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Abstract

In accretion disks, magneto-rotational instability (MRI) (Balbus & Hawley, 1991)

makes the disk gas in the magnetic turbulent state and drives efficient mass accre-

tion into a central star. MRI drives turbulence through the evolution of the para-

sitic instability (Goodman & Xu, 1994) which is related to both Kelvin-Helmholtz

(K-H) instability and magnetic reconnection. Although previous numerical simula-

tions identified the enhancement of parasitic instability (Lesur & Longaretti, 2011;

Murphy & Pessah, 2015) and reported that the maximum growth wavenumber

of parasitic instability at the first peak is larger value than analytical estimation

(Rembiasz et al., 2016), the detailed process of driving magnetic turbulence and

the role of small-scale flow on it are not fully revealed.

We investigate the driving mechanism of the magnetic turbulence via the MRI

and parasitic instability in accretion disks, and reveal the role of small-scale waves

and flow structures for it by using the newly developed high-order MHD simula-

tion code. We developed the MHD simulation code by employing the MHD scheme

proposed by Kawai (2013). This scheme is based on the high-order compact differ-

ence scheme (Lele, 1992) and high-order compact-type filtering scheme (Lele, 1992;

Gaitonde & Visbal, 2000), and localized artificial diffusivity (LAD) method. To

parallelize without diminishing the accuracy, we also employ pipeline algorithm.

We carried out some numerical tests and confirmed that the developed code has

following capabilities; high wavenumber accuracy, capturing discontinuities accu-

rately, and the conservation of the solenoidal condition. From these numerical tests,

we could confirm that developed code works properly and has the capabilities for

resolving MRI-driven turbulence.

We apply the developed code to the local disk model by using the shearing box

approximation (Hawley et al., 1995), and carry out three-dimensional ideal MHD

simulation of MRI-driven turbulence. We define the initial saturation of the tur-

bulent stress as ’first peak’ and arbitrarily chosen peak in fully developed phase as

’nonlinear peak’, and investigate detailed structure at these two peaks. We show
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the anisotropic wave enhancement in two-dimensional wavenumber spectra of ver-

tical velocity due to the excitation of parasitic instability at the first peak. The

fastest enhancement wavenumber is much larger than that obtained analytically.We

find that this feature is because the interaction of vertically located growing vor-

tices induced by parasitic instability makes the layered structure of disturbed flow

narrower and faster, and then the jet-like structure induces much smaller and faster

growing K-H-like instability just before the peak. We also show the analysis re-

sults of the arbitrarily chosen nonlinear peak. The anisotropic wave enhancement

of parasitic instability is observed in two-dimensional wavenumber spectra of ver-

tical velocity only at the small wavenumber region. This indicates that a nonlinear

peak is created in an environment where large-scale and anisotropic parasitic mode

waves and isotropic turbulent waves coexist. The restructured channel flow starts

to collapse at the nonlinear peak, but the mechanism is not obvious. We show that

large-scale vortices induced by restructured flow effectively advect small-scale shear

structures from the shear region toward the flow region of the restructured chan-

nel, and the advected structure seems to mix and break the restructured channel

structure. We determine that the peak creation and driving magnetic turbulence

mechanism, i.e., the collapse mechanism of channel flow structure, is related to the

destruction of large-scale structure by small-scale flow in both linear phase and

nonlinear phase.

Next, we investigate the physical diffusion effects to the turbulent stress and

peak creation mechanism. We carry out three-dimensional MHD simulations with

changing initial Reynolds number Re and initial magnetic Reynolds number Rm.

The time evolution of turbulent stresses until the first peak take almost the same

value in the case of lower diffusivities. On the other hand, the turbulent stress

at the first peak in the larger viscosity cases (Re ∼ 1) take larger values. This

trend should reflect the quenching effect of K-H instability analytically shown by

Pessah & Goodman (2009) and Pessah (2010). The time evolutions of stress after

the first peak are different in all diffusivity models. To see the trend of the values

of the first peak, nonlinear peak, and temporally averaged value, we investigate

these values in Re and Rm space. In the strong diffusivity cases (Re,Rm ∼ 1), the

viscosity increases the peak value at not only first peak but also peaks in nonlinear

phase and the magnetic diffusivity increases the value only at first peak and does

not affect (or decreases) the nonlinear peaks. On the other hand, there is no

trend of nonlinear peaks and averaged values in lower diffusivity cases (Re,Rm ≥
100). The dependence of magnetic Prandtl number is also not identified in our
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calculation, unlike Lesur & Longaretti (2007). The possible cause of this different

feature from previous study is the setting of aspect ratio of the simulation box.

We investigate detailed structure of the flow and its difference in several diffusivity

models. At the first peak, wave enhancement of vz directing 45 degrees from radial

direction is observed in two-dimensional wavenumber space in Re = Rm = 1000

and Re = Rm = 100 diffusivity models. The direction of wave enhancement

of Bz in the condition of Re = Rm = 100 is not 45 degrees but approximately

135 degrees. In the case of Re = Rm = 10 model, not only Bz but also vz

have 135 degrees anisotropy. Theses results indicate that the dominant mode of

parasitic instability is modified from K-H mode to magnetic reconnection mode.

The fastest growth wavenumber in the condition of Re = Rm = 1000 is larger than

the theoretically obtained fastest growth wavenumber. This wavenumber slightly

becomes small in the condition of Re = Rm = 100, and takes a similar value

to the theoretical wavenumber of parasitic instability in the condition of Re =

Rm = 10. These results indicate that the viscous effect controls fastest growth

wavelength at the first peak. From above results and discussions, we conclude the

diffusion terms modify the distribution of wavenumber spectra at the first peak

though the linear property of MRI is almost similar. We also show the analysis

result at the nonlinear peak, which is arbitrarily chosen peak in fully developed

turbulence. The 2-dimensional wavenumber spectra of both vz and Bz at the

nonlinear peak have 45 degree wave enhancement in all the Re = Rm = 1000,

100, and 10 models. The difference between these three models are appeared

as whether or not the smaller scale turbulent flow coexist. We confirm that the

smoothing effects due to diffusivities slightly increases the value of nonlinear peak

in relatively high diffusivity model such as Re = Rm = 10. On the other hand,

we conclude that smoothing effect hardly modify the value of nonlinear peak in

relatively low diffusivity model such as Re = Rm = 100 and 1000.

From our simulation and analysis, the excited structure of parasitic instability

at the first peak is changed relatively largely due to the diffusion effect, but in the

nonlinear peak, the diffusion effects hardly affect to both the average value of the

stress and the structures of wavenumber spectra related to parasitic instability.
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Chapter 1

Introduction

1.1 Accretion disks

Accretion disks are one of the most important and fundamental astronomical ob-

jects in the universe. Accretion disks are the disk structure existing around the

massive central body, such as black holes, neutron stars, active galactic nuclei, pro-

tostars, and so on. In particular, the accretion disks around protostars are much

denser and colder than others, and so called protoplanetary disks. Figure 1.1 shows

(a) the accretion disk around active galactic nucleus NGC 4261 observed by Hub-

ble Space Telescope (Jaffe et al., 1993) and (b) the protoplanetary disk in Orion

nebula observed by Hubble Space Telescope (McCaughrean & O’dell, 1996). The

(a) (b)

Fig. 1.1: Panel (a): The accretion disk around active galacic nucleus NGC 4261
(Jaffe et al., 1993). Panel (b): the protoplanetary disk in Orion nebula (McCaugh-
rean & O’dell, 1996). Both are taken by Hubble Space Telescope.
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bright points of both panels represent the central massive bodies and the surround-

ing dark disk structures are the accretion disk and protoplanetary disk. Although

the size, gas density, and energy are much different between the accretion disks

around the active galactic nucleus or black hole and the protoplanetary disks, the

fundamental physics are considered to be basically resemble.

The disks are basically maintained by the force balance of the gravitational force

and centrifugal force, thus the angular velocity of disk is Keplerian angular velocity

written as

ΩK =

√
GM

r3
∝ r−

3
2 , (1.1)

where r, M , and G represent the radius from the central body, mass of the central

body, and gravitational constant, respectively. The angular velocity is sometimes

slightly modified due to the presence of the global pressure gradient force though

disk gas is usually considered to be rotating with ΩK. For this reason, the radial

distribution of angular velocity is often treated as Ω ∝ r−q in general, where q is a

rotational parameter which corresponds to 3/2 for the Keplerian angular velocity.

The rotational velocity vϕ = rΩ becomes slower on the outside of the disk; this

relation is so called differential rotation. While disk gas is basically balanced with

gravitational force and centrifugal force, the large luminosity from accretion disks

is observed, and thus it is believed that the disk gas is accreted toward central star

because of the existence of viscosity in the differential rotating disk. Shakura &

Sunyaev (1973) shows that mass accretion ratio Ṁ in such a differential rotating

disk with viscosity written as

Ṁ = −2πΣν
r

Ω

dΩ

dr

(
1−

√
rin
r

)−1

, (1.2)

where Σ is the surface density defined as
∫∞
−∞ ρdz, ρ is gas density, z represents

vertical direction of the disk, ν is kinematic viscosity which is assumed to be ver-

tically constant, and rin represents the radius of the inner boundary of accretion

disks (see also Fukue et al., 2014). Considering that the disk gas is rotating with

Keplerian angular velocity, i.e., Ω = ΩK ∝ r−
3
2 , and r is much larger than rin,

Equation (1.2) becomes

Ṁ ∼ 3πΣν. (1.3)

The estimated mass accretion rate calculated by using typical surface density and

molecular viscosity in protoplanetary disks, such that Σ ∼ 103 g cm−2, ν = 2 ×
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105 cm2s−1 (see e.g., Armitage, 2007), becomes

Ṁ ∼ 1.9× 109 g s−1 ∼ 3.0× 10−17 M⊙ yr−1,

where M⊙ denotes the mass of sun. The mass accretion rate obtained by obser-

vational studies is, however, ∼ 10−8∼−6 M⊙ yr−1 for protoplanetary disks (e.g.,

Hartmann et al., 1998; Hartmann, 2001), and ∼ 10−9 M⊙ yr−1 for accretion disks

around the white dwarfs and neutron stars (e.g., Balbus & Hawley, 1998). Thus,

the molecular viscosity is insufficient for the explanation of the mass accretion rate.

The probable source for mass accretion instead of molecular viscosity is the turbu-

lent viscosity. To see what the turbulent viscosity is, we consider the incompressible

momentum equation of MHD equations. We assume coordinate system whose x, y,

and z coordinates correspond to the radial, azimuthal, and vertical direction of the

accretion disk, and that coordinate system is rotating around the disk with angular

velocity Ω. In this coordinate system, the incompressible momentum equation is

written as

ρ
∂v

∂t
+∇ ·

[
ρvv − BB

4π
+

(
p+

B2

8π

)
I

]
= ∇ ·R+ 2qΩ2ρxêx − 2ρΩ× v, (1.4)

where ρ, p, v, and B are the density, pressure, velocity, and magnetic field, and

x is radial distance from the coordinate center, and R is incompressible viscous

stress tensor defined as

Rij ≡ µ

(
∂vj
∂xi

+
∂vi
∂xj

)
, (1.5)

where µ is dynamic viscosity. We assume ρ and p are homogeneous. We decom-

pose velocity and magnetic field into spatially averaged value with the disturbed

component, i.e., v = v̄+v′ and B = B̄+B′, where over bar and dash respectively

denote spatial averaged value and disturbed component, and spatially average over

Equation (1.4). By applying this operation, Equation (1.4) can be rewritten to the

equation of averaged value as

ρ
∂v̄

∂t
+∇ ·

[
ρv̄v̄ − B̄B̄

4π
+

(
p+

B̄2

8π

)
I

]
= ∇ · R̄+∇ ·

[
−ρ ⟨v′v′⟩+ ⟨B′B′⟩

4π
−
⟨
B′2⟩
8π

I

]
+ 2qΩ2ρxêx − 2ρΩ× v̄.

(1.6)
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Here, we use relations of spatially averaging that are
⟨
f̄
⟩
= f̄ and ⟨f ′⟩ =

⟨
f̄f ′⟩ = 0.

Comparing the first and second terms of R.H.S. of Equation (1.6), it can be seen

that the second term, which is composed by the products of disturbed components,

works as the equivalent to the viscosity for the equation of spatially averaged

momentum. From this fast, a dynamic turbulent viscosity µtur can be defined to

satisfy the following equation.

µtur

(
∂v̄j
∂xi

+
∂v̄i
∂xj

)
=

⟨
−ρv′iv

′
j +

B′
iB

′
j

4π

⟩
−
⟨
B′2⟩
8π

δij . (1.7)

In the accretion disks, only the radial derivative of the azimuthal component of the

averaged velocity has a finite value, i.e., only ∂v̄y/∂x ̸= 0. Therefore, Equation (1.7)

can be rewritten for accretion disks as

−ρνtur
∂v̄y
∂x

=

⟨
ρv′xv

′
y −

B′
xB

′
y

4π

⟩
≡ ⟨Wxy⟩ , (1.8)

where νtur = µtur/ρ is the kinematic turbulent viscosity, and Wxy ≡ ρv′xv
′
y −

B′
xB

′
y/4π is so called turbulent stress for accretion disks. Shakura & Sunyaev

(1973) suggested that spatially averaged turbulent stress ⟨Wxy⟩ can be scaled by

the density and sound speed cs written as

⟨Wxy⟩ = αρc2s, (1.9)

where α is a dimensionless parameter that indicates the scale of turbulent stress.

By using Equation (1.9), Equation (1.8) can be rewritten for νtur as

νtur ∼ αc2s/Ω. (1.10)

We can estimate the turbulent viscosity from Equation (1.10) by estimating the

dimensionless parameter α, and α can be estimated from spatially averaged tur-

bulent stress like α ≃ ⟨Wxy⟩ /p (Equation (1.9)). By using the typical sound speed

and angular velocity at 1AU that are cs ∼ 1.5 × 105 cm s−1 and Ω = 2πyr−1, and

assuming α = 0.01, the mass accretion rate calculated by turbulent viscosity be-

comes Ṁ ∼ 1.5 × 10−7. Therefore, the turbulent viscosity is the probable source

for mass accretion instead of the molecular viscosity, and it is believed that the

disk gas is in the magneto-hydrodynamic turbulent state to express the observed

high mass accretion rate.
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Magnetic 
tension

Rotational 
velocity
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Fig. 1.2: The schematic image of the qualitative mechanism of MRI.

1.2 Magneto-rotational instability

The important point is the mechanism for increasing Wxy, i.e., the generation

mechanism of horizontal components of the disturbed fields that are v′x, v
′
y, B

′
x,

and B′
y. Balbus & Hawley (1991) proposed that existence of rapidly and easily

growing magneto-hydro dynamical instability called magneto-rotational instability

(MRI) in accretion disks MRI is one of the most important sources of turbulence

and grows in the following disk conditions; (1) the disk gas rotates with the differ-

ential rotational velocity (Ω−q; q > 0), (2) the vertical magnetic field penetrates

the disk, and (3) the disk gas is ionized and dense, i.e., MHD approximation is

valid. Figure 1.2 shows the schematic image of the qualitative mechanism of MRI.

When the differential rotating ionized disk gas penetrated by vertical magnetic

field is disturbed radially, the rotational angular momentum is transported from

the plasma disturbed to inside to the plasma disturbed to outside via the magnetic

tension along the magnetic field line. This results in the violation of the balance

between the centrifugal force and gravitational force, and thus the disturbance

grows exponentially while stretching the magnetic field.

The reason why MRI is important in accretion disks is its large growth rate.

In the Keplerian rotational disk with the ideal MHD condition, the growth rate

of MRI becomes 0.75Ωk (details will be described in Section 3.2), i.e., the small

amplitude of disturbance becomes 100 times larger par one orbital period. The

typical timescale of MRI, which is a few orbital periods, is basically much smaller
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) and magnetic field (gray) perturbations for viscous, resistive MRI modes. Note that this is a
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Fig. 1.3: The disturbed field vector and structure generated in and after the linear
phase of MRI. Panel (a): the directions of disturbed velocity (red line) and magnetic
field (blue line) in linear phase of MRI (Pessah & Chan, 2008, modified). Horizontal
and vertical axes shows the radial and azimuthal direction, respectively. Panel
(b): The result of 2-dimensional axisymmetric simulation of after the linear phase
(Hawley & Balbus, 1992, modified). Lines show the magnetic field lines, and the
horizontal and vertical axes show radial and vertical direction, respectively.

than the typical timescale of disk evolution which is about 106yr. Therefore, MRI is

dominant phenomenon for considering the disk evolution and is considered playing

an important role for driving the mass accretion by generating turbulent stress.

As described and illustrated above, MRI generates the horizontal disturbed flow

and magnetic field by converting gravitational energy to those via the magnetic

tension of vertical magnetic field. Previous studies showed that the accretion disk

becomes eventually turbulent state as a result of MRI, and the structure generated

by MRI is considered to play important roles for this transition mechanism from

MRI to the turbulence. Figure 1.3 shows the disturbed field vector and structure

generated in and after the linear phase of MRI. Panel (a) shows the directions of

disturbed velocity δv (red line (ideal MHD)) and magnetic field δB (blue line (ideal

MHD)) in the linear phase of MRI (Pessah & Chan, 2008, modified). Horizontal

and vertical axes show the radial and azimuthal directions, respectively. In the ideal

MHD condition, δv and δB direct toward 45 (225) degrees and 135 (315) degrees

from radial direction, respectively. Note that these directions are modified by fluid

viscosity and magnetic diffusivity. Details will be described in Section 3.2 and

Section 4.2. Panel (b) shows the result of 2-dimensional axisymmetric simulation

of MRI after the linear phase (Hawley & Balbus, 1992, modified). Lines show the

magnetic field lines, and the horizontal and vertical axes show radial and vertical
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directions, respectively. This is an axisymmetric simulation result, thus this plot

is almost same as the projection of disturbed fields in panel (a) on the plane

formed by the radial and vertical directions. MRI generates vertically sinusoidal

structures of δv and δB whose phases are different by 90 degrees. The amplitude

of these sinusoidal structures of δv and δB increase with time, and finally these

structures can be treated as velocity shear flow and antiparallel magnetic field

like panel (b). Therefore, MRI in the ideal condition generates the velocity shear

and the antiparallel magnetic field created by the disturbance amount with the

direction of 45 degrees and 135 degrees, respectively. The mechanism of driving

magnetic turbulence from MRI is the parasitic instability (Goodman & Xu, 1994)

that is strongly related to these shear flow and antiparallel magnetic field. Detailed

property of MRI, such as dispersion relations and diffusivity dependence, will be

described in Section 3.2 and Section 4.2.

1.3 Parasitic instability

Parasitic instabilities were firstly proposed by Goodman & Xu (1994) and are sec-

ondary instability induced by temporally increasing disturbed velocity shear and

antiparallel magnetic field created by MRI. The velocity shear and antiparallel

magnetic field drive the Kelvin-Helmholtz (K-H) instability and magnetic recon-

nection (tearing-mode instability). Parasitic instability is a generic term for these

two instability and phenomena caused by the temporally increasing disturbed field

created by MRI. In the case of ideal MHD condition, it is well-known that the

magnetic reconnection is not driven, hence it can be expected that velocity shear

drives K-H mode parasitic instability. Figure 1.4 shows thee dispersion relation of

parasitic instability in Keplerian rotational disk with ideal MHD condition (Good-

man & Xu, 1994, modified). Horizontal axis shows wavenumber kh normalized by

maximum growth wavenumber of MRI, where kh is horizontal wavenumber along

the direction of velocity shear, i.e., 45 degrees from radial direction. Vertical axis

shows the product of growth rate of parasitic instability ℑ(ωpi) normalized by ro-

tational angular velocity and the inverse of amplified magnetic field of MRI BMRI

normalized by background magnetic field B0. The normalized growth rate of par-

asitic instability is the value of the vertical axis times the normalized amplitude

of magnetic field. Although there are three lines plotted depending on whether

or not the parasitic mode has a large-scale vertical structure, Goodman & Xu

(1994) shows that the case without vertical structure (kz = 0) grows fastest. The
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Fig. 1.4: The dispersion relation of parasitic instability in ideal MHD condition
(Goodman & Xu, 1994, modified).

fastest growth wavenumber is 0.59 times the maximum wavenumber of MRI, i.e.,

the typical scale of parasitic instability is roughly twice as large. Figure 1.5 shows

the approximate time evolution of the disturbance grown by parasitic instability

(red) and MRI (blue). The horizontal axis and vertical axis represent the orbital

time and normalized amplitude of magnetic field, respectively. The amplitude of

disturbance grown by parasitic instability takes much lower value than that grown

by MRI at first because the amplitude of MRI is still low and thus the growth rate

of parasitic instability is also low. As the amplitude of disturbance grown by MRI

increases with time, the growth rate of parasitic instability also increases, and the

amplitude of parasitic instability grows in like a double exponential fashion, and

finally both the growth rate and amplitude of disturbance of parasitic instability

exceed those of MRI. It is considered that the induced K-H instability make the

plasma turbulent state when the maximum growth rate of K-H mode parasitic

instability exceeds the that of MRI (see also Pessah, 2010). Note that parasitic

instability is non-axisymmetric instability, therefore, MHD simulation for solving

MRI-driven turbulence need to be a three-dimensional calculation.

In the case that the plasma is not ideal MHD but visco-resistive MHD, the

property of parasitic instability is modified because the magnetic diffusivity ex-
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Fig. 1.5: Approximate time evolution of the disturbance grown by parasitic insta-
bility (red) and MRI (blue). The horizontal axis and vertical axis represent the
time and amplitude, respectively.

cites the magnetic reconnection and the fluid viscosity quenches K-H instability.

Pessah (2010) analytically shows that the direction of the wavenumber vector of

the maximum growth mode of parasitic instability changes from that along the

velocity shear to that along the antiparallel magnetic field as the magnetic diffu-

sion is increased. This fact indicates the possibility that the diffusivity affects the

generation process of MRI-driven turbulence.

1.4 Previous numerical studies about MRI-driven

turbulence

As introduced above, MRI makes accretion disk turbulent state via K-H mode or

magnetic reconnection mode parasitic instability. The nonlinear evolution of MRI-

driven turbulence is studied by numerical simulation. Previous simulation studies

are roughly divided into three categories; the local disk simulation, stratified disk

simulation, and global disk simulation.

The global disk simulation is a simulation that solves entire region of accre-

tion disk. This type of simulation can solve the radial, azimuthal, and vertical

structures of accretion disks consistently, and also it can introduce the magnetic
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field originated from central star. From these characteristics, the global simulation

is used for investigating the mechanisms of protostellar core formation, star-disk

interaction, jet creation, and so on (e.g., Romanova et al., 2011, 2012; Tomida

et al., 2013; Machida, 2014). Much of previous global simulations were calculated

with near the minimum number of grid resolution that can reproduce MRI or with

the axisymmetric two-dimensional simulation domain because global simulations

require the large simulation domain (and also complicated simulation method).

