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ABSTRACT

Introduction
Liquid crystal (LC) phases have ordering in the molecular directions but

with a lack of some orders in the molecular positions. Due to the orientation
ordering, the LC materials show elasticity. At an interface, there appears a
coupling between the orientation order of the LC and the interfacial normal,
which is called ”anchoring”. Such a coupling is the main target of the present
thesis. Even if the LC in the bulk phase is in an isotropic phase, the LC within
a narrow layer near the interface can show an orientation order due to the
anchoring. In this case, interesting interfacial behaviors are expected to be
observed originating from the different orders between the region near the
interface and the bulk region.

Utilizing the surface anchoring effect in the molecular detection tech-
nique is one of the promising applications, where the LC orientation by the
anchoring gives information about an existence of a target molecule. If the
interface is flexible, it can change its shape so that more information on the
target molecules can be obtained. Thus, it is important to accumulate knowl-
edge on the relation between the anchoring behavior and the shape of the
interface. For example, when the interface can deform, mechanical properties
of the interface such as the interfacial tension and the bending rigidity have
noticeable effects.

Method
For simplicity, we study a thin LC layer floating in a simple isotropic fluid,

where the interfaces are covered by surfactant layers. To estimate the inter-
facial properties theoretically, we performed a molecular simulation using a
coarse-grained molecular model based on Monte-Carlo (MC) method. Our
model is composed of three types of molecules, i.e. the ellipsoidal molecules
as the LC, spherical molecules that form a simple isotropic liquid surrounding
the LC layer, and the surfactant molecules that form assembled molecular
layer between the LC phase and the simple liquid. In a single surfactant
molecule, a particle at one chain end corresponds to a hydrophilic particle
which attractively interacts with the simple fluid, and the other particles
correspond to hydrophobic particles which interact attractively with the LC
particles. Confining the LC layer by the surfactant membranes, the interface
becomes stable.

The strength of the anchoring effect is expressed by an anchoring param-
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eter ξ, where ξ describes the anisotropy of the potential depth. For the case
with ξ = 1, the interaction between the LC and the surfactant is orienta-
tionally isotropic, and therefore no anchoring interaction is effective. On the
other hand, the anchoring is called“ homeotropic anchoring”when ξ > 1,
where the LC director n tends to be parallel to the interfacial normal vector
k.

Results

(i) Results of Monte-Carlo simulation
From the MC simulations, we obtained several results. First, we observed

a decrease in the interfacial tension when ξ is increased. Second, we found
a change in the tendency of the bending rigidity at a certain ξ = ξm and
simultaneously a change in the orientational order of the LC material near
the interface. All of these features can be explained by the anchoring effect
which gives a homeotropic anchoring for ξ > 1.

Since the molecular orientation is fluctuating thermally, the interaction
energy between the LC and the membrane by the anchoring also fluctuates.
The energy fluctuation increases when the anchoring strength increases. Such
an energy fluctuation induces a fluctuation of the area of the membrane
because the equilibrium area of the membrane is dependent on the interaction
energy. Then, the fluctuation of the area of the membrane becomes larger
by increasing ξ, resulting in a decrease in the interfacial tension.

As was discussed above, the energy fluctuation is due to the ordering of
the LC near the interface. When ξ > 1, the LC orientation averaged over
the interfacial region is directed to the interfacial normal direction due to
the anchoring. In this case, the LC near the interface has a directional order
on the average. Such an orientation direction induced by the anchoring does
not in general coincide with the natural direction of the LC determined by
its elasticity. Then the local LC directions near the interface are determined
by the competition between the contribution of the LC elasticity and that
of the anchoring, which leads to a renormalization of the effective bending
rigidity. Such a competition leads to two different regimes in the anchoring
strength divided at a certain threshold value ξ = ξm.

When the anchoring effect is small compared to the LC elasticity, i.e.
1 < ξ < ξm, the local LC director near the interface does not fit to the local
membrane normal due to the LC elasticity, which avoids a spatial variation
of the LC directors. As a result, most of the LC directors are oriented
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to the same direction, i.e. the average normal direction of the membrane.
In this case, when the membrane fluctuates, the mismatch between the local
membrane normal and the LC director imposes a penalty for the deformation
of the membrane, resulting in an increase in the effective bending rigidity.

Fig. 1: The bending rigidity (a) and the LC orientational order near the
interface (b). Both quantities are the functions of ξ. In graph (b), the blue
curve corresponds to the LC order just at the interface.

Contrary to the above weak anchoring case, the behavior changes when
ξ > ξm, i.e. a strong anchoring case. In this case, the bending rigidity
changes its dependence on ξ from increasing to decreasing behaviors. If the
effect of the homeotropic anchoring is strong enough, the LC directors near
the membrane tend to orient to the local membrane normal. Then, the
LC orientation near the interface is distorted when the membrane fluctu-
ates, which leads to an increase in the penalty due to the LC elasticity. To
suppress this elastic penalty of LC, the LC molecules just at the interface,
where the LC molecules have a contact with the surfactant on the membrane,
change its direction from the average membrane normal to the lateral direc-
tion along the membrane. In this case, when the membrane fluctuates in the
direction perpendicular to the LC orientation in the lateral plane, the LC
elastic penalty is not imposed, and the bending rigidity of the membrane ef-
fectively decreases. Such a change in the LC orientation from the membrane
normal to the lateral direction of the membrane is realized by the so-called
“ depletion effect”which originates from the entropic effect with respect to
the steric hindrance on the translation of the LC molecules just at the inter-
face. The change in the LC orientation just at the interface is confirmed by
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the orientation order parameter of the LC near the membrane which shows
the similar behavior to the bending rigidity, that is, the order changes its
tendency from increasing to decreasing behavior (See Fig.1). Note that the
LC molecules slightly away from the membrane (but near the interface) re-
tain the orientation in the membrane normal by the anchoring interaction
realized by the parameter ξ. Then the effect of the anchoring remains so that
the total interaction energy is advantageous although the LC orientations are
mixed (the membrane normal and the lateral orientation) near the interface.

(ii) Results of fitting using continuum model
These results have been explained by using a continuum model of the LC

order and the membrane shape, where the model includes some additional
effects, i.e. the effect of anchoring, the correlation between the fluctuation in
the LC orientation and the fluctuation in the membrane shape, and the effect
of the LC ordered layer. Then we obtained the information of these effects
by fitting the continuum model to our simulation results. Performing similar
simulations for some values of the LC parameters and fitting the results, we
can obtain the dependency of the additional effects of the continuum model
to the LC material parameters. These analysis offers us a way to determine
the properties and the deformation of the interface that confines the LC
material. We will be able to apply such model system to, for example, a
molecular sensor.
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Symbol List

——————– Chapter2 ——————–
rij = ri − rj : relative position vector between i at ri and j at rj particles
rij = |rij| : distance between i and j particles
r̂ij = rij/rij : relative azimuthal vector between i and j particles
ûi : molecular axis vector of i’s liquid crystal molecule
ϵ0 : energy unit
σ0 : length unit
ϵij : energy depth of potentials between i and j particles
σij : distance between two particles when they contact at their surface

(it expresses diameter of i’s particle when i = j)
κ : aspect ratio of an ellipsoidal particle as a liquid crystal molecule
κ′ : energy depth ratio for liquid crystal molecules of end-to-end to side-by-
side configurations
χ : GB parameter as a function of κ
χ′ : GB parameter as a function of κ′

µ, ν : GB parameters which determine the effects of κ and κ′ for GB potential
kspring : energy constant (spring constant) of harmonic spring potential
kbend : energy constant of beding potential working on surfactant molecule
ξ : anchoring parameter
χ′
sg : parameter with respect to potential between LC molecule and spherical

particle as a function of ξ
kB : Boltzmann constant
T : temperature of simulation system
Tr : room temperature (basis of temperature in our simulation)
P : pressusre imposing on simulation system
N : the number of particles
Ns : the number of surfactant molecules
Nl : the number of liquid crystal molecules
Nw : the number of hydrophilic particles
——————————————————–
——————– Chapter3 ——————–
γeff : effective interfacial tension of membrane, that is,

it includes effects of surrounding liquids of membrane
Keff : effective bending rigidity of membrane
q = (qx, qy) : wave vector relative to plane (x, y) in cartesian coordinates
q = |q| : absolute value of wave vector q
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h(x, y) : z coordinate of membrane at (x, y) in cartesian coordinates
(it expresses shape of membrane)

h(q), hq : Fourier component of h(x, y)
Am : area of membrane
lm : distance between two membrane (thickness of liquid crystal thin layer)
Q(r) : tensor order parameter of liquid crystal at r
S(r) : scalar order parameter of liquid crystal which is

derived as the maximum eigenvalue of Q(r) in nematic phase
n(r) : director of liquid crystal at r which is the local average of molecular
orientations
Lα : size of system in α-direction
aα : size of cell in α-direction which is used for definition of volume fraction
at r
bα : the number of cells

f0 : local free energy density with respect to ordering of liquid crystal
fel : elastic energy density of liquid crystal
H : mean curvature of membrane
A(T ), B, C : coefficients of local ordered energies in free energy of liquid
crystal
L2 : elastic constant in free energy of liquid crystal
γ : interfacial tension of membrane
K : bending rigidity of membrane
γa : anchoring strength in continuum model
Ka : coefficient corresponding to fluctuational coupling between liquid crystal
and membrane
Kb : effect of nematicl layer
R : position vector of fragment on membrane
gα : coordinate vector in α-direction in curvilinear coordinates on membrane

(α = 1, 2 correspond to tangential direction and α = 3 to normal one)
mαβ = gα · gβ, (α = 1, 2) : metric tensor on membrane√
dg : area fragment of membrane where dg = det |mαβ|

fαβ = (∂gα/∂xβ) · g3 : second fundamental form
mα : component of normal vector m on membrane
——————————————————–





Chapter 1

Introduction

1.1 Introduction to liquid crystals

1.1.1 Orientational order of liquid crystal

Many materials composed of atoms or molecules experience phase transitions
by changing temperature, pressure, and other control parameters. For ex-
ample, by increasing temperature, a material shows a phase transition from
initial solid phase to liquid phase at melting temperature. In gas and liquid
phases, materials have a perfect symmetry, that is, continuous symmetry for
translation and rotation. On the other hand, in solid phase composed of
molecules, a certain symmetry is broken, for example when the translational
symmetry is broken, a lattice structure emerges for molecular position. A
solid composed of molecules frequently shows a molecular orientational order
in the case that the molecule has an anisotropic shape. When a molecule
has an orientational order in a lattice structure at low temperature, a po-
sitional melting can happen when only the translational degrees of freedom
are released while the direction order is present, resulting in a fluid phase
with the molecular orientatioal order even in the equilibrium state. Such a
fluid phase with molecular orientational order is called ”liquid crystal”, and
is abbreviated as LC[1,2]. This phase shows both solid-like properties with
respect to the orientational order and liquid-like ones due to the disordered
state of the molecular positions. The materials that shows LC phases by
changing the temperature are called ”thermotropic liquid crystals”. On the
other hand ”lyotropic liquid crystals” mean materials that show LC phase
(in a broad sense) depending on their concentration or density. They are,

11



12 CHAPTER 1. INTRODUCTION

for example, surfactants, lipids, and block-copolymers, and form various or-
dered structures, such as micelles, cylinders, planar lamellae, or vesicles. In
this thesis we focus on the properties of both types of LC. Hereafter we re-
strict the arguments on the thermotropic LC that have rod-like shapes. Since

Fig. 1.1: LC phases.

the material showing LC phase is frequently called LC material (and such a
molecule is also), we will use the word ”LC” as the meaning of the LC phase
unless noted explicitly. ”Nematic” phase that is one of the LC phases has
a long range molecular orientational order and has no long range positional
order. A case with one dimensional positional order but without positional
order in the vertical directions in an LC phase results in a layered structure
with orientational order, which is called ”smectic” phase. Such a smectic
phase is further classified according to the nature of the orientational order
beetween layers; when molecules are directed to the layer normal direction,
it is called ”smectic A” phase, and when it is tilted to the layer normal, it is
called ”smectic C”. Many other complex ordered phases have been observed,
especially in a case of chiral molecule which shows ”cholesteric” or ”twist ne-
matic” phase where uniaxially oriented 2-dimensional planes are twisted in
the direction normal to the plane. In materials that show LC phases, the tem-
perature where the phase changes from LC phase to a perfectly-symmetric
liquid is called clearing temperature. In the symmetric phase, the material is
clear so that an incident light can transmit through it. At the melting tem-
perature, these materials remain orientational order or a specal orientation
direction which largely fluctuates spatially and temporally although they lose
the periodic arrangement of the molecular positions. Then an incident light
is scattered into various directions, resulting in an opaque state.
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The structures and behaviors of an LC phase can be described in a similar
manner as a colloidal system is described in terms of the density distribution
function, which is performed by Onsager [3]. He assumed that (i) an LC
molecule is a rod-like rigid body, (ii) the volume fraction of LC molecules is
much smaller than 1, and (iii) the length of the rod is much longer than its
width. Here, we start to consider a system including spherical colloids, sub-
sequently extend a system with an orientational anisotropy in the particles.
The partition function of the spherical colloidal system interacting through
a potential ui,j is given by

H =
1

2m

∑
i

p2
i +

∑
i<j

ui,j, (1.1)

Z =
1

N !h3N

∫
· · ·
∫

exp (−βH)d3Nqd3Np =
1

N !Λ3N
QN , (1.2)

QN =

∫
· · ·
∫

exp (−β
∑
i<j

ui,j)d
3Nq, (1.3)

Λ = h/
√

(2πmkBT ), (1.4)

where m is the mass of the particle, pi is the momentum of i’th particle, h is
Planck constant, kB is Boltzmann constant, T is temperature, and N is the
total number of particles in the system. Λ is thermal de Broglie wave length.
Then a free energy of this spherical particle system is given as

F

NkBT
= − 1

N
lnZ = ln (Λ3ρ)− 1 +B2ρ, (1.5)

Φi,j = exp (−βui,j)− 1, (1.6)

B2 = −12V

∫ ∫
Φi,jd

3qid
3pi, (1.7)

where ρ = N/V is the material density, and V is the system volume. It is
assumed that |ui,j| ≪ kBT and therefore |Φi,j| ≪ 1 and |B2| ≪ V . In deriving
Eq.1.5, Stirling’s approximation lnN ! ≈ N lnN − N was used assuming
N ≫ 1.

