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Abstract
The spectral assessment of pasture biomass and 

nutrient status is in  uenced by  oristic composition. 
The accurate estimation of the nutrient status in a 
pasture throughout the growing season is challenging 
and a critical step to establish a site-speci  c manage-
ment strategy for the improvement of productivity 
and pro  tability as well as the mitigation of the envi-
ronmental impact. Remote sensing technologies have 
been widely applied to vegetation surveys because 
they can quickly retrieve the in situ biophysical and 
biochemical information of a  eld. Recent advances 
in sensing technologies, especially in a hyperspectral 
sensor system that has a higher spectral resolution of 
less than 10-nm bandwidth, have significantly im-
proved predictive ability for the estimated biomass 
quantification in comparison with the conventional 
broad-band sensor system. Not only the biomass 
quantification but also other information about the 
pasture, such as forage nutrient content and the flo-
ristic composition, can also be estimated using its 
abundant spectral information, which is difficult to 
achieve on a broad-band sensor system. In this mini-
review, we discuss the use of hyperspectral assess-
ment to estimate the forage parameters of a pasture. 
Recent improvements in the analysis methodology of 
hyperspectral data have been reviewed and include 
(i) a univariate statistical approach based on narrow-
band vegetation indices, (ii) multivariate statistical 
approaches, especially using partial least squares 

(PLS) regression, (iii) waveband selection to enhance 
the predictive performance of PLS regression, and 
(iv) the spatial interpolation of predicted values from 
ground-based hyperspectral measurements.

1. Introduction
Grassland ecosystems have spatial and temporal 

dynamics in the biotic factors such as  oristic com-
position, forage nutrients (e.g., protein, minerals and 
energy) and plant productivity (Bailey et al., 1996; 
Vallentine, 2000), and there are interactions between 
the dynamics and the grazing distribution of animals 
during the growing seasons with abiotic factors such 
as the slope, elevation, aspect (Govender et al., 2007) 
and distance from water sources (Yoshitoshi et al., 
2016). The timely and accurate quanti  cation of the 
biotic factors in a grazed paddock, particularly the 
biophysical and biochemical characteristics of the 
pasture and its spatial distribution are essential to 
facilitate the decision-making process to enable ad-
equate agronomic operation, such as controlling the 
grazing intensity, adjusting the fertilizer level and 
determining the best time for mowing, throughout the 
growing season. 

Remote sensing techniques provide such information 
on vegetation in rangeland and agricultural crop 
fields in a non-destructive, quick, and inexpensive 
manner compared to the conventional destructive 
method such as wet chemistry; they also require 
less labor and have reduced environmental impacts. 
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Fig.1. (a) Hyperspectral re  ectance of healthy mixed-sown pasture (average canopy re  ectance of grazing pas-
ture measured by an ASD FieldSpec Pro radiometer) in the optical region ranging from visible (blue (B), 
green (G) and red (R)) and near-infrared (NIR) to short-wave infrared (SWIR) and the spectral response 
with the Landsat 8 band-setting as an example of broad-band remote sensing. 

Remote sensing techniques using the optical region 
that includes the visible and near-infrared (NIR) 
portions of the electromagnetic spectrum have 
been successfully used to quantify the biophysical 
characteristics of vegetation based on their optical 
properties in past decades (Gates et al., 1965; Allen 
et al., 1969; Tucker, 1980; Gamon et al., 1995; 
Cohen et al., 2003). However, these conventional 
broadband remote sensing approaches for estimating 
the vegetation biochemical characteristics within 
the optical region have a limitation due to their 
lower spectral resolution, which leads to the loss of 
critical vegetation information associated with the 
absorption features located in speci  c narrow bands 
(Curran, 1989; Blackburn, 1998; Thenkabail et al., 
2000). Recent advances in sensing technologies 
in the spectral resolution, from multispectral 
sensors to hyperspectral sensors with less than 10-
nm spectral resolution (Asner, 1998), enable the 
detection of narrow absorption features (Fig. 1), and 
allow more accurate quantification of not only the 
biophysical characteristics of the vegetation in the 
pasture but also other information. Recently, it has 
been demonstrated that ground-based hyperspectral 
measurement can estimate the floristic composition 

such as legume content (Biewer et al., 2009; Sanches, 
2009; Kawamura et al., 2013) and forage nutrients 
of a pasture (Mutanga and Kumar, 2007; Zhao et 
al., 2007; Kawamura et al., 2009; Pullanagari et al., 
2012,) with improved temporal frequency and lower 
cost than spaceborne or airborne instruments, and 
such enhanced performance highlights the spatial 
variability of the pasture characteristics within a  eld 
as well as differences between fields (Kawamura et 
al., 2008a, Lim et al., 2015b).