Hence, although the global simulation can solve entire disks and works well for

investigating the evolutional process of accretion disks, it is not suitable to in-

vestigate the detailed mechanism of driving turbulence via MRI and subsequent

parasitic instability, and the fine structure of MRI-driven turbulence.

The stratified disk simulation is a simulation that solve the radial and azimuthal

direction locally and vertical direction entirely. This type of simulation uses shear-

ing box approximation (Hawley et al., 1995) and assumes vertically stratified den-

sity distribution, and can solve evolutional process of the vertical structure of the

disk. Previous stratified simulations reported that there are phenomena caused

by the vertical structure, such as the buoyancy (Parker) instability and resultant

upwelling and repetitive evolution of toroidal magnetic field (so called butterfly

diagram), vertical mass outflow (so called disk wind), and so on (e.g., Stone et al.,

1996; Suzuki & Inutsuka, 2009; Shi et al., 2010). Stratified disk model is one of

the good models for seeing the fine structure of turbulence while introducing a

disk structure close to reality. There are, however, some numerical difficulties such

as the high Alfven velocity at low-density region and the handling method for

outgoing boundary condition at the vertical boundaries.

The local disk simulation is the most classical and fundamental model for the

simulation of accretion disk. This type of simulation set the small simulation box in

the local region of accretion disks by using the shearing box approximation Hawley

et al. (1995), and doesn’t think of the global structure in vertical direction. The lo-

cal simulation enable us to set high grid resolution for typical scales of MRI because

of the small simulation domain. Therefore, it is reasonable to use the local simu-

lation for revealing the detailed mechanism of driving magnetic turbulence via the

MRI and parasitic instability, and the fine structure of the MRI driven turbulence.

Since the results of local three-dimensional simulation was reported by Hawley

et al. (1995) first, a lot of simulations were performed under the various physical

and numerical conditions. Previous numerical studies related to and focusing on

the enhancement of parasitic instability and its contribution to drive the turbulence
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are as follows. Hawley et al. (1995) reported that the stress creates the peaks in the

nonlinear phase after the initial saturation of MRI, and Sano & Inutsuka (2001)

pointed out that the shear flow whose wavelength corresponds to the vertical box

size is recurrently generated in nonlinear phase and such structure creates peak.

Sano & Inutsuka (2001) also suggested that the reconnection mode parasitic insta-

bility is excited at those peaks in resistive MHD condition, and the pointed out

that numerical resistivity works a same role in their ideal MHD calculation. The

enhancement of K-H mode parasitic instability was confirmed in two-dimensional

wavenumber space by several studies. Lesur & Longaretti (2011) and Murphy

& Pessah (2015) reported that wave enhancement is observed with a direction of

wavenumber in which the radial wavenumber coincide with azimuthal wavenumber,

i.e., 45 degrees from radial direction, in their incompressible MHD simulations. In

particular, Murphy & Pessah (2015) shows that the anisotropy of wave enhance-

ment is varied with time but it exists at both the early stage of nonlinear phase

and fully turbulent phase. On the other hand, Latter et al. (2009) analytically

and numerically suggested that the compressibility affected to the property of lin-

ear growth and structures at saturation. Their results of compressible simulation

showed the shear flow created by MRI, so called channel flow, becomes narrower

just before the saturation of linear growth because of the compressibility. Their

results indicate the importance of including compressibility to the MHD simula-

tion and also indicate the requirement of the ability for solving small-scale flow

to the MHD simulation scheme. In fact, Rembiasz et al. (2016) carried out MHD

simulation with the high-order compressible MHD scheme and reported that the

enhancement of wave is observed with the direction in which the radial wavenum-

ber coincide with azimuthal wavenumber at the saturation of MRI, and its fastest

growth wavenumber is much smaller than the maximum growth wavenumber of

parasitic instability. This result indicates that the structures smaller than the typ-

ical scales of MRI and parasitic instability play an important role in the transition

process from MRI to turbulence via parasitic instability.

In addition to this, several studies focusing on the physical and numerical dif-

fusivities also suggested that the importance of small-scale structures indirectly.

Lesur & Longaretti (2007) and Fromang et al. (2007) carried out incompressible

and compressible MHD simulations with small amount of physical viscosity and

magnetic diffusivity, and showed that the time evolution of the spatially averaged

turbulent stress is strongly affected by those diffusivities in nonlinear evolutional

phase. In addition, Minoshima et al. (2015) carried out compressible ideal MHD



12 Chapter 1 Introduction

simulations by various simulation scheme, and showed that the difference of simula-

tion scheme, i.e., difference of numerical diffusivities, also modify the time evolution

of the spatially averaged turbulent stress. It is well known that small amount of

diffusivities dissipate the small-scale waves and modify the small-scale structure

of the flow and magnetic field. Therefore, these simulation results indicate the

possibility that the small-scale wave and flow structures affect to the mechanism

of driving turbulence and estimation of turbulent stress.

1.5 Purpose of this study

As mentioned above, recent studies suggested the importance of performing com-

pressible MHD simulation that can solve the small-scale flow structures and waves

accurately. However, it is difficult for MHD simulation to satisfy these require-

ments. This is because numerical diffusivity is indispensable for solving compres-

sive phenomena such as shock waves, but on the other hand, it is necessary to

reduce numerical diffusivity as much as possible in order to solve turbulent flow

with high resolution. There are a lot of MHD simulation codes that employ vari-

ous methods in order to cope this trade-off problem. Much of recent codes center

on solving shock waves by employing Godunov-type shock capturing scheme and

reduce their numerical diffusivity by employing high-order reconstruction method,

and thus, these code can solve shock wave much accurately but can not reduce

numerical diffusivities sufficiently.

Considering above points, our study consists of the following three parts.

1. Development of a high-order MHD simulation code:

As describe above, existing open compressible MHD simulation codes don’t

have the efficiency for resolving small-scale waves and flow structures. There-

fore, we newly develop a simulation code that employs the MHD simulation

scheme proposed by Kawai (2013). This scheme has high accuracy for re-

solving waves by a few grid number and capturing shock wave by introducing

physically problem-free numerical diffusivities at the vicinity of discontinu-

ities.

2. Investigation of the enhancement of K-H mode parasitic instability and the

role of small-scale flow for driving turbulence in ideal MHD condition:

By applying newly developed MHD simulation code to the local disk sim-

ulation, we investigate the mechanism of driving magnetic turbulence via

the MRI and parasitic instability, and the role of the small-scale waves and
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flow structures in that process. We analyse the two-dimensional wavenum-

ber spectra at the initial peak and the peak created in fully developed stage,

and determine the dominant phenomena occurred at those peaks.

3. Investigation of the modification of small-scale flow and its contribution to

the evolutional process of the turbulence by changing the viscosity and mag-

netic diffusivity: We investigate the modification of the time evolution of

turbulent stress and contribution of the small-scale flow to it by changing

the physical diffusion terms of viscosity and magnetic diffusivity. We analyze

the statistical trend of the values at peaks and temporally averaged value

of spatially averaged turbulent stress in the parameter space. Then, we an-

alyze how the differences of the time evolution of turbulent stress occur by

changing the small amount of diffusivity terms.

This thesis is organized as follows. In Chapter 2, we describe the overview of

the newly developed MHD simulation code. In Chapter 3, we show the simulation

results in ideal MHD condition calculated by the newly developed code. We de-

scribe the driving mechanism of turbulence via the MRI and parasitic instability

and contributions of small-scale flow to that. In Chapter 4, we show the simulation

results in visco-resistive MHD conditions with various viscosities and magnetic dif-

fusivities. We show the trend of the turbulent stress in the parameter space, and

describe how the modification of the time evolution occurs. We summarize this

thesis in Chapter 5.
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Chapter 2

Development of high-order MHD

simulation code

2.1 Introduction

As described in chapter 1, the drive mechanism of magnetic turbulence by MRI

in accretion disk is related to Kelvin-Helmholtz instability and magnetic recon-

nection. Kelvin-Helmholtz instability is well-known source of turbulence not only

hydro-dynamics but also MHD (e.g., Matsumoto & Hoshino, 2004). Magnetic re-

connection is also well-known mechanism to convert the magnetic energy to the

kinetic energy. The structure of magnetic reconnection is complicated, especially

Petcheck type reconnection (Zenitani & Miyoshi, 2011), but it is considered that

the magnetic reconnection creates shock structure. To resolve the transition mecha-

nism from MRI to the magnetic turbulence, it is required to resolve the turbulence

and capture discontinuity structure simultaneously. However, it is difficult and

challenging problem for the computational fluid dynamics. To resolve the turbu-

lence accurately, MHD simulation schemes are required to be high-order, efficient

for resolve waves by using lower grid number, i.e., a high wavenumber resolution,

and less numerical diffusivity at the smoothed flow region. On the other hand, to

capture the discontinuities and shocks robustly, MHD schemes also need to include

numerical diffusivities because the numerical oscillation is occurred at the discon-

tinuous surface in the calculation of derivatives without numerical diffusivities.

These requirements are trade-off relation. Therefore, which methods are chosen

for achieving high-order and high wavenumber resolution and for becoming robust

at discontinuities are crucial points for carrying out the MHD simulation of MRI



16 Chapter 2 Development of high-order MHD simulation code

driven turbulence.

Many of recent simulation studies use MHD schemes employing the shock cap-

turing type scheme incorporated with the high-order reconstruction technique, for

example CANS+(Matsumoto et al., 2016), ATHENA (Stone et al., 2008), PLUTO

(Mignone et al., 2007), and so on. These schemes focus on accurately and robustly

capturing shocks and discontinuities first, and become higher order by applying

reconstruction technique. While these schemes can capture shocks and disconti-

nuities very accurately because the enough numerical diffusivity is automatically

embedded, the high order reconstruction techniques are complicated and cannot

sufficiently suppress the numerical diffusivity to accurately resolve waves by us-

ing lower grid number. In this study, we use high-order MHD simulation scheme

proposed by Kawai (2013). This scheme strongly focuses on resolving turbulence

accurately by employing the high-order compact difference scheme (Lele, 1992)

combined with the compact-type filtering scheme (Lele, 1992; Gaitonde & Visbal,

2000) and the localized artificial diffusivity method (Kawai, 2013). This scheme

is categorized as the type of the non-diffusive differencing scheme combined with

explicit artificial diffusivities. The characteristics of this scheme are that the nu-

merical diffusivities are firstly calculated and introduced at the governing equation

level, not the discretization level, and the high-order and high-wavenumber resolu-

tion differencing scheme is combined with that.

In this chapter, we introduce the newly developed code and its characteristics.

In Section 2.2, we show the governing equations our code solves. In Section 2.3, we

describe the compact differencing scheme which is the finite differencing scheme

our code employs. In Section 2.4, we describe the localized artificial diffusivity

(LAD) method for MHD proposed by Kawai (2013). In Section 2.5, we describe

the parallelization method for the compact differencing scheme without diminishing

the accuracy called pipeline algorithm. In Section 2.6, we show some numerical

test problems for MHD and the application to some physical problems.

2.2 Governing equations

We consider the phenomena in accretion disks whose timescale is much larger

than ion gyro-period and length scale is much larger than ion gyro radius. In

addition to this, we consider that the mass of electron can be neglected and the

disk gas is dense enough. Under these situations, we can assume that ions and

electrons satisfy quasi-neutrality and the velocity distribution of plasma particles
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keeps isotropic Maxwellian. Therefore, we can treat disk gas as MHD plasma with

neglecting the particle effect of plasma, the hall effect, and the pressure anisotropy.

We factor in diffusive effects such as the magnetic diffusivity and the viscosity.

As mentioned in Section 1.1, it is reported that magnetic diffusivity and viscosity

become effective in the protoplanetaly disks (Sano et al., 2000) and collapser disk

(Masada et al., 2007), and these terms change the property of linear growth of MRI

(see Section 4.2). In addition, as described in Chapter 4, previous numerical studies

reported that a small amount of magnetic diffusivity and viscosity changes non-

linear evolution process of MRI-driven turbulence. These analytical and numerical

previous studies indicate necessity of MHD simulation to include diffusive effects.

Following above facts, the equations that our simulation solves are following

normalized visco-resistive MHD equations.

∂ρ

∂t
+∇ · (ρv) = ∇ ·Aρ, (2.1)

∂(ρv)

∂t
+∇ ·

[
ρvv −M2

normBB +

(
p+M2

norm

B2

2

)
I

]
=

Mnorm

Renorm
∇ ·R+∇ · [Aρv] + SMomentum, (2.2)

∂B

∂t
+∇ · (vB −Bv) =

Mnorm

Rmnorm
∇× (−ηj), (2.3)

∂E

∂t
+∇ ·

[(
E + p+M2

norm

B2

2

)
v − (v ·M2

normB)B

]
=

Mnorm

Renorm
∇ · [R · v] + Mnorm

Renorm
∇ · [B × ηj] +∇ ·

[
1

2
v2Aρ

]
+ SEnergy, (2.4)

where ρ, p, v, B, and η are the gas density, the pressure, the velocity field, the

magnetic field, and the magnetic diffusivity, respectively. E is the total energy

density defined as

E =
p

γ − 1
+

ρv2

2
+

B2

2
, (2.5)

where γ is specific heat. j is the current density written as

j = ∇×B, (2.6)
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and R is the viscous stress tensor defined as

Rij ≡ µ

(
∂vj
∂xi

+
∂vi
∂xj

)
+

(
β − 2

3
µ

)
∂vk
∂xk

δij , (2.7)

where µ and β are the shear viscosity and the bulk viscosity. Aρ is the artificial

mass diffusive flux. This flux vector is completely artificial one originated by lo-

calized artificial diffusivity method to resolve contact discontinuities. We describe

details of this flux vecter in Section 2.4. SMomentum and SEnergy in right-hand

side of Equation (2.2) and Equation (2.4) are source terms. In this study, these

source terms are used for introduce the shearing box coordinate system described

in Section 3.3. Note that actual simulation of MRI uses one more equation and

source terms of induction equation originated by the hyperbolic divergence cleaning

method described in Section 3.3.

All physical values in above equations are normalized by respective normaliza-

tion coefficient. Time, length, density, pressure, velocity, magnetic field, magnetic

diffusivity, and shear viscosity are normalized by T , L, ρnorm, pnorm, vnorm, Bnorm,

ηnorm, and µnorm, respectively, where the subscript ”norm” represents that vari-

ables are normalization coefficients. We assume that bulk viscosity is normalized

by same quantities as that for shear viscosity, i.e., µnorm. Mnorm, Renorm, and

Rmnorm are Alfven Mach number, Reynolds number, and magnetic Reynolds num-

ber, respectively, and defined as

Mnorm =
vA norm

cs norm
, (2.8)

Renorm =
ρvA normL

µnorm
, (2.9)

Rmnorm =
vA normL

ηnorm
, (2.10)

respectively, where vA norm and cs norm are the Alfven speed and sound speed cal-

culated by normalization coefficient written as

v2A, norm = B2
norm/4πρnorm, cs, norm = pnorm/ρnorm, (2.11)

respectively. In this study, we assume that the normalization coefficients follows
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relations those are

L = vnormT, (2.12)

pnorm = ρnormv
2
norm = B2

norm/4π = Enorm, (2.13)

µnorm = ρnormvA normL, (2.14)

ηnorm = vA normL, (2.15)

where Enorm denotes the normalization coefficient of total energy. By using these

relations, Mnorm, Renorm, and Rmnorm all becomes unity, i.e., Mnorm = Renorm =

Rmnorm = 1. By determining the quantities of normalization coefficients satisfying

these relations, we can translate a dimensionless simulation value to a dimensional

actual value.

The coordinate system we use is Cartesian coordinate system (x, y, z). In this

coordinate system, the vector fields v, B can be written as

v = (vx, vy, vz), B = (Bx, By, Bz), (2.16)

and the vector difference operator ∇ can be written as

∇ = (∂/∂x, ∂/∂y, ∂/∂z). (2.17)

2.3 Compact difference and compact filtering scheme

In this section, we describe the compact difference scheme and compact-type filter-

ing scheme. Compact difference scheme proposed by Lele (1992) is one of the

central-type difference scheme and genuine expansion of the central difference

scheme. The 6-th order tridiagonal family of compact difference scheme can be

written as

α
∂fi−1

∂ξl
+

∂fi
∂ξl

+ α
∂fi+1

∂ξl
= a

fi+1 − fi−1

2∆ξl
+ b

fi+2 − fi−2

4∆ξl
+ c

fi+3 − fi−3

6∆ξl
, (2.18)

where i is the grid number, and ξl denotes the directions of 3-dimensional co-

ordinate system, i.e., ξ1, ξ2, and ξ3 represent x, y, and z in the simulation box
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respectively. The coefficients a, b, and c are calculated as

a =
α+ 9

6
, b =

32α− 9

15
, and c =

−3α+ 1

10
. (2.19)

In the case choosing α = 0, the differential equation becomes central difference.

The truncation error of this scheme can be written as

O(∆ξ6l ) =
12

7
(−8α+ 3)f (7)∆ξ6l +O(∆ξ8l ). (2.20)

Although the order of differential equation is normally 6-th order, ∆x6 order error

can be eliminated when α = 3/8 and the differential equation becomes 8-th order.

Therefore, we can achieve 8-th order by using only 6 point stencils.

One of the most significant characteristics of compact difference scheme is its

high efficiency of wavenumber precision. To show this efficiency, we do the stability

analysis of compact difference. We consider the 1-dimensional wave advection in

according with the advection equation. The advection equation can be written as

∂f

∂t
+ c

∂f

∂x
= 0, (2.21)

where c is advection velocity, and the wave can be written as

f = exp i(kx− ωt), (2.22)

where k is wavenumber, and ω is the complex angular frequency. We assume the

periodic domain [0, L] with the number of grid N . Under this assumption, we can

transform coordinate x and wavenumber k with the equation that

x = n∆x, k =
2π

L
κ, (2.23)

where n is the grid number whose range is [0, N − 1], and κ is the wavenumber

number whose range is [0, N/2]. By using these relations, Equation (2.22) can be

rewritten as

f = exp i

(
2π∆xκ

L
n− ωt

)
= exp i(wn− ωt), (2.24)

where w is wavenumber par grid length defined as w ≡ 2π∆xκ/L and its range is



2.3 Compact difference and compact filtering scheme 21

[0, π]. The advection equation Equation (2.21) of this wave can be calculated to

− iωf +
c

∆x

∂f

∂n
= 0. (2.25)

Although the spatial derivation can be written as ∂f/∂n = iwf normally, this

relation is not valid when we use the finite difference as the spatial derivation. We

set modified w as w′ which satisfies the relation that (∂f/∂n)fd = iw′f , where

the footnote fd means that the derivation is calculated by the finite difference

scheme. By using this relation, the complex angular frequency ω can be written

from Equation (2.25) as

ω =
c

∆x
w′. (2.26)

The modified wavenumber par grid length w′ generally becomes complex value

though w is real value. Therefore, the difference between ℜ(w′) and w reflects the

influence on the modification of the phase speed from analytical solution, and ℑ(w′)

reflects the numerical growth rate induced by introducing the finite difference.

Lele (1992) showed the modified wavenumber par 1 grid w′ of the equation of the

tridiagonal compact difference Equation (2.18) as the function of w, that is

w′(w) =
a sin(w) + (a/2) sin(2w) + (c/3) sin(3w)

1 + 2α cos(w)
. (2.27)

Figure 2.1 shows the relation between w′ and w. There are plots of some central

difference properties and some compact difference properties. The ‘j’ line is the ex-

act differentiation, and thus a scheme that is on the ‘j’ line in a wide range shows

high wavenumber resolution. To show the high efficiency of wavenumber precision

of compact difference, we compare the lines of c: 6-th order central difference, e:

6-th order tridiagonal compact difference, and f: 8-th order tridiagonal compact

difference. Comparing 6-th order tridiagonal compact difference with 6-th order

central difference, it is obviously shown that compact difference scheme can solve

wider range of wavenumber accurately though those two scheme have same order

of accuracy. In addition to this, we compare 6-th order and 8-th order tridiagonal

compact difference schemes. These two schemes have similar efficiency of wavenum-

ber precision. In this study, we use 8-th order one because we want to solve 4-grid

wave properly, i.e., we want to use the scheme whose w′ = w at w = π/2. Although

6-th order scheme almost satisfies this condition, it seems that the 8-th order one

is safer to solve it.
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Fig. 2.1: Relation between the modified wavenumber per 1grid w′ and original w.
(Lele (1992) modified)

As described above, the compact difference scheme has a high efficiency for re-

solving waves. However, central type difference schemes cannot remove the high

frequency numerical noise that is 2-grid wavelength wave because of the odd-even

decoupling. Central type schemes use left and right side data symmetrically. There-

fore, they cannot grasp the variation of the 2-grid wavelength wave, and thus these

high frequency noisy waves can not be eliminated. To eliminate these noisy waves,

the MHD scheme proposed by Kawai (2013) employs the 10-th order compact type

low-pass filtering scheme proposed by Lele (1992) and Gaitonde & Visbal (2000).

The 10-th order compact type low-pass filtering scheme can be written as

αf f̃i−1 + f̃i + αf f̃i+1 =
5∑

n=0

an
2
(fi+n + fi−n), (2.28)

where f̃ represents the filterd value, and i is the grid number, and coefficients an
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Wavenumber per 1 grid

Fig. 2.2: The transfer function of the compact type low-pass filtering for w and its
variation by changing the αf . (Kawai & Lele (2008) modified)

is calculated as

a0 =
193 + 256αf

256
, a1 =

105 + 302αf

256
, a2 =

15(−1 + 2αf )

64
,

a3 =
45(1− 2αf )

512
, a4 =

5(−1 + 2αf )

256
, and a4 =

1− 2αf

512
. (2.29)

The αf is a free parameter whose range is [−0.5, 0.5]. Figure 2.2 shows the transfer

function of the compact type low-pass filtering for the w and its variation by chang-

ing the αf from 0.3 to 0.495 (Kawai & Lele, 2008). As shown in Figure 2.2, filtered

range becomes narrow when the αf increases. Similarly to above discussion, we

choose αf = 0.495 to solve 4-grid wave properly, i.e., we use the scheme whose

transfer function is unity at w = π/2. We apply this filter to the density, com-

ponents of momentum, and total energy after the time integration by the Strong

Stability Preserving Runge-Kutta method. Note that our code does not apply this

low-pass filter to components of magnetic field. This is because the filtering to the

magnetic field upsets the solenoidal condition of the magnetic field as mentioned by
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Kawai (2013). Therefore, we admit the numerical oscillation only in the magnetic

field.

