flute 1 formed the first, fourth, and 

seventh cutting edges, that of Flute 2 formed the second, fifth, and eighth cutting edges, and that of 

Flute 3 formed the third and sixth cutting edges. The number of cutting chips evacuated from each 

helical flute matched the number of cutting edges. 

 

  

Table 3.1 Specification of spiral-cut tap 

Nominal size M6×1

Pitch P, mm 1

Number of helical flutes Nf,flutes 3

Width of helical flute Wt, mm 3.2

Lead angle g, deg 3.03

Chamfer angle b, deg 15.4

Torsion angle q, deg 43.4

Rake angle an, deg 5.5
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 The tapping tool was coated with the Ni–P/abrasive particle composite film using the electroless 

plating process shown in Fig. 3.3 [7]. The plating methods for the Ni–P/cBN and Ni–P/SiC films were 

the same as those used for the disk specimens discussed in Section 2.2. 

 

  

Fig. 3.3 Schematic of the electroless plating method for coating tapping tool 

with composite film 

(b) Ni–P/SiC particle composite film  

(a) Ni–P/cBN particle composite film  
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 The tools coated with the Ni–P/abrasive particle composite film are shown in Figs. 3.4(a)–3.4(c). 

A tapping tool produced using steam treatment (Fig. 3.4(d)) and that coated with the TiCN coating 

film were prepared in order to compare the effect of tapping tool. Figures 3.5–3.9 show scanning 

electron microscopy (SEM) images of the rake face of the cutting edges of the tapping tools: the 

images of the tool coated with the Ni–P/cBN film (𝑑̅ = 10 m) are shown in Fig. 3.5, those coated 

with the Ni–P/SiC film (𝑑̅ = 5 m) are shown in Fig. 3.6, and those coated with the Ni–P/SiC film (𝑑̅ 

= 1 m) are shown in Fig. 3.7, those with steam treatment are shown in Fig. 3.8, those coated with the 

TiCN film are shown in Fig. 3.9. It is evident from these figures that the abrasive particles were 

uniformly distributed on the rake face and edge part of the tools coated with the Ni–P/abrasive particle 

composite film. In contrast, the tapping tool produced using steam treatment and those coated with the 

TiCN film had a smoother rake face, as shown in Figs. 3.8 and 3.9. 
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Fig. 3.4 Tapping tools used in tapping test 

(a) Ni–P/cBN film (d  = 10 m) 

(b) Ni–P/SiC film (d  = 5 m) 

(c) Ni–P/SiC film (d  = 1 m) 

(d) Steam treatment 

(e) TiCN coating 
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Fig. 3.5 SEM images of cutting edges of tool coated with Ni–P/cBN film (𝑑̅ = 10 m) 
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Fig. 3.6 SEM images of cutting edges of tool coated with Ni–P/SiC film (𝑑̅ = 5 m) 
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Fig. 3.7 SEM images of cutting edges of tool coated with Ni–P/SiC film (𝑑̅ = 1 m) 
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Fig. 3.8 SEM images of cutting edges of tool with steam treatment 

100 m

100 m

100 m

100 m

100 m

100 m

100 m

100 m

Cutting edge 

Rake face



Chapter 3 

 72 

(a) 1
st
 edge (b) 2

nd
 edge 

(c) 3
rd

 edge (d) 4
th
 edge 

(e) 5
th
 edge (f) 6

th
 edge 

(g) 7
th
 edge (h) 8

th
 edge 

Fig. 3.9 SEM images of cutting edges of tool coated with TiCN coating 
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3.3 Experimental methods  

3.3.1 Experimental apparatus 

 Tapping tests were conducted using a vertical machining center (TC-22A, Brother Industries, 

Ltd.) shown in Fig. 3.10. A synchronized feed control was used for tapping. Emulsion cutting oil was 

used to cool the tapping tool and workpiece. The cutting torque and thrust force were measured using 

a dynamometer (9125A, Kistler Japan Co., Ltd.) with a measurement range of thrust force of −3000–

3000 N and a measurement range of cutting torque of −50–50 Nm. Data were recorded by a computer 

via the amplifier. 

 

 

 

  

Fig. 3.10 Vertical machining center 
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3.3.2 Experimental conditions 

 Table 3.2 lists the experimental conditions for evaluate a thread hole accuracy. The tested tools 

had a spiral tap (HSS, M6 × 1) with eight cutting edges. The workpiece was a rectangular block of 

rolled structural steel (JIS: SS400) with dimensions of 14.0 × 310.0 × 450.0 mm
3
. Through holes with 

a hole pitch of 10 mm were drilled into the workpiece. To maintain a thread engagement of 91%, the 

diameter of each hole drilled by the tapping tool coated with the Ni–P/cBN film (𝑑̅ = 10 m) was 

5.15 mm, while all other holes had a diameter of 5.10 mm. Cutting speeds of 10 (the conventional 

cutting speed), 30, and 50 m/min were used. Lubrication was provided by an emulsion cutting oil 

(YUSHIROKEN FGE360, Yushiro Chemical industry Co., Ltd.) with a viscosity of 1.20 mPa·s at 

21.6°C. Each test was conducted once.  

  

Table 3.2 Cutting conditions 

Type of tapping tool Spiral-tap (HSS, M6×1)

Surfacae treatment

Ni–P/cBN film ( = 10 m)

Ni–P/SiC film ( = 5 m)

Ni–P/SiC film ( = 1 m)

Steam treatment

TiCN film

Workpiece material
Rolled-structure steel 

(JIS: SS400)

Cutting speed Vr, m/min 10, 30, 50

Lubricant
Emulsion cutting oil

(n = 1.20 mPa·s at 21.6℃ ͐)

Number of cutting process N, 

hole
1
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3.3.3 Evaluation of the dimensional accuracy of thread hole 

 To evaluate the geometry of the thread holes, the flank face at the advancing side (Fig. 3.11) was 

observed using SEM and the maximum height of frank face of advancing side Hmax_a proposed by 

Kadota et al. [8] was measured. Additionally, the shapes of the holes were tested using screw 

thread-limiting gauges (M6 × 1), which is standardized in JIS B 3102 (Fig. 3.12). The thread-limiting 

gauge had go and no-go thread plug gauges. A go thread plug checks the screwing performance, 

whereas a no-go thread plug checks whether the effective diameter of the thread hole exceeds the 

standard diameter (5.35–5.5 mm). If, the go thread plug fails to pass through the thread hole or the 

no-go thread plug passes through the hole in more than two revolutions, the hole is judged to be 

non-standard. 

  

No-go thread plug

Go thread plug

Fig. 3.12 Screw thread-limiting gauge 

Fig. 3.11 Observation point of thread hole 

Flank face of 
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(Observation point)
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Thread 

hole
Top

Bottom
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3.3.4 Evaluation method for cutting resistance  

 Figure 3.13 shows the change in the thrust force and cutting torque with respect to the cutting 

time. The points A, B, C, and D show the points at which the first cutting edge contacts the workpiece, 

the eighth cutting edge begins to cut, the first cutting edge finishes cutting, and the eighth cutting edge 

is extracted from the hole, respectively [9]. The cutting resistance of each tapping tool was evaluated 

from the mean cutting torques and thrust forces between points B and C, which represent the resultant 

cutting torques and thrust forces for the eight cutting edges. When evaluating the cutting torque, a 

positive value and a negative value represent the torque in the counterclockwise and clockwise 

directions, respectively. In the case of the thrust force, a positive value and a negative value represent 

the compression and tensile forces, respectively. The sampling frequency for cutting torque and thrust 

force was 2000 Hz, and low-pass filtering was performed with cut-off frequencies of 60 Hz at 10 

m/min, 100 Hz at 20 m/min, and 150 Hz at 30 m/min.  

 

  

Fig. 3.13 Cutting torque and thrust force during the machining of a single hole (for TiCN); 
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3.4 Results and discussion 

3.4.1 Evaluation of the dimensional accuracy of thread holes 

 Each thread hole was evaluated using the thread gauges. Consequently, all thread holes met the 

appropriate standard, demonstrating that the tapping tool coated with the Ni–P/abrasive particle 

composite film produced thread holes of satisfactory dimensions and precision. 

 Figures 3.14, 3.15, and 3.16 show SEM images of the flank face of a thread hole machined with 

each tapping tool. It is evident from these figures that the tapping tool coated with the Ni–P/cBN 

particle composite film (d  = 10 m) produced severe adhesion with plastic flow at the surface of the 

thread hole; therefore, as shown in Figure 3.17, the maximum height of frank face of advancing side 

for the tapping tool coated with the Ni–P/cBN particle composite film (d  = 10 m) was larger than 

that for the other tapping tool at all cutting speed conditions. This suggested that the Ni–P/cBN particle 

composite film (d  = 10 m) had excessive surface roughness or that the size of cBN particle used in 

this study was considerably large for the surface treatment of the tapping tool [10].  
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Fig. 3.14 SEM images of flank face of thread hole (Vr = 10 m/min) 

(a) Ni–P/cBN film (d  = 10 m) 

(b) Ni–P/SiC film (d  = 5 m) (c) Ni–P/SiC film (d  = 1 m) 

(d) Steam treatment (e) TiCN film 
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Fig. 3.15 SEM images of flank face of thread hole (Vr = 30 m/min) 
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(d) Steam treatment (e) TiCN film 
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Fig. 3.16 SEM images of flank face of thread hole (Vr = 50 m/min) 

(a) Ni–P/cBN film (d  = 10 m) 

(b) Ni–P/SiC film (d  = 5 m) (c) Ni–P/SiC film (d  = 1 m) 

(d) Steam treatment (e) TiCN film 
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3.4.2 Cutting torque and thrust force 

 Figures 3.18 and 3.19 show the variation in cutting torque and thrust force over time, respectively. 

It is evident from Fig. 3.18 that the cutting torque of the Ni–P/cBN film was unstable for high values 

at 10 m/min and 50 m/min, whereas the other tools had relatively stable torque. As shown in Fig. 3.19, 

the thrust force of the TiCN coating film acts as the high tensile force produced between points B and 

C as shown in Fig. 3.13 in the cutting process at all cutting speeds. The absolute value of the thrust 

force of the composite films was smaller than that of the TiCN coating film, decreasing almost to zero 

or becoming positive (compression force) at low cutting speeds.  

 Figure 3.20 shows the relation between the mean cutting torque and cutting speed. It is evident 

from the figure that the tapping tool coated with the Ni–P/cBN particle composite film (d  = 10 m) 

produced the highest cutting torque at all cutting speeds (2.5–3.7 Nm). We assume that this was 

because the friction coefficient of the Ni–P/cBN particle composite film was the highest of the all 

Fig. 3.17 Maximum height of frank face of advancing side 
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surface treatments, as discussed in Section 2.4.3. This high friction caused damage and increased the 

roughness of the surface of the thread hole, as shown in Figs. 3.14–3.16. A large particle size creates a 

plowing effect, as demonstrated in Section 2.4.3. In contrast, the cutting torque of the other tapping 

tools was relatively constant at 1.8–2.3 Nm.  

