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ABSTRACT.  Direct current measurements and studies of the  temperature distri- 
bution in the  Greenland Sea  indicate that while the  Polar Water of the East Green- 
land  Current originates  in the Arctic Ocean, the intermediate and deep  water 
masses circulate cyclonically, There  are systematic  seasonal  changes in  the tem- 
perature  and salinity of the Polar  Water.  These  changes are associated with the 
annual cycle of freezing and melting of ice; they are conditioned by horizontal 
advection, vertical turbulent diffusion, and in  winter by penetrative convection. 
During  summer  there is a pronounced  baroclinic  tendency which should be mani- 
fested by a decrease in  current speed with  depth.  However,  direct current measure- 
ments during winter show that  there is no such  variation. The most likely cause of 
this discrepancy is that  the relative importance of the  baroclinic  contribution to  
the pressure  gradient varies seasonally. Lateral water  mass displacements of 70 km. 
or  more within a few  days  have been observed at  all depths  within  the  East Green- 
land Current, suggesting a large-scale barotropic  disturbance  as a primary cause. 

R&UMÉ. Le courant de l'est du Groenland, au nord du Détroit  de  Danemark. 
Deuxième  partie. Des mesures directes de  courant et des études de distribution  des 
températures dans  la mer du  Groenland indiquent  que, si les eaux polaires du 
courant  de l'Est du  Groenland tirent leur origine de l'océan Arctique, la masse des 
eaux  intermédiaires et profondes  circule de  façon cyclonique. I1 y a des change- 
ments  saisonniers systématiques dans  la  température  et  la salinité des eaux polaires. 
Ces  changements sont liés au cycle annuel  de  formation et de  fonte  de  la glace, et 
sont conditionnés par l'advection horizontale, la diffusion turbulente verticale  et, 
en  hiver, par  la convection pénétrative. En été, il existe une  tendance  baroclinique 
prononcée qui devrait se manifester par une  réduction de  la vitesse du  courant en 
fonction de la profondeur.  Cependant, des mesures directes  de courant  au cours 
de l'hiver montrent  que  cette variation n'existe pas. La cause la plus probable de 
cette  anomalie est que l'importance relative de  la contribution  baroclinique au 
gradient de pression varie  selon la saison. On a observé à toutes les profondeurs 
du  courant  de l'Est du  Groenland des déplacements latéraux des masses d'eau de 
70 km ou  plus  en quelques jours, ce  qui suggère comme cause première  une pertur- 
bation barotropique à grande échelle. 
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THE POLAR  WATER 
Introduction 

Recent current measurements  have indicated that the East  Greenland  Current 
primarily represents the western boundary current of a cyclonic circulation within 
the Greenland  and Norwegian seas (Aagaard  and  Coachman 1968). This circu- 
lation involves  a  volume transport during winter of about 35 sv (35 x lo6 m.3 
sec.-l). The outflow of Polar Water  from the central Arctic Ocean is thought to 
represent only  a minor portion of the total flow  in the western Greenland Sea, at 
least during winter.  However, the Polar Water constitutes the upper layer of the 
East  Greenland  Current  and to  a large extent controls the ice distribution, so 
that the presence of this  water  mass  is  manifested out of all proportion to its 
relatively  small contribution to the total transport. It is therefore of interest to 
examine  in detail some characteristics of the Polar Water. 

1 

FIG. 1 .  Locations of the 0" f 

and - 1 "C. isotherms at 50 
rn. in August-September 
1965, and positions of 47 
stations occupied by the 
Edisto in 1965. 
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FIG. 2. Locations of the 
33%, and 34.57& isohalines 
at 50 m.  in 
August-September 1965. 

The horizontal distribution of temperature and salinity 
The eastern edge of the East  Greenland  Current  can  be usefully approximated 

by the 0°C. isotherm and the 34.5% isohaline at 50 m. depth. Fig. 1 shows 
the locations of the stations occupied  by the Edisto from 21 August to 12 Sep- 
tember 1965. The locations of the 0" and - 1°C. isotherms at 50 m. also are 
shown  in Fig. 1, and in Fig. 2 the locations of the 337& and 34.5% isohalines at 
50 m. are given. At  about 73"30'N., there is an ambiguity in positioning these 
isolines  because of apparent reversals in the horizontal components of the tem- 
perature and salinity gradients; therefore the extreme western and eastern posi- 
tions in this area are respectively indicated by a  dashed line and a dotted line. 

From 80" to 77"N. the eastern edge of the East  Greenland  Current is directed 
about 30" west of south. At  about 77"N. the edge turns  more westerly  and 
follows the continental slope south as far as 75" to 73"N. where there is an abrupt 
easterly change in direction. This  eastward extension of relatively cold, low- 
salinity  water  is probably associated  with the eastward transport of Polar Water 
by the Jan Mayen Polar Current  (Aagaard  and  Coachman 1968). 