The left hand sides of Equation (2.18) and Equation (2.28) contains the values

which we want to know at the neighbor grids, i.e., the derivative values and filtered

values at neighbor grids respectively. Therefore, solving the matrix equation is re-

quired to solve these equations. We rewrite Equation (2.18) as the matrix equation

that is

Af ′ = b, (2.30)

where f ′ and b is the N-dimension vector of derivative values and right hand side of

Equation (2.18) respectively. These vectors are composed by each grid in N-grids,

i.e., f ′
i = (∂f/∂ξl)i and bi = (R.H.S. of Equation (2.18))i where i = 1 to N . A is

a nearly tridiagonal matrix written as

A =



1 α α

α 1 α 0
. . .

. . .
. . .

. . .
. . .

. . .

0 α 1 α

α α 1


. (2.31)

To solve this matrix equation for f ′, we apply LU decomposition to matrix A. LU

decomposition is the algorithm which convert a matrix to the product of the lower

triangle L and upper triangle U matrices. Applying LU decomposition to A, A
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can be transformed as

A = LU

=



1

ℓ2,1 1 0
ℓ3,2

. . .

0 . . .
. . .

. . . 1

ℓN,1 ℓN,2 . . . . . . ℓN,N−1 1





u1,1 α u1,N

u2,2 α 0 u2,N

u3,3
. . .

...

. . . α uN−2,N

0 uN−1,N−1 uN−1,N

uN,N


,

(2.32)

where ℓi,j and ui,j are components of the lower triangle and upper triangle matrix

respectively, and those are calculated as

ui,i =

1 (i = 1)

1− αℓi,i−1 (i = 2 ∼ N − 1),

and

ℓi,i−1 = α/ui−1,i−1 (i = 2 ∼ N − 1),

and

ℓN,i =


α (i = 1)

−αℓN,i−1/ui,i (i = 2 ∼ N − 2)

α(1− ℓN,i−1)/ui,i (i = N − 1),
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and

ui,N =



α (i = 1)

−ℓi,i−1ui−1,N (i = 2 ∼ N − 2)

α− ℓi,i−1ui−1,N (i = N − 1)

1−
∑N−1

k=1 ℓN,kuk,N (i = N).

The rewritten matrix equation, that is

LUf ′ = b, (2.33)

can be calculated by 2-step sequential calculatoin. First, we put vector a as

a = Uf ′, (2.34)

and thus Equation (2.33) becomes

La = b. (2.35)

This matrix equation can be solved for a by sequentially solving and substituting

from a1 to aN because L is the lower triangle matrix. This operation is called

forward substitution. Then, we solve the Equation (2.34) for f ′ by sequentially

solving and substituting from f ′
N to f ′

1 by using the property of the upper trian-

gle matrix U . This operation is called backward substitution. The good point

to use LU decomposition for solving Equation (2.30) is its priory calculation for

matrix. The number of the kind of matrices that our simulation uses is only two,

the matrix for compact difference and the matrix for compact filtering. And we

repeatedly use these two matrices for obtaining derivative and filtered values of

various physical quantities. The amount of calculation for solving Equation (2.30)

by LU decomposition, forward substitution, and backward substitution is corre-

spond to the one by using Gauss’s elimination method. In our simulation, a lot

of physical quantities are differentiated by compact difference by same calculation.

By solving Equation (2.30) with LU decomposition in that case, the calculation of

lower triangle L and upper triangle U by LU decomposition can be carried out

before entering the time integration loop only once and we can use same L and U

again and again in the time integration loop. Therefore, we can reduce the amount

of calculation in the time integration loop.
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2.4 Localized artificial diffusivity method

The compact scheme is one of the central-type differencing scheme and thus this

scheme does not contains numerical diffusivity. As mentioned at the head of this

chapter, the numerical oscillation is occurred at the discontinuity on the calcula-

tion of derivation by using this scheme without the artificial diffusivities. Kawai

(2013) proposed the Localized Artificial Diffusivity (LAD) method as a artificial

diffusivity for any linear finite difference scheme in MHD simulation. The LAD

method for MHD is extended method from the one for the hydro dynamics (Kawai

& Lele, 2008; Kawai et al., 2010; Terashima et al., 2013). The characteristic of

this method is that the numerical diffusivities are firstly calculated and introduced

to the governing equations as the bulk viscosity, the magnetic diffusivity, and the

mass diffusivity. The LAD method adds artificial diffusivities to the bulk vis-

cosity for capturing hydrodynamic shocks, the magnetic diffusivity for capturing

magneto-hydrodynamic discontinuities, and mass diffusive flux for capturing con-

tact discontinuities in governing equations Equation (2.1) to Equation (2.7), so

that

β = βphys + βart, η = ηphys + ηart, and Aρ = χart∇ρ, (2.36)

where the quantities with subscript ‘phys’ denote the physical quantities, and the

ones with ‘art’ denote the artificial quantities. Mani et al. (2009) shows the effi-

ciency of using artificial bulk viscosity for capturing shock structure. The vorticity

equation and dilatation equation in compressible flow with artificial bulk viscosity

can be written as

∂(∇× v)

∂t
= RHSphys −

∇ρ

ρ2
×∇ [βart(∇ · v)] , (2.37)

∂(∇ · v)
∂t

= RHSphys −∇ ·
[
1

ρ
∇ [βart(∇ · v)]

]
, (2.38)

where the RHSphys denotes the physical right-hand side of each equation. The

second term of right-hand side of Equation (2.37) works the diffusion effect of

vorticity, hence this term should be small so as to prevent damping of turbulence.

When the βart is designed to appear only at the vicinity of the shock, this term

becomes small at both the shock structure and the turbulent structure because

∇ρ and ∇ [βart(∇ · v)] are parallel near the shock and βart and ∇ · v are small in
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turbulent region. The second term of right-hand side of Equation (2.38) works the

diffusion effect of dilatation of the flow, hence this term should be effective only at

the vicinity of shock for diffusing the steep structure. When the βart is designed

to be effective only at the vicinity of the shock, this term becomes large only

near the shock because both the βart and ∇ · v are arose there, and thus the steep

shock structure is diffused. Kawai (2013) also shows the efficiency of using artificial

magnetic diffusivity for capturing magneto-hydrodynamic shock and discontinuity

structure. The current equation and divergence equation of magnetic field with

artificial magnetic diffusivity can be written as

∂j

∂t
= RHSphys −

[
∇2(ηartj)−∇(∇ηart · j)

]
, (2.39)

∂(∇ ·B)

∂t
= 0. (2.40)

The second and third terms of right-hand side of Equation (2.39) works as the

diffusion effect of the current structure, hence this term is desired to be effective

only at the vicinity of magneto-hydro dynamical shock for diffusing the steep struc-

ture. When the ηart is designed to be effective only at the vicinity of the MHD

discontinuities, these terms becomes large because both the ηart and j are arose

near the MHD discontinuities, and thus the steep structures of discontinuity are

diffused. The Equation (2.40) obviously shows that the artificial magnetic diffusiv-

ity ηart does not derange the solenoidal condition of magnetic field in the partial

differential equation level. Kawai (2013) probed that this relation can be preserved

as long as the linear differential scheme is used for the calculation of the spatial

derivation of induction equation. In addition to βart and ηart, the artificial mass

diffusive flux Aρ is introduced for handling contact discontinuities. The first term

of right-hand side of Equation (2.1) works as the diffusion effect of density struc-

ture, hence this term is desired to be effective only at the vicinity of discontinuity

of density for diffusing steep structure. When the χart is designed to be effective

only at the vicinity of steep structure of density, this term becomes large only near

the discontinuity of density, and thus the steep structure is diffused. Therefore, by

introducing the artificial diffusivities into the governing equation at the vicinity of

shocks and discontinuities as we defined in Equation (2.36) and combing the linear

differential scheme such as the compact difference scheme, we can capture shocks

and discontinuities without damping smooth structures of the vortices, the current,

and the density and with satisfying the solenoidal condition.
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The important point for introducing this type of numerical diffusivity is capturing

shocks and discontinuities sharply, i.e., βart, ηart, and χart is required to be arisen

only at stuctures of discontinuities and shocks. The LAD method determines ηart,

βart, and χart by fourth-spatial derivation of the current density, divergence of

velocity, and density respectively. ηart, βart and χart are written as

ηart = Rmnorm Cη
1

ρcs

∣∣∣∣∣
3∑

l=1

∂4|j|2
∂ξ4l

∆ξ4l ∆
3
l,η

∣∣∣∣∣, (2.41)

βart = Renorm Cβ ρfsw

∣∣∣∣∣
3∑

l=1

∂4(∇ · v)
∂ξ4l

∆ξ4l ∆
2
l,β

∣∣∣∣∣, (2.42)

χart = Cχ
cs
ρ

∣∣∣∣∣
3∑

l=1

∂4ρ

∂ξ4l
∆ξ4l ∆l,χ

∣∣∣∣∣, (2.43)

where cs is sound speed, and ∆l,η, ∆l,β , and ∆l,χ are amounts of projection of grid

vectors ∆ξl to the normal of magnetic discontinuities and density discontinuities

and defined as

∆l,η =

∣∣∣∣∆ξl ·
∇pm
|∇pm|

∣∣∣∣ , ∆l,β = ∆l,χ =

∣∣∣∣∆ξl ·
∇ρ

|∇ρ|

∣∣∣∣ , (2.44)

where pm is the magnetic pressure. The overline of Equation (2.41)(2.42)(2.43) de-

note the approximate trancated Gussian filter (see Cook & Cabot, 2004) calculated

as

f i =
3565

10368
fi +

3091

12960
(fi+1 + fi−1) +

1997

25920
(fi+2 + fi−2)

+
149

12960
(fi+3 + fi−3) +

107

103680
(fi+4 + fi−4).

(2.45)

fsw in equation (2.42) is a switching function defined as

fsw =
H(∇ · v)(∇ · v)2

(∇ · v)2 + |∇ × u|+ ϵ
, (2.46)

where H is Heviside function and ϵ is a small positive constant.

Cη, Cβ and Cχ are the user specified constants. The artificial diffusion values can

be controlled by changing these constants, and thus, the strength of LAD method is

adjustable to the arbitrary differential scheme, for example the compact difference

scheme. To confirm whether the developed code captures the discontinuity properly
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and clarify the effects of changing this constants, we carry out an 1-dimensional test

simulations those are propagation of the contact discontinuity, the hydrodynamic

shock, and the magnetic slow shock in accordance with Kawai (2013). Here, we

show the result of the propagation test of slow-shock. The simulation domain is

set as [0., 1.] and we set 512 grid points in this range. The initial condition is set

as

(ρ, vx, vy, vz, p, Bx, By, Bz) =

(1.0, 2.0, 0, 0, 1.0,−1.0, 1.0, 0) (x ≤ 0.25)

(1.368, 1.731, 1.0,−1.0, 1.769, 1, 0, 0) (x > 0),

with the specific heat γ = 5/3. The user specified constants are set as Cβ = 1.75,

and Cχ = 0.2, and we vary the Cη and check the efficiency for capturing the shock.

Figure 2.3 shows the structure of By near the slow-shock at t = 0.2. Red, green,

blue, and magenta lines show the results with Cη = 0, 1, 10, and 100 respectively. It

is obviously shown that the more Cη is increased, a wiggle amplitude of numerical

oscillation becomes smaller and the shock structure becomes more diffusive and

thicker. This trade-off relationship represents the efficiency for the shock capturing

of LAD method. We should adjust the user specified constants by using results of

these test simulations to the suitable values which suppress numerical oscillation

enough and does not diffuse structure beyond the necessity.

Kawai (2013) suggests the set of user specified constants as Cη = 10, Cβ = 1.75,

and Cχ = 0.2 with the 6-th order compact difference schem. We carried out the

test simulations of the propagation of the contact discontinuity, hydrodynamic

shock, and magnetic slow-shock, and found that this set of user specified constants

also can be suitable for our code even though we choose the 8-th order compact

difference scheme. Therefore, the simulation in this study is basically carried out

by using this set of user coefficients.

2.5 Pipeline algorithm

As described in Section 1.3, the parasitic instability has the wavenumber vector

which direction corresponds to the disturbed velocity field or disturbed magnetic

field. Therefore, the parasitic instability grows non-axisymmetrically. This fact

demands to carry out 3-dimensional simulation to reveal the transition process

from MRI to the turbulence. To carry out the 3-dimensional simulation, MHD

simulation code is strongly required to be parallelized by using the domain decom-
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Fig. 2.3: The structures of By (top panel) and ηart (bottom panel) near the slow-
shock at t = 0.5 of propagation test of slow-shock. Green, blue, magenta, and red
lines show the results with Cη = 0, 5, 10, and 15 respectively.

position. The domain decomposition is a method of dividing a simulation domain

and parallelly calculating each domain in each process. To realize the paralleliza-

tion by using domain decomposition, the data of grid points in marginal region of

each calculation domain need to be exchanged with process of neighbour region by

using Message Passing Interface (MPI). In addition to this, the compact difference

scheme requires to exchange the data in the middle of the forward substitution

and the backward substitution described in Section 2.3 because those substitution

require the sequential calculations. Figure 2.4 shows the schematic image of the

forward substitution in 2-dimensional simulation space with domain decomposition

in x-direction. Horizontal axis is x-direction to which we divide the simulation do-

main by the number of processes Nproc, and vertical axis is y-direction to which we
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Fig. 2.4: A schematic image of the forward substitution in 2-dimensional simulation
space with domain decomposition in x-direction without using pipeline algorithm.

assume the domain decomposition is not applied. If we doesn’t use any technique,

the forward substitution starts from the leftmost side of process number 1, and the

halfway calculated data is passed to neighbour process after completing halfway

calculation in the y direction, and continue this process toward the right end of

process number Nproc. It is obvious that when the calculation is proceeding in a

process, the other processes have to wait without calculation. Therefore reduc-

tion of the calculation time by parallelization cannot be realised in this case. To

solve this problem, the developed code employs pipeline algorithm (Matsuura &

Kato, 2007). Figure 2.5 shows schematic image of calculation of forward substi-

tution of compact difference scheme by using the pipeline algorithm. We divide

the simulation domain of each process into Nblock blocks in y direction. Note that

this division is not the thread or process parallelization but merely divides one

process into Nblock regions. First, the halfway calculation in x-direction proceeds

for one block in y-direction. After the one-block calculation, the calculation re-

sulted up there is passed to neighbour process in front. Finally, calculation can

proceed in first and next process simultaneously. By repeating this process, the

calculation can be completely parallelized as shown in Figure 2.5. The more we

increase NBlock, the vain waiting time is decrease and the efficiency of paralleliza-

tion itself becomes better. However, this algorithm also increases the amount of

MPI-communications whose start-up and shut-down waste the time by increasing

Nblock. Therefore, the balance of Nproc and Nblock is important for speed-up of

the calculation, and this can be obtained by the way of numerical experiment. We
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Fig. 2.5: A schematic image of the forward substitution in 2-dimensional simulation
space with domain decomposition in x-direction with using pipeline algorithm.

carried out two-dimensional test simulation for finding the best relation of Nproc

and Nblock. We set the adequate sized two-dimensional simulation domain with

meshes that are Nx ×Ny = 512× 512, where N and M denote the number of grid

in x and y direction, respectively. All physical variables are uniformly set as unity

and all boundaries are set as periodic; thus, all physical variables do not change

with time. The simulation domain is divided in x-direction into 64 regions, i.e.,

the calculation is parallelized by Nproc = 64. We divide the simulation domain

of each process in y-direction into Nblock blocks, and investigate the changes in

calculation time for calculating 100 steps. Figure 2.6 shows variation of the cal-

culation time by changing the Nblock. Vertical axis represents calculation time T

normalized by that of Nblock = 1, i.e., no-pipeline calculation, and horizontal axis

represents Nblock normalized by Nproc = 64. In the case that Nblock < 4Nproc, the

calculation time becomes longer by decreasing Nblock because the calculation is not

sufficiently parallelized. And in the case that Nblock > 4Nproc, the calculation time

similarly becomes longer by increasing Nblock because the communication time of

MPI wastes much longer time. Since the calculation time takes the minimum value
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Fig. 2.6: Variation of the calculation time by changing the Nblock. Vertical axis
represents calculation time T normalized by that of Nblock = 1, i.e., no-pipeline
calculation, and horizontal axis represents Nblock normalized by Nproc = 64.

when the condition that Nblock = 4Nproc, we employ this relation in our code. Note

that Nblock and Nproc can be converted to the number of blocks in two directions

perpendicular to calculation and the number of processes in a direction parallel to

calculation, respectively in the case of three-dimensional simulation; i.e., when we

calculate forward and backward substitution in x-direction in the simulation box

divided into Nproc,x × Nproc,y × Nproc,z processes, the simulation domain of each

process need to be divided in y and z direction into Nblock,y and Nblock,z blocks

with the relation that Nblock,y ×Nblock,z = 4Nproc,x.

Finally, we check the parallelization efficiency of developed code employing

pipeline algorithm by the strong-scaling. We measure the calculation time of

three-dimensional simulation for 100 steps under the setting for the simulation

of MRI-driven turbulence described in following Section 3.3 with 2563 meshes,

and investigate the variation of calculation time by changing the number of

total processes Nproc. In this calculation, the simulation domain is divided only

in x and z directions because of difficulty of parallelize in y-direction; thus,

Nproc = Nproc,x×Nproc,z. Figure 2.7 shows variation of calculation time by chang-

ing the Nproc. Vertical axis represents acceleration ratio to that of Nproc = 64, i.e.,

T (Nproc = 64)/T , where T is calculation time, and horizontal axis represents the
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Fig. 2.7: Variation of calculation time by changing the Nproc. Vertical axis rep-
resents acceleration ratio to that of Nproc = 64, i.e., T (Nproc = 64)/T , where T
is calculation time, and horizontal axis represents the number of total processes
Nproc.

number of total processes Nproc. The black dashed line denotes the linear-scaling,

i.e., the result is on this dashed line if 1/T was perfectly proportional to Nproc.

Therefore, the closer the result is to the dashed line, the higher parallelization

efficiency the code has. Figure 2.7 shows that our code has only about half

parallelization efficiency compared to linear scaling. This is natural result because

the simulation scheme which our code employs requires data exchange by MPI

not only for the boundary condition but also for the calculation of derivatives.

The important point is that the acceleration ratio is not damped but increase

with augmenting Nproc in the range of the number of processes in this test. This

fact indicates that increasing the number of processes effectively decrease the

calculation time until at least 1024 processes. Therefore, the developed code is

suitable for the carrying out large-scale three-dimensional MHD simulation.
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2.6 Numerical tests

In this section, we show the some numerical and physical test problems to demon-

strate the performance of developed code.

2.6.1 Propagation of Alfven wave

To confirm the efficiency for resolving wave of the developed code, we carry out the

Alfven wave propagation test according to Tóth (2000). We set the two-dimensional

simulation box of x and y direction and initial conditions are set as

ρ = 1.0, p = 0.1,

vx = −v⊥ sin θ, vy = v⊥ cos θ, vz = 0.1 cos(2π(x cos θ + y sin θ)),

Bx = B∥ cos θ −B⊥ sin θ, By = B∥ sin θ +B⊥ cos θ, and Bz = vz,

where

v⊥ = B⊥ = 0.1 sin(2π(x cos θ + y sin θ)),

B∥ = 1.

This setting corresponds to the circular polarized Alfven wave in x and y surface

propagating along the direction of θ from x-direction. We set θ = π/4, i.e., the

Alfven wave propagate 45◦ direction. Under this initial settings, the waveform

becomes same at t = 1, 2, 3, · · · analytically. The simulation domain is set as

0 ≤ x <
√
2 and 0 ≤ y <

√
2, and all boundaries are set as the periodic boundary.

The number of grids of each direction is set as Nx × Ny = 2N × 2N , and we

vary the number of grid per 1 wavelength N from 4 to 16. Figure 2.8 shows the

distribution of B⊥ along the wave propagation direction from (0, 0) to (1/
√
2, 1/

√
2)

at t = 5. Black solid line represents the analytical solution, and red dashed line,

green dash-dotted line, and blue dotted line show results with N = 4, 8, and 10,

respectively. This result indicates that our code can accurately resolve Alfven wave

by more than 4 grid points per wavelength. The efficiency for resolving wave by 4

and 8 grid points per wavelength is especially high performance compared to other

compressible MHD schemes (see figure (8) in Tóth, 2000). This fact indicates that

developed code has ability to accurately resolve turbulent flow even with a small
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Fig. 2.8: The distribution of B⊥ along the wave propagation direction from (0, 0)
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number of grid.

2.6.2 Brio-Wu shock-tube problem

Next, we confirm the efficiency for capturing shocks and discontinuities by carrying

out Brio-Wu shock-tube problem according to Brio & Wu (1988) and Ryu & Jones

(1995). We set the one-dimensional simulation space in x-direction with the range

that is −1 ≤ x < 1, and initial conditions are set as

(ρ, vx, vy, vz, p, Bx, By, Bz) =

(1.0, 0, 0, 0, 1.0, 0.75, 1.0, 0) (−0.5 ≤ x < 0.5)

(0.125, 0, 0, 0, 0.1, 0.75,−1.0, 0) (−1 ≤ x− 0.5, 0.5 ≤ x < 1).

The boundaries are set as periodic boundary condition. The top, middle, and bot-

tom panels of Figure 2.9 show the distribution of the density ρ, parallel velocity vx,

and perpendicular magnetic field By as red lines with left vertical axis, respectively,

and also show the artificial mass diffusivity χart, artificial bulk viscosity βart, and

artificial magnetic diffusivity ηart as blue lines with right vertical axis, respectively

at t = 0.12. The gray dashed line shows the initial conditions. Although there are
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Fig. 2.9: The top, middle, and bottom panels show the distribution of the density
ρ, parallel velocity vx, and perpendicular magnetic field By as red lines with left
vertical axis, respectively, and also show the artificial mass diffusivity χart, artificial
bulk viscosity βart, and artificial magnetic diffusivity ηart as blue lines with right
vertical axis, respectively at t = 0.12.

undershoots and overshoots with slight amplitude, the structures of discontinuity

and shock are well captured by slightly diffusing steep structures by the artificial

diffusivities calculated by the LAD method. From the test results of Figure 2.8

and Figure 2.9, developed code can resolve waves precisely as well as capturing

discontinuities and shocks.
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Fig. 2.10: Simulation results of Orszag-tang vortex problem. Left, middle, and right
panel shows the temperature T , artificial magnetic diffusivity ηart, and divergence
of magnetic field ∇ ·B, respectively at t = 3.1.

