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Abstract

The use of computer has been applied to many fields in our daily life including

personal use to a larger scale like industry applications. Furthermore, some specific

tasks are beyond human ability can be achieved. In this way, using computer to

process visual data that may be in form of digital image or video, computer vision

comes to take action and makes the thing possible. Multiple-object tracking is one

of the most important tasks in computer vision and dealing with multiple objects

that present in a scene is the main focus in this study. Together with knowledge

of control, multiple-object tracking can be applied to many applications. Normally,

dealing with multiple objects is nontrivial and requires additional processes comparing

to a situation of single object. Identity assignment is very simple in the scene of a

single object. However, in a scene of multiple objects, the identity assignment may

not be a problem in case of distinguishable objects that may be form manually tagged

or different in appearance of the objects. However, it will be a very challenging task

in the case of indistinguishable objects. Dealing with indistinguishable objects can

fulfill some issues as difficulty of labeling or tagging the objects and requirement of

addition tool to observe the tagged objects.

In the first part of this work, a group of distinguishable objects was studied by

means of the distribution of mobile lake monitoring sensors. Under an assumption

that each sensor has its own identity throughout the experiment, identity assignment

becomes unnecessary. A controller that control the group distribution by using the

centroid and the variance of the group is proposed. The proposed controller con-

siders the existing water flow field and uses it in the calculation process to achieve
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lower energy consumption by the help of the water flow field. With a distribution

method that requires less energy, the sensors can reach their objective with sufficient

amount of energy that would allow a greater overall operating time of the monitoring

system, which would in turn result in higher monitoring system efficiency. Later in

this work, multiple-object tracking of a model organism was focused as a group of

indistinguishable objects. Study of behavior changes in model organism is an impor-

tant part of biologists research. This requires successful tracking of each individual

in a group of the moving animals. But, manually performing tracking analysis is a

laborious work. Though, machine vision is a useful tool for locomotion analysis since

it can provide more precise and time efficient measurements. For analysis of a group

of Drosophila (common fruit fly) as the model organism using machine vision, many

image processing techniques are required in order to obtain good detection result,

which is the first step of the tracking system. The most challenging tasks in tracking

indistinguishable objects is identity assignment between frames since all objects have

the same appearance.

For the tracking step, combining information such as position and heading direc-

tion with assignment algorithms gives a successful result robust to identities swapping.

Unlike other methods, introducing the use of heading direction increases the system

efficiency of dealing with identity loss and flies swapping situations. The system can

also operate with variety of videos with different light intensity condition.
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Chapter 1

Introduction

1.1 Motivation of the Study

Now a day, the use of computer has been applied to many fields in our daily life.

From a small scale like personal use to a larger scale like industry, computer is used

to perform a specific task to make life easier and even used for the task that is beyond

human ability. Using computer to process visual data that may be in form of digital

image or video, computer vision comes to take action and makes the thing possible.

Multiple-object tracking is one of the most important tasks in computer vision and

dealing with multiple objects that present in a scene is the main focus in this study.

Computer vision techniques used in multi-object tracking are simply sequential

uses of single object tracking. In single object tracking, variety of algorithms are

used. Some examples of these algorithms are as follows

1. Pixel-pattern-matching-based algorithms

(a) Lucas-Kanade [7]

(b) ESM (Efficient Second-order Minimization) [8]
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2. Feature-based algorithms

(a) SIFT (Scale Invariant Feature Transform) [9]

(b) HOG (Histograms of Oriented Gradients) [10]

3. Machine learning

(a) Boosting [11]

(b) MIL (Multiple Instance Learning) [12]

(c) TLD (Tracking-Learning-Detection) [13]

(d) Median Flow [14]

(e) KCF (Kernelized Correlation Filters) [15]

In multi-object tracking, human tracking is a very popular topic among researchers

all over the world. Fig. 1.1 shows a human tracking in action with colored-rectangles.

In the figure, three people are tracked separately. Computer vision can distinguish

these people by using features that consists of color information etc. Apart from

human tracking, which many features can be used for the tracking, Drosophila or

common fruit fly has some more difficulty. Fig. 1.2 illustrates an appearance of three

Drosophila in different pose. According to the figure, it is quite difficult to track the

flies in the following aspects

1. they have the same appearance

2. individual fly occupies few pixels that does not have enough features to detect

head direction

3. they may fly (their position and orientation can change suddenly)
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Figure 1.1: Human tracking scenario. Three people are tracked separately with

colored-rectangles.

Figure 1.2: Fly appearance in three different poses. All fly look the same since they

have similar appearance.

In similar appearance object tracking, dealing with multiple objects is nontrivial

and requires additional processes comparing to a situation of single object. Identity

assignment, which is the main part of tracking process, is very simple in the scene of

a single object since there is only one identity. An example of single object tracking
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Figure 1.3: Single object tracking using shape and color data [1]. The identity of the

object can be easily preserved since there is only one object presence in the scene.

using shape and color data is shown in Fig. 1.3. According to the figure, a green

ball is being tracked and encircled by the yellow circle. The red line represents the

trajectory of the tracked ball.

In a scene of multiple objects, the identity assignment may not be a problem

in case of distinguishable objects that may be form manually tagged or different in

appearance of the objects. Fig. 1.4 gives a scene of multiple-object tracking with

distinguishable features. There are two controllers with a illuminating ball at the

end. Each ball has different color that helps identifying whether it is left or right

controller. However, it will be a very challenging task in the case of indistinguishable

objects. Dealing with indistinguishable objects can fulfill some issues as difficulty of

labeling or tagging the objects and requirement of addition tool to observe the tagged

objects.
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Figure 1.4: Multiple-object tracking with distinguishable features [2]. Illuminating

balls at the controllers are tracked with a camera to detect the movement of the

player. Identity of each track traces left and right data separately.

For big objects like robot and human, the objects can be distinguished by attaching

some marks varying in color or pattern. But in tiny object observation, which the

requirement of computer vision is obviously more demanded, it is very difficult to

mark each object. Especially in biological field, even if it is possible to mark, after an

experiment has been done all the samples are normally replaced with new samples. It

would be very time consuming if we have to do the marking every time. Furthermore,

attaching the tiny object with observable marker may affect the movement of the
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object and this will lead to non accuracy observation For biological behavior analysis,

tracking a lot of objects individually is required. Drosophila is a good target to analyze

the behavior differences that come form genetic modification since its manipulation

technique has been well-developed.

Figure 1.5: Distribution concept of floating lake monitoring system consisting of

multiple-object. All objects are distinguishable with ability to gather data around

their position. In this scenario, there are four floating sensor nodes initially deployed

at the same area. The purpose of the operation is to distribute all the sensor nodes

throughout the lake with using control signal from the base station located at the

shore.
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1.2 Objective

In this work, we focus on tracking of multiple-object and its application to fly

behavior analysis. From the perspective of this study, each object in the scene is

affected by the state of other objects in the same scene. In order to achieve the

successful tracking result, various image processing and algorithm techniques are used

in the process. This work especially aims at achieving tracking flies without restriction

of their motion while keeping IDs in cases of crossing, piling up, suddenly backing, and

suddenly flying. The multiple-object tracking are divided into four main chapters.

In chapter 2, a work concerning multiple-object with distinguishable capability is

discussed. The control method used in this chapter is a basic technique of statistical

process of a group consisting of multiple objects. Fig. 1.5 shows the distribution

concept of floating lake monitoring system consisting of multiple-object.

In chapter 3, multiple Drosophila detection and tracking system in frame pair

approach is discussed. This part focuses on a situation of multiple indistinguishable

objects that are in form of Drosophila Melanogaster or a common fruit fly in a closed

arena. Fig. 1.6 shows a scene of multiple Drosophila in a circular closed arena. Flies

are illustrated as black oval shapes. Image processing techniques used in the work

are explained. For the tracking section, position of each fly is used as the attention

control to achieve the corresponding pair of each fly in two consecutive frames. The

result provides useful information of average velocity in specific frame pairs that can

be use in further behavior analysis.

In chapter 4, multiple Drosophila detection and tracking system in multiple con-

secutive frames approach is introduced. This chapter provides a detail of improved

multiple Drosophila tracking program. All the flies are indistinguishable and combi-
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nation of various techniques that are applied to achieve a successful tracking result.

Not only providing a successful result of tracking in two consecutive frames pair, the

program also gives well tracking result of each fly throughout all frames in an input

video.

In chapter 5, behavior analysis of a fruit fly is discussed. The output data from the

tracking program is used with random forest classification to classify the behavior of a

fly in each consecutive frame. In addition, the result of the classification is compared

with manual process done by human to show the ability of the tracking program.

1.3 Contributions of Individual Chapter

1.3.1 Contributions of Chapter 2

In this chapter, the main contribution is the usage of attention control that is in

form of force from water flow field to assist the operation of lake monitoring sensors

group. Using the tracking data obtained from each object together with water flow

information, the group of the monitoring sensor nodes can utilize the water flow to

help preserving the battery power, resulting in longer operation time. The design of

the lake monitoring sensors system will also be introduced. The dynamics model of

each sensor node that is considered in this work will also be discussed.

1.3.2 Contributions of Chapter 3

In this chapter, the system was used for observing locomotion activities such as

linear velocity and absolute angular velocity of Drosophila in [16]. Their work is

a study of functions in sugar receptor neurons between and within taste organs of
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Figure 1.6: A scene of multiple Drosophila in a circular closed arena. This is an

example of indistinguishable multiple-object tracking. Since the size of the fly is

approximately 2 mm, it is very difficult to tag or mark each fly.
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Drosophila. The result from the locomotion activities observation shows the response

of Drosophila to the presence of sugar. By blocking sweet taste receptor neurons, the

velocity of Drosophila will not decrease even if these flies encounter sugar, because

their sugar detection is impaired.

1.3.3 Contributions of Chapter 4

In this chapter, Drosophila tracking software that can successfully track each in-

dividual fly throughout the video is introduced. There are many Drosophila tracking

software available and C-Trax [17] and idTracker [18] are some of the most well-

known tracking programs. These tracking programs require wing clipping before the

experiments to restrict the only walking. In addition, both systems have difficulties

when tracking multiple flies especially for identities swapping. This work provides a

solution to handle identity swapping in crossover and touching scenarios that is an

identity assignment failure in the tracking.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2, a work concerning

multiple-object with distinguishable capability is discussed. In this chapter, the usage

of attention control that is in form of force from water flow field to assist the operation

of lake monitoring sensors group. Simulation result of sensors distribution on the

simulated lake is shown at the end of this chapter. In chapter 3, multiple Drosophila

detection and tracking system in frame pair approach is presented. The results of

posture estimation and tracking in frame pairs are provided followed by multiple

Drosophila detection and tracking system in multiple consecutive frames approach in
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chapter 4. In chapter 5, behavior analysis of fruit fly by the usage of tracked data

and by human are discussed. Lastly, conclusion and future work will be discussed in

chapter 6.
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Chapter 2

Control of distributed sensors

2.1 Introduction

Water is a natural resource that is the most important to humans, animals, and

plants [19]. Water resources are divided into many categories such as river, lake, and

ocean, according to the physical characteristics. These natural resources are being

polluted because of various human activities. From this reason, it makes the demand

of water monitoring system increase for a safer environment [20]. In recent years, there

are many studies on physical quantities of the water resources and many researches

have been done on the measurement of the flow field of water in river, lake, and

ocean, such as [21], [22], [23], [24], [25], [26]. For the water monitoring system, many

aspects can be monitored such as chemical component, pH, local weather condition,

behavior of fish, and invertebrates [27]. Water flow field is one of the most important

information of the water resources for the monitoring system. Water flow field data

is important for studying mechanism and ecosystem of the source. Furthermore, with

flow field data, scientist can predict the flow of contaminant in case of accidental
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leakage of pollution, which is a part of water quality warning system.

The water flow field data can be mainly collected by using

1. Satellite information;

2. High frequency radar;

3. Sensor nodes.

Sequence image from satellite is used in [24] to trace inverted ocean surface flow field.

Surface ocean flow field sensing by using satellite is discussed in [28] and [29]. Using

satellite for tracking other information like ice sheet velocity is done by [30]. Larger

coverage area is an advantage of using satellite to measure the surface flow field. The

work of water flow field measurement using high frequency radar is shown in [21], [22],

and [25]. Ultra high frequency is used by [23] to observe river flow velocity. Using

sensor nodes can measure the water flow field and water temperature directly from

the source. Moreover, the method can perform various kinds of measurement e.g.

oxygen dissolved, fish tracking, and toxic level measurement. The disadvantages of

this method are limitation of battery life and the additional requirement of control

strategy to control the group of mobile sensor nodes. Floating sensor networks is used

by [31] to perform local measurement and to track flow in water systems. Wireless

floating sensor system is used by [32].

In this research, we focus on using mobile multiple sensor nodes to collect data

from a lake. Besides river and ocean, dynamic of lake is smaller comparing with

those two resources. This simplifies the simulation. Since the sensor nodes need to

use energy from the batteries attached with them, limitation of energy for mobile

monitoring unit has been a problem for the monitoring system. Therefore, if the
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energy consumption for the sensor nodes distribution can be reduced, there will be

more energy left in the limited battery that will allow the monitoring system to last

longer, which result in higher monitoring system efficiency. An example of energy

consumption problem is stated in [33]. Each raft has only 5 hours of battery life,

which is not suitable for long-time monitoring system.

Since there exists water flow in the lake, the idea of utilizing the flow to assist

the movement of each sensor node can be the answer to the power consumption

problem. In this research, a water monitoring distribution system is developed under

the following two points: low power consumption of sensors distribution.

Some works involve with controlling a system with a group of agents. [34] addresses

the problem of controlling a group of agents towards a consensus point. A leader-

follower formation control of multiple autonomous mobile robots has been studied

by [35]. [36] focuses on the control problem of multiagent systems under unknown

and persistent disturbances. Although these works have provided the control input

results, but none of them lowers the amount of control input by using help of water

flow field. For the flow field estimation, [37] shows a new developed approach to

reconstruct a 3-dimensional incompressible flow from noisy data in an open domain

using a two-scalar (toroidal and poloidal) spectral representation. Recovering Fluid-

type Motions Using Navier-Stokes Potential Flow is addressed by [38].

The main objectives of this research are to distribute lake monitoring sensors by

using low energy consumption. The distribution is expected to be able to achieve the

desired goal with using help of water flow field for low power consumption.
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2.2 Overview of the lake monitoring sensors sys-

tem

In this section, the overview of the lake monitoring sensors system will be briefly

discussed. Moreover, a concept of the proposed monitoring sensor node will also be

introduced. In water resource monitoring system, there are some examples of cur-

rently used floating sensor node to perform water monitoring task in a river or a lake.

Floating sensor nodes without actuators are shown in Fig. 2.1. These floating sensor

nodes can directly measure water quantities such as water flow velocity, temperature,

and depth. Unfortunately, they cannot perform movement to gather data around a

wider area. The ability to control the floating sensor node is not available for this

kind of floating sensor node. Each sensor node is carried around by the flow of water.

Therefore, the area of interest may not be reached.