The lowest temperature  and salinity found within the current at 50 m. was 
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STATIONS FIG. 3. Profiles of temDerature I 
and salinity  across  the Pblar 
front at about 75"N. in 

"" ISOHALINE, Ob. I I 

KlLOMETtRS 
I I 

- 1.76"C. and 32.31%0 respectively, so that according to Figs. 1 and 2, within 
the current the largest horizontal components of the gradients of temperature 
and salinity are found  near  the eastern edge. This is, in general, true not only 
at 50 m. but throughout the layer of Polar Water, as  shown in Fig. 3 which 
presents a transverse section of the current between stations 20 and  28A (loca- 
tions  shown in Fig. l).  

Fig. 3 also shows the considerable slope of the isotherms and  isohalines near 
this Polar front. The steep inclination of the isolines  extends  down past 200 m. 
and frequently exceeds one  metre per kilometre over 120 km. or more. 

Occasionally,  water  with a temperature of less than O'C, and a salinity  usually 
between 34%0 and 34.6p/0 is found east of the Polar front, with  warmer  water 
interposed between the  front  and  the cold water in the vertical plane of the 
oceanographic station line. An example  appears in the transverse section  (Fig. 3) 
in  which  cold  water is seen east of the Polar front at stations 20  and 21 at a 
depth of about 35 m. Stations 20 to 24 were taken within a 25-hour period, the 
greatest time interval between  any  two adjacent stations being 7 hours, so that 
the interposition of the warm  water  is probably real, rather than a product of 
non-synoptic data. 

In August-September 1964 the Edisto occupied  in the northern Greenland 
Sea  two  lines of stations which  exhibited the same  phenomenon of relatively  cold 
water east of the Polar front. The locations of these stations are shown in Fig. 2, 

c 
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FIG. 4. Profiles of 
temperature and salinity 
across the Greenwich 
meridian at about 78" and 
79" in August- 
September 1964. 

and  the observed temperatures  and salinities in  Fig. 4. The  greatest time interval 
between  any  two adjacent  stations was 8 hours. 

In each of the above cases, the cold water  appeared below the surface, at 
depths ranging from 30 to 75 m. While it does not now appear possible to eluci- 
date  the mechanism forming these temperature minima, the possibilities are 
numerous, e.g., detached eddies, quasi-stationary meanders, or a variable inten- 
sity of the  Greenland Sea circulation. Evidence for large-scale eddies associated 
with the  East  Greenland  Current  has been found  farther  south,  in  Denmark 
Strait  (Gade et al. 1965). 

There is another  characteristic of the  East  Greenland  Current which  may be 
associated with the isolated parcels of cold water. It appears  that locally the 
position of the  Polar  front  can vary considerably within a short period of time. 
Consider, for example, the position indicated in Fig. 2 by x, denoting the  approxi- 
mate position of stations 35 and 42 occupied 41 hours  apart by the Edisto in 
September 1964. While exact positioning in the  Greenland Sea is  difficult because 
of poor  Loran coverage and a sky that is often obscured, it appears  from  the 
soundings taken  at each station  to be  highly probable  that  station 35 was taken 
no  farther west than was station 42, and possibly  as  much  as 20 km. farther 
east  than 42. Nevertheless, Fig. 5 which depicts temperature  and salinity observa- 
tions at  the two stations, shows that  Polar Water was observed at  station 35 in 
the  upper 15 m. and was probably  not  far away from the  station  at 75 m., whereas 
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FIG. 5. Vertical distributions 
of temperature and  salinity at 
two stations at about 80"N., 
2"E. in September 1964. 

the lowest temperature observed in the  upper 150 m. at station 42 was 1.5"C. 
A  more  dramatic example of local change of water properties is shown in 

Fig. 6, depicting data  from  stations 12, 13, 18 and 19 from  the 1965 Edisto 
cruise (see  Fig. 1 for  station locations). The  four  stations have been positioned 
in Fig. 6 in their relative meridional positions, i.e., station 13 was taken nearly 
5 km.  west of station 19. (The abscissa in Fig. 6 has been expanded three times 
in relation to  that in Figs. 3 and 4.) Stations 18 and 19 were taken 6 to 22 km. 
north of stations 12 and 13 and nearly 4 days later. Stations 12 and 13 are 
separated by 2 hours,  stations 18 and 19 by 7 hours, so that  each  station  pair is 
probably quasi-synoptic. The presence of the  Polar  front  near  station 12 and 
its absence even 90 km. farther west at  station 18 four days later is conspicuous. 

It thus appears likely that locally the  Polar  front  can move laterally on  the 
order of 100 km. within a few days. Again, the mechanism of such a movement 
does not  appear  to be clear from  present  data. However, as  with the  temperature 
minima  discussed above, the local movement may be associated with such factors 
as large eddies or  a variable intensity of the  Greenland Sea circulation. 
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FIG. 6. Profilesof 
temperature and salinity 
near the Polar front at about 
73%. in August 1965. 