 Figure 3.21 shows the relation between the thrust force and cutting speed. It is evident from the 

figure that the tapping tool coated with the TiCN film produced the highest tensile force, while that of 

the other tools was less than 100 N. The tensile force also increased in line with the cutting speed. 

This is undesirable because the application of a large tensile force to the tapping tool increases the 

diameter of the thread hole [11]. In contrast, the tapping tools coated with the Ni–P/abrasive particle 

composite film exhibited lower thrust forces. Especially, the tensile force by the composite films was 

less than 50 N at 50m/min. Because the thrust tensile force of the tool coated with the Ni–P/abrasive 

particle composite film was lower than that of the conventional tools, the drawing force on the thread 

hole was also lower. This suggested that the Ni–P/abrasive particle composite film can be used in the 

surface treatment of tapping tools working at high cutting speeds.  

 The optimal size of the SiC particles used in the composite film was less than 5.0 m, as an 

excessively rough tool surface may cause damage and decrease the dimensional accuracy of the thread 

hole. Note again that the dimensions and precision of the thread holes machined with the tapping tool 

coated with the Ni–P/cBN particle composite film (d
―

 = 10 m) were within the relevant standards of 

the thread gauge.  
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Fig. 3.18 Relation between cutting 

torque and time 

Fig. 3.19 Relation between thrust 

force and time 
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Fig. 3.20 Relation between cutting torque and cutting speed 

Fig. 3.21 Relation between thrust force and cutting speed 
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3.5 Effect of the diameter of codepositing particle on chip snarling 

 In order to investigate the effect of the diameter of codepositing particle on chip snarling, the 

tapping tool coated with Ni–P/SiC particle composite film using a smaller diameter of SiC particles (d
―

 

= 0.3 m) was prepared. The tapping test was conducted using the tapping tool coated with Ni–P/SiC 

film (d
―

 = 1 m) or Ni–P/SiC film (d
―

 = 0.3 m). The workpiece was a carbon steel (JIS: S45C). 

Cutting speeds was 50 m/min, and lubrication was provided by an emulsion cutting oil 

(YUSHIROKEN FGE360, Yushiro Chemical industry Co., Ltd.) with a viscosity of 1.20 mPa·s at 

21.6 °C. The number of cutting process was 25 holes.  

 Figure 3.22 show the snapshot of tapping tool after cutting 25 holes. The tapping tool coated with 

Ni–P/SiC film (d
―

 = 1 m) obviously prevented the chip snarling. In contrast, the tapping tool coated 

with Ni–P/SiC film (d
―

 = 0.3 m) caused the chip snarling on the tapping tool. This result indicated 

that the mean diameter of the codepositing SiC particles, which was effective in preventing the chip 

snarling, was over 1m. 

 

  

5 mm 5 mm

Fig. 3.22 Snapshot of tapping tool after tapping test  

(a) Ni–P/SiC film (d
―

 = 1 m) (b) Ni–P/SiC film (d
―

 = 0.3 m) 
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3.6 Conclusions 

A tapping tool coated with the Ni–P/abrasive particle composite film was developed. The 

dimensional accuracy of the thread holes and the cutting resistance (i.e., cutting torque and thrust 

force) were experimentally investigated via tapping tests. The conclusions of this chapter are as 

follows: 

 

(1) Tapping tools coated with the Ni–P/cBN (d  = 10 m), Ni–P/SiC (d  = 5 m), and Ni–P/SiC (d  = 

1 m) films were developed. 

(2) The thread holes produced by the tools coated with the Ni–P/cBN (d  = 10 m), Ni–P/SiC (d  = 5 

m), and Ni–P/SiC (d  = 1 m) films satisfied the relevant standard for thread gauge. However, 

the surface of the thread holes machined by the tapping tool coated with the Ni–P/cBN particle 

composite film (d  = 10 m) was rougher at all cutting speeds. 

(3) The tapping tool coated with the Ni–P/cBN particle composite film (d  = 10 m) produced the 

highest cutting torque and thrust force.  

(4) The tensile force produced by the tool coated with the Ni–P/abrasive particle composite film was 

less than 50 N at 50 m/min. 
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Chapter 4  

Chip snarling prevention and tapping tool service life 

extension by coating with Ni–P/abrasive particle composite 

film 

 

4.1 Introduction 

 A common cause of problems in the tapping process is the failure to dispose the chip effectively [1-4]. 

Snarled chips on the tapping tool cause damage to the cutting edge or breakage of the tool. Because 

tapping is the final stage in the production process, defects arising during tapping are costly. In general, 

tapping is performed at speeds less than 10 m/min, as chip snarling often occurs at higher cutting speeds. 

When snarled on the tapping tool, chips must be manually removed. Therefore, to increase the efficiency 

of the tapping process, improving chip disposal at high cutting speeds is necessary. To improve wear 

resistance and lubrication, hard coatings or lubricant coating films have been developed for tapping tools 

[5-8]. However, it has been reported that coated tapping tools produce chips of greater length and with 

greater curl, exacerbating the snarling problem [9-10]. Hence, tapping tools that prevent chip snarling at 

high cutting speeds and increase the tool service life must be developed. 

 In this chapter, tapping tests were performed to investigate whether a tapping tool coated with Ni–

P/abrasive particle composite film, described in Chapter 2, was able to prevent chip snarling at high cutting 

speeds and increase the tool service life. A cutting model for the rake face of the tapping tool was also 

proposed, and the friction coefficient of the rake face at the tool–workpiece interface was calculated 

from the measured thrust force and cutting torque. The effect of this estimated friction coefficient on 

chip snarling was analyzed. 
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4.2 Experimental methods 

4.2.1 Tapping test 

 Table 4.1 shows the tapping test conditions. The tapping tools, workpiece, lubricant, and 

experimental apparatus were same as those used in the tests presented in Chapter 3. The cutting 

speeds were 10 (the conventional cutting speed), 30, and 50 m/min. Twenty-five holes were cut. The 

evacuated chips and the snarled chips were collected after each thread hole had been cut. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Estimation of friction coefficient at the rake face of the tool–workpiece 

interface 

 The friction coefficient between the rake face of the tapping tool and the chip was estimated from 

the measured thrust force and cutting torque. The cutting resistance at point B in Fig. 3.10 was used to 

estimate the resultant cutting resistances at each cutting edge, as the cutting resistance between points 

B and C was affected by the friction between the flank face of the tool and thread hole [11]. The 

positive and negative cutting torques represent the counterclockwise and clockwise directions, 

respectively. For thrust force, a positive value represents compression force, whereas a negative value 

represents tensile force.  

Table 4.1 Experimental conditions 

Type of tapping tool Spiral-tap (HSS, M6×1)

Surfacae treatment

Ni–P/cBN film ( = 10 mm)

Ni–P/SiC film ( = 5 mm)

Ni–P/SiC film ( = 1 mm)

Steam treatment

TiCN film

Workpiece material
Rolled-structure steel 

(JIS: SS400)

Cutting speed Vr, m/min 10, 30, 50

Lubricant
Emulsion cutting oil

(n = 1.20 mPa·s at 21.6℃ ͐)
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 To estimate the friction coefficient, it was assumed that the measured torque and thrust force 

were generated by the resultant cutting resistances from the eight cutting edges. Figure 4.1 shows the 

global coordinate system (X–Y–Z) [8] wherein X is the axis in the direction of circumferential force, Y 

is the axis in the direction of axial force, and Z is the axis in the direction of radial force. Figure 4.2 

shows the schematics of the relations between the global coordinate system (X–Y–Z) and the local 

coordinate system (x–y–z), where x is the axis in the direction of normal force on the rake face, y is the 

axis in a direction parallel to the front cutting edge, and z is the axis in the direction vertical to the 

rake face. Here,  is the chamfer angle [degree],  is the torsion angle [degree], and n is the rake 

angle [degree].  

 The transformation matrix M for the rotating coordinate conversion is given by the angles , , 

and n as follows: 

 

 

 

 

 Thus, the measured force components (FM, FT, FZ) in the global coordinate system (X–Y–Z) are 

transformed into the cutting force components (Fx, Fy, Fz) in the local coordinate system (x–y–z) as 

follows: 

  

 

where FM is the circumferential force [N], which is the cutting torque divided by the radius of the 

tapping tool, FT is the axial force [N], which is the thrust force measured by the dynamometer, and FZ* 

is the radial force [N]. FZ* cannot be measured by the dynamometer because it is the centripetal force 

in the radial direction of the tap. To estimate the radial force, two hypotheses were introduced. The 

first was that a chip flows along the surface of the screw thread, as shown in Fig. 4.3. Thus, the chip 

(4.1). 

(4.2) 
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flow angle  was determined from the tool geometry to be 15.37 degree. The second was that the chip 

flow direction is the same as the direction of friction force [12]. The chip flow angle  can also be 

expressed using Fy and Fz as follows: 

 

 

 Combining Eqs. (4.1)–(4.3), FZ* can be expressed as follows: 

 

 

 The friction force F is calculated as follows: 

 

 

 Thus, the friction coefficient is given as follows: 

 

 

 

 

  

(4.4). 

(4.5). 

(4.6). 

(4.3). 
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Fig. 4.1 The global coordinate system (X–Y–Z) on the cutting edge 
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4.2.3 Durability testing 

 The durability testing of the tapping tools was conducted for evaluating the tool service life. The 

tapping tools, workpiece, experimental apparatus, and lubricant were the same as those used in the 

tapping test discussed in Chapter 2. The cutting speed was 50 m/min. The sound level was measured 

using a sound level meter (LA-5560, Ono Sokki Co., Ltd). The cutting test was conducted until the 

number of tapping processes reached the end of the tool service life. This was defined as either a tool 

breakage or an abrupt increase in the cutting torque, with noise exceeding 90 dB. In both cases, the 

quality of the thread hole was then evaluated using a screw thread gauge. Chip snarling was checked 

after every 200 holes, and the chips were not removed even though the chips snarled on the tapping 

tool. 

  

y

Tool

Workpiece material

zChip flow 

direction



Surface of 

thread hole
Uncut chip 

thickness

Front cutting edge

Fig. 4.3 Schematic of the chip flow angle 
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4.3 Results and discussion 

4.3.1 Chip snarling and chip curl diameter 

4.3.1.1 Rate of chip snarling 

 Figure 4.4 shows a snapshot of the tapping tool after tapping at 10 m/min. It is evident from the 

figure that the chips were snarled on the tool coated with the TiCN coating film (Fig. 4.4(b)); 

however, they were not snarled on the tool coated with the Ni–P/SiC particle composite film (𝑑̅ = 1.0 

mm) (Fig. 4.4(a)). To evaluate the frequency of chip snarling, the rate of chip snarling Rc was 

introduced and is expressed as follows: 

 

 

where NC is the number of trials with chip snarling [holes] and Nall is the number of tapping processes 

[holes] (Nall = 25 holes). Figure 4.5 shows the relation between the cutting speed and the rate of chip 

snarling. With the exception of the tool coated with the TiCN film, the rate of snarling increased as the 

cutting speed increased. In the case of the tapping tool coated with the TiCN film, the rate of chip 

snarling decreased as the cutting speed increased. The tapping tool coated with the Ni–P/SiC film (d̅ = 

1 mm) had the smallest rate at nearly 0% at all cutting speeds. This clearly demonstrated the 

effectiveness of the composite film coating in reducing the frequency of chip snarling across a wide 

range of cutting speeds. 