Figure 2.1: Non-actuated floating sensor node is used to do the water monitoring

task [3]. The sensor node cannot perform movement by itself, therefore the target

area may not be reached.
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Figure 2.2: Early prototype of an actuated water monitoring sensor node was devel-

oped based on the drifter project of University of California, Berkeley in 2007. At

the bottom of the sensor node, there is a single rotating motor added to it. [4]

Figure 2.3: A movable floating water monitoring sensor node with cylinders 5′′ in di-

ameter and 17′′ tall float (motorized, with their major axis vertical) and communicate

water quality information via cell phone and short-range radio. [5]
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The sensor node that was developed from a non-actuated sensor node toward an

actuated sensor node is shown in Fig. 2.2. A single rotating motor pod is attached

to the bottom hull to make the sensor node possible to move around on the water

surface. Another example of currently used floating sensor node for water monitoring

system is shown in Fig. 2.3.

This floating network project is a project at University of California, Berkeley

joining with the Lawrence Berkeley National Laboratories and the California Depart-

ment of Water Resources, in USA. The design of this floating sensor node and the

sensors contained inside the body are shown in Fig. 2.4.

Figure 2.4: Design of the movable water monitoring sensor node and sensors contained

inside the sensor node [6]. There is extra space for additional sensors depending on

each specific task.

The capabilities of this floating sensor node are as follows
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1. Use GPS to track surface water flow

2. Can move to a desired GPS point at approximately 0.5 m/s speed

3. Can send flow and quality data in real time using GSM mobile network

4. Can communicate with each other over Zigbee wireless radio

5. 72 hour operational lifetime battery

For our lake monitoring sensors system, the system mainly consists of two parts,

a groups of monitoring sensor nodes and a central control unit. The group of sensor

nodes is composed of movable monitoring sensor nodes that can gather monitoring

data, such as water flow field and temperature, on the water surface. The central

control unit is a computational unit located on the shore of the lake. This unit

performs two main tasks, which are data monitoring and computing control input for

each sensor node. It receives data such as sensor node position and flow field from

the group of sensor nodes and calculate the control input signal to control the group.

2.3 Sensor node

A sensor node in this research is considered to be a floating sensor node having

shape of cylinder. This sensor node is composed of a battery, actuators, GPS device,

an inertial measurement unit (IMU), a communication unit, and a micro computer.

All electric devices are supplied the electric power by the battery. The actuators

make the sensor node to be able to move around on the water surface. The GPS

device and the IMU are used to measure the position and the velocity of the sensor

node, respectively. The communication unit performs data transferring between the
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sensor node and the central server via wireless communication. The data transferred

in this process are monitoring data, such as water flow field, position and velocity of

the sensor node, and control data, input signal to drive the sensor node.

Each sensor node is assume to be able to perform movement in 2-dimension, x

and y Cartesian coordinate system, on the surface of water source without need of

turning. This assumption makes the dynamics motion model of each sensor node sim-

ple. Furthermore, the dynamics motion model in x and y direction can be considered

separately. The continuous-time dynamics model of each sensor node is represented

as

ẍ =
1

m
(ux + wx), (2.1)

ÿ =
1

m
(uy + wy), (2.2)

where x and y are the displacement in x and y direction, respectively. The variable

m represents mass of a sensor node. The variable u represents the input force to

drive the sensor node where ux and uy is an input force in x direction and y direction,

respectively. These input forces enable the sensor node to perform movement. The

disturbance force from environment is defined by w where wx and wy represents the

disturbance force that affects the dynamics the sensor node in x direction and y

direction, respectively.

The state space representation of the dynamics motion model of a sensor node is

defined as 

ẋ

ẍ

ẏ

ÿ


=



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0





x

ẋ

y

ẏ


+



0 0

1
m

0

0 0

0 1
m


ux + wx

uy + wy

 . (2.3)
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In this research, mass of every monitoring sensor nodes in the group is assumed

to be the same that is 50 kg in order to avoid complicated calculation. The distur-

bance force affecting the dynamics of each sensor node is considered as drag force.

In fluid dynamics, drag force is a force that acts on a solid object located in fluid

with difference in velocity. The direction of the drag force is in the direction of the

relative velocity between the object and the fluid. Quantities that have effect on the

magnitude of drag force are square of the relative velocity, shape of the object, and

density of the fluid. For simple calculation, the shape of each sensor node is assumed

to be upright cylinder. This makes the cross sectional area of the object to be the

same in every direction in 2-dimensional planes of motion. The equation to calculate

the drag force is as follows

Drag = CdAρ |vfluid − v|2
(vfluid − v)

|vfluid − v|
, (2.4)

where Cd is as drag coefficient. Reference area A is typically defined as the area

of the orthographic projection of the object on a plane perpendicular to the direc-

tion of motion. For non-hollow objects with simple shape, such as a sphere, this

reference area is the same as a cross sectional area of the object. Fluid density

is represented by ρ, which is set to be a constant of 1, 000 kg/m3. The vectors

vfluid = [vx,fluid, vy,fluid]
> ∈ R2 and v = [vx, vy]

> ∈ R2 are the velocities of the fluid

and the velocities of the sensor node, respectively. The velocities of the fluid in x and

y directions and the velocities of the object in x and y directions are vx,fluid, vy,fluid,

vx, and vy, respectively.

The drag coefficient is a quantity that is used to quantify the drag of resistance

of the sensor node in a lake. This quantity depends on a particular surface area. By

assuming the shape of each sensor node to be upright cylinder, which has the same
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cross sectional area perpendicular to the motion in every direction on 2-dimensional

planes, the drag coefficient Cd and the reference area A are constant throughout the

simulation.

To define the drag force in x and y directions, Eq. 2.4 can be separated into two

components in x and y directions as

wx = CdAρ |vfluid − v| (vx,fluid − vx) , (2.5)

wy = CdAρ |vfluid − v| (vy,fluid − vy) , (2.6)

where wx is a drag force acting on the sensor in x direction and wy is a drag force

acting on the sensor in y direction.

2.4 Mathematical Models for Simulation

In this section, mathematical models used in the simulation will be introduced.

These important mathematical models include dynamics model of the whole moni-

toring sensors group and water flow field simulation for simulated lake.

2.4.1 Dynamics model

A group of N lake monitoring sensors moving in 2-dimension in simulated lake

is considered in this part. The continuous-time state space dynamics model of the

group is represented by

ẋ = Ax+B(u+w), (2.7)
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where

A =



D 0 · · · 0

0 D · · · 0

...
...

. . . 0

0 0 0 D


,B =



E 0 · · · 0

0 E · · · 0

...
...

. . . 0

0 0 0 E


,D =

0 1

0 0

 ,E =

 0

1
m

 . (2.8)

The matrix A is 2N × 2N matrix and the matrix B is 2N ×N matrix, where N is

the number of sensor nodes in the group.

Denote that the state vector x = [x1, ẋ1, y1, ẏ1, ..., xN , ẋN , yN , ẏN ]> ∈ R4N . The

input vector u = [ux1, uy1, ..., uxN , uyN ]> ∈ R2N and the disturbance vector w =

[wx1, wy1, ..., wxN , wyN ]> ∈ R2N . The state variables are represented by displacement

xi and velocity ẋi of i-th sensor in x direction. State variables yi and ẏi are the

displacement and velocity of i-th sensor in y direction. The variable u represents the

input force obtained from the central server where uxi and uyi is an input force of i-th

sensor in x direction and y direction, respectively. These input forces drive the sensor

node, making them to perform movement according to the forces. The variable w

represents disturbance force acting on each sensor node from the water flow field in

the lake. The disturbance force of i-th sensor node in x direction and in y direction

is represented by wxi and wyi, respectively.

2.4.2 Water flow field simulation

In order to simulate a flow of water in a lake, understanding of hydrodynamics

is important for the flow field simulation since the distribution of lake monitoring

sensors is involved with the hydrodynamics of surface water flow. In this research,

we consider distributing a group of lake monitoring sensors in a lake that is assumed
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to be rectangle in shape. For water flow field simulation, the flow of water needs to

satisfy the incompressible Navier-Stokes equations, which are a set of equations that

describe the motion of fluid substances. Since the distribution is performed on the

surface of water, which is two dimensions space, the incompressible Navier-Stokes

equations are as follows

∂U

∂t
+
∂P

∂x
= −∂ (U2)

∂x
− ∂ (UV )

∂y
+

1

Re

(
∂2U

∂x2
+
∂2U

∂y2

)
, (2.9)

∂V

∂t
+
∂P

∂y
= −∂ (UV )

∂x
− ∂ (V 2)

∂y
+

1

Re

(
∂2V

∂x2
+
∂2V

∂y2

)
, (2.10)

∂U

∂x
+
∂V

∂y
= 0, (2.11)

where U and V are the flow velocity in x and y Cartesian coordinate directions,

respectively. The pressure is denoted by p. The Reynolds number is represented by

Re. This number tells how much the flow is affected by inertia. In this research, we

assume the Reynolds number to be a constant in order to provide simple calculation.

Eq. 2.9 and Eq. 2.10 are momentum equations that describe the time evolution of

the water flow field (U, V ) under effects of inertial and viscous (friction) forces. The

divergence of the fluid velocity that is equal to zero as seen in Eq. 2.11 implies the

incompressibility of the fluid. The nonlinear terms in the momentum equations are

−∂ (U2)

∂x
− ∂ (UV )

∂y
= −U∂U

∂x
− V ∂U

∂y
, (2.12)

−∂ (UV )

∂x
− ∂ (V 2)

∂y
= −U∂V

∂x
− V ∂V

∂y
, (2.13)

which can be obtained by applying the chain rule together with Eq. 2.11.

The derivation of the Navier-Stokes equations can be found in [39]. A good ex-

ample of solving the incompressible Navier-Stokes equations on rectangular domain

can be found in [40].
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A centered stencil is used to approximate the first order derivative in a grid point

as follows

∂U i,j[k]

∂x
≈ U i+1,j[k]− U i−1,j[k]

2hx
, (2.14)

where U i,j[k] represents the flow velocity at (i, j) discretized space i ∈ {1, 2, ...,m},

j ∈ {1, 2, ..., n}. k denotes the discretized time. The parameter hx is grid point

distance in x direction.

Finite differences is used to approximate the second order derivatives in a grid

point. At an interior point U i,j[k] , we approximate the Laplace operator by

∂2U i,j[k]

∂x2
+
∂2U i,j[k]

∂y2
≈ U i−1,j[k]− 2U i,j[k] + U i+1,j[k]

h2
x

+
U i,j−1[k]− 2U i,j[k] + U i,j+1[k]

h2
y

,

(2.15)

where the parameter hy is grid point distance in y direction. For y direction compo-

nent V and for the Laplacian of the pressure P , the same formula holds.

For the time derivative, the approximation is defined by

∂U i,j[k]

∂t
≈ U i,j[k]− U i,j[k − 1]

∆t
, (2.16)

where ∆t is time difference between kth time step and (k + 1)th time step.

Initial conditions for the water flow field simulation are water flow at the boundary

of the lake and initial water flow field at grid points inside the lake. In our research,

the flow at boundary of the lake is set to be constant throughout the simulation.

The initial water flow field are set to be zero at every point apart from the flow at

boundary of the lake.
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2.5 Proposed Control Law

To perform multi-agent control, a control law is needed to be designed. In this

section, the proposed controller will be introduced. Our proposed controller aims at

distributing the group of lake monitoring sensors by taking control of centroid and

position variance of the group. Beside using position control that controls each sensor

node individually, using centroid and position variance as the control parameters

controls the whole group at once [41]. The centroid means the geometric center of a

two-dimensional region. It is simply the arithmetic mean or average of position. The

centroid can be calculated by using the following equation,

µx(t) =
1

N

N∑
i=1

xi(t), (2.17)

where µx(t) is the centroid of the sensors group at time t in x direction.

The position variance of the sensors group tells how far the group expands from

the centroid. It can be calculated by using the following equation,

V arx(t) =
1

N

N∑
i=1

(xi(t)− µx(t))2 , (2.18)

where V arx(t) is the position variance of the sensors group at time t in x direction.

Notice that the centroid and the position variance of the sensors group can be

considered in x direction and in y direction separately.

In order to derive a controller for the proposed control method, damping effect

from the second-order differential equation of damped harmonic oscillator is used.

The damping effect is an effect that can reduce the amplitude of oscillation in an

oscillatory system. In this way, the effect can be used to minimize error, the difference

between current value and desired value, of the centroid and the position variance.

This means that the current values will gradually approach to the desired values of the
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centroid and the position variance as time approaches to infinity. The second-order

differential equation of damped harmonic oscillator is represented by the following

equation

α̈ + cα̇ + kα = 0, (2.19)

where α is a valuable to be reduced by the damping effect. The constants k and c are

positive constants that affect the system behaviour. These constants can be adjusted

in order to obtain various kinds of damped system such as overdamped, critically

damp, underdamped, and undamped.

In this part the derivation of the proposed controller in x direction will be dis-

cussed. For the proposed controller in y direction, it can be achieved by the same

mean. For the derivation of centroid controller in x direction, the error of the centroid

is represented by

µ̄x(t) = µx(t)− µx,r, (2.20)

where µx,r is the desired centroid in x direction of the system and µx(t) is the x

direction position of the centroid at time t. The term µx(t) can be obtained from

Eq. 2.17.

The first- and second-order time derivative of the centroid error can be shown as

˙̄µx(t) =
1

N

N∑
i=1

ẋi(t), (2.21)

¨̄µx(t) =
1

N

N∑
i=1

ẍi(t). (2.22)

Next, the centroid error is substituted into the second-order differential equation

of damped harmonic oscillator, Eq. 2.19, to make the centroid error obey the damping
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effect. The result of substituting is as follows

1

N

N∑
i=1

ẍi(t) + c1 ˙̄µx(t) + k1 (µx(t)− µr) = 0. (2.23)

Together with the relationship between the acceleration, the input force, and the

disturbance force from water flow field as seen from equation Eq. 2.1 and Eq. 2.2,

Eq. 2.23 becomes

1

N

N∑
i=1

(uxi(t) + wxi(t)) + c1 ˙̄µx(t) + k1 (µx(t)− µr) = 0. (2.24)

By rearranging Eq. 2.24, the centroid controller in x direction can be shown as

N∑
i=1

uxi(t) = −Nmk1 (µx(t)− µr)−Nmc1 ˙̄µx(t)−
N∑
i=1

wxi(t), (2.25)

which is the first controller in the proposed controller.