This review describes the necessity and potential 
of field hyperspectral assessment for the estimation 
of forage nutrient status and legume content in the 
pasture. Recent improvements in the analytical meth-
odology of hyperspectral data are described based on 
statistical approaches, and widely applied methods 
are described. For this aim, (i) a univariate statistical 
approach using narrow band vegetation indices, (ii) 
multivariate statistical approaches, especially using 
partial least squares (PLS) regression, (iii) waveband 
selection to enhance the predictive performance of 
PLS regression and (iv) the spatial interpolation of 
predicted values from field hyperspectral measure-
ments were described.
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2. Narrow vegetation indices 
One of the most common approaches to estimate 

the vegetation properties from remotely sensed 
data is making an empirical regression model. 
Such a statistical approach involves univariate or 
multivariate regression analysis. In conventional 
broadband remote sensing, vegetation indices (VIs), 
which are computations of the spectral response in 
two or more bands such as simple ratios (SR) and 
the normalized difference vegetation index (NDVI) 
(Rouse et al., 1974), have been widely applied to  nd 
relations between the characteristics of vegetation 
via univariate regression analysis. To date, various 
VIs have been developed and successfully used 
to quantify plant biophysical properties (Rouse et 
al., 1974; Huete, 1988; Roujean and Breon, 1995; 
Chen, 1996; Gitelson et al., 1996). Most of these 
conventional VIs are based on the contrast between 
two or more spectral bands. For example, NDVI, 
one of the most widely used VIs, defined as (RNIR-
Rred) / (RNIR+Rred), uses low reflectance in the red 
band related to chlorophyll absorption and high 
reflectance in the NIR due to multiple scattering 
effects to predict the greenness of vegetation (Rouse 
et al., 1974). However, NDVI approaches generally 
saturate asymptotically under conditions of moderate 
to high biomass (Gitelson, 2004, Lim et al., 2015a) 
due to decreasing sensitivity at the NIR band, which 
faces difficulty related to the distinguishability of 
the temporal and spatial variabilities of the pasture 
characteristics in the different growing stages. 

Considerable efforts have been expanded to 
find new combinations of narrow bands of NDVI 
(Mutanga and Skidmore, 2004b; Cho et al., 2007; 
Kawamura et al., 2011) and SR (Fava et al., 2009) 
derived data from hyperspectral measurements. These 

new combinations of VIs have exhibited improved 
predictive ability for quantifying biophysical and 
biochemical variables than the conventional red-NIR 
band combination in the grassland environment. It 
has been reported that the critical waveband com-
binations vary with the parameters (Mutanga and 
Skidmore, 2004b; Cho et al., 2007; Kawamura et al., 
2011; Lim et al., 2012) and growth stage (Fava et 
al., 2009) ,which suggests the potentials to develop 
parameter specific indices (Gamon et al., 1992). 
For instance, an experiment conducted on a sheep-
grazed pasture exhibiting various levels of fertility 
(Betteridge et al., 2010) (n = 25) using the narrow-
band normalized difference spectral index (NDSI), 
based on the traditional equation of NDVI de  ned as 
(RBand1–RBand2) / (RBand1+RBand2), demonstrated much 
better performance in estimating the herbage biomass 
(R2 = 0.42 to 0.83) and the concentrations (% of dry 
matter [DM]) of nitrogen (N) (R2 = 0.46 to 0.73) and 
phosphorus (P) (R2 = 0.11 to 0.86) than the standard 
NDVI as measured by the coefficient of determina-
tion (R2) values using hyperspectral measurements 
ranging from 400 to 2500 nm. The wavelength re-
gions that were regarded as critical, showing higher 
R2 values, for estimating the pasture properties were 
different in each parameter (Fig. 2), and this showed 
better predictive accuracy than the red-NIR combina-
tion which is generally employed in broad-band VIs.