  

(4.7) 
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(a) No chip snarling (Tapping tool coated with 

Ni–P/SiC film (𝑑̅ = 1.0 mm);  

Vr = 10 m/min)) 

(b) Chip snarling (Tapping tool coated with 

TiCN film; Vr = 10 m/min)) 

Fig. 4.4 Snapshot of tapping tool after tapping test 

Fig. 4.5 Relation between the rate of chip snarling and cutting speed 
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4.3.1.2 Chip curl geometry 

 Figures 4.6–4.8 show the collected chips that were cut from the 4
th
 cutting edge at 10, 30, and 50 

m/min, respectively. From these figures, it was observed that the chip curl diameter was smaller for 

the tapping tools coated with the composite films than that for the steam treatment tool or the tool 

coated with the TiCN film at any cutting speed. Furthermore, the chip curl diameter increased in line 

with an increase in the cutting speed. This suggested a relation between the chip curl diameter and 

chip snarling. Next, the effect of the chip shape on the chip snarling was analyzed. 
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4.3.1.3 Effect of chip curl diameter on chip snarling 

 To evaluate the geometry of chip curl, the diameter was measured as shown in Fig. 4.9. The chip 

was divided into three regions along the chip length: Region I, Region II, and Region III. In Region I, 

the chip curl diameter increased until the uncut chip thickness became constant. Assuming that the 

cutting distance is equal to the chip length, the chip length in Region I is the length LI, which can be 

expressed as follows: 

 

 

where d is the tapping tool diameter [mm], w is the width of the cutting edge of the tapping tool [mm], 

p is the pitch of the thread hole [mm], and  is the lead angle [degree]. Region II was defined as the 

region between the end of Region I and the point at which the chip rotates once along the helical flute 

after Region I. In this region, the shape of the curl is constant. Thus, the chip length in this stable 

region (LS) is given by the following equation:  

 

 

where Wt is the width of the helical flute (Fig. 4.10). In this study, the length of Region II was 13.2–

23.2 mm. Region III was defined as remainders are of the chip (Region II). In this study, the chip curl 

diameter in Region II was used to investigate the effect of the coating films on the chip curl diameter 

during tapping [13].  

 

  

(4.9) 

Fig. 4.9 Chip curl diameter in stable region 

5 mm

RegionⅠRegionⅡRegionⅢ

(4.8) 
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 Figure 4.11 shows the relation between the chip curl diameter and cutting speed. It is evident 

from the figure that the chip curl diameters for the tools coated with composite films were smaller 

than those for the other tapping tools at all cutting speeds. With the exception of the tool coated with 

TiCN film, the chip curl diameter increased in line with an increase in the cutting speed. In contrast, 

the chip curl diameter for the tapping tool coated with TiCN film decreased as the cutting speed 

increased. Figure 4.12 shows the relation between the rate of chip snarling and the chip curl diameter. 

The rate of snarling increased in line with an increase in the chip curl diameter for chip curl diameters 

larger than 2.3 mm. In contrast, chip snarling did not occur (i.e., Rc = 0%) at chip curl diameters less 

than 2.3 mm. This demonstrated that the tools coated with composite films prevented chip snarling by 

reducing the chip curl diameter. Further, the relation between the width of the helical flute (Wt), which 

the cutting chips pass through, and the chip curl diameter were investigated using the dimensionless 

chip curl diameter Dd defined as follows [11]: 

 

 

 When the Dd value reaches 1.0, the chip curl diameter is the same as the width of the helical flute. 

The relation between the dimensionless chip curl diameter and the rate of chip snarling is shown in 

Fig. 4.13. It is evident from the figure that when the dimensionless chip curl diameter was greater than 

0.8, the rate of chip snarling increased in line with the dimensionless chip curl diameter, exceeding 

40% of the rate of chip snarling at a diameter of approximately 1.0. Thus, chip snarling became more 

frequent when the chip curl diameter approached the width of the helical flute. Figures 4.14(a) and 

(4.10). 

5 mm

Fig. 4.10 Width of the helical flute 
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4.14(b) show schematics of the tapping processes without and with chip snarling, respectively. When 

the chip curl diameter was shorter than the width of the helical flute, the chips were evacuated along 

the flute. In contrast, when the chip curl diameter approached the width of the helical flute, the chips 

followed the spiral flute of the tapping tool, producing chip snarling. Hanasaki et al. [14] noted that 

the chip curl of the drilling process was also affected by the geometry of the helical flute of the 

drilling tool because of the binding force from the wall of the flute.  

 These results suggested that the tool coated with the Ni–P/abrasive particle composite film 

prevented chip snarling by decreasing the chip curl diameter at both high and low cutting speeds. 

 

 

  

Fig. 4.11 Relation between the chip curl diameter and cutting speed 
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Fig. 4.12 Relation between the rate of chip snarling and chip curl diameter  

Fig. 4.13 Relation between the rate of chip snarling and dimensionless chip curl diameter  
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Fig. 4.14 Schematics of the tapping process 

(a) Without chip snarling  (b) With chip snarling  
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4.3.2 Effect of the friction coefficient on chip curl diameter 

4.3.2.1 Cutting torque and thrust force 

 Figures 4.15(a)–4.15(c) show the change in the cutting torque with respect to the number of 

cutting processes at 10, 30, and 50 m/min, respectively. In Fig. 4.15(a), the cutting torque of the Ni–

P/cBN film (d̅ = 10 mm) was higher than 2.4 Nm at the first hole, which then decreased to 1.8 Nm. 

The other tools showed almost constant values. The cutting torques of the Ni–P/SiC film (d̅ = 5 mm) 

and Ni–P/SiC film (d̅ = 1 mm) were both higher than 1.8 Nm. From Fig. 4.15(b), the cutting torque of 

the Ni–P/SiC film (d̅ = 1 mm) and steam treatment decreased as the number of cutting processes 

increased. The other tools showed almost constant values, with the cutting torque of the Ni–P/cBN 

film (d̅ = 10 mm) and Ni–P/SiC film (d̅ = 5 mm) being approximately 2.4 and 1.8 Nm, respectively. 

Figure 4.15(c) shows that the cutting torque of the Ni–P/cBN film (d̅ = 10 mm) was greater than 2.8 

Nm at the first hole, which then decreased to 1.8–2.2 Nm. The cutting torque of the Ni–P/SiC film (d̅ 

= 1 mm) was nearly constant at approximately 1.9 Nm. Additionally, the values for the other tools 

were approximately constant at 1.6–1.8 Nm.  

 Figures 4.16(a)–4.16(c) show the change in the thrust force with respect to the number of cutting 

processes at 10, 30, and 50 m/min, respectively. As shown in Fig. 4.16(a), the magnitudes of the thrust 

forces for the tapping tool with steam treatment and the tools coated with the Ni–P/cBN (d̅ = 10 mm) 

and Ni–P/SiC (d̅ = 1 mm) films ranged between −100 and 0 N. The thrust force for the tool coated 

with Ni–P/SiC film (d̅ = 5 mm) was close to 0 N. The tool coated with the TiCN film exhibited the 

lowest force. Figure 4.16(b) shows that the thrust force of the tapping tools with steam treatment, that 

coated with the Ni–P/SiC film (d̅ = 5 mm), and that coated with the Ni–P/SiC film (d̅ = 1 mm) ranged 

between −100 and 0 N. The thrust force of the tools coated with the TiCN and Ni–P/cBN (d̅ = 10 mm) 

films were close to −100 N. Figure 4.16(c) shows that the thrust forces of the tools with the Ni–P/cBN 

film (d̅ = 10 mm) and steam treatment decreased as the number of cutting processes increased to 

approximately −100 N and −80N, respectively. Other tools exhibited almost constant values of −50 N. 
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Fig. 4.15 Change in cutting torque with respect 

to the number of cutting process 

Fig. 4.16 Change in thrust force with respect 

to the number of cutting process 

(a) Vr = 10 m/min 

(b) Vr = 30 m/min 

(c) Vr = 50 m/min 
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4.3.2.2 Estimated friction coefficient 

 Figures 4.17(a)–4.17(c) show the change in the friction force with respect to the number of 

cutting processes at 10, 30, and 50 m/min, respectively. From these figures, the friction forces for the 

novel tapping tools were greater than 800 N. The forces for the tapping tool coated with the Ni–P/cBN 

( d̅  = 10.0 mm) and Ni–P/SiC ( d̅  = 1.0 mm) films decreased as the number of cutting processes 

increased under all conditions. This decrease could be due to tool wear. In contrast, the values for the 

other tools were nearly constant between 600 and 800 N. 

 Figures 4.18(a)–4.18(c) show the change in the normal force with respect to the number of 

cutting processes at 10, 30, and 50 m/min, respectively. From these figures, the normal forces for the 

Ni–P/cBN film (d̅ = 10.0 mm) at 30 and 50 m/min were greater than 600 N. In contrast, the other tools 

showed almost constant values between 500 and 600 N under all cutting conditions. 
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(a) Vr = 10 m/min 

(b) Vr = 30 m/min 

(c) Vr = 50 m/min 

Fig. 4.17 Change in the frictional force with 

respect to the number of cutting 

processes 

Fig. 4.18 Change in the normal force with 

respect to the number of cutting 

processes 

(a) Vr = 10 m/min 

(b) Vr = 30 m/min 

(c) Vr = 50 m/min 
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Figures 4.19(a)–4.19(c) show the change in the mean friction coefficient with respect to the 

number of cutting processes at 10, 30, and 50 m/min, respectively. As shown in Fig. 4.19(a), the mean 

frictional coefficient for the tapping tool coated with TiCN film was the smallest, at 10 m/min. The 

mean friction coefficients for the tapping tools coated with composite film were higher than 1.35 at 10 

m/min. As shown in Figs. 4.19(b) and 4.19(c), the mean friction coefficients for the tools coated with 

composite films were also higher than those for the other tools at the higher cutting speeds of 30 and 

50 m/min, respectively.  

 

  

(a) Vr = 10 m/min 

Fig. 4.19 Change in the mean frictional coefficient with respect to the number of cutting 

processes 
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Fig. 4.19 Change in the mean frictional coefficient with respect to the number of cutting 

processes 
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4.3.2.3 Effect of friction coefficient on chip curl diameter at the tool–chip interface 

 Figure 4.20 shows the relation between the mean friction coefficient at the chip–tool rake face 

and chip curl diameter. As shown in the figure, the chip curl diameter decreased as the mean friction 

coefficient increased, suggesting that an increase in the friction coefficient at the chip–tool rake face 

effectively decreased the chip curl diameter. 

