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Fig. 1. Oceanographic  stations and station groupings in  the western Arctic  Ocean. 



THE CONTRIBUTION OF BERING SEA WATER 
TO  THE ARCTIC OCEAN* 

L. K. Coachman and C. A. Barnes? 

W ATER from the Bering  Sea flows north  through  the  narrow (74 km.) 
and shallow  (45 metres)  Bering  Strait into the Arctic Ocean. The 

earliest measurements of this flow were  made in the summers of 1932,  1933 
(Ratmanov 1937) and 1934 (Barnes and Thompson  1938) and  were  later 
extended to include the  winter season by Maksimov  (1945). Measurements 
in recent years (Bloom  1956, Fleming 1959)  confirm the general pattern 
of  flow through  Bering  Strait established by the  early workers. 

According to these measurements, the  transport of Bering  Sea  water 
to the  north is about 1.4 million  cubic metres per second in  summer,  and 
about one-fourth to one-third of this in  winter.  Thus  the yearly average 
input to the  Polar Basin may  be estimated at 1 x loo m.3/sec., which is in 
agreement  with  a recent Russian estimate of 37,500 km.3/year (Treshnikov 
1959a). This amount of water  is  ten times that introduced annually into 
the Arctic Ocean  by  all  large  Siberian  rivers  (Antonev 1957, Treshnikov 
1959a). If this water  entered  the Arctic Ocean in  a  layer 100 metres thick 
without mixing, it would  occupy a  strip 100 miles wide  from the Chukchi 
Sea to the North Pole. 

What  happens to this water in the  Polar Basin? The Russians have 
stated  that Pacific water may be traced to  the  North Pole, but no sub- 
stantiating evidence has been offered (Treshnikov 1959b). In  what  manner 
does the Bering  Sea water  enter  the Arctic Ocean and how may it  be 
traced? What role does it play in modifying the surface water, deeper 
water,  and ice cover? 

We have  examined about 200 deep-water (off-shelf) oceanographic 
stations located in  the western part of the Arctic Ocean (Fig. 1 and Table 
1). For the purposes of this study  the  western Arctic Ocean is  taken  to 
comprise the two basins, Canadian  and  central  (LaFond 1960), farthest 
removed from the Atlantic. This area is bounded  by the Lomonosov  Ridge, 

* Contribution  Number 249 from the Department of Oceanography,  University of 
Washington.  This study was  supported  by a grant from the Arctic Institute of North 
America. 

+ Department of Oceanography,  University of Washington. 
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the Canadian Arctic Archipelago, Alaska, and  Siberia.  There  is  a con- 
centration of stations in  the  area immediately north of Alaska because of 
extensive sampling from icebreakers. The rest of the stations were oc- 
cupied from drifting ice and lie primarily around the  perimeter of the 
Beaufort Sea. There  is  a paucity of observations from the  interior of the 
Beaufort Sea  and  from the sector north of Siberia; only stations made  from 
aircraft  are available in these areas: the  “Ski  Jump” stations in  the  interior 
of the Beaufort Sea,  and those made by the 1941 Russian expedition to 
the “pole of inaccessibility’’ north of Siberia. 

Even  though these data cover many years and all seasons of the  year, 
there is a  remarkable  regularity in the vertical distribution of temperature 
and salinity. [It should be noted that  at  the  rather uniformly low 
temperatures of the  water  in  the Arctic Ocean the distribution of density 
so closely parallels that of salinity, that  the  latter can normally be  used 
as  an index of the mass distribution.] The variations that  are observed 
from station to station  apparently  depend to a  greater degree on  geographic 
location within the basin than on secular variations. This implies that  the 
Arctic Ocean is dynamically in  a steady state and that  the observed 
distribution of properties is a  result of continuing processes within the 
basin. 

Table 1. Deep-water  oceanographic stations used in this analysis. 

