
 -i-

Context-Aware Profile
Analyzer for Android

Kotsopoulos Dimitrios

SID: 12345678

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

-ii-

DECEMBER 2015

THESSALONIKI – GREECE

Context-Aware Profile

Analyzer for Android

Kotsopoulos Dimitrios

SID: 12345678

Supervisor: Prof. T.-M. Groenli

Supervising Committee Mem-

bers:

Prof. G. Ghinea

Dr. C. Berberidis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

 -iii-

DECEMBER 2015

THESSALONIKI – GREECE

Abstract

In this thesis we endeavor to develop a prototype of a mobile application that focuses

on context-aware computing, trying to deploy it in a new and novel way and investi-

gate unexplored dimensions of context-awareness. As users receive calls and texts,

browse the web, play games and use applications, information aggregates in the

phone. Our scope is to try to extract this information from communication log files of

mobile device as well as from device’s sensors. Incoming and outgoing calls, messag-

es or emails from several installed applications on mobile phone can be considered

really useful for profile analysis of mobile owner. By combining this information with

traditional context-aware information from sensors and build in data stores in the

phone, an extensive user profile can be built an analyzed. Furthermore, we try to en-

lighten the reader regarding the concept of context and context-awareness in order to

provide her a general knowledge for various frameworks which application develop-

ers used in order to develop context-aware application and finally we present several

prototype applications. Furthermore, we focus on defining the problem together with

the approach and the methodology which will be used. In addition, we present the

tools that we used for the completion of this thesis together with the core implementa-

tion of the prototype application. The conclusion shows that the given approach is

feasible to create a context-aware application based on simple design methodology

using as essential information data from mobile sensors and user’s communication

log.

Kotsopoulos Dimitrios

11/12/2015

-iv-

 -v-

Contents

ABSTRACT ... III

CONTENTS ... V

1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1

1.2 THESIS RELATION .. 3

1.3 GOALS AND EXPECTED OUTCOMES .. 3

1.4 THESIS OUTLINE .. 4

2 LITERATURE REVIEW .. 7

2.1 WHAT IS CONTEXT ... 7

2.2 CONTEXT-AWARENESS .. 8

2.3 RELATED WORK ... 10

2.3.1 Context Toolkit (F) ... 10

2.3.2 CoBrA (F) ... 12

2.3.3 SOCAM (F) ... 12

2.3.4 CARISMA (F) ... 14

2.3.5 Gaia (F) ... 14

2.3.6 Aura (F) ... 15

2.3.7 COPAL(F) ... 16

2.3.8 CA4IoT (F) .. 17

2.3.9 SeCoMan (F) ... 19

2.3.10 Olivetti Active Badge (A) .. 20

2.3.11 PARCTAB (A) .. 20

2.3.12 Personal Shopping Assistant (A) .. 22

2.3.13 Cyberguide (A)... 22

2.3.14 HEP (A) ... 23

2.3.15 Office Assistant (A) ... 24

2.3.16 A brief comparison .. 25

-vi-

2.3.17 Summary .. 26

3 PROBLEM DEFINITION .. 29

3.1 PROBLEM APPROACH .. 29

3.2 METHODOLOGY ... 30

3.3 ARCHITECTURAL APPROACH ... 31

3.4 TOOLS .. 35

3.4.1 Android Studio ... 36

3.4.2 SOAP web services .. 36

3.4.3 Emulators .. 37

4 CONTRIBUTION ... 39

4.1 IMPLEMENTATION .. 39

4.1.1 Location Module.. 39

4.1.2 Acceleration Module ... 42

4.1.3 Gyroscope Module ... 45

4.1.4 Light Module .. 49

4.1.5 CallLog Module ... 51

4.1.6 Sms Module ... 55

4.1.7 Application Module ... 58

4.1.8 Calendar Module .. 61

4.1.9 DBHelper Module ... 64

4.1.10 Update Service.. 65

4.2 CONTEXT-AWARENESS AND DEVICE DATA .. 67

4.2.1 Context Rules .. 67

4.2.2 ContextManager ... 68

5 DISCUSSION ... 75

5.1 SENSOR’S RAW DATA VIEWS ... 75

5.2 PHONE LOGGER VIEWS... 77

5.3 CONTEXT MANAGER VIEW .. 79

6 CONCLUSIONS AND FUTURE WORK ... 87

6.1 SYNOPSIS .. 87

6.2 CONCLUSIONS ... 88

 -vii-

6.3 FUTURE WORK ... 89

BIBLIOGRAPHY .. 91

APPENDIX .. 95

 -1-

1 Introduction

1.1 Background

Never before in modern history of humanity, was man so closely intertwined with her

personal device (desktop pc, laptop, smartphone etc.) as now. The first years of devel-

opment of computer technology, a user had in her possession a desktop computer with

specific capabilities, and then computers have evolved rapidly over years and became

portable with more capabilities. This development did not leave unaffected the users

who in turn begun to possess more than one computer and especially at least one laptop.

The dependency created between devices and users was great and became even stronger

when the smartphones were appeared. Mobile experiences overtook the desktop experi-

ence. In 2013, Gartner Group [1] predicted that mobile devices will pass PCs to be most

common Web access tools. They also predicted that by the end of 2015, over 80% of

handsets in mature markets will be smart phones. IDC [2] predicted that smartphone

and tablet spending will reach $484 billion; generating 40% of all IT growth whereas

mobile app downloads will hit 150 billion, up 18% from last year’s 61% growth. In

2015, over 3.5 million applications are available across app stores worldwide. Based on

the previous surveys it is safe to assume that in the developed world almost every indi-

vidual holds at least one smart device which uses some kind of smart automation that

perhaps the user is not aware.

How many times have we used our mobile in vertical or horizontal display and device’s

screen followed our motions? How many times have drivers used a navigation applica-

tion to plan a trip or get information about a route? We can enumerate several similar

examples that the user takes for granted such the above functionalities for mobile appli-

cations that facilitate her daily life. Mark Weiser in his pioneering paper [3] quoted that

the most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it. To make this possi-

ble, many researchers from the 90s tried to find out what are the necessary ingredients,

which can be used to create such systems, context-aware systems. Universal importance

step is the effective exploitation of contextual information. Interaction between comput-

-2-

ers and humans has many differences in relation with human to human, computers un-

derstand only what they are programmed to understand whereas humans can understand

the environment, to distinguish facial expression, change the tone of voice of the inter-

locutor even know news related to speakers. In the current decade the development of

many sensors enabled the enhancement of context. Nowadays in most mobile devices

and not only (objects etc.) are embedded important sensors such as GPS (for location

and speed), light, vision, microphones, accelerometers, gyroscopes, magnetic field sen-

sors, sensors for temperature and humidity, and air /barometric pressure. Additionally

many wireless computer networking technologies have been improved and used to pro-

vide secondary context, Wi-Fi, Bluetooth, GPRS, infrared, NFC etc. The following fig-

ure represents with accuracy what was mentioned before and in addition shows the

trend of technology for years to come, namely Internet of Things. Guillemin and P.

Friess in their research work [4] defined that the Internet of Things allows people and

things to be connected anytime, anyplace, with anything and anyone, ideally using any

path/network and any service. Objects around us will connect to each other (e.g. ma-

chine to machine) communicate via the Internet and sharing context. Σθάλμα! Το αρ-

τείο προέλεσζης ηης αναθοράς δεν βρέθηκε.illustrates the phases in the evolution of

the Internet.

Figure 1 Evolution of Internet [5]

Several companies in the IT sector such as Google, Yahoo and Facebook push towards

to this direction and they significantly influence the future of Mobile. Google for exam-

ple has already demonstrated a context-aware scenario where the smart phone assists

her owner. A smart phone would wake up the owner based on the time that she slept but

also on the current traffic, in order to arrive on time to her work, that it has been in-

 -3-

formed by web services. Then it will open up the lights and also increase the tempera-

ture in the room due to the fact it is connected to light and temperature sensors. It will

turn the coffee machine on and once the user is on the computer it will automatically

present to him news of her preferences. When the owner would get into the car, lights

and temperature in the house will be automatically turned off, and the smartphone will

present the optimal route for her work and it will turn on the radio station of driver’s

choice. The scenario can continue even more and provide to the user an indicator re-

garding the parking spots or where he has already parked her car etc. This is only a fas-

cinating part of what the future may hold for context-aware computing.

1.2 Thesis Relation

In this thesis we will endeavor to develop a mobile application that focuses on context-

aware computing and we will seek to deploy it in a new and novel way and to explore

unexplored dimensions of context-awareness. We will try to extract data from commu-

nication log files of mobile as well as data from device’s sensors. Incoming and out-

going calls, messages or emails from several installed applications on mobile phone can

be considered really useful for profile analysis of mobile owner. Additionally, we will

try to integrate specific services in order to provide user additional aim in specific occa-

sions, namely while waiting one bus stops to display the timetable or at the end of work

to display the activities in that area such as cinema or various other music events based

on the preferences of user or user’s location. Finally, we will try to create a profile on

the basis of the application that user has on her mobile and optimize her phone perfor-

mance (battery consumption, profile switching etc.)

1.3 Goals and Expected Outcomes

The goal of this dissertation is to develop an android mobile application for gathering of

context-aware data. More specifically within the installed applications we will seek to:

 Develop the architecture to be used for the implementation of the context-awareness

prototype application;

 Pull the communication logs so that we provide a statistical representation to user

and also exploit them for further analysis for an extensive user profile;

 Provide appropriate phone profile based on Google calendar or other sources (If us-

er has a meeting the phone will switch to mute mode);

-4-

 Provide information regarding events based on sensor information, GPS, gyroscope,

accelerometer, etc.;

 Provide information regarding the public transport based on user’s location.

1.4 Thesis Outline

In Section 2 Literature Review we will define what is context and context-awareness in

order to provide the reader a general knowledge for the upcoming literature review. We

will also see various frameworks which application developers used in order to develop

context-aware application and finally we will present few prototype applications.

In Section 3 Σθάλμα! Το αρτείο προέλεσζης ηης αναθοράς δεν βρέθηκε. we focus on

defining the problem together with the approach and the methodology which will be

used. In addition we present all the tools to be used for the completion of this thesis.

In Section 4 Σθάλμα! Το αρτείο προέλεσζης ηης αναθοράς δεν βρέθηκε. we will pre-

sent the core implementation of the system and we will endeavor to achieve a combina-

tion of context-awareness data with phone data aimed at a creation of a profile analyzer.

In Section 5 Discussion we will discuss our results as described in previous sectors with

our informed background reading our stated research problem.

In Section 6 Conclusion and Future Work we will restate our position, what was learned

from the dissertation and we will complete the thesis with the future work that remains

to be learnt based on what we have researched in the present thesis.

 -5-

 -7-

2 Literature Review

In this section we will define the meaning of context and context-awareness in order to

provide the reader a general knowledge for the upcoming literature review and the relat-

ed work. Additionally we will try to summarize, without diminishing the substance of

the writer’s labor, a set of frameworks and applications introduced during the scientific

efforts throughout the years.

2.1 What is context

Communication of people, beyond the speech, is achieved to a large extent with the aim

of body movements, expressions of person, the background of interlocutors and facts or

situations that take place at the moment of people’s communication. The dictionary of

Merriam-Webster defines context as the surroundings, circumstances, environ-

ment, back-ground or settings that determine, specify, or clarify the mean-

ing of an event or other occurrence. A big question that deplores years the re-

searchers of computer science lies in the fact that computers can comprehend only raw

data that is inserted as input. This information is very difficult to encapsulate automati-

cally emotions, situations and moves and be offered as entry to computer systems. From

the decade of the 90's there have been attempts by scientists to embody a range of in-

formation from sensors into innovative applications in order to provide appropriate ser-

vices in the appropriate users, at the right time and in the right place. But what is the

context in mobile computing or ubiquitous computing? In 1994 Schilit and Theimer in

their project [6] referred to the term context as the location, people and objects nearby

as well as changes made to the formers over time. Brown et al [7] defined context as

user’s location, time of day, season of year, temperature etc. We can continue enumer-

ate a plurality of researchers (Franklin, Flaschbart, Hull, Pascoe etc.) and their defini-

tion, however almost all definitions are synonymous or identical and do not escape from

the broad definition given by Dey in his PhD thesis [8] where he defined context as:

Any information that can be used to characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and application themselves.