2.6.3 Orszag-tang vortex problem

The final numerical test is the Orszag-Tang vortex problem that is a standard two-

dimensional numerical test problem for MHD simulation. The initial condition of

this problem leads smooth flow at first, and gradually develops the MHD turbulence

and the MHD shock, and finally both of them complexly interact. Therefore, this

problem is used as a touchstone-problem for measuring the efficiency of resolving

turbulence and capturing discontinuity simultaneously. The initial conditions are

set as ρ = 2.778, vx = − sin y, vy = sinx, vz = 0, p = 5/3, Bx = sin y, By =

sin 2x, Bz = 0 with γ = 5/3. The computational domain is 0 ≤ x, y < 2π with

the N = 1024 grid points for each direction (N × N), and the boundaries are

the periodic boundary. Left, middle, and right panel of Figure 2.10 shows the

temperature T , artificial magnetic diffusivity ηart, and divergence of magnetic field

∇ · B, respectively at t = 3.1. According to the temperature distribution, the

temperature profile that is uniform in the initial condition develops to the shock

and the turbulence structure. As shown in middle panel of Figure 2.10, the artificial

diffusivity is applied only at the vicinity of these shock structures and not effective

at smooth structures. Meanwhile, as shown in the right panel of Figure 2.10, the
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solenoidal condition of magnetic field is not broken and ∇ ·B is suppressed in the

range of machine error. This feature is the efficiency of using compact difference

scheme and LAD method. The developed code can preserve solenoidal condition

of magnetic field as long as we use the periodic boundary condition. Note that

this feature can not be maintained in the case of using the boundary condition

that breaks the solenoidal condition of magnetic field, e.g., shearing box boundary

condition. This is because the scheme satisfies the relation of ∂(∇ · B)/∂t = 0,

but not ensures ∇ ·B = 0. Therefore, we have to employ the additional method

for dealing with the ∇ ·B error arose at the shearing box boundary condition to

apply the code for the calculation of MRI-driven turbulence.

2.7 Concluding remarks

In this chapter, we described the newly developed parallelized three-dimensional

high-order MHD simulation code. Since we focused on resolving MRI-driven mag-

netic turbulence accurately, we developed the MHD simulation code by employing

the MHD scheme proposed by Kawai (2013). This scheme is based on the high-

order compact difference scheme (Lele, 1992) and high-order compact-type filtering

scheme (Lele, 1992; Gaitonde & Visbal, 2000), and localized artificial diffusivity

(LAD) method. Since the compact difference and compact-type filtering schemes

required to do sequential calculation and thus they can not be simply parallelized

by domain decomposition using MPI, we also employed the pipeline algorithm to

parallelize without diminishing the accuracy. Developed code is successfully paral-

lelized by using this algorithm and the acceleration ratio is increased by increasing

the number of processes. We carried out some numerical tests and confirmed that

developed code has following efficiency; high wavenumber accuracy, i.e., the code

can solve the wave propagation with a few grids per wavelength, capturing dis-

continuities accurately, i.e., the calculation is not broken by numerical noise, and

conserves the solenoidal condition, i.e., ∇ · B ∼ 0 as long as we use the periodic

boundary condition. From these numerical tests, we could confirm that developed

code works properly and has the efficiency for resolving MRI-driven turbulence.
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Chapter 3

MHD simulation of MRI-driven

turbulence in ideal MHD condition

3.1 Introduction to MRI-driven turbulence in ideal MHD

condition

As introduced in Section 1.2, MRI is one of the most important phenomena in

accretion disks and believed to make accretion disks turbulent state. In the fully

ionized and Keplerian accretion disk, the maximum growth rate of MRI reaches

0.75ΩK (ΩK:Keplerian angular velocity), and thus the growth timescale of MRI

is generally much shorter than the timescale of disk evolution. Several numerical

simulations suggest that MRI results in the turbulent state of the accretion disk

in the nonlinear evolutional stage (e.g., Hawley et al., 1995; Sano & Inutsuka,

2001; Sai et al., 2013). The existence of MRI-driven turbulence is supported by the

observational studies that reported the higher accretion rate than that estimated by

molecular viscosity. As shown in Section 1.1, the turbulent stress, increased by MRI

and maintained in MRI-driven turbulence, acts as turbulent viscosity that causes

mass accretion toward the central star (Shakura & Sunyaev, 1973). Therefore,

MRI-driven turbulence is believed to be an appropriate explanation for the observed

high mass accretion rate.

As mentioned in Section 1.3, Goodman & Xu (1994) analytically suggested that

the linear growth of MRI is saturated and that the transition to the turbulent state

is caused by subsequent instability called parasitic instability. Parasitic instabil-

ity is incidental instability to MRI; it is related to the Kelvin-Helmholtz (K-H)
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instability and the magnetic reconnection caused by both shear flow and antipar-

allel magnetic field resulting from the growth of MRI. The properties of parasitic

instability, including the maximum growth wavenumber, growth rate, and wave

direction, are controlled by the magnetic diffusivity and the fluid viscosity (Pessah,

2010). This is because those diffusivity terms change the eigenvector of MRI (Pes-

sah & Chan, 2008), and also the magnetic diffusivity controls which of the modes,

the K-H instability mode or the magnetic reconnection mode, grows faster. In

the case of ideal MHD, the K-H instability mode is a dominant factor of parasitic

instability, and thus the shear flow created by the linear growth of MRI plays an

important role for saturating the MRI growth and resulting in turbulent state of

the accretion disk.

Previous numerical studies reported on the wave spectrum of the enhancement

of parasitic instability in an ideal MHD. Lesur & Longaretti (2011) and Murphy &

Pessah (2015) carried out an incompressible MHD simulation in a local shearing box

(Hawley et al., 1995) using a spectral method capable of high-resolution turbulence

computations. These studies show that the structure of MRI-driven turbulence in

the wavenumber space has anisotropy that is considered to be due to parasitic

instability.

Rembiasz et al. (2016) carried out a compressible MHD simulation using the

shock capturing and high-order reconstruction scheme and showed property of the

termination of linear growth of MRI via parasitic instability. While they focused on

core-collapse supernovae and did not assume the Keplarian disk parameter, they

reported that the anisotropic wave enhancement via parasitic instability whose

wavenumber is higher than analytical value. This fact suggests the possibility that

the enhancement of waves whose spatial scale is smaller than the theoretical expec-

tation plays an important role for the termination of MRI. In addition, numerical

studies reported that the nonlinear evolution of MRI-driven turbulence changes

when the resolution (e.g., Fromang & Papaloizou, 2007; Rembiasz et al., 2016) and

numerical and small physical diffusivities (e.g., Fromang et al., 2007; Minoshima

et al., 2015) are modified. Since these modifications change the small-scale flow

structure, these studies indicate the importance of the small-scale waves for the

generation of MRI-driven turbulence. It is, however, still unclear that how the

small-scale structures and waves affect to mechanisms of termination of MRI and

driving of magnetic turbulence. One of the reasons is that there are difficulties

for the compressible MHD simulation to resolve small-scale structures and waves.

Resolving small-scale and compressible flow requires an MHD simulation scheme
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that resolves wave fine structures with capturing discontinuities. An MHD simu-

lation code which can accurately resolve small-scale waves in compressible plasma

is required to reveal the saturation process of MRI and the driving mechanism of

magnetic turbulence.

In this study, we carry out MHD simulation in a local shearing box with the

newly developed MHD code using the high-order and compressible scheme pro-

posed by Kawai (2013). This scheme has the high wavenumber accuracy, which

is suitable for investigating MRI-driven turbulence. By using this code, we inves-

tigate the enhancement of parasitic instability and how the enhanced small-scale

structures and waves affect to the mechanisms of termination of MRI and driving

of magnetic turbulence, i.e., the creation process of turbulent stress, in both the

linear and nonlinear phase. This chapter is organized as follows. In Section 3.3,

we describe governing equations, simulation models, numerical method, and sim-

ulation setup. In Section 3.4, we present simulation results and discussion. We

show the enhancement of K-H mode parasitic instability and discuss its role for

saturation and relaxation of turbulent stress at the first peak in Section 3.4.2, and

we discuss difference between a nonlinear peak and the first peak in Section 3.4.3.

We summarize this chapter in Section 3.5.

3.2 Linear analysis of MRI in ideal MHD condition

In this section, we revisit the property of MRI in the ideal MHD condition that was

firstly shown by Balbus & Hawley (1991). To simplify the discussion, we employ the

assumptions that (1) the plasma is homogeneous and incompressible, i.e. ∇ ·v = 0,

(2) the coordinate center is rotating around the central star with revolution angular

velocity Ω, (3) the coordinate center is far enough away from the central star.

Under these assumptions, the ideal MHD equations can be written in Cartesian

coordinate with the centrifugal force and Coriolis force, and the continuous equation

and energy equation are vanished. We set the radial, azimuthal, and vertical

coordinates from the center of such a rotating coordinate system as x, y, and z

coordinates, respectively. The momentum equation and induction equation are

written as

∂(ρv)

∂t
+∇ ·

[
ρvv − BB

4π
+

(
p+

B2

8π

)
I

]
= 2qΩ2ρxêx − 2ρΩ× v, (3.1)

∂B

∂t
+∇ · [vB −Bv] = 0, (3.2)
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where ρ, p, v and B denote density, gas pressure, velocity, and magnetic field,

respectively, and q is the rotational parameter denoted as Ω ∝ r−q where r is

distance from central star. We consider one of the simplest equilibrium condition

of Equations (3.1) and (3.2) that are

v0 = −qΩxêy, B0 = B0êz. (3.3)

To obtain the dispersion relation of MRI, we linearise these equations by adding

Fourier modes perturbation to velocity and magnetic field. We assume that the

wavenumber vector of Fourier modes only have the z-direction component to sim-

plify the calculation, i.e.,

f1 = δf exp i(kzz − iωt), (3.4)

where f is each physical quantity, kz is the vertical wavenumber, t denotes the

time, and ω is the complex angular frequency whose imaginary part represents

the growth rate. Note that vz1 and Bz1 become zero because of the solenoidal

conditions of velocity and magnetic field that are ∇·v = ∇·B = 0. By employing

above conditions and assumptions, Equations (3.1) and (3.2) can be linearised as

following matrix equations.
0 2iΩ −v2

Akz

B0
0

−i(2− q)Ω 0 0 − v2
Akz

B0

−B0kz 0 0 0

0 −B0kz iqΩ 0




v1x

v1y

B1x

B1y

 = ω


v1x

v1y

B1x

B1y

 , (3.5)

where vA is the Alfven velocity defined as v2A =
B2

0

4πρ . Equation (3.5) shows that

ω and (v1x, v1y, B1x, B1y)
T correspond to the eigenvalue and eigenvector of the

matrix in left hand side of Equation (3.5). The dispersion relation correspods to

the eigenfunction of Equation (3.5), and can be written as

(ω2 − v2Ak
2
z)

2 − 2(2− q)Ω2ω2 − 2qΩ2v2Ak
2
z = 0. (3.6)

Figure 3.1 shows the solution of this dispersion relation in the case of q = 3/2,

i.e., the Keplerian disks. Horizontal axis of both panel (a) and (b) represents the

normalized wavenumber defined as vAkz/Ω, and vertical axis represents (a) real

part and (b) imaginary part of normalized angular frequency defined as ω/Ω. The
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Instability & Decay
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Fig. 3.1: The solution of dispersion relation of MRI in the ideal MHD condition,
Equation (3.6). Solid line and dotted line in both panel (a) and (b) show the
mode which has unstable solution and the other mode which has purely oscillation
solution, respectively. Panel (a): Real part of angular frequency ω. Gray dash-
dotted lines represent the group velocity of Alfven wave. Panel (b): imaginary part
of angular frequency ω, i.e., the growth rate. Vertical and horizontal dash-dotted
gray lines denote the wavenumber and growth rate of the maximum growth mode
in ideal MHD condition.



46 Chapter 3 MRI-driven turbulence in ideal MHD condition

panel (a) shows there are four branches; the two branches depicted by dotted lines

that are purely oscillatory and whose phase velocity are higher than others, and the

other two branches depicted by solid lines that have non-oscillatory and oscillatory

ranges and whose phase velocity in oscillatory range is slower than purely oscillatory

branches. The former are originated by Alfven wave and its cut-off corresponds to

the epicyclic frequency that is κ2 = 2(2− q)Ω2. The latter are originated by slow-

mode wave and have the instability and decay wavenumber range. The panel (b)

shows growth rate of such four branches. The purely oscillatory branches depicted

by dotted line don’t have finite value in all range, thus these oscillations do not

grow or decay. The other two branches have non-zero values, i.e., the one branch

is instability mode (ℑ(ω) > 0) and the other is decay mode (ℑ(ω) < 0). This

instability mode is so called ’magneto-rotational instability (MRI)’. The important

points of MRI are above two points. The first point is its high maximum growth

rate. As shown in panel (b), MRI has the maximum growth wavenumber that is

kz,mas = (
√
15/4)(Ω/vA), and the maximum growth rate is ℑ(ω)max = 0.75Ω in

Keplerian disks. This indicates that the perturbation amplifies to more than 100

times larger with an rotational time. Therefore, the timescale of MRI growth is

much shorter than that of typical timescale of disk evolution that is ∼ 106yr for

protoplanetary disks for example, and thus, MRI is believed as the most dominant

phenomenon for the evolutional process of accretion disks. The second point is that

MRI is driven by weak magnetic field. As shown in panel (b), the MRI branch has

the wavenumber range that is kz = [0,
√
3Ω/vA]. vA is proportional to the magnetic

field, thus the range becomes wider when magnetic field decreases. Therefore, MRI

can be driven with a weak magnetic field, or rather the wavenumber range that

MRI can drive becomes narrowed in the case that the magnetic field is too strong.

In addition to these two points, there is one more important point for discussing

the detailed mechanism of driving turbulence; that is the angles of perturbed veloc-

ity and magnetic field. We define the angles formed by perturbation components

of velocity that are δvx and δvy, and magnetic field that are δBx and δBy as

θv = arctan(δvy/δvx) and θB = arctan(δBy/δBx), respectively. The perturbation

fields satisfy Equation (3.5), i.e., they are correspond to the eigenvector of the ma-

trix equation. Figure 3.2 shows the angles of perturbed velocity θv (solid line) and

magnetic field θB (dotted line) of the instability mode in the wavenumber range

of MRI, i.e., vAkz/Ω = [0,
√
3]. It is obvious that θv and θB strictly become π/4

and −π/4 from the radial direction at the maximum growth wavenumber. There-

fore, the perturbed velocity and magnetic field that have the maximum growth
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Fig. 3.2: The angles formed by perturbation components of velocity and mag-
netic field satisfying Equation (3.5), i.e., θv = arctan(v1y/v1x) (solid line) and
θB = arctan(B1y/B1x) (dotted line), respectively. Vertical gray dash-dotted line
represents the maximum growth wavenumber of MRI in ideal MHD condition.

wavenumber grow exponentially in these specific directions. These specific direc-

tions of the perturbed velocity and magnetic field play important roles for deter-

mining the enhancement of K-H mode parasitic instability in Section 3.4.2 and

Section 3.4.3.

3.3 Simulation setup

3.3.1 Governing equations

We carry out the adiabatic, compressible, and ideal MHD simulation with the

simulation box locally located on the disk and corotating with Keplerian angular

velocity around the central star. The governing equations are normalized ideal
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MHD equations written in conservative form as follows.

∂ρ

∂t
+∇ · (ρv) = 0, (3.7)

∂(ρv)

∂t
+∇ ·

[
ρvv −M2

normBB +

(
p+M2

norm

B2

2

)
I

]
= SMomentum, (3.8)

∂B

∂t
+∇ · (vB −Bv) = 0, (3.9)

∂E

∂t
+∇ ·

[(
E + p+M2

norm

B2

2

)
v −M2

norm(v ·B)B

]
= SEnergy, (3.10)

where ρ,p,v, B denote the gas density, pressure, velocity field, and mag-

netic field, respectively, and Mnorm is Alfven Mach number defined as

Mnorm = vA norm/cs norm. E is the total energy defined as

E =
p

γ − 1
+

ρv2

2
+M2

norm

B2

2
, (3.11)

where γ is the specific heat set as γ = 5/3. Note that the actual simulation uses

one more equation and source terms of induction equation that are obtained from

the hyperbolic divergence cleaning method described later.

To calculate the local area of the accretion disk with a Cartesian grid, we set

up a small simulation box whose center rotates with Keplerian angular velocity

around the central star; this is so called the shearing box (Hawley et al., 1995). We

set the radial, azimuthal, and vertical directions of the disk as x, y, z, respectively

in a rotating coordinate system. By using a rotating coordinate system, the source

terms are obtained from Equation (3.8) and Equation (3.10) as SMomentum and

SEnergy, respectively. These terms originate from the centrifugal force and the

Coriolis force, and they are defined as

SMomentum = 2qΩ2ρxêx − 2ρΩ× v, (3.12)

SEnergy = 2qΩ2ρxvx, (3.13)

where Ω is the normalized angular velocity of the rotating simulation box, q is

the rotational parameter of the disk defined as Ω ∝ r−q, and x is the radial dis-

tance from the center of the simulation box where the rotating angular velocity

corresponds to the Keplerian angular velocity.

All physical values in the above equations are normalized by the physical proper-

ties of an arbitrary disk model. The normalization constants in our simulation are
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density ρnorm, sound speed cs norm, and time required for orbiting 1 radian T to an

arbitrary distance from the central star for normalizing the density, velocity, and

time, respectively. Under this normalization coefficient setting, the length, pres-

sure, magnetic field, and angular velocity are normalized by L = cs normT = H/
√
2,

pnorm = ρnormc
2
s norm, Bnorm =

√
4πρnormc2s norm, and Ωnorm = 1/T , respectively,

where H is the scale length of disk thickness. Under these normalization settings,

Mnorm = 1.

3.3.2 Shearing box approximation and its boundary condition

The developed code uses the shearing box boundary condition (Hawley et al., 1995)

to apply the simulation box to the corotating coordinate system in differential ro-

tational disks. The shearing box boundary condition requires the calculation of the

physical value between the grids, and thus it is necessary to interpolate grid values

in the ghost grids at the x-direction boundaries. Interpolation is performed by

Taylor expansion at the nearest grid calculated by repeating compact differencing

in the y-direction. This interpolation process breaks the solenoidal condition of the

magnetic field only at the x-direction boundaries. To deal with this problem, the

developed code also employs the hyperbolic divergence cleaning method (Dedner

et al., 2002). By using this method, the divergence errors occurring at the shearing

boundary are diffused by attenuation. The divergence error of the simulation in

this study is suppressed in |∇ ·B| < 0.5.

3.3.3 Simulation settings

The computational domain is considered to be (Lx, Ly, Lz) = (2
√
2, 2

√
2,
√
2) =

(2H, 2H,H) where x, y, and z represent the radial, azimuthal, and vertical direc-

tions of the disk, respectively, and number of grid points in each direction is set as

Nx ×Ny ×Nz = 256× 256× 128. The angular velocity of the rotating simulation

box is set as Ω = 1.0, and Initial gas density is set as ρ0 = 1.0. We assume that

the disk is a Keplerian disk; therefore the disk parameter is q = 1.5 and the initial

gas velocity is set as v0 = 1.5Ωx êy, where êl denotes the unit vector of l-direction.

The initial magnetic field is the net vertical magnetic field B0 = B0 êz. In this

simulation, we set the strength of the initial magnetic field such that the maximum

growth wavelength of MRI corresponds to the third part of the vertical box length,

i.e., λMRI,max = 8πvA/
√
15Ω = Lz/3. The value of the magnetic field strength is

therefore set as B0 ∼ 7.26 × 10−2 in this scenario. The initial plasma beta is set
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as βplasma,0 = 400, and thus the initial pressure is set as p0 = 2βplasma,0B
2
0 ∼ 1.06.

A small random noise, whose amplitude corresponds to 0.5% of the sound speed,

is initially added to all components of the velocity as seed for instability.

3.4 Simulation results and discussion

3.4.1 Time evolution of turbulent stress

We carried out calculation for 50 orbital period with the settings described in Sec-

tion 3.3. Panel (a) of Figure 3.3 shows time evolution of some wave modes of the

z-directional wavenumber spectra of a sum of the radial and the azimuthal velocity

averaged over the radial and the azimuthal wavenuber space, i.e.,
⟨
vh(kz)

2
⟩
kx,ky

=⟨
v2x(kz) + v2y(kz)

⟩
kx,ky

. The horizontal axis represents the orbital period torbit.

Red, yellow, green, blue, and purple lines represent the modes with the wavelength

λz = Lz, Lz/2, Lz/3, Lz, 4, Lz/5, respectively, and the gray dash-dotted line repre-

sents analytically obtained maximum growth rate. Since the initial magnetic field

is set to drive the MRI whose maximum growth wavelength corresponds to Lz/3,

the mode λ = Lz/3 has the fastest growth rate that approximately corresponds to

the analytically obtained fastest growth rate of MRI, i.e., 0.75Ω. The linear growth

phase ends at around torbit = 2.8, and the evolution enters a nonlinear phase. At

nonlinear peak, the mode λ = Lz becomes dominant because the magnetic field

is amplified by MRI and the growth condition of MRI is changed. This feature is

consistent with those described in previous studies such as Sano & Inutsuka (2001).

Panel (b) of Figure 3.3 shows the time evolution of spatially averaged turbulent

stress ⟨Wxy⟩ normalized by initial pressure p0. Turbulent stress Wxy is defined as

Wxy ≡ WRxy +WMxy ≡ ρδvxδvy − δBxδBy, (3.14)

where WRxy = ρδvxδvy = ρvx(vy − qΩx) is the Reynolds stress, and WMxy =

−δBxδBy = −BxBy is the Maxwell stress. Red, blue, and black lines in panel (b)

of Figure 3.3 represent the Maxwell, Reynolds, and total stress, respectively. The

total turbulent stress repeatedly increases and decreases every few orbital periods,

and the Maxwell stress WMxy is basically larger than the Reynolds stress WRxy =

ρδvxδvy. These features are similar to the previous three-dimensional simulation

studies on MRI-driven turbulence (e.g., Hawley et al., 1995; Sano & Inutsuka,

2001). In this paper, we will focus on the first peak at around torbit = 2.8 (left
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Maxmum growth rate 
of 
MRI

(a)
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Fig. 3.3: (a) Time evolution of some wave modes of the z-directional wavenumber
spectra of a sum of the radial and the azimuthal velocity averaged over the radial
and the azimuthal wavenumber space. Red, yellow, green, blue, and purple lines
represent the modes with wavelength λz = Lz, Lz/2, Lz/3, Lz, 4, Lz/5, respectively,
and the gray dash-dotted line represents the analytically obtained maximum growth
rate. (b) Time evolution of spatially averaged turbulent stress ⟨Wxy⟩ normalized
by initial pressure p0. Red, blue, and black lines represent the Maxwell, Reynolds,
and total stress, respectively.

gray dashed line) and an arbitrarily chosen nonlinear peak at around torbit = 29.8

(right gray dashed line) to reveal the saturation mechanism of turbulent stress in

the linear and nonlinear phase, and the differences of these peaks.