STATIONS 

There  are indications that  the intensity of the flow  of Polar Water may vary 
with  time. In  an extensive review of the  drift of the ice off East  Greenland, Koch 
(1945, p. 344)  found  that  “The ice does not  drift regularly from the  Polar Basin 
into  the Atlantic, but arrives in the  form of pulsations.” However, the available 
data did not  permit recognition of pulsations with periods of less than a month. 
There also appeared  to  be pulsations of one  to two  weeks in  the  drift of the ice 
island WH-5 along the northwest coast of Greenland in the summer of 1964  (Nutt 
1966). While a variability of ice drift need not primarily be associated with a 
variability in current, some coupling might be expected. 

However, in the cases cited, the pulsations observed in the ice drift  appear to 
be of somewhat greater period than  the time required  for  the local apparent move- 
ments of the  Polar  front.  More  rapid changes in velocity appear  to  have been 

3 observed from the drifting ice island Arlis I1 in 1965. Although it is  diflicult to 
interpret  the variations in current measured from  the ice island, there  are indica- 
tions that relatively large variations may occur over a day. For example, near  the 
location indicated by a triangle in Fig. 2, two series of measurements made  about 
20 hours  apart and probably separated by  less than 15 km.  showed a change in 
the mean velocity  between 25 m. and 200 m. depth from 22 cm.sec.-l toward 
240°T, to 8 cm.sec.-l toward 200’T. 

It would appear  that a great deal of information about  the  East  Greenland 
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FIG. 7. Positions of 13 
stations used in Figs. 8, 
9 , lO and 11. 

Current could be obtained by monitoring the  Polar  front,  rather  than  exerting 
major effort to  penetrate deeply into  the pack ice. This should certainly be 
considered in planning future investigations. 

The vertical distribution of temperature and salinity 
In an  attempt  to minimize the effects of lateral displacement on  the vertical 

temperature  and salinity profiles of the  Polar  Water,  and yet provide  a glimpse 
of the seasonal changes, three  pairs of closely-spaced stations were  selected from 
the Edisto and Arlis I1 data (Fig. 7). The Arlis I1 data  are  from winter (Feb- 
ruary-April) and  the Edisto data  from summer (August-September). At  the 
northern-  and  southernmost  locations,  there were no salinity observations at  the 
Arlis I1 stations, and so, for  purposes of comparison, supplementary data were 
taken  from  the  nearest Arlis I1 stations (also indicated in Fig. 7). As both supple- 
mentary stations  are  quite  far removed from the  northern  and  southern paired 
positions, 290 and 110 km. respectively, their salinities may not  be  representa- 
tive of the salinities at  the positions of the  paired  stations,  and caution must be 
exercised in interpretation. 
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SALINITY. %o FIG. 8. Vertical distributions 
32.2  33.2  34.2 of temperature and salinity at 

I I I I ' 8 stations in the upper 300 m. 
TEMPERATURE, O C  of the East Greenland Current. 

The observed temperatures  and salinities are shown  in Fig. 8. In winter, the 
upper layer of the Polar Water tends towards homogeneity, particularly with 
respect to temperature  and to a lesser extent salinity. This vertical  homogeneity 
is undoubtedly conditioned by the freezing process, since the temperature 
throughout  the  upper layer  is near the freezing point for the particular salinity. 
This is true even  where there is a moderately strong increase of salinity  with depth 
in the upper layer (Fig.  8[a]),  since the freezing point is  only a slowly-varying 
function of the salinity. For this reason, also, the salinity structure is not a good 
index of the depth of convective penetration associated  with the freezing  process. 
A better index  is the temperature, as  will  be  shown  in the example  presented in 
Fig. 9, discussed  below. 

The depth of the homogeneous  layer  varies  considerably. The Arlis I1 data 
show  salinities that are more nearly  uniform  with depth  (and higher) at the more 
southerly positions, but this  may  be the result of changes in the cross-stream 
position rather than of changes  in latitude. There does not seem to be a corre- 
sponding increase  in the depth of the isothermal layer at the more southerly 
stations. Usually the isothermal layer extends down to at least 50 m. (Fig. 8[a]) 
and occasionally the water  is  nearly  homogeneous in both  temperature and 
salinity to 120 m. or more (Fig. 8[c]). 

An extreme example of convective penetration is  shown  in Fig. 9, in  which 
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SALINITY, %e FIG. 9. Vertical distributions 
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are presented data from Arlis 11, the station location being indicated in Fig. 7 
by an inverted solid  triangle. Although  the salinity remains  uniform only through 
the upper 5 to 10 m., the temperature  and deviation-from-freezing-point profiles 
both indicate the presence at 146 m. of water that must have been in compara- 
tively recent contact with the atmosphere.  Presumably, the achievement of such 
deep convection  and the simultaneous establishment of a significant  increase of 
salinity (and hence  density)  with depth, might depend  upon either bringing into 
contact with the cold atmosphere water of differing  salinities, or changing the 
salinity of the near-surface water through addition of brine formed by the freezing 
process. The most  saline (and  hence densest)  water  would  eventually  assume a 
position near the bottom of the upper layer. Furthermore, this surface cooling 
and establishment of a subsurface halocline  need not necessarily occur at the 
same location. since the effect  could be achieved by advection at subsurface 
levels of water of differing  salinities  which had been in contact with the atmosphere 
at other localities. The large cross-stream  salinity gradients (see  above) together 
with the large westerly  velocity components  (Aagaard and Coachman 1968) 
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found in the East  Greenland  Current make such  a hypothesis quite  tenable. 
However, Coachman (in press) has presented arguments to show that while the 
freezing process associated with leads  in  the ice can induce deep convection and 
concurrently establish or maintain a considerable increase of salinity with depth, 
this  mechanism  is not  dependent  upon  lateral advection over any great distance. 
Whatever the details of the convective mechanism, whether local  or influenced 
by lateral advection, Fig. 9 shows that  the convection can  penetrate  to  depths 
exceeding 140 m. in contrast  to previous concepts of vertical convection in arctic 
regions (see, e.g., Nansen 1906, Coachman 1962). 

