
 -i-

Anonymous auction using
REST Services

Ioannis Ioannidis

SID: 3301130008

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

December 2015

THESSALONIKI – GREECE

-ii-

Anonymous auction using
REST Services

Ioannis Ioannidis

SID: 3301130008

Supervisor: Prof. Apostolos Papadopoulos

Supervising Committee Members:

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

December 2015

THESSALONIKI – GREECE

 -iii-

Abstract

Evolution of technology is running rampant, especially in mobile, IoT and cloud com-

puting, therefore, there is a great need for developing contemporary web applications

which will be alert to follow this evolution. In computer software design, Service-

Oriented Architecture (SOA) is an architectural pattern in which application compo-

nents provide services to other components via a communication protocol, typically

over a network. SOA can be implemented at many different environments. The imple-

mentation of SOA in web environments is called Web Service.

In this thesis, we develop an online auction system, which is supported by web services

and specifically by the newer standard, REST. The differentiation that this thesis

provides, unlike other online auction systems, is the participants’ identity concealment

through a third party.

My sincere gratitude to my supervisor, Assistant Professor Apostolos Papadopoulos,

who provided me an opportunity to work on this modern topic. Besides my supervisor, I

would like to thank Dr Christos Berberidis for the continuous support in the last two

years.

Ioannis Ioannidis

11/12/2015

-iv-

Contents

ABSTRACT ... III

CONTENTS .. IV

1 INTRODUCTION ... 1

1.1 SERVICE ORIENTED ARCHITECTURE .. 2

1.1.1 Benefits of Service Oriented Architecture 2

1.2 WEB SERVICES ... 3

1.3 SIMPLE OBJECT ACCESS PROTOCOL (SOAP) .. 4

1.4 REPRESENTATIONAL STATE TRANSFER (REST) ... 5

1.5 GOAL OF THE THESIS .. 6

2 LITERATURE REVIEW .. 11

2.1 SIMPLE OBJECT ACCESS PROTOCOL (SOAP) .. 11

2.1.1 SOAP Protocol .. 12

2.1.2 Web Services Description Language (WSDL) 13

2.2 REPRESENTATIONAL STATE TRANSFER (REST) ... 15

2.2.1 Resource .. 15

2.2.2 URIs .. 15

2.2.3 Statelessness .. 16

2.2.4 Representations .. 16

2.2.5 Content Negotiation.. 18

2.2.6 Uniform Interface .. 18

2.2.7 Idempotence .. 21

2.2.8 RESTful Web API Data Formats .. 22

2.2.9 HATEOAS .. 23

2.2.10 Richardson Maturity Model ... 26

2.2.11 REST Security ... 28

2.2.12 REST Documentation .. 34

2.3 SOAP VS REST ... 36

3 PROBLEM DEFINITION .. 39

3.1 AUCTION .. 39

 -v-

3.1.1 When are Auctions Convenient? .. 40

3.1.2 Relationships between Different Auction Formats 41

3.1.3 Auction Terminology ... 42

3.2 PROBLEM DEFINITION ... 43

3.2.1 Why REST .. 45

3.3 USE CASE DIAGRAM .. 46

4 IMPLEMENTATION (IDENTITY SERVER) ... 50

4.1 IDENTITY SERVER .. 50

4.2 DATABASE LAYERING ... 51

4.2.1 ORM (Object Relational Mapping) ... 54

4.2.2 Maven ... 54

4.2.3 Java Entities ... 55

4.2.4 Persistence.xml ... 58

4.3 SERVICES ... 60

4.3.1 Users ... 61

4.3.2 Login .. 65

4.3.3 Postal .. 69

4.3.4 Bank .. 74

4.4 HANDLING EXCEPTIONS ... 78

5 IMPLEMENTATION (AUCTION SERVER) ... 83

5.1 AUCTION SERVER .. 83

5.1.1 RESTful Client ... 83

5.1.2 Auction Service .. 86

6 CONCLUSIONS ... 91

7 BIBLIOGRAPHY .. 93

8 APPENDIX .. 95

8.1 DOCUMENTATION ... 95

8.2 SOURCE CODE ... 97

8.3 TOOLS & TECHNOLOGIES .. 97

 -1-

1 Introduction

In previous years, monolithic applications were responsible for accomplishing the

whole service. These applications were independent from other computing applications

and the philosophy behind it was that, not only was the application responsible for a

small task, but rather to perform every step needed to complete the whole function.

Software developers and programmers always strive to create software that is easy to

maintain, easy to debug, as well as to be effortlessly extended and integrated with other

systems. Throughout the years, various approaches in order to design and write software

have been pursued. In the early stages of the software industry, programmers perceived

that by organizing their code into modules, actually made it easier to maintain and reuse

pieces of functionality. This was the beginning of building a collection of non-volatile

resources, such as routines, classes, methods and documentations, known today as li-

braries. The next big idea in software design was object orientation. Object-oriented

programming (OOP) is based on the concept of objects. An object is a software entity

which has state (properties) and behavior (methods). Software objects are often used to

model the real-world objects that you can find in everyday life. The implementation de-

tails of an object are hidden from the outside world (encapsulation) and the object can

be changed as long as the object’s signature remains the same. This has helped mainte-

nance and scalability. However, object orientation was not enough. Trying to meliorate

further the software industry, developers and programmers realized that the monolithic

approach had many drawbacks. Some of them are the difficulty of making changes and

improvements even in small parts of the application, the high maintenance costs as well

as the huge set-up costs. On the other hand, by building small and independent applica-

tions with relatively limited functionality that could be plugged into many different

software applications with different needs, led to the concept of software components

and the term “service orientation”. In this approach, software functionality is defined as

a set of services. This is where Service Oriented Architecture (SOA) comes in.

-2-

1.1 Service Oriented Architecture

In computer software design, Service-Oriented Architecture (SOA) is an architectural

pattern, in which application components provide services to other components via a

communication protocol, typically over a network. The principles of service orienta-

tion are independent of any vendor, product or technology.[(1)]To put it differently, it

is an architectural style for building business applications using loosely coupled ser-

vices, which act like black boxes and can be well orchestrated in order to achieve func-

tionality by linking them together. A service is a logical encapsulation of a clearly de-

fined business functionality that operates independently from other services. Services

should be self-contained, self-defined and communicate with each other using messages

that are reliable and cross platform.

There are some basic principles that services in SOA implementation must follow:

 Loose coupling: Services must not have high dependency with each other.

 Abstraction: A service should hide its internal implementation from the outside

world.

 Reusability: Services must be capable of being used again and again in several

applications, instead of rewriting them.

 Statelessness: There must be no record of previous interactions and each interac-

tion request has to be handled based entirely on information that comes with it.

1.1.1 Benefits of Service Oriented Architecture

There are many benefits by following the SOA style and methodology. The most im-

portant of them are mentioned below:

 Platform independence: SOA is based upon the use of services, which are avail-

able through standard technologies. The use of standard technologies reduces

heterogeneity and is therefore the key to facilitate application integration. For

instance, if an enterprise wants to extend its existing legacy applications and

build additional functionality on top of that, with the approach of service orien-

tation is feasible, even if this new service runs on different hardware, is written

in different programming language or stores data in different format. It also

helps an enterprise to integrate its applications with those of its partners.

 -3-

 Discrete developer roles: Since a service has a distinct role, its implementation

is independent from other services. Hence, developers who are in charge of a

service can focus completely on implementing and maintaining that particular

service without having to worry about other services.

 Code reuse: As it is already mentioned, SOA approach breaks down an applica-

tion into small independent pieces of services. Services then can be reused in

multiple applications. A direct consequence of that is the reduction of develop-

ment cost.

 Better testability: It is reasonable that small and independent services are easier

to test and debug than monolithic applications. This leads to more reliable soft-

ware.

 Parallel development: Since services are independent of each other, they can be

developed in parallel. This cuts down the software development life cycle mark-

edly.

 Better scalability: A service can be easily moved to many servers. Moreover,

there can be multiple instances of that service running on these different ma-

chines. This increases scalability.

 Higher availability: Due to the fact that you can have multiple instances of a

service running on different servers, higher availability is ensured.

1.2 Web Services

SOA can be implemented at many different environments. The implementation of SOA

in web environments is called Web Service. A web service is simply an application that

is exposed to the internet and is accessible using standard web technologies. Basically,

it is an online API (Application Programming Interface) that someone can call from his

application in order to enhance its functionalities. The difference between a web appli-

cation and a web service is that the former is intended for human consumption, usually

accessed by a web browser and presented in HTML format, whilst the latter is meant for

application level consumption and mainly present data in either XML or JSON format.

Essentially, what a web service does is that allows two different applications, running

on two different servers to be able to “talk” to each other. The main advantage of web

-4-

services is that are interoperable and platform-hardware-location-programming lan-

guage independent.

Primarily, there are two different types of web services. SOAP web services and REST

web services. In Java world, JAX-WS (Java API for XML Web Services) is the specifi-

cation that provides support for creating SOAP web services, while JAX-RS (Java API

for RESTful Web Services) is the API that provides support in creating web ser-

vices according to the Representational State Transfer (REST) architectural pattern.

1.3 Simple Object Access Protocol (SOAP)

SOAP is a standard-based web service access protocol which was firstly developed by

Microsoft in order to take the place of older technologies like CORBA (Common Ob-

ject Request Broker Architecture). Fundamentally, it is a set of rules for XML-based

message exchange.

In order to have a better understanding of how this technology works, some terms need

to be mentioned. Since we are talking about web services, it means that the data is ex-

changed over the web (internet). In order though, someone to be able to call a web ser-

vice, he has to know what this web service does. In other words, an interface, a “con-

tract”, must be shared among the potential consumers of that particular service. It is im-

perative that this interface be in a technology independent format. This format is an

XML document which is called WSDL (Web Service Definition Language). What this

document contains is very similar to what an interface contains in every object oriented

programming language, such as the operations you can call, the arguments that they

take, and the returned type they send back. However, in order to get the WSDL docu-

ment you must firstly find it. This is where UDDI (Universal Description Discovery and

Integration) comes into play. It is a directory model for web services, like yellow pages.

In essence, it provides a registry mechanism for clients and servers to find each other.

UDDI with SOAP and WSDL is thought as the three foundation standards of web ser-

vices.

The figure below illustrates how SOAP web service technology works:

 -5-

Picture 1-11: SOAP Web Service Technology

1.4 Representational State Transfer (REST)

REST web services have gained widespread acceptance across the Web as a simpler

alternative to SOAP. The first thing it should be mentioned is that REST is not a tech-

nology. It is an architectural style, by which you can design web services. Its concept is

very closely related to HTTP (Hypertext Transfer Protocol). The reason why is due to

its inventor, Roy Thomas Fielding, who was also one of the principal authors of the

HTTP specification. In his academic dissertation, "Architectural Styles and the Design

of Network-based Software Architectures", suggests that a concrete implementation of a

REST web service should follow four basic design principles [(2)]:

 Use HTTP methods explicitly: REST requires from developers to use HTTP

methods explicitly and in a way that is consistent with the protocol definition. In

particular, to retrieve a resource from a server, use GET. To create a resource on

the server, use POST. To change the state of a resource or to update it, use PUT.

To remove a resource, use DELETE.

1
Taken from www.novell.com

Points to description

Points to

Service

Finds

Service

Describes

Service

Communicates with

XML messages

UDDI

Registry

WSDL

Web

Service

Service

Consumer
SOAP

-6-

 Be stateless: Web service clients should send self-contained messages. That is,

these messages should include within the HTTP headers and body all the param-

eters, context and data needed by the server-side component for generating a re-

sponse. Furthermore, statelessness simplifies the design and implementation of

server-side components.

 Expose directory structure-like URIs: Web service URIs should be intuitive to

the point where they are easy to guess. These URIs, should be hierarchical, root-

ed at a single path, and their branches must expose the service's main areas.

Moreover, a good practice is to have a static, resource-based URI, instead of ac-

tion-based, for the reason that if a resource changes or the implementation of the

service changes, the URI stays the same.

 Transfer XML, JSON or both: A resource representation typically reflects the

current state of a resource. A RESTful web service client must be able to ask for

data in a format that is more suitable for him (different representation of the

same resource). As follows, the server has to support several MIME types. This

approach allows the service to be used by a variety of clients, written in different

programming languages, running on different platforms.

1.5 Goal of the Thesis

The goal of this dissertation is to develop an online auction system which is supported

by web services and specifically by the newer standard, REST. This auction system can

be designed as a set of different parts which are all capable to communicate with each

other, and each one is responsible for a single task. The parties originally involved in an

online auction are:

 The owner of the product/service (auctioneer).

 The prospective buyers who make offers for the product/service.

 The auction service which coordinates the auction. In our case it will be the part

which implements the business logic, and the other two parts will communicate

with it so as to participate in the auction.

The auction system can be presented by the following diagram:

 -7-

Picture 1-2: Representation of the Auction System

As it has been already pointed, one of the basic characteristics of REST web services is

that the client-server communication is stateless. Hence, during the auction procedure,

the auction service will not communicate directly with the potential buyers, but the

stakeholders will send a request to the auction service and the latter will reply with a

response.

The differentiation that this thesis provides, unlike other online auction systems, is the

covering of the participants’ identity through a third party. A common practice,

especially when it comes to auction’s products of great value, is that the parties

involved wish to remain anonymous. This anonymity will be achieved by a third party,

independent from the auction system, which plays a representative role. This is possible

due to the messaging statelessness mentioned above.

