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Say, "Behold (observe) all that is in the heavens and on the earth".

But neither signs nor warners benefit those who do not believe

(QS. Yunus: 101).

—————————————————–

In memory of Mohammad Barmawi (1932 –2014).

To my husband and my parents

with eternal appreciation.

ii



Contents

Introduction v

Acknowledgement ix

1 The Lagrange Identity and Its Interpretation 1

1.1 Interpretation of the Lagrange Identity . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cayley-Dickson Process . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Matrix Representation of Cayley-Dickson Process . . . . . . . . . . . . 9

1.2 RDet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Complementary Sequences 19

2.1 Polynomial Representation of Complementary Sequences . . . . . . . . . . . . 21

2.2 Matrix Representation of Complementary Sequences . . . . . . . . . . . . . . 26

2.3 Some Classes of Complementary Sequences . . . . . . . . . . . . . . . . . . . 28

2.3.1 Ternary Complementary Sequences . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Complementary Sequences with Entries in {0,±i,±1} . . . . . . . . . 34

2.4 Constructions of Hadamard Matrices from Complementary Sequences . . . . 37

3 Yang Multiplication Theorem 39

3.1 A Generalization of Yang Multiplication Theorem . . . . . . . . . . . . . . . 39

3.2 Some Constructions of Paired Ternary Sequences . . . . . . . . . . . . . . . . 49

4 The Theorem of Standardization 63

4.1 Improvement of the Proof of the Standardization . . . . . . . . . . . . . . . . 66

4.2 Applications of the Standardization to the Existence of Unit Weighing Matrices 70

iii





Introduction

An Hadamard matrix is a square {±1}-matrix whose rows are mutually orthogonal. Precisely,

if H is a square matrix of order n with all entries are in {±1} and HHT = nI, then we say

that H is an Hadamard matrix of order n. The set of Hadamard matrices of order n is

denoted by H(n). It is known that if H(n) is nonempty, then n is divisible by 4. However,

the converse remains as a conjecture, i.e., there exist Hadamard matrices of order 4t for every

positive integer t. The conjecture is called the Hadamard conjecture and it is an important

open question among the development of the theory of Hadamard matrices. The development

of Hadamard matrices extends to nonbinary alphabets and higher dimensional arrays, and

some properties for multilevel applications in signal processing, coding and cryptography

[15]. The applications of Hadamard matrices are briefly presented in [15, 20]. Seberry, et

al. in [20] give engineering and statistical applications of Hadamard matrices, especially in

communications systems and digital image processing.

Many approaches have been introduced in order to prove the Hadamard conjecture. One

of the method is by constructing some complementary sequences. There exist many classes of

complementary sequences such as Golay sequences, T -sequences, and base sequences. Base

sequences, and their special cases such as normal and near-normal sequences, play an im-

portant role in the construction of Hadamard matrices [10, 19]. For instance, Kharaghani

and Tayfeh-Rezaie in [11] found an Hadamard matrix of order 428 by using base sequences

of length 71 and 36. It is shown in [24] that if (a, b) is a pair of Golay sequences of order n

and A = circ(a) and B = circ(b), then

 A B

−Bt At

 ∈ H(2n)
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Introduction

where circ(a) is the circulant matrix with the first row a. Moreover, it is importnat to note

that we can obtain Hadamard matrices from T -sequences. We will discuss more detail of

complementary sequences in Chapter 2.

Formally, a quadruple of (±1)-sequences (a, b, c,d) of length m,m, n, n, respectively, is

called base sequences if it is a set of complementary sequences. We denote by BS(m,n) the set

of base sequences of length m, m, n, n. If (a, b, c,d) ∈ BS(m,n), then it is complementary

with weight 2(m + n). In [23], Yang gave a method of constructing some complementary

sequences from base sequences. More precisely, Yang’s theorem says that if BS(m+1,m) 6= ∅

and BS(n+1, n) 6= ∅, then there exists a set of four complementary (±1)-sequences of length

(2m + 1)(2n + 1). Furthermore, Yang constructs some paired ternary sequences from base

sequences in his other papers (see [22]). An important key to prove his theorems was by using

the Lagrange identity for the ring of Laurent polynomials. As our main results, we describe

our approach to generalize Yang’s result in Chapter 3. We focus on constructing matrices,

rather than sequences, to obtain the complementary sequences from base sequences. In order

to construct the matrices, we introduce some operations on sequences and matrices. This

work is due to increase the posiibility on finding new T -sequences, which leads to finding new

Hadamard matrices.

Since the Lagrange identity is crucial for the Yang multiplication theorem, we are interested

in the interpretation of the Lagrange identity. Note that Ðoković and Zhao [14] observed

some connection between Yang’s method and the octonion algebra. It is known that the

octonion algebra can be obtained from an arbitrary ring by using the Cayley-Dickson pro-

cess recursively. Thus, we will observe the connection between the Lagrange identity and

the Cayley-Dickson process from an arbitrary ring. The detail of the interpretation of the

Lagrange identity will be presented in Chapter 1.

On the other hand, we consider not only the existence of Hadamard matrices, but also

the existence of weighing matrices. Actually, Hadamard matrices are known as a special

family of weighing matrices. A weighing matrix W of order n with weight w is a square

{0,±1}-matrix such that WW T = wI. Usually, the set of weighing matrices of order n with

weight w is denoted by W (n,w). Indeed, W (n, n) is equal to H(n). Some applications of

weighing matrices are given in [13]. Recently, Best, Kharaghani, and Ramp [2] introduced

vi



the theory of unit weighing matrices, which is a generalization of the family of weighing

matrices. Let T = {z ∈ C : |z| = 1}. A square matrix W = [wij ] of order n with wij ∈ T0

where T0 = T ∪{0} is called a unit weighing matrix of order n with weight w if WW ∗ = wIn

where W ∗ denote the transpose conjugate of W . Indeed, an Hadamard matrix is a special

case of a unit weighing matrix. The set of unit weighing matrices of order n with weight w

is denoted by UW (n,w). A unit weighing matrix is called a unit Hadamard matrix if w = n.

The study on weighing matrices is extensively presented in [2, 3]. Best, Kharaghani, and

Ramp in [2, Theorem 5] showed that every unit weighing matrix is equivalent to a standard

form. This theorem plays an important role in establishing the classification of unit weighing

matrices. However, the proof in the original paper was incorrect. Therefore, we will give a

corrected proof of the standardization in Chapter 4. We also give applications of standard

form in this chapter, based on the results in [2].

vii
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1 The Lagrange Identity and Its

Interpretation

In this chapter, we will give a brief introduction of the Lagrange identity. We will introduce

the Lagrange identity as follows. Let a, b, c, d, e, v, g, h ∈ R where R is a commutaive ring

with identity and an involutive automorphism ∗. Set

q = av∗ + cg − b∗e+ dh,

r = bv∗ + dg∗ + a∗e− ch∗,

s = ag∗ − cv − bh− d∗e,

t = bg − dv + ah∗ + c∗e.

(1.1)

Then

qq∗ + rr∗ + ss∗ + tt∗ = (aa∗ + bb∗ + cc∗ + dd∗)(ee∗ + ff∗ + gg∗ + hh∗).

When ∗ is just the identity map, the identity is known as Euler’s identity. the Lagrange

identity is crucial for the Yang multiplication theorem, and we will give the detail of the role

of the Lagrange identity in Chapter 3.

1.1 Interpretation of the Lagrange Identity

Ðoković and Zhao showed the relation between the Lagrange identity and an octonion algebra

in [14]. They investigated a possibility of new the Lagrange identity for polynomials. How-

ever, as a result, all such identities are equivalent to each other. In the following sections, we

will show that the Lagrange identity can be interpreted as a norm and a determinant. Also,

we investigate a possible relation with the function RDet. We will give the detail information
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1 The Lagrange Identity and Its Interpretation

of RDet later.

1.1.1 Cayley-Dickson Process

Let R be a (not necessarily commutative but associative) ring, and let · : R → R be an

involutive anti-automorphism of R, i.e.

a = a, a+ b = a+ b, ab = ba (a, b ∈ R).

Assume

ab− ba+ ab− ba = 0 (a, b ∈ R), (1.2)

āa = aā (a ∈ R), (1.3)

āab = bāa (a, b ∈ R). (1.4)

By using the Cayley-Dickson process, we will produce a non-associative algebra from R.

Define

R1 = R⊕R

with the following multiplication:

(a, b)(c, d) = (ac− d̄b, da+ bc̄). (1.5)

We define τ : R1 → R1 by

(a, b)τ = (ā,−b). (1.6)

It is easy to see that τ is involutive. Indeed, ((a, b)τ )τ = (ā,−b)τ = (a, b).

Lemma 1.1. τ is an anti-automorphism.

2



1.1 Interpretation of the Lagrange Identity

Proof. Let (a, b), (c, d) ∈ R1. Then

((a, b) + (c, d))τ = (a+ c, b+ d)τ

= (a+ c,−b− d)

= (ā,−b) + (c̄,−d)

= (a, b)τ + (c, d)τ .

Also,

((a, b)(c, d))τ = (ac− d̄b, da+ bc̄)τ = (ac− d̄b,−da− bc̄),

(c, d)τ (a, b)τ = (c̄,−d)(ā,−b) = (c̄ā− b̄d, (−b)c̄+ (−d)a),

and hence

((a, b)(c, d))τ = (c, d)τ (a, b)τ .

Thus, the result follows.

Lemma 1.2. Let α, β, γ ∈ R1. Then

(i) αβ − βα+ (αβ − βα)τ = 0,

(ii) ατα = αατ ,

(iii) αταβ = βατα,

(iv) (αβ)γ = α(βγ) holds only if R is commutative.

Proof. Let α = (a, b), β = (c, d), γ = (e, f) (a, b, c, d, e, f ∈ R).

(i) Since

αβ − βα = (a, b)(c, d)− (c, d)(a, b)

= (ac− d̄b, da+ bc̄)− (ca− b̄d, bc+ dā)

= (ac− ca+ b̄d− d̄b, da− dā+ bc̄− bc),

3



1 The Lagrange Identity and Its Interpretation

and

(αβ − βα)τ = (ac− ca+ b̄d− d̄b,−(da− dā+ bc̄− bc))

= (ac− ca+ db− bd,−(da− dā+ bc̄− bc))

we have

αβ − βα+ (αβ − βα)τ = (ac− ca+ ac− ca, 0)

= 0 (by (1.2)).

(ii)

αατ = (aā+ b̄b, 0)

= (āa+ b̄b, 0) (by (1.3))

= (āa+ b̄b, bā+ (−b)ā)

= (ā,−b)(a, b)

= ατα.

(iii)

αταβ = (āa+ b̄b, 0)(c, d)

= ((āa+ b̄b)c, d(āa+ b̄b))

= (c(āa+ b̄b), d(āa+ b̄b)) (by (1.4))

= (c(āa+ b̄b), d(āa+ b̄b))

= (c, d)(aa+ bb, 0)

= βατα.

4



1.1 Interpretation of the Lagrange Identity

(iv) Since R is commutative and

(αβ)γ = ((a, b)(c, d))(e, f)

= (ac− d̄b, da+ bc̄)(e, f)

= (ace− d̄be− f̄da− f̄ bc̄, fac− fd̄b+ daē− bc̄ē),

α(βγ) = (a, b)((c, d)(e, f))

= (a, b)(ce− ff̄d, fc− dē)

= (ace− af̄d− f̄ c̄b− d̄eb, fca+ dēa+ bc̄ē− bfd̄),

the result follows.

Now, we will define the norm in R1. Define N : R1 → R by

N((a, b)) = āa+ b̄b (a, b ∈ R). (1.7)

Then

(a, b)τ (a, b) = (N(a, b), 0) (a, b ∈ R). (1.8)

Lemma 1.3.

N(αβ) = N(α)N(β) (α, β ∈ R1).

Proof. Let α = (a, b), β = (c, d), where a, b, c, d ∈ R. By (1.2), we have

c(b̄da)− (b̄da)c+ c(b̄da)− (b̄da)c = 0. (1.9)

Thus

N(αβ) = N((a, b)(c, d))

= N(ac− d̄b, da+ bc̄)

= (ac− d̄b)(ac− d̄b) + (da+ bc̄)(da+ bc̄)

5



1 The Lagrange Identity and Its Interpretation

= (c̄ā− b̄d)(ac− d̄b) + (ād̄+ cb̄)(da+ bc̄)

= c̄āac− c̄ād̄b− b̄dac+ b̄dd̄b

+ ād̄da+ ād̄bc̄+ cb̄da+ cb̄bc̄

= āac̄c+ āad̄d+ b̄bc̄c+ b̄bd̄d

+ c(b̄da)− (b̄da)c+ (c(b̄da)− (b̄da)c) (by (1.4))

= (āa+ b̄b)(c̄c+ d̄d) (by (1.2))

= N(a, b)N(c, d)

= N(α)N(β).

Next, we will make a non-associative ring from R1 by using the Cayley-Dickson process.

Define

R2 = R1 ⊕R1

with the following multiplication

(α, β)(γ, δ) = (αγ − δτβ, δα+ βγτ ) (α, β, γ, δ ∈ R1). (1.10)

Hence, if

α = (a, b), β = (c, d), γ = (e, f), δ = (g, h), (a, b, c, d, e, f, g, h ∈ R)

6



1.1 Interpretation of the Lagrange Identity

then (1.10) becomes

(α, β)(γ, δ) = (αγ − δτβ, δα+ βγτ )

= ((a, b)(e, f)− (g, h)τ (c, d), (g, h)(a, b) + (c, d)(e, f)τ )

= ((a, b)(e, f)− (ḡ,−h)(c, d), (g, h)(a, b) + (c, d)(ē,−f))

= ((ae− f̄ b, fa+ bē)− (ḡc+ d̄h, dḡ − hc̄),

(ga− b̄h, bg + hā) + (cē+ f̄d,−fc+ de))

= ((ae− f̄ b− ḡc− d̄h, fa+ bē− dḡ + hc̄),

(ga− b̄h+ cē+ f̄d, bg + hā− fc+ de)). (1.11)

Also, we define ∗ : R2 → R2 by

(α, β) 7→ (ατ ,−β). (α, β ∈ R1).

Then, we can check that ∗ is an involutive anti-automorphism of R2. Moreover, Lemma

1.2 (i)–(iv) holds in R2. We will now define the norm in R2 as follows. Define the norm

N1 : R2 → R1 by

N1((α, β)) = ατα+ βτβ (α, β ∈ R1). (1.12)

Lemma 1.4. If α, β ∈ R1, then

N1(α, β) = (N(α) +N(β), 0).

Proof.

N1(α, β) = ατα+ βτβ = (N(α), 0) + (N(β), 0) = (N(α) +N(β), 0).

Corollary 1.5.

N1(AB) = N1(A)N1(B) (A,B ∈ R2).

Proof. It follows by replacing R and ·̄ with R1 and τ , respectively, in the proof of Lemma

7



1 The Lagrange Identity and Its Interpretation

1.3.

We recall the Lagrange identity for the ring R as follows.

Theorem 1.6. Given a, b, c, d, f, e, g, h ∈ R, define

q = ae− f̄ b− ḡc− d̄h,

r = fa+ bē− dḡ + hc̄,

s = ga− b̄h+ cē+ f̄d,

t = bg + hā− fc+ de.