During summer, when the ice is melting, the near-surface salinity decreases 
greatly, often by more than 5 parts  per 1,000. This establishes a  large  increase 
of salinity with depth in the  upper layer, which  may in the  upper 20 m. exceed 
1 part  per 1,000 per 5 m. Simultaneously, the  temperature in the  upper layer 
increases, usually leaving at  about 50 m. a  temperature minimum which is 
frequently within a few hundredths of a degree Celsius of the freezing point of 
the water at  the  particular salinity. From  Fig. 8 it would appear  that  there  is 
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FIG. 10. Vertical distributions 
of temperature, salinity, and 

1 dissolved  oxygen  at 2 stations in 
the East Greenland Current 
during winter. 
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also considerable heating of the water  immediately  below the temperature 
minimum, so that the erosion of the temperature minimum occurs both by  mixing 
with  warmer surface water and by an  upward heat flux from  the Atlantic Inter- 
mediate  Water.  The net  effect  is such  that during summer, noticeable tempera- 
ture changes  may occur over a  depth  range exceeding 100 m. 

In addition to  the  summer  secondary  temperature minimum, other subsurface 
temperature extremes are frequently present both in summer and in winter. 
Figs. 8(a) and (b)  show a noticeable secondary maximum in the summer tem- 
perature at about 20 m., and a secondary minimum in the winter temperature 
at about 100 and 200 m. respectively. Further illustrations of such extrema  are 
given in Figs. 10 (winter) and 1 1  (summer); station locations are shown in Fig. 7. 

The two stations represented in Fig. 10, which  show secondary  temperature 
minima,  one at 107 m. and the other at 165 m., do not show an erratic salinity 
structure at  the corresponding depths. However, at station 310 the dissolved 
oxygen  profile  is erratic between about 100 and 125 m.  both in volume  concen- 
tration and percent saturation. Similarly,  in  Fig. 11 the two stations show a 
summer secondary  temperature maximum at about 20 m. but do not show a 
corresponding erratic salinity structure. The dissolved  oxygen distribution at 
station 31 is erratic, however, near the depth of the temperature maximum. 

In general, it appears that the stations exhibiting such  extrema are distributed 
more or less at random. With the exception of the summer temperature minimum, 
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FIG. 1 1 .  Vertical distributions 
of temperature, salinity, and 
dissolved oxygen at 2 stations 
in the East Greenland Current 
during summer. 
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these extrema must be conditioned by lateral advection, since the temperature 
structure indicates that they are below the layer of possible  convective overturn, 
and they cannot be produced by diffusion.  As  mentioned  above, the large westerly 
currents and gradients of water properties make  such advective  effects  likely. The 
vertical distribution of salinity  is not a sensitive indicator of lateral advection. 

Baroclinic tendencies 
The Arlis I1 current measurements  (Aagaard  and  Coachman  1968) indicated 

that within the  East  Greenland  Current there is, in general, no  depth at which 
horizontal motion is  negligible. Indeed, the mean currents did not  appear to 
decrease greatly  with depth. Therefore, the computation of dynamic topography 
in relation to an assumed surface of no motion cannot  be expected to give a 
good approximation to  the total velocity  field. 

Furthermore, as shown  above, it appears to be likely that locally the position 
of the Polar front may change considerably  within a few days. Such changes 
indicate the advisability of caution in assuming hydrographic  data to be synoptic, 
or in assuming that the dynamic  topography of an  area such  as the western 
Greenland Sea represents a steady condition. 

Nonetheless, from Fig. 8 it is  clear that the isopycnals near the Polar front are 
steeply  inclined. The mode of motion  associated  with  this baroclinic contribution 
to the pressure gradient would  have a tendency toward geostrophy, and it is 
instructive briefly to examine a few features of this  mode. 

To minimize the effects of non-synoptic data, pairs of hydrographic stations 
have  been  selected. The time interval between occupation of the station pairs 
was on the order of 6 hours, and so it  is  believed that  each pair represents quasi- 
synoptic conditions. The mean baroclinic mode of motion of the sea surface in 
relation to 200 decibars was computed for each pair of stations. The  computed 
motion is, of course, only that portion normal to a line between the two stations. 
However, the station pairs are in  most instances approximately  normal to the 
Polar front, so that the computed portion of the baroclinic velocity  field  is 
probably a reasonably good approximation to the  total baroclinic field. 

