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Abstract 

This dissertation is an introduction to machine learning techniques for malware detection 

and classification. 

The first chapter describes the past and current status of malware analysis providing basic 

definitions and input from the respective literature. In the second section the various types 

of malware, which can disastrously affect a Microsoft Windows operating system are 

presented. In addition, with an explanation and an introduction to malware detection and 

its techniques are described. The third chapter identifies and describes the role and the 

goal of artificial intelligence in malware detection and more precisely deep learning in 

malware detection. After a discussion of the malware detection’s goals, an explanation of 

clustering and classification algorithms used in the dissertation will be presented along 

with the respective theoretical background. In chapters four and five the experiment set 

up will be presented along with the respective data sets and the expected outcomes of the 

research. Also, the results from every category of testing (classification and clustering) 

will be presented and discussed. Finally, conclusions that were raised from this disserta-

tion, potential improvements and expansions of the tools made will be submitted in chap-

ter six. 
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1 Introduction 

1.1 Current Situation 

The Internet, nowadays, plays a crucial role in our everyday life. It has become an enor-

mous information and communication network making people do transactions and inter-

actions having thus a growing and increasing global market. While the Internet is grow-

ing, services like web banking, e-shopping, communication through the internet and so-

cial media are available to people for everyday tasks. On the other hand, there are people 

that are determined to enhance themselves by imposing novice users that perform trans-

actions using the Internet. Malware is now a program that helps people with malicious 

intentions to accomplish their goals. 

One of the most significant and largest vulnerabilities found, was the Heartbleed-bug, 

announced in Codenomicon 2014 [1], a bug discovered in the Transport Layer Security 

(TLS) heartbeat function. This vulnerability enabled attackers and criminals to exploit 

this vulnerability, therefore, allowing access to web application memory, where potential 

usernames and passwords, emails, and business critical documents could be stored .  

Malware and malicious software are developed, programmed and registered every day. 

In agreement with Symantec’s documentation about Ransomware and Businesses, [2] one 

of the most recent threats for the organizations and businesses is the ransomware Cryp-

towall, which locks and encrypts all the programs and files of the infected system, 

prompting groups or regular users to pay usually in bitcoins in order the information sys-

tem to be unlocked. 

There will always be threats and vulnerabilities, which malware developers and criminals 

will exploit. Therefore, it is important for security companies to detect the malicious pro-

grams and notify businesses and users about potential vulnerabilities. In line with the 

exponential growth of the Internet, the number of new malware is increasing every day, 

which has become difficult to analyze manually. 
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Analyzing the increasing number of malware requires a lot of human resources if done 

manually. As of 2015, the AV-Test Institute, [3] registers 390,000 new malicious pro-

grams every day, which is infeasible to analyze manually. Even more, the malware should 

be divided into groups or families to which their code and behavior correspond to.  

 

Figure 1: AV-Test’s Sample Collection Growth up to 2008. [3] 

 

Current malware development procedures are focused on stealing sensitive data from 

everyday users and, to a more severe extent, they target critical infrastructures. There are 

many ways to get infected with malware. Some of them include social engineering ap-

proaches that try to deceive users and make them click e-mail attachments. 

It is well known that everyone that has an email account has dealt with spam at least once. 

However, the problem of spam is not always defined as irrelevant content and lack of 

bandwidth but also is a method to spread malware. Usually, spam emails are using a 

method known as driven by downloads because they want to make people click on links 

to websites which cyber criminals have infected with malicious code or open documents 

that again contain ransomware. This method is also known as spear-phishing attack. On 

the other hand, there is phishing that comes from spam messages also. Phishing’s goal is 

to redirect their targets to fake websites from which confidential data is then collected. 

The malicious software being developed and programmed by intruders, attackers and 

criminals is polymorphic and has various evasion techniques, meaning that they tend to 

have the code in such way that they are not detected by intrusion detection systems and 
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antiviruses. In other words, they use obfuscation techniques reducing the effectiveness of 

static analysis. Moreover, the different amount of their variants extremely concludes the 

influence of established protections which usually use static analysis methodologies and 

approaches and are unable to detect the previously unknown malicious binaries. The var-

iants of malware have in common usual behavioral models reversing their source and 

intention. Static and dynamic methods retrieve and acquire behavioral models and proce-

dures that can be later used to implement algorithms for detection and classification of 

unknown malware into recognized malware families using machine learning.  

To tackle this problem, researchers have suggested static and dynamic analysis techniques 

and procedures, which depend on the observation of the behavior of the malware pro-

gram’s activities for detection and classification. 

1.2 Static Malware Analysis 

Sikorski & Honig, 2012 on their book Practical Malware Analysis [4] and in accordance 

with [5] and [6] state that:  

Basic Static Analysis proposes the examination of an executable file with malicious in-

tentions without viewing the behavior and the instructions on what it does. This method, 

determines if a file is malicious, and provides information about its construction as well 

as its unique signature. The basic static analysis is performed using specific software, 

which has several disadvantages when performed on more sophisticated malware. 

Advanced Static Analysis proposes the method of reverse engineering. It is the way of 

revealing malware’s binary and assembly language by feeding the binary into a disassem-

bler, decompiler, and debugger and looking at binary’s source code and assembly code 

to find out services and activities of the executable. So, that way there is a determination 

of what the program does step-by-step. It is the most challenging and promising part of 

Static Malware Analysis as solving the assembly behind the malicious software requires 

disassembly, programming, and specific knowledge of how Windows and Linux(An-

droid) operating system performs.  
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1.3 Dynamic Malware Analysis 

Sikorski & Honig, 2012 on their book Practical Malware Analysis [4] and in accordance 

with [5] and [6] state also that:  

Basic Dynamic Analysis proposes and offers the opportunity of testing, executing and 

running malicious code and examining on the system to check its behavior, processes and 

potentially erase the infection. However, it should be mentioned that it is crucial to set up 

a virtual environment or virtual lab that will let a researcher to study the executed malware 

without damaging the actual information system or network. Even though typical dy-

namic analysis is a part of the malware analysis, it has some drawbacks, so the advanced 

method of dynamic analysis is required. 

Advanced Dynamic Analysis employs a disassembler to examine the internal condition 

and the procedures of an executed malicious file. This technique provides an approach to 

acquire more detailed data from a malicious program. Similar methods are valuable for 

obtaining information. 

There are two methods for dynamic malware analysis that can be introduced and pro-

posed: 

• Examining the dissimilarity between specified states: On this occasion, there are two 

states. The first state is the infection of the malware and the state after the infection. It is 

crucial to know how the information system was in the first state to be able to extract 

information about the malware while it is running. Finally, a report of the states compar-

ing each other of the behaviors of the malware are presented. 

 

• Monitoring running activities and services: Where, malicious programs executed are 

observed. More details what a researcher examines and finds through a dynamic analysis 

procedure.  

• RAM analysis: There are times that malware does acts like buffer overflow, or 

tries to find ways to access individual processes through RAM. 

• Files modifications: It is important to have a list of all system files before the 

actual infection of the system. There are malware that change or delete files. So 

keeping a list allow us to realize which files have been added, deleted or modified. 
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• Processes and system services: The aim is to detect if new services or procedures 

have been started or if something changed to processes that are already running. 

For example, recent evidence suggests that most of the times malware try to by-

pass any antivirus program that is on their way. 

• Systems changes: These modifications happen in registry so while investigating 

registry and log files an examiner can discover the purpose of this malicious file 

• Search for weird URL destinations: As analysts monitor the network, they try 

to find evidence that may lead to malicious websites, so unknown IP addresses 

should be checked through sites like virus total, sucuri and more. 

However, dynamic analysis of malware must be performed in an environment that re-

searchers are willing to sacrifice, and that is logically partitioned from other hosts on 

network (and, hopefully, the rest of the world). A reasonably complete overview of the 

behavior of a Windows program can be achieved by just monitoring its interaction with 

the file system, the registry, other processes, and the network. 

Both of the above techniques have their advantages and disadvantages. The static analysis 

suggests a full inclusion and report, but sometimes it suffers from code obfuscation. The 

binary file should be processed accordingly before examination with a common technique 

called unpacking, having as a result to make researchers encounter unmanageable com-

plexity during the analysis. Dynamic analysis is more useful and does not need the binary 

to be unpacked or decrypted. On the other hand, it takes time and consumers computing 

resources, so it raises scalability concerns. Furthermore, there are many malicious activ-

ities that might be without monitoring because there is no such a state or situation in order 

to generate the appropriate circumstances. 

This dissertation takes a totally different path to characterize, label and analyze malware. 

In more general terms, a malware executable can be depicted and described as a binary 

string of zeros and ones. This vector can be modified into a matrix and exported and 

converted into an image. Nataraj et al., 2011 suggested an approach and methodology 

where meaningful and relevant visual similarities exist in image structure of malware and 

can be used to classify them to their known malware families. Existing classification 

methods require either disassembly or execution whereas our approach does not require 
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any of the two but still shows significant improvement regarding performance. Finally, it 

is also resilient to favorite obfuscation techniques such as section encryption.  

2. Malware 

2.1 What is Malware? 

According to [5] and [6] malware is a program that has malicious intentions and it is made 

and designed for a certain purpose, to acquire access to an information system without 

the administrator's authorization. With more simple words malware is a software that 

helps an attacker complete and fulfills his malicious and crime intentions.  

2.2 What is Cleanware? 

Cleanware is that kind of software whose activity is not considered malicious. It is im-

portant to separate malware from clean ware, to ensure that an unknown file, is not mali-

cious.  

Examples could be: 

• Opening attachments in an E-mail. 

• Inserting an exterior hard drive or a USB stick to your system. 

• Background detection on computer. 

• Downloading a file. 

2.3 Behavior-based Detection 

On behavior-based malware detection, researchers analyze the malware and its behavior 

during run-time. The reason that sometimes there is a need to use behavior-based detec-

tion is to know the actual source code of the malware. Here the source-code can execute 

different code obfuscation techniques e.g. packing their code, polymorphism, and meta-

morphism.  
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2.4 Signature-based Detection 

Signature-based malware detection commonly refers to static analysis, where the mal-

ware sample is analyzed and unique signatures are extracted. These can then be used to 

distinguish malware files from good data and is a commonly used method by AV-ven-

dors. The problem arises when dealing with code obfuscation techniques employed by 

the malware. Some of the obfuscation techniques used against Signature-based Detection 

are listed below: 

• Packing: Adam Kujawa on a Malwarebytes 2013 Threat Report [8] informs that when 

malware developers pack malware, it means that it is compressed into a binary file, in a 

way it is understandable only if correct decompression is used or reverse engineering 

techniques and it is used to bypass anti-viruses, firewalls and more. When unpack is done 

or decompression, the malware is loaded into memory in a human readable form. Mal-

ware can be compressed in many ways and even several times making it close to impos-

sible to reverse-engineer the code. As recently has been presented at a Black Hat confer-

ence as a presentation [9] 

• Polymorphism: It is the method where the malicious software has a part of its code 

changed after every iteration it runs on the computer, while another part remains the same. 

• Metamorphism: It is the method that all the code of the malware is changed while it 

runs on an information system, but functionality is still the same. 

 

Figure 2: Malware Development [4-6] 

 

2.5 What is Classification and Clustering? 

Classification is a technique under which an object needs to be identified and be catego-

rized to a class by scientists. This dissertation provides predefined and known types, la-

bels and categories which separate this definition from that of clustering. 



 

-15- 

 

As the amount of malware samples are huge, it is easily understandable that humans are 

slow classifiers, so there is a need to automate the classification processes. 

The goal of classification in the field of machine learning is to present as a map new input 

variables or samples after training to a discrete output variable or label. To perform this 

generalization task, the classifier, often represented as a black-box module, is first trained 

using a set of labeled input/output data. Plenty of models exist to represent classifiers. 

Among them, the most popular ones include decision trees, the naive and general Bayes 

classifiers, random forest, artificial neural networks and other kernel related techniques.  

In data science outlier detection is the labeling of unknown information and data such as 

features, incidents, attacks or activities and services which do not belong to a known 

group and cluster in a dataset. More often the data for an anomalous detection system 

are from malware, botnets, etc. Three types of anomaly detection procedures and ap-

proaches exist. Unsupervised, Supervised and Semi-supervised anomaly detection tech-

niques. An unsupervised procedure detects outliers in an unsupervised dataset by mak-

ing the hypothesis that the majority of the data inside the dataset are reasonable and it 

looks and searches for any data that does not fit to the remaining dataset. A supervised 

technique has a dataset that is already labeled as” normal” or” abnormal,” and it is used 

to train a classification algorithm to be subsequently used to detect new and similar 

threats. Finally, in semi-supervised a framework is presented where normal behavior 

from a given normal training data set is trained, and then the probability of a test supple-

ment is tested and generated by the learned model. The most important anomaly detec-

tion techniques that have been introduced by the literature is Density-based techniques, 

classification and cluster algorithms (k-nearest neighbor, local outlier factor), support 

vector machines, neural network and computational intelligence and fuzzy logic. 

 

2.5.1 Artificial Neural Networks 

This dissertation considers Artificial Neural Networks (ANN) algorithms, which can be 

linear or nonlinear parametric models. These types are motivated by biological neural 

networks where neurons are computational units which are activated by weighted con-

nections (axons and dendrites). ANN are broadly studied and applied in engineering and 

sciences, especially in pattern recognition. They mainly yield accurate results when ap-

plied to regression and classification problems. 
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2.5.2 Classification problem for detection 

The classification task in data processing entails separating data entries into groups by 

assigning them a specific class (or type). The classification problem can be encountered 

in almost any field of work and there exists a large variety of approaches to find a solution. 

Some approaches worth mentioning are the decision tree models, the Bayesian classifiers 

(naive and general), support vector machines where the classification task can be divided 

into two subtasks. The first one is often referred to as the learning phase when the classi-

fier is created from a set of labeled input/output cases. The second step is often referred 

to as the testing phase where the classifier is tested on a set of labeled input/output cases 

not yet encountered during the training period. Once the model built in the two first phases 

is functional, it can be used to estimate and predict the output class for new and unlabeled 

input values.  

2.5.3 Classification problem statement 

The classification problem is easy when the data entries are linearly separable (i.e. they 

can be separated by a hyperplane). However, it is slightly more difficult when they are 

not linearly separable. In this case, the data have to be represented using a nonlinear 

model. 

2.6 Malware Families 

A malware family can be considered as a group of malware, whose main source code is 

the same ,that has similar main functionalities, but only their behavior is changed. That is 

the reason why sometimes new malware are referred to as variants or updated versions of 

old ones by industry and researchers. For classification, an emphasis is placed on the 

original and same main features and behavior of the malicious samples even though they 

might have different practices in general.  

In 2014 Microsoft recorded and registered in its database more than 236 malware fami-

lies. The reason researchers need this registration and have many families and classes is 

that having more samples means that they have more features for supervised learning 

providing better results and can focus more on the performance of their algorithms. So, 

having a database recording these samples could be a benefit for any examiner.  
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2.7 Naming Malware 

According to Microsoft [10] a malware with specific behavior can have more than one 

names from AV Vendors because they use different methods and ways to call malware 

and it depends on the number of samples that they collect as well as their particular be-

havior. One of the most common methods for calling malware samples is the CARO 

Naming standard. 