Considering the previous scenario, when an auction is won by a certain buyer, he has to

contact the auctioneer revealing his identity in order for the product to be sent to him,

and also the auctioneer must do the same thing in order the buyer to make a deposit to

his account. Nevertheless, in this case, neither the auctioneer nor the buyer can conceal

their identities. That is why is necessary another independent party to be present for

providing identity services, such as user authentication, postal and bank services. The

new auction system is illustrated below.

Auctioneer

Open Auction

Monitor Auction

Place Bid
Auction Services

Data Layer

-8-

Picture 1-3: Representation of the Final Auction System

According to this diagram, the auctioneer will contact the Identity Server so as to

identify himself to the Auction Service. The same will act the potential buyers. When

the auction ends, Auction Server will send a request to Identity Service asking him to

inform, both the winner of the auction and the seller of the product (auctioneer), about

the auction outcome. As far as Identity Server is concerned, the notion of “auction”

means nothing. The only thing he is aware of in this context, is to make a package

transfer as well as to conduct a bank transaction. Hence, subsequently, Identity Server

will withdraw money from the buyer’s account (winner of the auction), and put them in

a “BLOCKED” state, which means that the money is not yet to the auctioneer’s

account. No sooner has the package transfer been completed, than the money is

deposited in his account. Only the third party (Identity) knows the actual address of the

buyer and he will forward the package to him, while at the same time he will release the

money for auctioneer’s behalf.

Auctioneer

Open Auction

Monitor Auction

Place Bid
Auction Services

Third party

Identity Services

Authenticate User

Postal Services

Banking services

 Authenticate
Post items
Get payment

Authenticate
Receive post
Make payment

 -9-

 -11-

2 Literature Review

In the introductory part, it has been recognized the usefulness and the contribution that

web services can provide in modern web development. Web services provide an ab-

stract layer between the service consumer and the service provider, allowing cross-

platform interoperability.

2.1 Simple Object Access Protocol (SOAP)

SOAP web service architecture is implemented through the layering of five types of

technologies. These layers are organized and built one over the other [(3)].

Picture 2-1: SOAP Technology Stack

The Discovery layer is the tool that allows a service consumer fetching the provider’s

service description. UDDI is the most well-known discovery tool. As soon as the web

service is implemented, decisions such as which network, transport, and packaging pro-

tocols it will support, must be made. That way, the service consumer is able to use the

service. WSDL is the standard for providing Description. This functionality is similar to

an “interface” in object-oriented programming, except that WSDL is technology inde-

pendent, as it is written in XML. In order for data to be moved around the network by

the transport layer, a format that all parties can understand must be used for Packaging

that data. SOAP protocol is a very common packaging format, built on XML. Transport

Discovery

Packaging

Description

Transport

Network

-12-

layer is used for transferring data from one location to another. Technologies that are

mainly used are: HTTP, TCP, FTP and SMTP. Lastly, the Network layer is exactly the

same as the network layer in the TCP/IP Network Model.

2.1.1 SOAP Protocol

SOAP is an XML messaging protocol with a simple format, providing just a few con-

ventions on how to structure headers and body in an XML message. SOAP is transport

independent, thus, SOAP messages can be sent over several transport protocols, like

HTTP, TCP and SMTP [(4)]. Since SOAP is XML, it should be noted that it is inextri-

cably linked with XML standards like XML Schema and XML Namespaces.

A SOAP message consists of an envelope containing an optional header and a required

body, as shown in the following figure.

Picture 2-2: SOAP Message Structure

The header block indicates how the message should be processed, while the body con-

tains the actual message that is attempted to be exchanged. The XML syntax for ex-

pressing a SOAP message is based on thehttp://www.w3.org/2001/06/soap-envelope

namespace. This XML namespace identifier points to an XML Schema that defines the

structure of how a SOAP message should look like. A simple example that shows how a

real SOAP message could look like, is given below [(3)]:

SOAP Envelope
<soap: Envelope
 xmlns: soap=”http://schemas...”>

</soap: Envelope>

</soap: Envelope>

SOAP Header

<soap: Header>
 Optional header parts
</soap: Header>

SOAP Body

<soap: Body>
 SOAP Message Payload
 Optional SOAP Faults
</soap: Body>

 -13-

<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-envelope">

<s:Header>

<m:transaction xmlns:m="soap-transaction" s:mustUnderstand="true">

<transactionID>1234</transactionID>

</m:transaction>

</s:Header>

<s:Body>

<n:purchaseOrder xmlns:n="urn:OrderService">

<from><person>Christopher Robin</person>

<dept>Accounting</dept></from>

<to><person>Pooh Bear</person>

<dept>Honey</dept></to>

<order><quantity>1</quantity><item>Pooh Stick</item></order>

</n:purchaseOrder>

</s:Body>

</s:Envelope>

2.1.2 Web Services Description Language (WSDL)

The WSDL document is nothing but a simple XML document, which contains a set of

definitions in order to describe a web service. For better understanding, it is helpful to

list its main structure elements [(5)]:

Element Description

<portType> A set of operations supported by one or more end-

points. It describes a web service, the operations that

can be performed, and the messages that are involved.

<types> A container for data type definitions used by the web

service. For maximum platform neutrality, WSDL us-

es XML Schema syntax to define data types.

<message> A typed definition of the data being communicated.

Each message can consist of one or more parts.

<binding> A protocol and data format specification for a particu-

lar port type.

Table 1:WSDL Document Structure

The following XML sample shows the anatomy of a WSDL document:

-14-

<definitions ……>

<types>

 “Data type definitions”

</types>

<message>

 “Definition of the data being communicated”

</message>

<portType>

 “Set of operations that take input and output messages”

</portType>

<binding>

 “What transport protocol is being used”

 “How the WS accepts requests and gives the response”

</binding>

</definitions>

The <definitions> element is the root element of all WSDL documents. It defines the

name of the web service. A piece of XML code showing the <definition> element is

given below
2
:

<definitions name="HelloService"

targetNamespace="http://www.examples.com/wsdl/HelloService.wsdl"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.examples.com/wsdl/HelloService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 ..

</definitions>

2
 http://www.tutorialspoint.com/

 -15-

Once the WSDL document has been created and published, a service consumer must be

able to “discover” it in order to use it. This is done with the help of UDDI which is a

specification of web services’ registry. The UDDI registry is expressed in XML and al-

lows a business to publicly record the services it provides. Subsequently, potential con-

sumers of those services can locate them based on taxonomical information, such as

what the service does or what industry the service targets [(3)]

2.2 Representational State Transfer (REST)

According to Roy Thomas Fielding, REST is a key architectural principle of the World

Wide Web. In his doctoral dissertation, “Architectural Styles and the Design of Net-

work-based Software Architectures”, he presented REST as a software architectural

style for building scalable web services. Nowadays, it is strongly believed that web ser-

vices can be implemented without using the SOAP approach, which is a technology of

its own. In contrast, web basic technologies are good enough to be considered the de-

fault platform for distributed services. In other words, all you need is already there.

What we want to avoid by using the web’s already built infrastructure is the unneces-

sary complexity and overhead that SOAP technology brings. In the following sections

we will try to focus on both theoretical issues like what it means to be RESTful and why

web services should be more RESTful instead of less, and practical issues such as how

to design and implement RESTful web services.

2.2.1 Resource

A resource is everything that is worth being identified. Every “thing”, every “resource”

gets an identifier. Usually, a resource is something that can be stored on a computer and

represented as a stream of bytes. It can be a document like HTML, PDF, JSON or

XML, a row in a database or the result of a running algorithm.

2.2.2 URIs

What makes the resource a “resource”, is the URI (Uniform Resource Identifier). The

URI is the name and address of a resource [(6)]. Simply put, the job of a URI is to iden-

tify a resource or a collection of resources. By definition two different URIs should rep-

resent two different resources. However, sometimes it is possible the same resource to

be referred by more than one URI. A good example is the following: If the current soft-

ware release is 1.0.3, then http://www.example.com/software/releases/1.0.3.tar.gz and

-16-

http://www.example.com/software/releases/latest.tar.gz will refer to the same file for a

while. But the ideas behind those two URIs are different: one of them always points to a

particular version, and the other points to whatever version is the newest at the time the

client accesses it [(6)]. Nevertheless, the principles behind URIs are well described by

Tim Berners-Lee in Axioms of Web Architecture [(7)]. A good practice behind con-

structing a URI is to think of it as it was a static web page with a particular structure

(root, folders, sub-folders). It should not contain tech implementation details, for exam-

ple http://www.example.com/myapp/getMessages.do?id=10, because these may change

over time. The benefits of creating a URI following these simply rules is: high readabil-

ity, easy to debug, easy for clients to construct more URIs. In respect to the previous

example, a better way to write the URI would be

http://www.example.com/myapp/messages/10, combining this URI with the appropriate

HTTP method, depending on what you trying to do. However, there is no right or wrong

way to create a URI. This is just a convention.

2.2.3 Statelessness

Statelessness means that every HTTP request is self-defined. In other words, when a

client makes an HTTP request, it includes all the necessary information for the server to

process that request. The server cannot “remember” information from previously sent

requests. Because of that, it is easier to distribute a stateless application across load-

balanced servers. Since two requests do not depend on each other, they can be pro-

cessed by two different servers without having to coordinate them. This leads to more

scalable applications. A stateless application is also easy to cache: a piece of software

can decide whether or not to cache the result of an HTTP request just by looking at that

one request [(6)]. The only way for a server to “remember” a client is by setting a ses-

sion. A session can be maintained by a server with mainly two ways: Cookies and URL

Rewriting (the session ID instead of being stored in the Cookie, is appended in the

URL).

2.2.4 Representations

An application is split into resources. Yet, a resource is not the data. It is just the service

designer’s idea of how to split up the data. A web server cannot send an idea. It has to

send a series of bytes, in a specific file format. This is what is called the representation

of the resource. In other words, a resource is a source of a representation, and a repre-

 -17-

sentation is the data about the current state of a resource, that is sent back to the client as

a response [(6)]. A resource can be represented with various MIME types
3
, like XML,

JSON or HTML, among others. Strictly speaking, the server can provide the same re-

source in different representations. For instance, the same resource called "Person" can

be represented both in XML and JSON as:

XML:

<Person>

 <ID>101</ID>

<Name>Ioannis Ioannidis</Name>

 <Address>Aristotelous 13</Address>

 <City>Thessaloniki</City>

<Country>Greece</Country>

</Person>

JSON:

{

"ID": "101",

"Name": "Ioannis Ioannidis",

"Address": "Aristotelous 13",

"City": "Thessaloniki",

"Country": "Greece"

}

Interestingly, RESTful systems give you the ability to ask for data in a format that you

can understand. If the server does not support the particular MIME type, it informs the

client by sending the appropriate status code
4
. This procedure is called Content Negotia-

tion.

3
 http://searchsoa.techtarget.com/definition/MIME

4
 http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

-18-

2.2.5 Content Negotiation

Content negotiation is the process of choosing the most appropriate representation for a

client, when there are manifold representations available by the server. Most of the

times, content negotiation is associated with the practice of indicating media type pref-

erences, however, it is also used to indicate preferences for different languages, charac-

ter encoding and compression types. HTTP specifies two types of content negotiation.

These are server-driven negotiation, which uses request headers to select a variant, and

agent-driven negotiation which uses a distinct URI for each variant [(8)]. The reason

why content negotiation is useful is due to the fact that by asking for a specific repre-

sentation instead of getting a default one, client decreases the possibility to break be-

cause of an unknown and unmanageable representation, since the default one that the

server sends, may change.

2.2.6 Uniform Interface

 HTTP (Hypertext Transfer Protocol) is an application protocol for distributed, collabo-

rative, hypermedia information systems [(9)]. It is the protocol that defines how mes-

sages are formatted and transmitted between a client and a server over the internet.

REST take advantage of HTTP infrastructure by using its four basic verbs (methods):

 Retrieve a representation of a resource: HTTP GET

 Update an existing resource: HTTP PUT

 Create a new resource: HTTP POST

 Delete a resource: HTTP DELETE

In the REST world, these methods are called “operations”.

The syntax and the meaning of each operation do not change from application to appli-

cation or from resource to resource. That is why HTTP is known as a uniform interface

[(8)]. The following two figures illustrate how a client request message and a server

response message look like.

 -19-

Picture 2-3: HTTP GET Request

The first line of the request message describes the protocol, its version and the method

used by the client. The next six lines are request headers, in a Key-Value form, that con-

tain all necessary metadata for accessing the server successfully. By simply looking at

these seven lines, any piece of software that understands HTTP (a web server, a proxy,

etc) can decode not only the purpose of the request, but also how to parse the body of

the message and send the appropriate response.

Picture 2-4: HTTP GET Request

The first line of the response message denotes the HTTP version and the status code.

Status codes are standard response codes given by servers in order to help the client to

identify if there was an error or not when it tried to parse the request, and if there was an

error, to give an indication about it. Status codes are split into five categories. Table 2-2

[(10)] shows these categories as well as the most important status code definitions. The

remaining lines of the message, give information about the server and the sent message.

In its body is included the requested representation.