 

 

 

  

Fig. 4.20 Relation between the chip curl diameter and mean friction coefficient 
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4.3.3 Tool service life 

 Figure 4.21 shows the change in the cutting torque with respect to the number of cutting 

processes up to the end of the tool service life. The cutting torque of the tool coated with the Ni–

P/cBN film (𝑑̅ = 10 mm) film abruptly increased after approximately 80 holes, whereas the tool coated 

with the Ni–P/cBN film (𝑑̅ = 10 mm) broke after 214 holes. The thread of the 201
th
 hole of the tapping 

tool coated with Ni–P/cBN film ( 𝑑̅  = 10 mm) was measured with the screw thread gauge and 

determined to be unsatisfactory. The cutting torque of the tools with steam treatment, that coated with 

the Ni–P/SiC film (𝑑̅ = 5 mm), and that coated with the Ni–P/SiC film (𝑑̅ = 1 mm) gradually increased 

in line with the number of cutting processes. The end of the service life of these tools was decided by 

an abrupt increase in the cutting torque that was indicated by a noise greater than 90 dB. The tapping 

tool coated with the TiCN film caused thread failure at the first hole so that its service life was zero. 

 

 

 

  

Fig. 4.21 Change in mean cutting torque with respect to the number of cutting processes 
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 Figure 4.22 shows chip snarling with respect to the number of cutting processes within the 

service life of each tool. The blue circles indicate that chips were evacuated, whereas the red circles 

indicate that they snarled on the tapping tool across 200 tapping processes. Figure 4.23 shows the 

tapping tool after the test. As shown in the figure, the conventional tapping tool with steam treatment 

produced significant chip snarling. In contrast, the tools coated with the Ni–P/cBN (𝑑̅ = 10 mm) and 

Ni–P/SiC (𝑑̅ = 1 mm) films largely prevented significant chip snarling throughout their service lives. 

The tool coated with the Ni–P/SiC film (𝑑̅ = 5 mm) prevented snarling up to the 600
th
 hole; however, 

snarling was observed in the 601
st
–800

th
 holes, demonstrating the inability of this film to prevent 

snarling. 
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Fig. 4.22 Chip snarling with respect to the number of cutting processes 



   Chapter 4 

115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.24 shows a plot of the number of cutting processes over the tool service life. As shown 

in the figure, the tool coated with the Ni–P/cBN film (𝑑̅ = 10 mm) film had the shortest service life. 

SEM and energy-dispersive X-ray spectrometry (EDX) images of 4
th
 cutting edge of each tapping tool 

are shown in Figs. 4.25–4.27. The broken tool is not shown. As shown in these figures, in each case, 

each surface treatment was worn away by the friction between the chip and the tool. However, the Ni–

P/SiC (𝑑̅ = 5 mm) and the Ni–P/SiC (𝑑̅ = 1 mm) films survived in tool-chip interface. In the case of the 

tools with steam treatment and those coated with Ni–P/SiC film (𝑑̅ = 5 mm), the edge tips were also 

worn away. The tool coated with the Ni–P/SiC film ( 𝑑̅  = 1 mm) had the longest service life, 

completing 1.6 times the number of cutting processes of the tool with steam treatment. Because this 

tapping tool prevented chip snarling, wear due to the chipping of the cutting edge was also prevented, 

as shown in Fig. 4.25. 

(a) Ni–P/cBN film (𝑑̅ = 10 mm) film (b) Ni–P/SiC film (𝑑̅ = 5 mm) film 

(c) Ni–P/SiC film (𝑑̅ = 1 mm) film (d) Stream treatment 

Fig. 4.23 Snapshot of tapping tool after tapping test 
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(a) SEM image (b) EDX image (mix) 

(c) EDX image (Fe) (c) EDX image (Ni) 
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Fig. 4.25 SEM and EDX images of the tapping tool coated with the Ni–P/SiC film (𝑑̅ = 5 mm) 

Fig. 4.24 Tool service life 
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(a) SEM image (b) EDX image 

(c) EDX image (Fe) (d) EDX image (Ni) 

Fig. 4.26 SEM and EDX images of the tapping tool coated with the Ni–P/SiC film (𝑑̅ = 1 mm) 

(a) SEM image (b) EDX image 

(c) EDX image (Fe) (d) EDX image (Ni) 

Fig. 4.27 SEM and EDX images of the tapping tool with steam treatment 
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4.4 Conclusions 

 Tapping tests were performed to investigate whether the tapping tools coated with the Ni–

P/abrasive particle composite film were able to prevent chip snarling and increase the tool service life 

at high cutting speeds. The friction coefficient at the tool–workpiece rake face interface was estimated 

using the measured thrust force and cutting torque, and the effect of the friction coefficient on chip 

snarling was investigated. The conclusions are summarized as follows: 

 

(1) The tools coated with composite film had lower rates of chip snarling. This was particularly true 

for the Ni–P/SiC film (d̅ = 1 mm), which had a chip snarling rate of less than 5%. 

(2) The rate of chip snarling increased in line with the chip curl diameter. The tapping tools coated 

with composite film were able to prevent snarling by maintaining the chip curl diameter below the 

width of the helical flute of the tapping tool (3.2 mm) at high cutting speeds. The rate of chip 

snarling exceeded 40% at a dimensionless chip curl diameter of approximately 1.0. 

(3) The tapping tools coated with composite films had the highest cutting torque under all cutting 

conditions. The tools coated with the Ni–P/SiC film (𝑑̅ = 5.0 mm) and those coated with the Ni–

P/SiC film (𝑑̅ = 1.0 mm) had thrust forces greater than 1.8 Nm, exceeding that of the conventional 

tapping tool at all cutting speeds. The tool with the Ni–P/cBN film (𝑑̅ = 10 mm) had a thrust force 

smaller than that of the conventional tool at 30 and 50 m/min. 

(4) The mean friction coefficient between the chip and tool rake face was derived from a coordinate 

transformation of the measured cutting torques and thrust forces. The mean friction coefficient of 

the tapping tools coated with the Ni–P/SiC (d̅ = 5 mm) and Ni–P/SiC (d̅ = 1 mm) films were higher 

than that of the conventional tapping tool at all cutting speeds. The chip curl diameter decreased as 

the mean friction coefficient increased. 

(5) At high cutting speeds (Vr = 50 m/min), the service life of the tapping tool coated with the Ni–

P/SiC film (d̅ = 1 mm) was 2.6 times as high as that of the conventional steam treatment tool. 
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Chapter 5 

Effect of the friction coefficient at the sliding zone of the 

chip–tool interface on chip curl diameter during the tapping 

process 

 

5.1 Introduction 

 In Chapter 4, it was revealed that chip snarling on a tapping tool was prevented at a high cutting 

speed condition (Vr = 50 m/min) by coating the tapping tool with a Ni–P/abrasive particle composite 

film. The curl diameter of chips evacuated without chip snarling tended to be shorter than the width of 

the helical flute. Therefore, generating a shorter chip curl diameter is important in order to prevent 

chip snarling. 

 It is generally known that chip curl diameter is affected by the shear zone of the workpiece 

material [1–4]. In orthogonal cutting tests, the shear zone is influenced by the tool geometry, the 

built-up edge, and the secondary shear zone [5–7]. The geometry of each tapping tool used in the 

tapping test in Chapter 4 was the same and a built-up edge was not observed. Therefore, it is 

considered that the secondary shear zone caused decreasing chip curl diameter when using the tapping 

tool coated with a Ni–P/abrasive particle composite film. The secondary shear zone corresponds to the 

sticking zone where the chip contacts the tool rake face; it is created due to friction at the chip–tool 

interface [5]. In the secondary shear zone, plastic flow occurs and the shear velocity gradually 

increases up to the bulk chip speed. In orthogonal cutting, Nakayama et al. [5] demonstrated that chip 

curl diameter decreased with an increase in secondary shear zone thickness. As presented in Chapter 4, 

the increased friction coefficient at the tool (rake face)–chip interface decreased chip curl diameter; 

therefore, it is hypothesized that the friction coefficient increased the thickness of the secondary shear 

zone. However, there is no research investigating the relation between the friction coefficient at the 
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chip–tool interface and the secondary shear zone thickness during the tapping process or during 

orthogonal cutting. On the rake face, the chip–tool contact zone is divided into two regions: 1) the 

sticking zone, a plastic region characterized by a sticking friction with a plastic localization, where 

stresses reach a maximum level, as mentioned above; and 2) the sliding zone, an elastic region 

characterized by a sliding friction and a linear proportionality between the normal and shear stresses 

(Usui and Takeyama [8]). The friction coefficient at the sliding zone (i.e., local friction coefficient) 

could affect the secondary shear zone thickness, resulting in variation of the chip curl diameter.  

In this chapter, the local friction coefficient at the sliding zone of the chip–tool interface and the 

secondary shear zone thickness were estimated using the sticking–sliding friction model [9] and the 

cutting torque and thrust force obtained in Chapter 4. Then, the effect of the local friction coefficient 

at the sliding zone on chip curl diameter and secondary shear zone thickness was investigated.  

 

5.2 Methods 

5.2.1 Estimation of local friction coefficient at the sliding zone of the tool-chip interface  

The cutting resistance on the tool rake face, which was calculated in Chapter 4, is the resultant 

value for all cutting edges. Assuming that the specific cutting resistance, which is the cutting 

resistance per unit of contact area, for each cutting edge of the tapping tool is the same, the cutting 

resistance for the nth cutting edge Rnth is given by 

 

 

where R is the cutting resistance [N], which is calculated by 𝑅 = √𝐹2 + 𝐹x
2, F is the resultant 

friction force of all cutting edges [N], Fx is the cutting force in x direction on rake face [N], Anth is the 

cutting area of the nth cutting edge [mm
2
], which is calculated from the uncut chip thickness and 

geometry of each cutting edge, and Aall is the resultant cutting area of all cutting edges [mm
2
].  

In this study, the cutting model for the cutting edge of the tapping tool is represented as an 

(5.1) 
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orthogonal cutting model to estimate the friction coefficient at the sliding zone. Figure 5.1 shows the 

shear zone distribution in the orthogonal cutting model of this study. In this model it is assumed that 

the shear phenomenon occurs in the primary shear zone and that the secondary shear zone spreads 

over the rake face of the cutting edge [10]. The shear stress s and normal stress s in the primary 

shear plane are calculated by Eq. (5.2) and (5.3). 