CARO is an informal malware naming scheme developed by individuals from AV com-

panies and researchers. Note that the CARO naming convention does not solve the prob-

lem of ambiguous class labels, but instead, tries to address the inconsistent labeling. 

The idea is to create a universal standard, or syntax, for naming malware, to prevent con-

fusion of definitions among , say. AV-vendors and users. The most complex form is as 

follows: 

<malware type>://<platform>/<family name>. <group name>. <infective length>. <sub-

variant><devolution><modifiers> 

All conventions are optional except for family name since not all entries are necessarily 

available. 

This protocol is used by Microsoft in their AV software namely, MSE or the Win8 ver-

sion, Windows Defender. For MSE, the scheme used is as following: 

<malware type>://<platform>/<family name>. <sub-variant>! <vendor-specific com-

ment> 

It is noticed here, that infective length, group name, and devolution is not applied in their 

convention. 

Additionally, the modifiers have been replaced with! vendor-specific comment, which is 

part of the modifiers parameter also used in CARO. To give an idea of the structure a real 

example is listed below: 

Backdoor: Win32/Caphaw.D  
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Figure 3. Detailed Explanation of Naming procedure of a malware sample by Microsoft [10] 

 

 

2.8 Types of Malware 

There are several types of malware as reported by [11] and below is an explanation of the 

essential elements and features of malware types that readers should know and under-

stand. 

2.8.1 Backdoor 

A program that installs on its own to a computer system and makes “a door” to let attack-

ers connect to the system. Backdoors create, achieve and execute code on the system with 

little or no authentication. 

2.8.2 Botnet 

A program similar to backdoor, but with the difference that the information systems af-

fected build a network of bots that receive commands from a server known as command-

and-control server. 

2.8.3 Downloader 

Downloaders are programs embedded in websites, information systems, personal com-

puters whose goal is to download other malicious code 
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2.8.4 Information-stealing malware 

These types of malware also known as keyloggers, password grabbers or sniffers are 

made to collect information and send this information to somewhere else. These types of 

programs can be considered and categorized as Riskware as they are safe when used by 

an authorized person in a suitable activity and status. On the other hand, if misused, or 

employed by an attacker, the program may affect the security of a person or a system. For 

example, keyloggers are often used to monitor users. This is the most common attack to 

acquire access to online banking systems. 

2.8.5 Rootkit 

Rootkits are the type of malware that is constructed to hide other code and are commonly 

connected with another malware, such as backdoor. This, allows the attacker to maintain 

remote access and make detection of the code by investigators difficult.. 

2.8.6 Ransomware 

 One of the most common malware designed to run and execute on all operation systems. 

Their goal is to frighten and make an infected user into buying something. Most of the 

time it has a user interface with instructions on how to proceed with the payments. It 

warns users that there is malicious code by using cryptographic algorithms on their per-

sonal information systems and that the only way to get rid of it, is to pay with digital 

currencies. As an exchange, they will deliver the key to decrypt user's system when it 

does nothing more than stealing people's money or destroying information systems. 

2.8.7 Worm & Virus 

Malicious code whose goal is to copy itself and infect more computers. Usually, it does 

not make changes to other programs. Worms, on the other hand, often search for a specific 

requirement to systems and when they find them they change them. The greatest infection 

is Stuxnet targeting SCADA systems. 

2.8.8 Reverse Shell 

A reverse shell provides access to the attacker to the host that previously got infected or 

permits the connection of an infected system to the attacker. Their functions work as a 

backdoor on the infected host. The way a reverse shell works is that it gives to the attacker 
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the ability to execute and type commands as the intruder is local. Windows cmd.exe and 

Netcat are commonly used for making packaged reverse shells. These methods are used 

to hide from user’s infected information system giving the time to execute commands on 

the infected host. 

2.8.9 RAT – Remote Access Trojan  

A Remote Access Trojan (RAT) is a type of malware which gives unauthorized access to 

an attacker and allows the control of the infected host using a backdoor. Remote Access 

Trojans are often distributed through free-of-charge software and are sent as an attach-

ment by e-mail. 

2.8.10 Browser Hijacker 

Browser hijackers are malicious software that is designed and programmed with the aim 

of changing the homepage, usually the search engine provider. They are often installed 

through free software, and they target the more novice user that will not consider them as 

malicious. They are malicious as sometimes are adware or spyware having access to 

user’s online privacy 

2.8.11 Bootkit 

Another type of a rootkit is bootkit. Its name was taken because it is hidden in the boot 

sector making it hard to be detected by antiviruses and intrusion detection systems after 

its infection. 

2.8.12 Scareware 

A type like ransomware is called scareware that most commonly tries to frighten the in-

fected user making him/her purchase something. It comes as a mail attachment with a 

blackmail text or an information mail that has to do some steps to remove another virus. 

Because of these methods, many victims will pay for the software to have the virus re-

moved.  

2.8.13 Spam Sending Malware 

Spam Sending Malware is malicious software that is a part of a botnet controlled by a 

command and control server operating as a distributed spam-sending network. This, hap-

pens to spread usually another malware or give the computational resources by infecting 
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another system for malicious activities. Sometimes ISPs take countermeasures against 

this botnet by disabling the victim’s internet connection or marking as spam email ad-

dresses. 

 

2.8.14 Potentially Unwanted Program (PUP) 

Also, known as Potentially Unwanted Application (PUA), Potentially Unwanted Web 

Application (PUWA, Popups), Potentially Unwanted Software (PUS). It is usually a soft-

ware that acts and has an unusual behavior with undesirable and unwanted utilities and 

functions but does not meet the requirements to be considered as malware. What makes 

PUPs complicated to be analyzed and classified is that for some people, they are consid-

ered useful but malicious for others. Most of the times a PUP can impact productivity, 

privacy, and security but also it can put unwanted stress on the resources of a system. 

  Unintended impact on productivity:  

• Upsetting with regard to user experience. 

• Futility. 

• The program acts and behaves unexpected, unwelcome and unauthorized actions, 

which point to unwanted distractions, lost opportunities or lowered productivity. 

• Many times, operators of the affected systems should perform maintenance and 

cleaning procedures that take time. 

  Unwanted stress on the device's resources:  

• Computing resources like Memory, CPU, and hard drive are used more than the 

usual.  

• Increased Bandwidth. 

 

 

 

 

  Compromises security:  

• Publicity and vulnerable to unexpected, controversial and unsubstantiated con-

tent, location or applications. 
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  Compromises privacy:  

• Personal information including sensitive software is unnecessarily disclosed to 

unknown or unauthorized parties. 

2.8.15 Spyware:  

Collects information about the user's web browsing activities or favorited applications. 

The data collected are usually sent out to another person. 

2.8.16 Trackware: 

It provides the utilities in order a user or an information system to be identified by third 

parties, usually with a unique identifier. The most common trackware is tracking cookies. 

2.8.17 Adware:  

Distributes malicious code and content through a web browser, PC's Desktop or mobile 

applications. An alternative name for this type of malware is malvertising using known 

companies and their advertising banners to distribute malware through them. 

2.9 Malware Detection 

2.9.1 Introduction to Malware Detection and Deep Learning 

Neural networks have attained a reputation throughout the years. Deep learning has per-

formed well, suggesting solutions for advance persistent threats and zero-day protection. 

This dissertation aims to discuss countermeasures that should be performed to predict 

attacks that should do with malware and, to address the importance of machine learning 

from security point of view. 

Current anti-virus software detects a type of malware after its infection or after it has done 

the damage that it is intent to do. So, detecting malicious code using collected datasets 

and using neural networks and fuzzy techniques should be presented based on the behav-

ior of their procedures. Recognizing and identifying a problem automatically is a signifi-

cant problem. Researchers and analysts can examine a small number of files, so the need 

for large-scale techniques and classification is necessary using neural networks which 

give us several training algorithms that can be tested for. 

The Science of Artificial Intelligence plays a major role in automatic and large-scale mal-

ware classification. Machine learning frameworks have been researched, developed and 



 

-23- 

 

tested to characterize and categorize malware into their malware families, using charac-

teristics extracted and acquired from static and live analysis of the malicious software. 

Feature engineering and extraction methodologies require time, which does not scale well 

to the daily malware samples, binaries that have been analyzed and other malicious soft-

ware being recorded and submitted for further investigation by researchers who collect 

and analyze malware or repositories that host malware. So, it is mandatory to search and 

find new methods for feature engineering and extraction, to perform useful classification 

algorithms.  

Nataraj, Karthikeyan, Jacob, & Manjunath, 2011 in [12] introduced a new approach and 

method, called binary-texture analysis. 

This process should be examined in contrast with similar and existing malware classifi-

cation approaches previously published. Research results suggest that binary texture anal-

ysis provides comparable and similar results regarding accuracy obtained from experi-

ments performed with dynamic analysis procedures. In addition, it provides and produces 

outcomes faster than the results produced by dynamic procedures. Furthermore, the tex-

ture-based methodology and technique shows resilience to packing techniques, and can 

successfully categorize a significant amount of malware with both encrypted and unen-

crypted fragments with the difference of considering encrypted samples as a different 

malware family. 

2.9.2 Basic theory in Sandboxing 

Oktavianto & Muhardianto, 2013 in [13] state that as technology progresses, malware 

became more sophisticated, more complicated and harder to analyze. So, there is a need 

for new ways of prevention, and that would allow us to analyze malware quickly and 

efficiently without compromising or infecting information systems. Sandboxing has vast 

applications among industry that belongs to information technology. It is a method of 

separating a malicious program from the rest of the information system by providing lim-

ited execution capabilities. Sandbox, allows analysts to run and execute malicious appli-

cations, files, software or codes and see the malware activities and intents. It also main-

tains a safe and secure environment without worrying about the changes that will take 

place during the process. There are several malware sandboxes for building automated 

malware analysis lab like Malheur and Cuckoo Sandbox.   
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3 The role of Artificial Intelligence 

in Malware Detection 

3.1 Literature review for Artificial Intelligent        

Malware Detection 

Various machine learning algorithms (Perceptron, MeanShift, DBSCAN, etc) have been 

conducted and developed regarding the detection, identification and classification of un-

identified and unrecognized malware into known malware families. Some of these algo-

rithms and methodologies being utilized, are described in this subsection of this chapter. 

First, Schultz, Eskin, Zadok, & Stolfo, 2001 [14], applied and extracted three signature-

based characteristics for malware classification: Byte sequences Portable Executables 

(PE) and computer variables most likely strings. The directory of DLLs, function calls 

and several system calls employed within each DLL used by the file and executable, are 

reversed engineered and abstracted from DLL records and data that are enclosed to Port-

able Executable files. Computer variables are processed and analyzed from the executable 

files established by the text computer variables that are encrypted in program files.  All 

the sequences of n bytes that are being modified and derived from an executable file are 

named in general as byte sequence.  

Their performance results were improved by  Kolter & Maloof, 2006 in [15], using data 

mining methodologies and n-gram as a feature to detect malware. The algorithms chosen 

were Naïve Bayes, Support Vector Machines, Decision Trees with the last giving the best 

classification results.  

Need for automation on malware classification was stressed by Kong & Yan, 2013 in 

[16]. Authors proposed a framework that depends on function call graph of malware. 

After finding a good way to extract the features based on function call graph for each 

malware sample, they used distance metrics to find the similarities between two malware 

programs. These metrics clustered and categorized the malware samples to same malware 

and class family while using a limited range kept the different groups separated. Having 

tested that approach an aggregation of classifying algorithms was utilized and suggested 
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that learns from pairwise malware distances to categorize malware into certain malware 

families. 

Tian, Islam, Batten, & Versteeg, 2010 in [17] focused on classifying Trojans that use 

function length frequency. The amount of bytes that determines the function length is in 

the cipher. The performance of the algorithms shows that the function range along with 

its frequency are meaningful in the field of identification of malware families and is as-

sociated with other characteristics for malware classification regarding performance. 

WEKA library provides such algorithm for categorizing malware. 

 A different approach that was suggested from Santos in [18] mentions that a reasonable 

number of supervised executable files for malicious and benign samples were used in a 

semi-supervised methodology for identification and discovery of zero day exploits. This 

methodology utilizes and tries to perform machine learning using a lot of supervised and 

unsupervised cases and experiments. Learning with Local and Global Consistency 

(LLGC) which is a semi-supervised model, is employed, which can be trained from su-

pervised and unsupervised data and provides an answer regarding the basic architecture 

presented by both supervised and unsupervised situations. A n-gram method characterizes 

and defines executables. Moreover, researchers conduct and assess the ideal amount of 

supervised situations and the effect of these situations regarding accuracy. Goal achieved 

of this inquiry and investigation is to decrease the amount of necessary supervised cases 

while achieving significant accuracy. The only downgrade is that supervised training 

methodologies were shown and presented better performance above or near 90%.  

 Another interesting research was done by Siddiqui, Wang, & Lee, 2009 in [19]. Their 

intention was to detect worms while examining the packets from traffic and find samples 

that are not yet analyzed and submitted to vendors, (also known as a term in the wild, 

another exciting field of detection). Before reverse engineering the samples, compilers 

and packers are identified and discovered. Decision Tree and Random Forest are utilized 

for classification and to make sequence reduction.  

Zolkipli & Jantan, 2011 in [20] wanted to see malware classification from the point of 

view of malware behavior analysis as they believed that dynamic analysis could improve 

accuracy and performance. Every fragment is executed on Anubis and CWSandbox 

where actions of malware are identified. Analyzers generate results that use artificial in-

telligent and neural network depended on dynamic analysis. The malware are then 
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grouped into malware families. Main disadvantage of the research is today’s internet traf-

fic makes it impossible to use social analysis to achieve the desired results.  

Another automatic behavior-based malware analysis framework was announced by  

Rieck et al., 2011 in [21] using machine learning. As most of the frameworks do, it col-

lects many malicious samples and monitors their behavior using a sandbox virtual envi-

ronment. After that conclusion and consideration, they inserted the results in a vector to 

implement and develop the algorithms. So, clustering was utilized to identify the families 

and clusters of malware with similar behavior.  

The classification was focused on attaching and connecting zero-day vulnerabilities to 

identified clusters. This, was implemented to show and present that clustering and classi-

fication, focused and based on behavior-based analysis can process the activities of mal-

ware executables every day. 

Anderson et al., 2011 in [22] presented a malware detection algorithm based on the anal-

ysis of graphs constructed after the dynamic collection of instruction traces. Modification 

of malware analysis framework based on Ether was used to gather samples. Methodology 

suggests the control of 2-grams to state the likelihood of a Markov chain graph. System 

of graph kernels is implemented to compute and calculate similarity vector between in-

stances in the learning phase. Two metrics that finds and searches similarities, a Gaussian 

kernel, which computes and calculates the local similarity between graph edges and a 

spectral kernel which computes the global similarity between charts, calculates a kernel 

vector. Critical dissimilar behaviors of malware determine the performance of various 

kernel learning procedures. A disadvantage, is the high computational complexity, so the 

usage in actual situations and real environments is limited. 