For the derivation of position variance controller in x direction, the error of the

position variance is defined by

¯V arx(t) = V arx(t)− V arx,r, (2.26)

where V arx,r is the desired position variance in x direction of the system and V arx(t)

is the x direction position variance of the sensors group at time t. The term V arx(t)

can be obtained from Eq. 2.18. The first- and second-order time derivative of the

position variance error are as follows

˙̄V arx(t) =
2

N

N∑
i=1

(xi(t)− µx(t)) (ẋi(t)− µ̇x(t)) , (2.27)

¨̄V arx(t) =
2

N

(
N∑
i=1

(xi(t)− µx(t)) (ẍi(t)− µ̈x(t)) +
N∑
i=1

(ẋi(t)− µ̇x(t))2

)
. (2.28)

For the second-order time derivative term, since the term

N∑
i=1

(xi(t)− µx(t)) µ̈x(t) = 0, (2.29)
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then Eq. 2.28 can be rewritten into

¨̄V arx(t) =
2

N

(
N∑
i=1

(xi(t)− µx(t)) ẍi(t) +
N∑
i=1

(ẋi(t)− µ̇x(t))2

)
. (2.30)

By substituting the position variance error into the second-order differential equa-

tion of damped harmonic oscillator, Eq. 2.19, the result is as follows

2

N

(
N∑
i=1

(xi(t)− µx(t)) ẍi(t) +
N∑
i=1

(ẋi(t)− µ̇x(t))2

)

+ c2
˙̄V arx(t) + k2 (V arx(t)− V arx,r) = 0.

(2.31)

Once again, together with the relationship between the acceleration, the input

force, and the disturbance force from water flow field as seen from Eq. 2.1 and Eq. 2.2,

Eq. 2.31 becomes

2

N

(
N∑
i=1

(xi(t)− µx(t)) (uxi(t) + wxi(t)) +
N∑
i=1

(ẋi(t)− µ̇x(t))2

)

+ c2
˙̄Vx(t) + k2 (Vx(t)− Vx,r) = 0.

(2.32)

By rearranging equation Eq. 2.32, the position variance controller in x direction

can be shown as
N∑
i=1

(xi(t)− µx(t)) (uxi(t) + wxi)

= −N
2
mk2 (Vx(t)− Vx,r)−

N

2
mc2

˙̄Vx(t)−m
N∑
i=1

(ẋi(t)− µ̇x(t))2 ,

(2.33)

which is the second controller in the proposed controller.

Next, the proposed controller will be modified. The modified version of the pro-

posed controller is expected to provide a distribution with low energy consumption.

To achieve the modified proposed controller, an additional quantity delta is intro-

duced. This quantity is considered to be an additional force in the forced damped

harmonic oscillator shown by

α̈ + cα̇ + kα = δ, (2.34)
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under a performance index or cost function of

J = u>Ru+ δ>Qδ, (2.35)

where R and Q are positive-define matrices.

Denote that the vector u = [ux1, uy1, ..., uxN , uyN ]> ∈ R2N and the vector δ =

[δxµ, δxV ar, δyµ, δyV ar]
> ∈ R4.

By adding this additional quantity δ, the proposed controller can be simply written

as



1 0 1 0 · · · 1 0

0 1 0 1 · · · 0 1

x1 − µx 0 x2 − µx 0 · · · xN − µx 0

0 y1 − µy 0 y2 − µy · · · 0 yN − µy





ux1 + wx1

uy1 + wy1

ux2 + wx2

uy2 + wy2

...

uxN + wxN

uyN + wyN



=



−Nmk1,x (µx − µx,r)−Nmc1,x ˙̄µx

−N
2
mk2,x (V arx − V arx,r)− N

2
mc2,x

˙̄V arx −m
∑N

i=1 (ẋi − µ̇x)2

−Nmk1,y (µy − µy,r)−Nmc1,y ˙̄µy

−N
2
mk2,y (V ary − V ary,r)− N

2
mc2,y

˙̄V ary −m
∑N

i=1 (ẏi − µ̇y)2


+



δxµ

δxV ar

δyµ

δyV ar


.

(2.36)

For more simple form, the Eq. 2.36 can be written as

F (u+w) = g + δ. (2.37)

The additional quantity δ can be determined by combining the Eq. 2.37 that

represents the modified proposed controller with the cost function in Eq. 2.35. By
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substituting

u = F †g − F †Fw + F †δ, (2.38)

where F † represents the pseudo-inverse of F , into the cost function in Eq. 2.35, the

cost function becomes

J = (g>F †> −w>F>F †> + δ>F †>)R(F †g − F †Fw + F †δ) + δ>Qδ. (2.39)

Rearranging Eq. 2.39, the result is

J =δ>(F †>RF † +Q)δ + δ>F †>R(F †g − F †Fw)

+ (g>F †> −w>F>F †>)RF †δ

+ (g>F †> −w>F>F †>)RF †(g − Fw),

(2.40)

or it can be simply written as

J = δ>Lδ + δ>M> +Mδ +M(g − Fw), (2.41)

where

L = F †>RF † +Q,

M = (g>F †> −w>F>F †>)RF †.

(2.42)

By adding a term

ML−1M> −ML−1M> = 0, (2.43)

to the Eq. 2.41, the cost function becomes

J = δ>Lδ + δ>M> +Mδ +ML−1M> −ML−1M> +M (g − Fw). (2.44)

Combine the terms involving with the additional quantity δ together, the cost

function becomes as follows

J = (δ> +ML−1)L(δ +L−1M>)−ML−1M> +M(g − Fw). (2.45)
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Notice that the solution of the additional quantity δ that minimizes the term

(δ> +ML−1)L(δ +L−1M>) can be obtained from

δ +L−1M> = 0. (2.46)

Rearranging the equation Eq. 2.46, the equation to determine the value of the

additional quantity δ is as follows

δ = −(F †>RF † +Q)−1((g>F †> −w>F>F †>)RF †)>. (2.47)

2.6 Water Flow Field Simulation Example

According to the incompressible Navier-Stokes equations, the water flow field can

be simulated by the following time update equations

ξIinside [k + 1] = fξ(ξ
Iinside [k], ξIboundary [k]), (2.48)

ξIboundary [k + 1] = ξIboundary [k], (2.49)

where for the elements of the index set I are all possible combination of position (i, j)

in the discretized space, the boundary set Iboundary represents all points (i, j) that are

located on the boundary of the lake. The inside set Iinside represents all points (i, j)

that are located in the lake beside the boundary. The relationships between these

sets are defined by Iinside

⋃
Iboundary = I and Iinside

⋂
Iboundary = ∅. The symbol ξI[k]

is the vector whose elements are represented by flow velocity in x direction ξi,j[k]

and flow velocity in y direction ηi,j[k], where (i, j) ∈ I. Note that for given flow

field information at time k, ξIinside [k] and ξIboundary [k], we can obtain the flow field

information at the next time step, ξIinside [k+ 1] and ξIboundary [k+ 1], by using the time

update function fξ.
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At time step k of solving Navier-Stokes equations, known parameters are the flow

velocity in x direction ξi,j[k] and flow velocity in y direction ηi,j[k], where (i, j) ∈

I. Unknown parameters are p
(i,j)inside
x [k + 1], p

(i,j)inside
y [k + 1], ξ

(i,j)inside
x [k], ξ

(i,j)inside
y [k],

ξ
(i,j)inside
xx [k], ξ

(i,j)inside
yy [k], η

(i,j)inside
x [k], η

(i,j)inside
y [k], η

(i,j)inside
xx [k], and η

(i,j)inside
yy [k], where

(i, j)inside ∈ Iinside. The time update function fξ can be defined by a combination of

the following equations

ξ(i,j)inside [k + 1] = ξ(i,j)inside [k] + ∆t(−p(i,j)inside
x [k + 1]− ξ(i,j)inside [k]ξ(i,j)inside

x [k]

− η(i,j)inside [k]ξ(i,j)inside
y [k] +

1

Re
(ξ(i,j)inside
xx [k] + ξ(i,j)inside

yy [k])),

(2.50)

η(i,j)inside [k + 1] = η(i,j)inside [k] + ∆t(−p(i,j)inside
y [k + 1]− ξ(i,j)inside [k]η(i,j)inside

x [k]

− η(i,j)inside [k]η(i,j)inside
y [k] +

1

Re
(η(i,j)inside
xx [k] + η(i,j)inside

yy [k])).

(2.51)

Notice that the unknowns ξ
(i,j)inside
x [k], ξ

(i,j)inside
y [k], ξ

(i,j)inside
xx [k], ξ

(i,j)inside
yy [k], η

(i,j)inside
x [k],

η
(i,j)inside
y [k], η

(i,j)inside
xx [k], and η

(i,j)inside
yy [k] can be obtained by using the first-order

space derivatives and the second-order space derivatives. For the unknown terms

p
(i,j)inside
x [k + 1] and p

(i,j)inside
y [k + 1], which are the first-order space derivatives of

pressure in x and y directions, we need to calculate the pressure field p first. The

derivation of the pressure field will be explained later.
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The first-order space derivatives of ξi,j[k], ηi,j[k], and pi,j[k] are as follows

ξi,jx [k] =
ξi+1,j[k]− ξi−1,j[k]

2hx
, (2.52)

ξi,jy [k] =
ξi,j+1[k]− ξi,j−1[k]

2hy
, (2.53)

ηi,jx [k] =
ηi+1,j[k]− ηi−1,j[k]

2hx
, (2.54)

ηi,jy [k] =
ηi,j+1[k]− ηi,j−1[k]

2hy
, (2.55)

pi,jx [k] =
pi+1,j[k]− pi−1,j[k]

2hx
, (2.56)

pi,jy [k] =
pi,j+1[k]− pi,j−1[k]

2hy
, (2.57)

where the subscript x of ξi,jx [k], ηi,jx [k], and pi,jx [k] represents the first-order space

derivative with respect to x direction and the subscript y of ξi,jy [k], ηi,jy [k], and pi,jy [k]

represents the first-order space derivative with respect to y direction. The parameter

hx and hy are grid point distance in x and y direction, respectively.

The second-order space derivatives of ξi,j[k], ηi,j[k], and pi,j[k] can be obtained by

ξi,jxx[k] =
ξi−1,j[k]− 2ξi,j[k] + ξi+1,j[k]

h2
x

, (2.58)

ξi,jyy [k] =
ξi,j−1[k]− 2ξi,j[k] + ξi,j+1[k]

h2
y

, (2.59)

ηi,jxx[k] =
ηi−1,j[k]− 2ηi,j[k] + ηi+1,j[k]

h2
x

, (2.60)

ηi,jyy [k] =
ηi,j−1[k]− 2ηi,j[k] + ηi,j+1[k]

h2
y

, (2.61)

pi,jxx[k] =
pi−1,j[k]− 2pi,j[k] + pi+1,j[k]

h2
x

, (2.62)

pi,jyy[k] =
pi,j−1[k]− 2pi,j[k] + pi,j+1[k]

h2
y

, (2.63)

where the subscript xx of ξi,jxx[k], ηi,jxx[k], and pi,jxx[k] represents the second-order space

derivative with respect to x direction and the subscript yy of ξi,jyy [k], ηi,jyy [k], and pi,jyy[k]

represents the second-order space derivative with respect to y direction.
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For the derivation of the pressure p(i,j)inside [k + 1], it can be obtained by solving

the following Poisson’s equation

p(i,j)inside
xx [k + 1] + p(i,j)inside

yy [k + 1] =
1

∆t
(ξ(i,j)inside
x [k] + η(i,j)inside

y [k]), (2.64)

where the terms ξ
(i,j)inside
x [k] and η

(i,j)inside
y [k] are considered to be given in this step

and can be obtained by using Eq. 2.52 and Eq. 2.55.

For the pressure at boundary p(i,j)boundary , we prescribe the Dirichlet boundary

conditions,

p(i,j)north [k] = pi,j−1[k], (2.65)

p(i,j)south [k] = pi,j+1[k], (2.66)

p(i,j)east [k] = pi−1,j[k], (2.67)

p(i,j)west [k] = pi+1,j[k], (2.68)

where (i, j)north, (i, j)south, (i, j)east, and (i, j)west represent a point at north boundary,

south boundary, east boundary, and west boundary, respectively. This equation shows

that the unknown pressure at the boundary point has the same value as the pressure

located at the grid point inside the boundary next to it.

For more detail, we will use a simple example to show how to solve for the pressure

p(i,j)inside [k + 1]. Assuming that we have a discretized lake with resolution of 4× 4 as

shown in Fig. 2.5. The pressure at position (i, j) is located in the middle of a cell that

is labeled (i, j) at its bottom right. For example, p1,1 is located in the middle of the

cell (1, 1). The red cells represent the boundary region while the blue cells represent

the inside region.
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(3,0)(2,0)(1,0)(0,0)

(3,1)(2,1)(1,1)(0,1)

(3,2)(2,2)(1,2)(0,2)

(3,3)(2,3)(1,3)(0,3)

(3,0)(2,0)(1,0)(0,0)

(3,1)(2,1)(1,1)(0,1)

(3,2)(2,2)(1,2)(0,2)

(3,3)(2,3)(1,3)(0,3)

Figure 2.5: Example of a rectangle lake having resolution of 4 × 4. The red cells

represent the boundary region of the lake and the blue cells represent the inside

region of the lake. The region covered by the blue dotted line represents neighbour

cells of the cell (1, 1) that are necessary for the use of Eq. 2.64 for (i, j) = (1, 1).

If we consider the pressure at (1, 1), the region covered by the blue dotted line

represents the values that are necessary for the use of Eq. 2.64. For (i, j) = (1, 1),

Eq. 2.64 can be written as

p0,1[k + 1]− 2p1,1[k + 1] + p2,1[k + 1]

h2
x

+
p1,0[k + 1]− 2p1,1[k + 1] + p1,2[k + 1]

h2
y

=
1

∆t
(ξ1,1
x [k] + η1,1

y [k]).

(2.69)

According to the Dirichlet boundary conditions, we have p0,1[k + 1] = p1,1[k + 1]

and p1,0[k + 1] = p1,1[k + 1]. Normally for a square lake, the grid point distances in

x and y direction are the same that is hx = hy. Then we can rewrite Eq. 2.69 as

−2p1,1[k + 1] + p2,1[k + 1] + p1,2[k + 1]

h2
x

=
1

∆t
(ξ1,1
x [k] + η1,1

y [k]). (2.70)
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In the same way for the consideration of the pressure at the other three points,

p2,1, p1,2, and p2,2, we have

−2p2,1[k + 1] + p1,1[k + 1] + p2,2[k + 1]

h2
x

=
1

∆t
(ξ2,1
x [k] + η2,1

y [k]), (2.71)

−2p1,2[k + 1] + p1,1[k + 1] + p2,2[k + 1]

h2
x

=
1

∆t
(ξ1,2
x [k] + η1,2

y [k]), (2.72)

−2p2,2[k + 1] + p2,1[k + 1] + p1,2[k + 1]

h2
x

=
1

∆t
(ξ2,2
x [k] + η2,2

y [k]). (2.73)

According to the lake in Fig. 2.5 and assuming that hx = hy = 1, to complete the

pressure field at the inner region, we will get four equations written in matrix form

with four unknowns, p1,1, p2,1, p1,2, and p2,2, as follows



−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2





p1,1

p2,1

p1,2

p2,2


=



1
∆t

(ξ1,1
x [k] + η1,1

y [k])

1
∆t

(ξ2,1
x [k] + η2,1

y [k])

1
∆t

(ξ1,2
x [k] + η1,2

y [k])

1
∆t

(ξ2,2
x [k] + η2,2

y [k])


, (2.74)

which is in the form of Ax = b. Note that this leaves us with a small detail that

the matrix A is not full rank. Then we modify the matrix A so that it becomes

invertible. This is achieved by multiplying the first element of A with 1.5. Then we

can solve these equations for the pressure field at the inner region of the lake.