-8-

Schilit, Adams and Want [1] endeavored to specify context to three categories:

• Computing context: For example, network connectivity, communication band-

width, nearby resources like printers, displays;

• User context: For example, user’s profile, location, emotional state, people nearby,

current activity;

• Physical context: For example, lighting, noise level, traffic conditions, temperature.

However primary context (location (where), identity (who), time (when), and activity

(what)) is more important than others as Dey [8] noted.

2.2 Context-awareness

Context-awareness in essence refers to the pursuit, the possibility of computer systems

to perceive and react based on the information received from the surroundings. Schilit

and Theimer [9] consider that context-aware software should adapt according to the lo-

cation, nearby people, objects, as well as to changes to such things over time. Dey [8]

highlighted that systems such as context-aware system use context to provide the rele-

vant information to the user based on her preferences or her current state. Studies re-

garding the features of context-aware have been implemented and the three most preva-

lent are those of Schilit, Adams and Want [6], Pascoe [10] and Abowd et al. [11] where

the first two efforts provided two different groups of features with similarities which

Abowd et al. [11] exploited and created three features uniting commonalities of forego-

ing researchers. We list below the features of the three research groups. The first list is

from Schilit, Adams and Want who provided the following taxonomy:

 Proximate Selection: A technique that selects nearest object that is related to the lo-

cation of the user. Displaying a list of colleagues located around the user can be

considered proximate selection;

 Automatic Contextual Reconfiguration: This process is responsible for varying the

components of the application or the system. This change, insertion, deletion or any

other is done automatically by the application environment. As in our previous ex-

ample, the list of colleagues can be changed, either by coming more colleagues at

the spot or to leaving the spot;

 Certain information and commands are being revealed to the user based on her cur-

rent location. The information change together with the commands that can be exe-

 -9-

cuted by the system. When the user is on the corridor, system can display infor-

mation about the temperature of the area or their colleagues who are in office; when

the user is located in the kitchen the system can display information about the coffee

temperature;

 Context triggered actions: Context triggered actions are just simple IF-THEN rules

used by the system in order to adjust to the environment. These rules provide the

way of adapting to possible changes. One example is the entrance of a particular us-

er in kitchen at a particular hour will trigger a specific event.

In the second list Pascoe 10] presented his different approach:

 Contextual Sensing: The process of detecting environmental states and illustrating

to the user defines contextual sensing. As Pascoe wrote a GPS application can detect

the latitude and longitude and present this location to the user via map visualization;

 Contextual Adaption: When context is available to the system, the system itself can

modify its processes and adapt automatically its behavior to environmental states.

Instead of presenting to the user the contextual data the system can customize its

context. Interchangeable orientation can be an application’s feature which based on

the direction the user interacts; the display can change to horizontal or vertical view;

 Contextual resource discovery: Based on the relevancy of user’s or other entity’s

context the system can discover and exploit resources and services. In other words

contextual resource discovery takes account not only its own context but also con-

text from entities which do not belong in its limited environment;

 Contextual augmentation: Contextual augmentation is the ability to augment addi-

tional information to system’s environment thus combining relative digital data and

the user’s context. A digital tour guide is a popular application that applies contex-

tual augmentation. Museums use annotation to each and every painting or statue and

when a user is in front of a specific object comments are being displayed to user’s

screen regarding the concerned object.

Finally, Abowd et al. [11] proposed a combined categorization based on the aforemen-

tioned approaches:

 Presentation: It is a combination of Schilit’s [6] proximate selection and contextual

commands and also Pascoe’s contextual sensing. The presented information or ser-

-10-

vices are determined by context. A user can see an updated list of nearby shops as

she moves inside a shopping center;

 Execution: Execution is referred to the automatic execution of services which is a

critical feature for context-aware applications. It similar to Schilit’s [6] context-

triggered actions and Pascoe’s contextual adaption. A sophisticated example of au-

tomatic execution is when a fridge understands the lack of milk and communicates

automatically with the supermarket to order milk supplies. This requires machine to

machine communication, nowadays a widely expanding field named Internet of

Things;

 Tagging: It is the same feature as Pascoe’s [10] contextual augmentation. System

uses tags for subsequent retrieval. User can use stick notes to inform other users that

a television in a specific room is malfunctioning. When a new user enters the room,

she will be automatically notified by the system regarding television’s state.

2.3 Related work

There have been many attempts in the course of years by research centers and compa-

nies to take advantage of the mobile and ubiquitous/pervasive computing, some flourish

and created context-aware applications others established frameworks and prototype

applications. Below are shown some important implementations which helped later de-

velopment of context-aware applications, (F) is referred to frameworks and (A) to ap-

plications

2.3.1 Context Toolkit (F)

Dey in his PhD thesis [8] suggested a design process based on three important proce-

dures, specification of the problem and the needed context, acquisition of the appropri-

ate equipment (hardware, sensors etc.) and finally action for choosing and performing

context-aware behavior. He also argued that a distinction between context and user in-

put is necessary due to the fact that in context-aware applications, context is derived

from many computers-sources and also context required additional process in order to

be valuable to applications. His research provided a framework, influenced by Graph-

ical User Interfaces, which helped application developers to develop superior context-

aware application liberated from the shackles of sensors. The main abstractions were

BaseObject, Widget, Aggregator, Interpreter and Discoverer:

 -11-

 BaseObject: Provides the appropriate channels so as to communicate effectively the

remaining components;

 Widget: Is responsible for retrieving data from the sensors and providing homoge-

neous interface for all the components or applications that intent to use the data. In-

side Widget there is a secondary component services that are responsible for the ac-

tions of retrieving or providing data as outcome;

 Aggregator: Is similar to Widget, the only difference being is that aggregators can

collect all the context regarding an entity. The context is retrieved by the Widgets

and it is a mediator between the Widgets and the rest of the components;

 Discoverer: It can be likened to “Yellow Pages” of the system. It helps the applica-

tion or other components to find the appropriate context component. It automatically

updates the list of available components by adding new ones or deleting old ones;

 Interpreter: It can take the low-level information from widgets and combine context

from various sources (location, voice, etc.) through different reasoning techniques

interpreting them to high level information for example longitude and latitude to

street name.

Figure 2 Context Toolkit components [8]

Various applications (In/Out Board, DUMMBO, etc.) were developed based on the

Context Toolkit in order to prove that this framework can aim developers to design new

context-applications.

-12-

2.3.2 CoBrA (F)

Context Broker Architecture [12] is a middleware agent architecture which supports

knowledge sharing and context reasoning for smart spaces. CoBrA uses Semantic Web

Languages both for context knowledge representation and reasoning namely Web On-

tology Language (OWL) and RDF (Resource Description Format. The central pillar of

this architecture is Context brokers and have several responsibilities such as providing a

centralized model of context, reasoning about low-level context and privacy issues in-

side the smart place where operate. A context broker consists of four basic components:

context knowledge base (knowledge is represented in RDF triples and stored database),

context reasoning engine (performs reasoning in stored data via OWL’s semantics),

context acquisition module (fetches contextual information from available sources) and

policy management module (provides access/denial priorities to agents based on the

policies). An application that follows this architecture is EasyMeeting System [12] an

intelligent meeting room system, which provides assistant to the participants based on

the contextual information.

Figure 3 CoBrA Architecture [12]

2.3.3 SOCAM (F)

T. Gu, H. K. Pung, and D. Q. Zhang in their research work [13] proposed an architec-

ture for the building and rapid prototyping of context-aware services namely Service-

Oriented Context-Aware Middleware (SOCAM). It is based on OWL [14] to represent,

 -13-

manipulate and access context information. OWL context modeling can provide the

proper mechanism for context reasoning where high level context can be derived from

,SOCAM middleware the context is represented as a triplet which has the form of Pred-

icate (subject, value), in which subject is a set of subject names, predicate is a set of

predicate names and value is a set of all values of subjects. A simple example of such a

triplet is Eats (Alex, Apples) which imply that Alex eats apples. The research team sep-

arated the ontologies into two levels: upper level ontology for general concepts and

lower level ontologies domain specific descriptions. SOCAM architecture is consisted

of five key components as figure below illustrates:

Figure 4 SOCAM Architecture [13]

 Context provider. It acquires data from sensors and other internal and external data

sources and converts the context in to OWL vocabulary;

 Context interpreter. It provides logic reasoning services (Context Reasoner) and

stored the outcome in the database (KB);

 Context database. It stores context ontologies and past contexts for a sub-domain.

There is one logic context database in each domain, i.e. home domain;

 Context-aware services. They are the consumers of the system. They can use the

context or adapt accordingly by creating action triggers whenever context is chang-

ing;

-14-

 Service locating service. Context providers and Context interpreter registered to the

system and other components can seek for the appropriate provider or interpreter

based on their needs.

2.3.4 CARISMA (F)

L. Capra, W. Emmerich, and C. Mascolo, in their research work developed CARISMA

[15] a Context-Aware Reflective middleware System for Mobile Applications which

focused on extremely dynamic systems such as mobile systems. CARISMA uses the

reflection (Adaption) paradigm to enhance the adaptive and context-aware mobile ap-

plications development. As we know mobile devices change their context at a glance,

however, context is monitored by the middleware and such context configurations de-

termine the applied policies for a service affecting the customization of middleware be-

havior which dynamically is altered by the contextual information of the applications.

CARISMA exploit the XML encoding in order to store application profiles which are

the association of customized services by middleware, policies for invoking the services

and context configurations to use the policies for example, if battery is below 40% use

service A else service B. There are occasions when reflection can introduce conflicts;

such cases are when more than one policy is valid. These conflicts could be Intra-profile

conflict (local to middleware instance i.e. on the same device) or Inter-profile conflict

(Various instances i.e. different devices). To encounter this issue, researchers created a

mechanism based on microeconomic techniques. The platform uses an auction protocol

which consists of a set of rules that meet specific requirements on the solution, dy-

namicity, simplicity and customization. The mobile system can be referred as economy

where the consumers (applications) reach an agreement about a limited set of goods (a

policy-battery level, CPU or available memory) using the middleware platform like auc-

tioneer. The final decisions are made in order to maximize the social welfare among the

applications.

2.3.5 Gaia (F)

Gaia [16] is a distributed middleware that provides similar functionality to an operating

system. It is a middleware infrastructure capable of managing resources contained in

physical spaces (active spaces). Active Space is defined as a physical space coordinated

by a responsive context-based software infrastructure that enhances the ability of mo-

bile users to interact and configure their physical and digital environment seamlessly.

 -15-

The architecture of Gaia consists of three main building blocks as the figure below illus-

trates: the Active space applications, the Application framework and the Gaia kernel.

The Active space application contains registered applications and provides managerial

functionalities (update, delete, register, and control) for the manipulation of applications

through the Gaia Kernel services. The Application framework is a variation of the Mod-

el-View-Controller [17] and is composed of four elements: model, controller, presenta-

tion and coordinator. Coordinator is responsible for managing the application architec-

ture. Finally Gaia kernel consists of two basic components: Component management

core and services. Component management core is responsible for uploading, destroy-

ing, creating all the components and applications of Gaia. The Gaia kernel services are:

Space repository (repository for software and hardware entities in the active space),

event manager (distribute events and provide communication), context file system (data

organization and transformation), presence (detect and maintain digital/physical enti-

ties) context (query and register contextual information aimed at adjusting to the envi-

ronment).

Figure 5 Gaia Architecture [16]

2.3.6 Aura (F)

Aura [18] is a task oriented system for distributed environments which users can use

without concerns regarding the identity of device, environment or time. It runs on top

of desktop operating systems in order to assist user to manage her tasks in all devices

based on the contextual information. Moving from one point, where Wi-Fi signal is

week, to another, where the signal is strong, without interruptions or the preservation of

work during changes on work environments are the basic concepts of Aura. Aura does

not support building application but offers its management services as intermediate of

existing applications. In order to manage the services, application or the context Aura

-16-

introduced the Task Layer (Prism) which captures user’s intentions. As the figure below

illustrates, the key components of Prism are Task Manager which manages the transi-

tions of tasks, Context Observer which collects context and notifies the Task Manager

and Environment Manager for changes, Environment Manager manages the context

supplier and specific services and lastly Service Supplier which implements the services

needed to support a user’s task.