Bayer et al. in [23] suggested a method that puts effectively and automatically into classes 

malicious datasets. In order to apply more information sources, an extension for Anubis 

was implemented with taint-propagation efficiencies. An abstraction of evidences was 

created in addition with an observable outline for every trail, which aids as input to the 

Locality Sensitive Hashing (LSH) algorithm. Researchers show the scalability of their 

method by classifying a large dataset of malware data in a few hours. 
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Tian et al., 2010 in [24] utilized an automated tool for extracting API call sequences from 

binaries while these are running in a virtual environment. Tian utilized and applied clas-

sification methods from WEKA software to separate malicious data from good data but 

also, for classifying malware into their families.  

Biley, in [25] constructed a classifier that explains malware’s activities regarding system 

changes. Α firewall is used to restrict and protect from the impact of any sudden and 

unnecessary activity during examination. A behavioral identity of malicious behavior was 

developed which includes network connection and processes created. To perform con-

nection of the malware samples, a distance metric known as normalized compression dis-

tance (NCD) was applied and tested. The method performed an automated categorization 

of a specific set of malware samples. Biley, also measured and compared the fullness, 

integrity and condensation of the clusters and compared them with the clusters of AV 

vendors. As a disadvantage, can be considered that analysts encountered problems with 

consistency as the efficiency and the status are static. 

A malware classification method was suggested by, Park et al., 2010 in [26] which de-

pends on maximal component subgraph detection. First, a sandbox environment is used 

to execute and analyze malware samples, while system calls are taken, and a directed 

chart is created from these system call trays. For the comparison of the two programs the 

maximal common subgraph is calculated and estimated. However, there are some already 

known malware whose their primary ability is to gain root authorization bypassing the 

analysis procedure. 

Another procedure for malware detection proposed by  Firdausi et al., 2010 in [27] ana-

lyzes malware samples using Anubis. Machine learning is used for processing infor-

mation and records into sparse vector models for classification. 

Nari & Ghorbani, 2013 [28] developed a model for automatic malware classification into 

their specific and particular clusters depended on network performance. Their method 

depends on network traces applied as pcap input files to the model, that have been ana-

lyzed, processed and extracted. Afterward, a graph and plot of the network activities of 

malware was presented. Some features of these figures are adopted and used to classify 

malware using classification algorithms. 
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Lee et al., 2007 has developed another machine learning method in [29] regarding clus-

tering malicious software. After the dataset is performed in a virtual environment where 

reports are exported, a behavioral profile is produced describes the sample’s interaction 

with system resources. After the similarity between two profiles is computed, clustering 

algorithms are being applied like k-means and nearest neighbor to cluster them appropri-

ately. In this method, the obstacle of obfuscation and execution-stalling techniques has 

made necessary the research of hybrid methods for better results. 

Santos, Devesa, Brezo, Nieves, & Bringas, 2013  in [30] again developed a hybrid zero-

day detector called OPEM, which uses and exploits characteristics gathered and collected 

from the analysis of malevolent code. Signature-based malware analysis obtains the static 

characteristics, and dynamic malware analysis captures dynamic features. Two disparate 

datasets are compared through different classification algorithms. This method improves 

the accuracy and speed of both methods when running individually. Islam et al., 2013 

does something similar in [31].  

Anderson et al., 2011 in [32] suggested a method, in which various information and fea-

tures are utilized. Kernels based on Markov Chain graphs are being proposed for the bi-

nary file, disassembled file, and two dynamic traces. A graph-let kernel is applied and 

implemented for the control flow graph. A Gaussian kernel is executed for the file infor-

mation data matrix. In order to find weighted connections between the data multiple ker-

nel learning is employed. Moreover, to categorize and separate the dataset into malicious 

and benign files, support vector machine classifier is applied. The results have shown 

great performance. 

As literature shows data science proposes several solutions for categorizing malware. 

Machine Learning is increasingly being applied in a variety of industries. No doubt that 

Information Security should be one of those, as the extent and complexity of networks is 

ever increasing. Internet and “cloud” applications generate vast data sets from perfor-

mance monitoring and event logs which require scalable and flexible techniques to distil 

useful and actionable information. 
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3.2 Feature Engineering explanation 

Due to the existence of large-scale malware search and retrieval and large datasets, there 

is a need for Cross-Validation. So, it is necessary to have a feature (data) matrix X and a 

label vector y. Once these two are calculated and computed by the algorithm, it is easy to 

split the data into training/testing and then pass them to a classification algorithm.  

For data matrix x, GIST was used to calculate, measure and compute texture features, 

which uses a wavelet decomposition of an image taken from Nataraj et al., 2011 [7] and 

[33]. This feature has been proved favorable, performed and used in scene classification 

and object classification. In this problem, instead of scenes, there are malware samples 

converted to images.  

 

Figure 4: GIST Features projected in lower dimensions using 

multidimensional scaling [7] 

 

As sarvam team on their blog [34] explains for the Malimg Dataset, the length of y is 

equal to the total amount of data samples meaning that in our experiment environment 

there are more than 9.000. The values of y depend on the number of families (classes), so 

in this situation, the numerical values to the different categories from 0 to 24. 
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A short explanation of cross-validation is necessary for understanding the methodology. 

Below is the actions and steps taken for every k-fold in the cross-validation technique: 

• K-1 of the folds are used as training data to perform the training phase. 

• Outputs are then approved and accepted as a test set in order to check and 

calculate accuracy for the rest of the dataset. 

In general, these procedures are in a loop and the computed results after k-fold cross-

validation are the average of the values calculated. The method is considered to be com-

putationally demanding, but researchers use it for the advantage of keeping much of 

data the same. [36] 

Figure 5: Diagram showing the process of identification of malware samples [34] 

 

 

 

 

 

 
Illustration 1:  picture taken from sarvam blog [1] 
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3.3 How to convert Malware Samples to                  

Digital Images  

 

The first step is to turn all the samples to digital images. The image similarity fingerprints 

(feature vectors) will be computed on these images. One more option could be the com-

putation of the fingerprints in memory without saving the image on disk saving space 

from the hard drive.  

import numpy, scipy, os, array 

filename = 'sample'; 

f = open(filename,'rb'); 

ln = os. path.getsize(filename); # length of file in bytes 

width = 256; 

rem = ln%width;  

 

a = array.array("B"); # uint8 array 

a.fromfile(f,ln-rem); 

f.close();  

 

g = numpy.reshape(a,(len(a)/width,width)); 

g = numpy.uint8(g); 

scipy.misc.imsave('sample.png',g); # save the image 

A sample is defined as the name of the malware file that needs to be converted into digital 

images. 



 

-32- 

 

                     

 

Figure 7: General structure of the information gained by converting malware to image. [7] 

 

Figure 61 : Malware converted to image first picture is a byte file and the second picture is 

an asm file [7] 

 

Illustration 2:  malware samples after conversion first is byte file and the second an asm file 
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Figure 8: How malware samples are presented as images and how they appear differently even 

in their dimension length and width. [7] 

When the conversion from the sample to image is finished, the next step is to compute a 

compact fingerprint for every binary. This fingerprint captures the structural/visual simi-

larity between malware variants and is comparable with dynamic analysis. 

 

 

import Image,leargist 

im = Image.open('sample.png'); 

im1 = im.resize((64,64)); # for faster computation 

des = leargist.color_gist(im1); # 960 values 

feature = des [0:320]; # since the image is grayscale, need only first 320 values 

In addition, packing transforms an executable, binary or asm file to a completely differ-

ent form. As a result, the image extracted after packing, also appears completely differ-

ent. Furthermore, there is a belief and misunderstanding that if two malware executables 
belonging to different malware families or classes are packed and encrypted using the 
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same packer, they will appear the same. Figure 9 explains that this assumption is wrong 

and the Art of Unpacking in Black Hat, [9] presents more details about packing tech-

niques. 

 

 

 

Figure 9: Shows malware images after packing and the differences, based on Nataraj’s re-

search on [7], 

4 Experiment Setup 

4.1 Software and Hardware Specifications 

The environment used to perform tests is an Ubuntu 16.04 LTS (Xenial Xerus) system 

64bit (AMD 64 bit) with 16 GB RAM and 1 TB Hard drive. To perform the experiments, 

Python programming language is used with some packages, libraries, and modules that 

help us to carry out the data analysis. The pyleargist package is imported to compute. For 

Neural Networks and the implementation of the Multilayer Perceptron experiments have 
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been conducted with the usage of TensorFlow and Theano libraries, information about 

the documentation and the functions are written in [35]. 

The dataset used for demonstration is the Malimg Dataset, from the paper [7] Nataraj et 

al., 2011 Malware Images: Visualization and Automatic Classification.  This dataset com-

prises 25 malware families with varying number of variants per family. 

4.2 Explanation of the Dataset 

The dataset could be considered one of the most crucial parts for supervised classification 

as it should be correctly arranged. That is the reason that all the experiments are conducted 

with the Malimg Dataset. The table below, shows how this dataset is distributed and de-

livered. There are 25 malware families (classes), and every family has a varying number 

of samples. Total malware samples are 9342. 

Table 1: Detailed and Categorized content of Malimg Dataset 

 

No Family Family Name No. of Variants 

1 Worm Allaple.L 1591 

2 Worm Allaple.A 2949 

3 Worm Yuner.A 800 

4 PWS Lolyda.AA 1 213 

5 PWS Lolyda.AA 2 184 

6 PWS Lolyda.AA 3 123 

7 Trojan C2Lop.P 146 

8 Trojan C2Lop.gen!G 200 

9 Dialer Instantaccess 431 

10 Trojan Downloader Swizzor.gen!l 132 

11 Trojan Downloader Swizzor.gen!E 128 

12 Worm VB.AT 408 

13 Rogue Fakerean 381 

14 Trojan Alueron.gen!J 198 
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15 Trojan Malex.gen!J 136 

16 PWS Lolyda.AT 159 

17 Dialer Adialer.C 125 

18 Trojan Downloader WinTrim.BX 97 

19 Dialer Dialplatform.B 177 

20 Trojan Downloader Dontovo.A 162 

21 Trojan Downloader Obfuscator.AD 142 

22 Backdoor Agent.FYI 116 

23 Worm: AutoIT Autorun.K 106 

24 Backdoor Rbot!gen 158 

25 Trojan Skintrim.N 80 
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Figure 10: A representative snapshot of Malware families converted to Images [7]. 
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4.3 Theory of Classification Algorithms implemented 

According to scikit’s library and OpenCV’s documentation [36] an explanation of the 

algorithms used in this dissertation for experiment is provided below. 

4.3.1 Support Vector Machines (SVMs) 

Based on the bibliography and the theory explained in the documentation of scikit library 

and OpenCV’s literature [36] below is some of the basics mathematics behind SVMs. 

Support Vector Machine (SVM) applies and employs a set of supervised learning meth-

odologies used for classification, regression, and outlier’s detection. So, given a super-

vised learning dataset, the algorithm outputs an optimal hyperplane which classifies new 

examples.  

 

Figure 11: SVM Hyper lanes trying to find a possible solution to a problem [36] 

 

 

Sometimes more than one line could be the solution to the problem, so there is a need to 

find a way to give a description patterned to choose which solution is better than the other. 

SVM algorithm’s primary goal is to find the optimal separating hyperplane of the training 

data. 
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Support Vector Machines have their pros and cons. 

The advantages of support vector machines are: 

• They are productive and give satisfactory results when the number of samples is 

lower than the number of dimensions. 

• They use support vectors, a part of the set of training points in the decision func-

tion, so it can easily be said that some kind of a memory can be achieved, making 

dissertation’s goal more feasible. 

• They are considered versatile due to different kernel functions that can be speci-

fied for the decision function. Specific kernels are provided, but it is also possible 

to define custom kernels. 

The disadvantages of support vector machines include: 

• It does not usually provide good results if the number of samples is much lower 

than the number of features. 

• With SVMs, there are no probability estimations as these evaluations are com-

puted using an expensive five-fold cross-validation. 

 

 

 

Figure 12: Optimal hyper-

plane separation  [36] 
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4.3.2 Perceptron 

Perceptron algorithm is used for supervised learning of functions that can decide, predict 

and calculate whether a vector of values and data that is used as an input belongs to one 

class or another. It is a classification algorithm that is considered as a linear classifier 

meaning that it tries to predict focusing on a linear predictor function combining a set of 

weights with the feature vector. As the data in training, the dataset is processed one at a 

time allowing researcher and analysts to use perceptron for online learning. 

Figure 13 shows how a perceptron with a single layer is learning and categorizes the 

samples.  

 

Figure 13: Steps of a perceptron finding an optimal solution. [36] 

 

A perceptron is a linear classifier meaning that if there is a training set that is not linear it 

will never find an optimal solution to the problem where all the input matrices will be 

separated with a correct hyperlane. As a result, the training phase will stop computing 

and performing. So, there is a need to know the linear separability of the learning set. 

However, if the learning set or the problem that is encountered is linearly separable, then 

the perceptron is assured and confident to find a solution, and there is a limit known as 

an upper threshold and there is a certain number of times that the algorithm will refine 

and modify its weights during the training. 
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As explained above a perceptron algorithm is possible and supposed to find an acceptable 

solution in the case of a linearly separable training and learning set, but it may still choose 

though any solution or the algorithm may realize many solutions of differing quality. To 

find a solution to this problem linear support vector machine was developed and applied. 

4.3.3 Multilayer Perceptron 

Multilayer Perceptron (MLP) has a structure of mainly three tiers, the input tier, the hid-

den tiers and the outcome tier. Every tier of MLP consists of nodes connected with the 

nodes from the prior and the later tier.  

 

All  layers of neurons in MLP have various and different input connections in the process 

of taking the results and output of data from the previous layer nodes, as a result, it pro-

duces several output links for the next layer of nodes. The numbers computed and calcu-

lated from the last segment or number of nodes are summarized with specific weights, 

individual for each node, after it considers the bias term to compute new results. The 

amount is computed with the help of the activation function that may also be dissimilar 

for dissimilar nodes. 

 

Figure 14: A model and structure of a multilayer per-

ceptron, [36] 
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Figure 15: A more logical diagram of how multilayer perceptron works after it takes some data 

matrix x inputs. [36] 

From the documentation of the OpenCV library below is an explanation of the MLP al-

gorithm [36] 

 

 

Figure 16: Bipolar sigmoid function [36] 

 

All the neurons in Multilayer Perceptron have the same initiation functions, with the same 

variables that users define and the learning phase does not change them. 
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Procedures and steps taken for the training of the model is mentioned below: 

• Set data matrix with features as initiator and activator.  

• The scale of the entry tier is equal to the matrix size. 

• Insert and Put initial values to the first hidden tier. 

• Calculate outcomes of the hidden tier with the use of the weights and the initiation 

services. 

• Allow and set additional results later until you compute the final tier. [36] 

In order to compute the model and system, there is a need to have all the weights. The 

model takes an instruction set, several initial matrices with the appropriate matrices, and 

modifies the weights to allow and authorize the model to contribute to the inclined reac-

tion to the provided information matrices. [36] 

Having a broad network of hidden layers gives the ability for inherent system flexibility. 

The computation of the error on the training subset can become extremely low after sum-

marization. However, the trained system gets the data and shows the noise in the training 

set. This has as a result, the percentage of the error on the test subset increases after the 

size of the system comes to its limit. Furthermore, MLP trains large systems, so it is 

tolerable to preliminary process of data, but it trains small systems for only essential fea-

tures. 