Number of 
Station or vessel  stations  Source 

Fram (1894) 
North  Pole-1  (1938) 

Burton Island (1950) 
North  Pole-2  (1950-1) 

Burton Island (1951) 
Ski  Jump  (1952-3) 

North  Pole-3  (1954) 

SSSR-N-169  (1941) 

T-3 (1952-5) 

Ice  Skate  Alpha  (1957-8) 
Ice Skate Bravo  (1957-8) 
Ice Skate Alpha  (1958) 
Ice Skate Bravo  (1958) 
Ice Skate Alpha-2  (1959) 
T-3 (1959) 
T-3 (1959-60) 

1 

9 
1 

16 
35 
45 

11 
8 

2 

8 
6 

29 
21 
23 
7 
8 

Nansen  1902 
Shirshov  1944 

Somov  1954-55 
U.S.N.H.O. 1954 
U.S.N.H.O.  1954 

A.N.-1.1.  1946 

Worthington 1953 
Worthington 1959 
Treshnikov  and 

Farlow  1958 
Farlow  1958 
Endish 

Tolstikov 1956 

Collin  1959 
Gast 1960 
Kusunoki  1959 
Muguruma  1960 

Fig. 2 presents curves of temperature  and salinity to show the vertical 
distribution of these properties at various localities in  the  Polar Basin. In 
general, the Arctic Basin contains three  water masses: 

(1) The surface layer (Arctic Water)  has varying characteristics, but 
is generally cold (at or near  the freezing point) ; it is relatively 
dilute  at  the surface but below about 50 metres  the salinity 
increases sharply with depth. 
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Fig. 2. Vertical distribution of temperature and salinity for four stations. 

(2) The layer immediately below  the Arctic  Water,  from  about 150- 
250 metres down to 900 metres,  has temperatures above 0°C. and 
quite uniform salinity (34.5-35.0 o / o o ) .  This  water is undoubtedly 
of Atlantic origin (Nansen 1902,  Timofeyev  1957a, 1958). 
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(3)  Below this  intermediate  water  layer lies bottom water  with 
temperatures below 0°C. and  with  extremely uniform salinities 
between 34.93 and 34.99 o/oo. This water is also of Atlantic origin, 
but apparently is formed only during  winter  and only in limited 
geographic areas  in  the Norwegian Sea  (Sverdrup 1956,  Timofeyev 
1957b,  Metcalf  1960). 

In Fig. 2, two stations are from the  eastern basin (Fram, Sta. 19 and 
North Pole-1, Sta.  12), and  two  from the western basin (Alpha-2, Sta. 1 
and  Ice Skate Bravo, Sta. 14). Even though the vertical distribution of 
temperature  and salinity is generally similar throughout  the  Polar Basin, 
there is one notable difference between the two basins in  the vertical 
temperature  structure of the  surface  layer.  The  water  in  the  western 
basin has a subsurface  temperature maximum at 75-100 metres  depth. 
This maximum may  be strongly developed, with  temperatures 0.5" to 1.O"C. 
higher than  the water immediately above or below it (Alpha-2, Sta. l ) ,  
whereas in other  areas it may  be only barely discernible (Ice Skate  Bravo, 
Sta. 14). This shallow temperature maximum was found in  all seasons and 
years  represented in  the  data from  the  western basin; there is, however, 
no  evidence of its presence in  the eastern basin, so apparently  the  degree 
to which it is developed depends on the locality. 

In order  to show that this shallow temperature maximum is indeed 
the effect of Bering Sea  water,  we  must first discuss the circulation of 
Arctic  Water in  the western basin. The extensive current  and ice-drift 
measurements made from the Russian drifting  station  North Pole-2  show 
that for  the major part of the  drift  the ice and  the  water at 10 metres 
moved in a similar direction and  with similar velocities. Hence the move- 
ments of the  upper  layers of water  may  be  inferred  from  the movement 
of the  numerous Russian and American drifting ice stations and of vessels 
such as  the Fram (Fig. 3). 

The  drift of the ice  island  T-3, which has a deep draft (40 to 50 m. 
in contrast to 2 to 3 m. for ice  floe stations), might be more nearly indica- 
tive of the circulation of a thicker  layer of water because it is likely to 
be less  influenced by direct wind stress. However, the  drift of T-3 has 
been similar to  that of other  drifting stations in  the same area, from which 
it may be  inferred that  the surface  layers move as a unit. This is confirmed 
by the Russian current measurements previously cited. 

The observed uniformity of temperature  and salinity in time has al- 
lowed us to calculate the dynamic topography of the  western basin (Fig. 4). 
The calculations were based  on the 1200-decibar surface  taken as  the 
reference  surface (assumed level of no motion), and were not carried to 
the  sea  surface but  to  the pressure  surface of  25 decibars to avoid any 
seasonal  influence  affecting the  very  surface  layers.  The resulting topog- 
raphy  agrees  very well with the topography estimated by Worthington 
(1959) and  with two topographies calculated by Russian workers  from 
much more nearly synoptic data (Gudkovich 1959). 
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The circulation implied by the dynamic  topography is in excellent 
agreement with the observed drift of ice, both as to direction and velocity. 
The  upper  layers  circulate anti-cyclonically around  the Beaufort Sea,  with 
velocities of 1-5 cm./sec. around most of the gyral and with rather  greater 
velocities (10 cm./sec.) immediately north of Alaska. Farther to the west 
(north of Siberia) north-flowing water does not necessarily enter  the  gyral 
but flows past the North Pole towards the east Greenland  current. 