HTTP/1.1 200 OK
Date: Mon, 31 Aug 2015 01:11:12 GMT
Server: Apache/1.3.29
Last-Modified: Sat, 08 Aug 2015
Accept-Ranges: bytes
Content-Length: 121
Connection: close
Content-Type: text/html

Status Line

Response
Message
Headers

Response
Headers

A blank line separates header & body

Response Message Body <h1>Your Messages</h1>

GET /myapp/messages.html HTTP/1.1
Host : www.example.com
Accept: appl icat ion/ json, text/html
Accept-Language: en-us
Accept encoding: gz ip , daf late
User-Agent: Mozi l la/4.0
Content-Length: 35

Request Line

Request
Message
Headers

Request
Headers

A blank line separates header & body

Request Message Body messageID=12345&author=yiannis

-20-

Code Definition

1xx Informational Codes

100 CONTINUE – the client should continue with request

101 SWITCHING PROTOCOLS - the server will switch protocols as necessary

2xx Success Codes

200 OK - the request was fulfilled

201 CREATED - following a POST command

202 ACCEPTED - accepted for processing, but processing is not completed

204 NO CONTENT - request received but no information exists to send back

3xx Redirection Codes

301 MOVED PERMANENTLY - the data requested has a new location and the

change is permanent

302 FOUND - the data requested has a different URL temporarily

304 NOT MODIFIED - the document has not been modified as expected

305 USE PROXY - The requested resource must be accessed through the speci-

fied proxy

307 TEMPORARY REDIRECT - the requested data resides temporarily at a new

location

4xx Client Error Codes

400 BAD REQUEST - syntax problem in the request or it could not be satisfied

401 UNAUTHORIZED - the client is not authorized to access data

402 PAYMENT REQUIRED - indicates a charging scheme is in effect

403 FORBIDDEN - access not required even with authorization

404 NOT FOUND - server could not find the given resource

415 UNSUPPORTED MEDIA TYPE - requested resource format is not support-

ed

5xx Server Error Codes

500 INTERNAL ERROR - the server could not fulfill the request because of an

unexpected condition

501 NOT IMPLEMENTED - the sever does not support the facility requested

505 HTTP VERSION NOT SUPPORTED

Table 2: Status Codes Definitions

 -21-

2.2.7 Idempotence

One way to classify the four HTTP methods could be by separating them between

Read-Only methods and Write-Only methods (write something to the server). In such a

way, the GET method would be in the first category, whilst POST, PUT and DELETE

methods would be in the second.

Another way to categorize these methods is between Idempotent and Non-Idempotent.

According to dictionary
5
, idempotent is an operation that produces the same results, no

matter how many times it is performed. In mathematics, an idempotent operation is one

where f(f(x)) = f(x).For example, the abs() function is idempotent because abs(abs(x)) =

abs(x) for all x. However, in computer science, an idempotent operation is the one that

has no additional effect if it is called more than once with the same input parameters [

(11)]. In other words, it is safe to make multiple repeated calls without having to worry

about the impact on the server side. A client can make a GET request to the server sev-

eral times, and every time it will get the same response. If a client sends a DELETE re-

quest to a specific resource to the server, that resource will be removed. If it sends the

exact same request, the resource is still gone. If a client wants to update a resource, it

should send a PUT request to the server, and the body of the request must contain the

changes it wants to apply. It can resend the PUT request, and the resource state will not

change again. On the other hand, if a client wants to create a new resource, it should

send a POST request with the appropriate body, and the server will respond with a mes-

sage that will contain, among others, the resource-ID for the resource that has just creat-

ed, providing the way for that resource to be called later on. This time, however, if the

client sends again the same POST request, the server will create a completely new re-

source with the same content.

Taking all these into account, we can safely assert that GET, PUT and DELETE are

idempotent operations, whilst POST is Non-Idempotent. The reason why idempotence

matters is because it lets a client make reliable HTTP requests over an unreliable net-

work. For instance, if a client makes a GET request and something goes wrong, it is safe

to make another one. If you make a PUT request and never get a response, just make

another one. Even though your earlier request reached the server, a second request will

have no additional effect [(6)]. As far as POST request is concerned, since it is Non-

5
 http://encyclopedia2.thefreedictionary.com

-22-

Idempotent, it must be used with caution, because unwanted side effects could be oc-

curred on the server side.

It is highly recommended that each of the methods be used depending on the result you

want to achieve. For example, a GET request to a URI like

http://www.example.com/myapp/message/13/delete, is a bad practice. In that way, you are

not fetching the resource, but rather modifying it. Moreover, it is easier for other devel-

opers to use your RESTful API. In particular, use GET for safe and idempotent infor-

mation retrieval, POST for creating new resource, PUT for updating an existing re-

source or creating a new one in the case that the client is able to decide the resource’s

URI, and finally use DELETE for erasing a resource.

Yet, a confusing topic among developers is the difference between PUT and POST.

Hence, it is worth mentioning their small declination. The key difference between them

is that PUT is idempotent whereas POST is not. That is, POST should be used with

more care. The second difference is that when you use PUT, you must always specify

the complete URI of the resource, while with POST you have no such restriction. For

example, if you want to update an existed resource, both these methods can do the job:

PUT http://www.example.com/myapp/messages/13

POST http://www.example.com/myapp/messages/13

Mistakenly, many developers think that REST does not allow POST to be used for up-

dating a resource. On the other hand, the following PUT request would not work, if a

client wanted to create a totally new resource, since PUT requires the complete URI.

PUT http://www.example.com/myapp/messages/

In such a case, use POST instead:

POST http://www.example.com/myapp/messages/

2.2.8 RESTful Web API Data Formats

There are several data formats provided by a RESTful Web API, such as HTML, XML,

JSON, Text, CSV, JPEG. However, by far the most popular ones are XML and JSON,

thus we will deal only with them, defining their serviceableness as well as their

strengths and weaknesses.

According to W3C, XML (Extensible Markup Language) is a markup language that de-

fines a set of rules for encoding documents in a format which is both human and ma-

chine-readable. It was designed to describe and exchange data, not to display it, and its

http://www.example.com/myapp/message/13/delete
http://www.example.com/myapp/messages/13
http://www.example.com/myapp/messages/13
http://www.example.com/myapp/messages/
http://www.example.com/myapp/messages/

 -23-

tags are not predefined (you must define your own tags). It gained a lot of attention be-

cause it is technology independent.

JSON stands for JavaScript Object Notation and is a syntax for storing and exchanging

data. Due to its lightweight format, it is considered by many developers and organiza-

tions a good alternative to XML. The common characteristics that both share are:

 Both are self-described, meaning that their values, tags and elements have

names, which help human readability.

 Both are hierarchical, meaning that you can have nested values.

 Both can be parsed and used by almost every programming language.

 Both are technology independent.

As it is already noted, both XML and JSON are used in web APIs. Nevertheless, it is an

open secret that JSON fits better in the new world of services. Among the developer

community, JSON is growing its popularity, owing to its more compact and less ver-

bose format. In general, XML is more complex than JSON. By default, XML requires

complex features to be used along with it, like namespaces, schemas (for validation) and

attributes. However, these features are not necessary for a successful web service. In the

web service case, all that is requisite, is a straightforward data structure and a compact

data exchange format that can be read and parsed fast, without having unnecessary

overhead. To make it more obvious, let’s give an example. Most of the times, a REST-

ful API client happens to be a browser. Technically speaking, a piece of JavaScript code

which is running in the browser, which makes these REST API calls. Hence, this JavaS-

cript client can easily convert these JSON responses to a JavaScript object, making the

exchange and consuming of data effortless. It also deserves to be mentioned that com-

panies like Twitter and Foursquare provide their API in JSON-only format.

2.2.9 HATEOAS

The acronym HATEOAS stands for Hypermedia As The Engine Of Application State,

and it is used in RESTful web services in order to make the API “discoverable”. Simply

put, hypertext it is used in order a client to find its way through the API, without any

documentation, just like a website user does not need any documentation to discover

locations and operations within it. The only thing that is needed is to go to the home

page.

-24-

Briefly mention, the “things” that are transferred and exchanged in HTTP are called hy-

pertext. Hypertext is a structured form of text, which has one interesting property. It

contains logical links to other texts. These links are called hyperlinks, let us go from

page to page and is the main reason why we can use a website effectively. This is the

advantage of using HTTP. In a similar way, the best RESTful Web API is considered to

be the one that needs no documentation in order to take advantage of its capabilities.

HATEOAS is a way to provide links to resources in the API response, so as the client

does not have to deal with URI construction and the business flow. The hypermedia that

is sent by the service as a response, drives the client interaction with the application

state. Therefore, a REST client needs no prior knowledge about the URIs, which results

in decoupling from the server.

The following example attempts to depict better the usefulness of HATEOAS
6
 [(8)].

Here is a GET request to fetch an account resource, requesting details in a JSON repre-

sentation:

Picture 2-5: HTTP GET Request

Here is the response body which contains three links that the client probably wants to

use later (make a deposit, a withdrawal or a transfer):

6
 http://restcookbook.com/Basics/hateoas/

GET /account/12345 HTTP/1.1
Host : somebank.gr
Accept: appl icat ion/ json
…….
…….
…….
…….

 -25-

Picture 2-6: HTTP Response Body in JSON

As it is shown, the response body not only has the account number and the correspond-

ing balance, but also three linking URIs which the client could use in subsequent re-

quest.

 href attribute gives the complete URI that uniquely identifies the resource.

 rel describes the relationship of that link to this particular response message.

That is, you add the “rel” attribute to make it clear what that link points to.

Even though the above response is in JSON, XML could be also used. HATEOAS does

not make discriminations between them. Thus, for the sake of completeness, the re-

sponse body is provided in XML format in the figure below:

Picture 2-7: HTTP Response Body in XML

{
 “Account _nu mbe r” : “ 123 45” ,
 “ba lanc e” : 1 00. 00,
 “ l inks” : [
 {

 “href ” : “ http :// so m eba nk.gr/a ccount /12 34 5/d epos i t ” ,
 “re l” : “depo si t”
 } ,
 {
 “href ” : h t tp :// so m eba nk.gr/a ccount /12 34 5/ w ithdraw”,
 “re l” : “ withdra w”
 } ,
 {
 “href ” : “ht tp :// so m eb ank.gr/a ccount /12 34 5/t rans fer ” ,
 “re l” : “ t ran sf er”
 }
]
}

< a c c o u n t >
< a c c o u n t _ n u m b e r > 1 2 3 4 5 < / a c c o u n t _ n u m b e r >
< b a l a n c e > 1 0 0 . 0 0 < / b a l a n c e >
< l i n k r e l = ” d e p o s i t ” h r e f = ” h t t p : / / s o m e b a n k . g r / a c c o u n t / 1 2 3 4 5 / d e p o s i t ” / >
< l i n k r e l = ” w i t h d r a w ” h r e f = ” h t t p : / / s o m e b a n k . g r / a c c o u n t / 1 2 3 4 5 / w i t h d r a w ” / >
< l i n k r e l = ” t r a n s f e r ” h r e f = ” h t t p : / / s o m e b a n k . g r / a c c o u n t / 1 2 3 4 5 / t r a n s f e r ” / >

< / a c c o u n t >

http://somebank.gr/account/12345/deposit

-26-

2.2.10 Richardson Maturity Model

Due to the fact that REST is not a standard but rather an architectural style, is it possible

to be in the position to say that some web API is fully RESTful or not? As a matter of

fact, this is not a “Yes” or a “No” question. It would be extremely helpful if there was

an API spectrum from “fully RESTful”, to “almost RESTful”, to “no RESTful at all”.

Actually, there is a way to categorize a web API, and the way is a model developed by

Leonard Richardson called The Richardson Maturity Model.

The Richardson Maturity Model is a way to grade your API according to some rules.

The more strictly your API follows these rules, the higher its score is. The model has

four levels (0-3), where level 3 designates a truly RESTful API, while level 0 defines a

not RESTful API at all [(12)]. Consequently, every REST API belongs to one of the

three levels (level 1, 2 or 3).

Level 0: The Swamp of POX

Level 0 uses its implementing protocol, which is normally HTTP, as a transport proto-

col [(13)]. Also, there is a single URL, which is called the endpoint, where the web ser-

vice is exposed. That URL receives all the requests from the client. The way that the

web service savvy what to do and what operations to perform (GET a resource, DE-

LETE a resource, etc) is through the message that is sent by the client to that URL. The

message, meaning the request body, contains all the operations that must be performed

as well as the data that is needed for that operation.

Since the action is a part of the message itself, the common URL works perfectly. In

fact, the same HTTP method can be used for each operation for the reason that all the

details about the operation is in the request body. A typical example of this kind of web

service is SOAP. Usually, the HTTP verb that is used is POST.

Level 0 is also called the swamp of POX. It refers to the common use of Plain Old XML

for defining everything that the operation needs. Everything is defined in an XML.

Thus, no HTTP concepts are necessary for the client-server communication.

Level 1: Resources

If you want to refine the previous model by introducing the concept of Resource URI,

you will reach level 1 in the Richardson Maturity Model. This is the starting level for

RESTful APIs. This level uses individual URIs, where each URI is the endpoint for one

resource. Nonetheless, the information about the operation must still be inside the re-

quest because a single message URI needs to handle operations like adding a message,

 -27-

updating a message, deleting a message and so on. A single profile URI has to deal with

all these operations. Hence, the request still contains what is necessary to be done. Basi-

cally, level 1 assigns different URISs to different resources, and sends the right request

to the right resource URI.

Level 2: HTTP Verbs

The next step is to introduce different HTTP methods for different operations. An API

in this case uses standard HTTP verbs, like GET, PUT, POST and DELETE in order to

achieve different results upon the resource URI. In other words, the URI should specify

the resource that is being operated upon, while HTTP methods determine what the op-

eration is. Furthermore, it is highly important a better and more careful use of HTTP

status codes. For instance, if a client’s request is “delete that resource” and the request

was successfully processed, is a better tactic, the subsequent response of the service to

be HTTP 204 No Content and not just HTTP 200 OK. This is a convention that several

developers usually follow. On the other hand, it would be detrimental if the web service

sent HTTP 200 OK, assuming that something wrong happened on the server side during

the processing. Given that these constraints are strictly followed, the API can be ranked

as level 2.