Next, let us consider that the particle has an orientatoinal probability
distribution fu(Ω) where u is the unit vector which expresses the molecular
orientatoin direction and Ω is the solid angle. fu(Ω) satisfies the normal-
ization condition

∫
fu(Ω)dΩ = 1. For simplicity, it is assumed that the
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degrees of freedom of position and momentum of the particle are indepen-
dent of its orientation, so that the number of particles observed in a volume
element at u is ρu(r)dΩ = ρfu(Ω)dΩ. The 2-body interaction is given by∫
Ω′ B2,u(Ω,Ω

′)ρfu′(Ω′)dΩ′ which expresses the interaction energy integrated

over all possible orientations fu′(Ω′). Then we can get F̃u(Ω) by inserting
the above expressions into Eq.1.5, assuming that the all initial colloid parti-
cles have the director u following the distribution function fu(Ω). Therefore
total free energy can be obtained by integrating Fu(Ω) over Ω under the
probability weight defined by the orientational distribution fu(Ω) as follows,

Faniso

NkBT
=

1

NkBT

∫
Ω

fu(Ω)F̃u(Ω)dΩ

=
{
ln (Λ3ρ)− 1

}
+

∫
Ω

fu(Ω) ln (4πfu(Ω))dΩ

+ ρ

∫
Ω

∫
Ω′
B2,u(Ω,Ω

′)fu(Ω)fu′(Ω′)dΩdΩ′. (1.8)

In Eq.(1.8), the first term is the free energy of an isotropic system, the second
term means the orientational entropy, and the third term is the orientation-
dependent 2-body interaction. Note that in above calculation the higher or-
der terms in Φi,j are neglected. Onsager justified this approximation by con-
sidering only the excluded volume interaction between two anisotropic parti-
cles with a uniaxial shape. Then, he assumed that B2,u(Ω,Ω

′) = L2D| sin γ|
where L and D are the length of the long axis and the width of the molecule,
and γ is an angle between the directions of two interacting molecules. To ob-
tain the most probable distribution function f ∗

u(Ω), Eq.(1.8) is minimized un-
der the normalization condition

∫
f ∗
u(Ω)dΩ = 1 → δFaniso

NkBT
+λ

∫
δf ∗

u(Ω)dΩ = 0
where λ is the Lagrange multiplier. The resulted equation is difficult to solve
due to its non-linearity. Onsager introduced a trial function as the orienta-
tional distribution function fu(Ω) = C cosh (η cos θ) where C is a constant
for the normalization constraint for fu(Ω) and η is a parameter, and solved
the minimization problem with respect to η. This minimization, however,
leads to an unrealistic behavior of the LC phase.

Maier and Saupe used a molecule with only one symmetric axis in a
heat bath [4]. They started to construct a Gibbs free energy including an
interaction energy depending on the orientational order parameter,

G∗(p, T ) = G∗
0(p, T ) +

∫
fu(Ω) ln (4πfu(Ω))dΩ +G∗

s(p, T, S), (1.9)
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where G∗(p, T ) = G(p, T )/(NkBT ) is the dimensionless Gibbs free energy
per single particle and other values (·)∗ have the same mean. G∗

s(p, T, S) is
the effective 2-body interaction energy as a function of the order parameter
S defined as

S =

∫
fu(Ω)

1

2
(3 cos2 θ − 1)dΩ. (1.10)

Then, G∗
s(p, T, S) is given by

G∗
s(p, T, S) = −1

2
u∗(p, T )S2, (1.11)

where u∗(p, T ) > 0 is a (dimensionless) intermolecular interaction potential
per single particle. The distribution function that minimizes the Gibbs en-
ergy Eq.1.9 is obtained under the constraint from the normalization condition∫
fu(Ω)dΩ = 1,

fu(θ) =
1

4πZ
exp (m∗ cos2 θ) and Z =

∫ 1

0

exp (m∗x2)dx, (1.12)

where m∗ = 3u∗S/2. Then a self consistent equation for the order parameter
S is obtained from Eq.(1.10) using the distribution Eq.1.12. The resulting
threshold value of the order parameter at the nematic-isotropic transition
temperature Tc agrees with the experimental results.

In the vicinity of the transition temperature, considering that the order
parameter with respect to the orientation of the LC material is small, the
free energy density can be expanded in a power series as follows;

f =
1

2
A(T )QαβQαβ +

1

3
BQαβQβγQγα +

1

4
C (QαβQαβ)

2 + fel, (1.13)

fel =
1

2
L1∇αQαγ∇βQβγ +

1

2
L2∇αQβγ∇αQβγ +

1

2
L3Qαβ∇αQγδ∇βQγδ,

(1.14)

where Qαβ is a symmetric and trace-less 2-rank tensor defined using the ori-
entation of LC. In Eqs.1.13 and 1.14, some possible terms for combinations
of indices of ∇α or Qαβ, and interactions with external field are omitted for
simplicity. In a microscopic description of LC phase, the orientational order
is realized by the interaction between LC molecules, which defines a charac-
teristic length scale kLC of the elastic interaction. Qαβ is the averaged value
of the molecular orientation whithin the length scale kLC, usually defined as
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Qαβ = ⟨uαuβ − δαβ/3⟩ where uα is the α-component of unit vector along
the molecular long axis. Each term in Eq.(1.13) means the local ”orienta-
tional” energy, and the term fel is the short range elastic interaction over
the characterictic length kLC of the molecular orientation. Equation 1.13 is
then a continuum model for LC and called Landau-de Gennes free energy
density [5], which is basically the Taylor expansion of the Maier-Saupe type
free energy for small u∗(p, T ) in Eq.1.12 with the tensor form for the order
parameter.

The expansion of the Maier-Saupe type free energy is for spatially uniform
systems. Spatial non-uniformity can be taken into account in the Landau-de
Gennes free energy by assuming a local equilibrium, where one can describe
an inhomogeneous structure for the orientational field. When the LC has a
uniaxial orientation averagely, i.e. the case where the degree of the orienta-
tional order is homogeneous in the whole system, the tensor order parameter
Qαβ is written as

Qαβ = 2S(nαnβ −
1

2
δαβ), in 2D, (1.15)

Qαβ =
3

2
S(nαnβ −

1

3
δαβ), in 3D, (1.16)

where S is a scalar order parameter of LC (generally depends on the coor-
dinates of space variable), nα the α-component of the director vector which
means the local averaged-orientational vector of the uniaxial nematic, and
δαβ is the unit tensor. By assuming constant S in Eq.(1.16), the important
terms in the free energy density Eq.(1.13) lead to the following form:

f =
1

2
K1(∇ · n)2 + 1

2
K2(∇ · (∇× n))2 +

1

2
K3|n× (∇× n)|2, (1.17)

where

K1 =
9

4
S2 (L1 + 2L2 − L3S) , (1.18)

K2 =
9

4
S2 (2L2 + L3S) , (1.19)

K3 =
9

4
S2 (L1 + 2L2 + 2L3S) . (1.20)

This form of the free energy density describes the distortion energy of the
uniaxial nematic system, and is called Frank elastic energy [6]. Three rep-
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Fig. 1.2: LC configurations.

resentative coefficients mean ”splay” (K1), ”twist” (K2), and ”bend” (K3)
configurations, and other surface terms or their coefficients are omitted for
simplicity. This Frank elastic energy is useful in describing the systems free
from defects a large deformation for the director field. We will use, in the fol-
lowing sections, Landau-de Gennes type free energy because our system is an
inhomogeneous one that includes some boundaries or orientational defects.

1.1.2 Boundary condition for LC

At the boundary surface of a real system, the LC molecules interact with the
surface-constructing molecules and also with the material outside the surface.
Due to such an interaction, the directors of LC molecules are ”directed” to a
certain direction at a boundary. This effect is called ”anchoring”. When the
characteristic anchoring energy (Wa) is much larger than the elastic energy of
LC (Wa ≫ K: K is the averaged elastic constant), the director at the surface
is fixed because of the anchoring potential that realizes a certain orientation.
In this case, the surface free energy no longer contributes to the total energy
because the surface energy is just a constant. On the other hand, when
Wa ≤ K, the surface alignment is determined so that the total free energy
including the surface energy is minimized. Thus, the achoring effect can be
characterized by the length scale b = K/Wa, which is called ”extrapolation
length”, where b ≈ 0 corresponds to strong anchoring and b ≥ 1 to weak
anchoring. The anchoring leads to an anisotropic surface tension of the LC
system which depends on the orientation of LC molecules at the surface. In
simple liquids, the surface tension is determined microscopically from the
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balance between the attractive and the repulsive interactions, which is called
excess energy. In such a simple liquid case, the surface tension affects the
extension of the surface area. In the case of LC surface, on the other hand, the
LC molecules additionally affect the surface direction through the anchoring
effect.

Fig. 1.3: Anchoring conditions.

In simple liquids or solids, the surface effects do not seriously affect the
bulk properties due to no penalty for the deformation in simple liquids or very
small thermal deformations in solids. However, in LC phase, due to its elastic
energy which is comparable to the thermal energy, the deformation of the
LC director field gives rise to an extra-free energy in the bulk region induced
by the surface energy. Such an effect gives differect energies depending on
the geometries of the surface by the anchoring. For the surface events at the
LC surface, the important thing is not only the configuration of the director
field but also that of the surface.

The anchoring is originating from the van der Waals force, the electric
interaction between the ionic charges or the permanent dipoles, and steric
interaction due to surface geometries. A ”homeotropic” anchoring condi-
tion corresponds to a situation where the equilibrium LC director at the
interface tends to direct parallel to the interfacial normal direction, while a
”homogeneous” or ”planar” anchoring condition is that the director points
the tangential of the interface in the equilibrium state. In this thesis, we
will mainly focus on the van der Waals force (including the anisotropic force)
and the effects of the surface geometry, and on the homeotropic anchoring
condition unless stated explicitly. When LC molecules are confined between
two planar rigid plates, the behavior of the director field which is affected
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by the anchoring is described in a manner already mensioned above. How-
ever, the order of orientation of LC is complicated. The LC order shows

Fig. 1.4: Nematic layer.

pretransitional effects because it shows the first order transition due to the
symmetrical difference reason between the isotropic and the (nematic) LC
phase. Due to the pretransitional effects, an attractive behavior at the sur-
face, called nematic wetting [7-9], is expected. When the LC material shows
the isotropic phase in the bulk and is enclosed in a cell with anchoring force
at the wall, the ordered LC phase regions appear in the vicinity of the wall
near the transition temperature Tc. The locally ordered regions grow when
the temperature approaches Tc and form an ordered layer, which is called the
nematic wetting layer. Otherwise in the case of the LC confined in a spheri-
cal container, the director field is deformed by the competition between the
anchoring and the elastic energy [10-18].

1.1.3 Defect of orientation in LC

In a solid with crystalline order, when an inhomogenuity in the arrangement
of the atoms or the molecules emerges, an absence of the particle at a lattice
point or a deformed structure of the crystal due to the inhomogenuity are
called ”defect”. The structure arround the defect has a higher energy and
cannot further deform due to the rigidity of the crystal. In LC phase, how-
ever, the structure around the defect has lower energy than that in the solid,
which is the same or about 10 times larger than the thermal energy. Then
the director in the LC phase can fluctuate and can be controlled in terms of
the defect structure. A typical defect in LC phase is an orientational defect
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that is called ”disclination”. When we trace the orientational change in the
director field around a point, we may see an inconsistency about the LC ori-
entation characterized by m which is either an integer or a half integer. This
is described in polar coordinates as follows,

θ(φ = 2π)− θ(φ = 0) =

∮ 2π

0

dθ

dφ
dφ = 2πm, (1.21)

m ≡ dθ

dφ
, (1.22)

where θ is the angle of the director of the LC component in the polar coor-
dinates and φ the coordinate about the azimuthal angle. In this case, the
point where m is defined is the origin of the coordinates. When m ̸= 0,
the point corresponds to the orientational defect, disclination. m expresses
the strength of the disclination. A point and a line disclination is known
as types of the disclination. The line disclination is a continuously arranged
structure like a one-dimensional array of the point disclination. Seeing the
cross-section of the line disclination or rotating the plane in the symmetry
axis of the director field, one can observe the point disclination. The elastic
energy is stored around such disclinations due to the gradient of the director
field. At the center of the disclination core, the orientational order is van-
ishing due to the large elastic energy of the orientational singularity. In this
case, the strength of the disclination is defined in the region far from the
disclination core.

Fig. 1.5: Point and line disclinations.