Fig. 3. Observed drift of floe  stations  and vessels in the Arctic  Ocean. 
(Source: U. S. Navy Hydrographic  Office. Publ. No. 705,1958; Table 1.) 

To examine the distribution and persistence of the shallow temperature 
maximum some of the  data  have been grouped, rather  arbitrarily, as groups 
lettered A-K (Fig. 5 ) .  These groupings run clockwise in  the Beaufort Sea, 
in keeping with  the circulation of the Arctic Water (Fig. 1). An  attempt 
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has  been made to include in each group data from  more  than  one year. 
Fig. 5 discloses the following: 

W E S T E R N   A R C T I C   O C E A N  
DYNAMIC HEIGHT ANOMALIES 

25 over 1200 Decibarr 

Contour Interval 0.05 Dynamic  Metre -L Velocity in  Cm./Sec. 
2 

Depth Contours-Fathoms (1 Fathom = 1.83 Metres) I 
1 TO" 0 190 I 300 : 5y0 Kilometres 

Fig. 4. Dynamic  topography of the western  Arctic  Ocean. 

(1) The shallow temperature  maximum  must be considered a persist- 
ent phenomenon because the curves are  quite similar within each 
group  even  though  the stations were occupied in different years 
and seasons. 
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(2) The shallow temperature  maximum is best developed due  north 
of the Chukchi  Sea,  and the difference between the maximum  and 
ambient  temperature decreases as  the  water  travels  around  the 
Beaufort Sea gyral. The  temperature  maximum may be observed 
near  the  North Pole, as evidenced by the atypical station in G 
(the station in Fig. 1 located closest  to the North  Pole).  It is 
present to  some extent over the  interior of the Beaufort Sea,  and 
it occasionally may occur in  an isolated locality north of Alaska 
(the atypical station in K). 

(3) Below the maximum there is a  temperature minimum at about 
150 metres  that is just  as persistent as the maximum,  with values 
from -1.4 to -1.5"C., even  though the  temperatures  above  and 
below are higher. Note that these temperatures  are 0.2" to 0.3"C. 
above freezing. 

It may  be concluded that some continuing supply of relatively warm 
water is required to maintain the shallow temperature  maximum.  Such 
water  either may acquire  its characteristics, that is  its  temperature  and 
salinity, locally or may acquire  these  at some distance and  be advected into 
this part of the Arctic Ocean. The possibility of local origin is ruled out 
for the following reasons: 

(a)  The freezing of ice is the local  process which would increase the 
density of the  water to the point where  it could sink to the 
required level. However,  when  this is due  to freezing the tem- 
perature of the  water leaving the surface is that of freezing for 
its salinity, whereas the  water of the shallow temperature  maxi- 
mum  is well above  its freezing point. 

(b)  Heat  might  be supplied by radiation to raise the  temperature 
above freezing, but  the surface waters heated by radiation are of 
too  low a density to sink even to 50 metres. This also rules  out 
the possibility of the  temperature  maximum being formed  and 
maintained by residual summer  heat introduced in  the relatively 
low-salinity, ice-free peripheral  areas  in  the Arctic, e.g., north 
of Alaska, as suggested by Worthington (1953, 1959). 

Thus, the shallow temperature  maximum observed in  the  western 
Arctic Basin appears to be maintained by advection from some external 
source. The phenomenon is best developed in the  area  due  north of the 
Chukchi  Sea,  and it is highly probable that  the  large amounts of water 
flowing north  through  Bering  Strait into the Chukchi  Sea  contribute to 
some extent to the formation and  maintenance of the  temperature maxi- 
mum. So long as  it is  present,  then,  the shallow temperature  maximum 
would indicate the penetration of Bering Sea  water  into  the Arctic Ocean. 
This view is substantiated  by  water-mass analysis. 