Figure 6 Aura Architecture and Prism Architecture [18]

2.3.7 COPAL(F)

COPAL [19] an adaptive approach to context provisioning is a middleware which pro-

vides loose-coupling between context and its processing. COPAL tried to provide not

only a middleware framework but also a new design for developing context provision-

ing schemas. COPAL architecture consists of listeners, publishers and the core COPAL

components as figure below illustrates.

Figure 7 COPAL components [19]

 -17-

Publishers: Publishers are all the available devices or sensors that communicate with the

COPAL core components. Due to the large variety of hardware and protocols, publish-

ers are wrapped as web services before they are connected to COPAL. In fact, Wrappers

are those who communicate with the core and they may hold more than one publisher.

Additionally, to this level a device manager exist which is responsible for storing in-

formation, maintaining the device/sensor catalog and monitoring the device/sensor sta-

tus.

Listeners: Listeners are essentially the receivers of the notification that the COPAL pro-

vides when the appropriate context queries are fulfilled.

COPAL Core: The core consists of: a) the context type which has a unique name and a

set of attributes, each publisher can publish a certain type of context, b) the context que-

ry which is responsible for the selection of the events, and again a query has unique

name and a set of criteria, c) the context event which has specific attributes required or

optional, d) the context processor which handles the action that it has been designated to

perform, and e) action which are responsible of the insertion, modification and removal

of context event’s attributes

In COPAL the context is delivered by events and its events has its own attributes, re-

quired or optimal, such as an identity of the source, a time stamp, priorities, the location

of the source, the quality of the context etc. This context can be processes via filtering,

abstracting, differentationing, enrichment or peeling in order to feed the outer events of

COPAL.

2.3.8 CA4IoT (F)

CA4IOT [20] is a sensing-as-a-service middleware which tries to solve the single issue

of selecting the most appropriate sensors according to the requirements of a single user.

As the authors pointed out, this middleware is an assisting tool which should collaborate

with other middlewares. The middleware uses XML language to represent context data

related to sensors and also user can submit their requests for querying context using

XML data format. The architecture is based on specific functional requirements such as

the ability to connect sensors, to understand the contextual information of them, under-

stand the user’s request, fill the gap between high level requirements and low level ca-

pabilities and mine high level context from low level raw data. An overview of

CA4IOT architecture is displayed in figure below.

-18-

Figure 8 CA4IOT architecture [20]

Four major layers compose the middleware which are listed as follows:

 DSCDL. This layer is responsible for the user’s requests, data dispatching, and sub-

scriptions and in general for user management. A user can make a request, and the

system will interact with repositories (local or internet cloud) to provide an answer

to user’s request.

 CPRL. The most important component of CA4IOT where data processing, context

reasoning, context fusing, knowledge generating and storing are occurred by specif-

ic functions.

 CSDL. This layer is responsible for context managing and semantic discovering.

Relevant components are context and semantic discoverers, context and semantic

discoverer generator, and context and semantic discoverers repository.

 SDAL. This layer is responsible for communication between the system and the

sensors. It has modules such as sensor wrappers, wrapper repository, wrapper gen-

erator, local repository and SDD cloud repository. These modules acquire a variety

of context data and retrieve them into CA4IOT.

It is worth mentioning that User Layer (humans, machines etc.) and Sensing Layer

(software, hardware etc.) even though that are mandatory for a successful interaction

they are not part of the middleware.

 -19-

2.3.9 SeCoMan (F)

SeCoMan [21], which stands for Semantic Web-based Context Management, is a solu-

tion for developing context-aware smart applications focusing on preserving the user’s

privacy. In SeCoMan, Web Semantics are employed to model the description of entities,

reason over data to retrieve useful contextual information, and define context-aware

policies. There are three kinds of actors, namely Framework administrator who are re-

sponsible for managing the context resources and registering the smart applications; the

Application Administrators who are responsible for managing the context of her own

applications, handling the Context-aware ontologies, policies and queries; and finally

Users who use the applications. The whole architecture of SeCoMan is shown in figure

below.

Figure 9 SeCoMan Architecture [21]

The SeCoMan architecture consists of three main layers namely Application, Context

Management, and Plug-in (from top to bottom).

• Application. The application which reside on this layers offers specific location ser-

vices and also make the proper queries to the Context Management in order to retrieve

information desired by users;

• Context Management. As the core of the SeCoMan framework, it provides context-

aware supports for applications. Three kinds of actors with different rights to interact

-20-

with SeCoMan are defined including Framework Administrator, Application Adminis-

trator, and Users. A set of predefined queries are allowed for applications to get infor-

mation about indoor location of users and objects. Semantic rules are used to specify

policies regarding restricted access to location information so that privacy is guaranteed.

• Plug-in. It provides SeCoMan with contextual information and the space, which is es-

pecially focused on elements that form a part of the environment. In other words, the

plug-in layer acts as an independent context source and obtains information, related to

context from Middlewares (which communicate with sensors) and information from

Location Systems related to location.

2.3.10 Olivetti Active Badge (A)

Researchers at Olivetti Research Ltd. (ORL) created the first context-aware application

named Active Badge [22]. Users of this application wore Active Badges which trans-

mitted a signal every 15 seconds; this signal was unique for each user and was collected

from sensors which were placed inside the building. Researchers used infrared technol-

ogy to achieve the communication between Active Badges and sensors. They also used

a component integrated with the Active Badge which automatically turned on and off

the device depending on the level of luminosity for battery conservation. Sensors in turn

were connected with a master server which was responsible for data processing and da-

tabase updates. The concept was clear, to forward the call to the user based on her loca-

tion. A receptionist could monitor the location of users from a screen and when a phone

call was received for a specific user she could accurately forward it to him. The applica-

tion was processing data from sensors and was providing to a table the name, the room

that the user might be and the likelihood of finding somebody at that location in the

form of a percentage. If a user has not been sighted for 5 minutes, instead of a percent-

age the field contained the last time and location at which she was sighted. Table was

dynamically updated as the user was moving through the building.

2.3.11 PARCTAB (A)

Researchers at Xerox PARC have implemented many research projects to explore ubiq-

uitous computing; PARCTAB [23] was such an experiment. They tried to design and

build a computing system that hosted a plethora of applications which employees of the

office were using most frequently, inside the perimeter of the building detached from

 -21-

their desktop PC. The system was based to palm-sized computers (handheld devices),

infrared technology and LAN network. Researcher used the identity of the user, the lo-

cation of the user and other objects such as printers etc. as context to provide the appro-

priate services to the user. A user that was currently in a meeting could see her emails or

another co-worker could be aware of a meeting and try not to disturb the bystanders.

Figure 10 PARCTAB Architecture [23]

“Tabs” were connected via infrared to the transceiver of each room; one or many “tabs”

could simultaneously connect to the transceiver. Transceivers were connected via the IP

gateway and LAN network to the Tab Agents which were responsible for two main

functions: Delivering information from application to the “tab” they served and for-

warding messages to the application, again from the bonded device. It is worth men-

tioned that for each PARCTAB were exactly one tab agent process. From all the appli-

cations that users had on their disposal, the most popular were email reader, providing

access to e-mail from any place any time, the weather app, file browser app, providing

access files stored in the system and the tab loader, which allowed users to download

information in the tab’s local memory and use it when needed. In conclusion

PARCTAB as elementary context-aware system used specific context in order to pro-

vide additional information to the employees to bettering their work environment.

-22-

2.3.12 Personal Shopping Assistant (A)

Researchers at AT&T Bell Laboratories developed a wireless system that assisted cus-

tomers during shopping, the Personal Shopping Assistant [24]. It consists of two com-

ponents: the PSA device and the PSA server. The handheld device could provide assis-

tance to the shoppers regarding items, prices, point of sales, and so forth through. In-

formation from the PSA server’s database was delivered to the user as audio, video or

text. If user was registered then a personalized shopping profile was available for her

convenience and quality of offered service.

Figure 11 Personal Shopping Assistant Architecture [24]

The PSA server is the heart of the PSA system. It consists of five main components: the

position finder which locates the user, the Speech Recognition unit which provides vo-

cabulary recognition, the Text to Speech provides the audio streams for the users, the

Customer Database maintains the profile of every registered customer, the Connection

Manager is responsible for video and audio channel bandwidth and finally the main

process of the PSA server the Conversation Manager is responsible for the customer’s

session and respective services.

2.3.13 Cyberguide (A)

Cyberguide [25] is an application specialized in tourism. The main idea was to provide

the opportunity to tourists to have personal devices that can hold throughout the region

of a museum, see the exhibits and based on their location to obtain information regard-

ing them. The aspirations of authors were not confined to the museum but also to visit

even entire cities with the help of these applications whilst the visitors will have a first

 -23-

class tour. The researchers of the Georgia Institute of Technology used a series of proto-

types applications and handheld devices as tourist guides. They designed two scenarios,

one indoor in GVU Center Lab and one outdoor in the Georgia Institute Campus. They

used the Apple MessagePad 100 and the Pen based PC which was commercially availa-

ble. They tried to assign components and services with personalized characters. The

main four services were cartographer (notion of physical environment-map), librarian

(notion of the information-sightseeing descriptions), navigator (notion of position-

navigation of user) and messenger (notion of message exchanging between entities).

In the case of indoor Cyberguide , researchers used a map of the entire GVU Center and

also an icon for the location of the user, descriptions for demos or the people involved

to these demos, for the communication component they used Appletalk internet connec-

tion for receiving or transmitting an email using HTML format. Finally for position

component researchers used infrared technology. In case of outdoor Cyberguide they

used Campus map, with the corresponding descriptions with the same communication

component. The biggest difference was the navigation component which in this case

was GPS. Later on they proceed with another outdoor experiment expanding the area,

namely a small area of Atlanta.

2.3.14 HEP (A)

HEP [26] is a system that recommends communication services to the caller based on

the callee’s context. HEP exploit user calendar communication logs to provide suffi-

cient recommendation to the caller. In general the design was based on Microsoft tools

.NET, Office etc. More specifically the system consisted of sensors (Email, Calendar,

Instant Messaging, fixed telephony) which communicated with a PC client. Raw data

was being retrieved and being subjected to preprocessing on PC client before a Broker

stored and managed the contextual information. Finally the Outlook plug-in provided

the UI of the application which helped the user to set her preferences and also moni-

tored the statuses of each of her Outlook contacts. All contacts were publishing their

status in order to be publicly available. Depending on the workload that appeared on the

Calendar (meetings etc.) or calculating historical data of usage of specific applications

(e.g. Word, Excel, PowerPoint) on the computer of each user, an updated user status

was shown at the Outlook plug-in and directed the user to the proper mean of communi-

cation.

-24-

Figure 12 HEP Architecture [26]

2.3.15 Office Assistant (A)

H. Yan and T. Selker designed an agent named Office Assistant [27] that interacts with

visitors at the office door and manages the office owner’s schedule. As shown in the

figure below, the agent is placed to the outer side of the door which the office owner has

closed due to noise or a possible meeting. The daily communication of officials is an

important factor in a company but this should not create any problems in coworkers’

relationships due to inappropriate moments or situations. The communication should be

discreet and targeted, a result achieved by the agent. The basic objective of the agents is

to offer correct information to the visitor of an office based on the status of office own-

er; if she has an appointment at the time, if they are busy or if office owner can accept

the visitor that moment. If the owner of the office is busy then the agent will notify the

visitor in order not to cause discomfort to the meeting in progress. The Office Assistant

may create specific models based on the information that has from the office owner,

their visitors and the historical visits or the historical agenda of the owner's office. The

agent runs on the outdoor computer, which collects context data and interacts with visi-

tors. The internal computer runs a program that communicates with the application in-

stalled in the outdoor computer which is responsible for the collection and processing of

information that is sent to the office assistant agent. In general the contextual infor-

mation is consisted of the identity of the visitor, the office owner's schedule status, the

 -25-

office owner's busy status and the office owner's willingness to see the current visitor.

Researcher implemented the system using Visual Basic, IBM ViaVoice, Microsoft text-

to-speech and Microsoft Outlook (as calendar) to provide contextual information to Of-

fice Assistant.