   

 

 

 

where  is the shear angle [degree], ̅ is the mean friction coefficient, e is the effective rake angle 

[degree], and As is the area of the primary shear plane [mm
2
]. The area of the primary shear plane As 

and the shear angle  are calculated from the chip thickness and chip width as follows: 

 

 

(5.2) 

(5.3) 

Fig. 5.1 Schematic image of orthogonal cutting model 
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where bt is the width of the free surface of the chip [mm], bb is the width of the chip near rake face of 

the tool [mm], and r is the cutting ratio, which is calculated by r = t1/(cos×t2), where t1 is the uncut 

chip thickness [mm], t2 is the chip thickness [mm], and  is the chip flow angle [degree]. 

 According to Moufki [11], the normal stress distribution on the rake face c (z) is given by Eq. 

(5.6). 

 

 

where 0 is the normal stress at the tool tip [Pa], z is the distance from the tool cutting tip along the 

chip contact zone [mm], Lc is the chip contact length [mm], and  is the characteristic value of the 

pressure distribution. The normal stress in tool chip 0 and the chip contact length Lc are calculated by 

the following equations: 

  

 

  

 

where w(z) is the width of each cutting edge [mm]. 

 Figure 5.2 shows the sticking–sliding friction model [9]. In this model, there are two contact 

conditions: one is the sticking zone where the material is deformed plastically by the large normal 

stress at the tool tip, and the other is the sliding zone where the chip slides on the rake face. In the 

sticking zone, where the normal stress is higher than the yield stress, the shear stress is constant 

because the plastic flow of the material is generated. In the sliding zone, the shear stress is 

proportional to the normal stress according to the coulomb friction law [9]. Assuming that the primary 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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shear zone spreads to the sticking zone [12], the shear stress at the sticking zone is equal to the yield 

shear stress in the primary shear plane as follows: 

  

 

where kchip is the shear stress in chip at the sticking zone [Pa].  

The shear stress in the sliding zone is calculated by Coulomb’s law as follows: 

   

 

The chip contact length Lc, friction force Fnth, and normal force Fn_nth are given by the following 

equations: 

  

 

 

 

where Lstick is the chip contact length at the sticking zone [mm], Lslid is the chip contact length at the 

(5.9) 

(5.11) 

(5.12) 

(5.13) 

(5.10). 

Fig. 5.2 Schematic image of the sticking–sliding friction model 
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sliding zone [mm], Fstick is the friction force at the sticking zone [N], Fslid is the friction force at the 

sliding zone [N], Fn_stick is the normal force at the sticking zone [N], and Fn_slid is the normal force at 

the sliding zone [N]. 

The friction force at the sticking zone is obtained by the relation between the shear stress in the 

sticking zone and contact area Astick [mm
2
] as follows: 

  

 

The normal force at the sliding zone is given as follows:  

 

 

 

Thus, the local friction coefficient at the sliding zone is calculated as follows: 

 

 

The flow chart for the calculation of the local friction coefficient at the sliding zone is shown in 

Fig. 5.3. In order to solve the simultaneous equations, the initial local friction coefficient at the sliding 

zone was temporarily set as 1.0. When the difference between the initial value of the local 

coefficient of friction at the sliding zone 0 and the calculated coefficient of friction at the 

sliding zone slid was over 0.01, the value of slid is substituted for the value of 0 and the 

calculation was continued. When the difference between the initial local friction coefficient and 

calculated local friction coefficient |slid–0| was within 0.01, the calculation was terminated and the 

local friction coefficient at the sliding zone was determined.  

The secondary shear zone thickness, which is the stagnation area of material flow in the absence 

of the built-up edge, is given as follows [13]: 

 

(5.15). 

(5.16). 

(5.14). 

(5.17). 
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Experimental data for the tapping test, such as cutting resistance, chip curl diameter, chip 

thickness, and chip width, which were used to calculate each variable in this chapter, were acquired as 

described in the previous chapter. The tapping tool was a spiral-tap (HSS, M6 × 1) and the surface 

treatments of the tapping tools were (i) steam treatment, (ii) TiCN film coating, (iii) Ni–P/cBN film (d̅ 

= 10 m) coating, (iv) Ni–P/SiC film coating (d̅ = 5 m), and (v) Ni–P/SiC film coating (d̅ = 1 m). 

The workpiece material was rolled structure steel (JIS SS400) in the form of a rectangular block of 14 

× 310 × 450 mm. The cutting velocities were 10 (normal cutting speed), 30, and 50 m/min. During the 

tapping process, an emulsion cutting oil was used. The number of cutting processes (holes) 

undertaken was 25. The cutting torque and thrust force were measured using a dynamometer. The 

measured forces were transformed to the resultant cutting resistance of all cutting edges R using the 

proposed coordinate transformation in Chapter 4 [5]. The cutting chips were collected after cutting 

each hole, and the chip curl diameter, chip thickness, and chip width were measured. The mean value 

of the local friction coefficient at the sliding zone for 16–25 holes was used for analysis. 

 Table 5.1 shows the parameters used in the calculation of friction coefficient. The effective rake 

angle, uncut chip thickness, and resultant cutting area of all cutting edges are given by the tool 

geometry. According to Childs et al. [14], the characteristic pressure stress value for carbon steel is 

2.34. In this study, the calculated local friction coefficient at the sliding zone of the fourth cutting edge 

was considered to be representative of all cutting edges. 
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Fig. 5.3 Flow chart for the calculation of local friction coefficient at the sliding zone 
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Table 5.1 Parameters used in the calculation of friction coefficient 

Effective rake angle e, degree 14.3

Uncut chip thickness t1, mm 0.075

Characteristic value of pressure 

stress  [14]
2.34

Resultant cutting area of 

all edges Aall, mm2 0.1925
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5.2.2 Observation of the secondary shear zone at the chip surface 

 To confirm the existence of the secondary shear zone, the chip was padded with methyl 

methacrylate and cut as shown in Fig. 5.4. The cross section was subjected to mirror polishing using 

abrasive paper and buff polishing using alumina abrasive grains and colloidal silica. The metal 

structure of the polished chip cross section was observed using a reflection electron microscope 

(JSM-7800F, JEOL Ltd.) to investigate the existence and thickness of the secondary shear zone.  

 

  

Fig. 5.4 Sample preparation for observation of the cross section of a chip 

Cut surface Padded chip

Cross section 

of chip

Free surface side 

Rake face side
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5.3 Results and discussion 

5.3.1 Relation between chip curl diameter and local friction coefficient at the sliding 

zone 

Figure 5.5 shows the relation between the local friction coefficient at the sliding zone and the 

cutting speed. For the tapping tool coated with Ni–P/SiC film coating (d̅ = 1 m), the local friction 

coefficient at the sliding zone was not significantly affected by the cutting speed, ranging from 1.7 to 

1.8. For the tapping tool treated with steam, that coated with a Ni–P/cBN film (d̅ = 10 m), and that 

coated with a Ni–P/SiC film (d̅ = 5 m), the local friction coefficient at the sliding zone tended to 

decrease as the cutting speed increased. In contrast, for the tapping tool coated with TiCN film, the 

local friction coefficient at the sliding zone increased as the cutting speed increased. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Relation between the local friction coefficient at the sliding zone and cutting speed 

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 10 20 30 40 50 60

L
o

c
a
l 

fr
ic

ti
o

n
 c

o
e
ff

ic
ie

n
t

a
t 

s
li
d

in
g

 z
o

n
e
 

s
li

d

Cutting speed Vr, m/min

Ni-P/SiC film 

( = 1 m)

TiCN film

Ni-P/cBN film

( = 10 m)

Steam

treatment

Ni-P/SiC film ( = 5.0 m)

Workpiece material: Rolled structure steel



Chapter 5 

 

 131 

 Figure 5.6 shows the relation between chip curl diameter and the local friction coefficient at the 

sliding zone. As shown in this figure, chip curl diameter decreased with an increase in the local 

friction coefficient at the sliding zone. The local friction coefficient at the sliding zone was higher 

than 1.4 for all cutting conditions. For the developed tapping tool, the local friction coefficient at the 

sliding zone was higher than 1.58. Furthermore, except for the tapping tool coated with TiCN film, the 

friction coefficient at the sliding zone decreased with an increase in cutting speed. In contrast, the 

local friction coefficient for the tapping tool coated with TiCN film increased with an increase in 

cutting speed. 

 

 

  

Fig. 5.6 Relation between chip curl diameter and local friction coefficient at the sliding zone  
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5.3.2 Effect of local friction coefficient at the sliding zone on secondary shear zone 

thickness 

Figure 5.7 shows the relation between the secondary shear zone thickness and the local friction 

coefficient at the sliding zone. The secondary shear zone thickness increased with an increase in the 

local friction coefficient at the sliding zone. The secondary shear zone thickness of the developed 

tapping tool was higher than 0.017 mm for all conditions. This indicates that the high local friction 

coefficient tends to enhance secondary flow. Figure 5.8 shows the relation between the chip curl 

diameter and the secondary shear zone thickness. This figure indicates that the chip curl diameter 

decreased with an increase in the thickness of the secondary shear zone. Consequently, these results 

demonstrate that chip curl was enhanced by an increase in the size of the secondary shear zone at the 

chip–tool interface during tapping. According to Nakayama et al. [5], the curvature of a chip curl 

increases with an increase in the secondary shear zone thickness because the chip curl is deformed 

along the secondary shear zone in orthogonal cutting.  
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Fig. 5.8 Relation between chip curl diameter and secondary shear zone thickness 

Fig. 5.7 Relation between secondary shear zone thickness and friction coefficient at the sliding zone 
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5.3.3 Observation of the metal structure of cutting chips 

Figures 5.9 and 5.10 show the reflected electron images of cutting chips collected after cutting by 

the tapping tool treated with steam, the tapping tool coated with TiCN film, and the tapping tool 

coated with the Ni–P/SiC film (d̅ = 1 m) at 10 and 50 m/min, respectively. The bottom surface of the 

chips shown in the figures was in contact with (and slid against) the rake face of each tapping tool. 

Horizontal flow marks of the crystal grain of the chip of the rake face side can be observed for the 

cutting performed with the steam treated tapping tool (Fig. 5.8(a) and Fig. 5.9(a)) and the tapping tool 

coated with Ni–P/SiC film (d̅ = 1 m) (Fig. 5.8(b) and Fig. 5.9(b)) at 10 m/min and 50 m/min. These 

horizontal flow mark areas may correspond to the secondary shear zone (sticking zone). The thickness 

of the zone is about 11–12 m for the tapping tool coated with Ni–P/SiC film (d̅ = 1 m) and 8–9 m 

for that treated with steam. The secondary shear zone thickness estimated from the images is almost 

equivalent to the calculated values (25–30 m for the tapping tool coated with Ni–P/SiC film (d̅ = 1 

m); 13–23 m for that with steam treatment). In contrast, the extent of deformation of the crystal 

grain of the cutting chip produced by the tapping tool coated with TiCN film at 10 m/min was lower 

than that for cutting chips produced by the other tapping tools. Deformation of the cutting chip at the 

chip–tool interface for the tapping tool coated with TiCN film at 50 m/min was also observed; 

however, the thickness of the secondary shear zone was much less than that for the other tapping 

tools.  
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Fig. 5.9 Reflected electron images (Vr = 10 m/min) 

(b) Tapping tool coated with Ni–P/SiC film (d̅ = 1 m) 

 

(a) Tapping tool with steam treatment 

(c) Tapping tool coated with TiCN film 
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Fig. 5.10 Reflected electron images (Vr = 50 m/min) 

(b) Tapping tool coated with Ni–P/SiC film (d̅ = 1 m) 

 

(a) Tapping tool with steam treatment 

(c) Tapping tool coated with TiCN film 
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5.3.4 Effect of stress field in the shear plane on secondary shear zone thickness 

Figure 5.11 shows the relation between the normal stress and the local friction coefficient at the 

sliding zone. The normal stress in the primary shear plane increased with an increase in the local 

friction coefficient at the sliding zone and varied from 883 MPa to 2120 MPa. For the tapping tool 

coated with composite film, the normal stress in the shear plane was greater than 1248MPa under all 

conditions. Except for the tapping tool coated with TiCN film, the normal stress in the primary shear 

plane tended to decrease with increasing cutting speed. In contrast, for the tapping tool coated with 

TiCN film, the normal stress in the shear plane increased with an increase in cutting speed.  