A disclination can fluctuate or move by the following reasons. I) When
a disclination is the line type, the line tension is worked along it due to
the stored orientational elastic energy [19,20]. Then the length of the line
disclination tends to be shorter due to the line tension. II) Because of a topo-
logical constraint on the rotation of the director field around a disclination,
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the disclination cannot dissappear spontaneously in the equilibrium state.
However, when two disclinations with the same strength |m| but with differ-
ent signs are close together whithin a characteristic length scale of the elastic
energy, they approach each other and finally disappear [21,22,23]. Above
two mechanisms result in the fluctuation of the disclination and the sur-
rounding director field. The disclination can move by rotating or flowing the
director field or the LC molecules, and the director rotation and flow couple
each other [24]. Then the coupling affects the dynamics of the disclinations
[25,26,27]. These properties of the defect of LC phase attract our attention
and applications of the structured disclination are proposed, for example a
particle trap [28,29].

1.2 Introduction of Membrane

1.2.1 Composition of membrane

Similarly to the thermotropic LC mentioned in section 1.1.1, the lyotropic
LC forms some ordered fluid structures as equilibrium states [30]. In the
case of lyotropic LC, molecules approach with each other when the relative
concentration in mixture increases due to the specific interaction between the
molecular structure and the environments. The molecules showing lyotropic
LC phase are, for example, surfactants, lipids, and block-copolymers as was
mentioned before. These materials have an amphiphilic property and also
have hydrophilic ”head” which is usually a polar group or ionic interacting
with polar molecules like water, and have hydrophobic ”tail” which is com-
posed of, for example, hydrocarbon chains. Therefore, the assembly of the
lyotropic LC molecules has some boundaries characterized by the molecular
structure and the environments. The self-assembled structures formed by
these molecules are versatile, i.e. micelles, cylinders, lamellae, vesicles, or
their buildings. Because of their amphiphilic property, water escapes from
a region where the tail concentrates but favors a surface composed of the
head groups. On the other hand, oily molecules favors the tail-concentrating
region. The resulting structure in lyotropic LC phase depends on the con-
centration of the LC molecules in the solution. The concentration at which
these molecules start to self-assemble is called critical micelle concentration
(CMC), where the micellar structure is first formed. Above the CMC, the
self-assembling larger structures are determined to minimize the surface area
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and the curvature energy. These effects are respectively due to the surface
tension and the curvature elasticity.

Fig. 1.6: Phases of surfactant.

Let us focus on a planar membrane that is a part of a lamella structure
or a vesicle (only monolayer is considered hereafter) surface, composed of the
surfactant molecules [31]. In such a membrane, the surfactant molecules are
on the average directed to the membrane normal direction, and are thermally
fluctuating. Due to the attractive interaction between surfactant molecules
and due to their occupied area in the membrane determined by the repulsive
interaction, the total area of the membrane tends to remain constant and
the instantaneous deviation from the average area causes the surface tension.
Since the surfactant molecules have the thread-like body with slight rigididy,
the elastic interaction is worked on the membrane due to the similarity to
the smectic single layer of the thermotropic LC material. The curvature
of the membrane tends to be constant everywhere on the membrane, and
the deviation causes the curvature elasticity. Therefore the geometry of the
membrane surface is smooth, especially in the case of the membrane with
larger area than the length as twice as the membrane thickness (about the
length of the surfactant molecule).

1.2.2 Physical model of membrane

When the lateral dimension of the membrane is much larger than its thick-
ness, one can regard the membrane as a thin curved surface and can de-
scribe it mathematically [32]. Let us define a position vector R on the
membrane using a curvilinear coordinates u = (u1, u2) (regarding the film
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surface as 2D space). As the film and the position vector R are in the

Fig. 1.7: Mathematical model of membrane.

3D space, the 3-characteristic orthogonal vectors on the film can be de-
fined as gα = ∂R/∂uα(α = 1, 2) are the tangential vectors along the co-
ordinate axis uα and g3 = (g1 × g2)/|g1 × g2| which is the film normal
vector. Here metric tensor mαβ ≡ gα · gβ and |g1 × g2| =

√
dg where

dg = det |mαβ| is the metric defined as the determinant of mαβ (dg =
det |(mαβ)| = g1ηg1ηg2νg2ν −g1ηg2ηg1νg2ν = (δη′ηδν′ν − δη′νδν′η)g1ηg1η′g2νg2ν′ =
ϵγηνϵγη′ν′g1ηg1η′g2νg2ν′ = |g1 × g2|2). This metric dg relates the coordinates
system to the distance on it. Using g1, g2 and g3, the second fundamental
form of the coordinates u on the membrane is defined as fαβ ≡ (∂gα/∂uβ)·g3.
According to this form, the more the film bends, the larger the component
of the film normal in ∂gα/∂uβ becomes. Since the absolute value of fαβ be-
comes larger in this case, fαβ can be related to the ”curvature”. Then the
mean curvature of the film is defined as H = fα

α /2, which is invariant under
the rotation of the coordinates on the film. In this case, H is negative for a
spherical or cylinderical film in the definition of fαβ, and the curvature free
energy of the film is defined by

Fm =

∫
κ

2
(H + c0)

2da, (1.23)

where κ is the elastic constant of the film, c0 is a spontaneous curvature gov-
erning the average geometry of the whole film surface and is originating from
the molecular shape of the surfactant (for example, a corn-shaped molecules
form a spherical film in the equilibrium state), and da is the area element
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of the membrane. Here the contribution from the surface tension is omit-
ted for simplicity. Considering an almost planar film, we can define R as
R = (x, y, h(x, y)). In this case, the geometry of the film can be described
on the cartesian coordinates u = (x, y) instead of curvilinear coordinates. In
this case, the mean curvature is given by

H ≈ ∂2h

∂x2
+

∂2h

∂y2
, (1.24)

and the curvature free energy of the almost planar film with c0 = 0 is is given
by

Fm =

∫
κ

2
(∇2h(x, y))2dxdy, (1.25)

where the area element da in the planar case is calculated as da =
√
dgdxdy ≈√

1 + |∇h|2dxdy by using the approximation da ≈ dxdy with h(x, y) ≪ 1.
Then the statistical property of the membrane fluctuation is expressed in the
Fourier space. h(x, y) is Fourier transformed as follows,

h(x, y) =
1

Ns

∑
q

hq exp (iq · x), (1.26)

where hq is the amplitude of the Fourier mode of the fluctuation of the
membrane that is composed of the surfactant molecules, q = (qx, qy) a wave
vector in the Fourier space, x = (x, y) the coordinate on the cartesian space
and Ns the total number of the surfactant molecules on the film (assuming
a finite area of the film). Using Eq.1.26, Eq.1.25 can be written as follows,

Fm =
Amκ

2N2
s

∑
q

q4|hq|2, (1.27)

where q = |q| and Am is the total area of the film. In this case, the probability
density P (hq) is assumed to be proportional to exp (−βFm) by the saddle
point approximation, then the averaged value of the square of the amplitude
hq for a certain mode q is as follows,

⟨|hq|2⟩ =
N2

s kBT

Amκq4
. (1.28)

In this case, the dispersion of the amplitude ⟨|hq|2⟩ is very small for large
wave number q according to Eq.(1.28). For a small q, the film tends to be
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flat on the average but have large fluctuation since ⟨|hq|2⟩ is very large. Since
the fluctuation with the small q follows Eq.1.28, we can estimate κ that is
the physical property of the membrane by fitting Eq.1.28 to simulation data.

1.2.3 Membrane-confining system

In drug delivery system (DDS), which is one of the typical examples of
membrane-confining system, a material (drug) is encapsulated into the mem-
brane that is composed of surfactant or lipid, and transported to the target
in human body. The capsule composed of surfactant or lipid molecules con-
taining the drug is designed to dissociate at a certain region in our body as
designed. The membrane may change the chemical properties through the
chemical reaction for the composing materials in our body because the mem-
brane confining the drug is affected by the environments and is deformed.
Although the chemistry and the pharmacy of them are mainly important for
the purpose of DDS, the physical properties of the membrane in our body are
also important for various reasons. When the membrane exists in a narrow
tube like blood vessels, its physical properties are important for the deter-
mination of its shape. Thus, the transformation of the membrane in DDS is
coupled to the physical properties of its deformation. In addition, since the
micellar structure is similar to our body cell, the properties are also simi-
lar. Although the drugs are usually polymers, some drugs are (low molecular
weight) LC molecules on which we focus in the rest of this thesis.

As another application of LC contacting an interface, molecular sensor
(MS) is an attractive example, which utilizes the anchoring through the inter-
action beetween LC molecule and a target molecule of MS. When the target
approaches the LC close enough, the optical axis of LC phase rotates due
to the anchoring and the change can be observed by the optical microscope.
Then the existence of the target is easily detected. In many investigations
of LC for MS, the researchers have focused on the configurations of the LC
phase. So far only the case with rigid surface has been studied. However,
when the surface can deform and fluctuate, more fascinating physics will
emerge. We will address this problem in the following chapters.

1.2.4 Purpose of our study and outline of this thesis

When the interface fluctuates at the LC material interface, a non-trivial
configuration of the LC orientation and/or the change in the shape of the
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membrane at the interface can be observed due to the boundary conditions.
LC orientation and the membrane shape are coupled since they interact with
each other through the anchoring which governs the LC director relative to
the membrane normal direction, resulting the configuration of such system
including both LC and membrane complicated. Then, in chapter 2, we focus
on the anchoring effect in the following chapters and estimate the physical
properties of the membrane affected by the anchoring, which are of impor-
tance since they directly influence the formation of the membrane.

In chapter 4 , we will summarize about the effect of the anchoring and
discuss some apprications.



Chapter 2

Method

2.1 Properties of interface on liquid crystal

system

In the vicinity of a rigid boundary, the equilibrium configuration of the LC
director is determined by competition between the LC elasticity and the an-
choring working at the surface, resulting in determining the property of the
fluctuation of the system only by them. On the other hand, in the case of a
deforming boundary, the director, especially its fluctuation, affects the fluc-
tuation of the surface. Since the anchoring gives the preferred orientation for
the LC molecules at the interface, the deviation from the anchoring condition
generates forces working on the LC director and the interfacial normal vector
to eliminate the deviation, resulting in the fluctuational coupling. When an
LC material contacts with an isotropic liquid or a gas phase, the director
fluctuation of LC phase is coupled to the interfacial fluctuation at the in-
terface [37]. In this case, the property of the fluctuation of the interface is
modified by the director fluctuation through the anchoring interaction.

The behavior of LC at such an interface is remarkable in the case of a
spherical droplet including LC phase contacting with an isotropic gas phase
[38]. In this case, when the elasticity of the LC material is larger than the
anchoring that induces the planar condition (Rull et al. realized this situ-
ation by using longer LC molecules), the LC droplet elongates due to the
higher anisotropy of an interfacial tension. In other words, since the extrap-
olation length b = K/Wa mentioned in Sec.1.1.2 increases (corresponding to
weak anchoring), the contribution from the interfacial free energy to the LC

27
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director becomes larger, leading to an elongation of the droplet [38].

In the case that a (fluctuational) membrane encloses the LC material, the
properties of the interface including LC and membrane are also changed. Ac-
cording to Rey [39] who investigated analytically the interfacial properties of
the membrane composed of the surfactant in contact with LC material, in the
case of weak and homeotropic anchoring (the director prefers the interfacial
normal at interface), the inverse of the interfacial fluctuation is dependent
on (γ0 − W )q2, where W the anchoring strength and is negative value for
homeotropic condition in [39], γ0 the interfacial tenion of the membrane, and
q is the absolute value of the wave vector parallel to the membrane tangen-
tial. Then the larger the anchoring strength is, the smaller the fluctuation
of the interface becomes. On the other hand, when the strong anchoring
case, the director field near the interface is governed by the interfacial nor-
mal (n = k in [39], which n is the director and k is the interfacial normal),
the gradient of the director field at the interface is changed by the interfacial
fluctuation, resulting in Kq3 behavior for the interfacial fluctuation, which K
is the Frank elastic constant. These characteristic behaviors are attributed
from the behavior confined into membrane.

LC phase at an interface that is either rigid or deformable shows a rich
variety of physics including the formation of nematic layer and the fluctua-
tional properties connected with the interfacial fluctuation. When the bulk
LC phase is isotropic (then this phase is not ”liquid crystal” phase), as was
already mentioned, a nematic wetting layer may grow and is expected to
compete with the fluctuation of the interface. To focus on these subtle be-
haviors, molecular simulation is a useful method since it can calculate the
system with a microscopic molecular model but without a free energy. Since
we are interested in the equilibrium properties of the phases, we conducted
the simulation by Monte-Carlo method. In this section, we report some re-
sults on such system investigated by molecular simulation and analyze them
by constructing a free energy model, mainly focusing on the interfacial prop-
erties covered by membrane interacting with LC through the anchoring.
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2.2 Molecular simulation

2.2.1 Molecular models

For simplicity to estimate the interfacial physical properties affected by the
confined LC material, we construct a lamella-like structure including single
layer in a simulation system. The LC material is confined into a rectangular
box, and the two monolayers composed of the surfactant molecules attach
the LC material pointing to opposite direction each other as enclosing at top
and bottom, so that it forms a wafer. The surfactant tail particles are just
attached on the LC material surface. The membrane normal vector (Mnv) is
defined as pointing to the direction from surfactant tail to its head particle,
and defining the z-direction to the wafer surface normal, then the two Mnvs
are parallel or anti-parallel to the z-direction. In this case, the single lamella
is symmetric to ez. The region enclosed by the surface composed of the
surfactant head particles is filled by a fluid of spherical, hydrophilic molecules.
This system continues far away into x-y plane, so that the LC material is
confined into two skins of monolayer of surfactants.