Figure 13 Office Assistant Architecture [27]

2.3.16 A brief comparison

We should mention that various research efforts have been carried out for classification

and categorization of frameworks in order to highlight the advantages and disad-

vantages of each one. In all their surveys [5, 28, 29, 30] researchers tried to compare

context-aware systems and middleware solutions by using different taxonomies based

on context reasoning, representation, acquiring, storing or architecture.

In brief we can say that Context Toolkit [31] has introduced standard interfaces such as

context widget, aggregators etc. CoBrA [12] has introduced the advantages of using

semantic-ontologies to manage the policies for context representation and reasoning.

CARISMA [15] has shown, using reflection, how conflict resolution can be handled via

rules while final decisions are made to maximize the profit among the participating ap-

plications. Gaia [16] highlighted the importance of employing multiple reasoning tech-

niques. Aura [18] has shown the importance of having a middleware running seamlessly

over many operating systems and devices under different environments and resources.

COPAL [19] presented the features of a middleware that relates to IoT, such as loosely

coupled plugin architecture, CA4IOT [20] can act as either a standalone middleware or

an auxiliary technique to be integrated with other framework solutions and finally

SeCoMan [21] SeCoMan proposed a hybrid model which combines user-defined rules

via Semantic Web Rule Language (SWRL) as well as description logics. A further

analysis of IoT is considered to be out of the scope of this dissertation due to the fact

that IoT is a huge research area that uses many different data sources and interfaces that

-26-

only a part of them contain the usage of smart devices. Our intention is to focus on par-

ticular sub-field of IoT, namely the mobile context-awareness with a future vision, the

integration of user’s profile in a larger ,more open architecture that contains other com-

ponents that are disconnected until now such as residence, work environment, shopping

centers etc.

From application aspect, most of the aforementioned existing applications used a lim-

ited type of information about context, such as location, time, date, identity and static

information as some survey highlighted [32]. The reason for using limited information

context was mainly the difficulty of having the software systems in the collection and

processing of context. Most applications developed for academic purposes in research

laboratories. However over the years there have appeared more sophisticated applica-

tions that have outgrown the older difficulties and use a combination of multiple sources

of information from different mediums, such as sensors or other applications or other

web APIs. Google, Yahoo, Apple and other companies have developed many applica-

tions and platforms with a wide spectrum that varies from transport (WAZE
1
, Google

Maps
2
, Here

3
) to health care (Apple Health

4
, Google Fit

5
) and recommendation

(TripAdvisor
6
, Booking

7
) to smart homes/offices (Nest

8
).

2.3.17 Summary

In this chapter we examined various frameworks and prototype applications which

helped application developer in their further research and developing convenient appli-

cations. Based on the aforementioned we will try to examine how to exploit the

knowledge of the related work in order to create a logical architecture and a prototype

application for user’s profile analysis depending on contextual information.

1
 https://www.waze.com/

2
 https://www.google.gr/maps

3
 https://www.here.com

4
 http://www.apple.com/ios/whats-new/health/

5
 https://fit.google.com/

6
 http://www.tripadvisor.com

7
 http://www.booking.com/

8
 https://nest.com/

 -27-

 -29-

3 Problem Definition

In this chapter we will focus on the analysis of the methodology that we will use, with

final aim the implementation and completion of this diploma thesis. Afterward we will

analyze the architectural approach of the system for development of a Profile Analyzer

mobile prototype and finally we will refer to the tools that will help us to accomplish

our targets.

3.1 Problem Approach

As we have briefly mentioned in the previous chapters the purpose of this dissertation is

to create a prototype mobile application to exploit the contextual information in order to

create a context-aware profile analyzer of the user. The application will be developed in

the Android Framework. Through specific techniques that we intent to develop, we will

try to retrieve as much as possible raw data from sensors namely GPS Sensor, Accel-

erometer Sensor, Gyroscope Sensor and Light Sensor. With the help of context adapters

the raw data will be stored in the database (SQLite Database) which is embedded in the

operating system of the mobile phone. Furthermore, we will try to fetch contextual in-

formation from the call logger, SMS logger, Google calendar and the launched or in-

stalled applications of the mobile device and store them in the database respectively.

Afterwards we will endeavor to analyze the data and find conditions that are repeated,

recognize patterns that can be used to create rules as for example "When user is in meet-

ing turn the mobile profile to vibration" or "When user finishes work, provide him the

all the events that take place in the region of action." Due to the openness of the android

framework, several rules can be created which could affect the device functionalities

(reducing screen brightness when the battery life is below a specific percentage) based

on the context of the user.

Summarizing the steps to follow for the development of the application is initially the

creation of all the necessary modules that will capture and store the raw data of the main

sensors of mobile devices and then provide a preprocessing data modules in order to

-30-

produce the required information that can be used to create rules. Secondly, the use of

high level context of communication logs (calls, SMS, Skype, Viber depending on the

availability and internal security of these applications). Thirdly, the creation of rules and

the management of these rules will result in a prototype application that will analyze the

context of the profile of the user.

3.2 Methodology

In the context of this dissertation we will attempt to follow the model Design Science

Research Methodology which Henver et al [33] noted that creates and evaluates struc-

tured IT artifacts intended to solve identified organizational problems. Takeda et al. [34]

proposed a design process model which consists of 5 basic process steps: awareness of

the problem, suggestion, development, evaluation and conclusion.

Figure 14 Design Science Research Process Model [34]

Awareness of the problem: The selection of a problem that it is not yet resolved or it is

created by new technologies. The outcome of this phase is a proposal for a design mod-

el. In this diploma thesis we will attempt to solve a problem which is reflected to the

following question: how to create a system in order to analyze the profile of a mobile

user through the contextual information of the mobile device?

 -31-

Suggestion: It refers to the key concepts that are needed in order to solve the problem.

In this phase new functionalities or design prototyped are developed aiming at finding a

solution for the proposal. Furthermore abduction [35] is used for deriving knowledge

from previous related work of the problem area, as we have already presented in the

previous chapter. In the remainder of this chapter, we will introduce the architecture and

the tools that will assist us in solving the problem.

Development: In this phase the design is developed and implemented with the ultimate

goal the creation of an artifact. Several techniques (creation of an algorithm or devel-

opment of a software module etc.) can be used depending on the kind of the artifact to

be produced. In case a new problem appears during the development, this problem will

become the new problem that need to be solved in a new iteration of the design cycle. In

our attempt the development process will be presented in Chapter 4.

Evaluation: Once an artifact is being developed, the evaluation must take place in order

to examine if the created artifact meets the requirements of the proposal. A thoroughly

examination is necessary in order to find deviation or failures. In case of contradictions

or new findings a new iteration of the design cycle (Circumscription) will take place. In

Chapter 5 of the dissertation the evaluation process is presented.

Conclusions: In most of the times this phase is the end of the design process. It is the

phase where useful conclusions coming out of the design whether the results are satisfy-

ing or with small deviations from the initial hypothetic predictions. However there are

several cases where the design cycle needs to be repeated, enhanced with the new ac-

quired knowledge of previous iterations (operation of knowledge and goals). In the final

chapter of this dissertation the conclusions of our research are presented.

3.3 Architectural Approach

The architecture will follow is influenced by the Context Toolkit [31] and SOCAM[13]

which were presented in Chapter 2 in Related Works. The architecture is based on a

four-leveled model with distinct physical blocks in order to create a flexible and modu-

lar prototype application. By separating the prototype architecture into tiers, we obtain

the option of modifying or adding a new layer or module in the future, instead of recon-

structing the entire prototype. The first level consists of sensors that provide the raw da-

ta which need a series of preprocesses to become sources of information. The second

-32-

level includes the entire corresponding context adapter for the retrieval and the storage

of raw data from the sensors in the database. Additionally it also includes the high level

information providers such as the call logs, Sms and application adapters. Database

helper also provides the interconnection between the database and the mobile prototype

application. The Application level is the level where the main reasoning and context

processes are taking place. This level is the core of the prototype architecture due to the

fact that includes and integrates the rules, the processed data, and the context manage-

ment needed to provide a context-awareness application to the user. The final level is

the Presentation layer which interacts with the user via Activities (namely the GUI) or

application services that run at the background. It is worth mentioning that all the exter-

nal API’s will connect via web services (SOAP and/or REST) to Context manager in

order to minimize the operational cost and decrease the transactions volume from and to

database. Below there is an illustration of discussed architecture.

 -33-

Android General Prototype Application

R
a

w
 D

a
ta

D
a

ta
 L

a
ye

r
A

p
p

lic
a

tio
n

 L
a

ye
r

P
re

se
n

ta
tio

n
 L

a
ye

r

External

API’s

SQLite Database

GPS

Sensor

Acceleration

Sensor

Gyroscope

Sensor
Light

Sensor

GPS

Adapter

Retrieve Service

Storage

Acceleration

Adapter

Retrieve Service

Storage

Light

Adapter

Retrieve Service

Storage

Gyroscope

Adapter

Retrieve Service

Storage

Call Logs

Retrieve Service

Storage

SMS Logs

Retrieve Service

Storage

Google

Calendar

Retrieve Service

Storage

Applications

Log

Retrieve Service

Storage

Database Helper (DB Helper)

Context ManagerProfile Analysis Ruler

View

Activities

SOAP/XML

Figure 15 General Architecture of Profile Analyzer

 -35-

3.4 Tools

We will develop a prototype application for android mobile devices due to the fact that

Android operation system is an open source system with a highly customizable applica-

tion framework. The ecosystem of Android is enormous and consists of many develop-

ing tools, a well-documented community and a market place which in 2014 had the

77.8% worldwide market as Gartner reports noted. Another good reason why we will

develop an Android prototype their operating system also support sensors such as gyro-

scopes, accelerometers, proximity sensors, light sensors, weather related sensors that are

fully customized and can be used as the developers wish. The application framework is

written in Java programming language and it has many plugs in such as Eclipse IDE or

even its own development environment Android Studio which we will present in the

next paragraph. Below is illustrated the android system architecture
9
 which is based on

Linux operating system kernel, the android libraries layer such as graphics rendering

engine, the android runtime, the application framework that provides classes and design

patterns to build applications for android and finally the android applications.

Figure 16 Android System Architecture
10

9
 https://source.android.com

10
 Http://developer.android.com/images/

-36-

3.4.1 Android Studio

Android Studio is an integrated programming environment (IDE) for application devel-

opment on the Android platform. On May 16, 2013 Google announced a first version of

a new environment for android development, a second version was released in June

2014 but the first stable version came out in December 2014 and now the current stable

version is 1.3.1 which was released in August 2015. Android Studio is based on soft-

ware JetBrains' IntelliJ IDEA and was designed exclusively for Android development. It

is available for Windows, Mac OS X and Linux. As the majority of IDE, Android Stu-

dio allow the creation of a project, writing and editing the code, providing assistant

through the GUI, building the project, emulating the project on a variety of devices with

different android API’s. [36]

3.4.2 SOAP web services

The prototype application must communicate to the outer word in order to get infor-

mation regarding the public transports and also events that occurred in a selected area.

The implementation of this communication will be achieved by SOAP web services.

SOAP, acronym for Simple Object Access Protocol, [37] is a protocol specification for

exchanging structured information in the implementation of Web Services in computer

networks. It relies on Extensible Markup Language (XML) for its message format, and

usually relies on other Application Layer protocols, most notably Hypertext Transfer

Protocol (HTTP) and Simple Mail Transfer Protocol (SMTP), for message negotiation

and transmission. A SOAP message is an ordinary XML document containing the fol-

lowing elements:

 Envelope: Defines the start and the end of the message. It is a mandatory ele-

ment;

 Header: Contains any optional attributes of the message used in processing the

message, either at an intermediary point or at the ultimate end-point;

 Body: Contains the XML data comprising the message being sent. It is a man-

datory element;

 Fault: An optional Fault element that provides information about errors that oc-

cur while processing the message.

 -37-

3.4.3 Emulators

During the development period we will create the prototype based on the LG Nexus 5

device. We consider that the choice of this device is the optimal because we avoid

memory and performance issues while the application is running as opposed to the vir-

tual emulators and also this specific device has a multitude of sensors. The device’s op-

erating system is Android 4.4 (during thesis the OS updated to 5 and 5.1) and also has

many sensors such as compass/magnetometer, proximity sensor, accelerometer, light

sensor, gyroscope, barometer etc. that are essential for our prototype application.