3. Multivariate statistical approach - partial 
least squares (PLS) analysis

Multivariate statistical approaches have been 
proposed to utilize high spectral dimensionality such 
as multiple linear regression (MLR) (Curran, 1989; 
Kokaly and Clark, 1999; Zhao et al., 2007), principal  
component regression (PCR)  (Peñuelas et al., 

Fig.2.  Narrow band normalized-difference spectral index (NDSI) and critical wavelength region to estimate 
(a) herbage biomass and concentrations of (b) nitrogen and (c) phosphorous of a sheep-grazed paddock 
(n = 25). 
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1993),partial least squares (PLS) regression (Geladi 
and Kowalski, 1986; Hansen and Schjoerring, 
2003), support vector machines (SVMs) (Vapnik, 
2013), and neural networks (Mutanga and Skidmore, 
2004a) using the original hyperspectral response or 
transformations of the spectra such as  rst derivative 
reflectance (FDR) (Dawson and Curran, 1998, 
Kawamura et al., 2010) and continuum removed 
absorption features (CRDR) (Mutanga et al., 2004). 
These approaches have demonstrated their potential 
for vegetation parameter estimation. PLS regression 
is the most widely used bi-linear method and is able 
to include all available waveband information in 
the model (Wold et al., 2001) due to its superiority 
for multi-collinear data processing. PLS regression 
is a fundamental method that has long been used 
in laboratory near-infrared spectroscopy (NIRS) 
calibration and has been increasingly used in -  eld 
assessment of forage quantity and quality parameters 
such as crude protein (CP = N×6.24), metabolic 
energy, acid detergent  ber (ADF) and reported good 
performance (Schut et al., 2005; Schut et al., 2006; 
Zhao et al., 2007; Biewer et al., 2009b; Pullanagari et 
al., 2012).

3.1 Wavebands selection to improve the predic-
tive ability of the PLS model

The complete canopy spectra of the in situ veg-
etation contains redundant information such as the 
mechanical noise, soil background effects and water 
absorption in the atmosphere (Gates et al., 1965; 
Woolley, 1971; Vanderbilt et al., 1985). Moreover, 
some researchers have reported that no significant 
improvement in the vegetation parameter estima-
tions was discovered in a comparative study with 
PLS using the full spectrum (FS-PLS) between the 
optimized narrow-band VIs for rice (Nguyen and 
Lee, 2006; Inoue et al., 2008) and wheat (Hansen 
and Schjoerring, 2003). Recently, developing a PLS 
model with wavelength region selection has been 
regarded as a promising way to improve the predic-
tion power of the model (Darvishzadeha et al., 2008). 
To date, various approaches have been developed to 
eliminate useless wavebands or to select informative 
wavebands, such as moving-window PLS (MW-PLS) 
(Jiang et al., 2002), iterative stepwise elimination 
PLS (ISE-PLS), uninformative variable elimination 
PLS (UVE-PLS) (Centner et al., 1996), and genetic 
algorithm PLS (GA-PLS) (Leardi et al., 1992). 

There was significant improvement of the PLS 
model with spectral subset selection to estimate the 
pasture nutritional quality as well as biomass (e.g., 
Fig. 3). The concentrations of the macronutrients 
(e.g., phosphorus, potassium, calcium and magne-
sium) which are mainly responsible for the plant de-
velopment and determine the forage nutritional qual-
ity (Schmidtlein and Sassin, 2004; Darvishzadeha 
et al., 2008; Kawamura et al., 2008b; Kawamura et 
al., 2010),  ber (Kawamura et al., 2010) and legume 
content (Kawamura et al., 2013) can be estimated 
using the in situ hyperspectral spectra of the pasture. 
Kawamura et al. (2013) reported that only less than 
10% of the wavebands remain from the complete 
canopy re  ectance data (400–2350 nm) to discrimi-
nate legumes, and less than 20% of wavebands are 
used for the determining the forage nutritional con-
centration in the experiment conducted on cattle-
grazed pasture of different growth stages. This sug-
gests that the complete spectral information with high 
dimensionality also contains redundant information 
that can be a disturbance or otherwise not contribute 
to the estimation of the pasture characteristics. 