Since each molecules are modeled as coarse-grained molecules, they have
some coarse-grained interaction potentials. The LC molecule is expressed by
an ellipsoidal particle with only one symmetric axis as being parallel to the
vector ûi. The corresponded potential is called Gay-Berne (GB) potential
[40] as follows,

UGB(rij, ûi, ûj) = 4ϵij[ϵ1(ûi, ûj)]
µ × [ϵ2(r̂ij, ûi, ûj)]

ν

×
(
[ϱij(rij, ûi, ûj)]

−12 − [ϱij(rij, ûi, ûj)]
−6
)
, (2.1)

where ϵij is an interaction energy parameter of potentials between i and j
particles, and rij = rij r̂ij is a relative position vector, rij = |rij|, and r̂ij is
the relative direction vector. µ and ν are GB parameter. The three functions
in 2.1 are described, ϵ1(ûi, ûj), ϵ2(r̂ij, ûi, ûj), ϱij(rij, ûi, ûj), as follows: first
ϵ1(ûi, ûj) is a measure of the magnitude of the energy and defined by

ϵ1(ûi, ûj) = [1− χ2(ûi · ûj)
2]−1/2, (2.2)

where χ = (κ2 − 1)/(κ2 + 1) and κ=σe/σ0, κ is an aspect ratio of the LC
particle, where σ0 is the size of LC particle of the short axis and σe being
the size of symmetric long axis. The function ϵ2(r̂ij, ûi, ûj) is relative to the
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Fig. 2.1: The representative forms of the Gay-Berne potential
((κ, κ′, µ, ν)=(3.0, 5.0, 2.0, 1.0) are the same parameter set as used in our
simulation). The combinations of the ellipsoids in this picture are the corre-
sponding configuration for the respective form of potential. The ratio of the
energy depth of the side-by-side configuration (corresponding to the deepest
energy depth, red line) to that of the end-to-end configuration (corresponding
to the shallowest energy depth, blue line) shows the value of κ′ = 5.0.

angle between the long axes ûi and the relative direction vector r̂ij of two
ellipsoidal particles and defined by following expression,

ϵ2(r̂ij, ûi, ûj) = 1− χ′
[
(r̂ij · ûi)

2 + (r̂ij · ûj)
2 − 2χ′(r̂ij · ûi)(r̂ij · ûj)(ûi · ûj)

1− χ′2(ûi · ûj)2

]
,

(2.3)

where χ′=(κ′1/µ − 1)/(κ′1/µ + 1) and κ′=ϵee/ϵss, κ
′ is the interaction energy

depth ratio between end-to-end (ϵee), which shows that the long axes are just
on a common line, and side-by-side (ϵss), which that the short axes being on
the common line, configurations of two ellipsoidal particles (see Fig.2.1).
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Finally, ϱij(rij, ûi, ûj) is defined by

ϱij(rij, ûi, ûj) =
rij − σ(r̂ij, ûi, ûj) + σij

σij

, (2.4)

where σ(r̂ij, ûi, ûj) is defined as

σ(r̂ij, ûi, ûj) = σij

(
1− χ

[
(r̂ij · ûi)

2 + (r̂ij · ûj)
2 − 2χ(r̂ij · ûi)(r̂ij · ûj)(ûi · ûj)

1− χ2(ûi · ûj)2

])−1/2

.

(2.5)

σij is the size parameter of potentials between i and j particles. The four GB
parameters (κ, κ′, µ, ν) of UGB for representing the ellipsoidal LC particle,
σ0, and ϵ0, as being the size unit and energy unit in potentials, are given
later.

The surfactant molecule is composed of three spherical beads, which in-
cludes two types for the hydrophilicity, one is the hydrophilic ”head” parti-
cle and another the hydrophobic ”tail” particle, explained in Sec.1.2.1. One
particle of three beads is the head particle, and others are the tail particles.
These particles have Lennard-Jones (LJ) potential described by

ULJ(rij) = 4ϵij

((
σij

rij

)12

−
(
σij

rij

)6
)
. (2.6)

This is the spherical symmetric potential in distance space and can express
the spherical particle, especially expressing the properties of rare gas atoms.
In molecular simulation, since such potential is frequently used to describe
liquids and is almost succesful, we use it not only for spherical particles of
surfactant but also for spherical one constructing hydrophilic fluid filled in
the region between the head particle sheets.

The consecutive particles in one surfactant molecule are connected by the
following spring potential,

Uspring(rij) =
1

2
kspring(rij − σij)

2, (2.7)

where kspring is the energy constant of the spring. The surfactant molecule
with short length is generally rigid, which is expressed by the following bend-
ing potential,

Ubend(θ) = kbend(1− cos(θ − θ0)), (2.8)
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where kbend is the bending energy constant, θ corresponds to the angle com-
posed of the two consecutive bonds of the surfactant molecule, and θ0 means
an equilibrium angle of these bonds, we put θ0 = 0 in this thesis, so that our
model of the surfactant is often lineary.

Here, we introduce an important potential between ellipsoidal (labeled i)
and sphirical (labeled j) particles (labeled ”sg” which represents ”spherical
particle and GB particle” as subscript) as follows:

Usg(rij,ûi) = 4ϵij[ϵsg(r̂ij, ûi)]
µ

×
(
[ϱsgij(rij, ûi)]

−12 − [ϱsgij(rij, ûi)]
−6
)
, (2.9)

ϱsgij(rij,ûi) =
rij − σsg(r̂ij, ûi) + σij

σij

, (2.10)

σsg(r̂ij,ûi) = σij

[
1− χ(r̂ij · ûi)

2
]−1/2

, (2.11)

ϵsg(r̂ij,ûi) = 1− χ′
sg(r̂ij · ûi)

2, (2.12)

where χ′
sg = 1 − ξ1/µ and ξ = ϵE/ϵS. ϵE in ξ (”E” means ”End” point of

ellipsoid) is the energy depth in the case that the long axis vector of the
ellipsoidal particle is directed to the spherical one, and ϵS (”S” means ”Side”
of ellipsoid) is the energy depth in the case that the short axis of ellipsoidal
particle is directed to the spherical one. The shape of the potential function
is shown in Fig.2.2.

ξ will be called the anchoring parameter throughout this thesis and char-
acterizes the anisotropic interaction as being able to understand from the fact
that it is the parameter of the coefficient of (r̂ij · ûi)

2. Then the anisotropic
interaction potential Usg includes the effect of the anchoring, whose value
changes depending on the direction of the ellipsidal particle to the interact-
ing spherical one and is measured by the parameter ξ. In realistic system,
anchoring effects are realized by some interactions and now we limited it in
the anisotropic Van der Waals interaction, which is given by the surface-
covered molecules or the surface-penetrated one approacing from outer re-
gion. Although it should be written by a function of the concentration of
these interacted molecules, we attempt to systematically change ξ to investi-
gate its influence to our model system. In our work this anchoring parameter
ξ plays an important role.

The interactions between particles of the different types are either attrac-
tive or repulsive, which the repulsive interaction is expressed by using only
the positive term in all non-bonded interaction potentials (corresponds to a
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Fig. 2.2: The representative potential functions of Usg are shown: one cor-
responds to the configuration that the LC long axis orients to the spherical
particle, and another corresponds to that the LC short axis orients to the
spherical particle. The potentials that contact the dot line at its deepst point
have the value of the parameter ξ = 1.0, whereas the potential that contact
the solid line has ξ > 1.0.

soft-core potential) in our work. The LC particles are attractive to the tail
particles of surfactants, while it is repulsive to the heads of surfactants and
hydrophilic ones, the tails are repulsive to the heads and hydrophilic ones,
and the heads are attractive to hydrophilic ones. Due to these combina-
tions of the interactions, the interfacial tension between LC and hydrophilic
particles is larger than the attractive case, and the surface activity of the sur-
factants is emphasized, so that the lamella structure of our model is stable
in terms of the interaction. Such combinations of interactions also give the
concentration of the effect of the anchoring between the LC and the tail par-
ticle, because the anchoring effect is realized mainly by the attractive term
of Eq.(2.9) (repulsive term is also changed by changing anchoring, but that
is tiny). Then, the observed behaviors of these phases of LC and surfactant
membrane are caused mainly from the interaction between them.
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2.2.2 Parameters of potentials

Here, we give the values of the parameters used in our simulations. The in-
teraction energy parameter ϵij for all combinations of particles are the same
value according to the combinations of interacting particles, ϵ00=ϵ11=ϵ22=ϵ33=ϵ0,
where the subscript i=0,1,2 and 3 mean surfactant head, surfactant tail, hy-
drophilic particle, and LC particle, respectively. ϵ0 is the energy unit in our
simulation and is equal to kBTr, where kB is the Boltzmann constant, and
Tr = 300[K] is a room temperature. Using this energy unit, the dimen-
sionless temperature is defined by T ∗=kBT/ϵ0 = T/Tr as the ratio of the
temperature to the room one in our simulation. ϵi,j=

√
ϵiiϵjj simply. The

diameter of the spherical particles and the minor axis length of the ellipsoid
is as following: σ00=1.05σ0, σ11=1.0σ0, σ22=1.0σ0, σ33=1.0σ0, and σ0 is the
unit of length, and σi,j=(σii + σjj)/2, simply. The sizes of the surfactant
head and tail are determined from Lipowsky [41], where surfactant models
are more detailed than ours, but we more coarse-graining. Actual surfactants
almost have a large head and relatively slender tail, so that set of diameters
is natural. Other particle sizes are determined simply to be the same as
the size of the surfactant tail. The spring energy kspring of the surfactant
molecule is 100ϵ0/σ

2
0 and the bending energy kbend is 10ϵ0 referred to [41],

and coarse-grained above mentioned. The four GB parameters determining
the form of ellipsoids are chosen as (κ, κ′, µ, ν)=(3.0, 5.0, 2.0, 1.0) which are
originally used by Gay and Berne in [40]. These molecular models are very
simple models to interpret the change in the anchoring parameter due to
the same energy parameters. Since our purpose is to estimate the membrane
physical properties which are affected by the confined LC, we prevented from
setting the actual molecules.

2.2.3 How to propagate system based on Monte-Carlo
method

As mentioned above, we conducted the molecular simulation with Monte-
Carlo method. In Monte-Carlo simulation, a new configuration is changed
to the lower energy state basically, but the slightly higher energy states are
probably adopted. The transition probability between configurations is ob-
tained by constant temperature and pressure ensamble (of course the number
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of particles is constant),

Ptr(j → i) = min (1, exp (−βδUtot,ij − P (Vi − Vj)−N log
Vj

Vi

)). (2.13)

The subscripts i and j indicate the configurations, where i is the new configu-
ration (candidate) and j is the current configuration. δUtot,ij = Utot,i−Utot,j

is the difference of the total energy between i and j configurations, and
Vi − Vj is the volume difference. Parameters N,P and β = 1/(kBT ) de-
termine the equilibrium state. The dimensionless pressure is defined as
P ∗ = Pσ3

0/ϵ0 = 3.0 in our simulation. For this pressure and the dimen-
sionless temperature T ∗ ≈ 1.0, our LC material is in the isotropic phase near
the nematic region (phase diagram is given in [42]). The total number of
the particles N=115,200 that is composed of the number of the surfactants
Ns=6,400, the LCs Nl=51,200, and the hydrophilic particles Nw=44,800,
respectively.

To estimate the physical properties in the equilibrium state, first we pre-
pare an LC-surfactant monolayer lamella floating in a hydrophilic fluid as an
initial state of the simulation system, and take 1 ∼ 2×105 MCS to obtain the
minimum energy state. In the case with lower temperature or with higher κ′

in GB potential which gives the higher elastic properties, a larger number of
MCS is necessary for the equilibrium. After such an equilibration process,
we again perform 1.0× 105 MCS to obtain 500 snapshots. Such calculation
is independently conducted 3∼5 times to obtain the averaged physical prop-
erties (we conducted these ”independent” simulations starting from different
initial states).





Chapter 3

Result

3.1 Results of molecular simulation

In this section, first we show the physical properties of the membrane esti-
mated by molecular simulation mentioned in the previous chapter. Second,
we compare the above results with another type of systems, i.e. the oil-
confined systems where the oil is composed of spherical particles. In the
simulation of the oil-confined system, the LC particles are replaced by the
spherical oil particles which interact with the same interaction potential as
the free-tail-particle of the surfactant (non-bonded one). Thus, the oil par-
ticle interacts attractively with the surfactant tail particles, and repulsively
with the head and the hydrophilic particles. The size of the oil particle is the
same as that of the tail particle σ0, which has a smaller volume than that of
the LC particle. The difference in the particle volume and in the molecular
shape can affect the physical properties of the membrane.