3.4.2 Termination mechanism of linear growth of MRI at the first peak

Linear growth of MRI and its structure

The turbulent stress induced by MRI linearly first grows until a few orbital periods,

then saturates at around torbit = 2.8, and finally decreases after saturation. In

order to see the cascade structure of the injection energy due to MRI, we check the

wavenumber spectra of the horizontal velocity along the vertical direction around

the first peak. Figure 3.4 shows the time evolution of the z-direction wavenumber
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Fig. 3.4: Z-direction wavenumber spectra for the horizontal component of horizon-
tally averaged disturbed fluid speed ⟨δvh⟩x,y around the saturation. The colors of
lines correspond to the time, and so the time elapsed is shown from cold color to
warm color.

spectra for the horizontally averaged horizontal disturbed fluid speed
⟨
δvh

2
⟩
x,y

around saturation. δvh is defined as

δvh ≡
√
v2x + (vy − qΩx)2. (3.15)

In the linear growth phase, MRI transforms the gravitational potential to hori-

zontal velocity (and horizontal magnetic energy) with the initially set maximum

growth wavenumber kz = 3 × 2π/Lz = kMRI, max. This growth is terminated at

around torbit = 2.8, and the injected energy is widely diffused in wavenumber space

after that. Note that the high wavenumber area (kzLz/2π ≳ 40) is dumped due

to the 10-th order compact-type low pass filtering. From this figure, it is expected

that the injected energy cascades toward the high wavenumber structure due to

the enhancement of parasitic instability at torbit = 2.8.

In order to determine the phenomena that occurs at time of the first saturation,
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Fig. 3.5: The horizontally averaged horizontal disturbed velocity ⟨δvh⟩x,y (red

lines) and disturbed magnetic field ⟨δBh⟩x,y (blue lines) at saturation timing
torbit = 2.8. Horizontal and vertical axis represent radial and azimuthal com-
ponents respectively.

we check disturbed field structures of the horizontal velocity and the horizontal

magnetic field. Figure 3.5 shows the horizontally averaged horizontal disturbed

velocity ⟨δvh⟩x,y (red lines) and disturbed magnetic field ⟨δBh⟩x,y (blue lines) at

the first peak. The disturbed horizontal field vectors δvh and δBh are defined as

δvh ≡ vxêx + (vy − qΩx)êy, (3.16)

δBh ≡ Bxêx +Byêy. (3.17)

These vectors are plotted for each z grid, so that each horizontal vectors has 128

lines. Although there are slight variabilities, the fluctuation velocity and magnetic

field have antiparallel vectors in specific directions, which are π/4, 5π/4 radian

and 3π/4, 7π/4 radian from the radial direction, respectively. These features show

that the angle of eigenvectors of MRI in an ideal MHD obtained by the dispersion
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relation (e.g., Goodman & Xu, 1994; Pessah & Chan, 2008), i.e., the relations of

components,

tan(δvy/δvx) = 1, tan(δBy/δBx) = −1, (3.18)

is conserved until just before the saturation of turbulent stress. In particular, this

MRI-driven antiparallel velocity, i.e., shear flow velocity, is called MRI channel

flow. The amplitude of these antiparallel fluctuation vectors becomes larger with

time in the linear growth phase while maintaining the specific angles, and just

after saturation, the amplitude growth stops and the angle of these vectors spreads

widely. The temporally increasing shear velocity and antiparallel magnetic field

can drive the K-H instability and the magnetic reconnection in the direction of the

respective antiparallel vectors. Since this calculation is in an ideal MHD simulation,

it can be expected that the K-H instability is dominantly induced and rolls up the

flow toward the vertical direction.

Enhancement of parasitic instability and its contribution to the termination of MRI

linear growth

To determine the enhancement of the wave induced by parasitic instability and its

direction at the first peak, we apply two-dimensional Fourier transform to the ver-

tical component of fluctuation velocity vz and magnetic field Bz in the horizontal

plane. The perturbation of the K-H instability and the magnetic reconnection in-

duced by MRI dominantly create a vertical component of the velocity and magnetic

field, respectively because the velocity and magnetic field that the MRI creates have

the horizontal components. Therefore, we can confirm the enhancement of parasitic

instability by comparing the direction of the horizontal two-dimensional wavenum-

ber spectra of vz and Bz with the vectors of the horizontal disturbed velocity vh

and Bh. Fourier transform cannot be normally applied in the x-direction because

the boundary of x-direction is not periodic but a shearing boundary. Therefore, we

apply the Hamming window function along the x-direction before Fourier trans-

form. Figure 3.6 shows two-dimensional wavenumber spectra of (a) δvz and (b)

δBz in the horizontal wavenumber plane averaged over vertical wavenumber direc-

tion at torbit = 2.8. The horizontal and vertical axes represent radial and azimuthal

wavenumber, respectively, and these values are normalized by the maximum growth

wavenumber of MRI such that kMRI = 3 × 2π/Lz. It can be seen that there are

wave enhancements with strong directivity both in δvz and δBz. The directivity

of the enhanced wave has the kx ∼ ky direction, i.e., π/4, 5π/4 radian from the
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(a) (b)

Fig. 3.6: Two-dimensional wavenumber spectra of (a) δvz and (b) δBz in the
horizontal wavenumber plane averaged over vertical wavenumber direction at
torbit = 2.8.

radial direction both in vz and Bz fields. This anisotropic wave enhancement is

similar to that obtained from previous numerical studies (Lesur & Longaretti, 2011;

Murphy & Pessah, 2015; Rembiasz et al., 2016). As Goodman & Xu (1994) and

Pessah (2010) analytically pointed out, parasitic instability in an ideal MHD is a

purely K-H mode; thus, it has the fastest growth rate with wavenumber vector

kPI directing π/4, 5π/4 radian from the radial direction. In our calculation, the

π/4, 5π/4 radian direction waves are enhanced both in vz and Bz fields although

there exists an antiparallel magnetic field in 3π/4, 7π/4 radian direction as describe

above. Therefore, we confirm that K-H mode parasitic instability is dominantly

induced by MRI-driven shear flow in our calculation, as analytically described in

previous studies. The existence of the enhancement of δvz wave both in small

and large wavenumber of kx = ky region shows that the injected energy cascades

while maintaining the anisotropic turbulent structure. This anisotropy is broken

at the peak and the spectra becomes isotropic after that. This indicates that the

laminated structure which induces the anisotropic energy cascade is broken at the

peak, and the turbulent flow changes from anisotropic to isotropic.

Next, we check the detailed mechanism of transition from MRI to the state

of magnetic turbulence via K-H mode parasitic instability. Figure 3.7 shows the

time evolution of the vertically averaged wavenumber spectra of vz in horizontal
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Fig. 3.7: Time evolution of vertically averaged wavenumber spectra of vz in kh ≡√
k2x + k2y along the kx = ky direction.

wavenumber kh ≡
√

k2x + k2y along the kx = ky direction, i.e., time evolution of the

spectra along the white dashed line in panel (a) of Figure 3.6. The horizontal axis is

the horizontal wavenumber kh ≡
√
k2x + k2y =

√
2kx normalized by the MRI max-

imum growth wave number. Line colors, from cold color to hot colors, represent

the time elapsed. The dotted line at kh/kMRI,max = 0.59 represents analytically

obtained maximum growth wavenumber of K-H mode parasitic instability. We can

see the enhancement of energy of vz at around torbit = 2.75, which is considered to

be because the roll up due to K-H mode parasitic instability increases the vertical

component of the velocity. However, the fastest growth wavenumber in our simula-

tion is around kh/kMRI = 2 ∼ 3, which is greater than analytically obtained fastest

growth wavenumber kh/kMRI = 0.59. This feature is a similar result to the result

of Rembiasz et al. (2016) that is also obtained by the compressible MHD simulation

using the high-order scheme although their simulation settings are different from

ours; in particular, they didn’t use Kepletrian rotational parameter. What is the

difference between the simulation result and analytical studies? Analytical studies
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usually assume that the simple shear flow and antiparallel magnetic field due to

MRI grow with purely sinusoidal structure with maximum growth wavenumber of

MRI and retain that structure until the saturation of MRI. For our simulation,

Figure 2 shows that there exist multiple modes other than the maximum growth

mode, though the maximum mode has the power one order of magnitude larger

than those of other modes. The enhancement of a larger wavenumber wave of vz

(Figure 3.7) indicates that the shear flow is no longer purely sinusoidal and shows

the importance of the existence of a smaller scale flow around the peak. To de-

termine the phenomena that occur at the first peak, we examine the shear flow

structure in the simulation result in detail. Figure 3.8 shows the structure of the

parallel component of disturbed horizontal velocity δvh,∥ in a surface with horizon-

tal direction hx=y along the direction of êx=y ≡ (êx+êy)/
√
2 and vertical direction

z at torbit = (a) 2.75, (b) 2.80, (c) 2.85, and (d) 2.90. The parallel component of

disturbed horizontal velocity is defined as

δvh,∥ ≡ δvx cos(π/4) + δvy sin(π/4). (3.19)

Gray lines in all panels of Figure 3.8 represent the projection of streamlines de-

picted by disturbed velocity toward the x = y direction surface, i.e., the lines are

streamlines of the field defined as

δv∥ = δvh,∥êx=y + δvzêz. (3.20)

Although streamlines have both background flow −qΩxêy and perpendicular com-

ponent of disturbed horizontal velocity δvh,⊥, we can estimate the rough trend of

the structure of the disturbed component of flow that induces K-H mode parasitic

instability. At torbit = 2.75, just before the peak, though the structure that has

kz = kMRI,max = 3 · 2π/Lz is mainly dominant, the shear flow structures induced

by MRI at around (h, z) = (−0.75H, 0.1H) and (0.5H, 0.3H) become narrower

and the flow speed of those region become faster, i.e., the flow structure become

a jet-like structure and no longer purely sinusoidal. At torbit = 2.80, these jet-like

flow structures become unstable and winding, and then, the shear flow is torn up

in those region after torbit = 2.85. This process of creating narrower and faster flow

and tearing shear flow with winding also can also be seen at torbit = 2.85 and 2.90

at around (h, z) = (−0.25H, 0.25H) and (1.25H,−0.1H).

It is considered that the termination of growth and relaxation of turbulent stress

is related to this collapse mechanism of shear flow. Since the relations of compo-



58 Chapter 3 MRI-driven turbulence in ideal MHD condition

(a)

(b)

(c)

Fig. 3.8: Structure of the parallel component of disturbed horizontal velocity δvh,∥
in a surface with horizontal direction hx=y along the direction of êx=y ≡ (êx +

êy)/
√
2 and vertical direction z at torbit = (a) 2.75, (b) 2.80, (c) 2.85, and (d)

2.90. Gray lines in all panels represent the projection of streamlines depicted by
disturbed velocity toward the x = y direction surface, i.e., streamlines of δv∥.
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(d)

Fig. 3.8: (Continued)

nents of velocity and magnetic field in linear growth phase of MRI are as shown

equation (3.18), the turbulent stress defined in equation (3.14) becomes positive

and its growth increment is proportional to the amplitude of shear flow and an-

tiparallel magnetic field structure. The termination of linear growth and relaxation

of turbulent stress therefore indicate the collapse of the antiparallel disturbed field

structures. The analytical study by Pessah (2010) assumes that the termination

of MRI linear growth occurs at the time when the growth rate in the maximum

growth mode of parasitic instability reaches the growth rate of MRI. The collapse of

antiparallel disturbed field structure under this assumption is caused by roll up by

vortices with the scale of maximum growth mode of parasitic instability. However,

the collapse mechanism in our simulation is not so simple as described above. In

our simulation, formation of narrow disturbed flow plays an important role for the

termination of linear growth. It can be seen from Figure 3.8 that narrow flows are

created by the interaction between vortices induced by the linear growth of K-H

mode parasitic instability. The antiparallel vortices located at similar horizontal

position, such as those at (hx=y, z) = (−1.1H, 0.25H) and (−1.1H,−0.15H), create

positive and negative vertical flow at similar horizontal position in the neighbour-

ing laminar flow. This flow makes the horizontal laminar flow narrower and faster

such as the structure at (hx=y, z) = (−0.75H, 0.1H) and (0.25H, 0.3H). This nar-

row flow induces the small-scale K-H instability whose wavelength is much shorter

than the preliminary induced K-H mode parasitic instability, and the vortices in-

duced by this small-scale K-H tear up the narrow laminar flow itself. From the

above discussion, the termination of laminar structure of the linear growth of MRI

is not related to parasitic instability directly but the subsequent small-scale K-H
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instability due to the interaction between the vortices induced by the K-H mode

parasitic instability. This fact also indicates the importance of high-accuracy and

high-resolution MHD calculation for resolving the termination of the linear growth

of MRI. The vertical scale of jet-like flow structure becomes about one fifth to

one eighth of the scale of the maximum growth wavelength of MRI just before

the collapse of laminar flow in our calculation. In addition, the horizontal scale

of winding of jet-like flow is about one third to one forth of the maximum growth

wavelength of MRI (Figure 3.7), and this structure collapse into further smaller

scale. These facts indicate that important scale for driving magnetic turbulence

at the first peak is much smaller than the typical size of MRI, and our calculation

resolves these flow structures by using about 5 to 10 grid points. Our calculation

resolves these small-scale structures correctly because of the ability of our simula-

tion code to resolve the wave by more than 4 grid points. It can be expected that

MHD simulation, for revealing the mechanism of the termination of the MRI linear

growth accurately, should have the ability to resolve much more smaller scale than

the MRI maximum growth wavelength.

3.4.3 Termination mechanism comparison of the first peak and the peak

in the nonlinear stage

In Section 3.4.2, we discussed the termination mechanism of MRI linear growth at

the first peak. As described in Section 3.4.1, the growth and damping of turbulent

stress is repeated every few orbits, and thus there exist some peaks after the first

peak. Simply speaking, it can be expected that the peaks in the nonlinear phase are

also generated in a way that is similar to the generation of the first peak. However,

nonlinear peaks occur in much more turbulent state than the first peak. As Latter

et al. (2009) pointed out, the mixing effect of that turbulent flow is not negligible

for breaking a recurrently created channel flow. Therefore, it can be expected

that ’clean’ laminar flow such as MRI linear growth cannot exist due to turbulent

mixing and thus the peak creation mechanism is not the same as the first peak.

In this section, we analyze the nonlinear peak in a similar way as in Section 3.4.2

and discuss the difference in terms of the termination mechanism between the first

peak and the nonlinear peaks.

To investigate the mechanism of occurrence of peaks in the nonlinear phase, we

choose a peak at torbit = 29.8 as the typical peak in the nonlinear phase and analyze

the property in a similar way as in Section 3.4.2. The nonlinear peak at torbit = 29.8
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Fig. 3.9: Same as Figure 3.5, but for the nonlinear peak at torbit = 29.8.

is the peak whose turbulent stress has one of the largest values in our simulation

(Figure 3.3), and we assume this peak to be the typical one in the nonlinear phase.

Figure 3.9 is plotted in the same way as Figure 3.5 but at torbit = 29.8. Although

there are much more variabilities in this case than the first peak, the horizontal

vector of velocity field and magnetic field have directional characteristics. This

direction angle is not exactly π/4, 5π/4 for the velocity field and 3π/4, 7π/4 for the

magnetic field like the one at the first peak, but the feature is similar. Therefore,

it can be expected that there exist velocity shear flow and antiparallel magnetic

field like the first peak and thus K-H mode parasitic instability is induced that

tears up that field structure directly or indirectly. To confirm the enhancement

of parasitic instability, we check the two-dimensional wavenumber spectra of the

vertical velocity at torbit = 29.8 as shown in Figure 3.6. Figure 3.10 is plotted in the

same way as Figure 3.6 but at torbit = 29.8. In the small wavenumber region, wave

enhancement is observed at around kx = ky region. This feature is similar to that

shown in Figure 3.6. Therefore, parasitic instability seems to be induced and the
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Fig. 3.10: Same as panel (a) of Figure 3.6, but for the nonlinear peak at torbit =
29.8.

injected energy cascade, maintaining anisotropy. However, in the large wavenumber

region, there is no wave enhancement of vz in kx = ky. This feature indicates that

the wave enhanced by parasitic instability in the small wavenumber region cascades

without maintaining anisotropy unlike the one at the first peak (Figure 3.6). The

reason for the difference of the horizontal two-dimensional wavenumber spectra

between first and nonlinear peak is that the already existing large wavenumber

and isotropic waves mix the anisotropic energy cascade and make it isotropic at

the nonlinear peak.

Figure 3.11 is plotted in the same way as Figure 3.6 but at torbit = (a) 29.5, (b)

29.8, (c) 30.0, and (d) 30.1. At torbit = 29.5, we can observe that there is dominant

shear flow that has z-direction structure with wavenumber kz = 2π/Lz The am-

plitude of this restructured shear flow becomes larger at the peak timing around

torbit = 29.8; however, the structure of amplified channel flow is not homogeneous

as can be seen in the snapshot for torbit = 29.8. This locally existing channel

flow structure seems to collapse after the peak and is broken into the small-scale
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(a)

(b)

(c)

(d)

Fig. 3.11: Same as Figure 3.8, but at torbit = (a) 29.5, (b) 29.8, (c) 30.0, and (d)
30.1.
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structures as can be seen as torbit = 30.0 and 30.10.

The rough process of creating a peak of the stress, i.e., growth of the channel

shear flow and its collapse into small-scale flow, is similar to that of the first peak.

However, the collapse mechanism itself seems is not the same as first peak because

of the existence of small-scale turbulent flow that is more isotropic than the large

scale one (Figure 3.10). Although the restructured shear flow induces large scale

wave in vz by K-H mode parasitic instability as described above (Figure 3.10),

the channel seems to be torn up not by the interaction of large scale vortices like

the first peak but by the mixing of the small-scale turbulent flow. The small-scale

flows already exist before the growth of restructured channel, and are not dissipated

but sustained throughout the growth and relaxation of turbulent stress. Around

the peak, the restructured shear flow induces vertical flow as large-scale vortices

of K-H mode parasitic instability exist around the shear region. The small-scale

flow structures, with small-scale shear flow, are vertically advected toward the flow

region by the vertical flow. After that, they seem to mix with the restructured

channel flow and break its structure.

As described above, the collapse of the restructured channel flow reproduced in

our simulation is due to coexistence of the large-scale vortices induced by parasitic

instability and the small-scale turbulent flow structure which continues to exist

throughout the collapse process. This indicates that the small-scale flow struc-

ture plays an important role for collapsing not only linear MRI-channel but also

the restructured channel structure. Although the collapse process becomes more

complicated as we solve turbulent flow more preciously, this fact also indicate the

necessity for ability of resolving waves whose wavenumber is significantly larger

than the typical wavenumber of MRI and parasitic instability.

3.5 Concluding remarks

We carried out the three-dimensional ideal MHD simulation of MRI-driven turbu-

lence in a shearing box by using a newly developed high-order MHD simulation

code. We discussed the enhancement of parasitic instability and importance of

small-scale flow to have the peak of turbulent stress at the first and nonlinear

peaks. The magnetic turbulence in accretion disks under ideal MHD is expected to

be driven by K-H mode parasitic instability which is a secondary instability induced

by MRI (Goodman & Xu, 1994). Although previous numerical simulations iden-

tified the enhancement of parasitic instability (Lesur & Longaretti, 2011; Murphy
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& Pessah, 2015) and reported that the maximum growth wavenumber of parasitic

instability at the first peak is larger value than analytical estimation (Rembiasz

et al., 2016), the detailed process of driving magnetic turbulence and the role of

small-scale flow on it are not fully revealed. To investigate these by MHD sim-

ulation, we applied the shearing box boundary condition to the newly developed

high-order MHD code. Whereas many of previous MHD simulations uses a shock

capturing-type scheme that is not suitable for resolving wave fine structures, our

code can accurately resolve turbulent flow using lesser number of grid, and thus

enable us to investigate the role of small-scale flow at the generation of parasitic

instability and the creation of the peak of stress.

At the first peak of the turbulent stress, i.e., at torbit ∼ 2.8, we showed the

anisotropic wave enhancement in two-dimensional wavenumber spectrum of vertical

velocity due to the excitation of parasitic instability. The fastest enhancement

wavenumber of this wave is much larger than that obtained analytically, and this

feature is similar result to Rembiasz et al. (2016) though they assumed different

setting from ours. We found that this feature is because the interaction of vertically

located growing vortices induced by parasitic instability makes the layered structure

of disturbed flow narrower and faster, and then the jet-like structure induces much

smaller and faster growing K-H-like instability just before the peak. This newly

induced instability makes MRI-created layered flow structure to tear off and thus

the turbulent stress decreases. The first peak creation process in our simulation is

summarised as follows. First, MRI is linearly grows and results in layered structures

of disturbed field. Meanwhile, K-H mode parasitic instability grows and results in

a few vortices. Then, the vertically located vortices make the layered flow structure

narrower and faster. Finally, the created jet-like structure becomes unstable and

the layered structure tears off, and thus the turbulent stress decreases.

We also showed the analysis results of the arbitrarily chosen nonlinear peak at

torbit ∼ 29.8 to discuss the creation mechanism of the peak and the difference

from the first peak. The anisotropic wave enhancement of parasitic instability

is observed in two-dimensional wavenumber spectrum of vertical velocity. The

anisotropic spectrum is, however, found only in the small wavenumber region,

while large wavenumber waves are more isotropic than those at the first peak.

This indicates that a nonlinear peak is created in an environment where large-scale

and anisotropic parasitic mode waves and isotropic turbulent waves coexist. The

restructured channel flow starts to collapse at the nonlinear peak, but the mecha-

nism is not obvious because of the existence of the small-scale turbulent structure.



66 Chapter 3 MRI-driven turbulence in ideal MHD condition

We showed that large-scale vortices induced by restructured flow effectively ad-

vect small-scale shear structures from the shear region toward the flow region of

the restructured channel, and the advected structure seems to mix and break the

restructured channel structure.