Then

qq̄ + rr̄ + ss̄+ tt̄ = (aā+ bb̄+ cc̄+ dd̄)(eē+ ff̄ + gḡ + hh̄).

Proof. Straightforward calculation.

Theorem 1.7. Corollary 1.5 is equivalent to Theorem 1.6.

Proof. Let A = ((a, b), (c, d)), B = ((e, f), (g, h)) ∈ R2. Then

N1(AB) = N1((q, r), (s, t)) (by (1.11))

= (q, r)τ (q, r) + (s, t)τ (s, t) (by (1.12))

= (qq̄ + rr̄, 0) + (ss̄+ tt̄, 0) (by (1.7), (1.8))

= (qq̄ + rr̄ + ss̄+ tt̄, 0).

On the other hand, we have

N1(A) = N1((a, b), (c, d)) = (N(a, b) +N(c, d), 0) (by Lemma 1.4)

= (aā+ bb̄+ cc̄+ dd̄, 0), (by (1.7))

N1(B) = N1((e, f), (g, h)) = (N(e, f) +N(g, h), 0) (by Lemma 1.4)

= (eē+ ff̄ + gḡ + hh̄, 0). (by (1.7))

8



1.1 Interpretation of the Lagrange Identity

by (1.12). Therefore, we have

(qq̄ + rr̄ + ss̄+ tt̄, 0) = N1(AB)

= N1(A)N1(B) (by Lemma 1.3)

= (aā+ bb̄+ cc̄+ dd̄, 0)(eē+ ff̄ + gḡ + hh̄, 0)

= ((aā+ bb̄+ cc̄+ dd̄)(eē+ ff̄ + gḡ + hh̄), 0).

Hence, the result holds.

Theorem 1.7 means that the Lagrange identity can be interpreted as the norm N1.

1.1.2 Matrix Representation of Cayley-Dickson Process

Recall the definition of R1 and τ in Subsection 1.1.1. Define

R̃ =


 α β

−βτ ατ

 | α, β ∈ R1

 .

The addition in R̃ is the standard matrix addition and the multiplication in R̃ is defined by

 α β

−βτ ατ

 ?
 γ δ

−δτ γτ

 =

 αγ − δτβ δα+ βγτ

−γβτ − ατδτ −βτδ + γτατ

 (1.13)

=

 αγ − δτβ δα+ βγτ

−(δα+ βγτ )τ (αγ − δτβ)τ


for α, β, γ, δ ∈ R1. The operation ? gives the product (9) from the Cayley-Dickson process

in the first row of R1 and a form of the conjugate product in the second row.

Lemma 1.8. Define σ : R̃→ R̃ by


 α β

−βτ ατ



σ

=

ατ −β

βτ α

 (α, β ∈ R1).

Then σ is an involutive anti-automorphism of R̃.

9



1 The Lagrange Identity and Its Interpretation

Proof. Let α, β, γ, δ ∈ R1. Then


 α β

−βτ ατ

 ?
 γ δ

−δτ γτ



σ

=


 αγ − δτβ δα+ βγτ

−(δα+ βγτ )τ (αγ − δτβ)τ



σ

.

On the other hand,


 γ δ

−δτ γτ



σ

?


 α β

−βτ ατ



σ

=

γτ −δ

δτ γ

 ?
ατ −β

βτ α



=

γτατ − βτδ −βγτ − δα
ατδτ + γβτ −δτβ + αγ



=

(−δτβ + αγ)τ −(βγτ + δα)

(βγτ + δα)τ −δτβ + αγ



=


 −δτβ + αγ βγτ + δα

−(βγτ + δα)τ (−δτβ + αγ)τ



σ

.

So, σ is an anti-automorphism of R̃. Also,


ατ −β

βτ α



σ

=

 α β

−βτ ατ

 .
Hence, σ is involutive.

We define d : M2(R1)→ R1 by

d


α β

γ δ


 = αδ − βγ.

So, for α, β ∈ R1,

d


 α β

−βτ ατ


 = αατ + ββτ = ατα+ βτβ (by Lemma 1.2 (ii))

= N1((α, β)). (1.14)

10



1.1 Interpretation of the Lagrange Identity

Theorem 1.9. Let α, β, γ, δ ∈ R1 and

A =

 α β

−βτ ατ

 , B =

 γ δ

−δτ γτ

 ∈ R̃.
Then d(A ? B) = d(A)d(B).

Proof. Since

N(αγ − δτβ) +N(δα+ βγτ ) = αγγτατ − αγβτδ − δτβγτατ + δτββτδτ

+ δαατδτ + δαγβτ + βγτατδτ + βγτγβτ

= αγγτατ + δτββτδτ + δαατδτ + βγτγβτ

+ δαγβτ − αγβτδ + βγτατδτ − δτβγτατ

= αατγγτ + αατδδτ + ββτγγτ + ββτδδτ+

+ (δ(αγβτ )− (αγβτ )δ) + (δ(αγβτ )− (αγβτ )δ)τ

= (αατ + ββτ )(γγτ + δδτ ) (by Lemma 1.2)

= (N(α) +N(β))(N(γ) +N(δ)), (*)

we have

d(A ? B) = d


 αγ − δτβ δα+ βγτ

−(δα+ βγτ )τ (αγ − δτβ)τ




= N1(αγ − δτβ, δα+ βγτ ) (by (1.14))

= (N(αγ − δτβ) +N(δα+ βγτ ), 0) (by Lemma 1.4)

= ((N(α) +N(β))(N(γ) +N(δ)), 0)

= (N(α) +N(β), 0)(N(γ) +N(δ), 0)

= N1((α, β))N1((γ, δ)) (by Lemma 1.4)

= d(A) ? d(B).

11



1 The Lagrange Identity and Its Interpretation

Lemma 1.10. R̃ is isomorphic to R2.

Proof. Define π : R2 → R̃ by

(α, β) 7→

 α β

−βτ ατ

 (α, β ∈ R1). (1.15)

Then π is a homomorphism since for every α, β, γ, δ ∈ R1,

π((α, β)(γ, δ)) = π(αγ − δτβ, δα+ βγτ )

=

 αγ − δτβ δα+ βγτ

−γβτ − ατδτ −βτδ + γτατ



=

 α β

−βτ ατ

 ?
 γ δ

−δτ γτ


= π(α, β)π(γ, δ).

Also, π is bijective. Thus, π is an isomorphism.

Lemma 1.11. d |R̃ π = N1.

Proof. Let α, β ∈ R1. Since the image of π is R̃, we have

d |R̃ π((α, β)) = d |R̃


 α β

−βτ ατ


 (by (1.15))

= αατ + ββτ (by (1.14))

= N1((α, β)). (by (1.12))

Note that if α, β, γ, δ ∈ R1 and A = π(α, β) and B = π(γ, δ) ∈ R̃, then we have

A ? B =

 αγ − δτβ δα+ βγτ

−(δα+ βγτ )τ (αγ − δτβ)τ

 ∈ R̃.
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1.2 RDet

Thus

d(A ? B) = d |R̃ (A ? B) (since A ? B ∈ R̃)

= d |R̃ π(αγ − δτβ, δα+ βγτ )

= N1(αγ − δτβ, δα+ βγτ ) (by Lemma 1.11)

= N1((α, β)(γ, δ)) (by (1.10))

= N1((α, β))N1((γ, δ)) (by Corollary 1.5)

= d |R̃ π((α, β))d |R̃ π((γ, δ)) (by Lemma 1.11)

= d(A)d(B).

Hence, we also gave an interpretation of the Lagrange identity as the determinant.

1.2 RDet

In Section 1.1, we showed that the Lagrange identity can be interpreted as the norm and the

determinant. Also, we see that the multiplicative property holds for N1 and d where they

are defined in Section 1.1, i.e. N1(AB) = N1(A)N1(B) for every C,D ∈ R2 and d(C ? D) =

d(C)d(D) for arbitrary C,D in R̃. We are considering the function ψ : M2(R1)→M4(R) and

a new function RDet : M4(R) → R such that N2
1 = RDet and RDet satisfies multiplicative

property, i.e. RDet(AB) = RDet(A) RDet(B) for every A,B ∈ M4(R). When R1 is the

ring of quaternions, RDet is known as the Study determinant. The Study determinant was

introduced by Eduard Study in 1920 [21]. His method was to produce a square C-matrix M

of order 2n and compute the determinant of M (see [1], [9] for more details). We investigate

his method and observe the possibility to connect it with the Lagrange identity.

Throughout this subsection, we recall R and R1 in Subsection 1.1.1. Denote the identity

in R1 by

1 = (1, 0), j = (0, 1) ∈ R1.

13



1 The Lagrange Identity and Its Interpretation

Then R = R⊕ 0 ⊂ R1. Also, since for every a, b ∈ R, we have a = (a, 0), b = (b, 0) ∈ R1 and

a+ b = (a, 0) + (b, 0) = (a+ b, 0) ∈ R⊕ 0 = R,

ab = (a, 0)(b, 0) = (ab, 0) ∈ R⊕ 0 = R.

Therefore, R is a subring of R1 implies Mn(R) is a subring of Mn(R1).

Lemma 1.12. If z ∈ R1, then

zj = jzτ (1.16)

if and only if z ∈ R ⊂ R1.

Proof. Note that R is a subring of R1. If z ∈ R, then z = (z, 0) ∈ R1 and zτ = (z̄, 0) ∈ R1.

Therefore

zj = (z, 0)(0, 1) = (0, z) = (0, 1)(z̄, 0) = jzτ .

Let z = (a, b) ∈ R1. Then we have zj = (a, b)(0, 1) = (−b, a) and jzτ = (0, 1)(ā,−b) = (b, a).

So, if zj = jzτ , then b = −b = 0. Thus, z = (a, 0) = a ∈ R. Hence, the proof is complete.

In the other word, Lemma 1.12 shows that zj = jz̄ for every z ∈ R. Denote A = (aij) ∈

Mn(R) for every A = (aij) ∈Mn(R)). Then jA = (jaij) = (aijj) = Aj. Note that for every

(a, b) ∈ R1,

(a, b) = (a, 0) + (0, b) = (a, 0) + j(b̄, 0).

So, for every z ∈ R1, there exist z1, z2 ∈ R such that z = z1 + jz2. Consequently, for every

Z ∈Mn(R1), there exist Z1, Z2 ∈Mn(R) such that Z = Z1 + jZ2.

Proposition 1.13. Define ψ : Mn(R1)→M2n(R) by

ψ(A+ jB) =

A −B

B A

 (A,B ∈Mn(R))

Then ψ is an injective homomorphism and

ψ(Mn(R1)) = {N ∈M2n(R) | JN = NJ}.
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1.2 RDet

Proof. Since for every A1, A2, B1, B2 ∈Mn(R),

ψ((A1 + jB1)(A2 + jB2)) = ψ(A1A2 +A1jB2 + jB1A2 + jB1jB2)

= ψ((A1A2 + jA1B2 + jB1A2 −B1B2)) (by Lemma 1.12)

= ψ(A1A2 −B1B2 + j(A1B2 +B1A2))

=

A1A2 −B1B2 −A1B2 +B1A2

B1A2 +A1B2 −B1B2 +A1A2



=

A1 −B1

B1 A1


A2 −B2

B2 A2


= ψ(A1 + jB1)ψ(A2 + jB2),

ψ is a homomorphism. Also, Ker(ψ) = {0}, thus ψ is injective.

Now, suppose

N =

A C

B D

 ∈M2n(R1)

where A,B,C,D ∈Mn(R). Then we have

JN =

 0 −In

In 0


A C

B D

 =

−B −D

A C


and

NJ =

A C

B D


 0 −In

In 0

 =

C −A

D −B

 .
Therefore, JN = NJ if and only if C = −B and D = A. Hence

ψ(Mn(R1) =


A −B

B A

 | A,B ∈Mn(R)

 = {N ∈M2n(R) | JN = NJ}.
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1 The Lagrange Identity and Its Interpretation

Definition 1.14. Define detR : Mn(R)→ R by

detR((aij)) =
∑
σ∈Sn

a1σ(1) · · · anσ(n)

and RDet : Mn(R1)→ R by

RDet = detRψ.

We note again that RDet is just the Study determinant when R is C.

Lemma 1.15. The multiplicative property holds for RDet.

Proof. Since ψ is a homomorphism by Lemma 1.13, the result follows.

Lemma 1.16. Extend

τ : R1 → R1

to

τ : Mn(R1)→Mn(R1)

by

A+ jB 7→ At − jBt (A,B ∈Mn(R)).

Then

(i) τ is an anti-automorphism of Mn(R1),

(ii) ψ(M τ ) = ψ(M)t (M ∈Mn(R1)),

(iii) RDet(M) = RDet(M) (M ∈Mn(R1)).

Proof. For every A1, A2, B1, B2 ∈Mn(R),

((A1 + jB1)(A2 + jB2))τ = (A1A2 +A1jB2 + jB1A2 + jB1jB2)τ

= (A1A2 + jA1B2 + jB1A2 −B1B2)τ (by Lemma 1.12)

= (A1A2 −B1B2 + j(A1B2 +B1A2))τ

= (A1A2 −B1B2)t − j(A1B2 +B1A2)t,

16



1.2 RDet

and

(A1 + jB1)τ (A2 + jB2)τ = (A2
t − jBt

2)(A1 − jBt
1)

= A2
t
A1

t −A2
t
jBt

1 − jBt
2A1

t + jBt
2jB

t
1

= A2
t
A2

t −B2
t
Bt

1 − j(At2Bt
1 +Bt

2A1
t).

Thus, (i) holds. Now, let M = A+ jB ∈Mn(R1) (A,B ∈Mn(R)). Then

ψ(M τ ) = ψ(At − jBt) =

 At B
t

−Bt At

 = ψ(M)t.

Hence, we have (ii). Finally, let M = A+ jB ∈Mn(R1) (A,B ∈Mn(R)). Notice that

ψ(M τ ) = ψ(At − jBt) =

 A
t

B
t

−Bt At


and

(ψ(M τ ))t =

A −B

B A

 .
Therefore, we have

detRψ(M) = detR


A −B

B A


 = detR


 0 In

−In 0


A −B

B A


 0 −In

In 0




= detR


A −B

B A


 = detR(ψ(M τ )t) = detR

(
ψ(M)

)
= detR(ψ(M)),

and hence we have (iii).

Now, consider the following diagram:
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1 The Lagrange Identity and Its Interpretation

R2 ×R2 R̃× R̃ M2(R1)×M2(R1) M4(R)×M4(R) R×R

R2 R̃ M2(R1) M4(R) R

π×π

CD ?

ψ×ψ

[·][·]

det× det

[·][·] [·][·]

π

N2

ψ det

.

where "CD" denote the Cayley-Dickson product andN2(α) = (N(α))2 for every α ∈ R2. Note

that only

R̃× R̃ M2(R1)×M2(R1)

R2 R̃

? [·][·]

π

is not commute. Therefore, we are considering f : R2 → R2 such that

R2 ×R2 R2 ×R2 R̃× R̃

R2 R2 R̃ M2(R1)

R

f×f

CD

π×π

[·][·] [·][·]

f

N2

π

detψ

commute, i.e. N2(α) = detψπf(α) for every α ∈ R2. Actually, we see that f |R1 is the

identity map. By using the fact in the diagram, we have the following open problem.