Figure 17 Nexus 5 Emulator

 -39-

4 Contribution

In this chapter we will analyze the development of the application that contains separate

components that implements a specific function autonomously. The components consist

of one class that defines the properties and the methods of an object, a ContextListener

who acknowledges the change of the status of a sensor and triggers the procedures that

are provided by DBHelper, an Adapter that collects the data from a list and stores them

in specific view for later use and finally an activity that call DBHelper procedures and

its Adapter in order to present the stored data in a format accustomed to the user. Each

adapter and each activity is bound with a layout xml file which implements the corre-

sponding user interface.

4.1 Implementation

4.1.1 Location Module

This module uses Google’s LocationManager [38] and requires specific permissions

from the device that a user must provide; namely ACCESS_COARSE_LOCATION or

ACCESS_FINE_LOCATION. The data a developer can retrieve (and we are interested

in) is latitude and longitude in degrees, the accuracy of the location in meters, the speed

in m/s and the timestamp of the coordination.

GPSObject

It consists of four variables of which the first mentioned in longitude, the second men-

tioned in latitude, the third in the accuracy of positioning and the fourth is the

timestamp. Along with the variable definition Set and Get methods are implemented as

a pattern of data encapsulation. Instead of accessing class member variables directly, we

define get methods to access these variables, and set methods to modify them. Finally

two constructors are implemented, the default and a variation with all the proper param-

eters.

-40-

Figure 18 GPSObject Class

GPSListener

GpsListener implements the class LocationListener [39] which is used for receiving no-

tifications from the LocationManager when the location has changed. It checks the sta-

tus of the network and the availability of the GPS sensor on the mobile phone and up-

dates the status of the sensor every 10 minutes or if the distance value has changed by

50 meters. Additionally it defines a DBHelper object which is responsible for the data

management and several other necessary parameters.

Figure 19 GPSListener - Parameters

 -41-

In case network is available then LocationManager provides the coordinates from the

network to the GPSListener whereas in case GPS is available LocationManager pro-

vides the coordinates from GPS. We defined an accuracy of 20 meters as threshold in

order to discard invalid data. If the accuracy of GPS is below 20 meters then GPSLis-

tener calls the InsertGPS procedure from DBHelper object and store the coordinates in

the database. The above values can be changed during tests.

Figure 20 GPSListener – Insertion of new coordinates

GPSAdapter

GPSAdapter is a class that extends an array adapter that is filled with a list of GPSOb-

jects. It connects the potential GPS data with a list view, in other words we define the

look of the list and prepare the specific list in case is required by the application. This is

achieved via a Viewholder class in which we define the corresponding values of the

GPSObject object and bind them with the appropriate list view that we have already

created based on the R.id identity.

Figure 21 GPSAdapter - Binding view and object

GPSActivity

-42-

This activity is a complementary module to provide user with a visualization of data

that the application is stored for later use. We consider that this display is important for

the sense of security that user must have in order to be aware each moment what infor-

mation is accessed by the application. The class extends the ListActivity class and in-

side the class we define a DBHelper object and a list of GPSObjects which are filled in

with the GPS records from DBHelper procedure GetAllGPS.

Figure 22 GPSActivity - Display the available GPS records

4.1.2 Acceleration Module

This module uses Google’s Sensor [40] with SensorManager, SensorEventListener and

SensorEvent. The data a developer can retrieve (and we are interested in) is the acceler-

ator from all axis (x, y, z) and the timestamp of the event. As the SensorEvent API [41]

notes the X axis is horizontal and points to the right, the Y axis is vertical and points up

and the Z axis points towards the outside of the front face of the screen. In this system,

coordinates behind the screen have negative Z values. All values are in SI units (m/s^2)

having deducted the gravitational force Gy.

 -43-

Figure 23 Accelerometer coordinate system [41]

AccelerometerObject

It consists of four variables of which the first mentioned in acceleration in x-axis, the

second mentioned in acceleration in y-axis, the third in acceleration in z-axis and the

fourth is the timestamp. Along with the variable definition Set and Get methods are im-

plemented as a pattern of data encapsulation. Instead of accessing class member varia-

bles directly, we define get methods to read these variables, and set methods to modify

them. Finally two constructors are implemented, the default and a variation with all the

proper parameters.

Figure 24 AccelerometerObject Class

AccelerometerListener

-44-

AccelerometerListener implements the class SensorEventListener [42] which is used for

receiving notifications from the SensorManager when the acceleration (sensor.

TYPE_ACCELEROMETER) has changed. We define a DBHelper object for the data-

base connection and SensorManager for the access of device's accelerometer sensor.

Figure 25 AccelerometerListener – Parameters

When this class is called by the system, it registers the sensor manager event in order to

get the values of the sensor. If the last update of the sensor is greater than 2.5 minutes

(this value can change during tests) then AccelerometerListener calls the InsertAcceler-

ation procedure from DBHelper object and store the values in the database. A low-pass

filter is used to isolate the force of gravity as the figure below illustrates.

Figure 26 AccelerometerListener - Insertion of new values

AccelerometerAdapter

AccelerometerAdapter is a class that extends an array adapter that is filled with a list of

AccelerometerObjects. It connects the potential acceleration data with a list view, in

other words we define the look of the list and prepare the specific list in case is required

by the application. This is achieved via a Viewholder class in which we define the cor-

 -45-

responding values of the AccelerometerObject object and bind them with the appropri-

ate list view that we have already created based on the R.id identity.

Figure 27 AccelerometerAdapter - Binding view and object

AccelerometerActivity

This activity is a complementary module to provide user with a visualization of data

that the application is stored for later use as the previous activity. The class extends the

ListActivity class and inside the class we define a DBHelper object and a list of Accel-

erometerObjects which are filled in with the acceleration records from DBHelper pro-

cedure GetAllAcceleration.

Figure 28 AccelerometerActivity - Display the available accelerometer values

4.1.3 Gyroscope Module

This module uses the same Google Sensor [40] as the Accelerometer Module. An im-

portant difference is that SensorManager call the Sensor.TYPE_GYROSCOPE instead

-46-

of the accelerometer. Consequently the returned values are in radians/second and meas-

ure the rate of rotation around the device's local X, Y and Z axis as Figure 23 Accel-

erometer coordinate system [41] displays. The values are the angular speed around the

three axis.

GyroscopeObject

It consists of four variables of which the first mentioned in gyroscope in x-axis, the se-

cond mentioned in gyroscope in y-axis, the third in gyroscope in z-axis and the fourth is

the timestamp. Along with the variable definition Set and Get methods are implemented

as a pattern of data encapsulation. Instead of accessing class member variables directly,

we define get methods to access these variables, and set methods to modify them. Final-

ly two constructors are implemented, the default and a variation with all the proper pa-

rameters.

Figure 29 GyroscopeObject - Class

GyroscopeListener

GyroscopesListener implements the class SensorEventListener [41] which is used for

receiving notifications from the SensorManager when gyroscope has changed. We de-

fine a DBHelper object for the database connection and SensorManager for the access

of device's gyroscope sensor.

 -47-

Figure 30 GyroscopesListener – Parameters

When this class is called by the system, it registers the sensor manager event in order to

get the values of the sensor. If the last update of the sensor is greater than five minutes

(this value can change during tests) then GyroscopeListener calls the InsertGyroscope

procedure from DBHelper object and store the values in the database. Before the stor-

age of the values the gyroscope is integrated over time to calculate a rotation describing

the change of angles over a timestep.

Figure 31 GyroscopesListener - Insertion of new values

GyroscopeAdapter

-48-

GyroscopeAdapter is a class that extends an array adapter that is filled with a list of Gy-

roscopeObjects. It connects the potential gyroscope data with a list view, in other words

we define the look of the list and prepare the specific list in case is required by the ap-

plication. This is achieved via a Viewholder class in which we define the corresponding

values of the GyroscopeObject object and bind them with the appropriate list view that

we have already created based on the R.id identity.

Figure 32 GyroscopeAdapter - Binding view and object

GyroscopeActivity

This activity is a complementary module to provide user with a visualization of data

that the application is stored for later use as the previous activity. The class extends the

ListActivity class and inside the class we define a DBHelper object and a list of Gyro-

scopeObjects which are filled in with the gyroscope records from DBHelper procedure

GetAllGyroscope.

 -49-

Figure 33 GyroscopeActivity - Display the available gyroscope values

4.1.4 Light Module

This module uses the same Google Sensor as the previous ones. An important differ-

ence is that SensorManager call the Sensor.TYPE_LIGHT. Consequently the returned

value is the ambient light level in lux units.

LightObject

It consists of two variables of which the first mentioned in light volume and the second

is the timestamp. Along with the variable definition Set and Get methods are imple-

mented as a pattern of data encapsulation. Instead of accessing class member variables

directly, we define get methods to access these variables, and set methods to modify

them. Finally two constructors are implemented, the default and a variation with all the

proper parameters.

Figure 34 LightObject Class

-50-

LightListener

LightListener implements the class SensorEventListener [42] which is used for receiv-

ing notifications from the SensorManager when light volume has changed. We define a

DBHelper object for the database connection and SensorManager for the access of de-

vice's light sensor. When this class is called by the system, it registers the sensor man-

ager event in order to get the values of the sensor. If the last update of the sensor is

greater than 2.5 minutes (this value can change during tests) then LightListener calls the

InsertLightLogs procedure from DBHelper object and store the values in the database.

Figure 35 LightListener - Parameters and insertion of new values

LightAdapter

LightAdapter is a class that extends an array adapter that is filled with a list of

LightObjects. It connects the potential light data with a list view, in other words we de-

fine the look of the list and prepare the specific list in case is required by the application.

This is achieved via a Viewholder class in which we define the corresponding values of

the LightObject object and bind them with the appropriate list view that we have already

created based on the R.id identity.

 -51-

Figure 36 LightAdapter - Binding view and object

LightActivity

This activity is a complementary module to provide user with a visualization of data

that the application is stored for later use as the previous activities. The class extends

the ListActivity class and inside the class we define a DBHelper object and a list of

LightObjects which are filled in with the light records from DBHelper procedure Get-

AllLightLogs.

Figure 37 LightActivity - Display the available light values

4.1.5 CallLog Module

This module uses Google’s CallLog [43] class that provides information about incom-

ing and outgoing calls. We are implementing the CallLog.Calls [44] in order to fetch

information regarding the call number, location, the name of the caller, the type of the

call etc. Additionally we must use READ_CALL_LOG, CALL_PHONE,

WRITE_CALL_LOG, READ_LOGS and READ_CONTACTS permissions to have

access to device data.

CallObject

It consists of six variables of which the first mentioned in phone number; the second

mentioned in the call duration in seconds; the third in name of the number holder the

fourth in type of the call, the fifth in the location of the call and the last one in the

timestamp. Along with the variable definition Set and Get methods are implemented as

-52-

a pattern of data encapsulation. Instead of accessing class member variables directly, we

define get methods to access these variables, and set methods to modify them. Finally

two constructors are implemented, the default and a variation with all the proper param-

eters.

Figure 38 CallObject class

CallListener

CallListener implements the ContentObserver [45] class which is used for receiving call

backs when changes to content are occurred. As in the previous listeners we define a

DBHelper object for the database connection and a cursor (a form of list) for storing the

information of the CallLog.Call provider. The class is called in every status change and

then CallListener calls the InsertCallLogs procedure from DBHelper object and store

the values in the database.

 -53-

Figure 39 CallListener - Parameters and Insertion of new calls

CallAdapter

CallAdapter is a class that extends an array adapter that is filled with a list of CallOb-

jects. It connects the potential call data with a list view, in other words we define the

look of the list and prepare the specific list in case is required by the application. This is

achieved via a Viewholder class in which we define the corresponding values of the

CallObject object and bind them with the appropriate list view that we have already

created based on the R.id identity.

-54-

Figure 40 CallAdapter - Binding view and object

CallActivity

Following the same pattern as the previous activities CallActivity extends the ListActiv-

ity class and inside the class we define a DBHelper object and a list of CallObjects

which are filled in with the call records from DBHelper procedure GetAllCalls.