The peak creation and driving magnetic turbulence mechanism, i.e., the collapse

mechanism of channel flow structure, is related to the destruction of large-scale

structure by small-scale flow both in linear phase and nonlinear phase. This fact

indicates the possibility that factors that change the small-scale structure of flow,

such as the magnetic diffusivity and viscosity, can change the peak values and evo-

lution processes in the linear and nonlinear stages. Some numerical studies already

reported that slight amount of diffusivity originated from physical (Fromang et al.,

2007) and numerical effects (Minoshima et al., 2015) changes the value of turbu-

lent stress. It can be considered that these features are due to the variation of

small-scale structure by changing the diffusivities. Detailed mechanism of generat-

ing these variations should be investigated by the high-order and high-resolution

MHD simulation.
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Chapter 4

MHD simulation of MRI-driven

turbulence in visco-resistive MHD

conditions

4.1 Introduction to MRI-driven turbulence in visco-resistive

MHD conditions

In chapter 3, we showed the importance of the small-scale flow for creation of the

peaks of turbulent stress. At the first peak, Kelvin-Helmholtz mode parasitic in-

stability is enhanced with anisotropic wavenumber spectra by a layered shear flow

induced by MRI (Figure 3.6). An interaction of vortices induced by K-H mode

parasitic instability makes shear flow structure narrower and faster, i.e., the flow

becomes jet-like structure (Figure 3.8). This small-scale structure induces subse-

quent small-scale K-H instability and becomes unstable rapidly. And thus, the

laminar structure is collapsed from this region and this results in the relaxation

of the turbulent stress. On the other hand, the restructured shear flow enhanced

by MRI seems to be collapsed by a mixing due to coexistence of the large-scale

anisotropic vortices and small-scale isotropic flow structure at a peak in nonlin-

ear phase. The large-scale vortices vertically advect small-scale shear structures

from the shear region to flow region of the large-scale shear flow. The creation

mechanisms of first peak and peaks in nonlinear phase are different, nonetheless,

small-scale flow structure works important roles for both peaks. From this result,

it can be expected that the driving mechanism of turbulence and value of peaks
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can be controlled by factors that change the small structure of flow, such as small

amount of the magnetic diffusivity and fluid viscosity.

The effects of diffusivities such as the magnetic diffusivity and fluid viscosity

to linear growth of MRI, linear growth of parasitic instability, and MRI-driven

turbulence ware discussed analytically and numerically by previous studies. The

effect of magnetic diffusivity to the linear growth of MRI was particularly well

discussed focusing on the protoplanetary disks. In the protoplanetary disks, the

disk gas is partially ionized plasma because the gas is dense and central body

is not so energetic to ionize thermally (Umebayashi & Nakano, 1988). In this

condition, the behaviour of plasma can be taken as the resistive MHD condition

where the magnetic diffusivity η is proportional to the ratio of the number density

of neutral and electron (e.g. Blaes & Balbus, 1994). Jin (1996) and Sano & Miyama

(1999) reported the dispersion relation and growth rate of MRI in such resistive

MHD condition. They showed that the maximum growth rate, maximum growth

wavenumber, and critical wavenumber of MRI significantly decreases when the

magnetic Reynolds number Rm ≡ v2A/ηΩ becomes less than unity. In addition,

they showed that the property of linear growth of MRI is hardly changed at all

when Rm is much larger than unity. On the other hand, the viscosity ware usually

neglected because the molecular viscosity is so small in space fluid, and thus the

viscous effect to linear growth of MRI had not been discussed for a long time.

Lesur & Longaretti (2007) and Fromang et al. (2007) reported that the turbulent

stress obtained by numerical simulation is affected by the magnetic Prandtl number

defined as the ratio of the fluid viscosity and magnetic diffusivity though these value

set as very low value. In addition, Masada et al. (2007) suggested that the accretion

disks created in the proto-neutron stars called collapsar disk have large viscosity

because the disk is so hot and dense and the neutrino works as the viscosity in such

condition. Furthermore, MRI was recently reproduced in laboratory plasma where

the viscosity is a little larger than that in astrophysical plasma (Nornberg et al.,

2010). Pessah & Chan (2008) reported the dispersion relation and growth rate of

MRI in viscous and visco-resistive MHD condition They showed that the maximum

growth rate and maximum growth wavenumber also significantly decrease when the

Reynolds number Re ≡ v2A/νΩ becomes less than unity, and the fluid viscosity does

not change the critical wavenumber of MRI, i.e., the wavenumber range where MRI

occurs does not change. In addition, they showed that the property of linear growth

of MRI is hardly changed at all when Re is much larger than unity. These linear

analyses indicate that whether the property of linear growth of MRI is similar to
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that in ideal MHD condition and that the property changes depending on whether

Re or Rm is greater than unity.

The property of linear growth of parasitic instability is also changed by the vari-

ation of magnetic diffusivity and viscosity. The reasons of this are explained by

the following three points. The first point is that the eigenvector of the linear

mode of MRI is varied by changing diffusion parameters. Pessah & Chan (2008)

showed that the direction and amplitude of shear flow and antiparallel magnetic

field created by linear growth of MRI is modified by changing Re and Rm. This

fact results in that the wavenumber vector of maximum growth mode of para-

sitic instability is also modified by changing Re and Rm (Pessah & Goodman,

2009; Pessah, 2010). The second point is that the magnetic diffusivity controls

the fastest growth mode of parasitic instability, i.e., Kelvin-Helmholtz (K-H) mode

or magnetic reconnection mode as mentioned in Section 1.3. When the magnetic

diffusivity increases, i.e., Rm decreases, the dominant mode is changed from K-H

mode to magnetic reconnection mode, and thus, the direction of wavenumber vec-

tor of parasitic instability is also changed from the direction of shear flow to that

of antiparallel magnetic field created by the growth of MRI. Pessah & Goodman

(2009) and Pessah (2010) analytically showed that the threshold of this change is

Rm = 1, and the linear growth rate of K-H mode and reconnection mode become

comparable when Rm = 1. The third point is that the fluid viscosity controls the

amplitudes of the shear flow and antiparallel magnetic field when the saturation

of growth of MRI. As described in Section 1.3, the amplitude of shear flow and

antiparallel magnetic field increase exponentially with time, and thus the growth

rate of parasitic instability also grows with time. Pessah & Goodman (2009); Pes-

sah (2010) analytically showed that the amplitude of antiparallel magnetic field at

the time that growth rate of parasitic instability reaches that of MRI takes larger

value in the case that Rm ≫ 1 and Re ∼ 1. They pointed out that this is because

of quench of K-H instability due to the fluid viscosity. According to these three

points, the property of parasitic instability, such as the fastest growth mode, the

fastest growth wavenumber vector and growth rate, and amplitude of MRI at the

saturation, are affected in the discussion of linear analysis by changing the diffusion

parameters. We would like to note that these variations converge to the values in

ideal MHD condition in the case both Re and Rm are much larger than unity, such

that Re,Rm > 100.

The studies introduced above are all in the discussion of linear phase. The dif-

fusion effects to nonlinear phase are studied numerically. Sano & Inutsuka (2001)
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carried out three-dimensional simulation with the strong magnetic diffusivity those

are Rm = 1. They showed that the magnetic reconnection, induced by physical dif-

fusivity, plays an important role at the recurrent peaks in nonlinear phase. They

pointed out that the magnetic reconnection effectively convert magnetic energy

increased by recurrently occurred MRI to the thermal energy in resistive MHD

condition. Masada & Sano (2008) carried out two-dimensional axisymmetric sim-

ulations with varying the magnetic diffusivity and viscosity in wide range. They

showed that the temporally averaged turbulent stress becomes small when Rm be-

comes less than unity, and becomes large when Re becomes less than unity, and not

modified by Re and Rm when they are much larger than unity. Lesur & Longaretti

(2007) and Fromang et al. (2007) carried out three-dimensional simulations with

relatively large Re and Rm (Re,Rm ≫ 10), and reported the relations between

turbulent stress and magnetic Prandtl number defined as Pm = Rm/Re. Lesur &

Longaretti (2007) carried out simulation with the net vertical initial magnetic field,

and they showed that there is positive correlation between the temporal and spatial

averaged turbulent stress and the magnetic Prandtl number in that kind of initial

magnetic field. Fromang et al. (2007) carried out simulation with the zero-net ver-

tical initial magnetic field, and they showed that the similar correlation between

the turbulent stress and Pm as reported by Lesur & Longaretti (2007), and also

reported that the turbulence become damped when Pm ≲ 1 in that kind of initial

magnetic field. In addition to these studies, Minoshima et al. (2015) carried out

three-dimensional simulations in ideal MHD condition by several types of simula-

tion schemes, such as various Riemann solvers and reconstruction methods, and

showed that the saturation level and temporally averaged value of turbulent stress

are strongly affected by changing simulation scheme. They pointed out this feature

is caused because the small amount of numerical magnetic diffusivity and viscos-

ity are modified by changing schemes, and thus the numerical magnetic Prandtl

number is changed, then the stress value varies as with the studies by Lesur & Lon-

garetti (2007) and Fromang et al. (2007). These previous studies suggested that

the evolutional process of MRI-driven turbulence is also affected by small amount

of diffusivity, though the property of the linear growth of MRI and parasitic insta-

bility is hardly changed in that condition of diffusivity. Because the small amount

of diffusion effects attenuate the large wavenumber component of magnetic tur-

bulence by blunting the small-scale structure of the flow and magnetic field, this

fact pointed out by previous studies indicates the possibility that the modifying

small-scale structure plays an important role for determining saturation level and
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temporally averaged value of turbulent stress, though turbulent stress is spatially

averaged comprehensive value. However, the details such as how the structures cre-

ated by MRI and parasitic instability are modified and how the saturation values

are changed by small amount of diffusivity are still unclear.

As described in Chapter 3, we found that the creation of small-scale and jet-like

structure and coexistence of small-scale shear flow structures and large-scale vor-

tices collapse the channel structure created by MRI at the first peak and nonlinear

peak, respectively. Considering this result, it is predicted that the small amount of

diffusion effects modify these small-scale flow structures, and thus the collapse pro-

cess and timing of MRI-induced shear structure also should be modified. Since our

developed code particularly can solve the small-scale flow structure wavenumber

spectra accurately, it can be expected that our code can capture what phenomena

are modified at the peak by changing the diffusion effects.

In this chapter, we show the simulation results of MRI-driven turbulence in visco-

resistive MHD conditions and discuss the detailed phenomena. In Section 4.2, we

first revisit the linear property of MRI in visco-resistive MHD condition according

to previous works (e.g. Pessah & Chan, 2008). In Section 4.3, we describe the

simulation settings for visco-resistive MHD simulation. In Section 4.4, we show

the simulation results and discuss the difference in several diffusivity models. We

firstly show the time evolution of turbulent stress in Section 4.4.2, and discuss the

difference and its cause of the stress value at the first peak and nonlinear peak,

and the temporally averaged value in diffusion parameter space in Section 4.4.3.

We discuss the detailed phenomena occurring at the first and nonlinear peaks in

Section 4.4.4 and 4.4.5 by using the similar way to chapter 3. In Section 4.5, we

summarize the results of visco-resistive simulations.

4.2 Linear analysis of MRI in visco-resistive MHD

conditions

In this section, we revisit the property of MRI in visco-resistive MHD condition

shown by Sano & Miyama (1999), Pessah & Chan (2008), Latter et al. (2009), and

so on. We use the same simplification and same coordinate system as we used in

Section 3.2. In addition to this, we introduce the viscosity and magnetic diffusivity

into Equations (3.1) and (3.2) The visco-resistive case of Equations (3.1) and (3.2)
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can be written as follows

∂(ρv)

∂t
+∇ ·

[
ρvv − BB

4π
+

(
p+

B2

8π

)
I

]
= µ∇2v + 2qΩ2ρxêx − 2ρΩ× v,

(4.1)

∂B

∂t
+∇ · [vB −Bv] = η∇2B, (4.2)

where µ and η are the dynamic shear viscosity and magnetic diffusivity. We use

the same equilibrium condition of velocity and magnetic field as Equation (3.3),

and similarly apply the Fourier mode perturbations that is Equation (3.4). By

calculating with same operation as Section 3.2, we can obtain the visco-resistive

version of Equation (3.5) as follows.
−νk2z 2iΩ −v2

Akz

B0
0

−i(2− q)Ω −νk2z 0 − v2
Akz

B0

−B0kz 0 −ηk2z 0

0 −B0kz iqΩ −ηk2z




v1x

v1y

B1x

B1y

 = ω


v1x

v1y

B1x

B1y

 , (4.3)

where vA is the Alfven velocity defined as v2A =
B2

0

4πρ , and ν is kinematic viscosity

defined as ν ≡ µ/ρ. The dispersion relation correspond to the eigenfunction of the

matrix in Equation (4.3), and can be written as

(ωνωη − v2Ak
2
z)

2 − 2(2− q)Ω2ω2
η − 2qΩ2v2Ak

2
z = 0, (4.4)

where ων and ωη are defined as

ων ≡ ω + iνk2z , ωη ≡ ω + iηk2z , (4.5)

respectively. Figures 4.1, 4.2, and 4.3 show the solution of this dispersion relation in

the resistive, viscous, and the magnetic Prandtl number Pm = ν/η = 1 conditions,

respectively. Panel (a) and panel (b) in all figures show the growth rate ℑ(ω)
and the angle of perturbed velocity and magnetic field of instability mode that are

θv = arctan(δvy/δvx) and θB = arctan(δBy/δBx), respectively (see Section 3.2).

The colors of lines in all figures represent the strength of diffusivities indicated by

Reynolds number and magnetic Reynolds number. The Reynolds number, mag-

netic Reynolds number, and magnetic Prandtl number are non-dimensional param-

eters which indicate the strength of viscosity, magnetic diffusivity, and those ratio,
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(a)

(b)

Fig. 4.1: The solution of linear analysis of MRI in the resistive MHD condition.
Black, red, blue, and green colors of all lines in both panels represent Rm = ∞,
10, 1, and 0.1, respectively. Panel (a): imaginary part of angular frequency ω,
i.e., the growth rate. Solid lines show the mode which has unstable solution, and
dotted lines shows the mode which has purely oscillation solution. Vertical and
horizontal dash-dotted gray lines denote the wavenumber and growth rate of the
maximum growth mode in ideal MHD condition. Panel (b): The angles formed by
perturbation components of velocity and magnetic field satisfying Equation (4.3),
i.e., θv = arctan(v1y/v1x) (solid line) and θB = arctan(B1y/B1x) (dotted line), re-
spectively. Vertical dash-dotted lines represent the maximum growth wavenumber
of each color’s diffusivity.
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(a)

(b)

Fig. 4.2: Same plot as Figure 4.1 but for the viscous MHD condition. Black, red,
blue, and green colors of all lines in both panels represent Re = ∞, 10, 1, and 0.1,
respectively.
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(a)

(b)

Fig. 4.3: Same plot as Figure 4.1 but for one of the visco-resistive MHD condition
such as magnetic Prandtl number Pm = Rm/Re = 1. Black, red, blue, and
green colors of all lines in both panels represent Re = Rm = ∞, 10, 1, and 0.1,
respectively.
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and defined as

Re ≡ ρv2A
µΩ

, Rm ≡ v2A
ηΩ

, Pm ≡ Rm

Re
=

ν

η
, (4.6)

respectively. Black, red, blue, and green colors of all lines in both panels of Fig-

ure 4.1 represent Rm = ∞, 10, 1, and 0.1, respectively. Black, red, blue, and

green colors of all lines in both panels of Figure 4.2 represent Re = ∞, 10, 1, and

0.1, respectively. Black, red, blue, and green colors of all lines in both panels of

Figure 4.3 represent Re = Rm = ∞, 10, 1, and 0.1, respectively. In the panel (a)

of all figures, the solid lines and the dashed lines represent the modes which have

unstable or decay solutions and the modes which have purely oscillation solutions,

respectively (see Section 3.2). We can confirm that decreasing Re and/or Rm,

i.e., increasing viscosity and magnetic diffusivity, decreases the maximum growth

rate of MRI. This tendency becomes remarkable particularly when Re, Rm ≤ 1

as shown by Pessah & Chan (2008). In the case that Rm, Re ≥ 10, modification

of maximum growth rate and maximum growth wavenumber are relatively small.

Therefore, in the condition of Rm, Re ≥ 10, it is considered that the disturbance

fields grow on similar structures and time scale in the linear process. In the panel

(b) of all figures, the solid and dashed lines respectively show θv and θB of the

instability mode. The angles of maximum growth mode are modified by decreasing

Re or Rm. Decreasing Re and/or Rm basically decreases both θv and θB . This

fact indicates that the diffusion terms not only control the balance of modes of par-

asitic instability between the K-H mode and magnetic reconnection mode but also

change the direction of the shear flow and the antiparallel magnetic field that are

created by MRI and become the energy source of the parasitic instability modes.

From this reason, as Pessah & Goodman (2009) and Pessah (2010) pointed out,

the direction and mode of parasitic instability become complicated when Re or Rm

are around the unity. Note that both θv and θB in the condition that Re,Rm ≥ 10

are not significantly changed from those in the ideal condition.

4.3 Simulation setup

We carried out visco-resistive simulations with similar physical settings to chap-

ter 3, and introducing several strength of physical diffusivities. Besides introducing

physical diffusivities, here we assume the plasma is isothermal, i.e., the temperature

Te = p/ρ = c2s keeps constant and specific heat γ = 1. This assumption prevent

plasma from being heated unlimitedly because of the ohmic heating caused by
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the magnetic diffusivity. The governing equations, Equations (2.1) to (2.3), are

rewritten under the isothermal assumption as follows.

∂ρ

∂t
+∇ · (ρv) = 0, (4.7)

∂(ρv)

∂t
+∇ ·

[
ρvu−BB +

(
p+

B2

2

)
I

]
= ∇ ·R+ SMomentum, (4.8)

∂B

∂t
+∇ · (vB −Bv) = ∇× (−ηj), (4.9)

p/ρ = constant, (4.10)

where all physical quantities are the same as explained in Section 2.2, and Equa-

tion (4.10) is the equation of state is isothermal fluid. The first terms of right hand

side of Equation (4.8) and Equation (4.9) are diffusive parameters those are the

different points from the ideal MHD equations such as Equation (3.8) and Equa-

tion (3.9), and R and j in these terms are the viscous stress tensor and current den-

sity described in Section 2.2 and calculated by Equation (2.7) and Equation (2.6),

respectively. Similarly to Chapter 3, the coordinate system rotates around the

central star with Keplerian angular velocity, thus the source terms SMomentum and

SEnergy are arose and defined as

SMomentum = 3Ω2ρxêx − 2ρΩ× v, (4.11)

SEnergy = 3Ω2ρxvx. (4.12)

Note that we use the same normalization as described in Section 3.3.1 and 3.3.3,

thus the dimensionless normalization parameters, such as Renorm, Rmnorm and

Mnorm written in Section 2.2, are all 1 and omitted to write in Equation (4.7)

to Equation (4.9). And also note that the terms originated by LAD are omitted to

write though they are introduced.

Simulation domain is same as Section 3.3.3, that is (Lx, Ly, Lz) = (2
√
2, 2

√
2,
√
2) =

(2H, 2H,H). The initial conditions except for diffusion term are also same as

Section 3.3.3, those are ρ0 = 1, p0 ∼ 1.06, v0 = 1.5Ωx êy, and B0 ∼ 7.26×10−2êz.

These initial conditions are corresponds to the condition where the maximum

growth wavelength of MRI in ideal MHD corresponds to Lz/3 and the initial

plasma beta is 400. The grid number is set as Nx ×Ny ×Nz = 128× 128× 64 ba-

sically, and we also carried out some additional calculation with double resolution

such as Nx ×Ny ×Nz = 256× 256× 128 for comparison.
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Table 4.1: Models of visco-resistive MHD simulations of MRI-driven turbulence

Model name Re Rm Pm Resolution torbit αave α1 α2

Very low diffusivity
Re∞-Rm1000-128 ∞ 1000 0.0 128× 128× 64 ∼ 50 0.070 0.197 0.207
Re2000-Rm1000-128 2000 1000 0.5 128× 128× 64 ∼ 50 0.065 0.197 0.149
Re1000-Rm1000-128 1000 1000 1.0 128× 128× 64 ∼ 50 0.077 0.197 0.204
Re1000-Rm2000-128 1000 2000 2.0 128× 128× 64 ∼ 50 0.069 0.197 0.270
Re1000-Rm∞-128 1000 ∞ ∞ 128× 128× 64 ∼ 50 0.066 0.197 0.167

Low diffusivity
Re800-Rm400-128 800 400 0.5 128× 128× 64 ∼ 50 0.066 0.197 0.151
Re400-Rm800-128 400 800 2.0 128× 128× 64 ∼ 50 0.069 0.197 0.155

Middle diffusivity
Re∞-Rm100-128 ∞ 100 0.0 128× 128× 64 ∼ 50 0.072 0.198 0.183
Re200-Rm100-128 200 100 0.5 128× 128× 64 ∼ 50 0.064 0.200 0.213
Re100-Rm100-128 100 100 1.0 128× 128× 64 ∼ 50 0.071 0.201 0.198
Re100-Rm200-128 100 200 2.0 128× 128× 64 ∼ 50 0.070 0.201 0.159
Re100-Rm∞-128 100 ∞ ∞ 128× 128× 64 ∼ 50 0.074 0.199 0.264

High difusivity
Re∞-Rm10-128 ∞ 10 0.0 128× 128× 64 ∼ 50 0.064 0.206 0.168
Re10-Rm10-128 10 10 1.0 128× 128× 64 ∼ 50 0.085 0.264 0.242
Re10-Rm∞-128 10 ∞ ∞ 128× 128× 64 ∼ 50 0.084 0.215 0.207

Very high diffusivity
Re∞-Rm1-128 ∞ 1 0.0 128× 128× 64 ∼ 50 0.051 0.466 0.171
Re1-Rm1-128 1 1 1.0 128× 128× 64 ∼ 50 0.146 1.763 0.496
Re1-Rm∞-128 1 ∞ ∞ 128× 128× 64 ∼ 50 0.233 0.869 0.495

High resolution
Re2000-Rm1000-128 2000 1000 0.5 256× 256× 128 ∼ 25 0.111 0.451 0.261
Re1000-Rm500-128 1000 500 0.5 256× 256× 128 ∼ 25 0.113 0.451 0.285
Re1000-Rm1000-128 1000 1000 1.0 256× 256× 128 ∼ 25 0.129 0.451 0.298
Re1000-Rm2000-256 1000 2000 2.0 256× 256× 128 ∼ 25 0.116 0.451 0.248
Re500-Rm1000-1256 500 1000 2.0 256× 256× 128 ∼ 25 0.108 0.450 0.221

We carried out several calculations of MRI with widely changing the initial

Reynolds number for MRI, defined as Re = ρ0v
2
A0/µΩ, and initial magnetic

Reynolds number for MRI, defined as Rm = v2A0/ηΩ, i.e., similar calculations to

chapter 3 but with visco-resistive, resistive-invisid (Re = ∞), and nonresistive-

viscous (Rm = ∞) models. The simulation settings of the calculations are

summarized in Table 4.1. The first column shows the name of model. The

numbers after Re and Rm represents initial Reynolds number and magnetic

Reynolds number respectively, and the final number denotes the number of grids

in x-direction that is Nx. The second, third, and fourth columns show initial

Reynolds number for MRI: Re, initial magnetic Reynolds number for MRI: Rm,

and initial magnetic Prandtl number defined as Pm = Rm/Re = ν/η, where
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ν = µ/ρ, respectively. The fifth, sixth columns show the number of grid points

and calculated time in orbital periods torbit, respectively. The seventh, eighth, and

ninth column shows spatially averaged values of α ≡ Wxy/p0 of the temporally

averaged value, the value, and an arbitrary chosen peak value in nonlinear phase.