Level 3: Hypermedia Controls

Finally, level 3, the highest level, is when you implement HATEOAS. That is, the re-

sponses have links that drives the application state for the client. Consequently, the cli-

ent does not have to be aware of the different API URIs. Everything that might be of

interest to them, is sent in the response. When a web API is reached this level, is con-

sidered to be fully RESTful.

To conclude, the Richardson Maturity Model provides a good step by step way to per-

ceive the basic ideas behind RESTful concepts. In essence, it is a guideline for design-

ing RESTful APIs that helps us consider the kind of HTTP service we want to provide.

Ultimately, we briefly state the topmost usefulness of each level [(13)]:

 Level 1 deals with the complexity of the one single endpoint by breaking it

down into multiple resources.

 Level 2 implements a standard set of HTTP methods in order for similar opera-

tions to be handled in similar way, removing unnecessary variation.

-28-

 Level 3 enables a client to discover all the potentials of the API.

Picture 2-8: Steps towards REST

2.2.11 REST Security

As expected, since a RESTful API is a web-based application, security issues arise.

Securing the system includes things like [(8)]:

 Ensure that only authenticated users have access to resources.

 Warrant the confidentiality and integrity of data, right from the moment it is

collected until the time it is stored and later given to authorized users.

 Forbid unauthorized or malicious clients from corrupting resources.

 Maintain privacy.

First of all, it would be useful to briefly mention and clear a bit the terms Authentica-

tion, Authorization, and Encryption [(14)]:

Authentication answers the question “Who are you?” It is used by the server when it

needs to know exactly who is accessing its information. The client then must prove its

identity, usually by providing a username and a password. Authentication does not de-

fine the tasks that the client can do or the files it can access.

Level 0: The Swamp of POX

Level 2: HTTP Verbs

Level 3: Hypermedia Controls

Level 1: Resources

Glory of REST

 -29-

Authorization answers the question “What resources are you authorized to access?” It is

the process by which a service resolves if the client has permission to use the requested

resource. Authorization occurs after successful authentication. Usually, it is controlled

at file system level.

Encryption involves the process of converting data into a cipher to prevent unauthorized

access. Protocols such as SSH and TLS are usually used in transferring data between a

client and a server. The data is encrypted before the data transmission.

In the beginning, basic authentication involves the client exchanging with the server a

token to authenticate itself. As soon as the client sends a request to access a protected

resource, the server returns status code “401 Unauthorized”, which essentially means

“Unauthenticated”, along with a WWW-Authenticate header. Then, the client must send

its credentials within the Authorization header. An example can better illustrate this

process [(15)]:

Picture 2-9: Request for Accessing a Resource

Picture 2-10: Response Challenges the Client

This response challenges the client by asking him to give a Basic digest in order to ac-

cess the resource in the realm “payments@example.gr”. If the client knows the creden-

tials for this realm, it hashes them with base64 encode, embeds them within the Author-

ization header and resends the request, as shown in the next figure.

401 Unauthorized
WWW-Authent icate: Basic realm=″payments@example.gr″
…..
…..
…

GET /payment/1234 HTTP/1.1
Host : example.gr
…..
…..
…

-30-

Picture 2-11 : Attempted Authorized Access to a Payment Resource

Certainly, if the client knows beforehand that the server requires Basic Authentication

for a resource, it can originally provide the credentials along with the main message.

The problem with HTTP Basic authentication is that is not secure. Even though the cre-

dentials are not sent in plain text, Base64 encoded can be easily decoded. That is why

Basic authentication should never be used without the TLS protocol. TLS has three

phases (Handshake, Secure session, Channel setup), each of which must be completed

before we can transfer representations via HTTPS [(15)]. After that, it is considered

safe to transmit HTTP requests and responses.

Once the client has been verified, the service provider decides which operations are al-

lowed. As it is already stated, this is called authorization. Authorization is often based

on a username and password combination. After logging in, the system grants access to

some of the functions and data. This has worked relatively well because usernames and

passwords are often managed centrally in directory services. Nevertheless, it is not al-

ways possible or desirable to centralize and share credentials in a traditional way. When

third parties provide services to another service provider, for instance, distributing

usernames is normally undesirable and impractical. This is where OAuth comes in [

(15)]. OAuth is an authorization protocol that allows you to approve one application in-

teracting with another on your behalf without revealing your credentials. However, it

could be also used for authentication. OAuth is ideal when a REST client do not own

the data that he is trying to read. Although it is not perfect yet, OAuth is a huge im-

provement over HTTP Basic Authentication.

GET /payment/1234 HTTP/1.1
Host : example.gr
Authorizat ion: Basic ZuMjyvYXV0aA==
…..
…..
…..

 -31-

By illustrating the following figure we give an overview of how OAuth works. The

steps for accomplishing the client authorization is attempted to be described in plain

language
7
.

Picture 2-12: OAuth Overview

1. The first step is that the user (the resource owner), asks the client (the service

consumer) to carry out a certain task.

2. Then, the client tells the server (service provider) that a user wants to give him

authorization for a specific task, and the server replies by passing him a token

and a secret. A token is a unique string that plays the role of a username and a

password, while the secret is used to prevent request forgery. The client uses the

secret to sign each request so that the server can verify that is actually a legiti-

mate party the one that asks for authorization.

3. After that, the client gives the token to the user and the user tells the server to

authorize this request token. The server in turn, asks again the user if he sure

about this authorization.

4. The resource owner responses positively and authenticates the client. Now the

client has permission to use this access token. In essence, the service provider

marks the request token as a valid one, so when the client requests access, it will

be accepted (as long as it is signed with the shared secret).

5. At this point, consumer is authorized and asks the service provider to exchange

the request token for an access token. The server passes one to him.

7
 http://blog.varonis.com/introduction-to-oauth/

Client
(Service

Consumer)

 Server
(Service

Provider)

User (Resource Owner)

Token exchange

Username / Password

1

2

3

4

5

6

-32-

6. Finally, the consumer has access to the protected resource and can send requests

on client’s behalf.

More technically speaking, the steps are as follows [(8)]:

The client needs the user’s authorization in order to be able to accomplish a task. There-

fore, he approaches the server to obtain an oauth_consumer_key and a secret. Most of

the times, this is done manually, meaning that the service provider provides a web page

for clients to register and obtain the consumer key and consumer secret. Moreover, the

server must document the following URIs:

 A URI to obtain request tokens, for example:

https://www.example.gr/oauth/request_token

 A URI to obtain a user’s authorization, for example:

https://www.example.gr/oauth/authorize

 A URI to obtain an access token, for example:

https://www.example.gr/oauth/access_token

These requests involve the following parameters:

 oauth_consumer_key: This is the unique identifier issued by the server to each

client.

 oauth_signature_method: This is the signing method used when computing a

signature.

 oauth_timestamp: This is the number of seconds since January 1, 1970, 00:00:00

GMT.

 oauth_nonce: This is a random string parameter that helps servers prevent replay

attacks

 oauth_version: This is the OAuth version

The first step for the client is to send a request to obtain a request token and a secret

from the server. The signature in this request is based on the consumer secret that the

client obtained along with the consumer key. The signature includes

oauth_consumer_key, oauth_signature_method, oauth_timestamp, oauth_nonce, and

oauth_version.

https://www.example.gr/oauth/
https://www.example.gr/oauth/access_token

 -33-

Using this signature, the client submits a request to the server to obtain a request token:

Picture 2-13: Request for Obtaining a Request Token

The response from the server contains a request token and a secret:

Picture 2-14: Response Containing Request Token and Secret

The oauth_token in this response is a request token that the client must use in order to

get the user’s permission. The client then redirects the user to visit a resource URI on

the server in order to grant authorization:

Picture 2-15: Request for Obtaining Authorization

Due to the fact that OAuth allows granular access levels, the server might let the user

select the resources that the client will be able to access. After that, the server directs the

user back to the client so as the client to obtain the verification code provided by the

GET /oauth/authorize?oauth_token=0e713d524f290676de8aff4073b1bb52e37f065c HTTP/1.1
Host: www.example.gr
……….
……….
……….

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded

oauth_token=0e713d524f290676de8aff4073b1bb52e37f065c

&oauth_token_secret=394bc633d4c93f79aa0539fd554937760f05987

……….
……….
……….

POST /request_token HTTP/1.1
Host: www.example.gr
Authorization: OAuth realm="http://www.example.gr/protected_resource",

oauth_consumer_key=a1191fd420e0164c2f9aeac32ed35d23,
 oauth_nonce=109843dea839120a,

oauth_signature=d8e19bb988110380a72f6ca33b2ba5903272fe1,
oauth_signature_method=HMAC-SHA1,

oauth_timestamp=1258308730,
oauth_version=1.0

Content-Length: 0
………
……….
……….

-34-

server. The client then uses this code to acquire the access token by sending a new re-

quest to the server, including the appropriate Authentication header:

Picture 2-16: Request for Obtaining an Access Token and a Secret

The response contains access token and token secret:

Picture 2-17: Response Containing the Access Token and Secret

Finally, the client uses these credentials to build an Authorization header whenever he

sends a request to access protected resources for that user.

2.2.12 REST Documentation

RESTful web services do not necessarily require documentation to help clients discover

them. In fact, for some developers the best RESTful APIs are considered those that have

no documentation at all. That is, the client must simply know a basic endpoint to the

service and from there he could discover the service on his own by traversing the re-

sources using links. However, in my point of view, there is no reason not to document-

ing your service. That way, you maximize the efficiency and the user experience of

your service, while at the same time you minimize the confusion about what calls do

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded
oauth_token=8d743f1165c7030177040ec70f16df8bc6f415c7

&oauth_token_secret=95aec3132c167ec2df818770dfbdbd0a8b2e105e
……….
……….
……….

POST /access_token HTTP/1.1
Host: www.example.gr
Authorization: OAuth oauth_consumer_key="a1191fd420e0164c2f9aeac32ed35d23",

oauth_token="ad0d1c7a765c9e6e8b14e639c763177312d18e7e",
oauth_verifier="988786765423",
oauth_signature_method="RSA-SHA1",
oauth_signature="698d58fd3316304181e11c6eb8127ffea7e2df46",
oauth_timestamp="1258328458",
oauth_nonce="109843dea839120a",
oauth_version="1.0"

Content-Length: 0
…………
…………
…………

 -35-

what. Normally, the documentation for a REST API is not lengthy, since HTTP specifi-

cation reveals how most of your API works.

Parts of the REST API that should be described in a human-readable manner (HTML

format) are [(8)]:

 All resources and methods supported for each resource.

 Media types and representation formats for resources in requests and responses.

 The link relation that is used, its significance, HTTP method to be used, and re-

source that the link identifies.

 Query parameters used for all fixed URIs

 Authentication and security credentials for accessing protected resources

The table below is an example documentation of a RESTful API called “Messenger”,

which could be used in a social media application:

Service name: messenger

Root URI: http://www.example.gr/messenger/

Resource Methods URI Description

Users GET,POST,PUT,

DELETE

http://www.example.gr/messenger/users/{UserID

}

Contains information about a

user

{UserID} is optional

Format: application/json

Query Parameters:

filters the results

………

………

Messages GET,POST,PUT,

DELETE
http://www.example.gr/messenger/messages/{

MessageID}

…….

…….

Comments GET,POST http://www.example.gr/messenger/comments/{Co

mmentID}

…….

…….

Likes GET,POST,

DELETE
http://www.example.gr/messenger/likes/{LikeI

D}

…….

…….

Table 3: RESTful API Documentation

http://www.example.gr/messenger/
http://www.example/
http://www.example/
http://www.example/

-36-

2.3 SOAP vs REST

SOAP and REST can both be used to answer the question: “How can I build or access a

web service?” Of course which of those answers this question the best, is not obvious.

There are two sides of argument. One is that REST is better, and the other that SOAP is

better. Most of the times, however, you need to choose one over the other depending on

what you want to achieve.

SOAP is better than REST:

SOAP is standardized. This standardization is convenient when a formal contract must

be established to describe the interface that the web service offers. WSDL describes de-

tails such as messages, operations, bindings, and location of the web service. Further-

more, due to the fact that REST relies on HTTP and HTTP is synchronous, scalability

issues are raised in REST because in order to scale, it is needed to have asynchronous

messaging. On the other hand, SOAP is well suited when the application architecture

needs to handle asynchronous processing and invocation, resulting in better scalability [

(16)]. Over and above, REST is not reliable. Every messaging failure must be handled

with retries, whereas SOAP has built-in error handling mechanisms.

REST is better than SOAP:

REST is lightweight, meaning that it does not require XML parsing. As a consequence,

it fits better in technologies like mobile and IoT. Moreover, it consumes less bandwidth

as it does not require a SOAP envelope for every message that goes to and from the ser-

vice provider. In other words, the amount of data that is sent between a consumer and a

producer is far less than in SOAP [(16)]. In addition, REST uses the underlying, al-

ready known technology of HTTP for transport, communication and security between

clients and servers, which results in a shorter learning curve. It is the new trend and is

not a coincidence that companies like Google, Twitter, Facebook and Yahoo use REST

for exposing their web services.