 -55-

Figure 41 CallActivity - Display the available call records

4.1.6 Sms Module

This module uses Google’s Telephony.Sms [46] class that provides information about

sent and received sms. We are implementing the above class in cooperation with Con-

tactsContract [47] in order to fetch information regarding the person’s name, call num-

ber, context, type of the sms etc. Additionally we must use READ_SMS permissions to

have access to device data.

SmsObject

It consists of five variables of which the first mentioned in sender’s name; the second

mentioned in content of the message; the third in sender’s name; the fourth in type of

the sms and the last one in the timestamp. Along with the variable definition Set and

Get methods are implemented as a pattern of data encapsulation. Instead of accessing

class member variables directly, we define get methods to read these variables, and set

methods to modify them. Finally two constructors are implemented, the default and a

variation with all the proper parameters.

-56-

Figure 42 SmsObject Class - Display the available call records

SmsListener

SmsListener implements the ContentObserver [45] class which is used for receiving call

backs when changes to content are occurred. As in the previous listeners we define a

DBHelper object for the database connection and a cursor (a form of list) for storing the

information of the sms provider. The class is called in every status change and then

SmsListener calls the getContactName for matching the number and the name of the

sender and afterwards calls the InsertSmsLogs procedure from DBHelper object and

store the values in the database.

 -57-

Figure 43 SmsListener - Parameters and Insertion of new sms (1)

Figure 44 SmsListener - Parameters and Insertion of new sms (2)

SmsAdapter

SmsAdapter is a class that extends an array adapter that is filled with a list of SmsOb-

jects. It connects the potential sms data with a list view, in other words we define the

look of the list and prepare the specific list in case is required by the application. This is

achieved via a Viewholder class in which we define the corresponding values of the

SmsObject object and bind them with the appropriate list view that we have already cre-

ated based on the R.id identity

-58-

Figure 45 SmsAdapter - Binding view and object

SmsActivity

As the aforementioned activities, CallActivity extends the ListActivity class and inside

the class we define a DBHelper object and a list of SmsObjects which are filled in with

the sms records from DBHelper procedure GetAllSms.

Figure 46 SmsActivity - Display the available sms records

4.1.7 Application Module

This module uses Google’s PackageManager [48] class that provides information about

the application packages that are currently installed on the device. We are implementing

the above class in cooperation with UsageStatManager [49] in order to fetch infor-

mation regarding the application statistics. We must use AC-

TION_USAGE_ACCESS_SETTINGS or GET_TASKS permissions to have access to

device data.

ApplicationObject

 -59-

It consists of three variables of which the first mentioned in application’s name; the se-

cond mentioned in foreground duration in milliseconds and the third one in the

timestamp. Along with the variable definition Set and Get methods are implemented as

a pattern of data encapsulation. Instead of accessing class member variables directly, we

define get methods to access these variables, and set methods to modify them. Finally

two constructors are implemented, the default and a variation with all the proper param-

eters.

Figure 47 ApplicationObject Class

ApplicationListener

The ApplicationListener is an extension of a Service [50] and we implemented two dis-

tinct logics. The first relates to installed applications in which we call the Pack-

ageManager on the creation of the service in order to fetch from the system the list of

the installed applications and afterwards to store the list in the database with the

DBHelper procedure InsertInstalledApplications. The second one relates to the applica-

tion logger in which we call again the PackageManager with specific parameters in or-

der to get the monthly foreground duration log, excluding the system’s applications, and

store it to the database with DBHelper’s InsertApplicationLogs procedure.

The month duration is calculated based on the current date.

-60-

Figure 48 ApplicationListener – All installed applications

Figure 49 ApplicationListener – Application log

ApplicationAdapter

ApplicationAdapter is a class that extends an array adapter that is filled with a list of

ApplicationObjects. Inside the Viewholder class we define the corresponding values of

the ApplicationObject object and bind them with the appropriate list view that we have

already created based on the R.id identity. In this case we created two different adapters

one for the installed applications and one for interacted applications.

 -61-

Figure 50 ApplicationAdapter -Binding views with objects

ApplicationActivity

In this case we implement two different activities one (InstalledApplicationActivity) for

displaying all the installed applications of the mobile device and one (Application-

LogActivity) displaying the applications that the user interacts with. Both extend the

ListActivity class and inside the class we define a DBHelper object and a list of Appli-

cationObject which are filled in with the data records from DBHelper procedure Get-

InstalledApps and GetAllApplications respectively.

Figure 51 ApplicationActivity – Display the available app records (Both cases)

4.1.8 Calendar Module

This module uses Google’s Calendar Provider [51] class that provides information

about user's calendar events. We are implementing the above class only to Google cal-

-62-

endar with READ_CALENDAR permissions to have access to device in order to fetch

information regarding the calendar events.

CalendarObject

It consists of six variables of which the first mentioned in event id; the second men-

tioned in event’s name and the third one in event’s description, the forth one in event’s

location, the fifth one in event’s start date and the last in event’s end date. Along with

the variable definition Set and Get methods are implemented as a pattern of data encap-

sulation. Instead of accessing class member variables directly, we define get methods to

access these variables, and set methods to modify them. Finally two constructors are

implemented, the default and a variation with all the proper parameters.

Figure 52 CalendarObject class

CalendarListener

The CalendarListener is an extension of a Service [50] that fetches and stores calendar

events for the content://com.android.calendar/events into a cursor. When this procedure

is over it calls DBHelper InsertCalendarLogs in order to store the characteristics of an

event in the database.

 -63-

Figure 53 CalendarListener - Parameters and Insertion of new events (2)

CalendarAdapter

CalendarAdapter is a class that extends an array adapter that is filled with a list of Cal-

endarObjects. Inside the Viewholder class we define the corresponding values of the

CalendarObject object and bind them with the appropriate list view that we have al-

ready created based on the R.id identity.

Figure 54 CalendarAdapter -Binding views with objects

CalendarActivity

As the previous activities, CalendarActivity extends the ListActivity class and inside the

class we define a DBHelper object and a list of CalendarObjects which are filled in with

the calendar records from DBHelper procedure GetAllCalendar.

-64-

Figure 55 CalendarActivity – Display the available calendar events

4.1.9 DBHelper Module

This Module is responsible for ensuring communication of the aforementioned modules

with application's database. It initializes the database, creates the necessary tables for

the application as well as the procedures that are mandatory for the communication with

other modules. Each module has its own specific procedures for data registration as also

for fetching data from the database in order to display the corresponding information to

mobile user. In case needed we can enhance the database with additional components

due to the modular architecture we have implemented. The first steps we execute, are

the initialization of the database along with the creation of the desired tables.

Figure 56 BDHelper - Database Initialization

 -65-

We continue with the initialization of each table separately along with the stored proce-

dures respectively. For brevity of speech we will display only the Location module table

and procedures, the rest of the modules follow the same pattern.

Figure 57 DBHelper – Location table

Figure 58 DBHelper - Location Stored Procedures

4.1.10 Update Service

This module is responsible for triggering application listeners. User can start or stop the

service in order to trigger the registration or deregistration of each listener. On the crea-

tion of the service we initialize all the proper parameters and register the listeners.

-66-

Figure 59 Update Service – Initialization & Registration of Listeners

When the service is stopped, automatically, all listeners are deregistered as the follow-

ing figure represents.

Figure 60 Update Service – Deregistration of Listeners

 -67-

4.2 Context-awareness and device data

The core of the prototype application lies within the context manager module which is

responsible for controlling the application’s rules as well as for carrying out all the ap-

propriate actions that have already been programmed to provide context-awareness in

user's device.

4.2.1 Context Rules

Rules are based upon the daily use of the device and are intended to help the user. Con-

sidering the continuous hustle that a regular user undergoes, we seek to release him

from these routine movements. We defined ten simple rules:

1) If user is at home, then change the ringtone volume to mute and enable vibration:

Detecting the smartphone’s location and the time of the departure we enable this

rule in order to decrease the volume of the device and also enable the vibration.

2) If user is at home and time is over 23:59, then set device on Sleep Mode: Detecting

the smartphone’s location and the time of the departure we enable this rule in order

to mute the device and also disable the vibration.

3) If user is at office, then mute and enable vibration: Detecting the smartphone’s loca-

tion, the time of the departure we enable this rule in order to mute the device and al-

so enable the vibration.

4) If user is at meeting then set device on Meeting Mode: Detecting the smartphone’s

location and the calendar events we enable this rule in order to mute the device and

also enable the vibration. At the same time we disable the communication via calls.

5) If user leaves the office, then provide him a tool to organize his/hers commuting.

Detecting the smartphone’s location and the exit time we enable this rule in order to

create a connection with an external Google API to consume the current Public

Transport directions based on user’s location. In case Public Transport is not availa-

ble user can choose between other transport modes and/or another origin destination

apart from her/his saved locations.

6) If user leaves the office, then notify him current events in city. Detecting the

smartphone’s location and the exit time we enable this rule in order to create a con-

nection with an external API to consume the events based on user’s location.

-68-

7) If a caller belongs to top three callers and Rule 4 is applied then notify caller via sms

that user is at meeting. Detecting the call log file daily, we enable this rule in order

to send a sms message inform caller that user is at meeting.

8) Every week display top three applications on homepage. Detecting the application

log file weekly, we enable this rule in order to set on homepage the three most used

applications

9) Every evening after work display the most used applications and contact name (for

that datetime). Detecting the application and call log file daily, we enable this rule in

order to set on homepage the most used application and contact profile.

10) If the light sensor is near zero and acceleration/speed different from zero then set the

ringtone volume to 100% and enable vibration. Detecting the motion of the device

the proximity sensor, the state of the device and the value of the light sensor period-

ically, we enable this rule in order to set the volume of ringtone to max value and set

the vibration on.

4.2.2 ContextManager

ContextManager is the module, which is responsible for the actions that trigger the exe-

cution of the aforementioned rules. It is composed of specific functions that oversees

the collection of data and manages all the necessary checking procedures in order to

provide context-awareness to mobile owner. The main function that helps to implement

several rules is the Geofencing module. Here we generate a set of centroids which are

selected based on a particular distance, is set at 300m. A comparison is applied on the

difference of the initial position and the next position, if the difference is less than the

certain distance then a new provisional center is defined by the mean value of the previ-

ous two items.

Figure 61 ContextManager – Distance Function

 -69-

Thereby a number of centroids is calculated which is subsequently filtered in through

the period and held two groups, the group that indicates the location "Home" and the

second group that indicates the location "Work". For time filtering is used the checktime

function which checks whether the timestamp of the stigma is between a specific time

window.

Figure 62 ContextManager - Checktime function

With the aim of the abovementioned functions it is calculated the user's location which

triggers, depending on entering or exiting the relevant geographical areas, the actions

that corresponds to specific rules. Simultaneously with these actions a notification mes-

sage is prompt on device screen in order to notify the user for current changes. The

above message is constructed by sendNotification and getTriggeringGeofences func-

tions (Figure 63 ContextManager - Notification functions).

Figure 63 ContextManager - Notification functions

Another important module of ContextManager is the Event module. This module pro-

vides a dynamically search of current events based on user location and current date. It

connects with an external API, namely Eventful API which is a worldwide known web-

-70-

site
11

 for upcoming events. Event module is also responsible for consuming the web

service response which is implemented as an asynchronous task. Data conforms to

JSON format and is converted to a readable format by the EventAdapter. The discrete

steps of this process are first we build the URL (Figure 64 ContextManager – Building

the HTTP request) for the web service request,

Figure 64 ContextManager – Building the HTTP request

second we initialize a new HTTP connection, in our third step we consume the JSON

format data and in our last step we display them as list view to the user.

Figure 65 ContextManager – Web Service Consumption

Similar implementation with the Event module is the PublicTransport module. In this

case we exploit the results of the Geofencing module and in accordance with the current

time we provide to the user information regarding the public transport which operates

11
 www.eventful.com

 -71-

on the defined locations. The user has the option to choose between the modes of

transport (driving, walking, public transport) and between three pairs of location (Work-

Home, Home-Work, Other). This module implements the external API of Google
12

 and

follows again specific steps. First we define the transport mode, second origin and des-

tination, then we initialize a HTTP connection and then we call asynchronously Direc-

tionJSONParser which parses the JSON information and provides the appropriate data

in order to construct and visualize them on a map.