  

Fig. 5.11 Relation between the local friction coefficient at the sliding zone and normal stress in  

the primary shear plane 
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Figure 5.12 shows the relation between shear stress and normal stress in the primary shear plane. 

As shown in this figure, the shear stress and the normal stress in the primary shear plane exhibit a 

strong positive correlation. The shear stress in the primary shear plane changed from 709 MPa to 1050 

MPa. This change in the shear stress is caused by the high strain, high strain rate, and high 

temperature of the workpiece material during the cutting process [15]. In particular, deformation 

resistance increases with an increase in strain and strain rate, and it decreases with increasing 

temperature. Therefore, for the tapping tools other than the TiCN coated tool, the cutting resistance of 

the workpiece material decreased with an increase in cutting speed due to its heat-softening [15]. For 

the tapping tool coated with TiCN film, it is considered that the increasing shear stress as the cutting 

speed increased was significantly affected by strain hardening and strain rate (as opposed to thermal 

softening) [16].  

  

  

Fig. 5.12 Relation between shear stress and normal stress in the primary shear plane 
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 According to these results, the local friction coefficient at the sliding zone had an impact on the 

stress fields in the primary shear plane as well as the secondary shear zone. The tapping tools coated 

with the developed composite films provided higher normal and shear stresses compared with other 

conventional tapping tools. Therefore, the tapping tools coated with Ni–P/abrasive particle composite 

films increased the stresses in the primary shear plane and enlarged the secondary shear zone, which 

resulted in an enhancement of chip curling. Additionally, in this study, the secondary shear zone 

thickness enlarged the shear angle, as shown in Fig. 5.13. In other words, the tapping tools coated 

with Ni–P/abrasive particle composite films decreased chip thickness. Since the bending stiffness of a 

chip was decreased due to reduced thickness, the chip curl for the tapping tools coated with Ni–

P/abrasive particle composite films was enhanced. Thus, cutting chips were effectively evacuated and 

chip snarling was prevented, as shown in Fig. 5.14.  

 

  

Fig. 5.13 Relation between the secondary shear zone thickness and shear angle 
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5.4 Conclusions 

In this chapter, the local friction coefficient at the sliding zone of the chip–tool interface during 

tapping was estimated based on the sticking–sliding friction model. The effects of the local friction 

coefficient on chip curl diameter and secondary shear zone thickness were analyzed to investigate the 

mechanism of chip snarling prevention for tapping tools coated with the composite film.  

The conclusions obtained in this chapter are as follows: 

 

(1) Chip curl diameter decreased with an increase in the local friction coefficient at the sliding zone; 

the local coefficients of friction for tapping tools coated with composite films (1.58–1.80) were 

higher than those for tapping tools with conventional surface treatments (1.40–1.65). 

(2) The local friction coefficient at the sliding zone had a significant impact on secondary shear zone 

thickness; the secondary shear zone thickness increased with an increase in the local friction 

coefficient at the sliding zone. 

(3) The secondary shear zone was observed for the tapping tool coated with the composite film at 10 

and 50 m/min, and the thickness of the secondary shear zone estimated from the observed images 

was almost equivalent to the calculated values. 

(4) The tapping tools coated with Ni–P/abrasive particle composite films provided a high local 

friction coefficient at the sliding zone, which increased secondary shear zone thickness and 

reduced chip curl diameter. 
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Chapter 6 

Effect of workpiece material on chip snarling for tapping 

tool coated with Ni–P/abrasive composite film 

 

6.1 Introduction 

 As noted in Chapter 4, the tapping tool coated with Ni–P/abrasive particle composite film was 

able to prevent chip snarling in tapping tests on rolled structural steel (JIS SS400) at a cutting speed of 

50 m/min, which is five times the standard speed. As discussed in Chapter 5, this was due to the high 

local coefficient of friction at the sliding zone of the tool–chip interface, which increased the 

secondary shear-zone thickness and reduced the chip curl diameter. In particular, the tapping tool 

coated with an Ni–P/SiC particle composite film of d̅ = 1 m prevented chip snarling throughout its 

full service life, extending the life for the tool to 2.6 times that of the conventional tool. This 

suggested that a coating of Ni–P/SiC composite film of d̅ = 1 m produces a highly efficient tapping 

tool. However, so far, these effects were confirmed only for the SS400 workpiece. 

 Chip curl is influenced by the cutting resistance and deformability of the workpiece material 

because it is associated with plastic deformation and plastic flow in the shear zone [1]. Yamane and 

Sekiya [2] suggested that the cutting resistance is influenced by the hardness and tensile strength of 

the workpiece. The Johnson–Cook material constants [3] give the flow stress ̅ as follows: 

 

 

where  is the plastic strain, ̇ is the strain rate [s
−1

], 0̇ is the reference plastic strain rate [s
−1

], T is 

the temperature of the workpiece material [K], Tm is the melting temperature of the workpiece 

material [K], Troom is the room temperature [K], A is the yield strength [MPa], B is the hardening 

modulus [MPa], C is the strain rate sensitivity coefficient, n is the hardening coefficient, and m is the 

(6.1) 
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thermal softening coefficient. The flow stress during cutting, which influences the chip curl, is 

determined by these material properties of the workpiece. As noted above, the addition of a composite 

film was found to prevent chip snarling at high cutting speeds for the SS400 workpiece. However, it is 

necessary to confirm that the same effect can be obtained for other workpiece materials.  

 In this chapter, it was reported that tapping tests conducted on workpieces made from chrome 

molybdenum steel (JIS SCM440) and carbon steel (JIS S25C and S45C). The tests were conducted to 

investigate whether the Ni–P/SiC particle composite film (d̅ = 1 m) was able to prevent chip 

snarling for these workpieces. 

 

6.2 Methods 

6.2.1 Tapping tests 

 Table 6.1 summarizes the tapping test conditions. The experimental apparatus and tapping test 

conditions were the same as those used in the tests presented in Chapter 3 (see Table 6.1). Tapping 

tools with steam treatment and those coated with TiCN coating were again used for comparison. The 

evacuated and snarled chips were collected after each thread hole had been cut. 

 

6.2.2 Workpiece materials 

 When SCM440, S25C, and S45C are subjected to a cutting process, they result in poor chip 

disposability. Table 6.2 summarizes the material properties of the workpieces. The thermal properties 

of the three materials were nearly the same. The hardness and the 0.2% proof stress of SCM440 were 

higher than those of the other materials. The hardness of S25C was same as that of SS400. 
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Table 6.1 Experimental conditions 

Table 6.2 Workpiece material properties [4-10] 

Chrome 

molybdeum

steel

(JIS SCM440)

Carbon steel

(JIS S25C)

Carbon steel

(JIS S45C)

Rolled-

structure

steel 

(JIS SS400)

Vickers 

hardness HV, 

MPa

1676 1152 1520 1185

0.2% proof 

stress y’, MPa
1123 366 822 245

Density r, 

kg/m3 7800 7200 7830 7860

Specific heat c, 

J/(kg・K)
450 500 480 473

Heat transfer 

coefficient k, 

W/(m・K)

43 40 47 51.3

Melting 

Temperature 

Tmelt, K

1713-1783 1803 1723-1783 1807

Type of tapping tool Spiral-tap (HSS, M6×1)

Surfacae treatment

Ni–P/SiC film ( = 1 m)

Steam treatment

TiCN film

Workpiece material

Chrome molybdeum steel

(JIS SCM440)

Carbon steel (JIS S25C)

Carbon steel (JIS S45C)

Cutting speed Vr, m/min 10, 30, 50

Lubricant
Emulsion cutting oil

(n = 1.20 mPa·s at 21.6℃ ͐)

Number of cutting process N, 

holes
25
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6.3 Results and discussion 

6.3.1 Chip snarling and chip curl diameter 

6.3.1.1 Rate of chip snarling 

 Figures 6.1–6.3 show the effect of the cutting speed on the rate of chip snarling for each tapping 

tool. The rate of the tool coated with the Ni–P/SiC film was less than 5% for SCM440, less than 5% 

for S25C, and less than 10% for S45C. The rate of chip snarling of the tapping tool with steam 

treatment decreased as the cutting speed increased when used with SCM440 (from 28% to 0%) and 

S25C (from 24% to 8%); however, it increased when used with S45C (from 0% to 20%). The rate of 

chip snarling of the tool with TiCN coating was higher at lower cutting speeds (10 and 30 m/min) for 

all workpiece materials; however, at 50 m/min, it was less than 5%. This suggested that the tool 

coated with the Ni–P/SiC film was performed better than the other tapping tools in reducing chip 

snarling when cutting threaded holes in all workpieces. 

   

  

Fig. 6.1 Rate of chip snarling of the tapping tool coated with the Ni–P/SiC film 
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Fig. 6.3 Rate of chip snarling of the tapping tool coated with the TiCN film 

Fig. 6.2 Rate of chip snarling of the tapping tool coated using steam treatment 
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6.3.1.2 Chip curl diameter 

 Figure 6.4 shows the chip curl diameter and the dimensionless chip curl diameter for each 

tapping tool in tests with SCM440 conducted at 10, 30, and 50 m/min. The chip curl diameter from 

the tool coated with the Ni–P/SiC film increased in line with the cutting speed. The other tapping tools 

produced larger diameter chip curls than the composite film-coated tool at 10 and 30 m/min but varied 

less with speed.  

 Figure 6.5 shows the chip curl diameter and dimensionless chip curl diameter at 10, 30, and 50 

m/min for S25C. The chip curl diameters of the steam-treated and Ni–P/SiC film-coated tools 

increased in line with the cutting speed, whereas that of the TiCN-coated tool was 3.2 mm at 10 and 

30 m/min, decreasing to approximately 2.7 mm at 50 m/min. 