The results are presented in Fig. 12.  The  approximate location of the Polar 
front, as indicated by the 0°C. isotherm at 50 m. is  also  shown, in 1964 by a 
dotted line and in 1965 by a solid  line. When there are ambiguities or apparent 
shifts  in the position of the front, the eastern and western extreme positions have 
been indicated by dashed  lines. The  date of observation of each pair of stations 
is  also  given. 

There are at least three features of Fig. 12  that  should  be recognized: 
1) The speeds immediately north of 70"N. appear anomalously  low. This 

reduction in the slope of the isopycnals  may be associated  with the divergence of 
the current which  is  believed to occur near Jan Mayen. Thus, north of the Jan 
Mayen Ridge, the Jan Mayen Polar Current transports Polar Water eastward, 
while south of the ridge, the  East Icelandic Polar Current sets southeast. Possibly 
the intensity of one or both of these currents varies considerably with  time. Thus 
the apparent westward shift of the Polar front at about  73"N. during August 
1965 could  be construed to represent an interruption of the  Jan Mayen Polar 
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Current. It should be noted, however, that the north-south slope of the isopycnals 
west of Jan Mayen  (between stations 9, 10, 11, and 12 in Fig. 1) was  almost 
negligible during 24-26 August,  implying easterly geostrophic surface speeds 
relative to 200 decibars and associated  with the baroclinic mode of 1 cm. sec.-l 
or less. 

2) The cross-stream position of the greatest speed  (and  isopycnal  slope) ap- 
parently varies both with location and time. For example,  in 1965 the greatest 
speeds  between 78" and 75"N. were found  above or just inshore of the 1,000 m. 
isobath, i.e.,  above the upper portion of the continental slope.  While  this location 
approximately coincided  with the Polar front  at 75" and 76"30'N., it did not 
do so at 78"N. However,  in 1964 the greatest speed  between 78" and 80'30'N. 
was  associated  with the Polar front rather than with the continental slope. 

3) The  computed speeds are, in  general, not negligible,  being as high  as 
23 cm. sec.-l at 78"N. in the summer of 1965. Therefore, a decrease of total 
speed  with depth would  be expected; or alternatively,  since the  computed 
velocities are southerly in direction, there should  be a decrease with depth of 
the southerly component of the total velocity.  However, as mentioned above, 
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FIG. 12. Baroclinic  velocity 
vectors during summer (sea 
surface  relative to 200 m.), 
and locations of the Polar 
front as indicated by the 
0°C. isotherm at 50 m. 
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the Arlis I1 winter current measurements did not, in the mean, show such a 
decrease, although they  were made at locations (indicated in  Fig. 12) where 
there were  significant  baroclinic  tendencies in the summer of 1965. There  are 
at least two  possible reasons for this apparent discrepancy. 

One is that the East Greenland  Current may not  be in approximate geostrophic 
equilibrium. For example, lateral friction may be important. However, there is 
some  evidence that at least during winter the potential vorticity of the East 
Greenland  Current is approximately conserved  between about 80' and 70'N. 
(see Appendix), suggesting that friction is not of primary  importance in the 
dynamics of the current. It is  also  possible that  the non-linear acceleration is 
important. However, the estimated vorticity of the current is of order 5 x 
sec.-l  or less, so that the Rossby  number  would  be of order 5 x or less 
(R, = {/f, where R, is the Rossby number, 6 is the relative vorticity, and f = 

sec."  is the planetary vorticity - see, e.g.,  Fofonoff 1962). This suggests 
that non-linearity is probably not important in the current dynamics, either, 
except in  allowing adjustments of the relative vorticity  with changes in depth 
and latitude. The possible  effects of local accelerations on the geostrophy of the 
East  Greenland  Current  cannot be adequately estimated, although from the above 
discussion  it  is apparent  that  such accelerations occur. Thus to the extent that 
the local accelerations do not influence  geostrophy, the internal field  of  mass 
should be  in approximate geostrophic equilibrium; and to this extent, the surface 
currents relative to 200 decibars presented in Fig. 12 are representative of the 
baroclinic velocity  field. 

Another possible reason for the discrepancy  is that the baroclinic contribution 
to the pressure gradient may be appreciably smaller in winter than in summer. 
One of the few partial winter  crossings of the Polar front  occurred in 1954, when 
the Atka (US. Naval Hydrographic Office 1956) occupied several hydrographic 
stations near the location marked in Fig. 12 by x. The  data indicate a computed 
southerly surface speed relative to 200 decibars of 4 cm. sec.-l immediately east 
of the front. About 60 km. north of this location, surface speeds during summer 
relative to 200 decibars computed  from the 1965 Edisto observations vary  be- 
tween 2 and 16 cm. sec.-l, so that a comparison between the Atka and the Edisto 
data to estimate seasonal changes  is  inconclusive.  However, a comparison of 
Arlis I1 and 1965 Edisto data indicates a threefold increase from winter to summer 
of the baroclinic contribution to the pressure gradient: two stations from  the drift 
of Arlis 11, one located about 18 km. east of Edisto station 26 (Fig. 1) and the 
other about 15 km.  west of Edisto station 17, differed in geopotential anomaly 
between the sea surface and 200 decibars by 0.05 dynamic meter; the two 
Edisto stations differed  by 0.15 dynamic meter. While this suggests that  the 
baroclinicity  may  be substantially more  marked  during  summer  than during 
winter, a reliable estimate of the seasonal effects is impossible because of the 
scarcity of hydrographic observations during winter. 