ContextManager also exploits the notion of upcoming calendar events via the Calen-

darEvent module. This module gathers all the relevant information which is stored in

the database and examines the content of the event, the start / end time and compares

with the current location and/or date time in order to trigger all the necessary predefined

actions based on rules (Rule 7). In our case an action is defined as muting the device

and switching off the vibration along with call forwarding except from the cases that a

caller is one of user’s top three callers and then a SMS message is notifying this caller

that user is at a meeting. ContentManager initialize the Calendar Service module which

notifies CallRejecterSmsSender function when a meeting is taking place.

Figure 66 Context Manager – CalendarService

12
 https://developers.google.com/maps/documentation/directions/intro

-72-

CallRejecterSmsSender handles the incoming call and in case this caller is identified as

one of the top three callers then it notifies the caller with a SMS message.

Figure 67 CallRejecterSmsSender - Reject call and send a SMS

Furthermore ContextManager uses the data of acceleration sensor, data of light sensor

and proximity sensor in order to find the movement of the holder and the position of the

appliance via the WalkingService module. In case the user is moving and the device is

fitted to some inner housing (pocket, bag etc) then this module triggers Rule 10. This

module is registered when user exits a specific area and unregistered when user enters a

specific area, in our case work and home location. WalkingService initialize the Pock-

etDetector, a modification of Artem Tartakynov [52] code which checks whether a dis-

tance threshold is exceeded using proximity sensor and notifies LegMovementDetector

which in turn counts the steps of the user. This function uses a common Kalman filter

for smoothing the signal from accelerator. Finally WalkingService checks whether a leg

movement is detected, when the value of light sensor is below 2 lux and the state of

phone is different than off-hook (the condition that exists when a telephone is in use)

and triggers changes to phone’s volume and vibration and also displaying a notification

regarding the current changes.

https://en.wikipedia.org/wiki/Telephone

 -73-

Figure 68 WalkingService - Phone in pocket

ContextManager hosts the Shortcut modules which are responsible for updating the

home screen of user’s device. It consists of two functions, one for inserting the shortcuts

and the other one for deleting the shortcuts. In the first case we create a list of all the

running applications and compare individually each application with the most used ap-

plications which are stored periodically to our database by the DBHelper. The second

case in exactly the same as the first case with the only exception lies in the intent action.

The following figure represents the aforementioned function highlighting the different

parts.

Figure 69 ContextManager - Shortcut Module

The same principals applied for the creation and deletion of phone contacts for calls and

SMS shortcuts. In order to trigger the rules that related to shortcuts we implemented two

specific time taskers. The first one is initialized to run every week and first delete the

previous application shortcuts and second create new shortcuts based on the foreground

duration of last week. The second one is initialized to run every day after work time and

first remove previous contact shortcuts and then add the new ones based on the call du-

ration and timestamp of the call. The added shortcuts (only if these contacts have the

-74-

appropriate application accounts, namely if user has Hangouts or WhatsApp) can make

a direct phone call, send a sms from Hangouts and also send a SMS from WhatsApp

application. It is worth mentioning that in order to retrieve the contact’s image, the

shortcut functions call the RetrieveContactPhoto and Overlay which retrieve from the

device the image based on the contact number and overlay the retrieved image with ap-

plication’s icon respectively.

Figure 70 ContextManager -TimeTasker for Contact shortcuts

Last but not least, ContextManager initialize another time tasker (startTimerServices) in

order to implement Rule 2. This specific time tasker checks whether user is at home and

also if time is near 00:00, to be precise it checks if time is after 23:57, and if this condi-

tion is true then it switch off the vibration and also mute the device.

Figure 71 ContextManager – startTimerServices (Rule 2)

 -75-

5 Discussion

In this chapter we will discuss our results as described in previous sectors along with the

functionalities of the prototype application. We will try to explain in full details the

views (activities) of the application with the help of screenshots which have been taken

during the test period in order to validate and assess the functioning of the Prototype

application. Starting the application, the user needs to enable Location in order the ap-

plication to receive GPS position. Additionally, in devices which are not rooted, another

option appears that user should enable; Apps with usage access in order to allow the ap-

plication to have control in a set of internal functionalities. In the following figures are

displayed the aforementioned views.

Figure 72 Location and Usage Access Views

In the remainder of this chapter we will further analyze the components of the applica-

tion that are divided in sensor’s raw data views, the phone logger views and the Context

Manager view.

5.1 Sensor’s raw data Views

In these views are appearing all the raw data that the application fetches from device’s

sensors. For a clear view user can see exactly what have been saved in the database by

pressing one of the four options depending on her preferences.

-76-

Figure 73 Prototype Homepage

By the time the homepage is displayed all the required listeners are registered in order

to start the data gathering. In case user wants to unregister the listeners she can click to

Stop Service button. Prototype will start gathering data the next time it will open.

User has the option to click on the four buttons which correspond to different sensors as

indicated by their names. The following figure illustrates the raw data of accelerometer

and gyroscope in 3-axis along with the timestamp of the record.

Figure 74 Raw data - Accelerometer and Gyroscope sensor

In the next figure is illustrated the GPS location (coordinates, position accuracy and the

record’s timestamp) and the also the light values in lux along with the record’s

timestamp.

 -77-

Figure 75 Raw data - GPS and Light sensor

5.2 Phone Logger Views

In these views user can check what kind of information is saved regarding her calls,

SMS messages, calendar events and also the installed applications on the device. In case

user clicks on Call Logs button a new view will be displayed with the number of the

caller, the location, the duration in minutes, the name of the caller and the type of call

(incoming, outgoing).

Figure 76 Phone Logger - Call Logs

-78-

In case user clicks on Sms Logs button, view will display the content of the message, the

number of the sender, the type of message (inbox or sent), the sender’s or receiver’s

name and the timestamp of the record.

Figure 77 Phone Logger - Sms Logs

In case user clicks on Calendar Logs button, view will display the content, the descrip-

tion, the location, the starting date and the ending date of the event. If one of the previ-

ous values is not defined, then a specific message Not Defined is displayed in the corre-

sponding position.

Figure 78 Phone Logger - Calendar Logs

 -79-

In case user clicks on App Logs button, two views can be displayed, one with the list of

all the installed applications and the other one with the list of the applications that are in

use along with the foreground duration of each one.

Figure 79 Phone Logger - App Logs

5.3 Context Manager View

The initial view of the Context Manager is consisted of specific buttons which are re-

sponsible for specific functionalities. The following figure illustrates the abovemen-

tioned buttons which will be described later on this sub chapter.

Figure 80 Context Manager View

-80-

As we have already mentioned Context Manager is responsible for the data manage-

ment and all the required actions to be performed in the event when specific rules are

valid. The moment user clicks Context Manager button all the appropriate listeners and

time taskers are registered and initialized respectively. This moment is also the time

when Work and Home locations are specified and geofencing process is activated. The

user can see the results of this process by clicking the Map button. In the next figures

are illustrated the background log (internal) and the visualization of Work and Home

positions.

Figure 81 Context Manager – Background Geofencing Process

Figure 82 Context Manager – Visualization of Geofencing Process

When user enters or exits the geofencing area specific notifications are displayed along

with the appropriate processes that were triggered based on the Rules, namely:

a) When a user enter the work position Rule number 3 is triggered;

b) When user exits the work position Rule number 5 is triggered;

 -81-

c) When user enter the home position Rule number 1 is triggered.

Figure 83 Context Manager – Notifications

It is worth mentioning that in case use clicks on notification which indicates to check

city events then she/he will be redirected to the Event view which is discussed below.

In case user clicks on ShowEvents button or the appropriate notification, the application

is automatically connected to the external Eventful API and fetches the appropriate

event records in order to display them in a readable form. The available information re-

garding the event is the location of the event, the description with the starting and end-

ing date of the event, the area where the event will take place. In case such information

is not available then a (-) will be displayed.

-82-

Figure 84 Context Manager - Show Events

In case user exit her office or work and want to organize her commuting (Rule 6) then

user can click on Get Directions button and be redirected to another view in order to

choose the transport mode and the origin and destination. Except from the two specific

routes (Home-Work, Work-Home) user can choose Other and select on the map another

origin/destination and get directions and visualization for this route.

Figure 85 Context Manager - Directions

 -83-

In any case users can see the results either as instructions or as a line on the map.

Figure 86 Context Manager – Results

Furthermore, two more buttons are displayed regarding shortcuts. This functionality

(Rule 8&9) is triggered by the time user clicks on Context Manager button. We have

provided to user the possibility to also handle this process manually. In case user clicks

on Add Shortcut button then all the appropriate shortcuts (Application, Phone, SMS and

WhatsApp contacts) are installed in home screen. In case user clicks on Delete Shortcut

then the reverse process is triggered and all the installed shortcuts are deleted. The fol-

lowing figure displays the results of the click actions.

Figure 87 Context Manager - Add Shortcuts

-84-

The last button that is displayed on the Context Manager view is the Stop Time Tasks

button. In case user clicks on this specific button then all the initialized time taskers are

deactivated. The referred time taskers are three: the first is related to weekly shortcut

installments; the second to daily shortcut installment and the last one is responsible for

checking whether user is at home and time is after 23:57 in order to implement Rule 2.

Finally we should mention that two specific listeners that were registered during the ini-

tialization of the Context Manager view continue working incessantly and the first is

notifying the user when Rule 4&7 are verified. In such cases all calls are rejected and

only if a caller belongs to top three callers will be notified that user is unable to be

reached. The following figure illustrates such SMS notifications in testing period.

Figure 88 Context Manager - Sms meeting Notifications

The second listener is responsible for enabling the Walking service and notifies the user

when this service has started (Figure 89 Context Manager - Walking Service Notifica-

tion). While this service is on, if user places her device into a pocket then it triggers

Rule 10.

 -85-

Figure 89 Context Manager - Walking Service Notification

As stated in Chapter 3, the conception and implementation of the application architec-

ture is influenced by the Context Toolkit [31] and SOCAM [13] with a spirit to exploit

as much as device sensors which were not available in previous efforts which were de-

scribed in chapter 2. During our application development we focused on finding the

most popular locations of the users (Work/Home) with a view to device management

both indoor and outdoor of these locations in contrast with Active Badge [22] which

focused on the call forwarding in specific locations inside the work perimeters. Personal

Shopping Assistant [24] and Cyberguide [25] researchers tried to user personal prefer-

ences in order to assist them in specific occasions such as shopping or sightseeing

whereas we concentrated on providing assistance on daily routine (daily events, public

transport, customized home screen etc.). Furthermore we tried through the communica-

tion log and calendar log to inform callers about the desired specific situation (meeting

mode) in contrast with HEP [26] and Office Assistant [27] where the application in-

formed all contacts provided the proper communication means or offer information to

one user for a specific occupied/unoccupied office respectively. None of the aforemen-

tioned applications focused on motion state aspect of context-awareness as we did,

-86-

where the device based on the specific location (Outdoor and in pocket) and movement

(walk) aims the user by maximizing the volume of the device when walking outdoor.

 -87-

6 Conclusions and Future
Work

6.1 Synopsis

In this dissertation we have attempted to present to reader the concepts of context and

context-awareness and how a user of a mobile phone can benefit using applications with

such technologies. We made a historical review of a variety of research efforts which

were the solid foundations for the further development of this technology aspect. We

saw that through specific design methods we can create architectures which can easily

be extended and managed according to the needs of ordinary users and we continue by

analyzing the system architecture and application development tools we used and we

came into the detailed analysis of subcomponents and the background services. Addi-

tionally we defined the rules that Context Manager of the prototype application have to

manage and the results of these actions. Finally we presented the created prototype ap-

plication as a proof of concept trying to elaborate that it is possible to analyze the user's

profile through daily performed operations in order to provide personalized services that

assist the user. It is worth mentioning that during the dissertation three major IT compa-

nies, Google, Nokia and Microsoft
13

 have presented as beta versions or stable releases

application-launchers which more or less provide similar functionalities (Add/delete

shortcuts etc) with our prototype. This indicates the trend that will be followed from IT

companies based on more personalized services and customization with the aim of con-

text-awareness. The research area concerned the context-awareness computing is and

will continue to be fruitful for research and development of new functionalities or soft-

ware components over the upcoming years combining contextual information from

people, processes, data and things under the umbrella of Internet of Everything.