The temporally averaged value is calculated by averaging over the range that

10 ∼ torbit ∼ 50. We categorize the models into six groups those are very low

diffusivity models, such as Re,Rm = 1000 or 2000 (or ∞), low diffusivity models,

such as Re,Rm = 400 or 800, middle diffusivity models, such as Re,Rm = 100

or 200 (or ∞), high diffusivity models, such as Re,Rm = 10 (or ∞), very high

diffusivity models such as Re,Rm = 1(or ∞), and very low diffusivity with high

resolution models.

4.4 Simulation results and discussion

4.4.1 Confirmation of the effect of diffusion term on linear growth rate

of MRI

In order to verify that the diffusion effects are correctly introduced to the simula-

tion, we compare the time evolution of vertical wavenumber spectra of horizontal

velocity in the linear growth phase with theoretically obtained growth rate of MRI

in visco-resistive MHD condition. Panel (a) and (b) of Figure 4.4 show time evo-

lution of some wave modes of the z-directional wavenumber spectra of a sum of

the radial and the azimuthal velocity averaged over the radial and the azimuthal

wavenuber space, i.e.,
⟨
vh(kz)

2
⟩
kx,ky

=
⟨
v2x(kz) + v2y(kz)

⟩
kx,ky

, for (a) Re10-Rm10-

128 model and (b) Re1-Rm1-128 model, respectively. This figure is a same plot

as panel (a) of Figure 4.5 but for the diffusive models and shows only around the

first peak. The horizontal axis represents the orbital period torbit, and vertical

axis shows
⟨
vh(kz)

2
⟩
kx,ky

. Red, orange, green, blue, and purple solid lines repre-

sent the modes with the wavelength λz = Lz, Lz/2, Lz/3, Lz, 4, Lz/5, respectively,

and red, orange, green, and blue dash-dotted lines represent theoretically obtained

growth rate of the mode with the wavelength λz = Lz, Lz/2, Lz/3, Lz, 4, respec-

tively. In the condition of Re = Rm = 10, the wavelengths of the modes which

can be resolved in the simulation domain are λz = Lz, Lz/2, Lz/3, and Lz/4, and

the modes of λz ≤ Lz/5 are damping mode for the linear growth phase of MRI.

Although λ = Lz/4 mode seems to be affected by nonlinear effects at earlier stage,

we can see that the other modes grow with growth rates which almost equal to the
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Fig. 4.4: Time evolution of some wave modes of the z-directional wavenumber
spectra of a sum of the radial and the azimuthal velocity averaged over the radial
and the azimuthal wavenuber space, i.e.,

⟨
vh(kz)

2
⟩
kx,ky

=
⟨
v2x(kz) + v2y(kz)

⟩
kx,ky

,

for the (a) Re10-Rm10-128 model and (b) Re1-Rm1-128 model. Red, yel-
low, green, blue, and purple lines represent the modes with wavelength λz =
Lz, Lz/2, Lz/3, Lz, 4, Lz/5, respectively, and dash-dotted lines plotted by same
clolors represent theoretically obtained growth rate of the mode with each wave-
length.

theoretically obtained values. In the condition of Re = Rm = 1, the wavelengths of

the modes which can be resolved in the simulation domain are λz = Lz and Lz/2,

and the modes of λz ≤ Lz/3 are damping mode for the linear growth phase of

MRI. We can see that the two growth modes grow with growth rates which almost

equal to the theoretically obtained values. From these results, it can be confirmed

that viscosity and magnetic diffusivity are correctly introduced to our simulation.
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4.4.2 Influence of changing diffusion effect on the time evolution of tur-

bulent stress

In this secton, we show the results obtained by the same methods as Section 3.4, and

discuss the differences between the results and how such differences are caused by

diffusion effects. First, we show the time evolution of spatially averaged turbulent

stress defined as Equation 3.14 normalized by the initial pressure p, the similar

plotting to panel (b) of Figure 3.3. Figure 4.5 shows the same plot as panel (a)

of Figure 3.3 but for some exmple diffusivity models that are (a) Rm1000-Re1000-

128, (b) Rm800-Re400-128, (c) Rm400-Rm800-128, (d) Rm100-Re100-128, and (e)

Rm10-Re10-128. The horizontal gray dash-dotted lines represent the temporally

averaged value of total stress calculated by averaging in the range that 10 ∼ torbit ∼
50. In this section, we focus on peaks at the first saturation of the turbulent stress

(first peak; left gray vertical dashed lines) and at the saturation time where the

turbulent stress takes maximum value in range of 20 ∼ torbit ∼ 40 (nonlinear

peak; right gray vertical dashed lines). The first peaks of results in Figure 4.5 are

almost at same orbital time that is torbit = 2.2 except for the high-diffusivity model

Re10-Rm10-128. In addition, though Re100-Rm100-128 model takes slightly higher

value, the saturation levels of first peak are also almost same values except for the

model Re10-Rm10-128. This indicates that the saturation mechanisms of very

low and low diffusivity models are hardly modified still small diffusivities might

change the small-scale flow and magentic field structure, and the modification of

small scale flow in Re100-Rm100-128 model might be little more effective than

others. We discuss the detailed mechanism of first peak in these models later. The

difference between the high-diffusivity model Re10-Rm10-128 and others at the

first peak can be explained by previous analytical studies. As reported by Pessah

& Chan (2008) and also shown in Figure 4.3, the linear growth rate of MRI in

Re = Rm = 10 condition are rather modified than Re,Rm ≤ 100, and thus the

fastest growth rate of the reproducible mode in the simulation domain, in this case

Lz/3, takes much smaller value than that in other low diffusivity cases. Therefore,

the amplification of turbulent stress are delayed. In addition, as described in

Section 4.1, Pessah & Goodman (2009) and Pessah (2010) analytically showed

that the turbulent stress at the time that linear growth rate of parasitic instability

reaches that of MRI becomes larger value in the case that Re = 10, and Rm = 10

(see figure 3 and figure 4 of Pessah, 2010). Although the results of our ideal
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(a)

(b)

(c)

Fig. 4.5: Time evolution of spatilly averaged normalizd turbulent stress (i.e., same
plot as panel (a) of Figure 3.3) with some diffusivity model that are (a) Rm1000-
Re1000-128, (b) Rm800-Re400-128, (c) Rm400-Rm800-128, (d) Rm100-Re100-128,
and (e) Rm10-Re10-128. Red, Blue, and black lines show Reynold, Maxwell, and
total stress respectively. The hoizontal gray dash-dotted line represents the tem-
porally averaged value of total stress. The left and right gray vertical dashed lines
represents times at first and nonlinear peaks.
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(d)

(e)

Fig. 4.5: (Continued)

calculation shown in chapter 3 showed that the actual saturation time should not be

determined simply by the linearly obtained condition that ωPI,max = ωMRI,max but

be determined by more complicated interaction of vortices, the condition is good

indicator to know time that parasitic instability are efficiently collapsed the flow

structure. Pessah & Goodman (2009) and Pessah (2010) indicates that this feature

is caused by the viscosity quenching the Kelvin-Helmholtz instability. Actually, the

values of first peak with high viscosity models (see eighth column of table 4.1) take

relatively larger value in our simulation. On the other hand, the time evolution of

stress in non-linear phase are modified by changing the diffusivities. Although the

temporally averaged values of stress are similar value, the peak values in nonlinear

phase are different and its trend of the averaged values and peak values seems not

simple.
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4.4.3 Trends of the temporally averaged, first peak, and nonlinear peak

values in Re and Rm space

To see the trend of stress of temporally averaged value, at first peak, and at non-

linear peak, we investigate these values of models except the high resolution calcu-

lations in Re0 and Rm0 space. Figure 4.6 shows (a) the temporally averaged stress

values, (b) stress values at first peak, and (c) stress values at each nonlinear peak

in Re0 and Rm0 space, i.e., these plots are summary of seventh, eighth, and ninth

column of table 4.1. The horizontal and vertical axes denotes Re0 and Rm0, respec-

tively, and colors of circle represent the stress value. We can obtain the trend from

the distribution of temporally averaged stress (panel (a)) that the strong viscosity

increases the temporally averaged stress value, and the strong magnetic diffusivity

decreases that. The stress values at first peak (panel (b)) show the trend that the

strong viscosity increases the value at first peak as describe above and the strong

magnetic diffusivity also increases that a little. And the stress values at nonlinear

peak (panel (c)) show the viscosity increase the value at nonlinear peak. From

these trend, we obtain the effects of strong diffusivities; the strong viscosity in-

creases the peak value at not only first peak but also peaks in nonlinear phase, and

the strong magnetic diffusivity increases the value only at first peak and does not

affect (or decreases) the nonlinear peaks. These facts indicate that the quenching

K-H instability by the strong viscosity remains to be effective at peaks in nonlinear

phase, and the strong magnetic diffusivity are not effective to determine the peak

of stress except for the first peak.

In the range of Re0 ≥ 100 and Rm ≥ 100 of all panels of Figure 4.6, there are

no obvious enhancement of the stress values by changing Re and Rm like high

and very high diffusivity models. Figure 4.7 is the same plot as Figure 4.6 but its

plotting range is set to Re ≥ 100 and R ≥ 100. From panel (b) of Figure 4.7, there

is a similar trend to the strong diffusivity cases, i.e., the diffusion effect make the

value at the first peak large. The linear analysis of MRI and parasitic instability

showed that the properties of linear growth are almost not different in Re ≥ 100

and Rm ≥ 100 region. Therefore, this variation is not caused by the difference of

linear properties but should be due to generation and modification of small-scale

flow around the transition to the nonlinear state, as explained in chapter 3.

The temporally averaged value (panel (a)) and the value at nonlinear peak (panel

(c)) seem not to have obvious trend while the values itself are slightly different.
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(a)

(b) (c)

Fig. 4.6: (a) Temporally averaged stress, (b) stress values at first peak, and (c)
stress values at nonlinear peak of each calculation in Re and Rm space.

In particular, the fact that the temporally averaged value does not have a trend is

different feature from the previous numerical studies such as Lesur & Longaretti

(2007) and Fromang et al. (2007). To see the difference between our study and

Lesur & Longaretti (2007), we check the initial magnetic Prandtl number depen-

dence of the peaks and averaged values. Figure 4.8 shows the Prandtl number

dependence of the temporally averaged, first peak, and nonlinear peak values. The

circle, rhombus, and cross markers denote the very low diffusivity models, low

diffusivity models, and middle diffusivity models, respectively, and red, blue, and
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(a)

(b) (c)

Fig. 4.7: Same as Figure 4.6 but in range of Re0 ≥ 100 and Rm ≥ 100

green marker colors represent the values of first peak, nonlinear peak, and tem-

porally averaged value, respectively. Lesur & Longaretti (2007) reported that the

temporally averaged stress has a positive correlation with the Plandtl number,

i.e., α = ⟨⟨Wxy⟩⟩ /p0 = Pm0.25∼0.5, by their numerical simulation. Figure 4.8

shows, however, the temporary averaged stress does not have the prandtl num-

ber dependence though the nonlinear peaks in very low diffusivity models slightly

have positive correlation. What makes different result between their results and

ours? One possible reason is the difference of aspect ratio of box size. We use

the aspect ratio of simulation box which is Lx : Ly : Lz = 2 : 2 : 1 to resolve

most unstable parasitic mode, whereas Lesur & Longaretti (2007) uses aspect ratio
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Red: First peak

Blue: Nonlinear peak

Green: Temporally averaged

: Very low diffusivity

: Low diffusivity

: Middle diffusivity

Fig. 4.8: Magnetic Prandtl number Pm dependence of the temporally averaged,
first peak, and nonlinear peak values. The circle, rhombus, and cross markers
denote the very low diffusivity models, low diffusivity models, and middle diffusivity
models, respectively, and red, blue, and green marker colors represent the values
of first peak, nonlinear peak, and temporally averaged value, respectively.

which is Lx : Ly : Lz = 1 : 4 : 1. Bodo et al. (2008) reported that the saturation

value of the turbulent stress decreases when the aspect ratio Lx : Lz varies 1 to 4.

Pessah & Goodman (2009) reported this tendency depends of whether the fastest

parasitic mode, i.e., kPI,max ∼ 0.59kMRI,maxêkx=ky , is resolved or not in respective

simulation box. When the fastest growth parasitic mode can be enough resolved

(i.e., the box is enough large), there is almost no Prandtl number dependency, but

when using the aspect ratio that Lx : Ly : Lz = 1 : 4 : 1, the Prandtl number de-

pendency appears because the fastest growth mode of parasitic instability induced

by restructured channel flow can not be resolved (see figure 2 of Pessah & Good-

man, 2009). The aspect ratio of our calculation is set as Lx : Ly : Lz = 2 : 2 : 1

and thus our simulation can resolve the fastest growth parasitic mode induced by

restructured channel flow, and thus, it might be natural result that our simulation

results don’t have dependence of magnetic Prandtl number.

4.4.4 Contribution of the diffusion effects for the saturation mechanism

of MRI: first peak

From Figure 4.7, there was no significant trend in the spatially averaged turbu-

lent stress by changing the diffusivity in the range that Re,Rm ≥ 100. This fact
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(a) (b)

Fig. 4.9: Wavenumber spectra of (a) δvz and (b) δBz in the horizontal wavenumber
plane averaged over vertical wavenumber direction (same as Figure 3.6) at the times
of first peak in Re1000-Rm1000-128 model.

indicates the modified small scale flow structure does not affect to the collapse

mechanism of initial and restructured channel flow effectively. On the other hand,

Figure 4.5 shows the time evolution of stress surely modified by the small amount

of diffusivity though the peak and mean values do not change much. In this sec-

tion, we focus on the first peak of several calculations, and investigate how the

small scale flow structures are modified. To determine these, we apply the same

analytical method as chapter 3 to the visco-resistive simulation results. First, we

apply the two-dimensional Fourier-transform to the vertical velocity and vertical

disturbed magnetic field. As described in Section 3.4.2, the enhancement of verti-

cal disturbed velocity δvz and vertical disturbed magnetic field δBz are related to

the Kelvin-Helmholtz instability and magnetic reconnection, and thus the direction

of their enhancement in horizontal (i.e., radial and azimuthal) wavenumber plane

indicate which phenomena is occurring. Figure 4.9, Figure 4.10, and Figure 4.11

show wavenumber spectra of (a) δvz and (b) δBz in the horizontal wavenumber

plane averaged over vertical wavenumber direction at the times of first peak ob-

tained by Re1000-Rm1000-128, Re100-Rm100-128, and Re10-Rm10-128. Hori-

zontal and vertical axes are the radial wavenumber kx and azimuthal wavenumber

ky normalized by the maximum growth wavenumber of MRI in ideal MHD con-

dition, and color contour represents wavenumber spectra of vz averaged over the

vertical wavenumber space. Comparing panel (a) in Figure 4.9, Figure 4.10, and
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(a) (b)

Fig. 4.10: Same as Figure 4.9 but for Re100-Rm100-128 model.

(a) (b)

Fig. 4.11: Same as Figure 4.9 but for Re10-Rm10-128 model.

Figure 4.11, the enhancement of 45 degrees waves induced by shear flow is mod-

ified by changing the diffusivity models. Panel (a) of Figure 4.10 shows that the

anisotropic wave enhancement in Re100-Rm100-128 model is occurred only in lower

wavenumber region than that in Re1000-Rm1000-128 model and the spectra in high

wavenumber region is more isotropic than that of Re1000-Rm1000-128 model. In

addition, panel (a) of Figure 4.11 shows that the anisotropy in the direction of

45 degrees disappears and it seems that there is slight anisotropy in the direction
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of 135 degrees. From these results, it can be seen that the anisotropic wave en-

hancement of vz becomes weak as the diffusivity is increased. As shown in panel

(b) of Figure 4.3, all the direction of velocity shear created by maximum growth

mode of MRI in these three models are approximately 45 degrees, thus, this mod-

ification is considered to indicate that the dominant mode of parasitic instability

changes from Kelvin-Helmholtz mode to magnetic-reconnection mode by increasing

magnetic diffusivity. In fact, panel (b) in Figure 4.10, and Figure 4.11 show that

vertical magnetic field seems to be enhanced with around 135 degrees direction, i.e.,

the direction of antiparallel magnetic field, and these spectra of δBz indicates the

evolving magnetic reconnection by increasing magnetic diffusivity. Threfore, the

anisotropies of wavenumber spectra of Re100-Rm100-128 model, that the direction

of vz is 45 degrees and that of Bz is 135 degrees, indicate the Kelvin-Helmholts

mode and magnetic reconnection mode parasitic instabilty is occured comparably.

The anisotropies of wavenumber spectra of Re10-Rm10-128 model, that the di-

rection of vz is roughly 135 degrees and that of Bz is also 135 degrees, indicate

the magnetic reconnection mode overtakes the Kelvin-Helmholtz mode at the first

peak.

Comparing the anisotropic wave region in panel (a) in Figures 4.9, 4.10, and 4.11,

the fastest growth wavenumber is also modified from the large wavenumber region

to small wavenumber region by increasing diffusivities. The spectra of vz in Re1000-

Rm1000-128 model is similar to the result of ideal calculation shown in Figure 3.6,

i.e., there is the fastest growth wave around (kx/kMRI, ky/kMRI) = (2, 2). On the

other hand, the fastest growth wave are located in a region closer to the origin in

Re100-Rm100-128 model. To determine the fastest growth mode and its difference

between these three models, we investigate the time evolution of spectra of vz along

kx = ky in the same way as Section 3.4.2. Figure 4.12 shows the time evolution of

wavenumber spectra of vz along kx = ky line averaged over the vertical wavenum-

ber space in (a) Re1000-Rm1000-128 model, (b) Re100-Rm100-128 model, and (c)

Re10-Rm10-128 model around the time of first peak. The horizontal axis is the

horizontal wavenumber kh ≡
√

k2x + k2y =
√
2kx normalized by the MRI maxi-

mum growth wave number. Line colors, from cold color to hot colors, represent

the time elapsed. The dotted line at kh/kMRI,max = 0.59 represents analytically

obtained maximum growth wavenumber of K-H mode parasitic instability in the

ideal MHD condition. It can be confirmed that the Re10-Rm10-128 model has the

different slope of the energy cascade due to its high diffusivity effects, and Re1000-

Rm1000-128 and Re100-Rm100-128 take the different time evolution of wavenum-
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(a)

(b)

Fig. 4.12: Time evolution of wavenumber spectra of vz along kx = ky line averaged
over the vertical wavenumber space in (a) Re1000-Rm1000-128 model, (b) Re100-
Rm100-128 model, and (c) Re10-Rm10-128 model
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(c)

Fig. 4.12: (Continued)

ber spectrum toward the first peak though the linear properties are almost same

between these two models. The fastest growth wavenumber in Re1000-Rm1000-128

model around the first peak shown in panel (a) is kh/kMRI = 1 ∼ 2. Although

this value is slightly smaller than the value in the ideal simulation (Figure 3.7),

the feature, that the fastest growth wavenumber is larger than the fastest growth

wavenumber of parasitic instability, is similar to the ideal one. Comparing the

results of Figure 4.12, we can confirm that this feature disappears when the diffu-

sivities increase and the wavenumber nearer the theoretically obtained value which

is kh/kMRI = 0.59 has the energy dominantly. Therefore, in addition to the mod-

ification of the anisotropy due to changing the magnetic diffusivity, differences in

the calculated models are also attributable to the modification of small-scale flow

structure due to the viscosity.

To see how the flow structure modified by diffusivities, we investigate the shear

flow structure in the 45 degree surface at the time of first peak in the same in the

same way as Section 3.4.2. Figure 4.13 shows the structures of the parallel com-

ponent of disturbed horizontal velocity δvh,∥ in a surface with horizontal direction

hx=y along the direction of êx=y ≡ (êx + êy)/
√
2 and vertical direction z in (a)

Re1000-Rm1000-128 model, (b) Re100-Rm100-128 model, and (c) Re10-Rm10-128
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model at the time of first peak. The parallel component of disturbed horizontal

velocity is defined as

δvh,∥ ≡ δvx cos(π/4) + δvy sin(π/4). (4.13)

In the panel (a) of Figure 4.13, we can find the small-scale and winding flow

structure at around (h, z) = (0.4H, 0.15H) and (−0.8H, 0.3H). These structures

are similar to the small-scale and jet-like structure observed in the ideal simulation

shown in Figure 3.8, and thus, the fastest growth wave shown in panel (a) of Fig-

ure 4.12, whose wavenumber is larger than maximum growth wavenumber of K-H

mode parasitic instability, is considered to reflect this small-scale and winding flow

structure. Comparing these structures with Re100-Rm100-128 model, although al-

most all structure of Re100-Rm100-128 model (panel (b)) are much similar to that

of Re1000-Rm1000-128 model, the small scale structures are modified and those in

Re100-Rm100-128 model become smooth due to the diffusion effects. In these two

models, both the created small-scale flow are torn up and layered structures are col-

lapsed into vortices similarly to the ideal case (Figure 4.13). The structures created

in these processes are also different in two models, i.e., the generated structure in

Re1000-Rm1000-128 model is much ’dirty’ than that in Re100-Rm100-128 model.

The flow structure in Re10-Rm10-128 model is much modified and smoothed by the

diffusion effect than other two models. The small-scale structure is not effectively

created and thus the tearing up the layered flow is not occurred. The layered flow

is broken by rolling up of the large-scale vortices, which seems to be evolved by

K-H mode parasitic instability.