It does not, therefore, seem  possible dehitively to explain the  apparent 
discrepancy between the computed summer  velocities,  which indicated that the 
total southerly velocity component  should decrease with depth, and  measured 
winter  velocities,  which  did not show such a decrease. Departure  from geostrophy 
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because of local accelerations, and seasonal changes in the relative importance 
of the baroclinic contribution to the pressure gradient are possible  causes of the 
phenomenon, the latter being the more probable. 

THE  INTERMEDIATE  AND  DEEP  WATER  MASSES 

Introduction 
The Arlis I1 current measurements indicated that the intermediate and deep 

water  masses  in the western Greenland Sea  also participate in the general  cyclonic 
circulation dominant in the Greenland  and Norwegian  seas (Aagaard  and  Coach- 
can 1968); indeed,  these  water  masses constitute the major portion of the total 
transport of about 35 sv. 

The  Atlantic Intermediate Water 
Since its discovery by Ryder (1895) in 1891, the southward-flowing Atlantic 

Intermediate Water has been  recognized  as  having  its  origin in the West Spits- 
bergen Current, which  sets northward along the west  coast of Spitsbergen. The 
only  voice of dissent appears to have  been raised by Pettersson (1 904): ". . . it  is 
furnished by an under-current of Atlantic water, which at about 72" lat. branches 
off from the main  body of such  water in the Norwegian  Sea,  and north of Jan 
Mayen  flows in a north-westerly direction towards the coast of Greenland." 
The movement of warm  water  westward from the West Spitsbergen Current  has 
usually  been thought to occur between 77'30' and 80'N. (cf. Helland-Hansen 
and  Nansen, 1912, Kiilerich, 1945). Water of Atlantic origin  is  also found in 
the Arctic Ocean,  and  undoubtedly some of the warm  sub-surface  water of the 
East Greenland Currwt is  outflow from the Polar basin. However, because  of 
the very large transport of Atlantic Intermediate water  in the western Greenland 
Sea, probably well in excess of 20 sv during the late winter of 1965 (Aagaard  and 
Coachman 1968), there would  seem to be no  doubt  that the major portion of the 
Atlantic Intermediate Water turns south before entering the Arctic Ocean. The 
rather high temperatures of the Atlantic Intermediate Water, frequenly exceeding 
2'C., also point to a recent origin in the West  Spitsbergen Current. 

The  dominant distinguishing characteristic of the Atlantic Intermediate Water 
is  its temperature, which  is greater than  that of the  ambient water  masses. The 
use of temperature  and salinity as a tracer of sub-surface  water  movement  is  best 
accomplished along the surface of minimum  mixing,  i.e., approximately along 
a surface of equal potential density  (see,  e.g.,  Montgomery 1938); in the ocean 
such surfaces are approximated by surfaces of equal sigma-t. 

Two such charts of temperature  on a surface of constant sigma-t  have  been 
prepared to elucidate the motion of the Atlantic Intermediate Water: Fig. 13 is 
based on the Johan Hjort cruise in September-October 1958, and Fig. 15 on the 
Atka cruise in August-September 1962. The surface of sigma-t = 28 has been 
selected  because  it  lies  close to the temperature maximum of the Atlantic Inter- 
mediate  Water. Figs. 14 and 16 show the depth of this  sigma-t surface for the 
two  cruises. The contours in  all four figures  have  been subjected to a small 
amount of visual  smoothing. 
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FIG. 13. Temperature in 
"C. on the density surface 
ut = 28, Johan Hjort, 
autumn 1958. 

Although there  are some differences between the two years,  both in the ex- 
treme values of temperature  and in the size of the  temperature gradients, three 
major common features  are  apparent: 

(1) The westward  movement of warm water from the West Spitsbergen Current 
begins  immediately north of 75"N., i.e., about 2O  of latitude  farther  south  than 
was recognized by Helland-Hansen and Nansen (19 12).  The westward motion 
occurs over a wide range of latitude,  probably  at  least  to 80'N. and  perhaps even 
considerably north of that. The depth of the layer decreases as the water moves 
west toward  the Greenwich meridian, the warm water on  the  surface sigma-t = 
28 rising to within about 50 m.  of the  sea  surface;  then in westerly longitude the 
depth again increases, so that  the  core of the southward-moving Atlantic  Inter- 
mediate Water near  the  upper  part of the  Greenland  continental  slope usually 
lies  below 200 m. The  net impression is of a  broad sweep of warm water across 
the  northern  Greenland Sea north of about 75"  to 76"N. 