2.7 Simulation Experiment

Firstly, the simulation of sensors distribution under uniform constant flow field

will be carried out. The controllers used in this part are the proposed controller and

the modified proposed controller. The purpose of this simulation is to shows the

energy consumption reduction ability of the modified proposed controller over the
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original proposed controller. In this simulation, lake is assumed to be a rectangular

lake with the width of 30 m and length of 30 m. The reference origin in the Cartesian

coordinate system is set at the center of the lake. Water flow field is set to be constant

with magnitude of 0.05 m/s flowing from the east to the west of the lake. Notice that

in y direction, there is no flow from water.

A group of 4 monitoring sensor nodes are initially placed at the following posi-

tions: (12.0, 0.25), (12.5,−0.25), (12.5, 0.25), and (12.0, 0.25) with initial velocity of

zero in both x and y directions. The mass of a sensor node is 50 kg for all sensor

nodes in the group. The reference area and the drag coefficient for drag force calcu-

lation are assumed to be constants of 1 m2 and 0.5 for all simulations. The desired

centroid of this simulation is (0, 0) and the desired position variance is 9 in both x

and y directions. For both controllers, the constants k and c are all set to be 1 and

20, respectively. In modified proposed controller, the positive-define matrices are set

as R = diag(5, 5, 5, 5, 5, 5, 5, 5) and Q = diag(0.5, 0.5, 0.5, 0.5). We define distribution

time as the time measured from the beginning of the distribution until the centroid

of the sensors group reaches the desired centroid value within error of 0.05. Fig. 2.6

shows the trajectory of each sensor of the proposed control method with the distribu-

tion time of 110 sec. The trajectory of each sensor of the modified proposed control

method is shown in Fig. 2.7 with the distribution time of 200 sec. The initial positions

are plotted as circle marks and the final positions of the simulation are plotted as

cross marks. The blue vector field represented the water flow field.
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Figure 2.6: Trajectory of each sensor in the distribution using the original proposed

controller from t = 0 to t = 110. The water flow field is set to be uniform and

constant with magnitude of 0.05 m/s in direction of negative x and represented by

blue vector field. The group of sensor can reach the desired centroid and desired

position variance within 110 [sec] period of time.

Figure 2.7: Trajectory of each sensor in the distribution using the modified proposed

controller from t = 0 to t = 200. The group of sensor uses 200 [sec] period of time to

reach the desired centroid and desired position variance.
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Figure 2.8: Time series graph of summation of absolute values of input forces from x

and y directions.

The energy usage for each methods is shown in Fig. 2.8, which is time-series graph

of absolute summation of input forces. As seen from the graph, the modified proposed

control method can reduce the consumption of input forces better than the original

proposed control method. Numerical comparison can be done by calculating the area

under the graph from t = 0 to t = 100. For the original proposed control method,

this area is 4.137× 103, where the area for the modified proposed control method is

1.6713.

Next, various flow field magnitudes are applied for the simulation. All settings

are the same as the previous simulation except the magnitude of the water flow

field will be varied. In this part, the modified proposed controller is used. Tab. 2.1

shows the area under the time-series graph of absolute summation of input forces and

distribution time in various flow field magnitudes.
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Table 2.1: Input forces consumption and time used in various flow field magnitudes.

Flow field magnitude Input forces consumption Distribution time [sec]

in x direction [m/s]

0.00 2.3394× 103 167

0.01 2.1830× 103 160

0.02 2.0495× 103 165

0.03 1.9455× 103 174

0.04 1.8805× 103 186

0.05 1.8652× 103 200

0.06 1.9132× 103 216

0.07 2.0356× 103 233

0.08 2.2466× 103 251

According to the table, the input forces consumption continues to decrease as the

flow magnitude increases from 0.00 to 0.05. This shows that the modified proposed

controller can use the flow field to help the distribution. However, when the flow

magnitude is larger than 0.05, more inputs forces are needed. The reason is that the

larger of flow magnitude produces larger forces acting on the sensors group. Therefore,

more input forces are needed to control the group distribution.
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2.7.1 Sensors distribution under Navier-Stokes simulated flow

field

In this section, 3 cases of different controllers, which are the position-velocity

controller, the proposed controller, and the modified proposed controller will be used.

Position-velocity controller is a simple control of each sensor node. This controller

controls each sensor node individually by driving each sensor node toward desired

position and making the sensor node maintain its position at the desired position.

The position-velocity controller is defined by the input for each sensor node for x

direction as

uxi(t) = −αxi(xi(t)− xri)− βxiẋi(t)− wxi(t), (2.75)

where xri is the desired position in x direction of the i-th sensor. The parameters αxi

and βxi are x direction constants of the i-th sensor that can be calculated by using

the linear quadratic(LQ) optimal control. Note that in this experiment, all weighting

matrices in the quadratic continuous-time cost function in LQ optimal control are

set to be identity matrix. The control input of this controller in y direction can

be determined by the same way as in x direction. Unlike the proposed controller,

this controller requires a desired position for each sensor. This means if there are

N sensors in the monitoring system, we have to provide N desired positions for the

sensors group. The distribution will be done under the water flow field in a simulated

lake that follows the incompressible Navier-Stokes equations.
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Simulated flow field in rectangular lake

Figure 2.9: The steady flow field of water in a rectangular lake. After several times

of solving the incompressible Navier-Stokes equations, the flow field velocity after the

time of 2×104 [sec] from the beginning of flow field simulation becomes the steady flow

field as shown in this figure. The flow field is represented by blue vector field, where

the length of the arrow represents the magnitude of flow velocity and the direction of

the arrow is in the same direction as the flow velocity.

First of all, the Reynold number is assumed to be constants throughout the sim-

ulation with value of 1 × 103, describing that the flow is transient or unsteady. The

lake is assumed to be rectangular with the width of 40 m and the length of 40 m.

The origin point in the Cartesian coordinate system is set to be at the center of the

lake. The water flow field in the lake has resolution of 80 × 80 in grid pattern. The

boundary condition for the flow field simulation is that there is wind blowing at the
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northern boundary of the lake with magnitude of 1 m/s in the direction of positive x.

In this way, the flow velocity of water at the northern boundary is 1 m/s in positive

x direction as well. The other boundaries conditions are assumed to be zero. The

flow field simulation is done by continuously solving the incompressible Navier-Stokes

equation until stable flow field is achieved. The steady simulated flow field is shown

in Fig. 2.9. The resolution of grid points shown in this figure is reduced by half for

easy observation. This water flow field will be used for the lake monitoring sensors

distribution and the flow field estimation later on.

Sensors distribution simulation

In this simulation of the lake monitoring sensors distribution, there are 8 sensor

nodes in the group. All sensor nodes are placed at the same position that is (14, 14)

with initial velocity of zero. The reasons why all the sensor nodes are place at the

same position are we would like to reduce the cost of initial sensor arrangement done

by human. The releasing time for each sensor node is different. To put it more simple,

the releasing time of sensor 1, 2, ..., 8 is set to be t = 0, 40, ..., 280 [sec]. There will be

no controller applied to the system from the initial time to the time the last sensor

node is released. The controller will be applied to the system at the same time when

the last sensor node is released, which is when t = 280 [sec]. The desired centroid of

the distribution is set to be at the origin point. The desired position variance is set

to be 30 in both x and y directions. To achieve the same desired centroid and desired

position variance, the desired positions of sensor node 1 to 8 of the position-velocity

controller are set to be (2, 4), (4,−8), (6,−2), (−4, 2), (−2, 8), (8, 4), (−6,−6), and

(−8,−6), respectively. These desired positions give the centroid of (0,0) and the

position variance of (30,30) that are the same as the desired values. Fig. 2.10 shows
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the trajectory of each sensor node for the position-velocity controller with simulation

time of 2, 000 [sec]. The initial position of each sensor node is plotted as a dot mark.

The final position of each sensor node when the simulation time reaches 2, 000 [sec]

is plotted as a cross mark. Note that, the blue vector field in trajectory graphs will

show just only the direction of the flow for easy observation.

Figure 2.10: Trajectory of each sensor in the distribution using the position-velocity

controller from t = 0 to t = 2, 000. There are 8 sensor nodes moving toward the

desired positions directly. The initial positions of all sensor nodes are set to be the

same position which is plotted by black dot mark in this figure.

Time series graphs of the centroid and position variance from t = 0 to t = 800 of

the position-velocity controller can be seen from Fig. 2.11 and Fig. 2.12.
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Figure 2.11: Time series graph of the centroid of the sensors group controlled by

position-velocity controller from t = 0 to t = 800. The vertical dashed line represents

the time when all sensor nodes are released and the time when the controller is applied

to control the group of sensors. The desired centroid is set to be (0, 0).

Figure 2.12: Time series graph of the position variance of the sensors group controlled

by position-velocity controller from t = 0 to t = 800. The vertical dashed line

represents the time when all sensor nodes are released and the time when the controller

is applied. The desired position variance is set to be 30 in both x and y directions.
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For the proposed controller case and the modified proposed controller case, the

constants are set as k1,x = 1, c1,x = 20, k2,x = 0.2, c2,x = 20, k1,y = 1, c1,y = 20,

k2,y = 1, and c2,y = 10. Fig. 2.13 shows the trajectory of each sensor node for

the proposed controller with simulation time of 2, 000 [sec]. We start applying the

proposed controller to the sensors group at the same time with the last sensor node

is released, which is when t = 280 [sec].

Figure 2.13: Trajectory of each sensor in the distribution using the proposed controller

from t = 0 to t = 2, 000. 8 sensor nodes moves with influence of the water flow field.

The initial positions of all sensor nodes are set to be the same position which is plotted

by black dot mark in this figure. The controller is applied to the sensors group after

t = 280

Time series graph of centroid and position variance of the sensors group from t = 0

to t = 800 of the proposed controller can be seen from Fig. 2.14 and Fig. 2.15.
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Figure 2.14: Time series graph of the centroid position controlled by the proposed

controller for x and y directions. The vertical dashed line represents the time when

all sensor nodes are released and the time when the controller is applied to control

the group of sensors. The desired centroid is set to be (0, 0).

Figure 2.15: Time series graph of the position variance controlled by the proposed

controller for x and y directions. The vertical dashed line is the time when all sensor

nodes are released and the time when the controller is applied. The desired position

variance is set to be 30 for both position variance in x and y directions.
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For the modified proposed controller, the positive-define matrices are set as R =

diag(5, 5, ..., 5) and Q = diag(0.5, 0.5, 0.5, 0.5). Fig. 2.16 shows the trajectory of each

sensor node for the modified proposed controller with simulation time of 2, 000 [sec].

As the same with the proposed controller, we start applying the proposed controller

to the sensors group at the same time with the last sensor node is released, which is

when t = 280 [sec].

Figure 2.16: Trajectory of each sensor in the distribution using the modified proposed

controller from t = 0 to t = 2, 000. The initial positions of all sensor nodes are set to

be the same position which is plotted by black dot mark in this figure. The controller

is applied to the sensors group after t = 280

Time series graphs of centroid and position variance from t = 0 to t = 800 of the

modified proposed controller can be seen from Fig. 2.17 and Fig. 2.18.
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Figure 2.17: Time series graph of the centroid position of all sensor controlled by

the modified proposed controller for x and y directions. The vertical dashed line

represents the time when all sensor nodes are released and the time when the controller

is applied. The desired centroid is set to be (0, 0)

Figure 2.18: Time series graph of the position variance of all sensor controlled by

the modified proposed controller for x and y directions. The vertical dashed line

represents the time when all sensor nodes are released and the time when the controller

is applied. The desired position variance is set to be 30 for both x and y directions.
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The energy consumption is defined as

E(T ) =

∫ T

0

u>(t)u(t)dt, (2.76)

where T is the time period. Fig. 2.19 shows the comparison of energy consumption

among the modified proposed controller, the proposed controller, and the position-

velocity controller. According to Fig. 2.19, the modified proposed controller can

provide the lowest energy consumption than the position-velocity controller and the

original proposed controller. This make the modified proposed controller be able to

perform lake monitoring over a longer period of time.

Figure 2.19: Energy consumption comparison among the modified proposed con-

troller, the proposed controller, and the position-velocity controller.
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2.8 Conclusion and Discussion

In this chapter, the simulation of lake monitoring sensors distribution with low

energy consumption has been carried out. Energy consumption, which are in term of

input forces, of considered controllers are compared. The distributions are performed

in both uniform constant water flow field and complex steady flow field. The proposed

controller provides less energy consumption comparing with a method using simple

position-velocity control. Furthermore, the modified version of the proposed controller

gives more effective group control with lower in energy consumption than the original

proposed controller. This makes the proposed lake monitoring sensors system be able

to achieve long time monitoring of water resource. The lower in energy consumption

for the monitoring sensors distribution saves the amount of limited energy inside the

battery attached to each sensor node. Therefore, with low energy consumption, the

monitoring system operating time will last longer and the system efficiency will be

increased.
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Chapter 3

Pair-wise assignment of identity

3.1 Introduction

Drosophila melanogaster, generally known as common fruit fly, is an important

model organism in neurobiology [42]. With Drosophila, many sophisticated genetic

methods can be used to manipulate the activity of specific neurons in a targeted

manner. This allows powerful experiments that examine the structure and function

of the nervous system at the resolution of single neurons.

Machine vision systems have been worked for locomotion analysis of insects, such

as bees [43], houseflies [44], and ants [45]. This work uses machine vision system

on Drosophila. In order to understand behavior of Drosophila, one of the important

information that need to be measured is their movement. To make an observation of

their movement in a controlled environment, a high performance measuring system

is required.

For a single fly, it is quite simple to observe its movement but it is not possible

to provide some movement patterns that are related to interactive behavior among
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a group of multiple flies. Some examples of researches using movement information

of a single fly are shown in [46–49]. Measurement of position of free-flying single

Drosophila in 3D environment for a behavioural system analysis was done in [46].

Takeoff dynamic of a single Drosophila was studies by [50] and [51]. A study of a

walking fly that was shortened its wings in order to limit its movement is shown

in [49].

Instead of a single fly, generally a group of fruit flies are studied together in an

experiment. The reason for studying a group of flies is that it provides some behaviors

of interaction between flies that cannot be seen from observing only a single fly, such

as touching and chasing. Observing multiple flies concurrently makes it difficult and

challenging to track each fly using human eyes and even by using computer vision

system since their appearance are similar. A study of Drosophila behaviour using two

flies was done by [52]. However, studying with too few flies takes time because we

need to wait until the flies do the behavior.

This work introduces a system for detecting and tracking in order to solve the

problem of multiple flies tracking. Our experimental setup is shown in Fig. 3.1 (a).

There is an LED illuminated surface located at the bottom. A circular arena contain-

ing a group of Drosophila is placed on the LED illuminated surface. A video camera

is attached to the structure to have a view of the arena. The camera captures a video

containing many frames of flies in the arena as shown in Fig. 3.1 (b). The captured

video will be used for fly tracking and posture estimation later.