Open Problem 1.17. Does a bijection f : R2 → R2 satisfying N2(α) = RDet(f(α)) exist?
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2 Complementary Sequences

Throughout this chapter, let R be a commutative ring with multiplicative identity 1, and

∗ : R → R be a ring automorphism satisfying (a∗)∗ = a for every a ∈ R. We first remark

in the following lemma that there exists a subring W of M2(R) which contains a subring

isomorphic to R.

Lemma 2.1. Define

W =


 a b

−b∗ a∗


∣∣∣∣∣∣∣ a, b ∈ R

 ⊂M2(R).

Then W is a ring which contains a subring isomorphic to R. Moreover, W is commutative

if and only if ∗ is the identity map.

Proof. We first show that W is a ring. Since R is a ring, it is closed under addition and

multiplication. Therefore, W is also closed under matrix addition. For a1, a2, b1, b2 ∈ R,

 a1 b1

−b∗1 a∗1


 a2 b2

−b∗2 a∗2

 =

 a1a2 − b1b
∗
2 a1b2 + b1a

∗
2

−b∗1a2 − a∗1b∗2 −b∗1b2 + a∗1a
∗
2



=

 a1a2 − b1b
∗
2 a1b2 + b1a

∗
2

−(a1b2 + b1a
∗
2)∗ (a1a2 − b1b

∗
2)∗

 ∈W.
Thus, W is closed under matrix multiplication. From all of these facts, W is a subring of

M2(R). Let

W ′ =


a 0

0 a∗


∣∣∣∣∣∣∣ a ∈ R

 .
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2 Complementary Sequences

Define a map φ : R →W ′ by φ(a) =

a 0

0 a∗

 . For every a, b ∈ R,

φ(a+ b) =

a+ b 0

0 (a+ b)∗

 =

a+ b 0

0 a∗ + b∗

 =

a 0

0 a∗

+

b 0

0 b∗

 = φ(a) + φ(b),

φ(ab) =

ab 0

0 (ab)∗

 =

a 0

0 a∗


b 0

0 b∗

 = φ(a)φ(b).

Thus, φ is a homomorphism and W ′ is a subring of W with an identity element 1W . Since

Ker(φ) = {0} and Im(φ) = W ′, W ′ is isomorphic to R.

Now we will prove the last statement. If ∗ is the identity map, then

 a1 b1

−b∗1 a∗1


 a2 b2

−b∗2 a∗2

 =

 a1 b1

−b1 a1


 a2 b2

−b2 a2



=

 a1a2 − b1b2 a1b2 + b1a2

−b1a2 − a1b2 −b1b2 + a1a2



=

 a2a1 − b2b1 a2b1 + b2a1

−b2a1 − a2b1 −b2b1 + a2a1



=

 a2 b2

−b2 a2


 a1 b1

−b1 a1



=

 a2 b2

−b∗2 a∗2


 a1 b1

−b∗1 a∗1

 .
Thus, W is commutative. Conversely, assume that W is commutative. Since for a ∈ R,

a 0

0 a∗

 ,
 0 1

−1 0

 ∈W,
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2.1 Polynomial Representation of Complementary Sequences

we have

 0 a

−a∗ 0

 =

a 0

0 a∗


 0 1

−1 0

 =

 0 1

−1 0


a 0

0 a∗

 =

 0 a∗

−a 0

 .
Thus, we have a∗ = a and therefore ∗ is the identity map.

2.1 Polynomial Representation of Complementary Sequences

Definition 2.2 (Non-periodic autocorrelation). Let a = (a0, . . . , al−1) ∈ Rl. We define the

non-periodic autocorrelation Na of a by

Na(j) =


∑l−j−1
i=0 aia

∗
i+j if 0 ≤ j < l,

0 otherwise.

Definition 2.3 (Complementary sequences). We say that a set of sequences {a1, . . . ,an} is

complementary with weight w if

n∑
i=1

Nai(j) =


w if j = 0,

0 otherwise.

Moreover, the sequences a1, . . . ,an are called complementary sequences.

We may note that the term weight is usually used to describe the number of nonzero

components of an arbitrary sequence. The weight of any set of sequences means the total

weight of all sequences in that set, provided that aa∗ = 1 for all nonzero components a. The

following sequences are complementary sequences with weight 14:

(1,−1, 1, 1, 1,−1,−1), (1, 1, 0, 1, 0,−1, 1), (0, 0, 1, 0, 1, 0, 0).

Complementary sequences do not necessarily have the same length. For example,

a = (1,−1,−1,−1, 1), b = (1, 1,−1, 1,−1), c = (1, 1, 1, 1), d = (1,−1,−1, 1)
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2 Complementary Sequences

have different lengths, but they are complementary sequences with weight 18. Remark that

this quadruple of sequences a, b, c, d are known as near normal sequences, one of the class

of complementary sequences.

Now, we will introduce a representation of complementary sequences by using polynomials.

This representation becomes important in characterizing complementary sequences.

Definition 2.4. Let a = (a0, . . . , al−1) ∈ Rl. We define the Hall polynomial fa = fa(x) ∈

R[x] of a by

fa(x) =
l−1∑
i=0

aix
i.

Lemma 2.5. Let ∗ : R[x±1]→ R[x±1] be an extension map of ∗ defined by

∑
i∈Z

aix
i

∗ =
∑
i∈Z

a∗ix
−i.

Then ∗ is a ring automorphism satisfying (f∗)∗ = f for every f ∈ R[x±1].

Proof. We have

(∑
i

aix
i +

∑
i

bix
i

)∗
=
(∑

i

(ai + bi)xi
)∗

=
∑
i

(ai + bi)∗x−i

=
∑
i

a∗ix
−i +

∑
i

b∗ix
−i

=
(∑

i

aix
i

)∗
+
(∑

i

bix
i

)∗
,

and
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2.1 Polynomial Representation of Complementary Sequences

∑
i

aix
i ·
∑
j

bjx
j

∗ =

∑
t

∑
i+j=t

aibjx
t

∗

=
∑
t

 ∑
i+j=t

aibj

∗ x−t
=
∑
t

∑
i+j=t

a∗i b
∗
jx
−t

=
(∑

i

a∗ix
−i
)∑

j

b∗jx
−j


=
(∑

i

aix
i

)∗∑
j

bjx
j

∗ .
Since (f∗)∗ = f for f ∈ R[x±1], ∗ is bijective.

Let a = (a0, . . . , al−1) ∈ Rl and b ∈ Rn. We define a sequence a⊗ b by

a⊗ b = (a0b, . . . , al−1b) ∈ Rln.

Also, define a∗ ∈ Rl by a∗ = (a∗l−1, . . . , a
∗
0). The following lemmas are the basic properties

of the operations in sequences.

Lemma 2.6. Let a ∈ Rm and b ∈ Rn. Then

(i) (a + b)∗ = a∗ + b∗ if m = n,

(ii) (a⊗ b)∗ = a∗ ⊗ b∗,

(iii) a∗∗ = a.

Proof. (i), (ii) and (iii) are immediate.

Lemma 2.7. Let a, b ∈ Rl. Then

(i) fa±b = fa ± fb,

(ii) fka = kfa for k ∈ R,

(iii) f∗a±b = f∗a ± f∗b ,
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2 Complementary Sequences

(iv) f∗ka = k∗f∗a for k ∈ R,

(v) fa⊗c = fa(xn)fc(x) for c ∈ Rn,

(vi) f∗a(x) = x1−lfa∗(x),

(vii) faf
∗
b = f∗a∗fb∗.

Proof. (i) and (ii) are immediate. (iii) and (iv) follow from (i) and (ii), respectively. We

prove (v). For c = (c0, . . . , cn−1),

fa⊗c =
l−1∑
i=0

n−1∑
j=0

aicjx
ni+j =

l−1∑
i=0

aix
ni
n−1∑
j=0

cjx
j = fa(xn)fc(x).

(vi) If a = (a0, . . . , al−1),

f∗a(x) =
l−1∑
i=0

a∗ix
−i =

l−1∑
i=0

a∗l−1−ix
1−l+i = x1−l

l−1∑
i=0

a∗l−1−ix
i = x1−lfa∗(x).

(vii) Note that by (vi) and Lemma 2.6 (iii), fa(x) = (f∗a(x))∗ = (x1−lfa∗(x))∗ = xl−1f∗a∗(x).

Thus by (vi) again, faf
∗
b = xl−1f∗a∗x

1−lfb∗ = f∗a∗fb∗ .

Lemma 2.8. Let a, b ∈ Rl. Then fa+bf
∗
a+b + fa−bf

∗
a−b = 2(faf

∗
a + fbf

∗
b ).

Proof.

fa+bf
∗
a+b + fa−bf

∗
a−b = (fa + fb)(f∗a + f∗b ) + (fa − fb)(f∗a − f∗b ) (by Lemma 2.7 (ii)–(v))

= 2(faf
∗
a + fbf

∗
b ).

Lemma 2.9. Let a ∈ Rl. Then

fa(x)f∗a(x) = Na(0) +
l−1∑
k=1

(
Na(k)x−k +Na(k)∗xk

)
.
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Proof. For a = (a0, . . . , al−1),

fa(x)f∗a(x) =
l−1∑
i=0

aix
i
l−1∑
j=0

a∗jx
−j

=
l−1∑
i,j=0

aix
ia∗jx

−j

=
l−1∑
i,j=0

aia
∗
jx
i−j

=
l−1∑
i=0

aia
∗
i +

∑
0≤i<j≤l−1

aia
∗
jx
i−j +

∑
0≤j<i≤l−1

aia
∗
jx
i−j

=
l−1∑
i=0

aia
∗
i +

l−1∑
k=1

(
l−1−k∑
i=0

aia
∗
i+k

)
x−k +

l−1∑
k=1

l−1−k∑
j=0

aj+ka
∗
j

xk
= Na(0) +

l−1∑
k=1

Na(k)x−k +
l−1∑
k=1

l−1−k∑
j=0

aja
∗
j+k

∗ xk
= Na(0) +

l−1∑
k=1

(
Na(k)x−k +Na(k)∗xk

)
.

Lemma 2.10. Let a1, . . . ,an be arbitrary sequences with entries in R. Then a1, . . . ,an are

complementary with weight w if and only if

n∑
i=1

fai(x)f∗ai
(x) = w. (2.1)

Proof. From Lemma 2.9, we have

n∑
i=1

fai(x)f∗ai
(x) =

n∑
i=1

(
Nai(0) +

l−1∑
k=1

(
Nai(k)x−k +Nai(k)∗xk

))

=
n∑
i=1

Nai(0) +
l−1∑
k=1

n∑
i=1

Nai(k)x−k +
l−1∑
k=1

n∑
i=1

Nai(k)∗xk.

The equation (2.1) means that w is the constant term of
∑n
i=1 fai(x)f∗ai

(x), from which the

result follows.

Lemma 2.10 means that it suffices to compute
∑n
i=1 fai(x)f∗ai

(x) for sequences a1, . . . ,an

to determine whether they are complementary or not. We will use this fact to investigate
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2 Complementary Sequences

general constructions of complementary sequences. This lemma is crucial for our result in

Chapter 3.

2.2 Matrix Representation of Complementary Sequences

In this section, we define A∗ = [a∗ji]n−1
i,j=0 for an arbitrary square matrix A = [aij ]n−1

i,j=0 of order

n whose entries are in R. Practically, rather than computing the summation of polynomi-

als directly, we may associate M ∈ Rk×k[x±1] to fa1(x), . . . , fan(x) for arbitrary sequences

a1, . . . ,an ∈ Rl. Furthermore, the following results are due to the communication with R.

Craigen. In what follows, we shall omit the reference for x in polynomials if there is no

confusion.

Definition 2.11. Let a, b ∈ Rl. Define

Ma,b = Ma,b(x) =

 fa fb

−fb∗ fa∗

 . (2.2)

Lemma 2.12. Let a, b ∈ Rl and c,d ∈ Rn. Then

(i) Ma,b M∗
a,b = (faf

∗
a + fbf

∗
b )I,

(ii) Ma,−b(xn) Mc,d(x) = Ma⊗c+b⊗d∗,a⊗d−b⊗c∗(x),

(iii) Ma⊗c+b⊗d∗,a⊗d−b⊗c∗ M∗
a⊗c+b⊗d∗,a⊗d−b⊗c∗ = (faf

∗
a + fbf

∗
b )(fcf

∗
c + fdf

∗
d)I.

Proof. (i)

Ma,b M∗a,b =

 fa fb

−fb∗ fa∗


f∗a −f∗b∗

f∗b f∗a∗



=

 faf
∗
a + fbf

∗
b −faf

∗
b∗ + fbf

∗
a∗

−fb∗f
∗
a + fa∗f

∗
b fb∗f

∗
b∗ + fa∗f

∗
a∗



=

 faf
∗
a + fbf

∗
b −f∗a∗fb + fbf

∗
a∗

−fb∗f
∗
a + f∗afb∗ faf

∗
a + fbf

∗
b

 (by Lemma 2.7 (vii))

= (faf
∗
a + fbf

∗
b )I.
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(ii) By Lemma 2.7 (v),

Ma,−b(xn)Mc,d(x)

=

 fa(xn) −fb(xn)

fb∗(xn) fa∗(xn)


 fc(x) fd(x)

−fd∗(x) fc∗(x)



=

 fa(xn)fc(x) + fb(xn)fd∗(x) fa(xn)fd(x)− fb(xn)fc∗(x)

fb∗(xn)fc(x)− fa∗(xn)fd∗(x) fb∗(xn)fd(x) + fa∗(xn)fc∗(x)



=

 fa⊗c(x) + fb⊗d∗(x) fa⊗d(x)− fb⊗c∗(x)

fb∗⊗c(x)− fa∗⊗d∗(x) fb∗⊗d(x) + fa∗⊗c∗(x)

 (by Lemma 2.7 (v))

=

 fa⊗c+b⊗d∗(x) fa⊗d−b⊗c∗(x)

−fa∗⊗d∗−b∗⊗c(x) fa∗⊗c∗+b∗⊗d(x)

 (by Lemma 2.7 (i))

=

 fa⊗c+b⊗d∗(x) fa⊗d−b⊗c∗(x)

−f(a⊗d−b⊗c∗)∗(x) f(a⊗c+b⊗d∗)∗(x)

 (by Lemma 2.6 (ii))

= Ma⊗c+b⊗d∗,a⊗d−b⊗c∗(x).

(iii) Immediate from (i) and (ii).

Lemma 2.13. Let a, b ∈ Rl. Then

Ma,b(x) Ma,b(x)∗ = Ma,b∗(x) Ma,b∗(x)∗.

Proof.

Ma,b∗(x)Ma,b∗(x)∗ = (faf
∗
a + fb∗f

∗
b∗)I (by Lemma 2.12 (i))

= (faf
∗
a + fbf

∗
b )I (by Lemma 2.7 (vii))

= Ma,b(x)Ma,b(x)∗. (by Lemma 2.12 (i))

By using this matrix representation, we can characterize a pair of complementary sequences
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by using the following corollary.

Corollary 2.14. Let a, b ∈ Rl. Then a and b are complementary sequences with weight w

if and only if

Ma,b M∗
a,b = wI.

Proof. Immediate from Lemma 2.10 and Lemma 2.12 (i).