(2)  At  about  73"N. warm water from  the  East  Greenland  Current moves east- 
ward  in a cyclonic movement and is identifiable to  at  least SOW. Presumably this 
movement of Atlantic  Intermediate Water is associated with that of the  Polar 
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FIG. 14. Depth in m. of the 
density surface ut = 28, 
Johan Hjort, autumn 1958. 

Water in  the Jan Mayen Polar  Current  (Aagaard  and Coachman 1968). As the 
warm water moves eastward it rises, and it  may appear on the  surface sigma-t = 
28 at less than 100 m. depth. 

(3) The warm water not involved in the eastward movement north of Jan 
Mayen continues  southward  near  the  continental slope at  depths  greater than 
200 m. 

Contrary  to  earlier opinions (see, e.g.,  Kiilerich 1945), it does not, in general, 
appear  that  during summer the  baroclinic mode of motion below 200 m.  is 
negligible. For example, between the 1965 Edisto stations 45 and 46 (Fig. 1) this 
mode at 200 decibars relative to 500 decibars was southwesterly at 4 cm. sec.-l. 
Whether or  not  there  are seasonal changes in the relative importance of this mode 
within the  Atlantic  Intermediate  Water, as has been suggested for  the  upper 
layers (see above), cannot  at  present  be determined. 

However, it  has long been recognized that  there  are seasonal and  annual changes 
in the  temperature  and salinity of the West Spitsbergen Current  (Sverdrup 1933), 
and  that  therefore  such changes also occur in the Atlantic  Intermediate Water 
of the  East  Greenland  Current  (Jakhelln 1936). Furthermore, like the local shifts 
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r 
FIG. 15. Temperature in 
"C. on the density surface 
ut = 28, Atka, summer 1962. 

in position of the  Polar  front described above, there also appear  to  be  short- 
period local changes in the  temperature  and salinity of the  Atlantic  Intermediate 
Water; these changes may be associated with a movement of the  core of warm 
water. 

For example, at  the  1965 Edisto stations 13 and  19 (Fig. 1) taken  about 4 
days apart,  the  temperature increased from  a maximum  of O.8O0C. at  175 m. to 
1.04"C. at  96 m. Simultaneously the  depth of the  surface sigma-t = 28 decreased 
from 170 m. to  100 m. The slope of this surface between stations 12 to 13 and 
18 to 19 was about  one  metre  per kilometre, so that if the change in the  depth 
of the  temperature maximum can be  interpreted as a westward translation of 
the  core of warm water,  the  lateral motion was of order 70 km.  Thus it seems 
that  large  lateral displacements of the  current may not only appear in the upper 
water layers,  but also below the pycnocline. Indeed,  it will be shown that  such 
displacements may occur in the Deep Water below 1,500 m. depth. 
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FIG. 16. Depth  in m. of the 
density surface at = 28, 
Atka, summer 1962. 

dominated by  two large cyclonic  gyres  (cf. Helland-Hansen  and Nansen 1909, 
Metcalf 1960). The southern gyre  is located south and southeast of Jan Mayen 
and will  be referred to as the Norwegian  Sea  gyre,  while the  one northeast of 
Jan Mayen will be  called the Greenland Sea  gyre.  Metcalf (1960) showed that 
below 1,500 m. depth, the waters  underlying the two  gyres  can  be  differentiated 
on the basis of temperature: the Deep Water of the Greenland Sea  gyre  is  always 
colder than - 1 O C .  while that of the Norwegian  Sea  gyre  is  always warmer. This 
distinction appears to have been  valid during the last three decades  (Leineb$ 
1965). Near the edges of these  gyres there may be present water of both types, 
representing contributions of Deep  Water  from  both regions. 

Beginning  with  Nansen (1902), numerous investigators have shown that the 
Deep  Water of the Polar basin is never colder than  about -0.9"C. Nansen was 
aware  that the Greenland Sea Deep  Water was colder than  that,  but  probably 
partly because of the proximity of the Greenland  Sea to  the Polar basin, he 
believed that the Deep  Water of the Polar basin came primarily from  the  Green- 
land Sea. To reconcile the apparent  temperature discrepancy, he postulated that 
a submarine ridge,  which had been  observed to extend  west from the West  Spits- 
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bergen in about 80'N. latitude,  continued across to  Greenland  and  thus  restricted 
the  northward movement of Deep Water beneath sill depth, which  was estimated 
at 1,200 to 1,500 m. 

Recent Soviet bathymetric investigations (Balakshin 1959) have revealed that 
there is no physical barrier  to  the  northward movement of Deep Water.  The most 
recent  data, including the 1964 Edisto soundings, indicate  that  the  greatest  depth 
of the slight rise  separating  the  Greenland Sea from  the  Polar  basin is about 
2,500 to 2,600 m. 