In spite of the agreement and demands to the 
developing the integrated calibration model of field 
hyperspectral measurement for the assessment of 
forage quality and floristic composition of pasture, 
further investigation to clarify the critical wavelength 
region for each forage parameter and application to 
multivariate statistical approaches such as PLS is still 
required. Past studies have been devoted to clarify 
the wavelength regions which are attributed from 
photosynthetic pigment absorption in visible region to 
red-edge such as chlorophyll centered on 430, 460, 520, 
550, 640, 680 and 690 nm (Curran, 1989; Chappelle 
et al., 1992; Thenkabail et al., 2004; Chan and 
Paelinckx, 2008). The red-edge region (Horler et al., 
1983; Peñuelas et al., 1993; Thenkabail et al., 2000; 
le Maire et al., 2008; Chan and Paelinckx, 2008) 
which is strongly associated with protein (N) and 
carotenoids (Car) bands is related to physiological 
status centered on 470 nm (Blackburn, 1998) and 510 
nm (Gitelson et al., 1996). More consideration should 
be demonstrated to determine the wavelength region 
for macronutrients (e.g., phosphorus, potassium, 
calcium and magnesium) known as potentially located 
in short-wave infrared region (Mutanga and Kumar, 
2007; Pimstein et al., 2011; Ramoelo et al., 2011). 
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Fig. 3. Selected wavebands by the best GA-PLS model in 100 runs (black line) and the selection frequency of 
each wavelength by 100 runs of GA-PLS (grey solid) to estimate the herbage biomass (BM) and con-
centration of total digestible nutrients (TDN), neutral detergent  ber (NDF), acid detergent  ber (ADF), 
crude protein (CP), phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) using the genetic 
algorithm partial least squares (GA-PLS) and cross-validated R2 in a cool-season Italian ryegrass meadow 
 eld. (Edited from Lim et al)

Field Hyperspectral Pasture Assessment

3.2 Application: Spatial interpolation of field 
hyperspectral assessment 

Lim et al. (2015b) reported that the improved pre-
diction power of the GA-PLS model (Fig. 3) resulted 
in the ef  cient elimination of redundant spectral in-
formation. Using this GA-PLS model, forage param-
ters (e.g., total digestible nutrients (TDN)) were esti-
mated non-destructively based on the in-  eld canopy 
hyperspectral measurement data collected with 10m 
interval (Lim et al., 2015a) and the map generated by 
the spatial interpolation of the estimated parameters. 
From the map, the growth development and nutritive 
status of the grass can be monitored throughout the 
two consecutive growing seasons. Especially nutri-
tive changes of pasture such as the timing to leach 
the peak of nutritive values and its spatial and tem-
poral distributions in the Italian ryegrass field have 
been distinguished within  led inherently as well as 
between fields and seasons (Fig. 4) under different 
fertilization controls (Lim et al., 2015a). The results 
suggest the possibility of ‘real-time’ monitoring of 
the pasture, especially forage nutritive values which 
is invisible, troughout a growing season without de-
structive manners. Such information may contribute 
to determining the timing for maintaining the fertil-

ity level or cutting with fine-scale to produce high-
quality forage during the growing season in real time.

4. Potential of Hyperspectral Assessment for 
Legume Content and Forage Nutrient Status in 
Pasture

Field hyperspectral assessment has enabled sig-
ni  cant advances for determining the forage nutrient 
concentration and discriminating the  oristic compo-
sition (e.g., legume) of a pasture as well as biomass 
refining informative wavelength region approaches 
with narrow-band hyperspectral VIs and multivariate 
statistical approaches (e.g., PLS) quickly and non-
destructively. However, limited studies have been 
performed to determine the critical wavelength re-
gion to estimate the pasture characteristics, especially 
the concentrations of forage nutrients (e.g., P, K, 
calcium and energy), and legumes and the results are 
time- and site-speci  c, except for biomass and nitro-
gen which are known to be strongly associated with 
chlorophyll content. More efforts should be made to 
define the waveband and its integral application on 
various grassland environments. 
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