Given the video file containing a group of flies in a controlled arena, our system

detects all flies in the arena, reliably identifies individuals between consecutive frame

pairs, and measures the posture and the velocity of each fly in each frame in the

54



(a) (b)

Figure 3.1: Experimental setup (a) and video frames for fly tracking and posture

estimation (b). An LED illuminated surface is located at the bottom of the setup.

A circular arena containing a group of Drosophila is placed on the LED illuminated

surface. A video camera is attached to the structure in order to have a view of the

arena.
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video. As a result, using our system can help scientists to get information of the flies

movement in an experiment.

Unlike traditional binarization, which does background subtraction first and then

applies threshold, we also provide another binalization method done by firstly ap-

plying threshold to a background image and a current image and then performing

background subtraction. The binarization method in this work can give better bina-

rized result of flies image, which will be shown later.

Having multiple flies together in a controlled arena makes it possible for some flies

to touch each other. This results in merging problem of flies in image processing,

which two merging flies will be detected as a single fly. In our tracking system, this

problem is solved by adjusting the threshold at the flies merging region. As a result,

by using the new threshold two flies can be separated from a merging area.

For the approximation of posture of each fly, calculation based on the ellipse

approximation is carried out. The posture of each fly includes the 2D-position and

the orientation of its body. Notice that this ellipse approximation can be used even

with non-ellipse shape.

At the last part of our tracking system, fly identification for each fly between

every pair of two consecutive frames is done. The identification is considered as

flies pairing based on distance. To do the job, we use the closest neighbor approach

algorithm, which will be explained in detail later. Our fly tracking algorithm provides

a robust flies detecting and tracking even when clusters of flies appear in the view. The

accuracy of the fly identification is evaluated by manually inspecting more than 1, 000

fly pairs from random frame pairs and random videos. The result of fly identity has

low error rate of 0.48%. For the posture of each fly, the average errors of the position
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Figure 3.2: Grayscale image of Drosophila group in a closed circular arena is presented

in this figure. It is closed in order to prevent fly from leaving the arena. Each fly is

shown in a black oval shape. The area outside the circular arena is ignored.

of the flies and the orientation are approximately 5% of fly body length and 2.2±0.2◦,

respectively.

3.2 Fly detection algorithm

Our fly tracking system is divided into three parts; fly detection, fly posture

approximation, and fly identification. Given an input video containing a group of

flies in a closed circular arena, the result from the first part is that each fly will be

detected as a single fly. In this section, the detection of each fly will be explained in

detail.
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Figure 3.3: Binarized image showing Drosophila group in a circular arena. Each fly

is shown as a white oval shape in the scene.
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Firstly for each frame in the input video, RGB image is converted to Grayscale

image. Fig. 3.2 shows an example of grayscale image of Drosophila melanogaster in

a closed circular arena.

Next, binarization and background subtraction are performed. In this step, our

work applies binarization to the image and the background image separately before

doing background subtraction. This makes this work different from the others that

normally perform binarization after doing background subtraction. Fig. 3.3 is a bina-

rized image showing that only flies can be seen from the scene as the white oval areas

and these areas are considered as detected regions. According to the figure, there are

some noises appear as tiny white dots, which are not flies. Fig. 3.4 shows binarized

image comparison between our method, which applies binarization first and then

followed by background subtraction, and normal approach, which uses background

subtraction first and then followed by binarization. Our approach results in clearer

appearance of fly body excluding its wing part. This clearer appearance will provide

more accuracy for the fly posture approximation.

To remove the noises and to make the flies look smoother, erosion followed by

dilation operations using the same structure element are then applied to the image,

respectively. The structure used in these operations is a circle with radius of 3 pixels.

Then the measurements of a set of properties of the detected region are performed.

These properties include area, centroid, eccentricity, orientation, bounding box (the

smallest rectangle containing the region), and the linear indices of the pixels in the

region.

In order to determine whether a detected region is actually a fly or not, likelihood

of existence of fly is involved. The likelihood of existence is calculated based on

59



(a) (b)

Figure 3.4: Binarized image comparison between our method applying binarization

first and then followed by background subtraction (a) and normal approach using

background subtraction first and then followed by binarization (b).

(a) (b)

Figure 3.5: Graph of likelihood of existence of fly with respect to ellipse eccentricity

(a). More ellipse eccentricity gives higher likelihood. Graph of likelihood of exis-

tence of fly with respect to bounding box’s diagonal length. The likelihood is at the

maximum value when the bounding box’s diagonal length is in a curtain range.
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ellipse eccentricity and bounding box’s diagonal length of the region. In this step,

two likelihood values are first calculated. They are a likelihood calculated based

on eccentricity and a likelihood calculated based on bounding box’s diagonal length.

Then the likelihood of existence of fly is obtained by multiplying those two likelihoods

together. Fig. 3.5 shows graphs of likelihood with respect to ellipse eccentricity and

likelihood with respect to bounding box’s diagonal length. For the likelihood based on

the eccentricity, higher ellipse eccentricity gives higher likelihood. For the likelihood

based on the diagonal length, the likelihood is at the maximum value when bounding

box’s diagonal length is between 20 to 30. The likelihood with respect to ellipse

eccentricity can be computed using the following equation

p1(ε) =
1

1 + e4(
2(1−ε)
0.085

−1)
, (3.1)

where ε is input ellipse eccentricity and p1 represents the likelihood corresponding

to the input. The likelihood with respect to bounding box’s diagonal length can be

obtained as follows

y(d) =
1

σ
√

2π
e−

1
2( d−µσ )

2

, (3.2)

p2(d) =


1, if y(d) ≥ y(dmax)

e
(dmax−µ)2−(d−µ)2

2σ2 , otherwise

(3.3)

where d is input bounding box’s diagonal. The output p1 represent the likelihood

corresponding to the input. µ and σ are mean and standard deviation, respectively.

The value dmax represents the maximum value of bounding box’s diagonal that gives

the likelihood of 1. For Fig. 3.5 (b), µ, σ, and dmax are set to be 25, 8, and 30,

respectively.
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The area that has likelihood greater than likelihood threshold is extracted and

average area of all extracted area is calculated. For the extracted area, we assign the

estimate number of flies in that area to be 1.

For the region i whose likelihood is less than 0.5, the estimate number of flies

(N likelyi) in that region is calculated by the following equation

N i
likely = Round(

Ai

A
), (3.4)

where the nearest integer function Round(x) gives the nearest integer to x, where

x ∈ R. Ai represents the area of the region i and A is the average area of all

extracted area.

The regions having likelihood less than the likelihood threshold and N i
likely equals

to zero will be ignored from being recognized as flies. The regions having likely

number of flies more than 1 will be considered. To separate those merging flies, we

will adjust a new threshold and apply it only to the region. The new threshold for

extracting merging flies is then calculated by summation of pixel intensity average

and pixel intensity standard deviation within the region. Next, the binarization at

the new threshold is performed and the number of detected regions is calculated.

An example of extracting merging flies in binary image is shown in Fig. 3.6.

According to the figure, there are two flies merging in the region. The left side

of Fig. 3.6 shows how the merging area looks like under binarization using the old

threshold. On the other hand, the right side of Fig. 3.6 shows how the area looks like

under binarization using the new threshold. By using the new threshold, the two flies

in the merging region can be separated.

Let the new calculated number of regions i to be N i
new. If N i

new is equal to N i
likely,

then the process is completed. If N i
new is not equal to N i

likely, then the threshold
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(a) (b)

Figure 3.6: Binary image of a flies merging area obtained by using the old threshold

(a) and by using the new threshold (b). Two flies can be separated after using the

new threshold for binarization.

value needs to be updated and we have to and repeat the binarization at the updated

threshold. Let the threshold at the region i at the current iteration to be thicurrent,

the threshold is updated by the following equation

thiupdate =


thicurrent + 1, if N i

new > N i
likely

thicurrent − 1, otherwise

(3.5)

where thiupdate is the updated threshold.

Notice that the process will also finish if the number of iteration reaches the

maximum number of iteration or the new threshold reaches the threshold of fly body

intensity.

After the process is completed, measurements of properties of a region after im-

provement process are performed. These properties are the same as previously stated
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which include area, centroid, eccentricity, orientation, bounding box, and the linear

indices of the pixels in the region. The improved regions are extracted by searching

the region that has likelihood greater than the likelihood threshold.

The posture of each fly is determined based on ellipse approximation. Further-

more, fly identification is performed based on the distance between flies in two consec-

utive frames. Posture determination and fly identification will be explained in detail

in next two sections.

3.3 Fly posture approximation

In this section, the posture approximation will be described. In this part, posture

calculation based on the ellipse approximation is carried out. The posture of a fly

consists of 2D-position and orientation of its body. The approximated orientation

of a fly body will be compared with the same fly orientation obtained from using

RANSAC iterative method. For the ellipse approximation, region-based method using

the moments of a shape is used for estimating the best-fit ellipse [53]. This ellipse

approximation can be used as an expression of shape even though the shape is not

an ellipse. First, the moment of order p + q of a 2D region (G) is calculated by the

following integration over the area of G

mpq =

∫∫
G

f(x, y)xpyq xy. (3.6)

Here f is a function used to describe situations when some properties of each part

in the region vary. Since we treat all the parts in the region equally, thus the function

f will always be f(i, j) = 1. The zeroth moment (m00) is basically the area of G.

For calculating the moments of a pixelated binary image region, it is assumed that
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(a) (b)

Figure 3.7: Posture approximation by using RANSAC iterative method (a) and ellipse

approximation (b). The fly is labelled with yellow numbers. The blue line indicates

the postures of the fly. The center of the body is shown as the blue asterisk mark.

The ellipse approximation provides better fly body orientation approximation than

the RANSAC iterative method.

the region of interest is totally enclosed in a rectangle of size n by m pixels. The Eq.

(3.6) for moments calculation reduces to

mpq =
n∑
i=1

m∑
j=1

xpi y
q
j b(i, j), b(i, j) ∈ {0, 1}, (3.7)

where the function b(i, j) has value of one if the i, jth pixel is in the foreground. If

the pixel is in the background then the function has value of zero. The coordinate

(xi, yj) is the coordinate of the i, jth pixel.

The central moments of area G are determined by

upq =

∫∫
G

f(x− x̄)p(y − ȳ)qxy, (3.8)
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where

x̄ =
m10

m00

(3.9)

ȳ =
m01

m00

(3.10)

are the centroids of the area G. They can be written in terms of the moments as

u00 = m00 (3.11)

u10 = u01 = 0 (3.12)

u20 =
1

m00

(
m20 −

m2
10

m00

)
(3.13)

u02 =
1

m00

(
m02 −

m2
01

m00

)
(3.14)

u11 =
1

m00

(
m11 −

m10m01

m00

)
. (3.15)

We use the central moments to determine the best-fit ellipse for the arbitrary shape

with orientation φ of the long axis of the ellipse. The orientation φ is computed as

follows

φ =
1

2
tan−1(

2u11

u20 − u02

). (3.16)

Fig. 3.7 show a labeled fly with identification number of 20 with posture approx-

imation by using RANSAC iterative method (a) and the ellipse approximation (b).

As seen from the figure, the position and the orientation of the fly are shown in a

blue asterisk mark and a blue line, respectively. The ellipse approximation provides

better fly body orientation approximation than RANSAC iterative method.

3.4 Fly identification

The fly identification method used in our fly tracking system will be explained in

detail. The identification of each fly between two consecutive frames is considered as

66



flies paring process based on distance. In this step we apply a closest neighbor ap-

proach to pair each fly between two frames. The closest neighbor approach algorithm

is shown in Algorithm 1.

Data: two consecutive frames, F1 and F2

Result: pairing between detected objects in F1 and F2

create a set P containing all possible pairs between detected objects in F1 and

F2;

create an empty set Q;

for all pair in P do

compute Euclidean distance between objects in each pair;

end

while P 6= ∅ do

find the pair that has minimum distance within P;

delete the pair from P and other pairs containing the element in the pair;

put the minimum distance pair into Q;

end

Algorithm 1: The closest neighbor assignment algorithm

Fig. 3.8 shows an example of pairing flies between two consecutive frames. From

the figure, two flies are labeled with number 15 and 17. The asterisk marks represent

the center of fly body at current frame. The positions in the next consecutive frame

are indicated by the blue dots. They are paired with their corresponding position in

the next frame by blue lines.

Notice that the maximum changes in position and angle of paired particles are

set to be approximately 7mm and 90◦, respectively. The change that is greater than

these maximum will not be considered.
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Figure 3.8: Two flies labeled with number 15 and 17 are paired with positions from

the next consecutive frame. The asterisk marks represent the center of fly body at

current frame. The positions in the next consecutive frame are indicated by the blue

dots. The closest neighbor approach is used to pair these two flies.
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Figure 3.9: All flies in the arena are detected. The positions of the center of fly body

are indicated with blue asterisk marks. Moreover, each fly is labeled with a unique

number in yellow. The posture of each fly is shown by the blue line located over its

body.
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Table 3.1: Error of fly identity, position, and orientation

Error Number of sampled data

Fly identity 5 flies pairs 1, 049 flies pairs

Position analysis 0.108± 0.006 mm 100 flies

Orientation analysis 2.2± 0.2◦ 95 flies

3.5 Experiment

In this section, a result of fly tracking algorithm is presented. A 20 fps video

having the total of 52 flies in a closed circular arena is used as the input for the

system. Considering about fly detection, Fig. 3.9 shows that all flies in the arena can

be detected with our system. According to the figure, the positions of the center of

fly body are indicated with blue asterisk marks. Further, each fly is labeled with a

unique number and the posture of each fly is indicated with the blue line.

To see a tracked fly in many consecutive frame sequences, Fig. 3.10 shows a tracked

walking Drosophila from t = 0 (a) to t = 0.25 (f) with its posture indicated by the

blue asterisk mark. The time interval between two consecutive sub-figures is 50 ms.

All of the examples’ input files were obtained from experiment of a group of

flies with the presence of sugar. The computations are done on a parallel computer

LX406Re-2 that has 68 nodes. Each node is equipped with two groups of 12-core

Intel Xeon processors E5-2695v2 and a main storage of 128 GB. The algorithm is run

in MATLAB on each node.

Table 3.1 shows error of fly identity, position, and orientation. The accuracy of

flies identification in two frames is evaluated by manually inspecting 1, 049 fly pairs

from random frame pairs and random videos. Fly identity has error of 5 flies pairs
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Tracked walking Drosophila from t = 0 to t = 0.25 with label number

3 and posture indicated by the blue asterisk mark. The time interval between two

consecutive sub-figures is 50 ms.
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that is about 0.48%. The failed fly identity occurred at flies merging area and at

the case of two flies moving into each other with high speed. For the position and

the orientation of the flies, 100 flies and 95 flies were inspected, respectively. They

were from random flies, random frames, and random videos. The average errors of

the position and the orientation are 0.108± 0.006 mm (approximately 5% of fly body

length) and 2.2± 0.2◦, respectively.