A disadvantage of MLP can be considered the inefficiency to handle unlimited data.  

MultiLayer Perceptron performs and develops two training Multilayer models and frame-

works, a random sequential back-propagation algorithm and a batch RPROP framework. 

4.3.4 Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent (SGD) is a linear classifier algorithm that it is considered 

efficient and simple for discriminative learning. Stochastic Gradient Descent is imple-

mented for experiments because it performs large-scale classification with good results. 

Most of the times it is used for text classification and natural language processing. Gra-

dient descent performs optimization focusing on neural networks. These algorithms, how-

ever, are often used as black-box optimizers, as there are some advantages and limitations 

that are hard to get unnoticed. 
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The advantages of Stochastic Gradient Descent are: 

• Relevance and Productivity. 

• It can be implemented and modified accordingly to each problem code wise. 

The disadvantages of Stochastic Gradient Descent include: 

• It has several hyperparameters such as the regularization parameters. 

• It is impressionable to feature scaling selection. 

4.3.5 Nearest Centroid 

The Nearest Centroid is a classification model that shows every malware family of data 

by the centroid of its samples. It has many similarities with KMeans clustering algorithm. 

One is the feature of having no variables to choose. When families or classes have many 

differences, it experiences problems on non-convex classes. Nearest Centroid actions are 

related to the phase where labels are updated by Kmeans algorithm.  

The algorithm behind Nearest neighbor can be explained below: 

First of all, it is the training phase where given labeled training samples  

 
with class labels y belongs to Y, compute the per-class centroids  

 

Finally, the prediction function that computes the class assigned to an observation x is  

 

4.3.6 Multinomial Bayes 

The Naïve Bayes Classifier (NB) is a simple effective classification algorithm which has 

been employed and applied in the field of data analysis. The NB method depends on the 

Bayes’s rule and is usually chosen and suggested when the dimensions of the data of the 

initial values is high. Naïve Bayes classifiers take for granted that the effect of a variable 

value on a given family or class is autonomous of the values of another variable. The 

Naive-Bayes activator measures and calculates dependent likelihoods of the malware 

families offered in the experiment and chooses the malware family with the highest value. 
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Relying on the accurate character of the likelihood algorithm, Naïve Bayes classifiers can 

be trained very efficiently in a supervised learning setting.  

Moreover, Naive Bayes can be considered as a method for structuring classification mod-

els which attach class labels to case instances served as matrices of feature values, where 

the class labels are chosen from a supervised dataset. It cannot be considered as a sin-

gle algorithm for training like classifiers, but a group of algorithms depending on a com-

mon assumption: all naive Bayes classifiers assume that the value of a particular charac-

teristic is autonomous of the value of any other feature, given the class variable. There 

are some probability models where Naive Bayes classifiers can be trained very efficiently 

in a supervised learning experiment and environment. In many realistic experiments and 

operations, parameter prediction for naive Bayes models applies the method of maximum 

likelihood. 

Even though their design can be considered naïve and messy with the conclusion of pro-

ducing simple assumptions, Naive Bayes classifiers perform well in many complex situ-

ations and real life environment. 

A strength of Naive Bayes is that it needs a small amount of training data to estimate and 

predict the parameters essential for classification. So, Naïve Bayes classifiers are incred-

ibly fast compared to more sophisticated methods and approaches. 

4.3.7 Decision Trees 

A decision tree is a binary tree, and a non-parametric supervised learning method that can 

be utilized for classification where each child of this tree is considered as a class label but 

also many leaves may have the same label. Moreover, can be used for regression, meaning 

that a constant that is assigned for each tree leaf, to the approximation function being 

piecewise constant. So, decision’s tree goal is to make a prediction model that calculates 

and computes the target variable from decision rules that come from the data features 

being extracted. 

Some advantages of decision trees are: 

• Easy to understand and to be defined.  

• Trees can be visualized.  

• Demands little time for the data to be arranged.  
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• There is no need for data normalization 

• The complexity of using the data that they considered to be predicted is logarith-

mic in the number of data values utilized to train the tree.  

• Ability to manage both numerical and unconditional data. Other techniques are 

usually based and focused in analyzing datasets that have only one type of varia-

ble.  

• Ability to manage multi-variant problems.  

• Uses a white box method. If a given situation is apparent in a method, the expla-

nation for the condition is easily explained by Boolean logic.  

• On the other hand, in a black box model such as artificial neural network, conclu-

sions may be harder to defined as the possible method can be the validation of a 

model using statistical tests about reliability. 

The disadvantages of decision trees consist of: 

• Decision-tree learners that can produce and make over-complex trees that do not 

generalize the data well-meaning that often researchers encounter overfitting.  

• Decision trees can be insecure, risky and irrational because small changes or var-

iations in the data might end up with an entirely different tree being produced and 

calculated. This problem can be counter measured by using decision trees within 

an ensemble. 

• Training and learning an optimal decision tree is considered as an NP-complete 

problem under several visible features of optimality and even for simple concepts. 

Therefore, practical decision-tree learning algorithms are in a firm position on 

heuristic algorithms such as the greedy algorithm where locally optimal decisions 

are created at each tree-node. Such algorithms cannot assure or promise to pro-

duce the most acceptable optimal decision tree. This, again can be encountered 

and mitigated by learning multiple trees in an altogether trainer, where the features 

and samples are at random sampled with replacement. 

• Some problems are not easy to find a solution or to train and learn because deci-

sion trees do not categorize them quickly, such as XOR, parity or multiplexer 

experiments. 
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• Decision tree trainers generate biased trees if some classes overshadow and rule. 

So, a suggestion is to define and refine the dataset before so as to fit with the 

decision tree. 

4.3.8 Bernoulli Restricted Boltzmann Machine (RBM) 

A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural net-

work that can learn a probability distribution over its set of inputs. 

Researchers and scientists apply Restricted Boltzmann machines in deep learning net-

works. 

Original RBM has binary-valued hidden and visible entities and involves a matrix of 

weights related to the relation between visible group and hidden group, but also bias 

weights for the hidden groups and the visible groups. Having these statements, the source 

of a configuration is defined as a combination of Boolean vectors. 

To conclude, by definition, Boltzmann machines, probability distributions over hidden 

and visible models are determined regarding the energy function. 

 

Restricted Boltzmann machines aim to finding the maximum of the results of likelihoods 

attached and authorized to a training subset. 

Some procedures for a single data sample can be mentioned and seen below: 

• Take a learning model, calculate the likelihood of the hidden groups and try an 

unidentified activation matrix from this likelihood classification. 

• Calculate the external output and outcome of the two vectors and name it as the 

positive gradient. 

• Gibbs sampling procedure-From first vector, try a reformation a new vector of 

the non-hidden groups, then retry the hidden activations from this. 

• Calculate the external output and outcome of the new vectors and name it as 

negative gradient. 

• Allow the new weight matrix be the positive gradient minus the negative gradi-

ent, calculate the time of learning phase. Renew likewise the biases [36]. 
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4.3.9 Random Trees-Forest 

Random Forest took its name from the collection of the tree predictors that are designed 

to handle both classification and regression problems.   

The Algorithm of Random Forest has the following steps:  

1st Step: Feature-data vector is integrated into the random forest classifier the random 

trees classifier. 

2nd Step: It is classified with every tree in the forest. 

3rd Step:  The label of the family or class that has the most similarities commonly referred 

as votes, answers or replies, is outputted thus to the problem.  

When a regression problem exists, the algorithm produces the average of the replies-votes 

for all the trees in the forest. The trees are trained with similar principles but on dissimilar 

training datasets.  

4.4 Theory of Clustering Algorithms implemented 

4.4.1 MeanShift Clustering 

MeanShift clustering is also a centroid algorithm, which utilizes and functions by bring-

ing up to date prospects by computing the mean of values for centroids within a supplied 

area.  Proposals are refined and pre-processed in a phase to erase and get rid of almost 

duplicates of data to form the final set of centroids. Moreover, there is an automatic way 

that identifies clusters, ignoring parameter bandwidth, which enforces the area to be 

searched for. High scalability is not the algorithm’s strong feature, as various nearest 

neighbor examinations are needed. MeanShift is certain to find a solution or to conclude 

in one. On the other hand, MeanShift will stop calculations when there is small alteration 

in centroids [36] 

MeanShift can be specified as  

1. Define a window around each data point.  

2. Measure and calculate the mean of data within the window.  

3. Move the center of window to the mean and repeat till convergence. 
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4. After every repetition the windows alter to a compressed region of the set of data 

 

The fact that MeanShift does not make assumptions about the number of clusters or the 

shape of the group makes it ideal for performing dissertation’s hypothesis of the recrea-

tion of the clusters of Malimg dataset but also it handles groups of non-fixed shape and 

number. [36] 

4.4.2 DBSCAN Algorithm 

The DBSCAN algorithm treats clusters as areas of high density divided by areas of low 

density. Thus, groups produced by DBSCAN can be any shape, and not like KMeans 

which takes for granted that clusters are convex shaped. When high density is mentioned, 

researchers talks about the core samples that are also considered as features and charac-

teristics of the algorithm. So, a group of data is a set of gist specimens, close to each other 

after being calculated by a distance metric and a set of non-gist specimens that are close 

to a core sample. There are two parameters and characteristics on how this algorithm 

works, called minsamples and eps, which describes officially what densely is. Higher 

minsamples or lower eps indicate higher density necessary to form a cluster. 

A core sample or data is in an area of the vector space when in a sample of the dataset 

such that there exist minsamples within neighbors of the core sample. A group is a fixed 

area of core samples, that can be created by picking a core fragment and find all its neigh-

bors that again are core specimens. Such a group has a set of non-core data as well, which 

are data that are neighbors of a core fragment in the group but are considered as outliers. 

Any gist feature is part of a group. Further, any cluster has at least minsamples points in 

it, following the definition of a gist fragment. DBSCAN treats as an anomaly any frag-

ment that is not a gist feature, and does have a range and radius more than eps to any gist 

feature. 

The first input provided to the DBSCAN algorithm is the values of data points that needs 

to be clustered. The second input is the definition of a distance function between the 

points. It worths to mention that, intensity distance function is used if pixels of the same 

intensity need to be clustered. The third input sets up the sensitivity of the DBSCAN, 



 

-50- 

 

which takes the decision if two data points are similar or different. Finally, another sen-

sitivity factor could depend on the density of nearby data points and then decide whether 

a new group should start at a given data point. 

The DBSCAN algorithm can recognize regions and groups to a great spatial data sets by 

examining the local density of database features, using only one input parameter. The 

DBSCAN decides what information should be categorized as anomaly. Perfomance of 

the algorithm is fast and scales very well with the size of a linear collection of data. The 

algorithm can classify nodes into independent groups that characterize the dissimilar mal-

ware families by utilizing the density distribution of nodes. figure 18 shows that 

DBSCAN can discover groups of non-fixed shape. Nevertheless, groups that are near 

each other usually belong to the same malware family or they can be considered as vari-

ants. 

 

Figure 18: Arbitrary shape groups after DBScan algorithm is performed. [38] 

 

4.4.3 KMeans 

K-Means clustering is an algorithm that utilizes the method of vector quantization taken 

from the field of signal processing and most of the time examiners use it for solving clus-

tering problems in data science. K-Means clustering tries to transform the whole dataset 

to Voronoi cells by having observations and make k groups in which every observation 

is a part of a computed nearest mean cluster. 

The problem in computer science is considered NP-hard meaning that is computationally 

difficult to solve. Nevertheless, k-means clustering attends to identify categories of fam-

ilies and classes of comparable spatial extent. 
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K-means is different from k-nearest neighbor classifier, as they often confused each other 

due to the k in the name. On the other hand, both these algorithms can be combined to 

find and produce better results. A serious problem is that k-means is not very extensible, 

and it is used for vector quantization. The parameter k is admittedly difficult to choose 

when not given by external constraints. Another disadvantage of the algorithm is that it 

cannot be used with arbitrary distance functions or on non-numerical data.  

4.4.4 Minibatch KMeans 

The MiniBatch KMeans is a different approach which utilizes mini-batches to decrease 

the calculation time, while attempting to create more excellent the impartial activity. 

Mini-batches are subgroups of the initial information, randomly modelled in each learn-

ing calculation. These mini-batches exceptionally decrease the number of calculation nec-

essary to gather to a local result and explanation. Compared with other methods that de-

crease the union time of k-means, mini-batch k-means generates solutions that little better 

than the regular and typical method. 

The mini-batch method performs between two major actions, similar to original k-means.  

At first, b fragments are chosen at random from the dataset, to model and pattern a mini-

batch. Results are later attached to the nearest centroid. Secondly, the centroids are re-

newed. For every fragment in the mini-batch, the attached centroid is maintained by com-

municating the average of the fragment and all previous fragments attached to that cen-

troid. As a consequence, the rate of alteration for a centroid over time is reduced. These 

steps are performed in conjunction or until a predefined number of repetitions is achieved.  

4.5 Goals of the experiment and comparison criteria 

As a future work, the aim is to build a classifier tool that can classify malware samples 

automatically and has something like a memory and can organize labels-classes that the 

classifier has not yet processed or learned. 

First, it is necessary to know the right classes (called labels) in the training set. There is a 

need for algorithms that can learn and remember previous testing and experiments. Test-

ing and comparing algorithms are done using a test set, for which the labels are known. 

Many algorithms also use a validation set (mainly part of the labeled training set) to man-

age its learning process. 



 

-52- 

 

In the results, there are some miss-classifications and low prediction rate. So, a goal is to 

improve these algorithms to find better solutions. 

Another approach that could be considered as the problem was that the classification pro-

cedure takes for granted that all fragments in the dataset are malevolent. This, means that 

if unknown software were injected, it would be classified as malware no matter what. 

Furthermore, another aim is to build models focused on larger datasets, and these models 

will ensure a more robust classification. 

Additionally, the data should be as uniformly distributed as possible, leading to a fairer 

classification. 

Finally, this dissertation will emphasize the necessity to improve the classification rate 

by choosing and take advantage of other features and using a feature selection algorithm. 

To summarize the main differences, the following list has been made. The goal in general 

is to extend and improve the system by: 

1. Performing malware detection. 

2. Performing classification of malware families. 

3. Finding new and improving old features. 

4. Applying a feature selection algorithm, that will select the most discriminative features. 

5. Building an extensive database of malware by collecting more samples. 

6. Retrieving a uniform sample set among the malware classes. 

Finally, comparison criteria to our dissertation except for the part of comparing our ex-

periments and algorithms to each other is the nearest neighbor results as currently is pre-

sented on Sarvam blog. Moreover, the primary hypothesis, is if a recreation of the 25 

malware families and clusters after shuffle them using the clustering algorithms pre-

sented, is possible. Finally, a comparison between Kmeans and MiniBatch Kmeans is 

performed and shown. 
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4.6 Expected Outcomes 

Expected outcomes are the malware images being classified as the first dataset and ar-

ranged within the same subfolders with the same labels or at least be as near as possible 

to the first that is the main reason this dataset were being chosen in this dissertation to 

know the best-classified outcome. Figure 23 shows the expected outcome. 

The goal of clustering algorithms is to test and examine if the same 25 clusters as the 

original dataset can be recreated and achieved. So, the experiments try to reform the same 

groups and cluster from malware samples after the data is shuffled by the algorithm im-

plemented. 