Metcalf (1960) proposed, in effect, that  the  barrier  to  the  northward movement 
of Greenland Sea Deep Water is dynamic rather  than bathymetric. He found 
Norwegian Sea Deep Water to  the east, north,  and  northwest of the  Greenland 
Sea gyre and thought that  the  Deep Water in the  Polar basin comes primarily 
from  the Norwegian Sea gyre. 

Recent observations substantiate Metcalf's hdings and provide some informa- 
tion on the  probable motion of the  Deep Water underlying the  East  Greenland 
Current. Fig. 17 presents  data  from  four  recent cruises in the  Greenland Sea. At 
each  station  the Deep Water has been  classified  as being Norwegian Sea gyre 

FIG. 17. Deep Water 
temperatures classified 
according to Metcalf's 
(1960) scheme. 
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Deep water (N), Greenland Sea gyre Deep Water (G), or  a composite (transi- 
tional - T), depending upon whether the  temperatures below 1,500 m. were 
warmer than - 1 OC., colder, or  both.  The figure indicates  a continuity of at  least 
the transitional type of Deep Water along the  Greenland  continental slope. Thus, 
the  Deep Water underlying the  East  Greenland  Current is either of the Norwegian 
Sea or the transitional type, so that some Deep Water from  the Norwegian  Sea 
is present  on all sides of the  Greenland Sea gyre. This is similar to  the distribution 
of Atlantic  Intermediate Water (Figs. 13 and 15), and it may  be that,  like the 
movement of the Atlantic  Intermediate Water, the Deep Water circulates 
cyclonically,  with Deep Water from  the Norwegian Sea turning west and south- 
west in the  northern  Greenland Sea and  then moving south with the  East Green- 
land  Current. 

Two  current measurements from the drifting ice island Arlis I1 in 1965 lend 
credence to this hypothesis (the measurement location is shown in Fig. 17 by x). 
The direction of the observed Deep Water motion was along the  continental slope, 
as indicated by the  arrow;  the speed at 1,000 m.  was 8 cm. sec.-l  and  at 1,200 m., 
13 cm. sec.-l. 

As  discussed above, it appears  that  the southward-flowing Polar  and  Atlantic 
Intermediate waters can  both experience large east-west displacements over a 
few days. A similar occurrence  during August 1965 seems to be indicated in the 
Deep Water. The types of Deep Water found  at  the 1965 Edisto stations 12 and 
13, 18 and 19 (Fig. 1) are indicated in Fig. 17 by brackets numbered 1 and 2 
respectively. It would appear  that  there  had been a westward translation of the 
Deep Water from the Norwegian Sea, since transitional water was observed at 
Station 13 but  not 4 days later  at  station 19, the  transitional water had been 
replaced by Greenland Sea Deep Water exclusively. It thus  appears  that  at  this 
loaction the water at  all  depths was displaced westward, suggesting a large-scale 
barotropic  disturbance  as  a  primary cause. 

It should also be pointed out  that even  within the Deep Water, it does not, in 
general, appear  that  during summer the baroclinic mode of motion is negligible. 
For example, between the 1965 Edisto stations 22 and 23 pig.  l),  this mode at 
1,000 decibars relative to 1,500 decibars was southwesterly at 5 cm. sec.-l. 

APPENDIX 

CONSERVATION OF VORTICITY  COMPUTATIONS 

The potential vorticity T of a vertical filament of water is  defined  by 
7~ = (6 + O/H, where 5 is the relative vorticity, f is the  planetary vorticity, and 
H is the height of the filament. In  the absence of frictional  and baroclinic effects 
(and of interaction with the  horizontal vorticity components), potential vorticity 
is a conservative quantity, i.e., D/Dt(T)  = 0, where D/Dt  is the  substantial 
derivative. If the  baroclinic effects are small, as they appear  to  be in the  East 
Greenland  Current  during winter, then the  extent to  which potential vorticity is 
conserved is  a  measure of the influence of friction. 

Multiplying the conservation equation by H, integrating over a  surface S 
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bounded by L, and using the two-dimensional form of Green's theorem, we obtain 

JJH-B = JjIl?+ f I-I B v n, where v is the vector velocity and n is the  outward S D t  S a t  L 
D + +  + -+ 

.- - . 

normal to i. If the mean local change in  potential vorticity over S is negligible, 
then  the divergence of T over S, given  by the line integral, is a measure of the 
net influence of friction over S. 

A budget of potential vorticity in the  area  bounded by the  100-fathom 
isobath,  the  station line, and  the 77'45' and 69'15' lines of north  latitude, was 
calculated using the Arlis I1 current measurements. The  transport of potential 
vorticity into S (1.92 x 106 cm.2 sec.-l) was within  less than 7 percent of the 
transport  out of S (1 .SO x lo5 cm.2 sec.-l). Assuming  negligible baroclinic  and 
time-dependent effects, this near agreement suggests that  the net effect of friction 
is small. 
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Everything is drifting, 

the  whole  ocean  moves ceaselessly . . . 
just as shifting  and  transitory  as  human  theories. 

Fridtjof Nansen 