3.6 Conclusion and Discussion

In this work, an algorithm to detect a group of Drosophila melanogaster or com-

mon fruit flies is introduced. The fly tracking algorithm can provide accurate result

with low error of flies identification and flies posture estimation including position and

orientation. The next goal is to apply the system to more challenging fly experiment

condition like applying electric shock to the fly. With the presence of electric shock,

the fly will jump or fly with high speed. Moreover by using high-speed camera, the

difficulty of fly tracking in case of jumping or flying flies will be reduced. In this way,

better accuracy for the tracking and robustness of the algorithm will also be improved

as well.
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Chapter 4

Assignment of identity using head

direction and moving prediction

4.1 Introduction

The study of model organism provides understanding of how biological processes

work, which benefits humans in terms of medical knowledge and understanding of

other biological behaviors [16]. One of the popular model organisms that has been

heavily used in research is Drosophila melanogaster, or generally known as the

common fruit fly. With this model organism, a variety of genetic methods can be

used to manipulate the activity of specific neurons in freely moving and behaving

animals [54].

A common way to analyze behavior is to categorize and quantify animal move-

ments. Locomotion observation of insects such as bees [43], flies [44], and ants [55],

using machine vision systems have been used for the analysis. In this work, we focus

on using a machine vision system to track freely walking Drosophila melanogaster
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in a circular arena. Considering the fact that it has a small size and it can sometimes

jump; this causes great difficulties for motion observation.

Dealing with only a single fly can provide its information in detail and the mo-

tion observation can be easily implemented, but the motion related to interactive

behavior among a group of multiple flies will be absent. There are some researches

working on behavior of a single fly. [50] and [51] study takeoff dynamic of a single

Drosophila. A study of freely flying Drosophila is done by [46]. [52] focuses on behav-

ior of Drosophila using two flies. However, it takes time until they show interactive

behavior.

Machine vision system with a presence of multiple Drosophila fulfills the motion

observation in the way that it can provide observation on the behaviors of interacting

flies that cannot be observed from the single fly scenario. More flies provide more

data and in addition, sexual behavior can also be observed. However, dealing with

multiple flies is challenging to the system since the system has to be able to track each

individual fly. This means the system has to give each fly an identifier and maintain

its identifier throughout the observation period.

This work introduces a machine vision system that can detect and track multiple

Drosophila in a video input. Overall process of this system is divided into three main

parts: foreground detection, posture modeling, and tracking.

4.2 Related work

To achieve a successful result from a video input, firstly, the system needs to

be able to distinguish Drosophila from the background. Based on the fact that

Drosophila moves while other objects stays in the same frame, this gives us an
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opportunity to use mode value of intensity to extract background information from the

image scene. Background extraction with a moving foreground is done by [56]. Once

the background has been extracted, background subtraction [57] is then performed

to split up Drosophila and other objects. This does not only improve the accuracy

of Drosophila detection but also prevents the system from wasting processing time

on other objects beside the fly. The background subtraction example can be seen

from [58] and [59] with an application of video surveillance and monitoring. Other

applications using the background subtraction are such as optical motion capture [60],

human computer interaction [61], and manufacturing industry [62].

After the Drosophila have been isolated from the background, the resulting image

needs to be polished in order to remove the remaining noises. Polishing process can

be accomplished by normal binary thresholding or by applying opening mathematical

morphology [63]. In this system, a Laplacian of Gaussian filter [64] is applied to the

resulting image to provide smooth and noiseless blobs result. Next, ellipse fitting is

performed at each blob and major axis, an axis representing the widest part of the

ellipse, is calculated. Region-based method for ellipse fitting is discussed in [53].

There are many off the shelf tracking software packages available. One of the

most well-known Drosophila tracking programs is C-Trax [17]. It is an open-source

software that is freely available for estimating the positions and orientations of walking

flies. The program comes with ability to automatically classify the flies’ behaviors. In

addition to C-Trax, another system that is well-known for measuring animal behavior

is JAABA [65]. JAABA uses machine learning-based system to compute behavior of

animals together with input trajectory from other tracking programs. idTracker [18]

provides a tracking system that can be used with a wide range of animals including
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zebrafish, medaka fish, mice, flies, and ants. EthoVision XT is suitable for a wide

range of set-ups but it has weak point when dealing with a large number of animals

with interactions.

In this work, we present a multiple Drosophila tracking system that works without

needing any modification of the test subjects. This system is able to detect and track

each individual fly in the scene while providing an accurate result obtained from using

a Kalman filter. In addition, it uses a combination of prediction from the Kalman

filter and the closest neighbor principle in order to achieve better result in tracking

selection. Heading direction is also used for confirmation of fly pairing between two

consecutive frames. The proposed system is a platform for future development.

4.3 Method and Material

For an input video in a range of interested frames, foreground detection and pos-

ture modeling are processed first for all frames. Next, position and heading direction

obtained from these two steps will be used in the tracking step.

4.3.1 Foreground detection

At each time step, an input image is taken from image sequences from an input

video and converted into a gray scale image. The background image is extracted by

considering only the static part of the image sequences. In this way, the pixel value

that frequently appears in the image sequences is treated as background while the

one with less frequency will be considered as foreground. In order to determine the

value that has the highest frequency at each pixel, a vector containing pixel values

from the image sequences at the same pixel position is created. Mode calculation on
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the vector is performed and the most frequent value is then obtained. This process

is repeated for every pixel position of the image sequences, thus the background is

created. 100 images are randomly selected from the image sequences and are used

in the background extraction step instead of the whole image sequences. Fig. 4.1

shows an example of six consecutive images of Drosophila and Fig. 4.2 represents the

extracted background images generated by using a number of frames from the video

in Fig. 4.1 and calculating the mode value at each pixel.

Figure 4.1: Input images of six consecutive frames. A circular arena contains 32

Drosophila as the black ovals inside. The frame rate is 19 fps.
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Figure 4.2: Extracted background image of the input video from Fig. 4.1. The back-

ground image was generated by using a number of frames from the same video file

and calculating the mode value at each pixel.

In some cases, input video file suffers from varying of light in the scene due to non-

perfect experimental setup. The varying light affects the ability of detection and may

result in missed detections. Therefore intensity adjustment is performed, using the

background image as a reference for intensity shifting. The intensity shifting is done

by two steps: first, calculating intensity mean values of both the background image

and the current input image, second, updating intensity of every pixel in the input

image by adding the difference between the intensity mean values of the background

image and the current input image to all pixels.

The foreground is detected by performing background subtraction with the current
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input image. In this step, some noises may appear in the result image. Fig. 4.3

illustrates the resulting image after performing background subtraction followed by

intensity reversal. The static arena part is deleted and only Drosophila are left in

the scene.

Figure 4.3: Result image from background subtraction followed by intensity reversal.

The static arena part that belongs to the background was deleted. Only moving flies’

body and their wings remain in the result image.

Next, blob filter is applied to the image. The blob filter uses Laplacian of Gaussian

as a kernel matrix for convolution with the image. Laplacian of Gaussian appearance

is shown in Fig. 4.4. According to the fact that the fly’s body in Fig. 4.3 is dark, the

Laplacian of Gaussian makes the body white. The convolution makes bright pixel

dark and dark pixel white. In this way, fly’s body will appear as a white blob. Next, a
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proper user-defined threshold is applied to the blob image in order to get rid of some

noises. In this thresholding step, the unwanted part will be deleted from the scene

and wanted part will be preserved in the scene. Here, this is not binary thresholding,

therefore every pixel in every blob still possesses detailed intensity values. Fig. 4.5

shows a resulting image after applying blob filter and thresholding.

Figure 4.4: Laplacian of Gaussian as a kernel in 3-D view. The kernel is used for

convolution with the resulting image from background subtraction (Fig. 4.3).
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Figure 4.5: Filtered blob image. Thresholding is applied to the product of the con-

volution using the Laplacian of Gaussian as a kernel from Fig. 4.4, resulting in the

filtered blob image.

A two dimensional Laplacian of Gaussian function is written as

LoG(x, y) = − 1

πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2 , (4.1)

where x and y are Cartesian coordinates. Standard deviation is user-defined and is

shown as σ. The value of standard deviation used in Fig. 4.4 is σ = 6.

In case of multiple foreground objects, sometimes a group of ones is detected as

only one blob, meaning that one object is detected instead of multiple objects. This

results in an error of detected positions and will decrease the tracking efficiency in

later steps. This problem takes place when some foreground objects locate very close

to one another. To overcome such a problem, blob analysis is introduced.
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The blob analysis process starts by first calculating parameters of every blob in

the blob image such as area, bounding box, and center of the blob. Second, average

area of all the blobs is determined and considered as an expected area of one object.

Third, at each blob, the expected number of objects is calculated by dividing the blob

area with the expected area. If the expected number of objects is one, then that blob

is considered to be correct, and no further modification is necessary. On the other

hand, expected number of objects larger than one means that multiple objects are

merging together and detected as a single blob.

In this case, the process of extracting objects that are merged is done by varying

a threshold value and redoing the thresholding step in that specific blob region. The

threshold value is increased by one step value per iteration and there are a maximum

number of iteration steps. The process of threshold varying stops when the number

of blobs obtained from applying the increased threshold value equals to the expected

number of object or the iteration reaches its maximum. Measurements of parameters

such as area, bounding box, and center of the blob are also performed at the new

extracted blobs. Fig. 4.6 shows how merging flies look like in blob image and Fig. 4.7

shows the same scene in 3-D shaded surface. The threshold level is not high enough

to separate the flies. The result after the system split the merging flies is shown in

Fig. 4.8 and Fig. 4.9. Note that the threshold level was increased to be just enough

for separation of the blob. The splitting of merging flies only works when the flies are

not overlapping too much. If they are overlapping too much, the varying of threshold

will reach its maximum without reaching the expected number. This makes the

program detect them as a single fly. However, in this system, multiple identities can

be assigned to the same detection.
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Figure 4.6: Merging flies in 2-D scene. The merging flies appears as a single white

area.

Figure 4.7: Merging flies in 3-D shaded surface. By observing the merging flies in 3-D

shaded surface, this single area seems to contain two flies since there are obviously

two mountains in the image.

83



Figure 4.8: Split flies in 2-D scene. The merging flies blob from Fig. 4.6 was split by

varying threshold value until the blob is split into an expected number of fly.

Figure 4.9: Split flies in 3-D shaded surface. The merging flies blob from Fig. 4.7 was

split by varying threshold value until the blob is split into an expected number of fly.
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4.3.2 Posture modeling

The posture of a Drosophila includes its position and heading direction. The

position of each Drosophila is the center of its blob. Note that this has already been

done in the blob analysis step. The center of a blob can be calculated by

x̄ =
1

N

∑
i∈I

xi, (4.2)

ȳ =
1

N

∑
i∈I

yi, (4.3)

where x̄ and ȳ are the center in x and y direction, respectively. The number of

connected pixels that form the blob is N . Set I contains all indexes of those pixels.

To obtain the heading direction, orientation of each object is first approximated

since the heading direction lies on the orientation vector. This is done by performing

ellipse approximation to each blob and then calculating the major axis of the best-fit

ellipse. Once the orientation of every blob is determined, measurement of heading

direction is then performed. The ellipse approximation can be done by following

Eq. 4.4 to Eq. 4.10. Eq. 4.4 to Eq. 4.6 calculate normalized second central moment

for the region. The term 1
12

is the normalized second central moment of a pixel with

unit length.

uxx =
1

N

∑
i∈I

(xi − x̄)2 +
1

12
, (4.4)

uyy =
1

N

∑
i∈I

(yi − ȳ)2 +
1

12
, (4.5)

uxy =
1

N

∑
i∈I

(xi − x̄)(yi − ȳ) +
1

12
, (4.6)
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∆ =
√

(uxx − uyy)2 + 4u2
xy, (4.7)

a =
√

2(uxx + uyy + ∆), (4.8)

b =
√

2(uxx + uyy −∆), (4.9)

θ =



arctan(uyy−uxx+∆

2uxy
) if uyy > uxx

arctan( 2uxy
uxx−uyy+∆

) if uxx > uyy

0 if uxy = 0 and uxx − uyy + ∆ = 0

(4.10)

where a and b are major and minor axes, respectively. The orientation is represented

by θ. Fig. 4.10 shows an example of ellipse fitting to a blob. Fig. 4.11 shows the

ellipse with the real scene. The major axis is represented by a red straight line while

the minor axis is represented by a blue straight line.

Figure 4.10: Ellipse fitting result in binary scene. The ellipse fits the filtered data in

binary scene. The major and the minor axes are illustrated as the red and the blue

lines, respectively.
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Figure 4.11: Ellipse fitting result in real scene. The major and the minor axes are

illustrated as the red and the blue lines, respectively. According to the real scene,

head of the fly and wings position both lie on the main axis. Being able to determine

the position of the wings implies the position of the head.

According to the orientation of a blob, there are two directions of choices, one

pointing in the direction of the head and another pointing in a reverse direction. The

problem is how to determine which direction from the two choices is the correct one

for heading direction. One method of detecting the heading direction is to detect

positions of the wings, because they are always located at the opposite direction to

the head. This system uses an idea that wings has an intermediate intensity between

fly’s body and background to distinguish them. Wing detection of a blob is done

by deploying two search points to that blob along with applying a specific range of

threshold couples to all the pixels in the bounding box of the blob. The two search

points are decided from the points located at the end of the blob’s major axis, which

are normally the locations of the wings. A threshold couple is introduced to extract

the wing parts. For each threshold couple, two threshold values are presented, floor
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value and ceiling value. When the threshold couple is applied to an image, the pixel

value that is below the floor value and is above the ceiling value will be assigned with

zero. On the other hand, the one with the value between the floor and ceiling values

will be assigned with one. The system gives a score to each of the two search points

and the score is obtained by collecting assigned values of all pixels located around

each search point within a specific radius. The search point that has higher score that

is above a specific value will be considered as the representation of wing position. The

system also counts a score for the pixels outside the search area, noted as environment

pixels. For a search point having high score with high score of environment, the search

point will be rejected from being the representative and the score of that point will

not be counted. In this case, what the search point found is not wing pixel but the

environment pixel. The process runs by alternating various the threshold couple and

collecting score for those search points for a certain iteration step. Finally, the heading

direction for each blob is obtained by calculating a direction from the blob centroid

to the search point that has a higher score. These position and heading direction

will be used in the tracking step later on. The algorithm used for determining the

heading direction is as follows.
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Data: split blob image with orientation, gray-scale original image, searching

radius r, environment threshold THen

Result: heading direction for each blob

create a set THstep containing threshold steps;

create two integer variables, Apoint and Bpoint, and initially set them to be zero;

for each blob do

create two search points, A and B, at the ends of the main axis;

for each ith threshold element in THstep do

apply the ith threshold to the blob;

count positive pixels within radius r from point a and store in pA;

count positive pixels within radius r from point b and store in pB;

count positive pixels outside radius r from both point a and b and store

in penvi;

if penvi > THen ∨ pA = pB then

do nothing;

else

if pA > pB then

increase Apoint by pA − pB

else

increase Bpoint by pB − pA

end

end

end

compare Apoint and Bpoint, the point that has higher value should be in the

direction of wings therefore, the heading direction will be from the

centroid to the point that has lower value

end

Algorithm 2: Heading direction detection algorithm
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Fig. 4.12 displays six filtered images with different threshold range. The image

is the same as Fig. 4.11. Two search points are created at the end of major axis.