 

Figure 23: Folders with the names of the malware families of Malimg dataset [34] 

 

Also, classification-wise, experiments’ results tested and compared with Nataraj’s results 

on Nearest Neighbor. So, an expected outcome could be a better accuracy machine learn-

ing algorithm. The accuracy of the Nearest Neighbor is 93.36% and from the experiments 

and results does not seem that an algorithm finds better results on accuracy than nearest 

neighbor. Performance is not something that the dissertation aims even if experiments 

need to run as fast as possible and be optimized as much as possible by developers. The 
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detection rate of accuracy and reducing misclassification and detection errors are more 

important. Performance wise the average extraction time is 5s and the time taken by the 

algorithm to classify a sample is 56s. On the other hand, the time that it takes to calculate 

GIST feature is 54ms and the overall classification time was 1.4s, but these numbers de-

pend on Nataraj’s proposal, and they are slightly better and revamped from the code that 

exported the below diagram. So, an expected outcome would be to find better and faster 

algorithms from this proposal.  

 

 

Figure 24: Diagram of the results of nearest neighbor presented in SARVAM’s blog. [34] 
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5 Results of Algorithms 

5.1 Classification Algorithms Results 

The results are presented in a range from 0.00 to 0.1 meaning that having a 0.1 and in the 

correct label there is a 100% correct classification. On the other hand, the algorithms find 

similarities to other malware families even if a detection number is not classified correctly 

by the experiments, meaning that again is at least detected. Furthermore, on some dia-

grams, if it shows results that are not near the line of the confusion matrix, they are con-

sidered as errors, but if they are near the line of the confusion matrix, it may be regarded 

as variants even if they are classified to a different malware family. Figure 25 shows a 

better view of the text below:  

 

Figure 25: Nearest neighbor figure from Sarvam experiments based on Nataraj’s [7] indicating 

the variant interpretation. 
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In implemented algorithms, most of the samples have been classified correctly but other 

samples did not. For that reason, the algorithm might have found similarities in the fin-

gerprint feature on other malware families. Support Vector Machines (SVM) seems to 

have been over trained as the results were not the expected so potential changes on the 

initiated values should be considered. Also, how it can perform better to a different da-

taset, and there is a need to test more on these algorithms is the memory that they provide, 

and it is essential for the general classifier that has to be achieved. Same goes for Ber-

noulliRBM and Multinomial Naive Bayes, on BernoulliRBM algorithm though there was 

a hypothesis to see how an unsupervised algorithm performs to a supervised and classified 

dataset. 

For clustering algorithms, a hypothesis was made while researching if the original dataset 

can be achieved and recreated, meaning that the perfect result would be 25 clusters. Best 

estimation of clusters was from DBScan Algorithm, and then MeanShift did an evaluation 

of 15 groups. Then, again a hypothesis if a particular initiation is given by a researcher 

and a certain number of groups how the results will be using Kmeans and Mini-

BatchKMeans. A comparison was made of the two to identify the differences. The differ-

ences discovered can be interpreted as non-crucial having the conclusion that they per-

form the same way in the current dataset. These algorithms should be carried out on other 

datasets as well to see if they perform the same way. Also, that is the reason why malware 

classification is an ongoing examination and research as there is no explicitly an opinion 

that guaranteed that these algorithms tested will perform the same to different malware 

families. Each dataset is a different problem.   

In information security, advanced persistent threats, malware and malicious are an ongo-

ing battle so effort on that field and a conversation on how the community can improve 

algorithms should start. Moreover, according to a recent survey from Symantec advanced 

persistent threats and more precisely ransomware is one of the most severe and dangerous 

attacks on businesses and organizations in cyberspace and the loss of money in bitcoins 

being million dollars. Only in 2015 the new malware families for ransomware that have 

been discovered are more than 100 plus the previous ones, and the average ransom that 

they ask is at 679 dollars in bitcoins plus decryptors for Green Petya and Cryptowall are 

still unknown. [2] Even if better results can be seen to one algorithm than another, no one 
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cannot easily say that this algorithm should be used for every classification, every algo-

rithm has each pros and cons on time and accuracy. 

 

 

Below is a table that summarizes the results of all the algorithms. 

 

Table 1: Summarized Results of the experiments of the classification algorithms 

Classification 

Algorithms 

Average 

Training Time 

(secs) 

Testing Time 

(secs) 

Average Accuracy 

Decision Tree 6.53 0.00096 0.088-> 88% 

Support Vector 

Machines 

45.93 3.78 Over Trained, Re-evaluation or 

Results that has no meaning due to 

misclassification 

Nearest Centroid 0.218 0.0211 0.0856-> 85.6% 

Stochastic 

Gradient 

1.291 0.0585 0.087->87% plus 2 

missclassfications 

Perceptron 0.817 0.0148 0.0905-> 90.5% plus 4 

missclassifications 

Multilayer 

Perceptron 

16.05 0.091 0.878-> 87.8% plus one 

missclassification 

Random Forest 1.72 0.0063 0.0916->91.6% 

Multinomial 

Naive Bayes 

0.0197 0.001445 Over Trained, Re-evaluation or 

Results that has no meaning due to 

misclassification 

BernoulliRBM 208.276 

 

0.0206 Over Trained, Re-evaluation or 

Results that has no meaning due to 

misclassification 
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Table 2: Summarized Results of the experiments of the clustering algorithms 

Clustering Algorithms Cluster Estimation Predefined Clusters Difference 

MeanShift 15 - - 

DBScan 20 - - 

Kmeans - 2 - 

MiniBatchKMeans - 3 - 

K-Means-MiniBatch 

Comparison 

-  3 
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5.1.1 Classification Results for Decision Tree Algorithm 

 

Figure 26: Decision Tree Algorithm Results 

Decision tree results show that there is no misclassification but only minor accuracy er-

rors (blue squares that are far from the confusion’s matrix line) meaning that some of the 

samples for this algorithm have some similarities with other specimens. In malware anal-

ysis, the C2LOP.P malware family maybe has similarities with C2LOP.gen!g.According 

to the names, this assumption is right as they belong to same malware family and they are 

considered variants but some of their samples can be on the Swizzor.gen!l. Labeling wise 

those few samples are a detection error or more in-depth features need to be examined by 

research to identify if similarities exist. These goes for the other malware families that 

behave the same. 
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After ten folds, the times for the above results are: 

Training Times:  

1st: 5.62584996223, 2nd: 6.11614894867,  

3rd: 7.76607918739, 4th: 6.38322091103,  

5th: 6.60698008537, 6th : 6.37441205978,  

7th : 6.65543818474, 8th     : 6.86663007736,  

9th: 6.49542498589, 10th : 6.36758112907 

 

Testing Time: 0.00096 
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5.1.2 Classification Results for Support Vector Machine (SVM) Algorithm 

 

The results of Support Vector Machine are scrambled after exporting, so there is no mean-

ing and correct explanation on this experiment. They are too misclassified so it cannot 

locate any similarities but also the settings being put for initialization maybe are over 

trained the algorithm on the test phase. From malware detection and analysis perspective, 

the problem was not approached correctly; it may be considered as that this is not simi-

larities but overfitting. Further, testing for potential errors and research for this algorithm 

is necessary.  

 

 

 

 

 

Figure 27: Support Vector Machine Algorithm Classification Results 
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After ten folds, the times for the above results are: 

Training Times:  

1st = 45.6123859882, 2nd = 45.6906061172, 

3rd = 44.0576298237, 4th = 44.8201007843, 

 5th = 43.707859993, 6th = 45.5356550217,  

7th = 47.0243530273, 8th = 51.7937111855, 

9th = 45.6938140392, 10th = 45.3624200821 

 

Testing Time: 3.78129291534 
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5.1.3 Classification Results for Nearest Centroid Algorithm 

 

Figure 28: Nearest Centroid Algorithm Classification Results 

The results of Nearest Centroid show again that there is no misclassification, but all sam-

ples are kind of classified to the correct labels except some minor errors. An emphasis to 

C2LOP.P should be mentioned as it seems that a small percent is detected and classified 

correctly but most of the samples are classified into other malware families, so this is not 

the best algorithm to use to counter similar samples for this kind of malware family.  
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After ten folds, the times for the above results are:  

 

Training Times: 

1st = 0.0834679603577 ,2nd = 0.0121638774872,                                

3rd = 0.0135629177094,4th = 0.0206859111786, 

5th = 0.0128729343414, 6th = 0.0129809379578, 

7th = 0.0220339298248, 8th = 0.0146219730377, 

9th = 0.0130879878998 ,10th = 0.0122499465942  

 

Testing Time = 0.0210800170898 
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5.1.4 Classification Results for Stochastic Gradient Algorithm 

 

Figure 29: Stochastic Gradient Descent Algorithm Classification Results 

 

In stochastic gradient, there is a misclassification meaning that, for malware detection it 

is considered as an error. Swizzor.gen!.I were much detected as the other malware family 

with same similarities Swizzor.gen!.E. Finally, Autorun.K was misclassified to the 

Yuner.A and most of its samples so it finds similarities between those two. Something 

that it is encountered in other experiments as well. 
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After ten folds, the times for the above results are: 

 

Training Times:  

1st = 1.25240087509 ,2nd = 1.28829216957 

3rd = 1.20172715187, 4th = 1.3295238018, 

5th = 1.26634097099 ,6th = 1.27604484558, 

7th = 1.3377199173 ,8th = 1.25761389732, 

9th = 1.28988003731, 10th = 1.41034507751 

 

Testing Time = 0.0584828853607 
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5.1.5 Classification Results for Perceptron Algorithm 

 

Figure 30: Perceptron Classification Algorithm Results 

On Perceptron, for Autorun.K malware family most of their samples were classified into 

another malware family same goes to C2LOP.gen!g and C2LOP.P, and many similarities 

were found with Swizzor malware family, something that is also encountered to the re-

sults of other experiments with other machine learning algorithms as well. 

 

 

 

 

 

 

 



 

-68- 

 

After ten folds, the times for the above results are: 

 

Training Times:  

1st = 0.637459993362, 2nd = 0.9637799263,3rd = 1.10905098915,  

4th = 1.08432793617,5th = 1.05076909065, 6th = 0.668966054916, 

7th = 0.664897203445, 8th = 0.669385910034,9th = 0.664327144623,  

10th = 0.655335903168 

 

Testing Time = 0.0148389339447 
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5.1.6 Classification Results for Multilayer Perceptron Algorithm 

 

Figure 31: Multilayer Perceptron Algorithm Results 

For Multilayer perceptron, Autorun.K is detected and classified to the Yuner.A malware 

family so training a bit more the algorithm could improve the results of this type of mal-

ware. Moreover, it is evident from the matrix produced that the Swizzor variants are being 

classified accordingly. As a conclusion, Neural Networks and more precisely MLP per-

formed excellent with regard to accuracy and performance, and they should certainly need 

to test Deep Learning as an asset to counter these types of attacks. 
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After executing the MLP below is the Training and Testing Times: 

 

Training Times:  

[(945, 25)] 1st= 30.1455199718, [(942, 25)] 2nd = 15.0493881702,  

[(938, 25)] 3rd= 14.5006198883, [(936, 25)] 4th= 14.3223490715,  

[(935, 25)] 5th= 13.9758219719, [(935, 25)] 6th = 14.6204409599,  

[(931, 25)] 7th= 14.6933410168, [(929, 25)] 8th = 14.4957091808,  

[(925, 25)] 9th= 14.37383008, [(923, 25)] 10th= 14.3233969212 

 

Testing Times:  

[(945, 25)] 1st = 0.123305082321, [(942, 25)] 2nd = 0.0920000076294, 

[(938, 25)] 3rd = 0.0852298736572, [(936, 25)]4th = 0.0909011363983,  

[(935, 25)] 5th = 0.0852150917053, [(935, 25)] 6th = 0.0866298675537,  

[(931, 25)] 7th = 0.0869810581207, [(929, 25)] 8th = 0.0924861431122,  

[(925, 25)] 9th = 0.0841000080109, [(923, 25)] 10th = 0.0834050178528 
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5.1.7 Classification Results for Random Forest 

 

Figure 32: Random Forest Classification Results 

Random Forest had the best accuracy results from all other machine learning algorithms 

but certainly there is always room and discussion for improvement and further research 

with other datasets. Everything except few blue squares is classified in the correct labels 

and again Swizzor variants were being detected, no misclassifications were encountered 

to this experiment. 

After ten folds, the times for the above results are  

Training Times:  

1st = 1.41754007339, 2nd = 1.60521197319,3rd = 1.56024694443, 4th = 1.66305494308, 

5th = 2.85804891586, 6th = 2.15528392792,7th = 1.42880892754 ,8th = 1.46547293663 

9th = 1.54579615593 ,10th = 1.53822803497 

Testing Time = 0.00629901885986 
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5.1.8 Classification Results for Multinomial Naive Bayes 

 

Figure 33: Multinomial Naive Bayes Algorithm Classification Results 

 

Multinomial Naïve Bayes seems to have issues and does not provide us with precise re-

sults to identify and make conclusions. From malware detection and classification point 

of view, a revamp on the initial values should be considered; There is no evidence that 

malware families were detected and did not find similarities between the samples. 

Training Times: 

 1st = 0.0333349704742, 2nd = 0.0199840068817,3rd = 0.0204889774323, 

 4th = 0.020693063736, 5th = 0.0209469795227,6th = 0.020231962204, 

 7th = 0.0201442241669, 8th = 0.0204341411591,9th = 0.0210590362549 

Testing Time = 0.00144481658936 
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5.1.9 Classification Results for Bernoulli 

 

Figure 34: Restricted Boltzmann Machine Algorithm Results 

Restricted Boltzmann Machines are unsupervised nonlinear feature learners and here are 

implemented for a supervised experiment and dataset. The hypothesis is to see how they 

will perform after the data is shuffled as they usually give good results to a linear problem. 

This method is popular to deep neural networks, and it is known as unsupervised pre-

training. So here results show that RBMBernoulli does work well and there is a need to 

figure out new ways on how to use them or to conclude that they are no good classifiers 

and algorithm for malware detection. 
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Below is some number from the experiment performed by the algorithm. 

 

Iteration 1: pseudo-likelihood = -25.58, time = 8.68s 

Iteration 2: pseudo-likelihood = -25.26, time = 8.50s 

Iteration 3: pseudo-likelihood = -25.29, time = 8.62s 

Iteration 4: pseudo-likelihood = -24.75, time = 7.30s 

Iteration 5: pseudo-likelihood = -25.51, time = 7.49s 

Iteration 6: pseudo-likelihood = -25.99, time = 9.06s 

Iteration 7: pseudo-likelihood = -25.47, time = 9.04s 

Iteration 8: pseudo-likelihood = -25.87, time = 7.14s 

Iteration 9: pseudo-likelihood = -25.59, time = 6.92s 

Iteration 10: pseudo-likelihood = -25.17, time = 8.06s 

Iteration 11: pseudo-likelihood = -25.75, time = 8.95s 

Iteration 12: pseudo-likelihood = -25.93, time = 8.42s 

Iteration 13: pseudo-likelihood = -25.39, time = 8.30s 

Iteration 14: pseudo-likelihood = -25.30, time = 7.23s 

Iteration 15: pseudo-likelihood = -24.92, time = 8.59s 

Iteration 16: pseudo-likelihood = -25.58, time = 8.84s 

Iteration 17: pseudo-likelihood = -25.26, time = 8.11s 

Iteration 18: pseudo-likelihood = -25.30, time = 9.14s 

Iteration 19: pseudo-likelihood = -25.37, time = 8.47s 

Iteration 20: pseudo-likelihood = -25.35, time = 9.27s 

Training Time: 208.276484966 

Testing Time :0.0206489562988 
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5.2 Clustering Algorithms Results 

5.2.1 MeanShift Clustering 

 

Figure 35: Estimation and Recreation of 15 malware family and clusters after performing 

MeanShift Algorithm. 