Figures 3.1 and 3.2 are the ”effective” interfacial tension γeff and the
”effective” bending rigidity Keff of the membrane in the LC-confined system,
where both quantities are dimensionless values. The ”effective” means that
these values are estimated directly from the results of simulations including
the influence from the LC material by using the following equations;

⟨|hq|2⟩ =
N2

s kBT

AmKeffq4
, q < 1, (3.1)

⟨|hq|2⟩ =
N2

s kBT

Amγeffq2
, q > 1, (3.2)
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Fig. 3.1: The red line shows the dimensionless interfacial tension of the
membrane γeff as a function of the anchoring parameter ξ. The blue data
at ξ = 1 shows the interfacial tension γ0 for the case with the spherical oil
confined system (the interaction energy between oil and surfactant tails is
ϵ0 = 1).

which are calculated analytically by the same approach of Eq.1.28 but with
the effective interfacial tension γeff in the free energy Eq.1.23. These expres-
sions are not limited to the surfactant membranes but also applicable to the
interfaces of the system constructed by the membrane and the LC material
(and of course the hydrophilic fluid). The quantities γeff and Keff are func-
tions of the anchoring parameter ξ which is defined in Sec.2.2.1. For example,
in Fig.3.1, γeff changes as a quadratic function of ξ. Since the (anisotropic)
attractive interaction energy between an LC particle and a tail particle of
the surfactant is increased by increasing ξ according to Eq.2.9, it can be in-
tuitively understood that γeff decreases when ξ increases (When the Gibbs
enthalpy difference is denoted as ∆G = Am∆γ, where Am is the area of the
membrane and ∆γ is the interfacial tension difference, the increase in the in-
teraction energy makes ∆G decreased and accordingly γeff is decreased). In
this case, the area of the system in the planar direction along the membrane
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Fig. 3.2: The red line shows the dimensionless bending rigidity of the mem-
brane Keff as a function of the anchoring parameter ξ. The blue data at
ξ = 1 shows the bending rigidity K0 in the spherical oil confined system (the
interaction energy between spherical oil and surfactant tails is ϵ0 = 1).

is increased due to the constant pressure condition when the increase in the
attractive interaction energy between the tail particles and the LC particles
contacting at the interface, resulting in the decrease in the distance between
two membranes due to an imcompressibility condition of the LC material.
If the distance is very small, two membranes may interact with each other,
which will affect the membrane properties. However, the minimum distance
between them in our work for LC-confined system is thick enough to estimate
their properties independently. The dimensionless area A∗

m = Am/σ
2
0 and the

dimensionless thickness l∗m = lm/σ0 are plotted as functions of ξ in Fig.3.3
((a) for A∗

m, (b) for l
∗
m, respectively), where

∗ is omitted for simplicity. The
minimum thickness is about 40σ0, which corresponds to about 13 molecular
layers composed of the LC particles oriented in the layer normal direction.
In our simulation, since no layer exists in the LC phase (because it is in the
isotropic or weak nematic phase), we can exclude the effect of the interaction
between the fluctuations of two or more layers of LC material through the
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bluk.
Here, we define the corrected interfacial tension including the pressure

effect as γeff,P = γeff−P , where P = 3.0 is set as the dimensionless pressure in
our simulation as mentioned in Sec.2.2.3. Since γeff takes the value γeff = 3.0
arround ξ = 1.4 ∼ 1.5 which gives γeff,P = 0, the equilibrium membrane
area may be achieved around ξ = 1.4 ∼ 1.5. For the equilibrium area,
the surfactant density has its equilibrium value. If in this case, since the
density goes through the equilibrium at ξ ∼ 1.5, the tendency of Keff may
change at the point on ξ axis. If the interaction energy parameter kept
constant, increasing the area from lower side of the equilibrium value of
the membrane to larger side by an external force, the interfacial tension
changes from the negative to the positive value across the equilibrium value
γeff,P = 0 [43] (for pressure-free condition). In addition, the bending rigidity
is lower for compressed membrane than that for expanded one because the
compressed membrane tends to fluctuate largely to derive larger area. In this
case, K increases by expanding the membrane area around the equilibrium
area. The increase in the bending rigidity by increasing area is as follows :
if the membrane is expanded over the equilibrium area by an external force,
the surfactant molecules on the expanded membrane tend to decrease their
distance, then the membrane less fluctuates to prevent from deriving the
excess area. In our simulation, since the depth of the (attractive) interaction
energy is changed due to the change in ξ, it is difficult to understand the
behaviors of γeff and Keff from the change in the equilibrium area ((a) in
Fig.3.3) and the effect of the pressure.

Figure 3.4 shows the two types of the LC (scalar) order parameters, where
the red line corresponds to the maximum value of the order parameter Smax

near the interfacial region of the LC phase, and the blue one to the order
parameter value at ”just” interface between LC and membrane Sint (Sint is
estimated at the point where the number density of the LC particle shows
the half value of that at the bulk region. At this region, since, averagely,
the LC particles contact the surfactant molecules, the word ”just” is used.).
To evaluate these scalar order parameters, we calculated the tensor order
parameter Q(r) by

Q(r) = ⟨uu− 1

3
⟩, (3.3)

where u(r) is a molecular axis vectors and ⟨·⟩ means the average for LC
particles in a small cell at r. This tensor Q(r) is then orthogonalized to
obtain 3 eigenvalues. The maximum value among this 3 eigenvalues is the
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(a) (b)

Fig. 3.3: (a) The dimensionless area of the system, and (b) the dimensionless
thickness between two membranes for the anchoring parameter ξ.

scalar order parameter S(r) of the weak nematic phase with the eigenvector
(director) n(r) (when in the uniaxial nematic phase, one can construct Q(r)
using S(r) and n(r) as defined in Sec.1.1.1). The cell size used to average
molecular axis vectors is determined by (ax, ay, az) = (Lx/bx, Ly/by, Lz/bz),
where Lα is the size of the system in α-direction (α = x, y, z) and bα is the
number of the cells when accounts them for α-direction. The coordinate
system is cartesian system as mentioned in the beginning of Sec.2.2.1, where
z-direction is in the average direction of the membrane normal and the plane
along the membrane corresponds to x− y plane. An LC particle is allocated
into a cell at r to estimate Q(r) but a problem may occur in the calculation
of Q(r) due to the variable size of the defined cell. The size of the cell in
each direction can change due to the constant pressure condition resulting
in the anisotropic shape of the cell. By the change in the cell shape, the
spatial distribution of the tensor order parameter field Q(r) calculated in the
cells may be changed without the change in the LC molecular orientation.
To prevent above calculation error, we took two counterplans as follows: i)
the average cell size was taken not to be over the LC molecular size (3σ0

about the long axis length of the ellipsoids since the aspect ratio is κ = 3.0
as mentioned in Sec.2.2.2); ii) the LC particles were divided in the long
axis length, 3σ0, by σ0. Information of the molecular orientation of the LC
particle was allocated into its divided components in the long axis. By the
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Fig. 3.4: The red (blue) line shows the change in the LC scalar order param-
eter with maximum value in the LC material Smax (order parameter at the
interfacial position Sint) with anchoring ξ.

operation, the anisotropy of the cell size is expected to be little problem for
the estimation of Q(r). Consequently, we can draw the profile of S(r) at
each area element at (xi, yj) = (i ∗ ax, j ∗ ay) with the size (ax, ay) in z-
direction to the interface point rint, where the number density becomes the
half of that at the center region. Since our system has two membranes, we
calculate the S(xi, yj, z) profile in the z-direction from the interface at one
membrane to that at another membrane. Then, by averaging S(xi, yj, z) in
the x − y plane at a position z, we can get the z profile of the LC order
parameter S(z) as in Fig.3.5. In Fig.3.5, S(z) shows higher value near the
interface (near the both side of these graphs) than that in the center region.
This means that a quasi-nematic wetting layer (but it disappears quickly as
going away from the interface) grows although some decreasing behaviors of
S(z) are also appeared at both sides in Fig.3.5.

In the S(xi, yj, z) profile in the z-direction, we can confirm its maximum
value near the interface (Its profile is almost similar to the averaged S(z)
profile in Fig.3.5). Then we get the profile of the maximum S(xi, yj, z) in the
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planar direction along the membrane and average in the planar direction, re-
sulting in obtaining Smax (Of course we calculate independently Smax at each
membrane, and average two values of Smax). In addition, we get S(xi, yj, z)
at rint and average in the planar direction as well as Smax.

Fig. 3.5: These are the scalar order parameter profile in z-direction: red line
is ξ = 1.0, green ξ = 1.45, blue ξ = 1.5, purple ξ = 1.65, sky blue ξ = 1.7,
brown ξ = 1.75 and yellow ξ = 1.8, respectively.

According to Fig.3.4, Smax almost increases for an increase in ξ and ap-
proaches a threshold value. On the other hand Sint also increases up to
ξ ∼ 1.4, where it starts to decrease to a negative value. Note that S = 0
means the isotropy for the LC orientaion but the negative S means that the
LC particles orient into the x − y direction (membrane surface direction),
can be seen in Fig.3.6. In these figures, the LC material near the membrane
is shown, but the membrane is not, which is actually on the upper side of
the LC material in each figures. From these figures, it is observed that on
the upper side, the number of the LC particles orienting into the surface
direction increases by increasing ξ. If only the anchoring effect characterized
by ξ worked, the LC orientation near the membrane would be parallel to the
membrane normal by increasing ξ due to the strong anisotropy of the attrac-
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tive interaction between the LC and the tail particles (see Eq.2.9. Actually
Smax shows that effect.). In such a region, Sint shows a different behavior.
One of the reasons of this behavior will be the increase in the attractive inter-
action between LC and tail particle at the edge of the LC ellipsoidal particle.
Then, the horizontal orientation of the LC particle to the membrane results
in a stronger interaction than the normal orientation case because the num-
ber of the interaction points increased. However, as long as concerning γeff
(Fig.3.1) and the surface area ((a) in Fig.3.3), both values do not show the
drastic change near ξ ∼ 1.4. Thus, the increase in the number of horizontally
oriented LC particles gives little effect on the interfacial properties. There-
fore, we can expect that the change in Sint originates from the change in the
other properties, for example the bending regidity Keff .

(a)

(b)

(c)

Fig. 3.6: Snapshot of the LC material near the interface. (a) ξ = 1.0, (b)
ξ = 1.4, (c) ξ = 1.8.

Other reasons for the changes in γeff and Keff may be related to the
penetration of the LC particles into the membrane since the LC particle
interacts attractively with the tail particle of the surfactant molecule and
interacts stronger by increasing ξ (Note that the interaction between them
is anisotropic according to Fig.2.2. The depth of the potential with the
configuration that the short axis of the LC particle orients to the spherical
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one is smaller than that with the configuration that the long axis of the LC
particle orients to the spherical one, in the case with ξ > 1.). In general
case that the surfactant membrane confines a fluid, the penetration of the
particles constructing the fluid may soften the membrane: in equilibrium
state, as the particles come in or out from the membrane, the membrane
may become easier to expand or shrink around its equilibrium area (that
is, its area fluctuation may become larger by the penetration). The smaller
the size of the penetrating particle is, the stronger the penetration effect
becomes. In our case, however, the LC particles have the size similar to the
size of the surfactant molecules. Since the large volume is necessary for the
LC particles to penetrate into membrane, the density of the LC particles
penetrating into the membrane is small.

In addition, since the attractive interaction between the LC particle and
the tail particle of the surfactant molecule becomes stronger by increasing ξ,
the penetrating LC particles constrain the surfactant molecules to be around
theirself in order to realize the potential energy minimum. In this case, since
the area fluctuation of the membrane becomes smaller, the interfacial tension
increases. However, in our case, γeff decreases by increasing ξ (see Fig.3.1).

More unexpected behavior for the penetration effect is observed in the
behavior of Keff . If the density of the penetrating LC particles into the
membrane became larger by increasing ξ, the contribution of the LC elasticity
for the membrane would become larger. The larger LC elasticity is, the larger
the bending rigidity of the membrane becomes. However, Keff shows the non-
monotonic behavior: it would be expected that the bending rigidity shows the
monotonic increasing behavior as a function of ξ if the penetration density
became larger.

Thus, the penetration effect of the LC particles for the membrane is
very small although a few LC particles penetrate. Figure 3.7 shows the
distribution of the LC particles per the cell volume (defined as the same as
for the estimation of S(r)), which is the function of the distance from the
surfactant head position. The head position is z = 0, and on the average the
last tail particle is located at z ≈ 2.0. According to Fig.3.7, it can be observed
that the number of the LC particles at z ≈ 2.0 increases by increasing ξ (see
(a) in Fig.3.7), so that actually a slight LC particles may penetrate into
the membrane. In addition, the penetrating LC molecules tend to orient
along the membrane by increasing ξ due to the more attractive interaction
in the case that the LC long axis orients to the tail particle of the surfactant
molecule. In this case, the more the number of the penetrating LC particles
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is, the smaller the LC order parameter at the interface. Actually Sint shows
the decreasing behavior at ξ > 1.4. However, from above discussion, the
penetration does not much occur, then the behavior of Sint is influenced by
other effect. Of course the reason of the changes in γeff and Keff may be
different from the penetration, it will be discussed later.

(a) (b)

Fig. 3.7: The distributions of the LC particles estimated for the distance
from the surfactant head position (the head position is z = 0).

To compare above discussion for the fluid, which is composed of large
and anisotropic particles, confined system, we also performed a different sim-
ulation confining a simple fluid composed of spherical particles that is oily
molecules: the element particle of the simple oily fluid, which we call here-
after ”oil particle” or simply ”oil”, interacts attractively with itself and the
tail particle of the surfactant molecule (via Eq.2.6), whereas interacts repul-
sively with the head particle of the surfactant molecule and the hydrophilic
particle being outside the membrane (via the repulsive part of Eq.2.6). The
size of the oil particle is equal to σ33 that is the size of the short axis of the
LC particle. Only the interaction energy parameter between the tail and the
oil particle ϵ1,3 (”1” shows the tail particle, ”3” the oil one) is changed in
this simulation for ϵ1,3 = 1.0ϵ0 ∼ 1.75ϵ0, however other energy parameters,
ϵ0,3, ϵ2,3 and ϵ33 are the same value as the case of the LC particle, that is,
ϵi,3 = 1.0, i = 0, 2, 3. Using above defined particle, we estimated the in-
terfacial tension and the bending rigidity of the interface as similar to the
LC-confined case.
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(a) (b) (c)

Fig. 3.8: The comparison of the area (a), the interfacial tension (b) and
the bending rigidity (c) of the interface between the LC and the oil-confined
system for the interfacial potential energy per one particle. On the transverse
axis, the positive direction is taken in the right direction.