Boundary of each search area is drown as a red circle and a green circle. The higher

number of positive pixel that a search point found, the higher probability of that

point to contain wings. Thus, heading direction is to the opposite. According to

Fig. 4.12, wings are located at the green circle and this implies that the true head of

the fly is at the red circle.
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Figure 4.12: Filtered image at different threshold range level. Two search points

illustrated as red and green are located at the end of the major axis. A number of

threshold ranges are applied to a blob resulting in white pixels. Each search point

collects a score by counting a number of white pixels located within its range. The

higher number of white pixel that a search point found, the higher probability of that

point to contain wings. In this figure, wings of the fly is likely to be located at the

green circle.

4.3.3 Tracking

Once the moving pixels or the foregrounds are detected as blobs in each frame,

the next task is to assign identities to those blobs and find their correspondence in

the next frame. After a fly has been assigned an identity, the identity should be kept
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with the same fly throughout the frame sequences, unless it may result in identity

loss that will obviously affect the accuracy of further measurements. Tracking is the

process of retaining the identity of each blob. There are some situations that identity

loss happens such as jumping behavior, overlapping, and crossing. These problems

introduce difficulty to the tracking task and a tracking strategy that is robust to those

situations is required. In this work, a Kalman Filter is used as a position predictor

and velocity together with the use of Hungarian algorithm [66] to determine the best

matching of identities. To solve Hungarian algorithm problem in MATLAB, we used

an open-source function called ”assignmentoptimal” by Markus Buehren [67]. The

Kalman filter is also used for estimating the next state of the system. Unfortunately,

the only prediction from Kalman Filter is not enough to deal with all the situations

since the flies may suddenly move backward and this will result in tracking loss or

identity swapping. Thus, we introduce a method using of heading direction to help

confirming the identity matching. Exactly or nearly the same in heading direction of

two blobs in consecutive frames increase the certainty that the two blobs are the same

object. The pairs that are rejected from the confirmation of the identity matching

will be treated with the closest neighbor assignment algorithm.

Kalman Filter

Theoretically the Kalman Filter is an estimator for linear-quadratic problem,

which is the problem of estimating the instantaneous state of a linear dynamic sys-

tem perturbed by white noise and the resulting estimator is statistically optimal with

respect to any quadratic function of estimation error [68]. For the next consecutive

state, the filter predicts state variables based on current state variables, compares and

modifies with measured information from the next state, and then gives estimation of
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the next state variables with minimal error. In this work matching between predicted

states and the measurement needs a confirmation from the Hungarian assignment

algorithm and heading direction before states estimation. The estimated states will

be kept as states for the next time step.

State vector and state transition matrix are as follows,

xk =



x

y

vx

vy


, A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


, (4.11)

where vx and vy are velocity in x and y direction, respectively. ∆t is time difference

between two consecutive frames with state prediction equation as

xk+1 = Axk. (4.12)

Hungarian assignment algorithm

Hungarian assignment algorithm is an optimization algorithm that solves assign-

ment problem. Assignment problem can be considered as assigning workers with

jobs. The optimum of the assignment is achieved by giving each working with suit-

able job that minimize overall cost. An example of cost matrix for assigning a job to a

worker is shown in Fig. 4.13. In identity assignment between two consecutive frames,

predicted result from detection stage in the first frame is considered as the worker

while detection in the second frame is considered as the job from the cost matrix in

Fig. 4.13. The cost of assigning a job to a worker is the Euclidean distance between

the prediction and the detection.

93



Figure 4.13: Example of cost matrix for assigning a job to a worker. This system

assigns identities between two consecutive frames using predicted positions from the

first frame and detected positions from the second frame as the workers and the jobs.

The cost will be distance between all possible pairs of positions.

The closest neighbor assignment algorithm

The closest neighbor assignment algorithm solves assignment problem by consid-

ering the smallest cost as the highest priority. This algorithm is different from the

Hungarian assignment algorithm in the way that it focuses on the individual cost

instead of the overall cost. Therefore, the result of using this algorithm does not

guarantee the minimum of overall cost. However, since sometimes the tracking move-

ment is not properly estimated such as moving forward and then backward or jumping

in the different direction from previous movement, which will result in failure of es-

timation, the closest neighbor assignment algorithm is then required to solve such a
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problem. Note that in this work, this algorithm will be used as a second assignment

algorithm dealing with failed cases from heading direction checking after Hungarian

assignment algorithm, which is the main algorithm.

The closest neighbor assignment algorithm shown in Algorithm 1 works by finding

the minimum cost in the cost matrix. It takes the pair that has the smallest cost and

put it into chosen pair set. The cost matrix is then modified by deleting a row and a

column involving the chosen pair, thus other pairs that include elements in the pair

is removed from consideration. The algorithm goes back to finding the minimum cost

using the new cost matrix and this process continues until all the elements in the row

or the column are removed.

Tracking process

In the tracking process, there will be a tracker following movement of each fore-

ground object in the scene. The tracker keeps information of a foreground object

like position, velocity, and heading direction. Velocity of each detection is initially

set to be zero. Next, prediction step in Kalman Filter is applied to all the trackers.

The predicted results will be treated as the worker in the Hungarian assignment al-

gorithm. All detection in the next consecutive frame will be input to the assignment

algorithm as the job. In this step, assignment cost matrix is created and the cost

will be Euclidean distance between the worker and the job. Note that the number of

workers and jobs may not be the same since some objects may disappear due to over-

lapping or miss-detection. This makes the assignment cost matrix non rectangular

matrix that may cause the Hungarian assignment algorithm in some programs to fail.

Adding dummy workers or dummy jobs makes the cost matrix to be a rectangular

matrix.
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After proper matching is obtained, heading direction of the tracker and its pair

are checked in order to ensure that they are the same object. An angle between two

directions tells the difference between them. If the angle lies within a specific range

defined by user, the pair is preserved. If it does not, then the pair is rejected. The

pair that includes dummy will be rejected as well.

For all pairs that are rejected, a new cost matrix is created based on those pairs.

This new cost matrix is different from the previous cost matrix in the way that it

uses original states as the worker instead of predicted states. After the pairing step,

all the information such as position, velocity, and heading direction for the next time

step will be kept in each tracker. All the processes repeat at each time step from the

desired starting frame until the desired ending frame.

Fig. 4.14 and Fig. 4.15 shows the overview of the tracking process. Suppose that

the current frame is k (Fig. 4.14), trackers are labeled with number from 1 to 4 at

each current position. All current positions are shown as red circles. The blue cross

marks are predicted positions based on current positions and their velocities. For

the next frame k + 1 (Fig. 4.15), new positions are measured and shown as green

triangles. The system then tries to pair each predicted position or blue cross mark to

each measurement or green triangle by using Hungarian assignment algorithm. There

will be obvious pairs of (1′, a), (2′, b), and (3′, c). These pairs match the state before

prediction to the measurement as (1, a), (2, b), and (3, c). However, the remaining

4 points, 4′, 5′, d, and e, are quite problem. If we continue without checking the

heading direction, (4′, e) and (5′, d) will be the results from pairing. But actually, the

tracker number 4 should be paired with measurement d and the tracker number 5

should be paired with measurement e since the heading directions make more sense.
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To obtain proper pairing, heading direction needs to be checked. For those who were

rejected, we apply the closest neighbor between its state before prediction (red circle)

and measurement (green triangle). In this way, the result will be (4, d) and (5, e).

Figure 4.14: Current position with prediction. First position of each fly in the next

time step is predicted by using its current position shown in red dot and current

velocity shown in dotted vector.
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Figure 4.15: Prediction and next time step position. Detected positions in the next

time step are paired with the predicted positions by using the Hungarian assignment

algorithm. The result of pairing is confirmed by checking the heading directions. The

system rejects the pair that has high direction difference. In this figure, the pairs

{4’,e} and {5’,d} will be rejected and refined with the closest neighbor assignment

algorithm.
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4.4 Experiment

In this section, a video showing result of processing an example Drosophila is

presented. The name of video is ”Video 1”. The example video was taken at 19 fps

827×818 resolution in the total of 1,184 frames. There are 32 flies in a closed circular

arena. All flies are not marked or even have their wings cut.

According to the input video, each fly appears as a dark object in the scene.

The floor of the arena appears as a brighter object. Based on this statement, the

proposed system detects flies using pixel intensity, dark object will be detected as a

fly. However, in some scene it is possible to have other objects, which are not the

flies, appear in the scene such as small tools, foods, etc. These objects appear in

dark and will affect the detection process of the system. To get rid of those unwanted

objects, background subtraction is performed. Fig. 4.16 shows grayscale input image

and Fig. 4.17 shows a scene after background subtraction. According to the figure,

unwanted objects have been eliminated leaving only flies.
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Figure 4.16: Original input image from Video 1. There are total of 32 files in a

circular arena.

Figure 4.17: Extracted flies image from Video 1. The extracted flies image resulted

from background subtraction followed by intensity reversal.
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4.4.1 Blob filtering and splitting of merging flies

Fig. 4.18 shows the processed image using normal binarization and Fig. 4.19 shows

the processed image using the blob filter. By comparing these two figures, less noises

are presented in the case of using the blob filter. In this way, clearer appearance will

provide more accurate result in posture modeling section.

Since the main situation that the system is dealing with is multiple Drosophila

in a scene, there will be many situations where the flies merge. In case of two or

more flies are located close to each other and the result is merging flies detected as

a single blob. Merging flies combine positions of multiple flies together, forming a

new position of the group that causes the correct position of each fly to be absent.

To overcome this merging problem, the system applies various intensity thresholds to

the merging area in order to separate the flies. Those separated blobs will be treated

in blob analysis separately resulting in more proper position of each fly.

Figure 4.18: Normal binary thresholding image. The result of the normal binarization

contains some noises.
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Figure 4.19: Blob filtered image. The result of the blob filter provides clear oval shape

of a single fly.
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4.4.2 Heading direction

Failure case

Heading direction is one of the important factors that help the tracking process.

There are some situations that cause error in heading direction calculation. Fig. 4.20

and reffigfig:fail2 show two cases, fly performing side wings extension and abnormal

shape, where heading direction fails. Side wings extension prevents the system from

finding the position of wings regarding the main axis. Abnormal shape occurs when

Drosophila fly and its detected heading direction becomes unknown even using hu-

man eyes to decide.

Figure 4.20: Fly performing side wings extension makes heading direction to fail.

Having its wings in position different from the normal wings position causes the

system to fail to determine the heading direction.
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Figure 4.21: Abnormal shape detected by the camera makes heading direction to fail.
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Heading direction result in real scene

Fig. 4.22 illustrates the result of the process of determining the heading direction

of each fly from ”Video 1”. Heading direction is shown in red arrow for each fly. All

the information such as position and heading direction, will be kept in each frame

waiting to be used in the tracking step.

Figure 4.22: The result of determining heading direction of each fly using ”Video 1”.

Heading direction of each fly is shown as a red arrow. Almost all heading directions

were correctly determined except the fly with blue circle.
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Heading direction result in various intensity videos

The system was also tested with various intensity shifting. Fig. 4.23 to Fig. 4.30

show heading direction result of eight intensity of Fig. 4.22. Having 207 mean intensity

value of Fig. 4.22 as a reference, Fig. 4.23, Fig. 4.24, Fig. 4.25, and Fig. 4.26 has

mean intensity shifted by +80, +60, +40, and +20, respectively. For negative mean

intensity shift, Fig. 4.27, Fig. 4.28, Fig. 4.29, and Fig. 4.30 has mean intensity shifted

by −20, −40, −60, and −80, respectively.

The system uses heading direction to help in identity assignment step, but the

heading direction does not have to be very accurate. We are currently developing the

software to be able to accurately determine the heading direction.
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Figure 4.23: Heading direction results of +80 intensity shift.

Figure 4.24: Heading direction results of +60 intensity shift.
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Figure 4.25: Heading direction results of +40 intensity shift.

Figure 4.26: Heading direction results of +20 intensity shift.
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Figure 4.27: Heading direction results of -20 intensity shift.

Figure 4.28: Heading direction results of -40 intensity shift.
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Figure 4.29: Heading direction results of -60 intensity shift.

Figure 4.30: Heading direction results of -80 intensity shift.
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4.4.3 Identity assignment

Fig. 4.31 to Fig. 4.34 show an example of tracking result. Each fly in the scene

is labeled with number corresponding to its tracker number. Let the current frame

to be frame t, trajectory of the movement of each fly from frame t − 6 to frame t

is illustrated by colored-line. From time step k to k+3, there are 18 stationary flies

(number 1, 2, 6, 7, 9, 12, 15, 18, 21, 23, 25, 26, 27, 28, 29, 30, and 31). 13 flies are

detected to have small simple displacement (number 3, 4, 5, 8, 10, 11, 13, 14, 17,

20, 22, 24, and 32). There is a flying fly (fly number 16 enclosed by black dotted

rectangle). At time step k, it flew from the top of the arena to the middle and to the

bottom right at time step k+1. The next time step, it went a bit upward and finally

flew back to the middle of the arena at time step k+3. Each time step is different

from its consecutive frame by 0.0526 seconds. According to the figure, all identities

are assigned properly to all Drosophila. In case of flying fly (fly number 16 that is

enclosed by black dotted rectangle), it can also be tracked by this system.
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Figure 4.31: Trajectories images showing the result from identity assignment at time

step k. The colored line represents each trajectory from last 6 time steps. A flying

fly is detected (fly number 16 enclosed by black dotted rectangle). At this time step,

it flew from the top of the arena toward the middle of the arena.
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Figure 4.32: Trajectories images showing the result from identity assignment at time

step k+1. The colored line represents each trajectory from last 6 time steps. At this

time step, the flying fly (fly number 16 enclosed by black dotted rectangle) flew to

the bottom right of the arena.
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Figure 4.33: Trajectories images showing the result from identity assignment at time

step k+2. The colored line represents each trajectory from last 6 time steps. At this

time step, the flying fly (fly number 16 enclosed by black dotted rectangle) went a

bit upward.
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Figure 4.34: Trajectories images showing the result from identity assignment at time

step k+3. The colored line represents each trajectory from last 6 time steps. At this

time step, the flying fly (fly number 16 enclosed by black dotted rectangle) finally

flew back to the middle of the arena.
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Fig. 4.35 and Fig. 4.36 show examples of identity loss and identity swapping. Iden-

tity loss usually occurs when detection failed. This causes the tracker to incorrectly

track the fly with noise from failed detection. For identity swapping, it sometimes

occurs when the fly flies over other fly with failed heading direction.

(a) Identity loss 1st frame

(b) Identity loss 2nd frame

Figure 4.35: Examples of identity loss scene. Identity loss occurred at fly number 4

in (a) and it lost in (b). New tracker number 33 was assigned to the fly instead.
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(a) Identity swapping 1st frame

(b) Identity swapping 2nd frame

Figure 4.36: Examples of identity swapping scene. Identity swapping is shown in (a)

and (b). Fly number 21 was flying (a) and passing fly number 15 in the next frame.