 

Experiments with clustering algorithms were formed with the aim to recreate the dataset 

meaning that after all the samples have been shuffled by the algorithm, there was a hy-

pothesis to estimate the number of the clusters that are going to be created without know-

ing if there are the same groups that are presented to the problem. So, in the MeanShift 

algorithm, an estimation of 15 clusters is shown, a result that is considering not right or 

correct one as many of the samples probably have been assembled to malware families 

with entirely different features and behavior. The only thing that it is worth to be men-

tioned is that for the red cluster are two clusters but are not near each other, meaning that 

these samples have similarities even if may be in another malware family due to its dis-

tance from the Centre. It is not easy to say that the algorithm is not suitable for this pur-

pose, but it needs more investigation regarding the initial and default values  
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5.2.2 DBScan Clustering 

 

Figure 36: DBScan Algorithm’s Estimation of 20 malware families and clusters. 

DBScan made an estimation of 20 clusters. As a result, can be considered that it is near 

to the 25 clusters, but there is no clear explanation why the algorithm put the samples to 

other malware families. Again, more testing to the values of the algorithms can bring 

better results. The purple/red clusters are the biggest of all and that some samples are not 

so near each other so this is a potential miss clustering but also perhaps can be considered 

as a similarity between different malware families. Large circles are indicating core sam-

ples found by the algorithm. Smaller circles are non-core specimens that are still part of 

a cluster. Moreover, the outliers are shown by black points in figure 36. 

Estimated number of clusters: 20 

Homogeneity: 0.364 

Completeness: 0.875 

V-measure: 0.514 

Adjusted Rand Index: 0.176 

Adjusted Mutual Information: 0.357 

Silhouette Coefficient: 0.168 



 

-77- 

 

 

5.2.3 Kmeans and Minibatch Clustering 

 

Figure 37: 2 Means Clustering Results 

Using only K=2, the samples are equally classified for this dataset but again on blue clus-

tering some samples are not near each other something that happens to red clusters. So, 

this means that some fingerprints found to be more similar to samples for the blue cluster 

rather than red’s as they should be. Further investigation can show if they should be in 

the red as well or they are well clustered. Finally, more than K=2 clusters should be con-

sidered due to many malware samples that exist. 
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Figure 38: Comparison of Kmeans – MiniBatchKmeans 

Performing Kmeans and MiniBatchKmeans, shown how they treat this kind of a problem 

and what potential differences may have. On this dataset, they reacted the same as the 

compare between them shown differences for only three malware samples from the 

around 9000 that the Malimg dataset has so, to conclude, for this dataset using those al-

gorithms is the same. 

 

 

 

 

 

 

 

Differences 
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6. Discussion 

This dissertation researched and aimed at studying the application of Machine Learning 

and Artificial Neural Network models to the task of detecting malware and malicious 

activities by classifying their samples into their malware families and presenting, visual-

izing and converting malware to images. The main principles of featuring and classifica-

tion in the case of supervised learning were stated. Datasets were introduced and pro-

cessed to perform malware detection. Numerical experiments were presented to validate 

the proposed approach. Machine Learning models performed well on Malimg dataset 

while having a very high training speed, with performances comparable to other malware 

detection solutions. Even though several efficient solutions have been developed to cope 

with malware and unknown attacks related to activities on the Internet, future versions of 

similar malware are expected to become more sophisticated and problematic. Infection 

media are likely to switch from networked computers to mobile phone terminals as in-

truders and attackers tend to be attracted to the systems that are the most widely used. 

Also, newly cloud networked environments are easy targets and should be designed 

properly to prevent their penetration by malicious software. Moreover, a way to tackle 

the malware and to be more certain the botnet problem would be to efficiently implement 

monitoring and filtering, which is difficult due to the diversity of the Internet and the lack 

of economic incentives for users and ISPs to protect devices and sites.  

On this dissertation’s research, malware is characterized based on image feature de-

scriptor. The performance proposed and presented for malware classification and cluster-

ing is promising.  Computer vision and machine-learning techniques for malware analysis 

will make progress for better and innovative methodologies to analyze malware. How-

ever, an image processing based methodology to analyze malware can easily be counter 

measured from an investigator, or a penetration tester, researcher or attacker that wants 

to secure or beat the system since this approach depends on global image features. Some 

countermeasures are moving segments in a binary or the addition of a large number of 

excessive information. Research for better feature extraction and processing patterns, 

which consider the distinct characteristics of malware executables, is needed to bypass, 
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defend and tackle against such attacks. A potential expansion is to divide the image re-

gions and characterize the local texture and spatial distribution of these texture patterns. 

So, feature engineering could and should become better, with more research to this field. 

Although clustering and classification are similar, the former is unsupervised, and the 

latter is supervised. 

For future, there is a need to improve the algorithms suggested or propose new ones. 

Discover new and better clustering algorithms, as malware analysis and detection field, 

is new and in a research mode now. Another approach on how malware can be visualized 

is the development of whole new visualization algorithms. So, an interesting approach 

could be to test the same dataset with the new transformations and other datasets as well. 

To conclude, this dissertation was to emphasize the importance for keeping investigating 

malware samples, their behavior and see how other algorithms work classification and 

clustering-wise. Malware day by day are made to bypass anti-viruses, firewalls and de-

tection systems, and there is a need to re-evaluate current approaches and rethink how to 

approach them. 
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Appendix 

Source Code 

1.Dataset Arrangement 

import os, glob, numpy 

os. chdir('/home/user/Desktop/malimg_dataset’) # the parent 

folder with sub-folders 

list_fams = os. listdir (os. getcwd ()) # vector of strings 

with family names 

no_imgs = [] # No. of samples per family 

for i in range(len(list_fams)): 

    os. chdir(list_fams[i]) 

    len1 = len(glob. glob('*.png')) # assuming the images are 

stored as 'png' 

    no_imgs.append(len1) 

    os. chdir ('..') 

 

total = sum(no_imgs) # total number of all samples 

y = numpy. zeros(total) # label vector 

 

temp1 = numpy.zeros(len(no_imgs) + 1) 

temp1[1: len(temp1)] = no_imgs 

temp2 = int(temp1[0]) # now temp2 is [0 no_imgs] 

for jj in range(len(no_imgs)): 

    temp3 = temp2 + int(temp1[jj + 1]) 

    for ii in range(temp2, temp3): 

        y[ii] = jj 

    temp2 = temp2 + int(temp1[jj + 1]) 
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2. Features Computation 

import Image, leargist 

 

X = numpy. zeros((sum(no_imgs), 320)) # Feature Matrix 

cnt = 0 

for i in range(len(list_fams)): 

    os.chdir(list_fams[i]) 

    img_list = glob. glob('*.png’) # Getting only 'png' files 

in a folder 

    for j in range(len(img_list)): 

        im = Image.open(img_list[j]) 

        im1 = im.resize((64, 64), Image.ANTIALIAS);  # for faster 

computation 

        des = leargist. color_gist(im1) 

        X[cnt] = des [0:320] 

        cnt = cnt + 1 

    os. chdir ('..') 

import random 

from sklearn. cross validation import StratifiedKFold 

from sklearn. utils import shuffle 

 

n_samples, n_features = X. shape 

p = range(n_samples) # an index array, 0: n_samples 

random. seed (random. random ()) 

random. Shuffle(p)  # the index array is now shuffled 

 

X, y = X[p], y[p] # both the arrays are now shuffled 
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kfold = 10 # no. of folds (better to have this at the start of 

the code) 

 

skf = StratifiedKFold (y, kfold) # indices='true' 

 

# Stratified KFold: This first divides the data into k folds. 

Then it also makes sure that the distribution of the data in 

each fold follows the original input distribution 

# Note: in future versions of scikit. learn, this module 

will be fused with kfold 

 

skfind = [None] * len(skf) # indices 

cnt = 0 

for train_index in skf: 

    skfind[cnt] = train_index 

    cnt = cnt + 1 

 

 

conf_mat = numpy. zeros((len(no_imgs), len(no_imgs))) # Ini-

tializing the Confusion Matrix 

 

n_neighbors = 1 # better to have this at the start of the code 

# 10-fold Cross Validation 

 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    X_train = X[train_indices] 

    X_val = X[train_indices] 
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    y_train= y[train_indices] 

    y_val  = y[train_indices] 

    X_test = X[test_indices] 

    y_test = y[test_indices] 

 

3.Multilayer Perceptron with Theano-experiment that had some issues 

###########################################################

#################### 

# Training 

# Hyper-parameters. These were set by cross-validation, 

# using a GridSearchCV. Here not performing cross-validation 

to 

# save time. 

# More components tend to give better prediction performance, 

but larger 

# fitting time 

# Training RBM-Logistic Pipeline 

# Training Logistic regression 

 

import time 

import theano 

import theano. tensor as T 

import lasagne 

from lasagne. regularization import regular-

ize_layer_params_weighted, l2, l1 

import numpy as np 

import matplotlib. pyplot as plt 

from numpy import * 
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# Uses Lasagne to train a multi-layer perceptron, adapted 

from 

# http://lasagne.readthedocs.org/en/latest/user/tuto-

rial.html 

def lasagne_mlp (X_train, y_train, X_val, y_val, X_test, 

y_test, hidden_units=25, num_epochs=500, l2_param = 0.01, 

use_dropout=True): 

 

    # Prepare Theano variables for inputs and targets 

    input_var = T. tensor3('inputs') 

    target_var = T. ivector('targets') 

 

    print("Building model and compiling functions...") 

    # Input layer 

    network = lasagne. layers. InputLayer (shape= (None, 1, 400), 

                                     input_var=input_var) 

 

    

 if use_dropout: 

        # Apply 20% dropout to the input data: 

        network = lasagne. layers. DropoutLayer (network, p=0.2) 

 

    # A single hidden layer with number of hidden units as 

specified in the 

    # parameter. 

    l_hid1 = lasagne. layers. DenseLayer ( 

            network, num_units=hidden_units, 

            nonlinearity=lasagne. nonlinearities. rectify, 

            W=lasagne.init. GlorotUniform ()) 
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  if use_dropout: 

        # Dropout of 50%: 

        l_hid1_drop = lasagne. layers. DropoutLayer (l_hid1, 

p=0.5) 

        # Fully-connected output layer of 10 softmax units: 

        network = lasagne. layers. DenseLayer ( 

            l_hid1_drop, num_units=10, 

            nonlinearity=lasagne. nonlinearities. Softmax) 

    else: 

        # Fully-connected output layer of 10 softmax units: 

        network = lasagne. layers. DenseLayer ( 

            l_hid1, num_units=10, 

            nonlinearity=lasagne. nonlinearities. softmax) 

 

    

 # Loss expression for training 

    prediction = lasagne.layers.get_output(network) 

    loss = lasagne. objectives. categorical_crossentropy (pre-

diction, target_var) 

    loss = loss. mean () 

    # Regularization. 

    l2_penalty = lasagne. regularization. Regular-

ize_layer_params_weighted ({l_hid1: l2_param}, l2) 

    loss = loss + l2_penalty 

    # Update expressions for training, using Stochastic Gradi-

ent Descent. 

    params = lasagne.layers.get_all_params (network, traina-

ble=True) 

    updates = lasagne. updates. nesterov_momentum ( 

            loss, params, learning_rate=0.01, momentum=0.9) 
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    # Loss expression for evaluation. 

    test_prediction = lasagne.layers.get_output (network, de-

terministic=True) 

    test_loss = lasagne.objectives.categorical_crossen-

tropy(test_prediction, 

                                                            target_var) 

    test_loss = test_loss. mean () 

    # Expression for the classification accuracy: 

    test_acc = T. mean (T. eq (T. argmax (test_prediction, 

axis=1), target_var), 

                      dtype=theano.config. floatX) 

 

    # Compile a function performing a training step on a mini-

batch (by giving 

    # the updates dictionary) and returning the corresponding 

training loss: 

    train_fn = theano. function ([input_var, target_var], loss, 

updates=updates) 

 

    # Compile a second function computing the validation loss 

and accuracy: 

    val_fn = theano. function ([input_var, target_var], 

[test_loss, test_acc]) 

 

    # Finally, launch the training loop. 

    print ("Starting training...") 

    # Keep track of training and validation cost over the 

epochs 

    epoch_cost_train = np. empty (num_epochs, dtype=float32) 

    epoch_cost_val = np. empty (num_epochs, dtype=float32) 
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    #iterate over epochs: 

    for epoch in range(num_epochs): 

        # In each epoch,do a full pass over the training data: 

        train_err = 0 

        # want to keep track of the deterministic (feed-forward) 

        # training error. 

        train_err_ff = 0 

        train_batches = 0 

        start_time = time. time () 

        for batch in iterate_minibatches (X_train, y_train, 50, 

shuffle=True): 

            inputs, targets = batch 

            err, acc = val_fn(inputs, targets) 

            train_err_ff += err 

            train_err += train_fn(inputs, targets) 

 

            train_batches += 1 

 

 

        # And a full pass over the validation data: 

        val_err = 0 

        val_acc = 0 

        val_batches = 0 

        for batch in iterate_minibatches (X_val, y_val, 50, shuf-

fle=False): 

            inputs, targets = batch 

            err, acc = val_fn (inputs, targets) 

            val_err += err 

            val_acc += acc 
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            val_batches += 1 

 

        epoch_cost_train[epoch] = train_err_ff / train_batches 

        epoch_cost_val[epoch] = val_err / val_batches 

        # print the results for this epoch: 

        print ("Epoch {} of {} took {:.3f}s".format( 

            epoch + 1, num_epochs, time.time() - start_time)) 

        print("  training loss:\t\t{:.6f}".format(train_err / 

train_batches)) 

        print("  validation loss:\t\t{:.6f}".format(val_err / 

val_batches)) 

        print("  validation accuracy:\t\t{:.2f} %".format( 

            val_acc / val_batches * 100)) 

 

    

 # After training,compute and print the test error: 

    test_err = 0 

    test_acc = 0 

    test_batches = 0 

    for batch in iterate_minibatches(X_test, y_test, 50, shuf-

fle=False): 

        inputs, targets = batch 

        err, acc = val_fn(inputs, targets) 

        test_err += err 

        test_acc += acc 

        test_batches += 1 

    print("Final results:") 

    print("  test loss:\t\t\t{:.6f}".format(test_err / 

test_batches)) 

    print("  test accuracy:\t\t{:.2f} %".format( 
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        test_acc / test_batches * 100)) 

    return epoch_cost_train, epoch_cost_val 

 