Moreover, we may also characterize a triple of complementary sequences by using the

following matrix. For a, b, c ∈ Rl, define

Ta,b,c :=



0 −fa −fb −fc

fa 0 f∗c −f∗b

fb −f∗c 0 f∗a

fc f∗b −fa 0


.

Then by a direct calculation, we obtain

Ta,b,cT
∗
a,b,c = (faf

∗
a + fbf

∗
b + fcf

∗
c )I. (2.3)

Corollary 2.15. Let a, b, c ∈ Rl. Then a, b, c are complementary sequences with weight w

if and only if

Ta,b,cT
∗
a,b,c = wI.

Proof. Immediate by Lemma 2.10 and (2.3).

2.3 Some Classes of Complementary Sequences

We will introduce some classes of complementary sequences in this section. First, we will give

some examples of ternary complementary sequences, i.e. sequences with entries in {0,±1}.

The following results are well known among the study of complementary sequences.
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2.3.1 Ternary Complementary Sequences

Definition 2.16 (Golay sequences). A pair of sequences (a; b) ∈ {±1}n is called Golay

sequences of length n if they are complementary sequences. Denote by GS(n) the set of

Golay sequences of length n. A positive integer n is called a Golay number if GS(n) is

nonempty.

Example 2.17. The pairs

((1, 1, 1,−1); (1, 1,−1, 1)), ((1, 1,−1, 1,−1, 1,−1,−1, 1, 1); (1, 1,−1, 1, 1, 1, 1, 1,−1,−1))

are, respectively, Golay sequences of length 4 and 10.

Lemma 2.18. Let a, b ∈ {±1}n. Then (a; b) are Golay sequences if and only if

faf
∗
a + fbf

∗
b = 2n.

Proof. Immediate from Lemma 2.10.

Theorem 2.19. If (a; b) ∈ GS(m) and (c; d) ∈ GS(n) then

1
2[(a + b)⊗ c + (a− b)⊗ d∗];

1
2[(a + b)⊗ d− (a− b)⊗ c∗]

 ∈ GS(mn).

Proof. Let a′ = a+b
2 and b′ = a−b

2 . Then by Lemma 2.8, we have

fa′f
∗
a′ + fb′f

∗
b′ = 1

2(faf
∗
a + fbf

∗
b ) = m.

Also by Lemma 2.18,

fcf
∗
c + fdf

∗
d = 2n.
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Recall M in (2.2). Then

Ma′⊗c+b′⊗d∗,a′⊗d−b′⊗c∗(x) ·M∗a′⊗c+b′⊗d∗,a′⊗d−b′⊗c∗(x)

= (fa′f
∗
a′ + fb′f

∗
b′)(fcf

∗
c + fdf

∗
d)I (by Lemma 2.12 (iii))

= 2mnI.

From the fact that a′, b′ are disjoint {0,±1}-sequences, and c,d are {±1}-sequences, a′ ⊗

c + b′ ⊗ d∗ and a′ ⊗ d− b′ ⊗ c∗ are {±1}-sequences. Therefore, by Lemma 2.18,

(
a′ ⊗ c + b′ ⊗ d∗; a′ ⊗ d− b′ ⊗ c∗

)
∈ GS(mn).

Lemma 2.20. Let N be an even positive integer. If (a1, . . . , aN ) ∈ {±1}N and
∑N
i=1 aj = 0,

then
∏N
j=1 aj = (−1)N/2.

Proof. Since
∑N
i=1 aj = 0, the total number of −1 in a1, . . . , aN is N/2. Thus, the result

follows.

Lemma 2.21 ([7]). If g is an even Golay number, then there exist complementary (0,±1)-

sequences u,v of length g and weight g/2 such that u, v, u∗ and v∗ are all disjoint.

Proof. Let (z; y) ∈ GS(g), z = (z0, . . . , zg−1) and y = (y0, . . . , yg−1). For 0 < i ≤ g − 1, let

ak =


zk−1zk+g−i−1 if 1 ≤ k ≤ i,

yk−1−iyk−2i+g−1 if i < k ≤ 2i.
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By Lemma 2.18,

2g −Nz(0)−Ny(0) = fzf
∗
z + fyf

∗
y −Nz(0)−Ny(0)

=
g−1∑
i=1

(
(Nz(i) +Ny(i))x−i + (Nz(i)∗ +Ny(i)∗)xi

)
(by Definition 2.9)

=
g−1∑
i=1

(Nz(i) +Ny(i))(x−i + xi)

=
g−1∑
i=1

(Nz(g − i) +Ny(g − i))(x−(g−i) + xg−i)

=
g−1∑
i=1

(
i−1∑
k=0

zkzk+g−i +
i−1∑
k=0

ykyk+g−i

)
(x−(g−i) + xg−i)

=
g−1∑
i=1

 i∑
k=1

ak +
2i∑

k=i+1
ak

 (x−(g−i) + xg−i)

=
g−1∑
i=1

2i∑
k=1

ak(x−(g−i) + xg−i).

Thus
∑2i
k=1 ak = 0. Therefore, by applying Lemma 2.20,

(−1)i =
2i∏
k=1

ak =
i∏

k=1
zk−1zk+g−i−1

i∏
k=1

yk−1yk+g−i−1 =
i∏

k=1
zk−1zk+g−i−1yk−1yk+g−i−1. (2.4)

Now, we will prove

zj−1zg−jyj−1yg−j = −1 (2.5)

by induction on j for 1 ≤ j ≤ g
2 . Setting i = 1 in (2.4), we obtain z0zg−1y0yg−1 = −1. Thus,

(2.5) holds for j = 1. Assume (2.5) holds for all k < j, where j ≤ g
2 . Then

j−1∏
k=1

zk−1zg−kyk−1yg−k = (−1)j−1. (2.6)
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By setting i = j in (2.4), we have

(−1)j =
j∏

k=1
zk−1zk+g−j−1yk−1yk+g−j−1

=
j∏

k=1
zk−1yk−1

j∏
k=1

zg−(j+1−k)yg−(j+1−k)

=
j∏

k=1
zk−1yk−1

j∏
k=1

zg−kyg−k

=
j∏

k=1
zk−1zg−kyk−1yg−k

and (2.5) follows by comparing this with (2.6).

Now, let

u =
z + y + z∗ − y∗

4 , v =
z + y − z∗ + y∗

4 .

Since z and y are constrained by (2.5), the following table shows that u, v, u∗, v∗ are disjoint

(0,±1)-sequences.

zj−1 yj−1 zg−j yg−j uj−1 vj−1 ug−j vg−j

1 1 1 −1 1 0 0 0

1 1 −1 1 0 1 0 0

−1 −1 1 −1 0 −1 0 0

−1 −1 −1 1 −1 0 0 0

1 −1 1 1 0 0 1 0

−1 1 1 1 0 0 0 1

1 −1 −1 −1 0 0 0 −1

−1 1 −1 −1 0 0 −1 0
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2.3 Some Classes of Complementary Sequences

Moreover,

fuf
∗
u + fvf

∗
v =

1
16(f(z+y)+(z∗−y∗)f

∗
(z+y)+(z∗−y∗) + f(z+y)−(z∗−y∗)f

∗
(z+y)−(z∗−y∗))

=
1
8(fz+yf

∗
z+y + fz∗−y∗f

∗
z∗−y∗) (by Lemma 2.8)

=
1
8(fz+yf

∗
z+y + fz−yf

∗
z−y) (by Lemma 2.7)

=
1
4(fzf

∗
z + fyf

∗
y) (by Lemma 2.8)

= g

2 .

Therefore u and v are complementary with weight g
2 by Lemma 2.10.

Definition 2.22 (Base sequences). A quadruple of (±1)-sequences (a, b, c,d) of length

m,m, n, n, respectively, is called base sequences if it is a set of complementary sequences. We

denote by BS(m,n) the set of base sequences of length m, m, n, n. If (a, b, c,d) ∈ BS(m,n),

then it is complementary with weight 2(m+ n).

Definition 2.23 (Paired ternary sequences). We call a quadruple of complementary (0,±1)-

sequences with weight 2l, (a, b, c,d) of length l a paired ternary sequences if

(i) the pairs {a, b} and {c,d} are each conjoint,

(ii) the pair {a, c} is disjoint.

Denote by PT (l) the set of paired ternary sequences of length l.

Definition 2.24 (T -sequences). A T -sequences of length n is a quadraple of complemen-

tary {0,±1}-sequences (a, b, c,d), with weight n such that a, b, c,d are mutually disjoint

sequences, i.e. every pair in {a, b, c,d} is disjoint. Denote by TS(n), the set of T -sequences

of length n.

Lemma 2.25. Let m and n be positive integers.

(i) For every positive integer n, PT (n) is nonempty if and only if TS(n) is nonempty,
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2 Complementary Sequences

(ii) BS(m,n) 6= ∅ implies PT (m+ n) 6= ∅ and TS(m+ n) 6= ∅.

Proof. First, we will prove (i). Let (a, b, c,d) ∈ TS(n). Set q = a + b, r = a− b, s = c + d,

and t = c− d. Then by Lemma 2.8, we have

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x) = 2(faf

∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x) = 2n.

Since a, b, c,d are mutually disjoint sequences, the pairs (q, r) and (s, t) are each conjoint,

and it can be checked that q and s are disjoint. Therefore, (q, r; s, t) ∈ PT (n). Conversely,

let (q, r; s, t) ∈ PT (n). Set a = 1
2(q + r), b = 1

2(q − r), c = 1
2(s + t), d = 1

2(s − t). Again

by Lemma 2.8,

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x) = (faf

∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x) = n.

Since q and r are conjoint and {0,±1}-sequences, supp(a)∩supp(b) = supp(q+r)∩supp(q−

r) = ∅. By a similar argument, supp(c)∩ supp(d) = supp(s+ t)∩ supp(s− t) = ∅. Moreover,

since supp(x)∩supp(y) = ∅ for every x ∈ {q, r} and y ∈ {s, t}, we have supp(u)∩supp(v) =

∅ for every u ∈ {a, b} and v ∈ {c,d}. Therefore, a, b, c,d are mutually disjoint sequences.

Hence, (a, b, c,d) ∈ TS(n).

Next, we will prove (ii). Let (a, b, c,d) ∈ BS(m,n). Set q = (a, 0n), r = (b, 0n), s =

(0m, c), t = (0m,d). Clearly, the pairs (q; r) and (s, t) are each conjoint, and the pair (q; s)

is disjoint. Also, we have

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x) = (faf

∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x) = 2(m+ n).

Hence, (q, r, s, t) ∈ PT (m+ n), and also TS(m+ n) by (i).

2.3.2 Complementary Sequences with Entries in {0,±i,±1}

Recently, we were considering to extend the entries of complementary sequences to an arbi-

trary commutative ring R. Specifically, the entries will be in T ∪ {0} where T is a multi-

plicatively closed subset of R satisfying −1 ∈ T . For example, if we take R to be the ring

of integers, then T = {±1}. Moreover, if R = C, then we may take T = {±i,±1}. The
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2.3 Some Classes of Complementary Sequences

existence of complementary sequences whose entries are in {±i,±1} has been studied in [7]

and [17]. In this subsection, we will give some examples of complementary sequences with

entries in {0,±i,±1}. All of the following results are due to [7] and [17].

Definition 2.26 (Complex Golay Sequence). Two (±i,±1)-sequences of length l are called a

complex Golay pair (or complex Golay sequences), if they together have zero autocorrelation.

Let CGS(l) be the set of complex Golay sequences of length l. A positive integer l is called

a complex Golay number if CGS(l) 6= ∅.

Lemma 2.27. Let a, b ∈ {±i,±1}l. Then faf
∗
a +fbf

∗
b = 2l if and only if (a; b) is a complex

Golay pair.

Proof. Immediate from Lemma 2.10.

Theorem 2.28. If (a; b) ∈ CGS(m) and (C;D) ∈ CGS(n). Then,

(i) ((a⊗ c; b⊗ d∗); (a⊗ d;−b⊗ c∗)) ∈ CGS(2mn),

(ii) If a, b ∈ {±1}m, then

1
2[(a + b)⊗ c + (a− b)⊗ d∗];

1
2[(a + b)⊗ d− (a− b)⊗ sc∗]

 ∈ CGS(mn).

Proof. First, we prove part (i). We have

Ma⊗c+b⊗d∗,a⊗d−b⊗c∗(x) ·Ma⊗c+b⊗d∗,a⊗d−b⊗c∗(x)∗

= (faf
∗
a + fbf

∗
b )(fcf

∗
c + fdf

∗
d)I (by Lemma 2.12 (iii))

= 4mnI.

Next, we prove (ii). Let

a′ =
a + b

2 and b′ =
a− b

2 .

Since a and b are {±1}-sequences, a′ and b′ are disjoint, by Lemma 2.8 and Lemma 2.12 (i).
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By Lemma 2.8, we have fa′f
∗
a′ + fb′f

∗
b′ = 1

2(faf
∗
a + fbf

∗
b ) = m. Thus,

Ma′⊗c+b′⊗d∗,a′⊗d−b′⊗c∗(x) ·M∗a′⊗c+b′⊗d∗,a′⊗d−b′⊗c∗(x)

= (fa′f
∗
a′ + fb′f

∗
b′)(fcf

∗
c + fdf

∗
d)I (by Lemma 2.12 (iii))

= 2mnI.

Therefore, the result holds by Lemma 2.27.

Theorem 2.29 ([7]). Let g1 and g2 be complex Golay numbers and g be an even Golay

number. Then gg1g2 is a complex Golay number.

Proof. Let (a; b) ∈ CGS(g1) and (c; d) ∈ CGS(g2). Let (y, z) ∈ GS(g). By Lemma 2.21,

there exist complementary (0,±1)-sequences u,v of length g and weight g/2 such that u, v,

u∗ and v∗ are all disjoint. Define

s = a⊗ u + b⊗ v∗, t = a⊗ v − b⊗ u∗.

Since a, b are (±i,±1)-sequences and u,v,u∗,v∗ are all disjoint (0,±1)-sequences, S, T are

disjoint (0,±i,±1)-sequences. Now

Ms,t(x)Ms,t(x)∗ = (faf
∗
a + fbf

∗
b )(fuf

∗
u + fvf

∗
v )I (by Lemma 2.12 (iii))

= 2g1 ·
g

2

= gg1.

Moreover,

Mc⊗s+d∗⊗t,c⊗t∗−d∗⊗s∗(x)Mc⊗s+d∗⊗t,c⊗t∗−d∗⊗s∗(x)∗

= (fcf
∗
c + fdf

∗
d)(fsf

∗
s + ftf

∗
t )I (by Lemma 2.12 (iii))

= 2g2 · gg1

= 2gg1g2.
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Also, the length and the weight of c⊗ s + d∗ ⊗ t and c⊗ t∗ − d∗ ⊗ s∗ are the same. Thus,

they are (±i,±1)-sequences and hence, they are complex Golay pair by Lemma 2.27.

2.4 Constructions of Hadamard Matrices from Complementary

Sequences

We will give two constructions of Hadamard matrices that is obtained by using Golay se-

quences and T -sequences. Denote by circ(a) the circulant matrix with the first row a.

Theorem 2.30 ([24]). Let (a; b) ∈ GS(s). Let A = circ(a) and B = circ(b). Then

 A B

−BT AT


is an Hadamard matrix of order 2s.

To give a construction of an Hadamard matrix from T -sequences, we need the Goethals-

Seidel array.