Fig. 6 presents T-S diagrams in which  a single observation of tem- 
perature  and salinity is plotted as  a point, and points of equal density 
show as curved lines labelled ut. The middle part of the diagram shows 
data from stations comprising groups A-D, the groups located due  north 
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Fig. 5. Vertical distribution of temperature at selected groups of stations. 

of the  Chukchi  Sea  where the shallow temperature maximum was best 
developed. Note that  the shallow temperature maximum appears  as a 
“hump” in  the salinity range 31.6-32.4 o/oo. An envelope drawn  around 
these values has been transferred to the  upper  and lower parts of the figure 
so that  the water characteristics may be  directly compared with those of the 
water flowing through  Bering Strait and of the shelf water  that occupies 
large  parts of the  Chukchi and East Siberian seas. 

A number of stations are available from the western  part of the 
Chukchi  Sea from the Maud in 1922 (Sverdrup 1927). Individual observa- 
tions are shown by triangles in Fig. 6. These data  represent  eastern 
Siberian shelf water. Even though  taken  in  summer, the  surface layers 
were cool because in 1922 the ice pack lay well to the south. Below the 
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(See Fig. 1 for locations of station groupings, Table 1 for sources of data.) 

surface,  in  the level from 10 metres  down to 30-60 metres,  there  was  a 
fairly thick layer of intermediate shelf water with a salinity (and hence 
density) range  the same as that of the  water of the shallow temperature 
maximum.  The  temperature of this water was  close to freezing, "1.5" 
to -1.6"C.  According to Sverdrup, this intermediate  water  was encoun- 
tered  at all shelf stations and probably represented the  water  that  during 
the previous winter  had covered the  greater  part of the East Siberian 
and  Chukchi seas. The bottom  shelf water  was of a different character, 
slightly saltier  and  warmer. It should be noted here  that secular dif- 
ferences are not important  in  the use of Maud data, because we are discuss- 
ing rather broad ranges of property;  it is only necessary to assume that 
the processes  involved have not changed  significantly in  the last 40 years. 
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Fig. 6. Temperature-salinity  observations  from  Bering Strait  and eastern Chukchi Sea compared with observations  from the Siberian 
shelf  and  Arctic  Ocean.  Upper - Cedarwood 1949; middle - observations  from  Arctic  Ocean groups A - D from  which the envelope in 
the  upper and  lower  sections is derived; lower - Brown Bear 1959. Solid  circles - observations  from  Bering Strait; open  circles - observa- 

tions  from eastern Chukchi Sea; triangles - observations  from Maud 1922. (See Table 1 for sources.) 
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What are  the characteristics of the  Bering  Sea  water that flows north 
through  Bering Strait? Unfortunately, no concurrent  temperature  and 
salinity data  in  winter  are available from Bering Strait proper,  but  during 
three icebreaker cruises in 1951 and 1955 stations were occupied just 
south of Bering Strait  in  the  northern Bering  Sea (U. S. Navy Hydro- 
graphic Office  1954,  1958). The  data, plotted on the T-S diagrams, show 
that  the  water flowing north  toward  Bering Strait in  winter  may  have a 
broad range of salinity (32.4-34.0 o/oo) but is saltier  than  the  water of 
the shallow temperature maximum. Its salinity range corresponds to  that 
of the  temperature minimum at 150 metres,  and  its  temperature is that 
of freezing for  its salinity. 

The  Bering  Sea  water flowing into  the  Chukchi  Sea in summer is 
much  warmer  and also contains less salt  than  the  winter  water. Numerous 
data are available from a Brown  Bear cruise in August 1959 (Fleming 
1959) and a cruise of the Cedarwood in August 1949 (U. S. Navy  Electronics 
Laboratory 1954). All observations made in Bering Strait during  these 
two cruises are plotted in Fig. 6 and enclosed with a dashed line. At each 
station  the observations were plotted from the bottom up, so that  the 
coldest and most saline values are all included but  warmer and  fresher 
values nearer  the  surface may have been omitted. 

The  water flowing through  Bering Strait in summer is considerably 
warmer  and is somewhat less saline than  in winter. It is significant that 
the  resulting sigma-t (density) of most of this north-flowing water lies 
in  the  range 25.5-26.0, exactly the sigma-t range of the  water of the shallow 
temperature maximum. Mixing of waters in  the ocean may take place 
along  sigma-t surfaces or across  sigma-t surfaces, but on  the basis of 
energy considerations the mixing that takes place is preferentially along 
surfaces of equal sigma-t (Sverdrup et al. 1942). 