The results are shown in Fig.3.8 for the area (a), the interfacial tension
(b) and the bending regidity (c) of the interface as functions of the interaction
energy near the interface per one particle (Defined as ϵI = Eint

tot/N
int, where

Eint
tot is the total interaction energy near the interface and N int is the total

number of the particle near the interface which includes the oil (or LC), the
tail and head, and the hydrophilic particles. In this case, the definition of
the ”interface” is the region inside ±3σ0 at the averaged center of mass of
the membrane.) In these figures, the red line shows the results of the LC-
confined case, whereas the blue and green lines show that of the oil-confined
case (The colors in the oil-confined cases are different in the number of the
oil particles; No = 6400 for the blue line, and No = 12800 for the green
line.). The system area, the interfacial tension, and the bending rigidity in
the oil-confined system is defined as Ao, γeff,o, and Keff,o, respectively.

When ϵ1,3 is changed from 1.0ϵ0 to 1.75ϵ0, ϵI is changed approximately
from −2.41ϵ0 to −2.46ϵ0 as you can understand from Fig.3.8. Then, we
can compare these results in such region (We call ”comparable ϵI region”.).
According to these figures, similar behaviors are confirmed: Ao becomes
larger, γeff,o and Keff,o becomes smaller by increasing the absolute value of ϵI
(see from the right to the left side in the horizontal axis in Fig.3.8). In the
comparable ϵI region, (i) Ao is first smaller than Am (area in the LC-confined
case), (ii) γeff,o and Keff,o are both larger than those in the LC-confined
system. These values in the oil-confined case rapidly approach the respective
values in the LC-confined case by increasing |ϵI|. Why are these behaviors
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in the oil-confined case qualitatively the same as but quantitatively different
from those in the LC-confined case? We again consider the penetration of the
oil particles into the membrane. The difference of the sizes and the shapes
between the oil and the LC particle may be important for the behaviors of
Ao, γeff,o and Keff,o.

The simple fluid composed by the spherical particles is ”softer” than the
slightly complex fluid as the LC material (The word ”soft” for the simple
fluid means that the shape of a container to confine the simple fluid can be
chosen freely: when the LC material is confined into a container and interacts
with the wall of the container, that is, the anchoring is worked, a restoring
force to avoid the elastic penalty of the LC material may be worked on the
wall of the container by changing the shape of the container.). Then, as
the oil particles penetrates into the membrane, the membrane may be softer
than the ”pure” membrane composed only by the surfactant or the LC-
penetrating membrane. Since the oil particle is smaller than the LC particle
and the surfactant molecule (the size of the oil particle is the same as the size
of the tail particle of the surfactant molecule), the oil particle-penetration
into the membrane easily occurs. The more the oil particles penetrate into
the membrane, the larger the area of the membrane becomes. Moreover,
since the oil particle is spherical, the loss of entropy of translation due to the
penetration is smaller than the case of the LC particle: since the LC particle
is elliptical and the penetrating LC particles tend to orient into the planar
direction along the membrane due to the anisotropic interaction (ξ > 1),
the behaviors of the LC particles, the translation and the rotation, into the
membrane is strongly restricted by the surrounding surfactant molecules.
Note that (i) the oil particles into the membrane lose the translational entropy
rather than the oils in the bulk region and (ii) the larger ϵ1,3 is, the more
the surfactant molecules are constrained to be around the oil particles due
to the realization of the potential minimum. However, smaller size of the
oil particle and ”softer” property as the simple fluid compared to the LC
material make the membrane be softer.

The area of the membrane can change without the penetration of the
confined particles. Let us consider the case that the membrane composed
of the surfactants and the confined material merely contact each other and
construct their interface without the penetration. When the interaction en-
ergy between them (We will call ”contact attractive energy”) is strengthened
attractively, the membrane area expands in order to become energetically
stabler by increasing the area where both materials constructing the inter-
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Fig. 3.9: The graphs of the order parameters of the orientation of the surfac-
tant molecule in the LC-confined system. The red line shows the orientation
order of the tail-to-head (end-to-end) vector, whereas the blue one shows
that of the tail-to-tail vector.

face interact with each other. Of course the larger the membrane area is,
the more the loss of the interaction energy between the surfactant molecules
becomes. Then such expansion is governed also by the surfactants. In our
parameter region 1.0 ≤ ξ ≤ 2.2 or −2.15 < ϵI < −2.55, the membrane
seems not to break its form, not to undergo a phase transition, and not to
separate two or more parts. According to Fig.3.9, where the orientation or-
der of the surfactant molecule in the LC-confined system is shown, there is
no non-monotonic change (The red line shows the orientation order of the
tail-to-head (end-to-end) vector, whereas the blue one shows that of the tail-
to-tail vector. The estimation of these order parameters is performed by the
same method as the estimation of that in the LC-confined system). If the
disorganization or the phase transition into the membrane occurred, some
changes in these orientation orders would be observed. These values gradu-
ally decreases, so that these decreases are originated from the expansion of
the membrane area (The larger the membrane area is, the larger the occupied
area of a single surfactant molecule becomes, then the orientation direction
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of the surfactant easily changes). Therefore, in our parameter region, the
membrane area expands retaining its structure by increasing the contact at-
tractive energy (The membrane in the oil-confined system would also behave
in the same manner.).

In the oil-confined system, since the area expansion of the membrane
by increasing ϵI occurs due to both the increase in the contact attractive
energy and the penetration of the oil particles into the membrane, the area
expansion is more rapid than that in the LC-confined system. In addition,
the changes in Am, γeff and Keff in the LC-confined system is originated from
other effects than the penetration, so that these slopes of the changes are
different from those in the oil-confined case. As a reason of these behaviors
in the LC-confined system, we consider the effects of the orientation of the
LC material due to the anchoring as follows.

The decreasing of γeff (Fig.3.1) with increasing ξ is interpreted as follows.
Increasing the value of ξ, the depth of the interaction potential between the
LC molecule and the tail particle of the surfactant is increased depending
on their configuration with respect to the orientation of the LC particle to
the spherical one (see Fig.2.2). In this case, the area of the membrane ex-
pands discussed above. The larger the membrane area is, the more its area
fluctuates (In the case that the large area of the membrane is energetically
advantageous, the membrane tends to behave as taking larger area). Then,
γeff decreases. Such a decrease in the interfacial tension can be observed not
only in the LC confined system but also in spherical particles confined system
merely by increasing the attractive interaction energy. In the LC-confined
system, the effect of the orientation of the LC particles appears. When ξ
increases, the fluctuation of the interaction energy originating from the ther-
mal fluctuation of the LC orientation also increases (See Fig.2.2. When the
orientation direction of the LC particle to the spherical one changes, the inter-
action energy also changes. The energy change becomes larger by increasing
ξ even if the same degree of the orientation change occurs.). The larger the
fluctuation of the interaction energy is, the larger the fluctuation of the area
of the membrane becomes since the membrane area is determined by the LC-
surfactant interaction. In this case, since the membrane becomes softer with
respect to the expansion of its area, γeff also decreases. The nematic order at
the interface strengthens the effect of the orientational fluctuation for γeff . If
the LC is in the isotropic phase at the interface, the fluctuation of the local
interaction energy between the surfactants and the LCs is small irrespective
of the interfacial shape because the interface does not affect the distribution
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of the molecular axis vectors of the LC. In this case, γeff is unchanged.
Note that the decreasing of the interfacial tension is different from the

analytical result by Rey [39] because the orientational order in our case can
fluctuate while that in the system discussed in ref.[39] cannot fluctuate. Such
a difference in the orientation behavior is attributed to the elastic property
of the LC, which can affect the membrane properties through the anchoring.

When ξ > 1, in our case, the LC orientation averaged over the interfacial
region is directed to the averaged interfacial normal direction due to the
anchoring as is shown in Fig.3.4. Such an orientational direction does not
in general coincide with the natural direction of the LC determined by its
elasticity. Then the local LC directions near the interface are determined by
the competition between the contribution of the LC elasticity and that of the
anchoring, which leads to a renormalization of the effective bending rigidity.
Such a competition leads to two different regimes in the anchoring strength
separated at a certain threshold value ξ = ξm.

The bending rigidity Keff in Fig.3.2 shows a nonmonotonic behavior as
a function of the anchoring parameter ξ. As increasing ξ, first Keff slightly
increases and then decreases across the threshold value ξ = ξm. When the
anchoring effect is small compared to the LC elasticity, i.e. 1 < ξ < ξm, the
local LC director near the interface does not fit to the local membrane normal
due to the LC elasticity, which avoids a spatial variation of the LC directors.
Then, most of the LC directors are oriented to the same direction, i.e. the
average normal direction of the membrane, resulting in the development of
the nematic layer. In this case, when the membrane fluctuates, the mismatch
between the local membrane normal and the LC director imposes a penalty
for the anchoring interaction, resulting in an increase in the effective bending
rigidity.

Contrary to the above weak anchoring case, the behavior changes when
ξ > ξm, i.e. a strong anchoring case. In this case, the bending rigidity
changes its dependence on ξ from increasing to decreasing behaviors. If the
effect of the homeotropic anchoring is strong enough, the local LC directors
near the membrane tend to orient to the local membrane normal. Then, the
LC orientation near the interface is distorted when the membrane fluctu-
ates, which leads to an increase in the penalty due to the LC elasticity. To
suppress this elastic penalty of LC, the LC molecules just at the interface,
where the LC molecules have a contact with the surfactant on the membrane,
change its direction from the average membrane normal to the lateral direc-
tion along the membrane. In this case, when the membrane fluctuates in the
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direction perpendicular to the LC orientation in the lateral plane, the LC
elastic penalty is not imposed, and the bending rigidity of the membrane ef-
fectively decreases. Such a change in the LC orientation from the membrane
normal to the lateral direction of the membrane is realized by the so-called
“ depletion effect”which originates from the entropic effect with respect to
the steric hindrance on the translation of the LC molecules just at the in-
terface. The change in the LC orientation at the interface is confirmed by
the orientation order parameter of the LC near the membrane which shows
the similar behavior to the bending rigidity (see Sint in Fig.3.4), that is, the
order changes its tendency from increasing to decreasing behavior. Note that
the LC molecules slightly away from the membrane (but near the interface)
retain the orientation in z-direction by the anchoring interaction whose inter-
action range corresponds to the size of the long axis of the LC particle. Then
the effect of the anchoring remains at least within a few molecular layers of
LC even if the LC orientations are mixed (z and x− y orientation) near the
interface.

This orientational behavior of the LC can be realized due to the weak
nematic in the bulk region. If the bulk LC is in the nematic phase, the
membrane fluctuation can be transfered into the bulk region, resulting in the
higher penalty from the LC elasticity than that in our case.

Next we try to consider how the orientational effect is important to the
interfacial tension and bending rigidity by analyzing the free energy model
including the orientational anchoring of the LC material in the interfacial
energy part as is described in the next section.

3.2 Analyzing free energy with orientational

anchoring

In this section, we consider some conditions, where the variations of the total
free energy for the order parameter of the LC material and for the position of
the component of the membrane get 0, to minimize the total free energy in the
LC-confined system with the orientational anchoring. Since the membrane
properties at the equilibrium state can be characterized by the minimized free
energy, we expect to derive the important information from such analysis.
The bulk LC property corresponds to the weak nematic one, but at interface
nematic order appears due to the anchoring by the membrane. Since the LC
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material is elastic, the nematic order decreases gradually from the interface
region to the bulk region. In this case, it is important for the free energy
minimization to consider both the interfacial energy and the bulk one because
the LC material and the membrane are elastic and mutually interact through
the anchoring, that is, the bulk LC property affects the membrane. Then
the total free energy in such system is written in the continuum model as,

Ftot =

∫
V

dV (f0 + fel) +

∫
A

dA

(
γ +

K

2
H2 +

γa
2
g3g3 : Q

)
+ P

[∫
V

dV − V0

]
,

(3.4)

where f0 is the local free energy of the LC material and fel is the elastic
energy, both written in terms of the tensor order parameter Q introduced in
Sec.1.1.1, P the pressure and V0 the equilibrium volume of the system. Al-
though the hydrophilic fluid exists outside the membrane in our simulation,
the LC material has the orientational elasticity (and the local ordered energy)
so that the influence from the hydrophilic (simple) fluid can be neglected. H
is the mean curvature of the membrane, and since the membrane is almost
planar in this system, the spontaneous curvature is zero. γ and K are the
interfacial tension and the bending rigidity, which include the effects of the
penetration of the particles into the membrane. Since we focus on the orien-
tational effect due to the anchoring, we assume that γ and K are independet
of the LC order parameter, although they depend on ξ of the anchoring pa-
rameter in above simulation. γa in Eq.3.4 corresponds to the strength of the
anchoring in the continuum model, and we assumed γa = γa(ξ).

Here, in the equilibrium state, since the total force is zero at any point
in the system, we consider the balance of the forces working on the interface
including the bulk energy contribution. Although a force is worked on a
point in the bulk region, we focus on the forces inducing the deformation of
the membrane.

Assuming that a point r in a material is deformed by a displacement
vector u(r), the virtual work at r is written by δw = −f ·u, where f is the
restoring force acting on r. When the system deviates from an equilibrium
state by the deformation u(r), the force f is generaged to restore the system
to equilibrium state. Then, in equilibrium state, since δw = 0 is realized for
any u(r), f = 0 is the equilibrium condition. Then we try to derive the
restoring force working on the interface.