Theorem 2.31 (Goethals-Seidel array). Suppose A,B,C,D are circulant {±1}-matrices of

order n such that

AAT +BBT + CCT +DDT = 4nI.

Let R be the back-diagonal matrix, i.e.

R =


1

...

1

 .

Then

H =



A BR CR DR

−BR A −DTR CTR

−CR DTR A −BTR

−DR −CTR BTR A


(2.7)
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is an Hadamard matrix of order 4n. Moreover, if A,B,C,D are symmetric, then

A2 +B2 + C2 +D2 = 4nI

and

H =



A B C D

−B A −D C

−C D A −B

−D −C B A


. (2.8)

The construction (2.8) is known as a Williamson matrix. Therefore, Williamson matrices

are special cases of Goethals-Seidel arrays. For further information about Goethals-Seidel

array and Williamson matrices, we refer the reader to [19] and [25]. By using Goethals-Seidel

array, we can actually construct an Hadamard matrix from T -sequences.

Theorem 2.32. Let (a, b, c,d) ∈ TS(n). Let A′, B′, C ′, D′ be circ(a), circ(b), circ(c), circ(d),

respectively. Set

A = A′ +B′ + C ′ +D′, B = −A′ +B′ + C ′ −D′,

C = −A′ −B′ + C ′ +D′, D = −A′ +B′ − C ′ +D′.

Then

H =



A BR CR DR

−BR A −DTR CTR

−CR DTR A −BTR

−DR −CTR BTR A


is an Hadamard matrix of order 4n.

Proof. Since a, b, c,d are T -sequences, a, b, c,d are mutually disjoint sequences. This implies

that A′, B′, C ′, D′ are mutually disjoint circulant matrices. Therefore, A,B,C,D are circulant

{±1}-matrices. By Theorem 2.31, H is an Hadamard matrix of order 4n.
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Yang multiplication theorem, basically, is known as a method to find paired ternary sequences

from base sequences. As shown in Lemma 2.25, the existence of paired ternary sequences will

lead to the existence of T -sequences and the existence of T -sequences implies to the existence

of Hadamard matrices (see Theorem 2.32). Therefore, we try to increase the possibility of

finding new T -sequences by generalizing Yang multiplication theorem.

3.1 A Generalization of Yang Multiplication Theorem

In this section, we introduce one result of Yang, who gave a method of constructing some

complementary sequences from base sequences. More specifically,

Theorem 3.1 ([23, Theorem 4]). If BS(m + 1,m) 6= ∅ and BS(n + 1, n) 6= ∅, then there

exists a set of four complementary (±1)-sequences of length (2m+ 1)(2n+ 1).

In order to prove Theorem 3.1, Yang used the Lagrange identity for polynomial rings. LetR

be a commutative ring with identity and an involutive automorphism ∗. Moreover, let R[x±1]

be the ring of Laurent polynomials over R and ∗ : R[x±1]→ R[x±1] be the extension of the

involutive automorphism ∗ of R defined by x 7→ x−1. Then, ∗ is an involutive automorphism

of R[x±1].

Definition 3.2. Let a = (a0, . . . , al−1) ∈ Rl. We define the Hall polynomial fa(x) ∈ R[x±1]

of a by

fa(x) =
l−1∑
i=0

aix
i.
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Hall polynomials have been used not only by Yang, but also others. See [8] and references

therein.

By using the notation in Definition 3.2, we can generalize Theorem 3.1 as follows.

Theorem 3.3. Let T be a multiplicatively closed subset of R satisfying −1 ∈ T = T ∗. Let

a, b ∈ T m+1,

c,d ∈ T m,

v, g ∈ T n+1,

h, e ∈ T n

satisfy

(faf
∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x) = 2(2m+ 1),

(fvf
∗
v + fgf

∗
g + fhf

∗
h + fef

∗
e )(x) = 2(2n+ 1).

Then there exist q, r, s, t ∈ T (2m+1)(2n+1) such that

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x) = 4(2m+ 1)(2n+ 1).

Theorem 3.1 follows from Theorem 3.3 by setting T = {±1} ⊂ Z, (a, b, c,d) ∈ BS(m+ 1,m),

and (v, g,h, e) ∈ BS(n+1, n). The proof of Theorem 3.1 in [23] is by establishing the identity

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x)

= (faf
∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x2)(fvf

∗
v + fgf

∗
g + fhf

∗
h + fef

∗
e )(x2(2m+1)), (3.1)

after defining the sequences q, r, s, t appropriately such that, in particular,

fq(x) = fa(x2)fv∗(x2(2m+1)) + xfc(x2)fg(x2(2m+1))

− x2(2m+1)fb∗(x2)fe(x2(2m+1)) + x2(2m+1)+1fd(x2)fh(x2(2m+1)).

A key to the proof is the Lagrange identity: given a, b, c, d, e, v, g, h in a commutative ring
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with identity and an involutive automorphism ∗, set

q = av∗ + cg − b∗e+ dh,

r = bv∗ + dg∗ + a∗e− ch∗,

s = ag∗ − cv − bh− d∗e,

t = bg − dv + ah∗ + c∗e.

(3.2)

Then

qq∗ + rr∗ + ss∗ + tt∗ = (aa∗ + bb∗ + cc∗ + dd∗)(ee∗ + vv∗ + gg∗ + hh∗). (3.3)

The derivation of (3.1) from (3.3) is not so immediate since one has to define a, b, c, d, v, g, h, e

as

fa(x2), fb(x2), xfc(x2), xfd(x2),

x−n(2m+1)fv(x2(2m+1)), x−n(2m+1)fg(x2(2m+1)),

x(1−n)(2m+1)fh(x2(2m+1)), x2m+(1−n)(2m+1)fe(x2(2m+1)),

rather than

fa(x2), fb(x2), fc(x2), fd(x2), fv(x2(2m+1)), fg(x2(2m+1)), fh(x2(2m+1)), fe(x2(2m+1)),

respectively. We note that Ðoković and Zhao [14] observed some connection between Yang’s

method and the octonion algebra.

In this section, we will give a more straightforward proof of Theorem 3.3. Our approach

is by constructing a matrix Q from the eight sequences a, b, c,d,v, g,h, e and produce a

Laurent polynomial of single variable for each sequence and a Laurent polynomial of two

variables for the matrix Q, such that

ψQ(x, y) = ψa(x)ψv(y) + ψc(x)ψg(y) + ψb(x)ψe(y) + ψd(x)ψh(y).

This gives an interpretation of the Lagrange identity in term of sequences and matrices, i.e.
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there exist matrices Q,R, S, T such that

(ψQψ∗Q + ψRψ
∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)(ψeψ

∗
e + ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(y).

Then (3.1) follows immediately by noticing ψQ(x, x(2m+1)) = ψq(x) and (ψaψ
∗
a)(x) = (faf

∗
a)(x2)

for a sequence a.

We fix a multiplicatively closed subset T of R satisfying −1 ∈ T = T ∗. Also, we denote

T0 = T ∪ {0}.

Definition 3.4. Let a = (a0, . . . al−1) ∈ Rl. We define a Laurent polynomial ψa(x) ∈ R[x±1]

by

ψa(x) = x1−lfa(x2).

For sequence a = (a0, . . . , al−1) ∈ Rl of length l we define a∗ ∈ Rl by (a∗l−1, . . . , a
∗
0). It

follows immediately that a∗∗ = a for every a ∈ Rl.

Lemma 3.5. Let l be a positive integer and a ∈ Rl. Then

ψa∗(x) = ψ∗a(x).

Proof.

ψa∗(x) = x1−lfa∗(x2)

= x1−l+2(l−1)f∗a(x2) (by Lemma 2.7 (vi))

= xl−1f∗a(x2)

= ψ∗a(x).
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Lemma 3.6. For any sequence a,

fa(x2)f∗a(x2) = ψa(x)ψ∗a(x).

Proof. Immediate from Definition 3.4.

Corollary 3.7. Let a1, . . . ,an be arbitrary sequences with entries in R. Then a1, . . . ,an are

complementary sequences with weight w if and only if

n∑
i=1

(ψaiψ
∗
ai

)(x) = w.

Proof. The proof is immediate from Lemma 2.10 and Lemma 3.6.

Definition 3.8. Let a = (a0, . . . , al−1) ∈ Rl. Define

a/0 = (a0, 0, a1, . . . , 0, al−1) ∈ R2l−1, 0/a = (0, a0, 0, . . . , al−1, 0) ∈ R2l+1.

Lemma 3.9. Let a ∈ Rl and let p be an odd positive integer. Then

ψa/0(x) = ψ0/a(x) = ψa(x2).

Proof. By Definition 3.4 and Definition 3.8, we have

ψa/0(x) = x1−(2l−1)fa/0(x2) = x2−2lfa(x4) = ψa(x2),

ψ0/a(x) = x1−(2l+1)f0/a(x2) = x−2lx2fa(x4) = ψa(x2).

Let R[x±1, y±1] be the ring of Laurent polynomials in two variables x, y. We define an

involutive ring automorphism ∗ : R[x±1, y±1] → R[x±1, y±1] by x 7→ x−1, y 7→ y−1 and

a 7→ a∗ for a ∈ R. For the remainder of this section, we denote the row vectors of a matrix

A by a0,a1, . . . and those of a matrix B by b0, b1, . . ..
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3 Yang Multiplication Theorem

Definition 3.10. For A ∈ Rn×m, we define

seq(A) = (a0 | a1 | · · · | an−1) ∈ Rmn,

where | denotes concatenation, and

ψA(x, y) =
n−1∑
i=0

y2i+1−nψai(x).

Lemma 3.11. Let A,B ∈ Rn×m. Then

ψA±B(x, y) = ψA(x, y)± ψB(x, y).

Proof. Notice that for every a, b ∈ Rl, ψa+b(x) = ψa(x)+ψb(x) by Definition 3.4 and Lemma

2.7 (i). Thus, the result follows.

Note that we may regard Rn as R1×n. So, for every a ∈ Rn, we have at ∈ Rn×1 where t

denotes the transpose of a matrix.

Lemma 3.12. Let a ∈ Rn and b ∈ Rm. Then

ψatb(x, y) = ψa(y)ψb(x).

Proof. Let a = (a0, . . . , an−1). Then the ith row of the matrix atb is aib. Thus

ψatb(x, y) =
n−1∑
i=0

y2i+1−nψaib(x)

=
n−1∑
i=0

y2i+1−naiψb(x)

= ψb(x)y1−n
n−1∑
i=0

aiy
2i

= ψb(x)y1−nfa(y2)

= ψb(x)ψa(y).
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3.1 A Generalization of Yang Multiplication Theorem

Lemma 3.13. Let

a, b, c,d ∈ Rm, v, g,h, e ∈ Rn.

Set

Q = v∗ta + gtc− etb∗ + htd,

R = v∗tb + g∗td + eta∗ − h∗tc,

S = g∗ta− vtc− htb− etd∗,

T = gtb− vtd + h∗ta + etc∗.

Then

(ψQψ∗Q + ψRψ
∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)(ψeψ

∗
e + ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(y).

Proof. By Lemma 3.11, we have

ψQ(x, y) = (ψv∗ta + ψgtc − ψetb∗ + ψhtd)(x, y),

ψR(x, y) = (ψv∗tb + ψg∗td + ψeta∗ − ψh∗tc)(x, y),

ψS(x, y) = (ψg∗ta − ψvtc − ψhtb − ψetd∗)(x, y),

ψT (x, y) = (ψgtb − ψvtd + ψh∗ta + ψetc∗)(x, y).

Also, by Lemma 3.5 and Lemma 3.12, we have

ψQ(x, y) = ψa(x)ψ∗v(y) + ψc(x)ψg(y)− ψ∗b(x)ψe(y) + ψd(x)ψh(y),

ψR(x, y) = ψb(x)ψ∗v(y) + ψd(x)ψ∗g(y) + ψa(x)ψ∗e(y)− ψc(x)ψ∗h(y),

ψS(x, y) = ψa(x)ψ∗g(y)− ψc(x)ψv(y)− ψb(x)ψh(y)− ψ∗d(x)ψe(y),

ψT (x, y) = ψb(x)ψg(y)− ψd(x)ψv(y) + ψa(x)ψ∗h(y) + ψ∗c(x)ψe(y).
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3 Yang Multiplication Theorem

Thus, by applying the Lagrange identity (3.3), the result follows.

Lemma 3.14. Let p and p′ be odd positive integers,

a, b ∈ T m+p,

c,d ∈ T m,

v, g ∈ T n+p′ ,

h, e ∈ T n.

Set

a′ = a/0, b′ = b/0, c′ = 0/c̃, d′ = 0/d̃,

v′ = v/0, g′ = g/0, h′ = 0/h̃, e′ = 0/ẽ,

where

c̃ = (0(p−1)/2, c, 0(p−1)/2),

d̃ = (0(p−1)/2,d, 0(p−1)/2),

h̃ = (0(p′−1)/2,h, 0(p′−1)/2),

ẽ = (0(p′−1)/2, e, 0(p′−1)/2).

Write

Q = v′∗ta′ + g′tc′ − etb′∗ + h′td′, (3.4)

R = v′∗tb′ + g′∗td′ + e′ta′∗ − h′∗tc′, (3.5)

S = g′∗ta′ − v′tc′ − h′tb′ − e′td′∗, (3.6)

T = g′tb′ − v′td′ + h′∗ta′ + e′tc′∗. (3.7)
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3.1 A Generalization of Yang Multiplication Theorem

Then

(ψQψ∗Q + ψRψ
∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x2)(ψeψ

∗
e + ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(y2).

Moreover, Q,R, S, T ∈ T (2(n+p′)−1)×(2(m+p)−1)
0 if p, p′ > 1, and Q,R, S, T ∈ T (2n+1)×(2m+1)

if p = p′ = 1.

Proof. Notice that a′, b′, c′,d′ ∈ T 2(m+p)−1
0 and v′, g′,h′, e′ ∈ T 2(n+p′)−1

0 . It can be checked

that ψs̃(x) = ψs(x) for every s ∈ {c,d,h, e}. Thus, by Lemma 3.9 and Lemma 3.13, we have

(ψQψ∗Q + ψRψ
∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, y)

= (ψa′ψ
∗
a′ + ψb′ψ

∗
b′ + ψc′ψ

∗
c′ + ψd′ψ

∗
d′)(x)(ψe′ψ

∗
e′ + ψv′ψ

∗
v′ + ψg′ψ

∗
g′ + ψh′ψ

∗
h′)(y)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x2)(ψeψ

∗
e + ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(y2).

The last statement is clear by Definition 3.8.

Lemma 3.15. If A ∈ Rn×m, then

ψseq(A)(x) = ψA(x, xm).

Proof.

ψseq(A)(x) = x1−nmfseq(A)(x2)

= x1−nm
n−1∑
i=0

x2imfai(x2)

= x1−nm
n−1∑
i=0

x2im+m−1ψai(x)

=
n−1∑
i=0

xm(2i+1−n)ψai(x)

= ψA(x, xm).
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3 Yang Multiplication Theorem

The assumption that p and p′ be odd in Lemma 3.13 is insignificant, if we allow 0 in

sequences. Indeed, if a ∈ Rm+p with p even, then a′ = (a | 0) ∈ Rm+p+1 and ψaψ
∗
a = ψa′ψ∗a′ .