This analysis indicates that  the water of the shallow temperature 
maximum originates as  summer Bering Sea  water, which, after flowing 
through  Bering Strait, mixes in  the  Chukchi  Sea mainly along  sigma-t 
surfaces with the  large amounts of intermediate shelf water. As further 
confirmation, observations made by Brown Bear and Cedarwood in  the 
eastern  Chukchi  Sea considerably north of Bering Strait  are also plotted 
in Fig. 6. As  the  water flowing north  through Bering Strait tends to hold 
to  the Alaskan coast, these observations lie in the  path of this flow and it 
is  apparent from the T-S diagrams that most of the mixing is taking place 
in  the range of sigma-t 25.5-26.0. 

Possibly the  water of the  temperature minimum at 150 metres may, 
in  part, originate and be maintained by mixing of appropriate  amounts 
of Bering  Sea  water  with shelf water.  In this case  bottom  shelf water 
would mix with  winter Bering Sea  water,  and  the  resulting  mixture would 
be  denser  and  lie below the  water of the shallow temperature maximum 
in  the Arctic Ocean. The  heat to maintain  the  water of the  temperature 
minimum at 0.2" to 0.3"C. above freezing would  be supplied by the bottom 
shelf water. 
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It is concluded that  Bering Sea water continually flows north  into  the 
Chukchi  Sea  where  it  mixes with Siberian shelf water and then joins the 
Arctic Ocean circulation in  the  area northwest of Point  Barrow. Estimat- 
ing from the characteristics of the summer  water, the  water of the shallow 
temperature  maximum  is comprised of about 10-20 per cent Bering  Sea 
water  and 80-90 per cent intermediate shelf water.  The consequences of 
the  intrusion of this modified Bering Sea  water on the oceanography of 
the Arctic Ocean may  be  summarized  thus: 

(a)  The  intruding  Bering Sea water  in  the Beaufort Sea gyral ef- 
fectively separates deeper Atlantic water  from Arctic Ocean surface water, 
and also limits the  depth to which local surface processes are effective 
in  altering  the properties of the  water column. This separation severely 
limits any influence of Atlantic water  on  the surface water  in this area, 
and it likewise limits the  depth of local vertical convection  associated 
with  the freezing of ice. The deepest convection found as evidenced by 
homogeneous properties is to depths of less than 70 metres. 

(b) The shallow temperature  maximum is an excellent tracer of the 
Bering  Sea  water,  and  makes it possible to estimate the vertical eddy 
coefficients  associated with  its  decay  as  the  water  travels  around  the 
Beaufort Sea gyral. For the grouped  temperature profiles, the value of 
the  temperature  maximum may be considered a  result of the balance of 
horizontal advection by vertical diffusion: 

where  U = average velocity 
8 = temperature 
x = distance along the line of flow 
z = distance in  the vertical 

K, = vertical eddy coefficient 
Using data from drifting-stations where  the ice 

same  water mass, the balance may be simply expressed 
tends to follow the 
by : 

where  t = time. Solutions of these equations for K. lead to values of 
between 0.2 and 1.1 cm.2  sec.-l. 

(c) The inflowing water  from  Bering  Sea will have  very  little 
influence on  ice conditions in  the Arctic Basin. The  winter  water is at  the 
freezing point, the same as the  upper  and  intermediate  water  in  the 
Chukchi Sea. The  summer water loses its  heat  very rapidly through mixing 
with  the cold intermediate shelf water,  and  the density of the  mixture 
is such that  it  enters  the Arctic Ocean at subsurface levels. Thus  the 
influence of Bering  Sea  water on the ice cover will be limited to the  upward 
flux of heat  from the  water of the shallow temperature  maximum to the 
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very surface layers  (upper 50 m.) where  it could  affect the ice. The  maxi- 
mum  upward  heat flux is estimated by using the observed vertical tem- 
perature distribution and the calculated eddy coefficient. Solution of 

1 dQ d e  
A dt dz 
” - - P C,K,- 

where A = area, Q = heat, p = density and C, = specific heat gives a 
maximum value for the  heat flux upward across a 1 cm.2 area  at 50 metres 
depth of 4 x 10“ cals. cm.-2  sec.-l or about 35 cals. per cm.2 per day. This 
calculated upward flux of heat  is considerably less than  the estimated heat 
loss from the surface in these high latitudes,  which  is about 330 cals. per 

per  day gross or 108 cals. per cm.2 per  day net (Sverdrup et  al. 1942, 
p. 99). 
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