To conclude, a rule of thumb is to use SOAP whenever you are publishing a complex

API, whilst use REST when lightweight and simple transactions are needed. The fol-

lowing figure illustrates the overhead that SOAP carries compared to REST.

 -37-

Picture 2-18:SOAP vs REST

< = >

Sending data as is

Huge

Data

Server

Server Data

Data

SOAP

Standard

< = >

+ =

Client

REST

Client

SOAP

SOAP vs REST

-38-

 -39-

3 Problem Definition

Auction is an economic process whose purpose is the selling or purchase of goods and

services via a procedure known as bidding. Depending on the nature of the items that

are for sale, as well as the way that the biddings are held, different auction structures

might be either more efficient or more profitable to the seller in comparison with others.

3.1 Auction

There is a whole theory behind auctions, called “Auction Theory”, which is an offshoot

of economics which deals with how people should act in auction markets, how efficient

an auction design is, and generally how to maximize your revenues. William Vickrey,

who was a Canadian-born professor of economics and Nobel Laureate, first established

the taxonomy of auctions based on the order in which the auctioneer quotes prices and

the bidders tender their bids.
8
 He established the four basic types of auctions that are

widely used, even today. The distinction between these types of auctions comes from

several different criteria, such as the action of the bidders and the structure of the auc-

tion itself. For instance, ascending or descending price auctions, auctions for single ob-

jects or for multiple objects, open auctions or sealed-bid auctions, etc. Analytically, the

four types are:

1. Ascending-bid auction, also called English auction: This type of auction is argu-

ably the most common. This kind of auction is carried out interactively in real

time, with bidders present either physically or electronically. The seller gradual-

ly raises the price, while the other bidders drop out one by one [(17)].The auc-

tion stops when no other participant is willing to increase the previous highest

bid, at which point the highest bidder pays their bid [(18)]. This type of auction

is commonly used in the sales of rare paintings, used cars and houses.

2. Descending-bid auctions, also called Dutch auctions: This type of auction works

in the exactly opposite way: the auctioneer starts at a very high price, and then

lowers the price continuously. The first bidder who calls out that he accepts the

8
 http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1996/vickrey-bio.html

-40-

current price, wins the object at that price [(19)]. These auctions took their

name because flowers have long been sold in the Netherlands using this proce-

dure. It is also used for perishable goods, such as fish and tobacco.

3. First-price sealed-bid auctions or blind auction: In this kind of auction, bidders

submit simultaneous “sealed bids” to the seller. In other words, each bidder in-

dependently submits a single bid, without seeing others’ bids. The terminology

comes from the original format for such auctions, in which bids were written

down and provided in sealed envelopes to the seller, who would then open them

all together. The highest bidder wins the object and pays the value of his bid [

(17)].

4. Second-price sealed-bid auctions, also called Vickrey auctions: This is identical

to the sealed first-price auction except that the highest bidder wins the object,

and pays the value of the second-highest bid. These auctions are commonly used

in automated contexts, such as real-time bidding for online advertising.

3.1.1 When are Auctions Convenient?

Besides the four primary types of auctions that were mentioned above, there are many

more variations. Actually, the range of auctions that exist is extremely wide and they

can be used by many different people and organizations for buying almost anything.

Briefly, we can state some auction types, such as car auctions, land and property auc-

tions, antique and collectible auctions, title and insurance auctions, wine auctions.

Auctions are generally used by sellers in situations where they do not have a good esti-

mate of the buyers’ true values for an item, and where buyers do not know each other’s

values. In this case, some of the main auction formats can be used to elicit bids from

buyers that reveal these values [(17)].

Known Values: Let’s assume the case in which the seller and buyers know each other’s

values for an item. For instance, suppose that the seller is trying to sell the item which

he estimates at x, and the potential buyer of the item estimates it in some larger number

y. In this case, it can be said that there is a surplus of y − x that can be generated by the

sale of the item: it can go from someone who values it less (x) to someone who values it

more (y). Should the seller knows the true values that the potential buyers define to the

item, then he can just notify that the item is for sale at a fixed price slightly below y.

Thus, the buyer with value y will buy the item, and the full value of the surplus will go

 -41-

to the seller. In other words, the seller has no need for an auction in this case. It must be

stressed that in this example, the seller controls the mechanism of selling the item,

which is beneficial to him. The reason why is because if the buyer believes this com-

mitment, the item is going to be sold for a price just below y, thus the seller will reap

almost all the surplus. On the other hand, if we gave the buyer the ability to control the

mechanism with maximum value y, he could announce that he is willing to purchase the

item for a price just above the larger of x. With this statement, the seller would still be

willing to sell since the price would be above x, however, this time the largest percent-

age of the surplus would go to the buyer. In both cases, commitment by the seller or the

buyer requires knowledge of everyone else’s values. Furthermore, it is obvious that the

commitment to a mechanism can shift the power in the transaction in favor of the seller

or the buyer [(17)].

Unknown Values: In this case, buyers have independent and private values for the item.

That is, each buyer knows how much he esteems the item, but he does not know how

much the competitors value it, and his appraisal for it does not depend on others’ value.

Moreover, we have the case of common values. Assuming that the auctioned item is not

intended to be consumed by the direct buyer, but it is planned to be resold, if he gets it.

The item has an unknown but common value regardless of who gets it. This value is

equal to how much revenue this future reselling of the item will generate. In this setting,

the value each buyer specifies to the item, would be affected by the knowledge of the

other buyers’ valuations, since the buyers could use this knowledge to further refine

their estimations of the common value [(17)].

3.1.2 Relationships between Different Auction Formats

As expected, bidders behave differently in interactive auctions, such as ascending-bid

and descending-bid auctions, which take place in real time, and in sealed-bid auctions.

The relationship between these different auctions are mentioned in the following two

paragraphs.

Descending-Bid and First-Price Auctions: In the Descending-Bid auction, the seller is

gradually decreasing the price from its high initial starting point. No participant reveals

his intentions until finally someone accepts the bid and pays the current price. Conse-

quently, participants know nothing while the auction is running. Hence, in that sense,

-42-

the procedure is similar with the sealed-bid first-price auction, in which the item goes to

the bidder with the highest bid value, and he pays the value of his bid in return for the

item [(17)].

Ascending-Bid and Second-Price Auctions: In the Ascending-Bid auction, bidders pro-

gressively drop out as the seller steadily raises the price. The winner of the auction is

the last bidder remaining, and he pays the value of his bid in return for the item. None-

theless, two remarks should be pointed. Firstly, it makes no sense to stay in the auction

after the price reaches or exceeds your defined true value, and secondly it also makes no

sense to drop out before the price reaches the true value for that item. Thus, with these

two simple indicators, a bidder knows when it is the right time to leave the auction. Yet,

the rule for determining the outcome of an Ascending-Bid auction could be slightly

changed as follows: The participant who made the highest bid is the one who stays in

the longest, resulting in winning the item, but he pays the price at which the second-to

last person dropped out. Thus, the item goes to the highest bidder at a price equal to the

second-highest bid. This is exactly the rule that is used in the Sealed-Bid Second-Price

auction, with the exception that the Ascending-Bid auction involves real-time interac-

tion between the buyers and seller, whilst the Sealed-Bid version takes place through

sealed bids that the seller opens and assesses [(17)].

3.1.3 Auction Terminology

Appraisal: An estimate of an item's worth, usually performed by an expert in that par-

ticular field

Auction House: The Company that operates the auction

Auction Fever: An emotional state elicited in the course of one or more auctions that

causes a bidder to deviate from an initially chosen bidding strategy [(20)].

Bidding: The act of participating in an auction by offering to purchase an item for sale.

Buyout Price: A price that if accepted by a bidder, immediately ends the auction and

awards the item to him/her.

Commission: A fee paid by a seller to the auction house; it is typically calculated as a

percentage of the winning bid and deducted from the gross proceeds due to the seller.

Dummy Bid: A false bid, made by someone in collusion with the seller or auctioneer, in

order to create a sense of increased interest in the item.

 -43-

E-Bidding: Electronic bidding, whereby a person may make a bid without being physi-

cally present at an auction.

Lot: An item being sold.

Minimum Bid: The smallest bid that will be accepted.

Outbid: Prompt for bidding higher than another bidder.

Opening Bid: The first bid placed on a particular Lot.

Proxy Bid: A bid placed by an authorized representative of a bidder who is not physical-

ly present at the auction.

Sealed bid: A submitted bid whose value is unknown to competitors.

Sniping: The act of placing a bid just before the end of a timed auction, thus giving oth-

er bidders no time to enter new bids.

3.2 Problem definition

In this thesis, we attempt to develop an online, ascending-bid auction system, which is

supported by RESTful web services. The auction duration can be defined by the auc-

tioneer, and when the auction closes, the highest bidder wins. The problem we try to

tackle is to conceal participants’ identity through a third party. It is common practice,

especially with auction products of great value, that the involved partieswish to remain

anonymous.The parties originally involved in an online auction are the auctioneer, the

potential buyers of the auctioned product, and the auction service which coordinates the

auction. Our contribution is the creation of a third party which provides the necessary

identity services so as to cover the stakeholders’ identity. That is why we could name

this dissertation as “3-Way Auction Service with 3
rd

 Party Identity Service”.

-44-

Picture 3-1: 3-Way Auction Service with 3rd Party Identity Service

As already mentioned in the introduction of the thesis, when an auction is won by a

certain buyer, it is no longer requisite to reveal his identity due to the presence of this

3
rd

 party, which will provide user authentication, postal and bank services. We briefly

cite the scenario which was actually the motivation to design and develop our RESTful

API.

The auctioneer opens and monitors the auction. As it is reasonable,he must already be

authorized in the Identity Server, so as to identify himself to the Auction Service. The

same will act the potential buyers. When the auction ends, Auction Server will send a

request to Identity Server asking him to inform, both the winner of the auction and the

seller of the product (auctioneer), about the auction outcome. As far as Identity Server is

concerned, the notion of “auction” means nothing. The only thing he is aware of in this

context, is to make a package transfer as well as to conduct a bank transaction. Hence,

subsequently, Identity Service will withdraw money from the buyer’s account (winner

of the auction), and put them in a “BLOCKED” state, which means that the money is

not yet to the auctioneer’s account. No sooner has the package transfer been completed,

than the money is deposited in his account. Only the third party (Identity) knows the

Auction Man-

agement

DATABASE

AUCTION SERVICE

IDENTITY SERVICE

Security
REST

Services

Client

 -45-

actual address of the buyer and he will forward the package to him, while at the same

time he will release the money for auctioneer’s behalf
9
.

3.2.1 Why REST

The reason why we chose to use REST architecture for the implementation of our

auction system is not only one, but rather many and varied. REST, except for the fact

that is the new trend, it is also highly recommended when it is very important to

minimize the coupling between the client and the server components, especially in a

distributed application, like the one that we have tried to develop. This could be the case

when the server is going to accept numerous requests. It might also be the case when the

server is regularly updated, while the client software should remain intact.

Furthermore, following the REST architectural style, it is relatively easy to write web

services, since the key concept is an interface that is already well known and widely

used, namely the URI. Additionally, it is based on normal HTTP requests which enables

intent to be inferred by the type of request being made. That is, GET for retrieving data,

PUT for updating data, POST for writing new data and DELETE for removing data. All

these concepts are already known, being used several years, and developers are familiar

with them, resulting in a more standarized developing process, therefore, reduction of

implementation time.

Another benefit of a RESTful API is that requests and responses can be short, thus, less

overhead. This can be extremely useful in environments with limited bandwidth and

resources. Also, any browser can be used, since REST is using HTTP verbs. On top of

that, the messages can be in any user defined format, including JSON, which is much

more light than XML, and works perfectly with JavaScript, an integral part of any

modern browser.

As far as security is concerned, REST inherits security measures from the underlying

transport layer. HTTPS secures the transmission of the message over the network and

provides some assurance to the client about the identity of the server. In our case, since

Identity Server provides Postal and Bank services, security is vital. In addition, through

Basic Authentication, we provide extra security measures.

9
Also see figure 1-3

-46-

Finally, due to the fact that RESTful APIs are stateless, communication messages can

be cached leading to better performance and scalability. It is not a coincidence that

REST has got lot of support from many companies. Some good examples are:

 Google - Google Maps, Google Adsense Search

 Yahoo! - All Yahoo API's Web Services, including Flickr

 Twitter

 Amazon

 Ebay

3.3 Use Case Diagram

A use case diagram is a visual representation of one or more use cases, depicting the

actors that are involved, the relationship between the actors and the different use cases

in which they participate. An actor, models a type of role played by an entity that

interacts within the system. In other words, an actor is the agent who acts upon the use

cases.Actors may represent roles played by human users or other systems. Use case

diagram helps us determine the core functions of the system, from an external point of

view.

To tackle any ambiguity, we will firstly present the use case of how an auctiontakes

placeusing our REST API in plain text, and then as a diagram.

 -47-

Use Case: Auction participation

Overview: A client bids for a product in order to win the auction

Actors: Auction Server, Identity Server, Client

Pre-

Conditions:

None

Main Success

Scenario:

1. Auction Server and Clients must authenticate themselves

in the Identity Service.

2. Identity Service sends to legitimate parties the appropriate

authorization tokens.

3. Clients bid for a product until someone wins the auction.

4. Auction Server sends requst to Identity Server to post the

won product from user A to user B (the winner of the

auction).

5. Identity Server verifies that the users exist and send the

package to user B with a unique ID (track number), in

order for the package state to be tracked.

6. Auction Server sends request to Identity Server to transfer

money from user B to user A.