Theorem 3.16. Let m,n be positive integers, p, p′ be odd positive integers, and

a, b ∈ T m+p,

c,d ∈ T m,

v, g ∈ T n+p′ ,

h, e ∈ T n

satisfy

(faf
∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x) = 2(2m+ p),

(fvf
∗
v + fgf

∗
g + fhf

∗
h + fef

∗
e )(x) = 2(2n+ p′).

Then there exist q, r, s, t ∈ T (2(n+p′)−1)(2(m+p)−1)
0 such that

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x) = 4(2m+ p)(2n+ p′).

Moreover, q, r, s, t ∈ T (2n+1)(2m+1) if p = p′ = 1.

Proof. Define Q,R, S, T as in (3.4), (3.5), (3.6), (3.7) in Lemma 3.14, respectively. Write

q = seq(Q), r = seq(R), s = seq(S), t = seq(T ).

By Lemma 3.14, Q,R, S, T ∈ T (2n+1)×(2m+1) if p = p′ = 1. Thus, the last statement holds

immediately by Definition 3.10. Applying Lemma 3.6, Lemma 3.14 and Lemma 3.15, we
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have

(fqf
∗
q + frf

∗
r + fsf

∗
s + ftf

∗
t )(x2)

= (ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x)

= (ψQψ∗Q + ψRψ
∗
R + ψSψ

∗
S + ψTψ

∗
T )(x, x2(m+p)−1)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x2)(ψeψ

∗
e + ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(x2(2(m+p)−1))

= (faf
∗
a + fbf

∗
b + fcf

∗
c + fdf

∗
d)(x2)(fef

∗
e + fvf

∗
v + fgf

∗
g + fhf

∗
h)(x2(2(m+p)−1)))

= 4(2m+ p)(2n+ p′).

Hence the proof is complete.

Finally, we see that Theorem 3.3 is a special case of Theorem 3.16 with p = p′ = 1. We

already showed that Theorem 3.1 follows from Theorem 3.3. Hence, this method also can be

used for proving Theorem 3.1.

3.2 Some Constructions of Paired Ternary Sequences

Throughout this section, we will use the same notions from Section 3.1. Also, we intro-

duce another version of Yang multiplication theorem: if BS(m + p,m) is nonempty, then

PT (7(2m+p)) is nonempty. Also, he showed that if BS(m+p,m) and GS(s) are nonempty,

then PT ((2m+ p)(2s+ 1)) is also nonempty. More specifically,

Theorem 3.17 (Yang [22]). Let (a, b, c,d) ∈ BS(m+ p,m) and (v; g) ∈ GS(s). Then there

exist q, r, s, t ∈ {0,±1}(2s+1)(2m+p) such that (q, r, s, t) ∈ PT ((2s+ 1)(2m+ p)).

It is already known from Lemma 2.25 that PT (l) is equivalent to TS(l) and the existence

of T -sequences implies to the existence of Hadamard matrices (see Theorem 2.32). Therefore,

we interested to investigate some constructions by Yang that lead to the existence of some

paired ternary sequences.
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3 Yang Multiplication Theorem

The proof of Theorem 3.17 is by establishing the identity

(fqf
∗
q +frf

∗
r +fsf

∗
s +ftf

∗
t )(x) = (faf

∗
a +fbf

∗
b +fcf

∗
c +fdf

∗
d)(x)(fvf

∗
v +fgf

∗
g +fef

∗
e )(x2(2m+p))

(3.8)

after defining the sequences q, r, s, t appropriately. As written in the original proof by Yang,

we need to use the following identity: let a, b, c, d, e, v, g, w ∈ R and ww∗ = 1. Set

q = av∗ + cg − b∗e,

r = bv∗ + dg∗ + a∗e,

s = w(ag∗ − cv − d∗e),

t = w(bg − dv + c∗e).

(3.9)

Then

qq∗ + rr∗ + ss∗ + tt∗ = (aa∗ + bb∗ + cc∗ + dd∗)(vv∗ + gg∗ + ee∗). (3.10)

We can see easily that his identity is just a derivation of the Lagrange identity (see (1.1))

with h = 0. Also, the derivation of (3.8) from (3.10) is not so immediate since one has to

define a, b, c, d, v, g as

fa(x), fb(x), xm+pfc(x), xm+pfd(x),

x(1−2s)(2m+p)fv(x2(2m+p)), x(1−2s)(2m+p)fg(x2(2m+p)),

rather than

fa(x), fb(x), fc(x), fd(x), fv(x2(2m+p)), fg(x2(2m+p)).

In this section, we give some results to approach a generalization of Theorem 3.17.

Lemma 3.18. Let k, k′, l be positive integers and a ∈ Rl. Then

ψ(0k,a,0k′ )(x) = xk−k
′
ψa(x).
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Proof.

ψ(0k,a,0k′ )(x) = x1−l−k−k′f(0k,a,0k′ )(x
2)

= x1−l−k−k′f(0k,a)(x2)

= x1−l+k−k′fa(x2)

= xk−k
′ · x1−lfa(x2)

= xk−k
′
ψa(x).

Lemma 3.19. Let aj , bj , cj ,dj ∈ Rm for j = 1, 2 and vi, gi,hi, ei ∈ Rn for every i =

1, 2, 3, 4. Set

Q = vt1a1 + gt1c1 + ht1d1 − et1b2,

R = vt2b1 + gt2d1 − ht2c1 + et2a2,

S = gt3a1 − vt3c1 − ht3b1 − et3d2,

T = gt4b1 − vt4d1 + ht4a1 + et4c2.

If

(i) supp(xi) = supp(yi) for (x, y) ∈ {(a, b), (c,d)} and i = 1, 2,

(ii) supp(ai) ∩ supp(ci) = ∅ for i = 1, 2,

(iii) supp(xi) = supp(xj) for x ∈ {v, g,h, e} and (i, j) ∈ {(1, 2), (3, 4)},

(iv) supp(zi) ∩ supp(ej) = ∅ for z ∈ {v, g,h} and i, j = 1, 3,

(v) supp(v1) ∩ supp(x3) = ∅ and supp(v3) ∩ supp(x1) = ∅ for every x ∈ {g,h},

(vi) supp(gi) ∩ supp(hi) = ∅ for i = 1, 3,

then the pairs (Q,R) and (S, T ) are each conjoint and the pair (Q,S) is disjoint.
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3 Yang Multiplication Theorem

Proof. By (iv), we have

supp(Q) = supp(vt1a1 + gt1c1 + ht1d1) ∪ supp(et1b2), (3.11)

supp(R) = supp(vt2b1 + gt2d1 − ht2c1) ∪ supp(et2a2), (3.12)

supp(S) = supp(gt3a1 − vt3c1 − h3tb1) ∪ supp(et3d2), (3.13)

supp(T ) = supp(gt4b1 − vt4d1 + ht4a1) ∪ supp(et4c2). (3.14)

Also,

supp(vt1a1) ∩ supp(gt1c1) = ∅ (by (ii)), (3.15)

supp(vt1a1) ∩ supp(ht1d1) = ∅ (by (i) and (ii)), (3.16)

supp(gt1c1) ∩ supp(ht1d1) = ∅ (by (vi)). (3.17)

Hence

supp(Q) = supp(vt1a1) ∪ supp(gt1c1) ∪ supp(ht1d1) ∪ supp(et1b2). (3.18)

We have

supp(vt2b1) ∩ supp(gt2d1) = ∅ (by (i),(ii)),

supp(vt2b1) ∩ supp(ht2c1) = ∅ (by (i), (ii)),

supp(gt2d1) ∩ supp(ht2c1) = ∅ (by (iii), (vi)).

Therefore, by (ii), (iii), (3.11) and (3.12), we obtain

supp(R) = supp(vt2b1) ∪ supp(gt2d1) ∪ supp(ht2c1) ∪ supp(et2a2)

= supp(vt1a1) ∪ supp(gt1c1) ∪ supp(ht1d1) ∪ supp(et1b2)

= supp(Q),
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3.2 Some Constructions of Paired Ternary Sequences

and hence, the pair Q,R is conjoint. Note that since

supp(gt3a1) ∩ supp(vt3c1) = ∅ (by (ii)), (3.19)

supp(gt3a1) ∩ supp(ht3b1) = ∅ (by (vi)), (3.20)

supp(vt3c1) ∩ supp(ht3b1) = ∅ (by (i), (ii)), (3.21)

by (3.13), we have

supp(S) = supp(gt3a1) ∪ supp(vt3c1) ∪ supp(ht3b1) ∪ supp(et3d2). (3.22)

Also, by (i), (ii) and (iii), we have

supp(gt4b1) ∩ supp(vt4d1) = ∅ (by (3.19)),

supp(gt4b1) ∩ supp(ht4a1) = ∅ (by (3.20)),

supp(vt4d1) ∩ supp(ht4a1) = ∅ (by (3.21)).

Therefore, by (i), (iii), (3.13) and (3.14),

supp(T ) = supp(gt4b1) ∪ supp(vt4d1) ∪ supp(ht4a1) ∪ supp(et4c2)

= supp(gt3a1) ∪ supp(vt3c1) ∪ supp(ht3b1) ∪ supp(et3d2)

= supp(S).

Therefore, the pair S and T is also conjoint. Finally, by (i), (ii), (iv), (v)

supp(A) ∩ supp(B) = ∅

for every A ∈ {vt1a1, g
t
1c1,h

t
1d1, e

t
1b2} and B ∈ {gt3a1,v

t
3c1,h

t
3b1, e

t
3d2}. Hence, by (3.18)
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3 Yang Multiplication Theorem

and (3.22),

supp(Q) ∩ supp(S) = (supp(vt1a1) ∪ supp(gt1c1) ∪ supp(ht1d1) ∪ supp(et1b2))

∩ (supp(gt3a1) ∪ supp(vt3c1) ∪ supp(ht3b1) ∪ supp(et3d2))

= ∅.

So, the pair Q,S is disjoint and the proof is complete.

Theorem 3.20. Let m,n, p be positive integers and

a, b ∈ T m+p,

c,d ∈ T m,

v, g,h, e ∈ T n0 ,

e ∈ T 2n+1
0 .

Let ai, bi, ci,di ∈ T 2m+p
0 for i = 1, 2 and vj , gj ,hj ∈ T 2n+1

0 for j = 1, 2, 3, 4 satisfy the

following conditions.

ψa1(x) = x−mψa(x), ψa2(x) = x−mψ∗a(x),

ψb1(x) = x−mψb(x), ψb2(x) = x−mψ∗b(x),

ψc1(x) = xm+pψc(x), ψc2(x) = xm+pψ∗c(x),

ψd1(x) = xm+pψd(x), ψd2(x) = xm+pψ∗d(x),

ψv1(y) = ψv2(y) = y−2ψ∗v(y2), ψv3(y) = ψv4(y) = ψv(y2),

ψg1(y) = y−2ψg(y2), ψh1(y) = y−2ψh(y2),

ψg2(y) = y−2ψ∗g(y2), ψh2(y) = y−2ψ∗h(y2),

ψg3(y) = ψ∗g(y2), ψh3(y) = ψh(y2),

ψg4(y) = ψg(y2), ψh4(y) = ψ∗h(y2).
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Set
Q = vt1a1 + gt1c1 + ht1d1 − etb2,

R = vt2b1 + gt2d1 − ht2c1 + eta2,

S = gt3a1 − vt3c1 − ht3b1 − etd2,

T = gt4b1 − vt4d1 + ht4a1 + etc2.

(3.23)

Then

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)((ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(x2(2m+p)) + (ψeψ

∗
e)(x2m+p))

where q = seq(Q), r = seq(R), s = seq(S), t = seq(T ).

Proof. By the constructions, we have

y2ψQ(x, y) = y2(ψv1(y)ψa1(x) + ψg1(y)ψc1(x) + ψh1(y)ψd1(x)− ψe(y)ψb2(x))

= ψ∗v(y2)x−mψa(x) + ψg(y2)xm+pψc(x) + ψh(y2)xm+pψd(x)− y2ψe(y)x−mψ∗b(x),

(3.24)

y2ψR(x, y) = (ψv2(y)ψb1(x) + ψg2(y)ψd1(x)− ψh2(y)ψc1(x)− ψe(y)ψa2(x))

= ψ∗v(y2)x−mψb(x) + ψ∗g(y2)xm+pψd(x)− ψ∗h(y2)xm+pψc(x)− y2ψe(y)x−mψ∗a(x),

(3.25)

ψS(x, y) = ψg3(y)ψa1(x)− ψv3(y)ψc1(x)− ψh3(y)ψb1(x) + ψe(y)ψd2(x)

= ψ∗g(y2)x−mψa(x)− ψv(y2)xm+pψc(x)− ψh(y2)x−mψb(x) + ψe(y)xm+pψ∗d(x),

(3.26)

ψT (x, y) = ψg4(y)ψb1(x)− ψv4(y)ψd1(x)− ψh4(y)ψa1(x) + ψe(y)ψc2(x)

= ψg(y2)x−mψb(x)− ψv(y2)xm+pψd(x)− ψ∗h(y2)x−mψa(x) + ψe(y)xm+pψ∗c(x).

(3.27)
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Set

a = x−mψa(x),

b = x−mψb(x),

c = xm+pψc(x),

d = xm+pψd(x),

v = ψv(x4m+2p),

g = ψg(x4m+2p),

h = ψh(x4m+2p),

e = x2(m+p)ψe(x2m+p).

Then from equations (3.24), (3.25), (3.26), (3.27), we obtain

x4m+2pψq(x) = x4m+2pψQ(x, x2m+p)

= ψ∗v(x4m+2p)x−mψa(x) + ψg(x4m+2p)xm+pψc(x)

+ ψh(x4m+2p)xm+pψd(x)− x4m+2pψe(x2m+p)x−mψ∗b(x)

= ψ∗v(x4m+2p)x−mψa(x) + ψg(x4m+2p)xm+pψc(x)

+ ψh(x4m+2p)xm+pψd(x)− x2m+2pψe(x2m+p)xmψ∗b(x)

= v∗a+ gc+ hd− eb∗,

x4m+2pψr(x) = x4m+2pψR(x, x2m+p)

= ψ∗v(x4m+2p)x−mψb(x) + ψ∗g(x4m+2p)xm+pψd(x)

− ψ∗h(x4m+2p)xm+pψc(x)− x4m+2pψe(x2m+p)x−mψ∗a(x)

= ψ∗v(x4m+2p)x−mψb(x) + ψ∗g(x4m+2p)xm+pψd(x)

− ψ∗h(x4m+2p)xm+pψc(x)− x2m+2pψe(x2m+p)xmψ∗a(x)

= v∗b+ g∗d− h∗c− ea∗,

56



3.2 Some Constructions of Paired Ternary Sequences

ψs(x) = ψS(x, x2m+p)

= ψ∗g(x4m+2p)x−mψa(x)− ψv(x4m+2p)xm+pψc(x)

− ψh(x4m+2p)x−mψb(x) + ψe(x2m+p)xm+pψ∗d(x)

= ψ∗g(x4m+2p)x−mψa(x)− ψv(x4m+2p)xm+pψc(x)

− ψh(x4m+2p)x−mψb(x) + x2m+2pψe(x2m+p)x−m−pψ∗d(x)

= g∗a− vc− hb+ ed∗,

ψt(x) = ψT (x, x2m+p)

= ψg(x4m+2p)x−mψb(x)− ψv(x4m+2p)xm+pψd(x)

− ψ∗h(x4m+2p)x−mψa(x) + ψe(x2m+p)xm+pψ∗c(x)

= ψg(x4m+2p)x−mψb(x)− ψv(x4m+2p)xm+pψd(x)

− ψ∗h(x4m+2p)x−mψa(x) + x2m+2pψe(x2m+p)x−m−pψ∗c(x)

= gb− vd− h∗a+ ec∗.