Deforming the position of the membrane R by a displacement u, a new
position after the deformation is written as R′ = R + u. In this case, the
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area element and the curvature as the geometric values of the membrane
changes by the displacement. To obtain these changed values, we calculate
the geometric vectors on the deformed membrane as follows,

g′
1 =

∂R′

∂x
= g1 + u,x, g′

2 =
∂R′

∂y
= g2 + u,y, g′

3 =
g′
1 × g′

2

|g′
1 × g′

2|
, (3.5)

where all values with prime (·)′ are the changed ones by the displacement
u. g1 and g2 are the original tangential vectors on the membrane along
the curvilinear coordinates, where u,α means the difference in α-direction.
|g′

1 × g′
2| =

√
d′g which is the area element after the deformation, d′g =

det |m′
αβ|, and m′

αβ = g′
α · g′

β is the metric tensor on the membrane after the
deformation. Using these 3 deformed vectors, the second fundamental form
after the deformation is calculated as f ′

αβ = (∂g′
α/∂xβ) · g′

3, xβ = x, y. Then
the mean curvature of the deformed surface is calculated up to the second
order in h(x, y) of the membrane height at (x, y) and the first order for the
displacement u (we assume the small deformation around the equilibrium
state), as follows,

H ′ ≈ H + d
− 3

2
g

{
(−2h,xx + 3h,yy)u

x
,x + (3h,xx − 2h,yy)u

y
,y − 2h,xy(u

x
,y + uy

,x)

−h,xu
x
,xx − h,xu

x
,yy − h,yu

y
,xx − h,yu

y
,yy + 2(h,xh,yy − h,yh,xy)u

z
,x

+2(h,yh,xx − h,xhxy)u
z
,y + (1 + h2

,y)u
z
,xx + (1 + h2

,x)u
z
,yy + 2h,xh,yu

z
,xy

}
,

(3.6)

where uα is the α component of the displacement vector u. Since the mem-
brane we are considering is almost planar, the term with the 0’th order of uα

does not exist. As the contribution from the curvature to the virtual work
is important, the term with the 2nd order of uα is retained in Eq.3.6. The
deformed area element

√
d′g can be written as√

d′g ≈
√

dg + d
− 1

2
g

{
(1 + h2

,y)u
x
,x + (1 + h2

,x)u
y
,y − h,xh,y(u

x
,y + uy

,x) + h,xu
z
,x + h,yu

z
,y

}
,

(3.7)

then we can calculate the interfacial free energy F ′
A for the deformed state.

On the other hand, we can derive some contributions from the bulk free
energy to the virtual work. A point r is changed for r′ = r+u, the derivative
for Q is changed as follows,

∂Q′

∂r′ =
∂Q′

∂r
· ∂r
∂r′ ≈

∂Q

∂r
·
(
1− ∂u

∂r

)
. (3.8)
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In Eq.3.8, we used r = r′ −u and assumed the small distortion, (∂u/∂r′) ≈
(∂u/∂r) at the last line. Here, although Q may be changed to Q′ by the
displacement as written in the first line of Eq.3.8, we assumed Q′ ≈ Q in
the last line of Eq.3.8 since the local change in Q is small enough to ignore
its contribution to the change in the elastic term. Considering the change
in the volume, dr′ = det |∂r′/∂r|dr ≈ (1 + Tr(∂u/∂r))dr, we can calculate
the bulk free energy F ′

V for the deformed state.

Since the system has the degree of freedom of the LC tensor order pa-
rameter Q, we next consider the variation of the free energy by that of Q,
which is defined as C(r) = δFtot/δQ. Variation of the total free energy for
only the small deviation of Q denoted as δQ is given by

δFtot,forQ =

∫
V

dV
(
A(T )Q+BQ ·Q+ CQ : QQ− L2∇2Q

)
: δQ

+

∫
A

dA (γag3g3 + L2g3 ·∇Q) : δQ, (3.9)

where the coefficient of δQ in the 1st term corresponds to the bulk force
working at r defined as

Clc,b = A(T )Q+BQ ·Q+ CQ : QQ− L2∇2Q. (3.10)

The LC orientational force contribution on the interface is defined in the
second term of Eq.3.9 as

Clc,int = γag3g3 + L2g3 ·∇Q. (3.11)

From this definition, it can be understood that the interfacial anchoring also
affects the bulk properties of the LC phase through the orientational force in
the boundary condition. In Eq.3.9, for simlicity, we took only the L2 term
from Eq.1.13 in Sec.1.1.1 .

Therefore, using these contributions from the restoring force for the po-
sitional displacement and the LC orientational force on the interface, we can
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derive the modified (by the orientational force) restoring force as follows:

Fx ≈
√

dg(f0 + fel)h,x − γh,xH̃ +Kh,x(H̃,xx + H̃,yy)

− γa
2
{((3h,xh,xx + 4h,yh,xy − h,xh,yy)ezez + 2h,x(h,xxexex + h,yyeyey)

+2h,xh,xy(exey + eyex)) : Q− h,x(exez + ezex) : Q,x − h,x(eyez + ezey) : Qy}
+
√
dgPh,x, (3.12)

Fy ≈
√

dg(f0 + fel)h,y − γh,yH̃ +Kh,y(H̃,xx + H̃,yy)

− γa
2
{((3h,yh,yy + 4h,xh,xy − h,yh,xx)ezez + 2h,y(h,xxexex + h,yyeyey)

+2h,yh,xy(exey + eyex)) : Q− h,y(exez + ezex) : Q,x − h,y(eyez + ezey) : Qy}
+
√
dgPh,y, (3.13)

Fz ≈ −(f0 + fel) + γH̃ −K(H̃,xx + H̃,yy)

+
γa
2

{(
2(h,xxexex + h,xy(exey + eyex) + h,yyeyey)− H̃ezez

)
: Q

−(exez + ezex) : Q,x − (eyez + ezey) : Q,y − ezez : Q,z}

+
γa
2
{((3h,xh,xx + 2h,yh,xy + h,xh,yy)(exez + ezex)

+(3h,yh,yy + 2h,xh,xy + h, yh,xx)(eyez + ezey)) : Q

+(2h,xexex + h,y(exey + eyex)− h,xezez) : Q,x

+(2h,yeyey + h,x(exey + eyex)− h,yezez) : Q,y

+(h,x(exez + ezex) + h,y(eyez + ezey) : Q,z} − P, (3.14)

where H̃ = h,xx + h,yy. Fx and Fy in Eq.3.12 are symmetric with respect
to the exchange of the coordinates x ↔ y. In the system considered here,
since i) the membrane is almost planar, ii) the LC material is weak nematic
in the bulk region, and iii) the anchoring condition is homeotropic, then the
restoring forces are symmetric in (x, y) plane (if the anchoring condition is the
planar orientation and the LC material is uniaxial in the planar direction,
the system may have an asymmetry in (x, y) plane due to the anisotropic
fluctuation of the LC orientation).As can be see from Eq.3.12, an expansion
and a bending of the membrane are coupled with the orientational order and
its gradient of the LC material at the interface. As solving the following
equations

Clc,b = Clc,int = F = 0, (3.15)
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as the boundary condition, we may get the equilibrium states for the LC and
the membrane.

Since we have the idea that the LC and the membrane mutually interact
through the boundary conditions, we again try to analyze the results of
our simulation constructing the free energy in such system including some
effective energy terms expressing above boundary conditions, as following
section.

3.3 Analyzing free energy including some ef-

fective terms

3.3.1 Constructing free energy model

As we derived above, the LC material couples the deformation of the mem-
brane through the anchoring interaction. In addition, as can be seen from
our simulation results, the bending rigidity Keff increases at lower ξ region,
which may be due to the simultaneous increase in the order parameter of
the LC at (just) interface (see Fig.3.2 and the blue line in Fig.3.4). If the
consideration is valid, the initial increase in Keff is caused by the growth
of the nematic layer which is elastically ”rigid”. According to Fig.3.4, the
”maximum order” Smax shown by the red line continues to increase up to
ξ ∼ 2.0 at least, whereas Sint changes its tendency from the increasing to the
decreasing behavior. Although the point in the z-direction where Smax can
be observed is slightly away from the ”just” interface, the behavior of Smax

also affects the membrane as well as the just interfacial order, Sint. Then,
we assume that the rigidity of the membrane is affected by the growth of the
nematic layer.

We can construct the following model free energy,

F =

∫ Lx

0

∫ Ly

0

∫ z0

−z0

dr

{
A

2
QαβQαβ +

L2

2
∂αQβγ∂αQβγ

}
+

∫ Lx

0

∫ Ly

0

da

{
γ +

K

2
(∂αmα)

2 +
γa
2
mαQαβmβ +Kamα∂βmγ∂αQβγ

+
Kb

4
mαQαβmβ(∂γmγ)

2

} ∣∣∣
±z0

, (3.16)

where Lx, Ly are respectively the size in x- and y-direction of our simulation
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box, and ±z0 is not the size of the simulation box but the averaged position of
the almost planar membrane on the z-axis. Although the actual membrane
height h(x, y) should be set as the integral region in the z-direction, we set the
averaged membrane position for simplicity. da is the area element mentioned
in Sec.1.2.2. We construct the free energy Eq.3.16 up to the 2nd order terms
for the bulk part, and the curvature is expressed by H ≈ ∂αmα, where mα is
the α component of the normal vector of the membrane expressed by g3 in
Sec.3.2. Here, the additional terms mean the following: the Ka term shows
the elastic coupling effect between the LC material and the membrane, and
the Kb term shows the effect of the nematic layer, which directly affects the
coefficient of the curvature energy of the membrane. These terms can be
obtained from the result of the expansions for the following free energy of
the membrane,

fmem,0 = c0 + c1,αmα + c2,αβmαmβ + d3,αβ∂αmβ + d4,αβα′β′∂αmβ∂α′mβ′ ,
(3.17)

which is expanded by the membrane normalmα and its gradient ∂αmβ. If the
membrane is in a vacuum, the constant and the 2nd power of the gradient
terms are merely remained for some conditions, |m| = 1 and the spatial-
inversion symmetry onto the membrane surface. In our simulation, since
the membrane is put on the surface of the LC material (and simultaneously
contacts with the hidrophilic isotropic fluid, but it is omitted now), these
coefficients in Eq.3.17 are dependent on some values of the LC material,
the tensor order parameter and its gradient. Thus, assuming the following
expansion for these coefficients,

c2,αβ ≈ c2,0δαβ +
γa
2
Qαβ, (3.18)

d3,αβ ≈ Kamγ∂γQαβ, (3.19)

d4,αβα′β′ ≈ δαβδα′β′

(
K

2
+

Kb

4
mγmηQγη

)
, (3.20)

c0 + c2,0 = γ, (3.21)

we can get the above model free energy Eq.3.16. Note that although other
kinds of the expansions are considered, they give the similar form in Eq.3.16,
or may give some different forms but now omitted for simplicity, and some is
vanished by the spatial inversion symmetry. As same as in Eq.3.4, the coeffi-
cients γ and K of the membrane do not depend on the anchoring parameter
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ξ in our simulation, while γa, Ka are assumed to depend on ξ. However, Kb

does not depend on ξ in order to assume that Kb term shows the effect of
the elastic property of the nematic layer (then Kb can depend on the elastic
property of the LC material). In this case, Kb may depend on the poten-
tial parameter κ′ in Eq.2.3 which changes the elastic properties of the LC
material.

Because the constructed free energy Eq.3.16 has some assumptions men-
tioned above, this may be qualitatively valid but not quantitatively for our
simulation results. To adjust this analysis with respect to the dimension to
our simulation setting, we define the dimensionless coefficients as follows.
The coordinate variables are written as (x, y, z) = σ0(x

∗, y∗, z∗), and the
z component of the surfactant position is h(x, y) = σ0h

∗, and F = ϵ0F
∗.

Other parameters are changed as following, γ = (ϵ0/σ
2
0)γ

∗, K = ϵ0K
∗,

γa = (ϵ0/σ
2
0)γ

∗
a , Ka = ϵ0K

∗
a , and Kb = ϵ0K

∗
b. The system size parame-

ters are changed as (Lx, Ly, z0) = σ0(L
∗
x, L

∗
y, z

∗
0) and omitting superscript (·)∗

in the same way in the material parameters.
In general, Qαβ(r) is defined as Qαβ(r) = ⟨uαuβ − δαβ/3⟩ as mentioned

in Sec.1.1.1, where uα is the α-component of the molecular director of the LC
material. In our simulation, since the state of the bulk LC is nearly isotropic,
Qαβ(r) is small. However, in the vicinity of the membrane, it is expected
that ⟨uαuβ⟩ ≈ ⟨mαmβ⟩ due to the effect of the anchoring. Thus we write
Qαβ(r) by two forms in equilibrium state as follows;

Q(−z0 < z < z0) =
3

2
S(r)(n(r)n(r)− 1

3
), (3.22)

Q(z = ±z0) =
3

2
S(r)(m(r)m(r)− 1

3
), (3.23)

where nα is the local director and S(r) is the local scalar order parameter
of the LC. In the bulk region, since the correlation in the LC directors is
very small due to the nearly isotropy of the LC material, we assume that the
elastic contribution from the gradient terms of nα to the bluk free energy can
be neglected (Using this assumption, the bulk free energy can be written only
by the scalar order parameter S(r) and its gradient). In these expressions,
S(r), nα, and mα are the local averaged values.