7. Identity Server makes the necessary checks and then

carries out the transaction.

8. The package comes to user B.

9. Money is in user’s A account.

10. Identity Server releases the money and user A has access

to this amount.

Table 4: Use case

-48-

Picture 3-2: Use Case Diagram

 -49-

-50-

4 Implementation (Identity Server)

Based on the design considerations and the requirements of the previous chapters, this

chapter presents a Java-based implementation of an auction RESTful API, supporting

the two mainly media types, namely JSON and XML.

4.1 Identity Server

The solution is based on the JAX-RS implementation of Jersey. Jersey framework is an

open source, production quality framework for developing RESTful web services in Ja-

va that provides support for JAX-RS APIs and serves as a JAX-RS Reference Imple-

mentation.
10

 The core of this API is the Identity Server, which offers services such as

Authentication, Postal and Bank services. For highest efficacy, robustness, clarity and

maintenance, we designed and developed the whole project into layers. Each of the lay-

er contains the same type of logic. Layering reduces the conceptual overhead, since ser-

vices belonging to the same layer, address a smaller set of activities, thus, minimizes the

impact of potential changes in one of the layer. In particular, we have developed three

main layers. The first one is the front end layer API which communicates directly with

the client. The second layer is the business layer which contains the business processing

logic, such as how a user must be created or how security should be implemented, and

the third one is the database layer which provides the database connectivity. This layer

is responsible for exposing the data stored in the database to the business layer. This

means that there is no directly communication between the front end layer and the data-

base. The following figure illustrates all the layers.

10
http://jersey.java.net

 -51-

Picture 4-1: Layering Structure

4.2 Database Layering

In order for the API to execute its goal successfully, a connection to a database in which

data will be persisted is mandatory. We chose MySQL as our RDBMS, because it is

open source and it is developed under Oracle Corporation, the same company that runs

Java. Thus, the communication between the Java programming language and MySQL

database is particularly easy and efficient.

According to what we mentioned above, the DB layer is responsible for database con-

nectivity. Let us now focus only on this layer.

Se
cu

ri
ty

DB Layer

Business Layer

 REST API

-52-

Picture 4-2: DB Layer

The “Model” describes the data that must be persisted in the database like users, users’

info, their credentials, etc. “IServices” and the corresponding “Service implementation”,

are essentially the controllers of the CRUD operations. It should be highlighted here

that we prefer abstractions over implementations, as all senior developers recommend

working with interfaces and not directly with implementations, exploiting the most of

polymorphism.

Initially, we created a database schema called “auction_db”, and there we created three

tables: “user”, “user_info” and “address”. The reason why we created these three tables

is to persist the three POJO (Plain Old Java Object) classes: “User”, “UserInfo” and

“Address”, which are necessary for describing the users that are participating in the auc-

tion process. The tables, “user_password” and “user_token”, are necessary for ensuring

DB Layer

Model

IServices Service Imple-

mentation

Java DB Technology (ORM, JDBC)

 -53-

the API security. The following figure illustrates the EER Diagram of this schema. This

EER Diagram was designed with the MySQL Workbench tool.
11

Picture 4-3: EER Diagram

The corresponding UML Class Diagram is shown below. The tool that was used is

StarUML
12

.

11
 https://www.mysql.com/products/workbench

12
 http://staruml.io

-54-

Picture 4-4: UML Class Diagram

4.2.1 ORM (Object Relational Mapping)

The hardest part of saving, retrieving, updating and deleting Java entities in a database,

is the complicated SQL commands that must be executed. This is where ORM comes

into play. ORM is a mechanism that is used to resolve the Java code and relational data-

base mismatch. It is an ordinary library written in Java that encapsulates the code need-

ed to manipulate the data, so that the user does not need to use SQL anymore, but di-

rectly a Java object. Behind the sense ORM uses the JDBC API. There are many ORM

tools in Java, such as Hibernate, TopLink, JDO and EclipseLink. Nevertheless, the Java

Persistence API, or JPA, is the standard persistence API, firstly introduced as part of the

Java EE 5 platform. The reason why we decided to use JPA in this implementation, and

not a specific persistence technologies that was previously mentioned, is because JPA is

a standardized specification that helps a developer to build a persistence layer that is

independent of any particular persistence provider.

4.2.2 Maven

In order to make the implementation process less cumbersome, we made use of Ma-

ven
13

. Maven’s primary goal is to allow a developer to comprehend the complete state

of a development effort in the shortest period of time. Maven is a lot of things, putting

in one. First and foremost, is a build automation tool, which means that it helps us build

13
 https://maven.apache.org

 -55-

our code in our development environment. Another role that Maven plays is the one of a

project management tool, which helps us generate reports and manage dependencies.

Maven is extremely useful, as it manages the multiple jars that are needed for the de-

ployment and describes the necessary dependencies. It uses conventions for the build

procedure, and only exceptions need to be written down. It is so powerful that all the

well-known IDEs use these conventions. Maven allows a project to be built using an

XML file called Project Object Model (POM), which describes the project structure, its

dependencies and the versions on other external components, the building order, and the

required plug-ins. It comes with pre-defined targets for performing certain well-defined

tasks, such as compilation of code and its packaging. Maven automatically downloads

Java libraries and Maven plug-ins from what is called “repositories”. A repository has

two types of information. The first type of information is about the archetype infor-

mation, which has the details about the different types of projects you want to create, as

well as the folder structure and all the required information about creating a new project

of that particular type. The second type of information is the dependency information,

which is a list of all the jar files that you normally use, and the other jars that are de-

pendent on the jars that you need. The main repository is the “Central Repository”.

However, when you download an artifact, this is copied also in a local repository in

your machine, and when is needed again, it does not have to be downloaded again from

the Central Repository.

4.2.3 Java Entities

An entity is a lightweight persistence domain object. Typically, an entity represents a

table in a relational database, and each entity instance corresponds to a row in that table.

The primary programming artifact of an entity is the entity class. The persistent state of

an entity is represented either through persistent fields or persistent properties. These

fields or properties use object relational mapping annotations to map the entities and

entity relationships to the relational data in the underlying data store [(16)].

An entity class must stick with the following requirements:

 The class must be annotated with the javax.persistence.Entity annotation.

 The class must have a public or protected, no-argument constructor. The class

may have other constructors.

 The class must implement the Serializable interface.

-56-

 The class, the methods and the persistent instance variables must not be declared

as final.

 Persistent instance variables must be declared private or protected and can only

be accessed directly by the entity class’s methods.

The next figure shows how the class User was developed, following the above manda-

tory requirements, plus some extra ones. All the other entities in the API are built in a

similar way.

Picture 4-5: User Class

On the top it is the @Entity annotation which reveals that this class is intended to be

persisted in a database. The @Table annotation is used for changing the default name of

the table (which is the same as the Java Class), as well as for giving some metadata in-

formation about the table itself, such as the schema and constraints. The

@XmlRootElement annotation is of paramount importance because without this annota-

tion it would not be feasible for data persisted in the database to be parsed in XML or

JSON format. Lastly, there are the @NamedQueries and @NamedQuery annotations. A

named query is a pre-defined query with a predefined unchangeable query string. By

using named queries instead of dynamic queries, code organization can be improved

owing to a single place of writing them. In order to write named queries, JPQL (Java

Persistence Query Language) is used. JPQL is defined in JPA specification and is not

SQL, yet, is very similar to the syntax of SQL. The advantage of having SQL like syn-

tax is that SQL is widely used by many developers, and thus there is no need to learn

another language from scratch. The main difference between these two query languages

is that SQL works with relational database tables, whilst JPQL works with Java objects.

The next figure illustrates the instance variables of the class, which are essentially the

ones that are persisted in the database and constitute the columns of the table.

 -57-

Picture 4-6: User Class Fields& Annotations

The id instance variable is annotated with the @Id, which means that this attribute is

going to be treated as primary key in the user table. Furthermore, the @GenaratedValue

annotation is used to auto-increment the primary key. The @Column annotation is used

for renaming the default name of the column, and also for giving some extra metadata,

such as whether a column can be null or not. The userInfo attribute has two annotations

of great importance. @JoinColumn and @OneToOne. Both are critical for joining two

tables and for declaring the cardinalities between the relationships. In particular, the

former essentially says that the user table has a column called “user_info_id”, which is a

foreign key, and links to the column “id” of the user_info table, which is its primary

key. The latter says that each instance of that entity is related to a single instance of the

other entity. In our case, a single user can have only one user info. On the other side, the

UserInfo Class’s attributes are written as follows:

-58-

Picture 4-7: UserInfo Class Fields& Annotations

The user attribute and its @OneToOne annotation, uses the CascadeType.ALL enumera-

tion for saying that the persistence will cascade all EntityManager operations, such as

PERSIST, REMOVE, REFRESH, MERGE and DETACH, to the relating entities. The

mappedBy attribute signals to the persistence provider that the join column is in the “us-

er_info” table. Finally, the address attribute and its annotations shows respectively that

the “user_info” table is linked with the “address” table with exactly the same one-to-one

relationship as the “user” table with the “user_info” table.

4.2.4 Persistence.xml

A JPA Persistence Unit is a logical grouping of user defined entity classes with related

settings, such as the particular database and schema the user wants to connect to, as well

as the corresponding credentials. A Persistence Unit is defined in an XML file called

persistence.xml, which has to be located in the META-INF directory in the classpath.

One persistence.xml file can include definitions for more than one persistence units.

The persistence.xml of the “auction_db” schema would be as follows:

 -59-

Picture 4-8: Persistence.xml File

It is worth noting the two attributes in the persistence-unit element. The name “auc-

tion_pu” identifies the persistence unit when instantiating an EntityManagerFactory
14

.

In other words, it is the name that must be used when you want to deal with this persis-

tence-unit. The transaction-type="RESOURCE_LOCAL" indicates that you as a devel-

oper are responsible for creating an EntityManager
15

, opening and closing a session

every time you want to make a change in database, and generally doing all the tedious

and monotonous job.

However, due to the fact that we are developing a web application, we would like the

server to provide us with some automated functionalities. More specifically, we have

deployed our web service in the GlassFish server
16

, which includes, among other, an

EJB container. EJB (Enterprise Java Beans) technology is the server-side component

architecture for Java Platform Enterprise Edition (Java EE). EJB technology enables

rapid and simplified development of distributed, transactional, secure and portable ap-

plications based on Java technology [(16)]. EJB container provides some lower level

services, such as Life Cycle Management, Database pooling, Transactions and Security.

With these services, the developer focuses only on the business logic of the application,

leaving the rest to the container.

14
 The EntityManagerFactory interface is used by the application to obtain an application-managed enti-

ty manager.
15

EntityManager API is used for CRUD operations among entities
16

 https://glassfish.java.net

-60-

As expected, the persistence.xml file in this situation must be altered so as to comply

with the new conditions. The next figure displays these changes.

Picture 4-9: Altered Persistence.xml File

The seemingly basic change is in the persistence-unit element, where the transaction-

type attribute has value “JTA”. This value indicates that the EJB container will supply

us with an EntityManager, and additionally will take care all the transaction operations.

Of course, in order for all these automated operations to work properly, we needed to

make the appropriate settings in the GlassFish server. We visited the admin console

page at port 4848, and from there, we created a JDBC connection pool, named “auc-

tion_service_mysql_pool”, with all the necessary information for the server, like the

database driver name, its URL, the maximum number of connections that can be created

to satisfy client requests, the username and the password. In parallel, we created a JDBC

Resource which points to the above connection pool. The corresponding JNDI
17

 name is

“jdbc/auction_service_resource”. The “jta-data-source” element specify the global JNDI

name of the data source to be used by the container.

4.3 Services

Having said and done all that, we now have built the database layer which is a funda-

mental part of our RESTful API. Yet, the core modules of this API are the services

themselves. These are the ones that would provide the additional functionalities in an

exterior application. These are the ones that actually make real the SOA architectural

pattern, whose principles should be followed when a new software is designed and

planned to be developed.

17
 http://www.oracle.com/technetwork/java/jndi/index.html

 -61-

4.3.1 Users

Broadly speaking, in order for Jersey to be aware of what class is mapped with a partic-

ular resource, what Java method should be called when a client sends a specific HTTP

method, and in what format must send the response back, three annotations have to be

utilized.

The @Path annotation identifies the URI path to which the resource responds, and is

specified at the class level (or method level if you want to access nested resources) of a

resource [(16)]. In other words, it binds a URI pattern to a Java class or a Java method.

The @GET annotation, and correspondingly all the other annotations for the HTTP

methods, binds an HTTP GET request with a specific Java method. Finally, the

@Produces annotation gives the insight to Jersey to send back the response in a specific

format.

Apart from these annotations, due to the fact that our RESTful API makes use of an EJB

container, @Stateless annotation is necessary, since it is used to mark the class as State-

less Session Bean. Stateless Session Beans are business objects that do not have state

associated with them. This is the exact behavior we want to achieve, since one of the

basic principle of REST services is that the client-server communication should be

stateless.

Thereafter, in the next figures we present the first service that we developed. Along the

way, we will explain every piece of code in this Java class, including how the facilities

of the EJB container works hand in hand with Jersey. It is noted that the basic URL: lo-

calhost:8080/integrated-auction-service/ forms the application context, just like all the

web applications on the internet. Of course, in a real application the domain name it

would not be “localhost”. The RESTful API accepts request to the URL: lo-

calhost:8080/integrated-auction-service/rs/. After that point are mapped all the several

services that we have created. Obviously, the service below is bind to the URL: lo-

calhost:8080/integrated-auction-service/rs/users

-62-

 Picture 4-10: Users REST Service

The @Inject annotation is used to inject all the requisite Stateless EJBs into the JAX-RS

Web Service. In essence, it injects the dependencies and leave the container do the job.