By the Lagrange identity,

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x) = (aa∗ + bb∗ + cc∗ + dd∗)(ee∗ + vv∗ + gg∗ + hh∗)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)((ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(x2(2m+p)) + (ψeψ

∗
e)(x2m+p)).

Corollary 3.21. Let m,n, p be positive integers and

a, b ∈ T m+p,

c,d ∈ T m,

v, g,h ∈ T n0 ,

e ∈ T 2n+1
0 .
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3 Yang Multiplication Theorem

Define

a1 = (a, 0m), a2 = (a∗, 0m),

b1 = (b, 0m), b2 = (b∗, 0m),

c1 = (0m+p, c), c2 = (0m+p, c
∗),

d1 = (0m+p,d), d2 = (0m+p,d
∗),

and set
v1 = v2 = (v∗/0, 0, 0), v3 = v4 = (0,v/0, 0),

g1 = (g/0, 0, 0), h1 = (h/0, 0, 0),

g2 = (g∗/0, 0, 0), h2 = (h∗/0, 0, 0),

g3 = (0, g∗/0, 0), h3 = (0,h/0, 0),

g4 = (0, g/0, 0), h4 = (0,h∗/0, 0).

(3.28)

Set
Q = vt1a1 + gt1c1 + ht1d1 − etb2,

R = vt2b1 + gt2d1 − ht2c1 + eta2,

S = gt3a1 − vt3c1 − ht3b1 − etd2,

T = gt4b1 − vt4d1 + ht4a1 + etc2.

(3.29)

Then

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)((ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(x2(2m+p)) + (ψeψ

∗
e)(x2m+p))

where q = seq(Q), r = seq(R), s = seq(S), t = seq(T ).
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Proof. Since

ψa1(x) = x−mψa(x),

ψb1(x) = x−mψb(x),

ψc1(x) = xm+pψc(x),

ψd1(x) = xm+pψd(x),

ψa2(x) = x−mψa∗(x) = x−mψ∗a(x),

ψb2(x) = x−mψb∗(x) = x−mψ∗b(x),

ψc2(x) = xm+pψc∗(x) = xm+pψ∗c(x),

ψd2(x) = xm+pψd∗(x) = xm+pψ∗d(x),

ψv1(y) = ψv2(y) = y−2ψ(v∗/0)(y) = y−2ψv∗(y2) = y−2ψ∗v(y2),

ψv3(y) = ψv4(y) = ψ(v/0)(y) = ψv(y2),

ψg1(y) = y−2ψ(0/g)(y) = y−2ψg(y2),

ψg2(y) = y−2ψ(0/g∗)(y) = y−2ψg∗(y2) = y−2ψ∗g(y2),

ψg3(y) = ψ(0/g∗)(y) = ψ∗g(y2),

ψg4(y) = ψ(0/g)(y) = ψg(y2),

ψh1(y) = y−2ψ(0/h)(y) = y−2ψh(y2),

ψh2(y) = y−2ψ(0/h∗)(y) = y−2ψh∗(y2) = y−2ψ∗h(y2),

ψh3(y) = ψ(0/h)(y) = ψh(y2),

ψh4(y) = ψ(0/h∗)(y) = ψ∗h(y2),

the conditions in Theorem 3.20 are satisfied. Thus, by Theorem 3.20, the result follows.

Lemma 3.22. Under the conditions of Corollary 3.21, if

a. supp(zi) ∩ supp(e) = ∅ for z ∈ {v, g,h} and i = 1, 3,

b. supp(gi) ∩ supp(hi) = ∅ for i = 1, 3,

then the pairs (q, r) and (s, t) are each conjoint and the pair (q, s) is disjoint.
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3 Yang Multiplication Theorem

Proof. Recall Lemma 3.19. By the constructions, the conditions (i), (ii), (iii), and (v) are

already satisfied. Since (a.) and (b.) holds, the conditions (iv) and (vi) are also satisfied.

Therefore, by Lemma 3.19, the pairs (Q,R) and (S, T ) are each conjoint and the pair (Q,S) is

disjoint. Hence, the pairs (q, r) and (s, t) are each conjoint and the pair (q, s) is disjoint.

Lemma 3.23. Let m,n, p be positive integers and set

a, b ∈ T m+p,

c,d ∈ T m.

Let

v = (1, 1,−1), g = (1, 0, 1), h = (0, 1, 0), e = (06, 1),

and apply Corollary 3.21. Then

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x) = 7(ψaψ

∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x). (3.30)

Moreover, the pairs (q, r) and (s, t) are each conjoint and the pair (q, s) is disjoint.

Proof. By direct calculation, we have (ψvψ
∗
v +ψgψ

∗
g +ψhψ

∗
h)(y) = 6 and ψeψ

∗
e(y) = 1. Thus,

we obtain (3.30) immediately by Corollary 3.21. Moreover, we have

v1 = v2 = ( −1 0 1 0 1 0 0 ),

g1 = g2 = ( 1 0 0 0 1 0 0 ),

h1 = h2 = ( 0 0 1 0 0 0 0 ),

v3 = v4 = ( 0 1 0 1 0 −1 0 ),

g3 = g4 = ( 0 1 0 0 0 1 0 ),

h3 = h4 = ( 0 0 0 1 0 0 0 ),

e = ( 0 0 0 0 0 0 1 ).

Since supp(zi) ∩ supp(e) = ∅ for z ∈ {v, g,h} and i = 1, 3, and supp(gi) ∩ supp(hi) = ∅ for

i = 1, 3, by Lemma 3.22, the pairs (q, r) and (s, t) are each conjoint and the pair (q, s) is
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3.2 Some Constructions of Paired Ternary Sequences

disjoint.

Theorem 3.24. If BS(m+ p,m) is nonempty, then PT (7(2m+ p)) is nonempty.

Proof. Let (a, b, c,d) ∈ BS(m + p,m). By applying Lemma 3.23, we obtain q, r, s, t ∈

{0,±1}7(2m+p) such that

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x) = 7(ψaψ

∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)

= 14(2m+ p)

with the pairs (q, r) and (s, t) are each conjoint and the pair (q, s) is disjoint. Therefore,

(q, r, s, t) ∈ PT (7(2m+ p)).

Theorem 3.25. If BS(m + p,m) and GS(s) are nonempty, then PT ((2s + 1)(2m + p)) is

nonempty.

Proof. Let (a, b, c,d) ∈ BS(m+ p,m) and (v, g) ∈ GS(s). Define all sequences in Corollary

3.21 with h = 0s and e = (02s, 1). Clearly, supp(zi) ∩ supp(e) = ∅ for z ∈ {v, g,h} and

i = 1, 3, and supp(gi) ∩ supp(hi) = ∅ for i = 1, 3. Therefore, the pairs (q, r) and (s, t) are

each conjoint and the pair (q, s) is disjoint by Lemma 3.22. By Corollary 3.21,

(ψqψ
∗
q + ψrψ

∗
r + ψsψ

∗
s + ψtψ

∗
t )(x)

= (ψaψ
∗
a + ψbψ

∗
b + ψcψ

∗
c + ψdψ

∗
d)(x)((ψvψ

∗
v + ψgψ

∗
g + ψhψ

∗
h)(x2(2m+p)) + (ψeψ

∗
e)(x2m+p))

= 2(2m+ p)(2s+ 1).

Therefore, (q, r, s, t) ∈ PT ((2s+ 1)(2m+ p)).
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4 The Theorem of Standardization

Throughout this section, let R be a commutative ring with identity. We fix a subgroup T of

the group of units of R, and set T0 = T ∪{0}. The set of m×n matrices with entries in T0 is

denoted by Tm×n0 . If T = {z ∈ C : |z| = 1}, then W ∈ Tn×n0 is called a unit weighing matrix

of order n with weight w provided that WW ∗ = wI where W ∗ is the transpose conjugate

of W . Unit weighing matrices are introduced by D. Best, H. Kharaghani, and H. Ramp in

[2, 3]. Moreover, a unit weighing matrix is known as a unit Hadamard matrix if w = n (see

[4]). A unit weighing matrix in which every entry is in {0,±1} is called a weighing matrix.

We refer the reader to [6] for an extensive discussion of weighing matrices, and to [13] for

more information on applications of weighing matrices.

The study on the number of inequivalent unit weighing matrices was initiated in [2]. Also,

observing the number of weighing matrices in standard form leads to an upper bound on the

number of inequivalent unit weighing matrices [2]. In this thesis, we will introduce a standard

form of an arbitrary matrix in Tm×n0 and show that every matrix in Tm×n0 is equivalent to a

matrix in standard form.

We equip T0 with a total ordering ≺ satisfying min(T0) = 1 and max(T0) = 0. Moreover,

let a = (a1, . . . , an) and b = (b1, . . . , bn) be arbitrary row vectors with entries in T0. If k is

the smallest index such that ak 6= bk, then we write a < b provided ak ≺ bk. We write a ≤ b

if a < b or a = b. If a1, . . . ,am are row vectors of a matrix A ∈ Tm×n0 and a1 < · · · < am,

then we say that the rows of A are in lexicographical order.

Definition 4.1. We say that a matrix in Tm×n0 is in standard form if the following conditions

are satisfied:

(S1) The first non-zero entry in each row is 1.
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4 The Theorem of Standardization

(S2) The first non-zero entry in each column is 1.

(S3) The first row is ones followed by zeros.

(S4) The rows are in lexicographical order according to ≺.

The subset of Tm×m0 consisting of permutation matrices, nonsingular diagonal matrices

and monomial matrices, are denoted respectively, by Pm,Dm and Mm. Then Mm = PmDm.

Definition 4.2. For A,B ∈ Tm×n0 , we say that A is equivalent to B if there exist monomial

T0-matrices M1 and M2 such that M1AM2 = B.

Now we will restate [2, Theorem 5] to the following theorem.

Theorem 4.3. Every unit weighing matrices is equivalent to a matrix that is in a standard

form.

For convenience, we will restate the proof of Theorem 4.3 as the following algorithm.

Algorithm 4.4. Let W be an arbitrary unit weighing matrix.

(1) We multiply each ith row of W by r−1
i where ri is the first non-zero entry in ith row.

Denote the obtained matrix by W (1).

(2) Let cj be the first non-zero entry in jth column of W (1). Let W (2) obtained from W (1)

by multiplying each jth column by c−1
j .

(3) Permute the columns of W (2) so that the first row has w ones. Denote the resulting

matrix by W (3).

(4) Let W (4) be a matrix obtained from W (3) by sorting the rows of W (3) lexicographically

with the ordering ≺.

Then W (4) is in standard form.

However, we provide a counterexample to show that this algorithm does not produce a

standard form.
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Example 4.5. The matrix

W =



1 −i i 1 0 0

0 1 1 0 i i

1 0 0 −1 −i i

1 0 0 −1 i −i

0 1 1 0 −i −i

1 i −i 1 0 0


is a unit weighing matrix, where i is a 4th root of unity in C. Also,we equip the set {0,±i,±1}

with a total ordering ≺ defined by 1 ≺ −1 ≺ i ≺ −i ≺ 0. Since the first nonzero entry in

each row of W is one, W (1) = W . Applying step (2), we obtain

W (2) =



1 1 1 1 0 0

0 i −i 0 1 1

1 0 0 −1 −1 1

1 0 0 −1 1 −1

0 i −i 0 −1 −1

1 −1 −1 1 0 0


.

Notice that the first row of W (2) is all ones followed by zeros. So, W (3) = W (2). Finally, by

applying the last step of the algorithm, we have

W (4) =



1 1 1 1 0 0

1 −1 −1 1 0 0

1 0 0 −1 1 −1

1 0 0 −1 −1 1

0 i −i 0 1 1

0 i −i 0 −1 −1


.

We see that W (4) is not in standard form. So, we conclude that the algorithm does not

produce a matrix in standard form as claimed.
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This counterexample shows that the additional steps are needed to complete the proof of

Theorem 4.3. In the next section, we will prove a more general theorem than Theorem 4.3

by showing that every matrix in Tm×n0 is equivalent to a matrix that is in standard form.

4.1 Improvement of the Proof of the Standardization

In addition to the conditions (S1)–(S4) in Definition 4.1, we will consider the following con-

dition:

(S3)′ The first nonzero row is ones followed by zeros.

Note that (S3)′ is weaker than (S3). The condition (S3)′ is crucial in the proof of Lemma

4.6, where we encounter a matrix whose first row consists entirely of zeros.

Lemma 4.6. Let

A =
[
A1 A2

]
∈ Tm×(n1+n2)

0 ,

where Ai ∈ Tm×ni
0 , i = 1, 2. Then there exist P ∈ Pm and M ∈ Mn2 such that PA2M

satisfies (S2) and (S3)′, and
[
PA1 PA2M

]
satisfies (S4).

Proof. Without loss of generality, we may assume A1 satisfies (S4). Then there exist row

vectors a1, . . . ,ak of A1 such that a1 < · · · < ak, and positive integers m1, . . . ,mk such that

A1 =


1>m1

. . .

1>mk




a1
...

ak

 ,

where
∑k
i=1mi = m. Write

A2 =


B1
...

Bk

 ,

where Bi ∈ Tmi×n2
0 for i = 1, 2, . . . , k. We may assume B1 6= 0, since otherwise the proof

reduces to establishing the assertion for the matrix A with the firstm1 rows deleted. Let b be a

row vector of B1 with maximum number of nonzero components. Then there existsM ∈Mn2
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such that the vector bM constitutes ones followed by zeros. Moreover, for each i ∈ {1, . . . , k},

there exists Pi ∈ Pmi such that the rows of PiBiM are in lexicographic order. It follows that

bM is the first row of P1B1M , that is also the first row of PA2M . Set P = diag(P1, . . . , Pk).

Then PA2M satisfies (S3). Since PA1 = A1, we see that
[
PA1 PA2M

]
satisfies (S4).

With the above notation, we prove the assertion by induction on n2. First we treat the

case where bM = 1. This in particular includes the case where n2 = 1, the starting point

of the induction. In this case, the first row of PA2M is 1, hence PA2M satisfies (S2). The

other assertions have been proved already.

Next we consider the case where bM =
[
1n2−n′2 0n′2

]
, with 0 < n′2 < n2. Define A′1 ∈

T
(m−1)×(n1+n2−n′2)
0 and A′2 ∈ T

(m−1)×n′2
0 by setting

[
A′1 A′2

]
to be the matrix obtained from[

A1 PA2M

]
by deleting the first row. By inductive hypothesis, there exist P ′ ∈ Pm−1 and

M ′ ∈ Mn′2
such that P ′A′2M ′ satisfies (S2) and (S3)′, and

[
P ′A′1 P ′A′2M

′
]
satisfies (S4).