 Figure 6.6 shows the chip curl diameter and dimensionless chip curl diameter at 10, 30, and 50 

m/min for S45C. The chip curl diameters of the steam-treated and Ni–P/SiC film-coated tools 

increased in line with the cutting speed, whereas that of the TiCN coated tool decreased as the cutting 

speed increased. 
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Fig. 6.5 Effect of cutting speed on the chip curl diameter of carbon steel (JIS S25C) 

Fig. 6.4 Effect of cutting speed on the chip curl diameter of chromium–molybdenum steel  
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Fig. 6.6 Effect of cutting speed on the chip curl diameter of carbon steel (JIS S45C) 
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6.3.1.3 Effect of dimensionless chip curl diameter on the rate of chip snarling  

 Figure 6.7 shows the relation between the rate of chip snarling and the dimensionless chip curl 

diameter. The figure includes results for SS400 reported in Chapter 4. As shown in Fig. 6.7, the rate of 

chip snarling increased in line with the dimensionless chip curl diameter, and drastically increased 

when Dd ≥ 0.9. For all workpiece materials, the dimensionless chip curl diameter of the Ni–P/SiC 

film-coated tool was smaller than 0.9 and the rate of chip snarling was less than 10%. This tapping 

tool produced chips with a curl diameter much shorter than the flute width, achieving good chip 

discharge and preventing chip snarling. 

 

  

Fig. 6.7 Relation between rate of chip snarling and dimensionless chip curl diameter 
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6.3.2 Effect of friction coefficient at the sliding zone on chip curl diameter 

6.3.2.1 Cutting torque and thrust force 

 Figure 6.8 shows the effect of cutting speed on cutting torque and thrust force for SCM440. The 

cutting torque of the steam-treated tool was constant across all cutting speeds at approximately 2.2 

Nm. The thrust force of the Ni–P/SiC film-coated tool increased at 50 m/min to approximately 2.8 

Nm, while its thrust force at all cutting speeds was greater than −150 N. The thrust force of the 

steam-treated tool decreased at 30 m/min, and the value of thrust force at 30 and 50 m/min was 

approximately −240 N. The thrust force of the TiCN-coated tool ranged between 0 and −100 N, and it 

was higher than that of the other tools at all cutting speeds. 

 Figure 6.9 shows the effect of the cutting speed on cutting torque and thrust force for S25C. The 

cutting torque of the steam-treated and Ni–P/SiC film-coated tools at all cutting speeds was 

approximately 1.9 Nm, whereas that of the TiCN-coated tool ranged between 2.0 and 2.2 Nm, which 

was higher than that of the other tools at all cutting speeds. The thrust force of the Ni–P/SiC 

film-coated tool was −150 N at all cutting speeds, whereas that of the steam-treated tool decreased as 

the cutting speed increased. The thrust force of the tapping tool with TiCN coating was close to −50 

N.  

 Figure 6.10 shows the effect of the cutting speed on cutting torque and thrust force for S45C. The 

cutting torque of the steam-treated and Ni–P/SiC film-coated tools had a constant value of 2 Nm at all 

cutting speeds, whereas that of the TiCN-coated tool was higher than the cutting torques of the other 

tools at all cutting speeds. The thrust force of all tapping tools reached a minimum value at 30 m/min; 

however, those of the TiCN-coated and Ni–P/SiC film-coated tools were higher than −100 N at all 

cutting speeds.   
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(b) Thrust force 

Fig. 6.8 Effect of cutting speed on cutting torque and thrust force for chromium–molybdenum  

steel (JIS SCM440) 
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(a) Cutting torque 

(b) Thrust force 

Fig. 6.9 Effect of cutting speed on cutting torque and thrust force for carbon steel  

(JIS S25C)  
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(a) Cutting torque 

(b) Thrust force 

Fig. 6.10 Effect of cutting speed on cutting torque and thrust force for carbon steel (JIS S45C) 
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6.3.2.2 Local friction coefficient at the sliding zone 

 The local friction coefficient for each workpiece material was calculated using Eqs. (5.1)–(5.16) 

from Chapter 5.  

 Figure 6.11 shows the effect of cutting speed on the local friction coefficient at the sliding zone 

for SCM440. Regardless of the cutting speed, the coefficients of the TiCN-coated and Ni–P/SiC 

film-coated tools remained between 1.4 and 1.6. The friction coefficient of the steam-treated tool 

decreased to 1.1 as the cutting speed increased.  

 Figure 6.12 shows the effect of cutting speed on the local friction coefficient at the sliding zone 

for S25C. The local friction coefficient at sliding zone of the tapping tool with TiCN coating ranged 

between 1.5 and 1.7. The local friction coefficient at sliding zone of the Ni–P/SiC-coated tool ranged 

between 1.2 and 1.5, and that of the steam-treated tool ranged between 1.1 and 1.4. 

 Figure 6.13 shows the effect of cutting speed on the local friction coefficient at the sliding zone 

for S45C. The local friction coefficients at sliding zone of the TiCN-coated and Ni–P/SiC-coated tools 

increased slightly as the cutting speed increased, whereas that of the steam-treated tool ranged 

between 1.1 and 1.4. 
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Fig. 6.11 Effect of cutting speed on friction coefficient at sliding zone for chromium–molybdenum 

steel (JIS SCM440) 

Fig. 6.12 Effect of cutting speed on friction coefficient at sliding zone for carbon steel (JIS S25C) 
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Fig. 6.13 Effect of cutting speed on friction coefficient at sliding zone for carbon steel  

(JIS S45C) 
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6.3.2.3 Relation between secondary shear zone thickness and local friction coefficient 

at the sliding zone  

 Figure 6.14 shows the relation between the secondary shear zone thickness and the friction 

coefficient at the sliding zone. The secondary shear zone thickness when cut with the Ni–P/SiC-coated 

tapping tool increased as the local friction coefficient at the sliding zone increased. The local friction 

coefficient and the secondary shear zone thickness of this tapping tool were higher than those of the 

other tools. 

 

  

Fig. 6.14 Relation between secondary shear zone thickness and friction coefficient at the 

sliding zone  
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6.3.2.4 Relation between dimensionless chip curl diameter and secondary shear zone 

thickness 

 Figure 6.15 shows the relation between the dimensionless chip curl diameter and the secondary 

shear zone thickness. It is evident form the figure that the dimensionless chip curl diameter decreased 

as the secondary shear zone thickness increased at all cutting speeds. This suggested that increasing 

the secondary shear zone thickness is an effective way of reducing the dimensionless chip curl 

diameter. As shown in Fig. 6.7, a dimensionless chip curl diameter of less than 0.9 is required to 

achieve a rate of chip snarling less than 30%. To bring the Dd values below 0.9, the secondary shear 

shear-zone thickness at 10, 30, and 50 m/min must be greater than 0.014, 0.015, and 0.027 mm, 

respectively. A thicker secondary shear zone is therefore required to reduce chip snarling at higher 

cutting speeds. The temperature at the chip–tool interface increased with the cutting speed, suggesting 

that the increase in the required secondary shear zone thickness may be related to the temperature at 

the chip–tool interface.  

 

  

(a) Vr = 10 m/min 

Fig. 6.15 Relation between dimensionless chip curl diameter and secondary shear zone thickness 
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Fig. 6.15 Relation between dimensionless chip curl diameter and secondary shear zone thickness 
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6.3.2.5 Effect of secondary shear zone thickness and temperature at the primary shear 

zone on dimensionless chip curl diameter 

 In the course of cutting, heat is generated in the primary shear area, the sliding zone at the chip–

tool interface, and the flank face at the workpiece–tool interface [11]. In the primary shear zone, the 

total heat generated per unit of time and area q [J/(mm
2‧s)] is a function of the shear stress in the 

primary shear zone s and the shear velocity in the primary shear plane Vs [12], which is expressed as 

follows: 

 

 

 

 Where e is the effective rake angle [degree],  is the shear angle [degree]. The ratio between the 

quantity of heat flowing in the chip and the total heat is calculated as the heat volume ratio R [11] 

using Eqs. (6.4) and (6.5): 

 

 

 

where s is the shear strain, t1 is the uncut chip thickness [mm], r is the density [kg/m
3
], c is the 

specific heat capacity [J/(kg·K)], and k is the thermal conductivity [W/(m·K)]. The mean temperature 

at the primary shear zone Tshear is expressed as follows: 

  

 

where b is the mean width of the cut chip, which is calculated as b = (bt + bb)/2, bt is the width of the 

free surface of the chip [mm] and bb is the width of the chip near rake face [mm]. 

 Figure 6.16 shows the distribution of dimensionless chip curl diameter as a function of the 

temperature at the primary shear zone and the secondary shear zone thickness. The secondary shear 

(6.2) 

(6.4) 

(6.5) 

(6.3) 

(6.6) 
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zone thickness decreased as the temperature at the primary shear zone increased. As shown in 

Fig. 6.16, the dimensionless chip curl diameter exceeded 0.8 when the temperature at the primary 

shear zone was greater than 614 K or the secondary shear zone thickness was less than 15 m. In 

contrast, the dimensionless chip curl diameter was smaller than 0.6, i.e., the rate of chip snarling was 

zero, when the temperature at the primary shear zone was lower than 495 K and the secondary shear 

zone thickness was no less than 23 m.  

 From Eq. (6.1), an increase in the temperature at the primary shear zone reduced the shear stress 

in the shear zone. This suggested that the effect of the secondary shear zone thickness on chip curl 

diameter reduced as the temperature at the primary shear zone increased, as shown in Fig 6.17. The 

chip curl diameter of the Ni–P/SiC film-coated tool decreased at high cutting speeds because the 

secondary shear zone was thick and the temperature at the primary shear zone was low. Consequently, 

the chip curl diameter was smaller than the width of the helical flute, preventing chip snarling on the 

tapping tool at high cutting speeds. 
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Fig. 6.17 Effect of temperature at primary shear zone on chip curl diameter 
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6.4 Conclusions 

 In this chapter, it was reported that tapping tests conducted on workpieces made from SCM440, 

S25C, and S45C to investigate whether coating the tapping tool with the Ni–P/SiC particle composite 

film could prevent chip snarling across a wide range of cutting speeds. The relation between 

workpiece material and chip curl diameter was also investigated. 

 The conclusions are summarized as follows: 

 

(1) The rate of chip snarling increased in line with the dimensionless chip curl diameter, particularly 

when Dd ≥ 0.9. The dimensionless chip curl diameter of the tapping tool coated with the Ni–

P/SiC film (d̅ = 1 m) was less than 0.9 for all workpiece materials and the rate of chip snarling 

was less than 10%.  

(2) When the tapping tool coated with the composite film was used, the secondary shear zone 

thickness increased as the local friction coefficient at the sliding zone increased. The secondary 

shear zone thickness was affected by the temperature at the primary shear zone and decreased as 

this temperature increased.  

(3) The dimensionless chip curl diameter was less than 0.6 when the temperature at the primary 

shear zone was lower than 495 K and the secondary shear zone thickness was at least 23 m. 