Their identities swapped as seen in (b).
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Tab. 4.1 shows detail of videos used for efficiency analysis of this tracking system.

There are total of five videos shown in the table. The provided video ”Video 1” has

resolution of 827 × 818 and was taken at 19 fps. Other video (Video 2 to Video 5)

were taken at 20 fps with resolution of 593×592, 593×592, 980×980, and 1031×1031,

respectively. For Video 1 which is the main example in this part, total number of

frames is 1184 with 32 flies in a closed arena. Average velocity in each video is

represented by vav. This average velocity shows how active the flies are in each video.

Table 4.1: Detail of each video. The first column is video name. The second column

shows number of frames with number of fly per frame. The third column shows

average velocity.

Name Frames (flies/frame) vav[pixel/second]

Video 1 1184 (32) 93.78

Video 2 1500 (26) 13.34

Video 3 1043 (25) 22.63

Video 4 987 (27) 37.48

Video 5 1269 (31) 34.07

Tab. 4.2 shows efficiency of this tracking system. The ”Crossing” column from

the table contains the number of crossing event that occurred in each video. The

crossing event is an event that two or more flies overlap, causing one detection. All

errors were observed by eyes for all frames. Swapping error obtained from counting

the number of identity swapping occurred throughout all the frames. The number in

the parentheses is swapping error caused by the crossing event. Identity loss error is

the cumulative number of loss of identity events. It counts when an identity leaves
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its current fly. The last column of the table represents the number of false positive

(FP), detection of non-fly object and additional detection due to the error of blob

splitting. For this tracking system, there are 10 flies swapping. No identity loss and

FP throughout all the frames in Video 1 to Video 4. The identity loss in Video 5

occurred because of failure in fly detection stage. It can be seen from Fig. 4.35 that

additional detecting result was added to the fly number 4 and the identity number 4

was paired with another point in Fig. 4.36. This is a problem to this program since

it uses a certain value of fly size to split a single blob of multiple flies. There will

be no problem in a scene of multiple flies whose size are about the same, but it will

introduce errors in a scene of flies varying in size.

Table 4.2: Error of flies swapping. The first column is video name. The second column

is the number of crossing event that occurred in each video. The third column shows

the total number of swapping occurrence with the number of swapping from crossing

event in the parentheses. The fourth column represents the number of loss of identity

events. The last column is the total number of false positive.

Name Crossing Swapping (Cross-swap) Loss FP

Video 1 5 10 (4) 0 0

Video 2 7 2 (0) 0 0

Video 3 14 7 (7) 0 0

Video 4 16 3 (3) 0 0

Video 5 16 13 (6) 4 472

All videos were also tested with C-Trax with automatic setting offered by the

program. The tracking results failed in every video input. All the resulting videos by
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C-Trax are available online at [69]. Software of the proposed system was written in

MATLAB programming language. The software is called ”TPro”, running on Win-

dows OS. The requirement for using Tpro is just installation of MATLAB Runtime

that is a standalone set of MATLAB shared libraries. The user can define specific

range of processing frames. Only a threshold value is required from the user to set.

The program also provides an option for the user to try various threshold values and

choose a proper value to use in fly detection step. All supplementary videos, software,

and examples of the proposed Drosophila tracking system including resulting videos

are also available online at [69].

4.5 Conclusion and Discussion

In this work, a system for detecting and tracking a group ofDrosophila Melanogaster

is introduced. The system can get rid of unwanted object besides the flies themselves.

This system can deal with situation where flies are within close proximity of one an-

other resulting in merging of their position while having the ability to separate them

apart. It also provides accurate result of posture modeling in terms of position and

heading direction of each individual fly. The system uses Kalman filter in identity as-

signment and tracking part to refine measured position and to obtain velocity. It uses

predicted position along with the Hungarian assignment algorithm to get the match

of each individual fly for the next frame. Moreover, the closest neighbor assignment

algorithm is used for the case of heading direction mismatch resulting in more proper

matching.

Instead of doing the detection and the tracking instantaneously at each frame,

the system performs detection to all the frames first then the tracking. This makes
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it easy for the user to check and to refine the detection result. Furthermore, same

detection result can be used with different methods in the tracking part. This saves

the user a lot of time when working with many video files.
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Chapter 5

Behavior analysis of fruit fly

In this chapter, the output data from fly tracking in chapter 4 is used to classify

simple behavior of fly such as stopping, walking, and jumping. All 1,184 frames of

Video 1 in chapter 4 were chosen to be analyzed. To show the efficiency of data

provided by the tracking program, manual tracking and classification performed by

human is used to compare with random forest classification of tracked data by the

program. The random forest classification is one of the classification techniques in

machine learning tasks. The method consists of a number of decision trees that are

constructed based on random data from a set of training data.

5.1 Manual tracking and classification

In this part, tracking and classification result done by human are shown. Fig. 5.1

illustrates the first and the second frames seen by the human. At each frame, the

human has to decide the behavior of a fly that he/she is tracking. Fig. 5.2 to Fig. 5.9

show the result of classification done by human of fly number 1 to 32, respectively
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The vertical axis in Fig. 5.2 to Fig. 5.9 represents the behaviors as 1: stopping 2:

walking and 3: jumping.
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(a)

(b)

Figure 5.1: (a) The first and (b) the second frame seen by human. All flies have

number label in order to identify them. From the second frame to the last frame,

there are no labels and trajectories.
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(a)

(b)

(c)

(d)

Figure 5.2: Result of behavior classification performed by human for fly number 1 to

4.
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(a)

(b)

(c)

(d)

Figure 5.3: Result of behavior classification performed by human for fly number 5 to

8.

127



(a)

(b)

(c)

(d)

Figure 5.4: Result of behavior classification performed by human for fly number 9 to

12.
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(a)

(b)

(c)

(d)

Figure 5.5: Result of behavior classification performed by human for fly number 13

to 16.
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(a)

(b)

(c)

(d)

Figure 5.6: Result of behavior classification performed by human for fly number 17

to 20.
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(a)

(b)

(c)

(d)

Figure 5.7: Result of behavior classification performed by human for fly number 21

to 24.
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(a)

(b)

(c)

(d)

Figure 5.8: Result of behavior classification performed by human for fly number 25

to 28.
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(a)

(b)

(c)

(d)

Figure 5.9: Result of behavior classification performed by human for fly number 29

to 32.

133



5.2 Random Forest Classification

To analyze the behavior of the Drosophila in each frame, random forest or random

decision forest is chosen as the classification tool. Only the velocity in x and y

direction are considered as the features. Behavior classes are the same as those in

previous section as 1: stopping 2: walking and 3: jumping. To create a classification

forest, training data is required. The training data was obtained by manually observe

the fly behavior carefully and the data was chosen only from the frame that the

fly performs obvious behavior. The training data used in this section is shown in

Fig. 5.10. According to the figure, blank data means there is no training data at that

frame. All the training data was taken from fly number 1, 16 , 23, and 32.

Total of 149 data is used to create a classification forest that consists of 20 decision

trees. Fig. 5.11 and Fig. 5.12 show example of two decision trees created from the

training data. Fig. 5.13 to Fig. 5.20 show the result of behavior classification obtained

from random forest for fly number 1 to 32.
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(a)

(b)

(c)

(d)

Figure 5.10: (a) (d) Training data from fly number 1, 16, 23, and 32, respectively.

The blank data means there is no training data at that frame.
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Figure 5.11: The first decision tree of the classification forest.

Figure 5.12: The second decision tree of the classification forest.
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(a)

(b)

(c)

(d)

Figure 5.13: Result of behavior classification performed by random forest for fly

number 1 to 4.
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(a)

(b)

(c)

(d)

Figure 5.14: Result of behavior classification performed by random forest for fly

number 5 to 8.
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(a)

(b)

(c)

(d)

Figure 5.15: Result of behavior classification performed by random forest for fly

number 9 to 12.
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(a)

(b)

(c)

(d)

Figure 5.16: Result of behavior classification performed by random forest for fly

number 13 to 16.
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(a)

(b)

(c)

(d)

Figure 5.17: Result of behavior classification performed by random forest for fly

number 17 to 20.
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(a)

(b)

(c)

(d)

Figure 5.18: Result of behavior classification performed by random forest for fly

number 21 to 24.
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(a)

(b)

(c)

(d)

Figure 5.19: Result of behavior classification performed by random forest for fly

number 25 to 28.
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(a)

(b)

(c)

(d)

Figure 5.20: Result of behavior classification performed by random forest for fly

number 28 to 32.
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5.3 Results

The classification results from human and the random forest are compared in this

section. Fig. 5.21 to Fig. 5.28 show the error at each frame of each individual fly. The

value of 1 in the vertical axis indicates that the behavior determined by the random

forest is different from the one determined by human.

5.4 Discussion

By observing the difference of behavior between using manual classification and

random forest classification (Fig. 5.21 to Fig. 5.28), most matching results are the

classification of fly number 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 18, 19, 22, 24, 26, and 30. For

other flies, there were some failures of the tracking program that caused the identity

assignment to fail and resulted in identity swapping. One example of this failure

occurred at frame 337 of the fly number 3. After observed carefully, at the frame

337, identity swapping occurred between fly number 3 and fly number 17 because fly

detection failed to separate those flies. The result of matching in classification show

that the usage of the tracking program together with classification by the random

forest can provide the similar results to the works done by human. However, manual

tracking and classifying took about 15 minutes in average for each fly. This means

it takes about 8 hours to work with all 32 flies without resting. On the other hand,

using the program took less than 10 minutes to do the task for all flies. This can save

a lot of time and the error can be easily found by using the tracked trajectories.
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(a)

(b)

(c)

(d)

Figure 5.21: Difference of behavior between using manual classification and random

forest classification of fly number 1 to 4.
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(a)

(b)

(c)

(d)

Figure 5.22: Difference of behavior between using manual classification and random

forest classification of fly number 5 to 8.
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(a)

(b)

(c)

(d)

Figure 5.23: Difference of behavior between using manual classification and random

forest classification of fly number 9 to 12.
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(a)

(b)

(c)

(d)

Figure 5.24: Difference of behavior between using manual classification and random

forest classification of fly number 13 to 16.
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(a)

(b)

(c)

(d)

Figure 5.25: Difference of behavior between using manual classification and random

forest classification of fly number 17 to 20.
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(a)

(b)

(c)

(d)

Figure 5.26: Difference of behavior between using manual classification and random

forest classification of fly number 21 to 24.
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(a)

(b)

(c)

(d)

Figure 5.27: Difference of behavior between using manual classification and random

forest classification of fly number 25 to 28.
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(a)

(b)

(c)

(d)

Figure 5.28: Difference of behavior between using manual classification and random

forest classification of fly number 29 to 32.
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Chapter 6

Conclusion and Future

Perspectives

According to the need of locomotion analysis for small model organism such as

Drosophila Melanogaster or fruit fly, a machine vision system that can process data

in form of video file and give correct tracking data is considered. In order to have

a successful fly tracking program, many techniques such as fly detection, merging

blob splitting, wing detection, identity assignment, and prediction of motion are the

requirement of the program. In this dissertation, two automatic fly tracking systems

are proposed and discussed as multiple-object tracking problem with indistinguishable

features. The data from the tracking program is input to behavior classification

of Drosophila by using a machine learning technique, random forest. In addition,

a system of controlling multiple lake monitoring sensor nodes is also discussed as

multiple-object problem with distinguishable features. All the simulation methods are

provided in each chapter and the tracking results of using both fly tracking systems

are mentioned in this dissertation.
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In chapter 2, to achieve long time monitoring of water resource and collect mea-

surement of water resource effectively, we have proposed the concept of mobile mon-

itoring sensor and control method of the sensors. The proposed mobile monitoring

sensor has actuator and thus can move by itself. To reduce cost of proposed sensor

and to achieve long time operation, it is necessary to prolong battery life. For this

purpose, the proposed control method for distribution of sensors utilize the drag force

from the flow field effectively for sensor’s movement. The distributions are performed

in both uniform constant water flow field and complex steady flow field. Numerical

examples show that the proposed controller provides less energy consumption compar-

ing with a method using simple position-velocity control that is considered to be the

conventional control. Furthermore, the modified version of the proposed controller

gives more effective group control with lower in energy consumption than the original

proposed controller. This makes the proposed lake monitoring sensors system be able

to achieve long time monitoring of water resource. The lower in energy consumption

for the monitoring sensors distribution saves the amount of limited energy inside the

battery attached to each sensor node. Therefore, with low energy consumption, the

monitoring system operating time will last longer and the system efficiency will be in-

creased. In the future, by taking control of the sensors group based on high accuracy

whole flow field of the lake, more effective multiple-object control can be achieved.

In chapter 3, we present an algorithm for analyzing the locomotion behavior of

the fruit fly Drosophila melanogaster, a popular model organism in neurobiology. Our

proposed algorithm detects all flies inside a circular arena, determines their position

and orientation and assigns fly identities between consecutive frame pairs. Position

and orientation of the flies are accurately estimated with average errors of 0.108±0.006
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mm (approximately 5% of fly body length) and 2.2± 0.2◦, respectively. Importantly,

fly identity is correctly assigned in 99.5% of the cases. The algorithm can be used to

quantify the linear and angular velocities of walking flies in the presence or absence of

various behaviorally important stimuli. The next goal is to apply the system to more

challenging fly experiment condition like applying electric shock to the fly. With the

presence of electric shock, the fly will jump or fly with high speed and this makes the

fly detection and the identity assignment problem to be more challenging.

In chapter 4, an improved system for detecting and tracking a group of Drosophila

is introduced. It can deal with situation where flies are within close proximity of one

another resulting in merging of their position while having the ability to separate them

apart. This system provides a solution to crossover and touching identity swapping

problem in tracking process. It uses heading direction for evaluating tracking result

from prediction strategy and refines with the closest neighbor method to determine

correct identity of each fly in the consecutive image frame. The closest neighbor

assignment algorithm is used for the case of heading direction mismatch resulting

in more proper matching. Suggested follow up works are improving accuracy of the

system, reducing process time, and wing position of a fly. The latter is beneficial for

extracting more information about fly behavior.

In chapter 5, fly behavior analysis is shown. The output data from the tracking

program from chapter 4 is used for simple behavior classification using one of the

classification techniques called random forest. The efficiency of the usage of the data

is emphasized by comparing the classified result from the program with the behavior

classification manually done by human. As a result, the program can provide a good

behavior result that is the same performance as human labeled classification with

157



more time efficiency than human.

In summary, the latest improved Drosophila tracking system provides successful

locomotion data of each individual fly by using a combination of predict-matching

and closest neighbor approach assignment methods in the tracking process. The

proposed method of using heading direction to check the pairing result can reduce

the identity swapping occurred from touching and crossing over scenarios. For the

future work, with the raw data output from the proposed tracking program we would

like to expand the ability of video analysis in a scope of more complex behavioral

classification. Moreover, the detection part in the system can be improved in order

to obtain more detailed data. This includes precise wing detection, leg detection, and

accurate shape detection.
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