The first five dependencies are for database transactions, while the last two has to do

with the business logic and the security mechanism of the RESTful API.

The following figures illustrate all the java methods that are bind with the various

HTTP methods. All the parts of the code that are associated with the security features of

the API, will be discussed in the next section.

Picture 4-11: GET Request in the Users Service

 -63-

Picture 4-12: POST Request in the Users Service

The @Consumes annotation in the above figure signifies that the body of a POST re-

quest in the RESTful API must be in either XML or JSON format. Remarkably, the Uri-

Info interface provides methods to enable you to find or build URI information of a re-

quest.

The next picture shows a part of the method that handles the PUT request.

Picture 4-13: PUT Request in the Users Service

It is noteworthy that in this method we are dealing for the first time with a nested re-

source, meaning that the URL path localhost:8080/integrated-auction-service/rs/users

can be embedded with user-typed variables. These variables are substituted at runtime

in order for a resource to respond to a request, based on the substituted URI. Variables

are denoted by curly braces { } [(16)]. More specifically, we use @PathParam to inject

the value of URI variable that is defined in @Path expression, into the Java method.

All the next figures make use of @PathParam annotation in order for all the functionali-

ties of the RESTful API to be covered.

-64-

Picture 4-14: DELETE Request in the Users Service

Picture 4-15: GET By Id Request in the Users Service

Picture 4-16: GET With Range Request in the Users Service

In the above picture, it is shown that is possible to use more than one variables in the

@Path annotation.

 -65-

Last but not least, it is presented the functionality which gives a client the ability to

count the records of those that are participating in the auction.

Picture 4-17: GET With Range Request in the Users Service

It should be noted that this method sends back the response not in XML or JSON for-

mat, but in plain text (@Produces("text/plain")).

4.3.2 Login

Security is a crucial part of any web application nowadays. In fact, it is inextricably

linked with whether a web application would be successful or not. This RESTful API

could not be the exception, and therefore we tried to provide some basic security fea-

tures for all the protected resources. Before explaining practically how we implemented

them in Java, let us first give an overview of how our security mechanism works.

Step 1: Initial Request

Picture 4-18: Initial Request

Let’s assume that the client is not yet authenticated to the application environment.

Request Access

to Protected

Resources
Web Client

Web
Server

-66-

Step 2: Access Forbidden

Picture 4-19: Access Forbidden

Step 3: Credential Checking & Token Sending

Picture 4-20: Credentials Checking &Token sending

As soon as the client sends his credentials, the server goes to the database and looks up

whether they match or not. If the credentials are valid and there is already a token value

for that user, it sends the token to the server and the server in turn sends it back to the

client. If the credentials are valid but there is no token registered, the web server creates

one, saves it in the database and then sends it back to the client.

Deny Access

Web Server

Credentials Web Client

Sends

Credentials

Web Client

Check
Credentials

Send

Token

Web Server

Credentials EJB
Container

Security
Context

Session
Context

Database

Security
Context

 Secu
rity Tab

le

Send

Token

 -67-

Step 4: Request Access to Protected Resources with Token

Picture 4-21: Request Access to Protected Resources with Token

The client sends again a request to the web server, but this time within the header of the

request also sends the authorization token.

Step 5: Fulfilling the Original Request

Picture 4-22: Fulfilling the Original Request

If the user is authenticated, the web server returns the result of the original URL request.

After that, the client can further use the services that the web server provides (in our

case, GlassFish), by sending the required requests.

Having given the overview of how the security mechanism in our RESTful API works,

we can now briefly demonstrate how the login service has actually been implemented in

Java. The following annotations are already known, since they were discussed in the

previous section.

The whole security feature is, once again, architected having in mind the layering de-

sign principle. Therefore, in the business layer we created, among others, a Java class

called LoginManager which stands between the REST API layer and the DB layer, and

its responsibility is to manage our business logic and essentially define the rules of how

Request access

to protected

resource

with

Authorization

Token

Web Client

Web Server

Session

Context

Credentials EJB

Container
A

u
th

o
rizatio

n

Result of

Request

Web Server

Session

Context

Credentials EJB

Container Web Client

Another

Request

-68-

a client should be authenticated by the system. The LoginManager class implements the

ILoginManager interface which indicates all the operations that must be implemented.

In the next two figures we present the aforementioned interface as well as the Login

Service class, in order to give an insight of how the Identity Server actually manages

security issues.

Picture 4-23: LoginManager Interface

Picture 4-23 denotes that the Login Manager stipulates that certain conditions must be

met in order for a stakeholder to login in the Identity Server and make use of its ser-

vices. The @Local annotation, defines the local interface of the Bean. Picture 4-24

shows the actual implementation of the Login REST Service.

Picture 4-24: Login Service

 -69-

One last annotation that is significant to be noted is the @HeaderParam. This annota-

tion is used in all the methods in all the REST services, so as Jersey to be able to read

the HTTP request header. Identity Server gets the value of the “Authorization” request

header, which is actually the authorization token, and checks whether a particular user

should have access to its services or not.

4.3.3 Postal

Another kind of service that Identity Server provides, is the Postal Service. This time,

let us first describe its characteristics and usefulness through a sequence diagram. A se-

quence diagram is a kind of interaction diagram. The main purpose of an interaction di-

agram is to visualize the interactive behavior of the system. It is one of the thirteen

UML type diagrams and emphasizes on modelling the collaboration of objects based on

a time sequence. It shows how the objects interact with others in a particular scenario of

a use case. A sequence diagram can be drawn in five steps:

 Step 1: Define who will initiate the interaction

 Step 2: Draw the first message being passed to the sub-system

 Step 3: Draw other messages being passed to other sub-systems

 Step 4: Draw return messages going back to the original sender (actor)

 Step 5: Send message to objects outside the scope of the diagram (anonymous

actors)

Firstly, we will present a business use case. We will go through all the steps that elaps-

ing from the initial request to the Postal Service up to the completion of its job, and then

we will provide the corresponding sequence diagram. We take for granted in this phase

that whoever sends a request to Identity Postal Service, has the requisite credentials.

 Step 1: Auction Service sends a request to Identity Postal Service so as the latter

to send a package from User A to User B.

 Step 2: Identity Service sends a confirmation that the request is received.

 Step 3: The package itself is received, and Identity Postal Service sends the cor-

responding confirmation.

 Step 4: Identity Postal Service apprise Postal Package Service (Business Layer)

to create the package.

-70-

 Step 5: Postal Package Service informs Package DB Controller (DB Layer) that

a package must be created and be persisted in the database.

 Step 6: Package DB Controller creates a record in the database for that package,

and sends back to Postal Package Service a confirmation message, as well as the

package’s track number. This number will be used later by Auction Service for

checking the current state of the package. That is, getting information about the

package state in any specific point of time.

 Step 7: Postal Package Service sends email to the interested parties, informing

them about its actions.

 Step 8: Postal Package Service sends the track number to Identity Postal Service.

 Step 9: Identity Postal Service sends the track number to Auction Service. Auc-

tion Service can now check the package state by sending the appropriate track

number to the Identity Postal Service.

 Step 10: Auction Service sends request to Identity Postal Service asking for the

current state of the package with a specified track number.

 Step 11: Identity Postal Service asks Postal DB Controller to find the package

state of that track number.

 Step 12: If the package state is found, DB Controller returns it.

 Step 13: Identity Postal Service sends to Auction Service the current state of the

package.

It follows the aforementioned sequence diagram, which illustrates all the above steps.

At the top of the diagram are the objects/roles of the system lined up in a row. In our

case, the Auction Server, Identity Postal Service, Postal Package Service, Package DB

Controller and Email Service. Messages are being passed horizontally between these

objects, and even more importantly, the order in which the interaction occurs, moves

from top to bottom in the diagram. The software tool that is used is visual-paradigm
18

.

18
http://www.visual-paradigm.com

 -71-

Picture 4-25: Postal Sequence Diagram

-72-

Lastly, it is briefly shown how we practically implemented the most important features

of the Postal Service, which are the Postal REST Service, the Postal Package Service

and the Email Service.

The Postal REST Service gives you the opportunity to send a package from User A to

User B and to check the package state.

Picture 4-26: Postal REST Service (Send Package)

Picture 4-27: Postal REST Service (Check Package State)

The next figure illustrates an interface called IPostalService which is implemented by

the Postal Package Service, showing what operations must be managed. These opera-

tions are used by the Postal REST Service.

 -73-

Picture 4-28: IPostalService Interface

Sending emails with Java is pretty easy. The following two figures are self-explanatory,

and show the implementation of the EmailService class. The first one shows how the

necessary properties are defined and created within the constructor of the class, while

the second one displays how Java actually sends an email.

Picture 4-29: Email Service Class

-74-

Picture 4-30: Email Service Class

4.3.4 Bank

The last service that Identity Server offers is the Bank service. Even though its main job

is to properly transfer money from User A to User B, it also provides services such as,

create a user account, check an account, make a deposit and make a withdrawal. The

next Java interface illustrates these operations.

Picture 4-31: Bank Service Operations

 -75-

As we have marked earlier, when a “transfer” request comes to the REST Bank Service,

the money that is being withdrawn from the winner of the auction is put in a

“BLOCKED” state, until the package transfer procedure is completed. At that point of

time, a “confirm” request reaches the Bank Service in order to confirm that the transfer

transaction is now legitimate to be accomplished, the money is unblocked and finally is

deposited in auctioneer’s account.

As has been done in the Postal Service, we are going to introduce a business use case

with all the steps starting from receiving a request by Auction Server, and ending with a

positive or negative response message.

 Step 1: Auction Service sends a request to Identity Bank Service for transferring

a certain amount of money from User A to User B.

 Step 2: Identity Bank Service (REST) asks Bank Service (Business Layer) to

carry out the transaction.

 Step 3: Bank Service sends the request to Bank DB Controller.

 Step 4: Bank DB Controller checks whether User A has enough money in his

account to successfully accomplish the transaction, and sends back the corre-

sponding message.

 Step 5: Bank Service sends emails to stakeholders informing them about the re-

sult of the transaction.

 Step 6: Bank Service sends the aforementioned response to Identity Service.

 Step 7: Identity Service sends the response to Auction Service.

It follows the sequence diagram which illustrates the above use case.

-76-

Picture 4-32: Bank Sequence Diagram

 -77-

To conclude, in the next two figures, we display portion of the Java implementation of

the Bank REST Service.

Picture 4-33: Check Account

Picture 4-34: Transfer Money

-78-

4.4 Handling Exceptions

So far, we discussed about the happy path scenario, meaning that everything works as

expected. We know what response will be returned, what the status code is going to be,

etc. The important question that must be answered though, is what you as a developer

want to send back as a response, when an exception in thrown. For this scenario, a help-

ful way to approach error handling in RESTful APIs is to create an error message that

will be sent to the client in a nice XML or JSON format, and not allow some random

HTML page that the GlassFish server throws up to be displayed.

We created two kind of exceptions for this API. The first one for database-related ex-

ceptions, and the second one for all the other scenario exceptions. For practical reasons,

we will explain only one type of exception, the NotAllowedException, type which was

randomly chosen. This exception is thrown when a client is not authenticated to access

protected resources. All the other exceptions were built in the same way and work simi-

larly.

The first step was to prepare the error message that would be sent. This message in-

cludes information about the cause of the exception, an error code, as well as additional

guidelines about how to troubleshoot that exception. A part of this ErrorMessage class

is displayed in the following figure.

Picture 4-35: Part of the ErrorMessage Class

The class in annotated with @XmlRootElement in order for the message to be converted

to either XML or JSON. The class comprises three instance variables, two constructors,

plus the corresponding “getters” and “setters”.

 -79-

The second step was to map this error message to an exception. In other words, when

some particular exception is thrown, concrete respond must be returned. In essence, we

are mapping an exception to a response.

In order to fulfill the second step, we had to create the class NotAllowedException,

which extends the class RuntimeException. It is a simply class with just two construc-

tors.

Picture 4-36: NotAllowedException Class

After that, the only thing that was left to do was to map this exception to the appropriate

response. The way that this mapping can be done in JAX-RS is by using a Generic in-

terface called ExceptionMapper. Hence, we needed to create one more class, which we

called NotAllowedExceptionMapper that implements the ExceptionMapper interface.

The Generic type of the interface, must be the exception that you want this exception

mapper to map. In this case, the exception is the NotAllowedException. This interface

has only one method that must be overridden. This method is called toResponse, takes

as an argument the exception you want to throw, and returns a Response. The next fig-

ure displays the exact implementation of the NotAllowedExceptionMapper class.

Picture 4-37: NotAllowedExceptionMapper Class

-80-

In the body of that class, we actually wrote code in order to create the specific response

that would be send back to a client when that exception is thrown. The last thing to do

was to annotate the class with @Provider annotation. This annotation registers the class

in JAX-RS, so as JAX-RS to know about its presence.

To conclude, let us demonstrate what will be the response returned to a client when the

NotAllowedException is thrown.

Picture 4-38: Response Message in JSON

Picture 4-39: Response Message in XML

In both cases, a non-authenticated client tried to access protected resources, and Jersey

returned a message with an error code, the cause of the problem, as well as a documen-

tation link for troubleshooting.