# This function was copied verbatim from the Lasagne tutorial 

at 

#http://lasagne.readthedocs.org/en/latest/user/tuto-

rial.html 

def iterate_minibatches (inputs, targets, batchsize, shuf-

fle=False): 

    assert len(inputs) == len(targets) 

    if shuffle: 

        indices = np. arange(len(inputs)) 

        np. random. shuffle(indices) 

    for start_idx in range (0, len(inputs) - batchsize + 1, batch-

size): 

        if shuffle: 

            excerpt = indices[start_idx:start_idx + batchsize] 

        else: 

            excerpt = slice(start_idx, start_idx + batchsize) 

        yield inputs[excerpt], targets[excerpt] 

 

 

epoch_cost_train, epoch_cost_val = lasagne_mlp(X_train, 

y_train, X_val, y_val, X_test, 

 y_test, hidden_units=800, num_epochs=500, l2_param=0, 

use_dropout=True) 

 

plt.style.use('bmh') 

plt. plot(range(len(epoch_cost_train)), epoch_cost_train, 

label="Training error") 
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plt. plot(range(len(epoch_cost_val)), epoch_cost_val, la-

bel="Validation error") 

 

plt. xlabel ("Num epochs") 

plt. ylabel("Cost") 

4.Multilayer Perceptron with Tensor Flow 

###########################################################

#################### 

# Training 

# Hyper-parameters. These were set by cross-validation, 

# using a GridSearchCV.Not performing cross-validation to 
save time. 

# More components tend to give better prediction performance, 

but larger fitting time 

# Training RBM-Logistic Pipeline 

# Training Logistic regression 

 

import tensorflow as tf 

import numpy as np 

 

# This function was copied verbatim from the Tensor Flow 

tutorial at 

# https://www.tensorflow.org/versions/master/tutorials/in-

dex.html 

def dense_to_one_hot (labels_dense, num_classes=10): 

    """Convert class labels from scalars to one-hot vec-

tors.""" 

    num_labels = labels_dense.shape[0] 

    index_offset = np. arange(num_labels) * num_classes 

    labels_one_hot = np. zeros ((num_labels, num_classes)) 
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    labels_one_hot. flat [index_offset + labels_dense. ravel 

()] = 1 

    return labels_one_hot 

 

# Adapted from the Tensor Flow tutorial at 

# https://www.tensorflow.org/versions/master/tutorials/in-

dex.html 

class DataSet(object): 

    def __init__ (self, images, labels): 

        assert images. shape [0] == labels. shape [0], ( 

            "images. shape: %s labels. shape: %s" % (images. 

shape, 

                                                   labels. 

shape)) 

        self. _num_examples = images. shape [0] 

        self. _images = images 

        self. _labels = labels 

        self. _epochs_completed = 0 

        self. _index_in_epoch = 0 

 

    @property 

    def images(self): 

        return self. _images 

 

    @property 

    def labels(self): 

        return self. _labels 

 

    @property 

    def num_examples(self): 
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        return self._num_examples 

 

    @property 

    def epochs_completed(self): 

        return self. _epochs_completed 

 

    def next batch (self, batch_size): 

        """Return the next `batch_size` examples from this 

data set.""" 

        start = self. _index_in_epoch 

        self. _index_in_epoch += batch_size 

        if self. _index_in_epoch > self. _num_examples: 

            # Finished epoch 

            self. _epochs_completed += 1 

            # Shuffle the data 

            perm = np. arange (self. _num_examples) 

            np. random. shuffle(perm) 

            self. _images = self. _images[perm] 

            self. _labels = self. _labels[perm] 

            # Start next epoch 

            start = 0 

            self._index_in_epoch = batch_size 

            assert batch_size <= self._num_examples 

        end = self._index_in_epoch 

        return self._images[start:end], self._la-

bels[start:end] 

 

 

def read_data_sets(train_images, train_labels, valida-

tion_images, validation_labels, test_images, test_labels): 
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    class DataSets(object): 

        pass 

 

    data_sets = DataSets () 

    data_sets. train = DataSet (train_images, 

dense_to_one_hot(train_labels)) 

    data_sets. validation = DataSet (validation_images, 

dense_to_one_hot(validation_labels)) 

    data_sets.test = DataSet (test_images, 

dense_to_one_hot(test_labels)) 

    return data_sets 

 

# Adapted from the Tensor Flow tutorial at 

#https://www.tensorflow.org/versions/master/tutorials/in-

dex.html 

def tensorFlowBasic (X_train, y_train, X_val, y_val, X_test, 

y_test): 

    sess = tf. InteractiveSession () 

    x = tf. placeholder ("float", shape= [None, 400]) 

    y_ = tf. placeholder ("float", shape= [None, 10]) 

    W = tf. Variable (tf. zeros ([400, 10])) 

    b = tf. Variable (tf. zeros ([10])) 

    sess.run (tf. initialize_all_variables()) 

    y = tf.nn. softmax (tf. matmul (x, W) + b) 

    cross_entropy = -tf. reduce_sum(y_ * tf.log(y)) 

    train_step = tf. train. GradientDescentOptimizer (0.01). 

minimize(cross_entropy) 

    mydata = read_data_sets (X_train, y_train, X_val, y_val, 

X_test, y_test) 

 

    for i in range (1000): 
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        batch = mydata. train. next_batch (50) 

        train_step.run (feed_dict= {x: batch [0], y_: batch 

[1]}) 

 

    correct_prediction = tf. equal (tf. argmax (y, 1), tf. 

argmax (y_, 1)) 

    accuracy = tf. reduce_mean (tf. cast (correct_predic-

tion, "float")) 

    return accuracy. eval (feed_dict= {x: mydata.test. im-

ages, y_: mydata.test. labels}) 

 

def weight_variable(shape): 

    initial = tf. truncated_normal (shape, stddev=0.1) 

    return tf. Variable(initial) 

 

def bias_variable(shape): 

    initial = tf. constant (0.1, shape=shape) 

    return tf. Variable(initial) 

def conv2d(x, W): 

    return tf.nn. conv2d (x, W, strides= [1, 1, 1, 1], pad-

ding='SAME') 

 

def max_pool_2x2(x): 

    return tf.nn.max_pool (x, ksize=[1, 2, 2, 1], 

                          strides= [1, 2, 2, 1], pad-

ding='SAME') 

def tensorFlowCNN (X_train, y_train, X_val, y_val, X_test, 

y_test, add_second_conv_layer=True): 

    x = tf. placeholder ("float", shape= [None, 400]) 

    y_ = tf. placeholder ("float", shape= [None, 10]) 

    sess = tf. InteractiveSession () 
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    # First Convolutional Layer 

    W_conv1 = weight_variable ([5, 5, 1, 32]) 

    b_conv1 = bias_variable ([32]) 

    x_image = tf. reshape (x, [-1, 20, 20, 1]) 

    h_conv1 = tf.nn. relu(conv2d(x_image, W_conv1) + 

b_conv1) 

    h_pool1 = max_pool_2x2(h_conv1) 

    if add_second_conv_layer: 

        # Second Convolutional Layer 

        W_conv2 = weight_variable ([5, 5, 32, 64]) 

        b_conv2 = bias_variable ([64]) 

        h_conv2 = tf.nn. relu (conv2d (h_pool1, W_conv2) + 

b_conv2) 

        h_pool2 = max_pool_2x2(h_conv2) 

 

        # Densely Connected Layer 

        W_fc1 = weight_variable ([5 * 5 * 64, 1024]) 

        b_fc1 = bias_variable ([1024]) 

        h_pool2_flat = tf. reshape (h_pool2, [-1, 5 * 5 * 

64]) 

        h_fc1 = tf.nn. relu (tf. matmul (h_pool2_flat, 

W_fc1) + b_fc1) 

    else: 

        # Densely Connected Layer 

        W_fc1 = weight_variable ([10 * 10 * 32, 1024]) 

        b_fc1 = bias_variable ([1024]) 

        h_pool1_flat = tf. reshape (h_pool1, [-1, 10 * 10 * 

32]) 

        h_fc1 = tf.nn. relu (tf. matmul (h_pool1_flat, 

W_fc1) + b_fc1) 
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        # Dropout 

    keep_prob = tf. placeholder("float") 

    h_fc1_drop = tf.nn. dropout (h_fc1, keep_prob) 

    # Softmax 

    W_fc2 = weight_variable ([1024, 10]) 

    b_fc2 = bias_variable ([10]) 

    y_conv = tf.nn. softmax (tf. matmul (h_fc1_drop, W_fc2) 

+ b_fc2)    

# Train the model 

    mydata = read_data_sets (X_train, y_train, X_val, y_val, 

X_test, y_test) 

    cross_entropy = -tf. reduce_sum (y_ * tf.log(y_conv)) 

    train_step = tf. train. AdamOptimizer(1e-4). mini-

mize(cross_entropy) 

    correct_prediction = tf. equal (tf. argmax (y_conv, 1), 

tf. argmax (y_, 1)) 

    accuracy = tf. reduce_mean (tf. cast (correct_predic-

tion, "float")) 

    sess.run (tf. initialize_all_variables ()) 

    for i in range (1000): 

        batch = mydata. train. next_batch (50) 

        if i % 100 == 0: 

            train accuracy = accuracy. eval (feed_dict= { 

                x: batch [0], y_: batch [1], keep_prob: 

1.0}) 

            print("step %d, training accuracy %g" % (i, 

train_accuracy)) 

        train_step.run (feed_dict= {x: batch [0], y_: batch 

[1], keep_prob: 0.5}) 

 

    return accuracy. eval (feed_dict= { 
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        x: mydata.test. images, y_: mydata.test. labels, 

keep_prob: 1.0}) 

accuracy = tensorFlowCNN (X_train, y_train, X_val, y_val, 

X_test, y_test) 

 

5. Multinomial Naive Bayes 

from sklearn. naive_bayes import MultinomialNB 

import time 

conf_mat = numpy. zeros((len(no_imgs), len(no_imgs))) # In-

itializing the Confusion Matrix 

n_neighbors = 1 # better to have this at the start of the 

code 

# 10-fold Cross Validation 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = MultinomialNB () 

    X_train = X[train_indices] 

    y_train = y[train_indices] 

    X_test = X[test_indices] 

    y_test = y[test_indices] 

 

 

    # Training 

    tic = time. time () 

    clf.fit (X_train, y_train) 

    toc = time. time () 

    print "training time= ", toc - tic # roughly 2.5 secs 
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    # Testing 

y_predict = [] 

tic = time. time () 

y_predict = clf. predict(X_test) # output is labels and not 

indices 

toc = time. time () 

print "testing time = ", toc - tic # roughly 0.3 secs 

6. DBScan Clustering Algorithm 

import time 

from sklearn. cluster import DBSCAN 

from sklearn import metrics 

import numpy as np 

from sklearn. preprocessing import StandardScaler 

conf_mat = numpy. zeros((len(no_imgs), len(no_imgs))) # Ini-

tializing the Confusion Matrix 

# Compute DBSCAN 

db = DBSCAN (eps=0.3, min_samples=10). fit(X) 

core_samples_mask = np. zeros_like (db. labels_, dtype=bool) 

core_samples_mask [db. core_sample_indices_] = True 

labels = db. labels_ 

# Number of clusters in labels, ignoring noise if present. 

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) 

 

print ('Estimated number of clusters: %d' % n_clusters_) 

print ("Homogeneity: %0.3f" % metrics.homogeneity_score(y, 

labels)) 

print ("Completeness: %0.3f" % metrics.completeness_score(y, 

labels)) 

print ("V-measure: %0.3f" % metrics.v_measure_score(y, la-

bels)) 
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print ("Adjusted Rand Index: %0.3f" 

      % metrics. adjusted_rand_score (y, labels)) 

print ("Adjusted Mutual Information: %0.3f" 

      % metrics. adjusted_mutual_info_score (y, labels)) 

print ("Silhouette Coefficient: %0.3f" 

      % metrics. silhouette_score (X, labels)) 

7.Random Forest Classifier 

from sklearn. ensemble import RandomForestClassifier 

import time 

conf_mat = numpy. zeros((len(no_imgs), len(no_imgs)))  # Initial-

izing the Confusion Matrix 

n_neighbors = 1 # better to have this at the start of the code 

# 10-fold Cross Validation 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = RandomForestClassifier(n_estimators=10) 

    X_train = X[train_indices] 

    y_train = y[train_indices] 

    X_test = X[test_indices] 

    y_test = y[test_indices] 

         # Training 

    tic = time. time () 

    clf.fit (X_train, y_train) 

    toc = time. time () 

    print "training time= ", toc - tic # roughly 2.5 secs 

 

# Testing 
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y_predict = [] 

tic = time. time () 

y_predict = clf. predict(X_test) # output is labels and not 

indices 

toc = time. time () 

print "testing time = ", toc - tic # roughly 0.3 secs 

8.MeanShift Clustering 

import numpy as np 

from sklearn. cluster import MeanShift, estimate_bandwidth 

# Compute clustering with MeanShift 

# The following bandwidth can be automatically detected us-

ing 

bandwidth = estimate_bandwidth (X, quantile=0.3) 

ms = MeanShift (bandwidth= bandwidth) 

ms.fit(X) 

labels = ms.labelsy 

cluster_centers = ms. cluster_centersy 

 

labels_unique = np. unique(labels) 

n_clusters_ = len(labels_unique) 

 

print ("number of estimated clusters : %d" % n_clusters_) 

 

9.Kmeans-MiniBatch 

 

from sklearn. cluster import KMeans 

import numpy as np 

import matplotlib. pyplot as plt 

from sklearn. cluster import MiniBatchKMeans, KMeans 
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from sklearn. metrics.pairwise import pairwise_dis-

tances_argmin 

np. random. seed (0) 

batch_size = 45 

centers = [[1, 1], [-1, -1], [1, -1]] 

n_clusters = len(centers) 

k_means = KMeans (init='k-means++', n_clusters=3, n_init=10) 

t0 = time. time () 

k_means.fit(X) 

t_batch = time. time () - t0 

k_means_labels = k_means. labels_ 

k_means_cluster_centers = k_means. cluster_centers_ 

k_means_labels_unique = np. unique(k_means_labels) 

 

###########################################################

################### 

# Compute clustering with MiniBatchKMeans 

 

mbk = MiniBatchKMeans (init='k-means++', n_clusters=3, 

batch_size=batch_size, 

                      n_init=10, max_no_improvement=10, 

verbose=0) 

t0 = time. time () 

mbk.fit(X) 

t_mini_batch = time. time () - t0 

mbk_means_labels = mbk. labels_ 

mbk_means_cluster_centers = mbk. cluster_centers_ 

mbk_means_labels_unique = np. unique(mbk_means_labels) 

###########################################################

################### 
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# Plot result 

fig = plt. figure (figsize= (8, 3)) 

fig. subplots adjust (left=0.02, right=0.98, bottom=0.05, 

top=0.9) 

colors = ['#4EACC5', '#FF9C34', '#4E9A06'] 

# same colors for the same cluster from the 

# MiniBatchKMeans and the KMeans algorithm. Let's pair the 

cluster centers per closest one. 

order = pairwise_distances_argmin (k_means_cluster_centers, 

                                  mbk_means_cluster_cen-

ters) 