This reduced the frequency of chip snarling. 

(4) Coating the tapping tool with the composite film prevented chip snarling when cutting threaded 

holes in steel workpieces made from JIS SCM440, S25C, S45C, and SS400.  
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Chapter 7  

Conclusions 

 

 In this study, in order to prevent chip snarling and extend tool service life at high cutting velocities, 

the tapping tool coated with Ni–P/abrasive particle composite film was developed. It was investigated 

whether the tapping tool prevents chip snarling and increases tool service life even at high cutting 

velocity conditions. Furthermore, the friction coefficient at sliding zone on cutting edge of tapping 

tool was estimated and the mechanism of chip snarling prevention was investigated. 

The main results and conclusions of the chapter 2 through 6 are as follows: 

 

In Chapter 2, Ni–P/abrasive particle composite films were formed on high-speed steel (HSS) disks 

using electroless plating. The hardness, adhesion strength, and friction coefficients of the 

composite-film coated, stream-treated, and TiCN-coated disk specimens were compared. The 

conclusions of this chapter are as follows: 

 

(1) Ni–P/abrasive particle composite films were deposited on an HSS disk specimen using cBN 

particulates with a mean diameter of 10 m or SiC particulates with mean diameters of 5.0 m or 

1.0 m. The surface roughness of the composite films was higher than that of the other specimens. 

(2) The hardness of the Ni–P plating film was ~11 GPa, which suggests that the composite film, 

which included the hard particles, was harder than the Ni–P plated film. 

(3) No film separation was observed in the composite films in the scratch tests, which exhibited a 

peeling resistance greater than that of the other surface-treated specimens.  

(4) The composite films showed friction coefficients greater than 0.15 at sliding velocities under 

emulsion-oil lubrication (0.05–0.25 m/s), which were higher than those of the other specimens. 
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The Ni–P/abrasive particle composite films exhibited excellent adhesion strength, wear resistance, 

and high friction coefficients under emulsion oil lubrication. This suggests that such composite films 

can be used as coating materials for tapping tools and may increase their service life without inducing 

chip snarling. 

Figure 7.1 illustrates summarized results for Chapter 2. 

 

In Chapter 3, a tapping tool coated with the Ni–P/abrasive particle composite film was developed. 

The dimensional accuracy of the thread holes and the cutting resistance (i.e., cutting torque and thrust 

force) were experimentally investigated via tapping tests. The conclusions of this chapter are as 

follows: 

 

(1) Tapping tools coated with the Ni–P/cBN (𝑑̅ = 10 m), Ni–P/SiC (𝑑̅ = 5 m), and Ni–P/SiC (𝑑̅ = 

1 m) films were developed. 

(2) The thread holes produced by the tools coated with the Ni–P/cBN (𝑑̅ = 10 m), Ni–P/SiC (𝑑̅ = 5 

m), and Ni–P/SiC (𝑑̅ = 1 m) films satisfied the relevant standard for thread gauge. However, 

the surface of the thread holes machined by the tapping tool coated with the Ni–P/cBN particle 

composite film (𝑑̅ = 10 m) was rougher at all cutting velocities. 

(3) The tapping tool coated with the Ni–P/cBN particle composite film (𝑑̅ = 10 m) produced the 

highest cutting torque and thrust force.  

The tensile force produced by the tool coated with the Ni–P/abrasive particle composite film was 

less than 50 N at 50 m/min. 

Figure 7.2 illustrates summarized results for Chapter 3. 
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Fig. 7.1 Diagram of summarized results for Chapter 2 
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∙ The hardness of the Ni–P plating film was 1.1 GPa.

∙ No film separation was observed in the composite film in the scratch tests. The adhesion strength of the 

composite films was greater than 58.8 N.

∙ The composite films showed the friction coefficients greater than 0.15.

The results suggested that the Ni–P/abrasive particle composite films can be used as coating materials for 

tapping tools and may increase their tool service life without inducing chip snarling.
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Fig. 7.2 Diagram of summarized results for Chapter 3 
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∙ The thread holes used by the tapping tool coated with Ni–P/abrasive particle composite film met 

the appropriate standard.

∙ The cutting torque and thrust force of tapping tool coated with Ni–P/abrasive particle composite films were 

higher than that of conventional tapping tool.

Cutting speed Vr, m/min



Chapter 7 

 173 

 In Chapter 4, tapping tests were performed to investigate whether the tapping tools coated with the 

Ni–P/abrasive particle composite film were able to prevent chip snarling and increase the tool service 

life at high cutting speeds. The friction coefficient at the tool–workpiece rake face interface was 

estimated using the measured thrust force and cutting torque, and the effect of the friction coefficient 

on chip snarling was investigated. The conclusions of this chapeter are summarized as follows: 

 

(1) The tools coated with composite film had lower rates of chip snarling. This was particularly true 

for the Ni–P/SiC film (𝑑̅ = 1 m), which had a chip snarling rate of less than 5%. 

(2) The rate of chip snarling increased in line with the chip curl diameter. The tapping tools coated 

with composite film were able to prevent snarling by maintaining the chip curl diameter below 

the width of the helical flute of the tapping tool (3.2 mm) at high cutting speeds. The rate of chip 

snarling exceeded 40% at a dimensionless chip curl diameter of approximately 1.0. 

(3) The tapping tools coated with composite films had the highest cutting torque under all cutting 

conditions. The tools coated with the Ni–P/SiC film (𝑑̅ = 5.0 mm) and those coated with the Ni–

P/SiC film (𝑑̅  = 1.0 mm) had thrust forces greater than 1.8 Nm, exceeding that of the 

conventional tapping tool at all cutting speeds. The tool with the Ni–P/cBN film (𝑑̅ = 10 mm) 

had a thrust force smaller than that of the conventional tool at 30 and 50 m/min. 

(4) The mean friction coefficient between the chip and tool rake face was derived from a coordinate 

transformation of the measured cutting torques and thrust forces. The mean friction coefficient of 

the tapping tools coated with the Ni–P/SiC (𝑑̅ = 5 m) and Ni–P/SiC (𝑑̅ = 1 m) films were 

higher than that of the conventional tapping tool at all cutting speeds. The chip curl diameter 

decreased as the mean friction coefficient increased. 

(5) At high cutting speeds (Vr = 50 m/min), the service life of the tapping tool coated with the Ni–

P/SiC film (𝑑̅ = 1 m) was 2.6 times as high as that of the conventional steam treatment tool. 

Figure 7.3 illustrates summarized results for Chapter 4. 
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Fig. 7.3 Diagram of summarized results for Chapter 4 
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In chapter 5, the local friction coefficient at the sliding zone of the chip–tool interface during 

tapping was estimated based on the sticking–sliding friction model. The effects of the local friction 

coefficient on chip curl diameter and secondary shear zone thickness were analyzed to investigate the 

mechanism of chip snarling prevention for tapping tools coated with the composite film.  

The conclusions obtained in this chapter are as follows: 

 

(1) Chip curl diameter decreased with an increase in the local friction coefficient at the sliding zone; 

the local coefficients of friction for tapping tools coated with composite films (1.58–1.80) were 

higher than those for tapping tools with conventional surface treatments (1.40–1.65). 

(2) The local friction coefficient at the sliding zone had a significant impact on secondary shear zone 

thickness; the secondary shear zone thickness increased with an increase in the local friction 

coefficient at the sliding zone. 

(3) The secondary shear zone was observed for the tapping tool coated with the composite film at 10 

and 50 m/min, and the thickness of the secondary shear zone estimated from the observed images 

was almost equivalent to the calculated values. 

(4) The tapping tools coated with Ni–P/abrasive particle composite films provided a high local 

friction coefficient at the sliding zone, which increased secondary shear zone thickness and 

reduced chip curl diameter. 

Figure 7.4 illustrates summarized results for Chapter 5. 
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Fig. 7.4 Diagram of summarized results for Chapter 5 
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 In Chapter 6, tapping tests were conducted on workpieces made from SCM440, S25C, and S45C 

to investigate whether coating the tapping tool with the Ni–P/SiC particle composite film could 

prevent chip snarling across a wide range of cutting speeds. The relation between workpiece material 

and chip curl diameter was also investigated. 

 The conclusions of this chapter are summarized as follows: 

 

(1) The rate of chip snarling increased in line with the dimensionless chip curl diameter, particularly 

when Dd ≥ 0.9. The dimensionless chip curl diameter of the tapping tool coated with the Ni–

P/SiC film (d̅ = 1 m) was less than 0.9 for all workpiece materials and the rate of chip snarling 

was less than 10%.  

(2) When the tapping tool coated with the composite film was used, the secondary shear zone 

thickness increased as the local friction coefficient at the sliding zone increased. The secondary 

shear zone thickness was affected by the temperature at the primary shear zone and decreased as 

this temperature increased.  

(3) The dimensionless chip curl diameter was less than 0.6 when the temperature at the primary 

shear zone was lower than 495 K and the secondary shear zone thickness was at least 23 m. 

This reduced the frequency of chip snarling. 

(4) Coating the tapping tool with the composite film prevented chip snarling when cutting threaded 

holes in steel workpieces made from JIS SCM440, S25C, S45C, and SS400. 

Figure 7.5 illustrates summarized results for Chapter 6. 
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Fig. 7.5 Diagram of summarized results for Chapter 6 
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Appendix 

 

 

Fig. A1 shows the geometry of the 4th cutting edge. As shown in this figure, the 

origin of the coordinate axes located at the point O, which is the nose of the front cutting 

edge. Thus, the cutting edge width w(z) is given by follows: 

(i) 0 ≤  𝑧 <  𝑧1 

 

 

(ii) 𝑧1  ≤  𝑧 <  𝑧2 

 

 

(iii) 𝑧2  ≤  𝑧 ≤  𝐿𝑐 

 

 

where the distance z1, z2 and the width w1, w2 are obtained by following equations. 

 

 

 

 

 

 

 

 

 

where  is the torsion angle, ’ is the half angle of thread of screw, '' is the angle 

between OB̅̅ ̅̅  and Y axis, OB̅̅ ̅̅  is the length of the front cutting edge.  

  

  

𝑤(𝑧) =  (
1

tan  ′
+

1

tan ''
)  ×  

𝑧 cose

cos 
 (A1) 

𝑤(𝑧) =  (𝑤1 +
𝑧 cose

tan ''
)  ×  

1

cos 
 (A2) 

𝑤(𝑧) =  (𝑤1 +  𝑤2) ×  
1

cos 
 (A3) 

𝑤1 =  𝑡1 ×  
cos ′

cos(
π
2 − ' − '' )

 (A6) 

𝑤2 =  OB̅̅ ̅̅ ×  cos'' (A7) 

 

(A4) 𝑧1 = 𝑡1 ×  
sin  ′

cos(
𝜋
2

− ' − '' )
 

(A5) 𝑧2 =  OB̅̅ ̅̅ ×  sin ''' 
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Fig. A1 Calculation of width of the fourth cutting edge. 
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