From above results and discussions, the efficiencies of small amount of diffu-

sion effects for the first peak are summarized as follows. The magnetic diffusivity

changes a balance of K-H mode and magnetic reconnection mode parasitic insta-

bility, thus it controls the direction of the anisotropic wave enhancement. In our

calculation, 45 degrees directional anisotropic wave enhancement of vz decreases

and 135 degrees directional anisotropic wave enhancement of Bz increases when the

diffusivity model changes from the very low diffusivity model (Re1000-Rm1000-128;

Figure 4.9) to middle diffusivity model (Re100-Rm100-128; Figure 4.10). On the

other hand, shear viscosity changes the flow structure at the saturation, thus it

controls the collapse process via the K-H mode parasitic instability. In our calcu-

lation, the small-scale structure and its tearing observed in ideal calculation are

also reproduced in very-low diffusivity (panel (a) of Figure 4.9) and low-diffusivity
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(a)

(b)

(c)

Fig. 4.13: Structures of the parallel component of disturbed horizontal velocity
δvh,∥ in a surface with horizontal direction hx=y along the direction of êx=y ≡
(êx+ êy)/

√
2 and vertical direction z in (a) Re1000-Rm1000-128 model, (b) Re100-

Rm100-128 model, and (c) Re10-Rm10-128 model at the time of first peak
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models (panel (b) of Figure 4.10). The collapse process of this small-scale flow is

slightly different between two models due to the smoothing effect of viscosity, and

thus this difference results in the modification of the fastest growth wavenumber

(panel (a) and panel (b) of Figure 4.12). In addition, the calculation of higher

viscosity model (Re10-Rm10-128) shows the delay of saturation and collapse of

layered flow not by the tearing of small scale flow but by the large scale roll up.

These are caused by quenching of K-H instability reported by Pessah & Goodman

(2009) and effect of smoothing structure by viscosity, and result in the maximum

growth wavenumber becomes comparable to the theoretically obtained maximum

growth wavenumber of parasitic instability.

4.4.5 Contribution of the diffusion effects for the saturation mechanism

of MRI: nonlinear peak

Finally, we investigate the contribution of the diffusion effects for the saturation

mechanism of the turbulent stress at the nonlinear peak. As describe in Sec-

tion 4.4.2, we choose a peak in the turbulent state whose value of stress takes

maximum value in range of 20 ∼ torbit ∼ 40, and call this peak nonlinear peak. In

Section 4.4.3, we show that the values of nonlinear peak don’t have any obvious

trend in Re and Rm space. On the other hand, the time evolution of stress shown

in Section 4.4.2 is surely modified by the small amount of diffusivities. Therefore,

although it does not appear as a temporally and spatially averaged value, a small

amount of diffusion effects should have some influence to the flow pattern and

wavenumber spectra. In this section, we investigate the difference of the property

of spatial structure at the nonlinear peaks of several diffusivity models by using

the same method of Section 4.4.4. Figures 4.14, 4.15, and 4.16 is same plot as

Figures 4.9, 4.10, and 4.11, respectively, but at the time of each nonlinear peak.

Comparing panel (a) of Figures 4.9, 4.10, and 4.11, the 45 degrees wave are

enhanced in all diffusivity models. The enhancement regions are located at the

smaller wavenumber region than that at the first peak These are similar result to

that of ideal simulation shown as Figure 3.10 in chapter 3. Although the anisotropic

enhancement of vz in Re1000-Rm1000-128 model has slightly sharper directivity

than that in other two models, there are little difference between three models com-

pared to that at the first peak. In addition, comparing panel (b), the disturbed

vertical magnetic field Bz also has the 45 degrees anisotropic wave enhancement

in all of three cases. Though the differences in the structure of the wavenumber
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(a) (b)

Fig. 4.14: same as Figure 4.9 but at the time of nonlinear peak

(a) (b)

Fig. 4.15: Same as Figure 4.10 but at the time of nonlinear peak

spectra are observed depending on the diffusion at the first peak, the 45 degrees

wave enhancements are observed in all the spectra of vz and Bz, i.e., the collapse of

restructured shear flow is caused by K-H instability regardless of diffusivity effects.

To see the detail of phenomena occurring at the nonlinear peak, we investigate the

flow pattern along the 45 degrees direction plane like Section 4.13. Figure 4.17 is

a same plot as Figure 4.13 but at the time of nonlinear peaks. In all three dif-

fusion models, there are restructured channel flow structures whose wavelength is
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(a) (b)

Fig. 4.16: Same as Figure 4.11 but at the time of nonlinear peak

λz = Lz. As mentioned in Section 3.4.3, this structure is caused by enhancement

of Bz and modification of the maximum growth wavelength of MRI. The nonlinear

peak is created by collapse of these restructured flow structure. The restructured

channel flow in Re10-Rm10-128 model has much smoother structure than other

two peaks, and those in Re1000-Rm1000-128 model and Re100-Rm100-128 model

contains a lot of small-scale flow structure. The large-scale flow in lower diffusivity

models seems to be collapsed from the inside due to the existence of fine structure

flow. On the other hand, the large scale flow in middle diffusivity model seems to

be collapsed not by the mixing of small-scale flow but by the large-scale vortices.

Although it is difficult to reveal the detailed collapse mechanism because the col-

lapse is occurred in the turbulent state, the flow structure around the nonlinear

peak is different in the three models. The spatially average turbulent stress at the

nonlinear peak is, however, not so different in three models. This fact indicates

a possibility that the diffusivities do not affected to determine the peak value in

nonlinear phase when the diffusivities are in range that Re > 10, Rm > 10 though

the diffusivities modify flow structures.

4.5 Concluding remarks

In this chapter, we investigate the physical diffusion effects to the turbulent stress

and peak creation mechanism. Previous studies reported that small amount of
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(a)

(b)

(c)

Fig. 4.17: Same as Figure 4.13 but at the time of nonlinear peak.
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physical (Fromang et al., 2007) and numerical (Minoshima et al., 2015) diffusivities

and magnetic Prandtl number (Lesur & Longaretti, 2007) change the time evolu-

tion of the spatially averaged turbulent stress. As shown in chapter 3, our newly

developed MHD simulation code (chapter 2) reveal that the shear flow induced

by MRI becomes small-scale and jet-like flow structures and collapses from these

regions at the first peak, and the restructured shear flow in nonlinear phase seems

to be collapsed by coexistence of the small-scale mixing and large scale vortices.

Because the small amount of diffusivity only works to the small-scale structure,

it can be expected that our code can capture what phenomena are modified by

changing the diffusion effects at around peaks of turbulent stress.

We carried out three-dimensional MHD simulations with changing initial

Reynolds number Re and initial magnetic Reynolds number Rm. The time

evolution of turbulent stresses until the first peak in very low, low, and middle

diffusivity models take almost the same value. This indicates that the saturation

mechanism at the first peak obtained by lower diffusivity models are hardly

modified, even though small diffusivities might change the small-scale flow and

magnetic field structure. On the other hand, the turbulent stress at the first peak

in the larger viscosity cases (Re ∼ 1) take larger values and the timing of first

peak is later than lower diffusivity models. This trend should reflect the quenching

effect of K-H instability analytically shown by Pessah & Goodman (2009) and

Pessah (2010). The time evolutions of stress after the first peak are different in all

diffusivity models. Nonetheless, the amplitude of stress in lower diffusivity cases

are not obviously different.

To study the trend of the values of the first peak, nonlinear peak, and tempo-

rally averaged value, we investigate these values in Re and Rm space. In the strong

diffusivity cases (Re,Rm ∼ 1), the viscosity increases the peak value at not only

first peak but also peaks in nonlinear phase and the magnetic diffusivity increases

the value only at first peak and does not affect (or decreases) the nonlinear peaks.

These effects of viscosity and magnetic diffusivity seem to remain in the case of

Re,Rm ∼ 100 slightly. On the other hand, there is no trend of nonlinear peaks

and averaged values in lower diffusivity cases (Re,Rm ≥ 100). The dependence

of magnetic Prandtl number is also not exist in our calculation, unlike Lesur &

Longaretti (2007). The possible cause of this different feature from previous study

is the setting of aspect ratio of simulation box. Pessah & Goodman (2009) reported

the aspect ratio that cannot resolve parasitic instabilities induced by recurrently

created channel flow causes the magnetic Prandtl number dependence of the sat-
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uration value of turbulent stress. The aspect ratio of our simulation is suitable

for resolving the parasitic instabilities induced by recurrently created channel flow,

and thus, it is considered that there was no magnetic Prandtl number dependence

in our calculation.

Next, we investigate detailed structure of the flow and its difference in several

diffusivity models. At the first peak, wave enhancement of vz directing 45 de-

grees from radial direction is observed in two-dimensional wavenumber space in

Re = Rm = 1000 and Re = Rm = 100 diffusivity models. This is a similar feature

to the results of ideal calculation. The direction of wave enhancement of Bz in

the condition of Re = Rm = 100 is not 45 degrees but approximately 135 degrees

though that angle in Re = Rm = 1000 is 45 degrees. In the case of Re = Rm = 10

model, not only Bz but also vz have 135 degrees anisotropy. Theses results indi-

cate that the dominant mode of parasitic instability is modified from K-H mode

to magnetic reconnection mode by increasing magnetic diffusivity. In addition, the

modification of fastest growth wavenumber is observed at first peak. The fastest

growth wavenumber in the condition of Re = Rm = 1000 is larger than the the-

oretically obtained fastest growth wavenumber of parasitic instability, similarly to

the result of ideal MHD. This wavenumber slightly becomes small in the condition

of Re = Rm = 100, and take a similar value to the theoretical wavenumber of

parasitic instability in the condition of Re = Rm = 10. These results indicate that

the viscous effect controls the fastest growth wavelength of small-scale parasitic in-

stability at the first peak. As shown in chapter 3, the layered flow becomes narrow

due to vortices induced by the parasitic instability and that flow evolve small scale

waves at the first peak. Viscous effect smoothen this small scale structure, and

thus the fastest growth wavenumber becomes small when viscosity increases. From

above results and discussions, we confirm the diffusion terms modify the distribu-

tion of wavenumber spectra at the first peak though the linear property of MRI is

almost similar.

We also showed the analysis result at the nonlinear peak, which is arbitrarily

chosen peak in fully developed turbulence. The 2-dimensional wavenumber spectra

of both vz and Bz at the nonlinear peak have 45 degree wave enhancement in all the

Re = Rm = 1000, 100, and 10 models. Although the anisotropy is slightly different

between the models, this fact indicates that the nonlinear peaks are generated

mainly due to the K-H mode parasitic instability despite the existence of magnetic

diffusivity. All of the flow structures of the Re = Rm = 1000, 100, and 10 models

at the nonlinear peak have the restructured channels whose dominant wavelength
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corresponds to the vertical box length. The difference between these three models

are appeared as whether the smaller scale turbulent flow coexist. Comparing the

trend analysis, we confirmed that the smoothing effects due to diffusivities slightly

increases the value of nonlinear peak in relatively high diffusivity model such as

Re = Rm = 10. On the other hand, we confirmed that smoothing effect hardly

modify the value of nonlinear peak in relatively low diffusivity model such as Re =

Rm = 100 and 10, though the wavenumber spectra and flow structures are slightly

modified.

From our simulation and analysis, the excited structure of parasitic instability

at the first peak is changed relatively largely due to the diffusion effect, but in the

nonlinear peak it was shown that the diffusion effects hardly affect to both the

average value of the stress and the structures of wavenumber spectra related to

parasitic instability.
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Chapter 5

Conclusion

We investigated the driving mechanism of the magnetic turbulence via the MRI

and parasitic instability in accretion disks, and reveal the role of small-scale waves

and flow structures for it by using the newly developed high-order MHD simulation

code. The parasitic instability is non-axisymmetric instability (Goodman & Xu,

1994), thus the MHD simulation is required to be three-dimensional calculation.

In addition, previous analytical and numerical studies (e.g., Latter et al., 2009;

Rembiasz et al., 2016) suggested that the MHD simulation also required to be

compressible and have efficiency to resolve small scale waves and flow structures.

In order to realize the requirements, we newly developed a three-dimensional par-

allelized MHD simulation code by using the high-order MHD scheme proposed by

Kawai (2013). We applied the shearing box approximation (Hawley et al., 1995)

to the code and carried out local disk simulations with the ideal MHD condition

and several visco-resistive MHD conditions.

5.1 Development of the three-dimensional parallelized

high-order MHD simulation code

Since we focused on resolving MRI-driven magnetic turbulence accurately, we de-

veloped the MHD simulation code by employing the MHD scheme proposed by

Kawai (2013). This scheme is based on the high-order compact difference scheme

(Lele, 1992) and high-order compact-type filtering scheme (Lele, 1992; Gaitonde &

Visbal, 2000), and localized artificial diffusivity (LAD) method. Since the compact

difference and compact-type filtering schemes require doing sequential calculation

and thus they can not be simply parallelized by domain decomposition using MPI,
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we employed the pipeline algorithm to parallelize without diminishing the accuracy.

The developed code is successfully parallelized by using this algorithm and the ac-

celeration ratio is increased by increasing the number of processes. We carried out

some numerical tests and confirmed that developed code has following capabilities;

high wavenumber accuracy, i.e., the code can solve the wave propagation with a

few grids per wavelength, capturing discontinuities accurately, i.e., the calculation

is not broken by numerical noise, and conservation of the solenoidal condition, i.e.,

∇ ·B is suppressed in machine error level as long as we use periodic boundary con-

ditions. From these numerical tests, we could confirm that developed code works

properly and has the capabilities for resolving MRI-driven turbulence.

5.2 Driving mechanism of turbulence and the role of

small-scale flow in ideal MHD condition

We applied the developed code to the local disk model by using the shearing box

approximation (Hawley et al., 1995), and carried out three-dimensional ideal MHD

simulation of MRI-driven turbulence. We observed that spatially averaged turbu-

lent stress repeatedly increase and decrease after the first saturation. We defined

the initial saturation of the stress as ‘first peak’ and arbitrarily chosen peak cre-

ated in fully developed turbulence as ‘nonlinear peak’, and investigated detailed

structure at these two peaks.

5.2.1 Mechanisms of peak creation and driving turbulence at the first

peak

We showed the anisotropic wave enhancement in two-dimensional wavenumber

spectra of vertical velocity due to the excitation of parasitic instability at the first

peak. The fastest enhancement wavenumber is much larger than that obtained

analytically, and this feature is similar result to Rembiasz et al. (2016) though

they assumed different setting from ours. We found that this feature is because

the interaction of vertically located growing vortices induced by parasitic instabil-

ity makes the layered structure of disturbed flow narrower and faster, and then

the jet-like structure induces much smaller and faster growing K-H-like instability

just before the peak. This newly induced small-scale instability tears off the MRI-

created layered flow structure and thus the turbulent stress decreases. The first
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peak creation process in our simulation is summarised as follows. First, MRI is

linearly grows and results in layered structures of disturbed field. Meanwhile, K-H

mode parasitic instability grows and results in a few vortices. Then, the vertically

located vortices make the layered flow structure narrower and faster. Finally, the

created jet-like structure becomes unstable and the layered structure tears off, and

thus the turbulent stress decreases.

5.2.2 Mechanisms of peak creation and driving turbulence at the nonlin-

ear peak

We also showed the analysis results of the arbitrarily chosen nonlinear peak at

torbit ∼ 29.8 to discuss the creation mechanism of the peak and the difference from

the first peak. The anisotropic wave enhancement of parasitic instability is observed

in two-dimensional wavenumber spectra of vertical velocity. The anisotropic spec-

tra is, however, found only in the small wavenumber region, while large wavenumber

waves are more isotropic than those at the first peak. This indicates that a nonlin-

ear peak is created in an environment where large-scale and anisotropic parasitic

mode waves and isotropic turbulent waves coexist. The restructured channel flow

starts to collapse at the nonlinear peak, but the mechanism is not obvious because

of the existence of the small-scale turbulent structure. We showed that large-scale

vortices induced by restructured flow effectively advect small-scale shear structures

from the shear region toward the flow region of the restructured channel, and the

advected structure seems to mix and break the restructured channel structure.

We determined that the peak creation and driving magnetic turbulence mech-

anism, i.e., the collapse mechanism of channel flow structure, is related to the

destruction of large-scale structure by small-scale flow in both linear phase and

nonlinear phase.

5.3 Driving mechanism of turbulence and the role of

small-scale flow in visco-resistive MHD conditions

We investigated the physical diffusion effects to the turbulent stress and peak

creation mechanism. Because the small amount of diffusivity only works to the

small-scale structure, we would like to reveal what phenomena are modified by

changing the diffusion effects at around peaks of turbulent stress by developed
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high-order code. We carried out three-dimensional MHD simulations with changing

initial Reynolds number Re and initial magnetic Reynolds number Rm. The time

evolution of turbulent stresses until the first peak take almost the same value in

the case of lower diffusivities. On the other hand, the turbulent stress at the first

peak in the larger viscosity cases (Re ∼ 1) take larger values and its time of first

peak is later than lower diffusivity models. This trend should reflect the quenching

effect of K-H instability analytically shown by Pessah & Goodman (2009) and

Pessah (2010). The time evolutions of stress after the first peak are different in all

diffusivity models.

To see the trend of the values of the first peak, nonlinear peak, and temporally

averaged value, we investigate these values in Re and Rm space. In the strong

diffusivity cases (Re,Rm ∼ 1), the viscosity increases the peak value at not only

first peak but also peaks in nonlinear phase and the magnetic diffusivity increases

the value only at first peak and does not affect (or decreases) the nonlinear peaks.

On the other hand, there is no trend of nonlinear peaks and averaged values in lower

diffusivity cases (Re,Rm ≥ 100). The dependence of magnetic Prandtl number is

also not exist in our calculation, unlike Lesur & Longaretti (2007). The possible

cause of this different feature from previous study is the setting of aspect ratio

of the simulation box. Pessah & Goodman (2009) reported the aspect ratio that

cannot resolve parasitic instabilities induced by recurrently created channel flow

causes the Prandtl number dependence of the saturation value of turbulent stress.

The aspect ratio of our simulation is suitable for resolving the parasitic instabilities

induced by recurrently created channel flow, and thus, it is considered that there

was no magnetic Prandtl number dependence in our calculation.

5.3.1 Mechanisms of peak creation and driving turbulence at the first

peak in visco-resistive MHD

We investigated detailed structure of the flow and its difference in several diffusivity

models. At the first peak, wave enhancement of vz directing 45 degrees from radial

direction is observed in two-dimensional wavenumber space in Re = Rm = 1000

and Re = Rm = 100 diffusivity models. This is a similar feature to the results

of ideal calculation. The direction of wave enhancement of Bz in the condition of

Re = Rm = 100 is not 45 degrees but approximately 135 degrees though that angle

in Re = Rm = 1000 is 45 degrees. In the case of Re = Rm = 10 model, not only Bz

but also vz have 135 degrees anisotropy. Theses results indicate that the dominant
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mode of parasitic instability is modified from K-H mode to magnetic reconnection

mode by increasing magnetic diffusivity. In addition, the modification of fastest

growth wavenumber is observed at first peak. The fastest growth wavenumber in

the condition of Re = Rm = 1000 is larger than the theoretically obtained fastest

growth wavenumber of parasitic instability, similarly to the result of ideal MHD.

This wavenumber slightly becomes small in the condition of Re = Rm = 100,

and take a similar value to the theoretical wavenumber of parasitic instability in

the condition of Re = Rm = 10. These results indicate that the viscous effect

controls the fastest growth wavelength at the first peak. As shown in chapter 3,

the layered flow becomes narrow due to vortices induced by the parasitic instability

and that flow evolve small scale waves at the first peak. Viscous effect smoothen

this small scale structure, and thus the fastest growth wavenumber becomes small

when viscosity increases. From above results and discussions, we conclude that the

diffusion terms modify the distribution of wavenumber spectra at the first peak

though the linear property of MRI is almost similar.

5.3.2 Mechanisms of peak creation and driving turbulence at the nonlin-

ear peak in visco-resistive MHD

We also showed the analysis result at the nonlinear peak, which is arbitrarily chosen

peak in fully developed turbulence. The 2-dimensional wavenumber spectra of

both vz and Bz at the nonlinear peak have 45 degree wave enhancement in all the

Re = Rm = 1000, 100, and 10 models. Although the anisotropy is slightly different

between the models, this fact indicates that the nonlinear peaks are generated

mainly due to the K-H mode parasitic instability despite the existence of magnetic

diffusivity. All of the flow structures of Re = Rm = 1000, 100, and 10 models

at the nonlinear peak have the restructured channels whose dominant wavelength

correspond to the vertical box length. The difference between these three models

are appeared as whether the smaller scale turbulent flow coexist. Comparing the

trend analysis, we confirmed that the smoothing effects due to diffusivities slightly

increases the value of nonlinear peak in relatively high diffusivity model such as

Re = Rm = 10. On the other hand, we concluded that smoothing effect hardly

modify the value of nonlinear peak in relatively low diffusivity model such as Re =

Rm = 100 and 10, though the wavenumber spectra and flow structures are slightly

modified.

From our simulation and analysis, the excited structure of parasitic instability
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and driving mechanism of turbulence at the first peak is changed relatively largely

due to the diffusion effects. The diffusion effects hardly affect to the spatially

averaged value of the stress. The modification of structures of wavenumber spectra

related to parasitic instability at the nonlinear peak due to the diffusion effects

seems relatively weaker than that identified at the first peak. The small-scale

flow structures, however, are significantly modified by diffusion effects though the

spatially averaged stresses take similar values. These facts indicate that spatially

(and temporally) averaged turbulent stress, i.e., α parameter, is determined only

by large-scale channel and is less sensitive to the effects of small-scale turbulent

structure. We conclude that the high precision MHD simulation is particularly

required for the precise study of the detailed structure and time evolutional process

of MRI-driven turbulence (and possibly the evaluation of mass accretion rate).

5.4 Application of this study

Throughout this study, we have investigated how the small-scale waves and flow

structures evolve at the peaks of spatially averaged turbulent stress and affect the

large-scale structure through the use of the newly developed MHD simulation code.

Our ideal simulation revealed that the enhancement or coexisting waves smaller

than the typical wavelengths of MRI and parasitic instability result in breakdown

of large-scale structures at the peaks of the turbulent stress. In addition, although

the effect of a small amount of diffusion is seen at the first peak, our visco-resistive

simulation also revealed that the value of the temporally and spatially averaged

stress hardly changes despite the modification of flow structure due to the diffusion

effect. Our simulation results revealed that the flow structure itself can be strongly

affected due to the effect of the physical and numerical diffusivity even if the

temporally averaged stress takes similar values. Therefore, estimation of the disk

structure using turbulent stress becomes inappropriate for studies that focus on

the turbulent flow itself.

One of the example is simulation studies of the planetesimal formation in pro-

toplanetary disks. Johansen et al. (2011) and Kato et al. (2012) carried out the

MHD+dust simulation which solve the MRI-driven turbulence and the motions

of dust in such a turbulent state simultaneously, and reported that the dusts are

accumulated at the specified region by the interaction with the turbulent flow, and

that helps the formation of planetesimals In addition, Kimura et al. (2016) carried

out the MHD+test particle simulation and investigated the particle acceleration in



5.4 Application of this study 109

the MRI-driven turbulence. These types of simulations focus on the turbulent flow

itself, and thus it is required to solve turbulence accurately. Therefore, it is con-

sidered that it becomes important to solve not only the temporally and spatially

averaged turbulent stress but also the turbulent flow and wavenumber spectrum

accurately, as our simulation results and developed code revealed the importance

clearly.
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