By our choice of b, the row vector bM is lexicographically the smallest member among the

rows of P1B1M , and the same is true among the rows of the matrix P1B1M
′′, where

M ′′ = M

In2−n′2 0

0 M ′

 .
It follows that the matrix

1 0

0 P ′

 [A1 PA2M
′′
]

=

 ∗ 0

P ′A′1 P ′A′2M
′


satisfies (S4). Set

P ′′ =

1 0

0 P ′

P.
Since P ′A′2M ′ satisfies (S2), while the first row of P ′′A2M

′′ is the same as that of PA2M

which is
[
1n2−n′2 0n′2

]
, the matrix P ′′A2M

′′ satisfies both (S2) and (S3)′. We have already

shown that the matrix
[
P ′′A1 P ′′A2M

]
satisfies (S4).

Lemma 4.7. Under the same assumption as in Lemma 4.6, there exist M1 ∈ Mm and
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M2 ∈Mn2 such that
[
M1A1 M1A2M2

]
satisfies (S1) and (S4), and M1A2M2 satisfies (S2)

and (S3)′.

Proof. We will prove the assertion by induction on m. Suppose m = 1. It is clear that

every single row vector always satisfies (S4). Also, every single row vector satisfying (S3)′

necessarily satisfies (S2). Now, if A1 = 0 or n1 = 0, then there exists M2 ∈ Mn2 such that

A2M2 satisfies (S3)′ and hence (S1) is satisfied. If A1 6= 0, then there exist a ∈ T and

M2 ∈Mn2 such that aA1 satisfies (S1) and aA2M2 satisfies (S3)′.

Assume the assertion is true up to m − 1. First, we consider the case where A1 = 0 or

n1 = 0. Without loss of generality, we may assume A2 6= 0. Furthermore, we may assume

that the first row and the first column of A2 are ones followed by zeros. Then there exists

P ′ ∈ Pn2 such that

A2P
′ =


1 1 0 0

1T B1 B2 0

0 C1 C2


where B2 ∈ Tm1×t

0 has no zero column. By Lemma 4.6, there exist P ∈ Pm1 and M ∈ Mt

such that PB2M satisfies (S2) and (S3)′ and
[
PB1 PB2M

]
satisfies (S4). Let

C ′1 = C1

In2−n′2−t−1 0

0 M

 .

By inductive hypothesis, there existM ′1 ∈Mm−m1−1, andM ′2 ∈Mn′2
such that

[
M ′1C

′
1 M ′1C2M

′
2

]
satisfies (S1) and (S4), and M ′1C2M

′
2 satisfies (S2) and (S3)′. By setting

M1 =


1 0 0

0 P 0

0 0 M ′1

 , M2 = P ′


In2−n′2−t 0 0

0 M 0

0 0 M ′2

 ,

the matrix M1A2M2 satisfies (S1)–(S4).

Next we consider the case A1 6= 0. Without loss of generality, we may assume that the

68
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first nonzero column in A1 is ones followed by zeros. Write

A1 =

0m×t
1T B1

0 D1



for some t < n1, with B1 ∈ T
m1×(n1−t−1)
0 and D1 ∈ T

m2×(n1−t−1)
0 for some m1,m2 with

m1 +m2 = m and m2 < m. Then there exists P ′ ∈ Pn2 such that

A2P
′ =

B2 0m1×n′2

D2 C2



for some n′2 ≥ 0, where B2 ∈ T
m1×(n2−n′2)
0 has no zero column. By Lemma 4.6, there exist

P ∈ Pm1 and M ∈ Mn2−n′2 such that PB2M satisfies (S2) and (S3)′ and
[
PB1 PB2M

]
satisfies (S4). Let C1 =

[
D1 D2M

]
. Then by inductive hypothesis, there exist M ′1 ∈ Mm2

and M ′2 ∈ Mn′2
such that

[
M ′1C1 M ′1C2M

′
2

]
satisfies (S1) and (S4), and M ′1C2M

′
2 satisfies

(S2) and (S3)′. By setting

M1 =

P 0

0 M ′1

 , M2 = P ′

M 0

0 M ′2

 ,
the proof is complete.

Theorem 4.8. Every nonzero matrix in Tm×n0 is equivalent to a matrix that is in standard

form.

Proof. Let W ∈ Tm×n0 . Setting A1 = ∅ and A2 = W in Lemma 4.7, we see that W is

equivalent to a matrix that is in standard form.

As a consequence of Theorem 4.3, we see that by setting T = {z ∈ C : |z| = 1} in Theorem

4.8, we have every unit weighing matrices is equivalent to a matrix that is in a standard form.

Therefore, we improve the proof of [2, Theorem 5].
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4.2 Applications of the Standardization to the Existence of Unit

Weighing Matrices

Note that the theorems and lemmas in this section are presented in [2] except Theorem 4.9.

In this section, we assume T = {z ∈ C | |z| = 1}.

Theorem 4.9. UW (n, 1) = Mn.

Proof. It is clear that every monomial matrix is in UW (n, 1). Conversely, let A = [aij ] ∈

UW (n, 1). Since AA∗ = In, we have

[AA∗]ij =
n∑
k=1

aikajk =


1 for i = j,

0 otherwise.

Therefore, there exists an index k(i) ∈ {1, . . . , n} for every i ∈ {1, . . . , n} such that ai,k(i) ∈ T

and ai,k′ = 0 for k′ ∈ {1, . . . , n} − k(i). Next, we will show that k(i) is unique for every

i ∈ {1, . . . , n}. For fixed i, let j 6= i and j ∈ {1, . . . , n} such that k(i) = k(j). Then

ai,k(i) = aj,k(j) and

n∑
k=1

aikajk = ai,k(i)aj,k(j) = ai,k(i)ai,k(i) = 1.

This is a contradiction since
∑n
i=k aikajk = 0. Thus, for each i ∈ {1, . . . , n}, there exists

a unique k(i) such that ai,k(i) ∈ T and ai,k′ = 0 for k′ ∈ {1, . . . , n} − k(i). This implies

A ∈Mn.

Definition 4.10. Let S ⊂ T . Then S is said to have n-orthogonality, if there exist

a1, b1, . . . , an, bn ∈ S such that
∑n
i=1 aibi = 0.

For a matrix W of order n, define

ZW (k, j) = |{i | 1 ≤ i ≤ j, Wik = 0}| (1 ≤ j, k ≤ n),

EW (k) = max{i |Wik = 0} (1 ≤ k ≤ n).

70



4.2 Applications of the Standardization to the Existence of Unit Weighing Matrices

Lemma 4.11. If W is a unit weighing matrix of order n and weight w, and n > z2 − z + 1,

where z = n− w, then the set S = {Wij | 1 ≤ i, j ≤ n} \ {0} has (n− 2z)-orthogonality.

Proof. If z = 0, then the result is clear. If z = 1, by the non-singularity of W , there exist

two rows with distinct support. This implies that S has (n− 2)-orthogonality.

Now assume z > 1. We may assume without loss of generality that

W1k = 0 (1 ≤ j ≤ z), (4.1)

Wi1 = 0 (1 ≤ i ≤ z). (4.2)

For 1 ≤ k ≤ z, define

Zk = {i | 1 ≤ i ≤ n, Wik = 0}.

Then

|Zk| = z, (4.3)

1 ∈ Zk (by (4.1)), (4.4)

for 1 ≤ k ≤ z, and

Z1 = {1, . . . , z} (by (4.2)). (4.5)

This implies

∣∣∣∣∣
z⋃

k=1
Zk

∣∣∣∣∣ = 1 +
∣∣∣∣∣
z⋃

k=1
(Zk \ {1})

∣∣∣∣∣ (by (4.4))

≤ 1 +
z∑

k=1
(|Zk| − 1)

= 1 +
z∑

k=1
(z − 1) (by (4.3))

= z2 − z + 1

< n.
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Thus, there exists

i ∈ {1, . . . , n} \
z⋃

k=1
Zk.

Observe i 6= 1 by (4.5). Since i /∈ Zk, we have Wik 6= 0 for 1 ≤ k ≤ z. This implies

|{k | z + 1 ≤ k ≤ n, Wik = 0}| = z. (4.6)

Thus

|{k | 1 ≤ k ≤ n, W1k 6= 0, Wik 6= 0}|

= |{k | z + 1 ≤ k ≤ n, Wik 6= 0}| (by (4.1))

= n− z − |{k | z + 1 ≤ k ≤ n, Wik = 0}|

= n− 2z (by (4.6)).

Lemma 4.12. UW (3, 2) is an empty set.

Proof. By Lemma 4.11, the existence of UW (3, 2) implies the existence of a set that has

1-orthogonality. But there is no set satisfying 1-orthogonality. Thus, UW (3, 2) is an empty

set.

Proposition 4.13. Let k be a positive integer. Then every matrix in UW (2k, 2) is equivalent

to
k⊕
i=1

1 1

1 −1

 . (4.7)

Moreover, there is exactly one equivalence class of UW (2k, 2).

Proof. We will prove by induction on k. The case k = 1 is clear. Without loss of generality,

let W ∈ UW (2k, 2) be a matrix in a standard form. Then

W =


1 1

1 −1

W ′
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whereW ′ ∈ UW (2(k−1), 2). By inductive hypothesis, we haveW ′ is equivalent to
⊕k−1
i=1

1 1

1 −1

.
Therefore, W is equivalent to

⊕k
i=1

1 1

1 −1

.
Moreover, there is exactly one equivalence class of UW (2k, 2) since the number of equiv-

alence classes of weighing matrices is bounded above by the number of the matrix that is in

a standard form, and (4.7) is the only one standard form matrix in UW (2k, 2).

Theorem 4.14. UW (n, 2) is nonempty if and only if n is even.

Proof. The "if" part is immediate from Proposition 4.13. Without loss of generality, assume

that W ∈ UW (n, 2) is in a standard form. Suppose n is an odd positive integer. Then W is

equivalent to

W1

W2



where W1 =
⊕(n−3)/2
i=1

1 1

1 −1

 by Proposition 4.13. Hence, W2 should be in UW (3, 2). But

UW (3, 2) is an empty set by Lemma 4.12. Thus n should be an even positive integer.

Lemma 4.15. Let W ∈ UW (n, 3). Then W is equivalent to a matrix with the top left

submatrix is either 
1 1 1

1 α ᾱ

1 ᾱ α

 or



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


where α+ α+ 1 = 0.

Proof. For convenience, we denote by Wi the ith row of W . Without loss of generality, let

W be in a standard form, i.e.

W1 =
(

1 1 1 0 · · · 0
)
.
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4 The Theorem of Standardization

Thus, without loss of generality, W2 is one of the following form:

(A)
(

1 a b 0 · · · 0
)
, (B)

(
1 a 0 1 0 · · · 0

)
.

Suppose W2 = (A). Then a ∈ {α, ᾱ} and b = ā by comparing W1 and W2. Moreover, in this

case, W3, without loss of generality, is one of the following form.

(i)
(

1 c d 0 · · · 0
)
,

(ii)
(

1 c 0 1 · · · 0
)
,

(iii)
(

1 0 c 1 · · · 0
)
.

If W3 = (ii), then c = −1 by comparing W1 and W3. But by comparing W2 and W3, we

obtain c = −a. This is a contradiction. Similar conclusion is occured if we set W3 = (iii).

For the case W3 = (i), we obtain c = d̄ = ā, the orthogonality condition is satisfied for each

pair of rows. Thus, the top left submatrix of W is


1 1 1

1 a ā

1 ā a

 .

Now, suppose W2 = (B). Then, a = −1. In this case, W3 is equivalent to one of the

following form:

(i)
(

1 b c 0 0 0 · · · 0
)
,

(ii)
(

1 b 0 c 0 0 · · · 0
)
,

(iii)
(

1 b 0 0 1 0 · · · 0
)
,

(iv)
(

1 0 b c 0 0 · · · 0
)
.

Thus, if W3 = (i), b = 1 by comparing W3 and W2, but b 6= 1 by comparing W2 and W3. If

W3 = (ii), b = −1 by comparing W3 and W1, but b 6= −1 by comparing W3 and W2. If W3 =

(iii), b = −1 by comparingW3 andW1, but b 6= −1 by comparingW3 andW2. IfW3 = (iv), we
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have b = c = −1. Therefore, without loss of generality, W4 =
(

0 1 d f 0 0 · · · 0
)

and hence d = −f = −1. So, we have the top left submatrix of W is



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


.

Theorem 4.16. Let W ∈ UW (n, 3). Then there exist positive integers k and l such that W

is equivalent to 
k⊕
i=1


1 1 1

1 α ᾱ

1 ᾱ α




⊕


l⊕

i=1



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1




where α is a primitive 3rd root of unity.

Proof. Note that n ≥ 3. Without loss of generality, assume that W is in a standard form.

We will prove by induction on n. The cases n = 3 and n = 4 are trivial. By Lemma 4.15,

the top left submatrix of W is either

U1 =


1 1 1

1 α ᾱ

1 ᾱ α

 or U2 =



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


.

Thus,

W =

U1

W1

 or W =

U2

W2


where W1 ∈ UW (n − 3, 3) and W2 ∈ UW (n − 4, 3). By inductive hypothesis, there exist
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4 The Theorem of Standardization

positive integers k1, l1, k2 and l2 such that

W1 =


k1⊕
i=1


1 1 1

1 α ᾱ

1 ᾱ α




⊕


l1⊕
i=1



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1




and

W2 =


k2⊕
i=1


1 1 1

1 a ā

1 ā a




⊕


l2⊕
i=1



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1




.

The assertion follows immediately for W =

U1

W1

. However, if W =

U2

W2

, the
result follows after appropriate row and column permutations. Hence, the proof is complete.

Proposition 4.17. Let n 6= 5 be a positive integer. Then n = 3k + 4l for some positive

integers k and l.

Proof. Note that n ≡ 0 (mod 4), n ≡ 1 (mod 4), n ≡ 2 (mod 4) or n ≡ 3 (mod 4). The

cases n ≡ 0 (mod 4) and n ≡ 3 (mod 4) are clear. Suppose n = 4k+1. We will prove this case

by induction on k. For the case k = 2, clearly, 3 | 9. Thus, we have 4k+1 = 4(k−1)+1+4 =

3k′ + 4l′ + 4 for some k′ and l′ by inductive hypothesis. Thus, 4k+ 1 = 3k′ + 4(l′ + 1). Now,

we will prove the case n = 4k+2 by induction on k. The case k = 1 is clear since 3 | 6. Thus,

4k+2 = 4(k−1)+2+4 = 3k′+4l′+4 by inductive hypothesis. Therefore, 4k+2 = 3k′+4(l′+1).

Thus, the proof is complete.

Corollary 4.18. UW (n, 3) is non empty if and only if n 6= 5.

Proof. Since there is no set with 1-orthogonality, UW (5, 3) is an empty set by Lemma 4.11.

Also, the "if" part is immediate by Proposition 4.17 and Theorem 4.16.
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Corollary 4.19. There exists a W (n, 3) if and only if n is divisible by 4. Moreover, there is

only one equivalence class of such matrices.

Proof. Note that by Theorem 4.16, a matrix in W (n, 3) is equivalent to

k⊕
i=1



1 1 1 0

1 − 0 1

1 0 − −

0 1 − 1


(4.8)

for some positive integer k and hence the first statement is satisfied. Moreover, since the

number of inequivalent class of weighing matrices is bounded above by the number of the

matrix that is in a standard form, and (4.8) is the only one standard form matrix of W (4, 3),

there is only one class of inequivalent matrices in W (n, 3).
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