# KMeans 

ax = fig.add_subplot (1, 3, 1) 

for k, col in zip(range(n_clusters), colors): 

    my_members = k_means_labels == k 

    cluster_center = k_means_cluster_centers[k] 

    ax. plot (X [my_members, 0], X [my_members, 1], 'w', 

            markerfacecolor=col, marker='.') 

    ax. plot (cluster_center [0], cluster_center [1], 'o', 

markerfacecolor=col, 

            markeredgecolor='k', markersize=6) 

ax.set_title('KMeans') 

ax.set_xticks (()) 

ax.set_yticks (()) 

plt.text(-3.5, 1.8,  'train time: %.2fs\ninertia: %f' % ( 

    t_batch, k_means. inertia_)) 

ax = fig.add_subplot(1, 3, 2) 

for k, col in zip(range(n_clusters), colors): 

    my_members = mbk_means_labels == order[k] 

    cluster_center = mbk_means_cluster_centers[order[k]] 
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    ax. plot (X [my_members, 0], X [my_members, 1], 'w', 

            markerfacecolor=col, marker='.') 

    ax. plot (cluster_center [0], cluster_center [1], 'o', 

markerfacecolor=col, 

            markeredgecolor='k', markersize=6) 

ax.set_title('MiniBatchKMeans') 

ax.set_xticks (()) 

ax.set_yticks (()) 

plt.text (-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % 

         (t_mini_batch, mbk. inertia_)) 

 

# Initialise the different array to all False 

different = (mbk_means_labels == 4) 

ax = fig.add_subplot (1, 3, 3) 

 

for l in range(n_clusters): 

    different += ((k_means_labels == k) != (mbk_means_labels 

== order[k])) 

 

identic = np. logical_not(different) 

ax. plot (X [identic, 0], X [identic, 1], 'w', 

        markerfacecolor='#bbbbbb', marker='.') 

ax. plot (X [different, 0], X [different, 1], 'w', 

        markerfacecolor='m', marker='.') 

ax.set_title('Difference') 

ax.set_xticks (()) 

ax.set_yticks (()) 

 

plt. show () 
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10. Comparison 

from sklearn import cluster, datasets 

from sklearn. neighbors import kneighbors_graph 

from sklearn. preprocessing import StandardScaler 

import time 

 

colors = np. array ([x for x in 

'bgrcmykbgrcmykbgrcmykbgrcmyk']) 

colors = np. hstack([colors] * 20) 

 

clustering_names = [ 

    'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 

    'SpectralClustering', 'Ward', 'AgglomerativeCluster-

ing', 

    'DBSCAN', 'Birch'] 

 

plt. figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) 

plt. subplots_adjust (left=.02, right=.98, bottom=.001, 

top=.96, wspace=.05, 

                    hspace=.01) 

 

plot_num = 1 

 

 

    # normalize dataset for easier parameter selection 

X = StandardScaler (). fit_transform(X) 

 

    # estimate bandwidth for mean shift 

bandwidth = cluster. estimate_bandwidth (X, quantile=0.3) 
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    # connectivity matrix for structured Ward 

connectivity = kneighbors_graph (X, n_neighbors=10, in-

clude_self=False) 

    # make connectivity symmetric 

connectivity = 0.5 * (connectivity + connectivity. T) 

 

    # create clustering estimators 

ms = cluster. MeanShift (bandwidth=bandwidth, bin_seed-

ing=True) 

two_means = cluster. MiniBatchKMeans(n_clusters=2) 

ward = cluster. AgglomerativeClustering (n_clusters=2, link-

age='ward', 

                                           connectiv-

ity=connectivity) 

spectral = cluster. SpectralClustering (n_clusters=2, 

                                          

eigen_solver='arpack', 

                                          affinity="near-

est_neighbors") 

dbscan = cluster. DBSCAN(eps=.2) 

affinity_propagation = cluster. AffinityPropagation (damp-

ing=.9, 

                                                       

preference=-200) 

 

average_linkage = cluster. AgglomerativeClustering ( 

        linkage="average", affinity="cityblock", n_clus-

ters=2, 

        connectivity=connectivity) 

 

birch = cluster. Birch(n_clusters=2) 
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clustering_algorithms = [ 

        two_means, affinity_propagation, ms, spectral, ward, 

average_linkage, 

        dbscan, birch] 

 

for name, algorithm in zip(clustering_names, clustering_al-

gorithms): 

        # predict cluster memberships 

    t0 = time. time () 

    algorithm.fit(X) 

    t1 = time. time () 

    if hasattr (algorithm, 'labels_'): 

        y_pred = algorithm. labels_.astype(np.int) 

    else: 

        y_pred = algorithm. predict(X) 

 

        # plot 

    plt. subplot (4, len(clustering_algorithms), plot_num) 

     

    plt. scatter (X[:, 0], X[:, 1], color=col-

ors[y_pred].tolist(), s=10) 

 

    if hasattr(algorithm, 'cluster_centers_'): 

        centers = algorithm.cluster_centers_ 

        center_colors = colors[:len(centers)] 

        plt.scatter(centers[:, 0], centers[:, 1], s=100, 

c=center_colors) 

    plt.xlim(-2, 2) 

    plt.ylim(-2, 2) 

    plt.xticks(()) 
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    plt.yticks(()) 

    plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), 

                transform=plt.gca().transAxes, size=15, 

                horizontalalignment='right') 

    plot_num += 1 

 

plt.show() 

 

 

    # normalize dataset for easier parameter selection 

11.Affinity Propagation 

from sklearn.cluster import AffinityPropagation 

from sklearn import metrics 

 

###########################################################

################### 

# Generate sample data 

centers = [[1, 1], [-1, -1], [1, -1]] 

 

###########################################################

################### 

# Compute Affinity Propagation 

af = AffinityPropagation(preference=-50).fit(X) 

cluster_centers_indices = af.cluster_centers_indices_ 

labels = af.labels_ 

 

n_clusters_ = n_clusters_ = len(set(labels)) - (1 if -1 in 

labels else 0) 

 

print('Estimated number of clusters: %d' % n_clusters_) 
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print("Homogeneity: %0.3f" % metrics.homogeneity_score(y, 

labels)) 

print("Completeness: %0.3f" % metrics.completeness_score(y, 

labels)) 

print("V-measure: %0.3f" % metrics.v_measure_score(y, la-

bels)) 

print("Adjusted Rand Index: %0.3f" 

      % metrics.adjusted_rand_score(y, labels)) 

print("Adjusted Mutual Information: %0.3f" 

      % metrics.adjusted_mutual_info_score(y, labels)) 

print("Silhouette Coefficient: %0.3f" 

      % metrics.silhouette_score(X, labels, metric='sqeu-

clidean')) 

###########################################################

################### 

# Plot result 

import matplotlib.pyplot as plt 

from itertools import cycle 

 

plt.close('all') 

plt.figure(1) 

plt.clf() 

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') 

 

for k, col in zip(range(n_clusters_), colors): 

    class_members = labels == k 

    cluster_center = X[cluster_centers_indices[k]] 

    plt.plot(X[class_members, 0], X[class_members, 1], col 

+ '.') 

    plt.plot(cluster_center[0], cluster_center[1], 'o', 

markerfacecolor=col, 
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             markeredgecolor='k', markersize=14) 

    for x in X[class_members]: 

        plt.plot([cluster_center[0], x[0]], [cluster_cen-

ter[1], x[1]], col) 

 

plt.title('Estimated number of clusters: %d' % n_clusters_) 

plt.show() 

12.Perceptron 

from sklearn.linear_model import SGDClassifier 

import time 

 

conf_mat = numpy.zeros((len(no_imgs), len(no_imgs)))  # In-

itializing the Confusion Matrix 

 

n_neighbors = 1  # better to have this at the start of the 

code 

 

# 10-fold Cross Validation 

 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = SGDClassifier(loss='perceptron', eta0=1, learn-

ing_rate='constant', penalty=None) 

 

 

    X_train = X[train_indices] 

    y_train = y[train_indices] 

    X_test = X[test_indices] 
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    y_test = y[test_indices] 

 

    # Training 

    tic = time.time() 

    clf.fit(X_train, y_train) 

    toc = time.time() 

    print "training time= ", toc - tic  # roughly 2.5 secs 

 

    # Testing 

y_predict = [] 

tic = time.time() 

y_predict = clf.predict(X_test)  # output is labels and not 

indices 

toc = time.time() 

print "testing time = ", toc - tic  # roughly 0.3 secs 

 

 

 

 

 

 

 

13.Support Vector Machines 

from sklearn import svm 

import numpy 

import time 

conf_mat = numpy.zeros((len(no_imgs), len(no_imgs)))  # In-

itializing the Confusion Matrix 
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n_neighbors = 1  # better to have this at the start of the 

code 

 

# 10-fold Cross Validation 

 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = svm.SVC() 

    X_train = X[train_indices] 

    y_train = y[train_indices] 

    X_test = X[test_indices] 

    y_test = y[test_indices] 

 

    # Training 

    tic = time.time() 

    clf.fit(X_train, y_train) 

    toc = time.time() 

    print "training time= ", toc - tic  # roughly 2.5 secs 

 

 

# Testing 

y_predict = [] 

tic = time.time() 

y_predict = clf.predict(X_test)  # output is labels and not 

indices 

toc = time.time() 

print "testing time = ", toc - tic  # roughly 0.3 secs 
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14.Stochastic Gradient 

from sklearn.linear_model import SGDClassifier 

import time 

conf_mat = numpy.zeros((len(no_imgs), len(no_imgs)))  # In-

itializing the Confusion Matrix 

 

n_neighbors = 1  # better to have this at the start of the 

code 

 

# 10-fold Cross Validation 

 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = SGDClassifier(loss="hinge", penalty="l2") 

          X_train = X[train_indices] 

    y_train = y[train_indices] 

    X_test = X[test_indices] 

    y_test = y[test_indices] 

 

 

    # Training 

    tic = time.time() 

    clf.fit(X_train, y_train) 

    toc = time.time() 

    print "training time= ", toc - tic  # roughly 2.5 secs 
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    # Testing 

y_predict = [] 

tic = time.time() 

y_predict = clf.predict(X_test)  # output is labels and not 

indices 

toc = time.time() 

print "testing time = ", toc - tic  # roughly 0.3 secs 

 

15.Decision Tree Algorithm 

 

from sklearn import tree 

import time 

conf_mat = numpy.zeros((len(no_imgs), len(no_imgs)))  # In-

itializing the Confusion Matrix 

n_neighbors = 1  # better to have this at the start of the 

code 

# 10-fold Cross Validation 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = tree.DecisionTreeClassifier() 

 

 

 X_train = X[train_indices] 

 y_train = y[train_indices] 

    X_test = X[test_indices] 

    y_test = y[test_indices] 

 

# Training 
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tic = time.time() 

clf.fit(X_train, y_train) 

toc = time.time() 

print "training time= ", toc - tic  # roughly 2.5 secs 

# Testing 

y_predict = [] 

tic = time.time() 

y_predict = clf.predict(X_test)  # output is labels and not 

indices 

toc = time.time() 

print "testing time = ", toc - tic  # roughly 0.3 secs 

 

16.Nearest Centroid Algorithm 

from sklearn.neighbors.nearest_centroid import NearestCen-

troid 

import time 

conf_mat = numpy.zeros((len(no_imgs), len(no_imgs)))  # In-

itializing the Confusion Matrix 

n_neighbors = 1  # better to have this at the start of the 

code 

# 10-fold Cross Validation 

for i in range(kfold): 

    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

    clf = NearestCentroid() 

 

 

    X_train = X[train_indices] 

    y_train = y[train_indices] 
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    X_test = X[test_indices] 

    y_test = y[test_indices] 

 

    # Training 

    tic = time.time() 

    clf.fit(X_train, y_train) 

    toc = time.time() 

    print "training time= ", toc - tic  # roughly 2.5 secs 

 

# Testing 

y_predict = [] 

tic = time.time() 

y_predict = clf.predict(X_test)  # output is labels and not 

indices 

toc = time.time() 

print "testing time = ", toc - tic  # roughly 0.3 secs 

17. RBM Bernoulli Algorithm 

from sklearn.neural_network import BernoulliRBM 

from sklearn.pipeline import Pipeline 

from sklearn import linear_model 

from sklearn.pipeline import Pipeline 

import time 

conf_mat = numpy.zeros((len(no_imgs), len(no_imgs)))  # In-

itializing the Confusion Matrix 

 

n_neighbors = 1 # better to have this at the start of the 

code 

# 10-fold Cross Validation 

 

for i in range(kfold): 
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    train_indices = skfind[i][0] 

    test_indices = skfind[i][1] 

    clf = [] 

     

    logistic = linear_model.LogisticRegression() 

    rbm = BernoulliRBM(random_state=0, verbose=True) 

 

clf = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) 

 

###########################################################

#################### 

# Training 

# Hyper-parameters. These were set by cross-validation, 

# using a GridSearchCV. not performing cross-validation to 

save time. 

rbm.learning_rate = 0.06 

rbm.n_iter = 20 

# More components tend to give better prediction performance, 

but larger fitting time 

rbm.n_components = 100 

 

 

# Training RBM-Logistic Pipeline 

# Training Logistic regression 

X_train = X[train_indices] 

y_train = y[train_indices] 

X_test = X[test_indices] 

y_test = y[test_indices] 

 

# Training 
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tic = time.time() 

clf.fit(X_train, y_train) 

logistic_classifier = linear_model.LogisticRegres-

sion(C=100.0) 

logistic_classifier.fit(X_train, y_train) 

toc = time.time() 

print "training time= ", toc - tic  # roughly 2.5 secs 

# Testing 

y_predict = [] 

y_predict1=[] 

tic = time.time() 

y_predict = clf.predict(X_test) 

y_predict=logistic_classifier.predict(X_test)  # output is 

labels and not indices 

toc = time.time() 

print "testing time = ", toc - tic  # roughly 0.3 secs 

 

18. General print as computed matrix for results 

# Compute confusion matrix 

from sklearn.metrics import confusion_matrix 

cm = [] 

cm = confusion_matrix(y_test, y_predict) 

conf_mat = conf_mat + cm 

 

conf_mat = conf_mat.T  # since rows and  cols are inter-

changed 

avg_acc = numpy.trace(conf_mat) / sum(no_imgs) 

conf_mat_norm = conf_mat / no_imgs  # Normalizing the con-

fusion matrix 
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import matplotlib.pyplot as plt 

plt.imshow(conf_mat_norm, interpolation='nearest') 

plt.title('Confusion matrix') 

plt.colorbar() 

plt.show() 

plt.savefig('confusion_matrix.png') 

 

conf_mat2 = numpy.around(conf_mat_norm,decimals=2) # round-

ing to display in figure 

plt.imshow(conf_mat2,interpolation='nearest') 

for x in xrange(len(list_fams)): 

  for y in xrange(len(list_fams)): 

    plt.annotate(str(conf_mat2[x][y]),xy=(y,x),ha='cen-

ter',va='center') 

plt.xticks(range(len(list_fams)),list_fams,rota-

tion=90,fontsize=11) 

plt.yticks(range(len(list_fams)),list_fams,fontsize=11) 

plt.title('RandomForestClassifier') 

plt.colorbar() 

plt.show() 

plt.savefig('confusion_matrix.png') 
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