Since the membrane shows the planar form averagely, mα is written as
follows,

m(x, y) = (−∂xh(x, y),−∂yh(x, y), 1−
1

2
|∇h(x, y)|2). (3.24)
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Then rewriting the free energy using these expressions for the order pa-
rameters, which we assumed to be small deformation of membrane, |∇h| ≪
1, and da =

√
1 + |∇h|2dxdy ≈ (1+ |∇h|2/2)dxdy, the free energy is rewrit-

ten as follows,

F =
3

4

∫
dr
{
AS(r)2 + L2|∇S(r)|2

}
+

∫
dxdy

{
γ

2
|∇sh(x, y)|2 +

K

2

(
∇2

sh(x, y)
)2

+
γa
2
(S(x, y, z0) + S(x, y,−z0))

×
(
1 +

1

2
|∇sh(x, y)|2

)
+

Ka

2
(∂zS(x, y, z0) + ∂zS(x, y,−z0))∇2

sh(x, y)

+
Kb

4
(S(x, y, z0) + S(x, y,−z0))

(
∇2

sh(x, y)
)2}

, (3.25)

where the constant terms are omitted, and ∇s = (1 −mm) ·∇ shows the
tangential gradient on the membrane surface. In this free energy, since the
surface gradient terms include only the 2nd order terms, ∇s ≈ (1 − ez) ·
∇ = (∂x, ∂y, 0). As referred above, we neglect the nα-dependent terms. We
assume that the membrane properties are the same for both upper and lower
membranes by the symmetry reason. Subsequently, this free energy model
is Fourier transformed by considering the Fourier components of both order
parameters, S(r) and h(x, y), in (x, y)-plane that is averagely parallel to the
membrane,

S(r) =
1

Nl

∑
q

S(q, z) exp (iq · x), (3.26)

h(x, y) =
1

Ns

∑
q

h(q) exp (iq · x), (3.27)

where Nl and Ns are the number of the LC and the surfactant molecules,
respectively, and x and q are the position vector in (x, y)-plane and the
wave vector in the Fourier space, respectively. Here, for dimensionless,
q = (1/σ0)q

∗ and q∗ is replaced to q as same as other parameters. In
our simulation, z-direction is a special direction because of the existence of
the two membranes. After substituting these Fourier transformed forms into
Eq.3.25, minimizing the resulted form with respect to S(q, z) which is con-
ducted by assuming the system to be in the infinite system of the LC material
(Considering in the LC bulk system. This assumption is valid in the case
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that the bulk LC is in weak nematic or isotropic phase as in our simula-
tion.), and solving the differential equation with respect to z, we obtain as
its equilibrium form for the value of the bulk LC,

S(−q, z) = C(−q) exp (λqz) +D(−q) exp (−λqz), (3.28)

λ2
q =

A

L
+ q2, (3.29)

where C(−q) and D(−q) are the Fourier coefficients of S(q, z) and only
depends on q. The surface term is neglected because now we consider the
infinite system. Substituting S(−q, z) in Eq.3.25 including the interfacial
part of the free energy, we can get the mode-coupled form due to the 3rd
order term with respect to the order parameters as can be seen in Eq.3.25
(the γa and the Kb terms) as following,

Fbulk =
3Am

2Nl

L2

∑
q

λq(|Cq|2 + |Dq|2) sinh (2λqz0), (3.30)

Fint =
Am

Ns

∑
q

[
(γq2 +Kq4)|hq|2 +

1

Nl

{γa cosh (λqz0)(Cq +Dq)(
δq,0 +

1

2

∑
q2,q3

q2 · q3hq2h−q3δq+q2−q3,0

)
−Kaλq(Cq −Dq) cosh (λqz0)q

2h−q

+
Kb

2
(Cq +Dq) coshλqz0

∑
q2,q3

q2
2q

2
3hq2hq3δq+q2+q3,0

}]
, (3.31)

where Am = LxLy is the area of the cross-section of the system in the x− y
plane.

Above derived free energies Eqs.3.30 and 3.31 are the effective interfacial
free energy including the LC free energy, the membrane free energy, and the
interaction energy between them with the bulk LC being in equilibrium state.
The behaviors of the LC and the membrane at the interface are determined
as minimizing the total effective free energy including Eqs.3.30 and 3.31.
Now we want to get information of the membrane interacting with the LC.
Since the LC material in our simulation merely has the interface and does
not construct the layer forms as being in the smectic phase, it is allowed to
realize more rapidly the equilibration of the LC material than the membrane.
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Then, again minimizing the total free energy by Cq and Dq,

C−q = − Am

4NlΓl sinh (λqz0)
{Γf1δq,0 + Γf2δq+q2−q3,0 − Γf3 + Γf4δq+q2+q3,0} ,

(3.32)

D−q = − Am

4NlΓl sinh (λqz0)
{Γf1δq,0 + Γf2δq+q2−q3,0 + Γf3 + Γf4δq+q2+q3,0} ,

(3.33)

Γl =
3

2
L2λq, (3.34)

Γf1 =
Am

Ns

γa, (3.35)

Γf2 =
Am

Ns

γa
2

∑
q2,q3

q2 · q3hq2h−q3 , (3.36)

Γf3 =
Am

Ns

Kaλqq
2h−q, (3.37)

Γf4 =
Am

Ns

Kb

2

∑
q2,q3

q2
2q

2
3hq2hq3 . (3.38)

Finally substituting them into the total free energy including Eqs.3.30
and 3.31 and taking up to the 2nd order of hq, we get

F =
LxLy

Ns2

∑
q

[(
γ − γ2

a

γlc

)
q2 +

(
K − K2

a

Elc

− γa
γlc

Kb

)
q4

]
|hq|2, (3.39)

where γlc = L2/llc, Elc = L2llc and llc =
√
L2/A. llc corresponds to the

correlation length of the LC material, γlc and Elc are the scale of the inter-
facial tension and of the energy, respectively. Eq.3.39 is the effective free
energy of the membrane influenced by the LC material which is always in
the equilibrium state in this case. From Eq.3.39, the coefficients of q2 and q4

correspond to the effective interfacial tension γeff and the effective bending
rigidity Keff of the membrane in our simulation, respectively,

γeff = γ − γ2
a

γlc
, (3.40)

Keff = K − K2
a

Elc

− γa
γlc

Kb. (3.41)
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According to Eqs.3.40 and 3.41, γeff and Keff are decreased by γa and Ka

in the 2nd power of them respectively, which behaviors seem to correspond
to our simulation results with respect to the anchoring parameter ξ. In
addition, Keff shows the different behavior from γeff due to the last term
composed of Kb. When γa is negative and Kb is positive (or, positive and
negative, respectively), Keff increases when |K2

a/Elc| < (γaKb)/γlc|.
Here, we assume a dependence of γa, Ka, andKb on the anchoring param-

eter ξ in our simulation model as following: γa = a(1−ξ), Ka = da(1−ξ), and
Kb is constant for ξ assumed above, where a and da are the constants without
ξ dependence. In our simulation model, ξ = 1 corresponds to the isotropic
interaction (the LC molecules interact with the spherical tail particles in an
isotropic manner), while ξ ̸= 1 gives an anisotropy for their interaction with
an angle-dependent potential depth, which corresponds to the planar anchor-
ing condition for ξ < 1 and to the homeotropic for ξ > 1, see Fig.2.2. We
limit to ξ ≥ 1, the homeotropic anchoring or the isotropic interaction. In
above continuum model, γa < 0 corresponds to the homeotropic anchoring,
and no anchoring condition for γa = 0. Then, we put above assumption for
γa = a(1− ξ) (Using this assumption, we can realize the homeotropic condi-
tion γa < 0 for ξ > 1 and the isotropic interaction γa = 0 for ξ = 1.). For Ka,
we assumes the same form as γa because this term expresses the geometrical
effect for the LC material to the membrane (due to the elastic coupling) and
is strengthened by increasing the anchoring.

Next using above effective physical values, we try to fit these value to our
simulation results.

3.3.2 Fitting for effective parameters

To investigate a parameter dependence for our simulation results of the inter-
facial tension and the bending rigidity shown in Sec.3.1, we conducted some
independent simulations using other value for the GB parameter (the LC
parameter in our simulation), κ′. Changing κ′, the properties of the (pure)
bulk LC material is changed, see Fig.3.10: (a) is the scalar order parameter
S, (b) is the elastic constant L2, (c) is the local energy density in terms of the
LC ordering A. They are estimated for the same parameter set (the same
energy, length parameters, temperature T ∗ = 1.0 and pressure P ∗ = 3.0.
The number of particles is N = 13500.).

We conducted the simulations for 6 parameters, κ′ = 5.0, 8.0, 11.0, 14.0, 17.0, 20.0
in the pure LC system as well as in the LC-confined system shown latter. S



64 CHAPTER 3. RESULT

(a) (b) (c)

Fig. 3.10: The physical values in pure LC material at T ∗ = 1.0, P ∗ = 3.0,
N = 13500, for different κ′. (a) the scalar order parameter, (b) the elastic
constant, (c) the local energy density in terms of the LC ordering.

is calculated by the same way mentioned in Sec.3.1 (but no interface is in
this case). L and A are estimated by the similar way to the estimation of
γeff and Keff . Since the LC material has an anisotropy (although it is in the
weak nematic or the isotropic phase), we conduct the following operation for
their estimaion according to [44]. We assumed that a spatial fluctuation of
the tensor order parameter is weak for directions that are perpendicular to
the main axis in the whole LC system (it corresponds to the eigenvector of
the tensor order parameter with the maximum eigenbalue). Then we calcu-
lated the power spectrum of Qxz(q) and Qyz(Q) (z-direction corresponds to
the main axis, and x,y are perpendicular to z, in this case), and fitted them
using the following,

⟨|Q̃13(q)|2⟩ =
kBT

V (2A+ (L1 + 2L2)(q2x + q2z))
, (3.42)

⟨|Q̃23(q)|2⟩ =
kBT

V (2A+ 2L2q2x + (L1 + 2L2)q2z)
. (3.43)

In our simulation, since there is no external field, the accuracy is not good.
However, the tendency of the LC properties for the increase in κ′ can be
obtained from Fig.3.10.

Using these values, we fitted for our simulation results in Sec.3.1 with re-
spect to ξ using the dependence of γa and Ka on ξ and the constant Kb for ξ
assumed in Sec.3.3.1 as seen in Fig.3.11; in Fig.3.11, a, b and c correspond to
κ′ = 5.0, 14.0 and 20.0, and 1 and 2 correspond to γeff and Keff , respectively.
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According to these figures, the behaviors of γeff and Keff are almost similar
to their modified forms in the continuum field theory, Eqs.3.40 and 3.41. The
correspondence of fitting to Keff seems to be bad, especially at the point on
ξ with the maximal of Keff . This is because in such region with the deviation
for fitting, since the orientation direction of the LC particles changes from the
membrane normal to the planar direction along the membrane (see Fig.3.4
and Fig.3.6), the influence with the molecular level may appear. Again re-
ferring to our continuum model in Sec.3.3.1, we construct the effective free
energy as considering the anchoring, mutual elastic coupling, and the effect
of the rigidity of the nematic layer. The assumption that Kb is independet
of the anchoring parameter ξ, we can realize the increasing behavior for Keff

in lower ξ region. Although the other effects may affect for the increasing
behavior of Keff , we yet get them in this model.

From these fittings, of course including the cases of κ′ = 8.0, 11.0, 17.0,
we get the effective parameters as can be seen in Fig.3.12: (a) is a, (b) is da,
and (c) is Kb, respectively, and they are plotted for L2 of the elastic constant
of the pure LC material. These L2 values correspond to that for κ′ using in
the LC-confined system for each data points in Fig.3.12.

According to these figures, (i) a shows no dependence on L2, (ii) da and
Kb are the increasing function of L2, although the accuracy is not good.
Since a means the local coupling strength for the LC tensor order parametr
to the membrane normal, it is valid that a is independent of the LC elastic
constant L2 which characterizes the correlation between the LC directors.

Figure 3.13 shows ξ giving the maximal of Keff (defines it to ξm). Ac-
cording to this figure, although ξm increases slightly at lower L2 region, it
is almost constant for larger L2 region. Since the maximal of Keff is real-
ized by the competition　 between the elastic rigidity of the growed nematic
layer and the effect of the anchoring. First increase in Keff reflects stronger
elasticity of the nematic layer (characterized by Kb in the continuum model)
than the anchoring effect with respect to the elastic coupling (characterized
by Ka) and subsequently decreasing behavior is originated from the inversion
between these contribution. Since both Ka and Kb are the increasing func-
tion of L2 shown in (a) and (b) in Fig.3.12, respectively, these effects show
similar strength for increasing the elasticity of the LC material L2.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 3.11: The fitting pictures for κ′ = 5.0, 14.0, 20.0 in the LC-confined
system. The case κ′ = 5.0 is the same as shown in Sec.3.1.



3.3. ANALYZING FREE ENERGY INCLUDING SOME EFFECTIVE TERMS67

(a) (b)

(c)

Fig. 3.12: The fitted effec-
tive parameters, (a) is a,
(b) is da, and (c) isKb, and
they are plotted for L2 of
the elastic constant of the
pure LC material for the
corresponding κ′.

Fig. 3.13: The estimated
ξm giving the maximal of
Keff for L2.





Chapter 4

Conclusion

We conducted Monte-Carlo simulation of the membrane-confining LC sys-
tem, and estimate the physical properties of the interface covered by the
membrane and contacted with the LC material. We confirmed that the ef-
fective interfacial tension and the effective bending rigidity of the interface
changes by changing the anchoring parameter for the LC material at the
interface. Their changes also depend on the penetration of the confined par-
ticles and it is confirmed by the independent simulation for the oil-confined
system, that is no anisotropy in the particles. However, the different be-
haviors are observed for the LC-confined system from the oil-confined sys-
tem, then we considered the orientational properties-dependent interaction
between the LC material and the membrane at interface. Then we first cal-
culated the physical boundary conditions at such interface using the model
free energy including the anchoring effect, and got the coupling between the
membrane fluctuation and the LC orientational order and its gradient. Sec-
ond we tried to construct the effective free energy including above physical
boundary conditions as setting some coefficients, and got the effective forms
of the interfacial tension and the bending rigidity of such system. Lastly we
estimated these coefficients by fitting to our simulation results, and investi-
gated their behavior for the elastic property of the LC material. According
to these results, the constructed effective free energy has the reasonable form
for our simulation system, at least.
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