 -81-

 -83-

5 Implementation (Auction Server)

Having implemented all the Identity Server’s services in the previous chapter, alongside

with all the implementation details that exist behind the scenes, little are the worth-

mentioning topics that remain to be included in this chapter.

5.1 Auction Server

In this chapter, we are going to touch on the Auction Service responsibilities together

with the development of a RESTful Web Service Client, explaining why it is so much

of importance to our RESTful API.

5.1.1 RESTful Client

In this section, we introduce the concept of a RESTful Client and attempt to explain

why it is so useful, both in RESTful web services in general, but also in our API. More

specifically, we deal with the JAX-RS client API, which is a Java based API that makes

it particularly easy for RESTful web services, exposed via HTTP protocol, to be con-

sumed. The goal of a client API is threefold:

 Wrap a key constraint of the REST architectural style, that is, the Uniform Inter-

face Constraint, and map data elements as client-side Java objects.

 Facilitates the consumption of RESTful web services exposed over HTTP, just

like the JAX-RS server-side API facilitates the development of RESTful web

services.

 Share mutual concepts and design theory of the JAX-RS API between the server

and the client side programming models [(21)].

In our case, client API is extremely serviceable and useful, since it is a vital part of Auc-

tion Server, which is presented in the next section. In particular, each and every request

that reaches Auction Server must be checked for its validity by Identity Server. In order

for this process to be seamlessly, without awareness of the outer world, Auction Server

uses a client API to send requests to Identity Server, in order for the two systems to

communicate internally. As a result, if some client sends request to the Auction Server

-84-

asking, for instance, to open a new auction for his behalf, Auction Server uses client

API to check the token validity, and then Auction replies to external client properly.

This audit is happening automatically, without the aforementioned client knowing about

this procedure. The only thing that the client gets, is a negative or a positive response

concerning his initial request.

In the rest of this section, we attempt to give an insight into the client API and how it

works. First of all, a resource in the JAX-RS client API is represented by an instance of

a Java class called WebTarget, which encapsulates a URI. All HTTP verbs can be in-

voked based on that Java class [(21)]. However, in order to utilize the client API, it is

firstly necessary to build an instance of a Client using a Java abstract class called Cli-

entBuilder. Hence, in our API we created an abstract class called RestClient, to facilitate

the creation of a RESTful client. The figure below illustrates this class.

Picture 5-1: Rest Client Abstract Class

In its constructor it takes a URI, which is essentially the targeted resource. We instanti-

ate a Client instance and then create a WebTarget from it. Moreover, as it is reasonable,

our RESTful client has its own Login logic in order to communicate and be authenticat-

ed by Identity Server. The operations that is able to perform is given by the next Java

interface, and the implementation by the corresponding class, which also extends the

RestClient abstract class.

 -85-

Picture 5-2: Client Login Logic Interface

Picture 5-3: Client Login Logic Implementation

Picture 5-4: Client Login Logic Implementation

-86-

Picture 5-5: Client Login Logic Implementation

In the next section, it is shown how exactly our RESTful client is used by the Auction

Service, in order to send requests to Identity’s Login REST service.

5.1.2 Auction Service

The role of Auction Server is highly targeted. It accepts request by clients, either for

creating a new auction or for placing a new bid in an already running auction. The latter

case also involves the ability of the Auction server to give to all the potential bidders, all

the open auctions. The next Java interface illustrates these services.

Picture 5-6: Auction Service Operations

For better comprehension, we introduce yet another use case with all the steps involved,

starting from receiving a request by a client, and ending with a positive or negative re-

sponse message by Auction Server.

 Step 1: A client (auctioneer) sends a proper request to Auction Server to open

(create) a new auction.

 Step 2: Auction Server checks the validity of the request’s token by sending a

subsequent request to Identity Server.

 -87-

 Step 3: Identity Server checks the token as well as the user of that token, and re-

plies accordingly.

 Step 4: If credentials do not match, Auction Server rejects the client’s request.

If, however, everything is as it should, Auction Server opens a new auction on

his behalf.

 Step 5: Consumers of the service (other clients) are able to send requests and

scan all the open auctions (the available ones).

 Step 6: Legitimate clients bid for an auction product.

 Step 7: When an auction ends, Auction Server sends the appropriate requests to

Identity Server, in order to take care the rest actions/services that are mandatory

for the whole auction procedure to be completed.

The following sequence diagram illustrates the above use case

.

-88-

Picture 5-7: Auction Sequence Diagram

 -89-

We will close this section by providing the Java implementation of the Auction REST

Service. It is noteworthy how Auction REST Service uses the RESTful client in order to

seamlessly validate user’s credentials.

Picture 5-8: Open Auction

Picture 5-9: Get All Open Auctions

Picture 5-10: Bid for an Auction Product

-90-

 -91-

6 Conclusions

In this thesis we tried to develop an integrated web service, which could be a comple-

mentary part of an already deployed web application. We have used the JAX-RS speci-

fication, which is an API that provides support for creating web services according to

the Representational State Transfer (REST) architectural pattern. The nice thing with

JAX-RS is that it bridges the gap between the HTTP world and the Java world by map-

ping key terms of the RESTful architectural style, such as HTTP methods, with Java

objects.

The reason why we chose to use the RESTful architectural style is due to the fact that

we wanted to create a loose coupling web service, which could be easily become part of

another web system, especially when this web application is regularly updated, while it

is vital the consumers of these services keep using them insusceptible. Another attempt

was to create a server-client communication, that is not so verbose as XML, thus, less

overhead, in order to be effortlessly used in environments with limited bandwidth and

resources.

Throughout the development of our RESTful web service, we made use of the whole

Java Platform, Enterprise Edition 7, and its capabilities. The main point we have tried to

make is that by using the Java platform and the tools that it provides, it is relatively easy

for a developer to create from scratch a fully operational RESTful API.

The initial research was spent on evaluating and understanding the reasons why

REST services is so much a trend nowadays, and why great companies like Google,

Twitter, Facebook and Yahooprefer them. Consequently, the comparison between

REST and SOAP web services was inevitably highlighted. It should be underlined that

even though the development process encountered difficulties, the Java platform

proved to be a valuable and reliable ally.

-92-

 -93-

7 Bibliography

1. microsoft.com. Chapter 1: Service Oriented Architecture. s.l. : Msdn.microsoft.com.

2. Thomas, Fielding Roy. Architectural Styles and the Design of Network-based

Software Architectures. s.l. : University of California, Irvine.

3. James Snell, Doug Tidwell, Pavel Kulchenko. Programming Web Services with

SOAP. s.l. : O'Reilly Media, 2001.

4. Francisco Curbera, William A. Nagy, Sanjiva Weerawarana. Web Services: Why

and How. s.l. : IBM T.J. Watson Research Center, 2001.

5. http://www.w3schools.com/. http://www.w3schools.com/. [Online]

6. Richardson, Leonard and Ruby, Sam. RESTful Web Services. s.l. : O'Reilly Media,

2007. 978-0-596-52926-0.

7. http://www.w3.org/DesignIssues/Axioms.

http://www.w3.org/DesignIssues/Axioms. [Online]

8. Allamaraju, Subbu. RESTful Web Services Cookbook,Solutions for Improving

Scalability and Simplicity. s.l. : O'Reilly Media, 2010.

9. Fielding, Roy T., et al. Hypertext Transfer Protocol -- HTTP/1.1. IETF. . 1999. RFC

2616.

10. http://www.w3.org. http://www.w3.org. [Online]

11. Hewgill, Greg. www.stackoverflow.com. [Online]

12. http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/.

http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/. [Online]

13. http://martinfowler.com/articles/richardsonMaturityModel.html.

http://martinfowler.com/articles/richardsonMaturityModel.html. [Online]

14. http://www.bu.edu/tech/about/security-resources/bestpractice/auth/.

http://www.bu.edu/tech/about/security-resources/bestpractice/auth/. [Online]

15. Jim Webber, Savas Parastatidis, Ian Robinson. REST in Practice, Hypermedia

and Systems Architecture. s.l. : O'Reilly Media, 2010.

-94-

16. http://docs.oracle.com/. http://docs.oracle.com/. [Online]

17. Kleinberg, David Easley and Jon. Networks, Crowds, and Markets: Reasoning

about a Highly Connected World. s.l. : Cambridge University Press, 2010.

18. McAfee, Dinesh Satam and McMillan, Dinesh. “Auctions and Bidding”, Journal

of Economic Literature . s.l. : American Economic Association, 1987.

19. Klemperer, Paul. Auctions: Theory and Practice. s.l. : Princeton University Press.

20. Adam, M.T.P., et al. "Understanding auction fever: A framework for emotional

bidding". 2011.

21. https://jersey.java.net/. https://jersey.java.net/. [Online]

 -95-

8 Appendix

8.1 Documentation

Service name: integrated-auction-service

Root URI: http://localhost:8080/integrated-auction-service/rs/

Resource Methods URI Description

Users GET

POST

PUT

DELETE

/users/{userID}

/users/{from}/{length}

/users/count

/{userID} is optional.

/{from}/{length} is optional

/count is optional

Format: application/json, applica-

tion/xml, text/plain

GET: retrieve all users or a specific

one

POST: create a new user

PUT: update the specified user.

(use of: /{userID})

DELETE: delete the specified user.

(use of: /{userID})

GET: retrieve users with range (use

of: /{from}/{length})

GET: count all the users (use of:

/count)

User

token

POST

GET

/login/identity

/identity is optional

POST: provide token for legitimate

users. (User sends his username &

password and if they are valid, a

token is returned)

GET: check if a user is authenticat-

ed

GET: return user by token (use of:

/identity)

http://localhost:8080/integrated-auction-service/rs/users/%7buserID%7d
http://localhost:8080/integrated-auction-service/rs/login/identity

-96-

Package,

Package

state

POST

GET

/postal/send

/postal/{packageId}/check

Format: application/json, applica-

tion/xml

POST: send a package from user A

to user B. (use of: /send)

GET: check the package state of a

particular package. (use of:

/{packageId}/check)

Account,

Transfer

transac-

tion

POST

GET

/bank/transfer

/bank/{username}/checkAccount

/bank/create

/bank/deposit

/bank/withdraw

/bank/{bankTransferId}/{package

Id}/check

Format: application/json, applica-

tion/xml, text/plain

POST: transfer money from Ac-

count A to Account B. (use of:

/transfer)

GET: check an account. (use of:

/{username}/checkAccount)

POST: create an account. (use of:

/create)

POST: deposit money. (use of:

/deposit)

GET: check if the specified package

has delivered. If so, unblock the

money in the specified bank trans-

action. (use of:

/{bankTransferId}/{packageId}/c

heck)

Auction,

Auction

bid

POST

GET

/auction/open

/auction/bid

/auction

POST: withdraw money. (use of:

/withdraw)

Format: application/json, applica-

tion/xml

POST: open a new auction. (use of:

/open)

POST: place a bid. (use of: /bid)

 GET: get all the open auctions

Table 5: Integrated-Auction-Service API Documentation

http://localhost:8080/integrated-auction-service/rs/postal/send
http://localhost:8080/integrated-auction-service/rs/postal/%7bpackageId%7d/check
http://localhost:8080/integrated-auction-service/rs/bank/transfer
http://localhost:8080/integrated-auction-service/rs/bank/%7busername%7d/check
http://localhost:8080/integrated-auction-service/rs/bank/create
http://localhost:8080/integrated-auction-service/rs/bank/deposit
http://localhost:8080/integrated-auction-service/rs/bank/withdraw
http://localhost:8080/integrated-auction-service/rs/auction/open
http://localhost:8080/integrated-auction-service/rs/auction/bid
http://localhost:8080/integrated-auction-service/rs/auction

 -97-

8.2 Source Code

The complete source code of our RESTful API is available at:

https://github.com/yiannis13/thesis-repo

8.3 Tools & Technologies

To recapitulate, the main Java related tools and technologies that made this RESTful

API feasible are as follows:

 The chosen Integrated Development Environment (IDE), in order to simplify the

whole development process, was NetBeans. It could be argued that this is the of-

ficial Java IDE, since it is provided by Oracle Corporation, the same company

that runs Java. It is free, open source and cross-platform.

 The ORM (Object Relational Mapping) tool that was selected in order to easily

query and manipulate data from the database (MySQL in this case), was JPA.

JPA is a standardized specification that helps a developer to build a DB layer

that is independent of any particular persistence provider.

 GlassFish Server. Since web services is a kind of web application, it was needed

a robust application server in order to deploy and run our RESTful API. Glass-

Fish is open-source, free and is also sponsored by Oracle Corporation. It sup-

ports, among others, Enterprise JavaBeans for dependency injections and auto-

matic database transaction capabilities, enabling developers to focus only on the

business logic of an application. Literally speaking, everything runs inside

GlassFish.

 Maven played a vital role in almost every step in this implementation. It man-

aged the countless jars and libraries needed, by automatically downloading all

the dependencies that were pointed out in the pom.xml file. Without Maven, the

development process would be far more cumbersome.

 For the data storage we chose to use MySQL, because it is open source, is devel-

oped under Oracle Corporation, which is the same company that runs Java, and

therefore, the communication between the Java programming language and

MySQL database would be particularly easy and efficient. For making our live

easier, we also used MySQL Workbench, which is a Graphical User Interface

https://github.com/yiannis13/thesis-repo

-98-

(GUI) tool that provides SQL development, administration, database design, and

maintenance for the MySQL RDBMS.

 For UML class diagrams, use case diagrams and sequence diagrams, we chose

to use StarUML and Visual Paradigm.