13
 Marshmallow Android, Nokia Z Launcher, Microsoft Arrow Launcher

-88-

6.2 Conclusions

During the application’s development we used specific tools for programming and de-

bugging in Android Environment such as Android Studio as well as smartphone Nexus

5 (Google/LG) for testing reasons, which was the basis for the development of the pro-

totype application. We proved the concept that based on specific sensors and user’s call

and SMS log a satisfactory level of context-awareness can be achieved. For this reason

we were oriented to this specific smartphone model emulator as well as the Android OS

5.1 version. We believe the choices that have been made regarding the embedded rules

and also the processes that triggered the predefined rules provide a decent context-

aware prototype which helps the daily routine of the user without creating additional

problems than user already has. The prototype application is designed for minimum in-

teraction between user and device due to the fact that most of the functionalities are

background services, for example the algorithm for generating work and home locations

is triggered every time the Context Manager button is clicked instead of asking user to

define her preferences. Our intention was user to forget during the day that has a run-

ning application in the smartphone, but only perceive it at those moments that the appli-

cation will inform her via notifications.

Through the realization of the application we resulted that the acceleration and light

sensor are valuable source of information in contrast to gyroscope sensor which in our

case the raw data have worthless information value, unless used in conjunction with da-

ta from the accelerometer sensor with a purpose to optimize the movement recognition

of the device which at this stage is not necessary. Furthermore it came to our notice that

it is not needed to record the content of the messages but sufficient to record the number

of messages and their timestamp from/to user to/from a contact.

However, during the thesis we encountered many difficulties regarding prototype’s

compatibility and operability:

 The range of mobile devices that uses Android OS is vast as vast it is the diversifi-

cation over the same operation system that varies from company to company;

 The development of the application was based on versions 5 and above resulting

that many functions of the application could not operate correctly on lower versions;

 -89-

 Most previous programming functionalities that an application developer had in

newer versions presented inconsistency and they did not function as they functioned

in versions such as 4.4, namely deletion of the shortcuts which in previous versions

was working without errors where as in version 5.0 and above the Google launcher

forbade us to delete shortcuts on home screen;

 Many mobile devices, in most cases older models, do not incorporate all the used

sensors which the prototype application uses in order to activate / deactivate rules

and essentially manage the data depending on the active processes.

Nevertheless in this diploma thesis, we came to the conclusion that not only it is possi-

ble to create a context-aware application based on simple design methodology using as

essential information data from mobile sensors and user’s communication log but the

outcome of this dissertation, the prototype android application, corroborate it.

6.3 Future Work

As mentioned in Conclusions we encountered various issues regarding the compatibility

of application in various smartphones, Android OS releases and versions of Android. It

is completely subjective choice of the developers to decide which Android version will

be the target group in order to focus and solve or find workarounds for the aforemen-

tioned issues. Furthermore, dependence of the application of the user command can be

considered again as a subjective choice and it is up to the developer the degree of appli-

cation independence from individual choices of users.

The steps need to be taken to release a stable beta version for the prototype application

with a view to the evaluation from a sufficient number of users is the following:

 Stabilize the prototype application. We could complete a circle of given tests to

make sure that the application works under different conditions without display-

ing error that could terminate its operation;

 Manage efficiently the SQL insertion/deletion/fetching queries. We could create

a specific service that manages the input / output of data with pre / post and

background tasks to achieve an optimal management of the device’s resources;

 Decrease the battery consumption by handling more efficiently asynchronous

task. We could monitor the procedures and mark the most hungry-tasks in order

-90-

to manage them accordingly, for example gathering GPS values on specific time

or planning the execution of some queries when mobile is on idle mode etc.;

 Define the target group of the Android versions and create some workarounds

for deprecated or problematic functionalities (Delete Shortcuts). We could moni-

tor the mobile market and see the upcoming trends of mobile market and choose

based on this research the largest share market to satisfy;

 Create a preference view in order to define specific settings (volume, vibration,

duration for time taskers) to make it more customized for each user. We could

create a specific activity/view in order to customize specific actions that trig-

gered from the rules. For example one user may want to turn the vibration and

volume off when at Work whereas the same time another user may desire to

have the volume up.

 -91-

Bibliography

[1] Gartner Group, Top 10 Strategic Technology Trends for 2013

[2] IDC, IDC Predictions 2015: Accelerating Innovation and Growth on the 3rd Plat-

form

[3] M.Weiser, The Computer for the 21st Century 1991

[4] P. Guillemin and P. Friess, Internet of things strategic research roadmap, The Clus-

ter of European Research Projects, Tech. Rep., September 2009

[5] C Perera, A Zaslavsky, P Christen, D Georgakopoulos, Context Aware Computing

for The Internet of Things: A Survey - Communications Surveys & Tutorials, IEEE,

2014

[6] B. Schilit, N. Adams and R Want, Context-aware computing applications, 1994

[7] P.J. Brown, J.D. Bovey and Xian Chen, Context-aware applications: From the la-

boratory to the marketplace. IEEE Personal Communications 4(5): pp. 58-64.October

1997

[8] Anind K. Dey, Providing Architectural Support for Building Context-Aware Appli-

cations, 2000

[9] B. Schilit and Theimer, Disseminating Active Map Information to Mobile Hosts

1994

[10] J. Pascoe, Adding generic contextual capabilities to wearable computers, 1998

[11] G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith and P. Steggles, To-

wards a better understanding of context and context-awareness, 1999

[12] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty, Intelligent

agents meet the semantic web in smart spaces, 2004

[13] T. Gu, H. K. Pung, and D. Q. Zhang, A service-oriented middleware for building

context-aware services, 2004

[14] M. Smith, C. Welty, D. McGuinness, Web Ontology Language (OWL) Guide,

2003.

-92-

[15] L. Capra, W. Emmerich, and C. Mascolo, Carisma: context-aware reflective mid-

dleware system for mobile applications, 2003

[16] M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. H. Campbell and K. Nahrstedt,

Gaia: A Middleware Infrastructure to Enable Active Spaces, 2002

[17] G. E. Krasner, S. T. Pope, A Description of the Model-View-Controller User Inter-

face Paradigm in the Smalltalk-80 System, 1988

[18] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Project aura: Toward dis-

traction-free pervasive computing, 2002

[19] Fei Li, S. Sehic, S. Dustdar, COPAL: An adaptive approach to context provision-

ing, October 2010

[20] Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D. Ca4iot: Context

awareness for internet of things. In Proceedings of the 2012 IEEE International Confer-

ence on Green Computing and Communications, Besançon, France, 20–23 November

2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 775–782

[21] Huertas Celdran, A., Garcia Clemente, F.J.; Gil Perez, M.; Martinez Perez, G.

SeCoMan: A Semantic-Aware Policy Framework for Developing Privacy-Preserving

and Context-Aware Smart Applications. IEEE Syst. J. 2013

[22] R. Want, A. Hopper, V. Falcao and J. Gibbons, The active badge location system,

1992

[23] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen, D. Goldberg, J. R. Ellis

and M. Weiser, An Overview of the ParcTab Ubiquitous Computing Experiment, 1995

[24] A. Asthana, M. Cravatts, and P. Krzyzanouski, An indoor wireless system for per-

sonalized shopping assistance, 1994

[25] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper

and Mike Pinkerton, Cyberguide: A Mobile Context-Aware Tour Guide, 1996

[26] B. Chihani, E. Bertin, F. Jeanne and N. Crespi HEP: context-aware communication

system, 2011

[27] H. Yan, T. Selker, Context-Aware Office Assistant, In Proceedings of the 2000 In-

ternational Conference on Intelligent User Interfaces, 2000

[28] M. M. Molla and S. I. Ahamed, A survey of middleware for sensor network and

challenges, in Proceedings of the 2006 International Conference Workshops on Parallel

Processing ,2006

 -93-

[29] K. E. Kjaer, A survey of context-aware middleware, in Proceedings of the 25th

conference on IASTED International Multi-Conference, 2007

[30] M. Baldauf, S. Dustdar, and F. Rosenberg, A survey on context aware systems, Int.

J. Ad Hoc Ubiquitous Computing, 2007

[31] Anind K. Dey and Gregory D. Abowd, The Context Toolkit: Aiding the Develop-

ment of Context-Aware Applications, 2000

[32] G. Chen and D. Kotz, A survey of context-aware mobile computing research, 2000

[33] Hevner, A.R., March, S.T., and Park, J. Design Research in Information Systems

Research. MIS Quarterly, 28, 1 (2004), 75-105

[34] Takeda H. ,Veerkamp, P., Tomiyama, T., and Yoshikawam, H. (1990). Modeling

Design Processes.” AI Magazine 1990 Winter

[35] Fann, K. T. Peirce’s Theory of Abduction. The Hague, The Netherlands: 1970.

[36] Android Developers Blog, Accessed August 20/2015, http://android-

developers.blogspot.in

[37] Martin Gudgin, Marc Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen,

www.w3.org, Accessed August 2/2015, http://www.w3.org/TR/2001/WD-soap12-

part1-20011217

[38] Android Developers, developer.android.com, Accessed August 13/2015,

http://developer.android.com/reference/android/location/LocationManager.html

[39] Android Developers, developer.android.com, Accessed August 13/2015,

http://developer.android.com/reference/android/location/LocationListener.html

[40 Android Developers, developer.android.com, Accessed August 22/2015,

http://developer.android.com/reference/android/hardware/Sensor.html

[41] Android Developers, developer.android.com, Accessed August 22/2015,

http://developer.android.com/reference/android/hardware/SensorEvent.html

[42] Android Developers, developer.android.com, Accessed August 23/2015,

http://developer.android.com/reference/android/hardware/SensorEventListener.html

[43] Android Developers, developer.android.com, Accessed August 25/2015,

http://developer.android.com/reference/android/provider/CallLog.html

[44] Android Developers, developer.android.com, Accessed August 20/2015,

http://developer.android.com/reference/android/provider/CallLog.Calls.html

http://android-developers.blogspot.in/
http://android-developers.blogspot.in/
http://www.w3.org/TR/2001/WD-soap12-part1-20011217
http://www.w3.org/TR/2001/WD-soap12-part1-20011217
http://developer.android.com/reference/android/location/LocationManager.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEventListener.html

-94-

[45] Android Developers, developer.android.com, Accessed August 20/2015,

http://developer.android.com/reference/android/database/ContentObserver.html

[46] Android Developers, developer.android.com, Accessed September 20/2015,

https://developer.android.com/reference/android/provider/Telephony.Sms.html

[47] Android Developers, developer.android.com, Accessed October 20/2015,

http://developer.android.com/reference/android/provider/ContactsContract.html

[48] Android Developers, developer.android.com, Accessed October 20/2015,

http://developer.android.com/reference/android/content/pm/PackageManager.html

[49] Android Developers, developer.android.com, Accessed September 15/2015,

https://developer.android.com/reference/android/app/usage/UsageStatsManager.html

[50] Android Developers, developer.android.com, Accessed October 20/2015,

http://developer.android.com/guide/components/services.html

[51] Android Developers, developer.android.com, Accessed October 20/2015,

http://developer.android.com/guide/topics/providers/calendar-provider.html

[52] Tartakynov Artem, github.com, Accessed October 10/2015

https://github.com/tartakynov/robowalk/blob/master/src/com/tartakynov/robotnoise/Poc

ketDetector.java

http://developer.android.com/reference/android/database/ContentObserver.html
https://developer.android.com/reference/android/provider/Telephony.Sms.html
http://developer.android.com/reference/android/provider/ContactsContract.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
Android%20Developers,%20developer.android.com,%20Accessed%20September%2015/2015,%20https:/developer.android.com/reference/android/app/usage/UsageStatsManager.html
Android%20Developers,%20developer.android.com,%20Accessed%20September%2015/2015,%20https:/developer.android.com/reference/android/app/usage/UsageStatsManager.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/topics/providers/calendar-provider.html

 -95-

Appendix

In this chapter we present the most significant part of the source code, namely Context

Manager. In case readers seek the rest of the source code they can find it in the follow-

ing link.

https://www.dropbox.com/s/vg0qth94y54hoby/DiplomaThesis_SourceCode.rar?dl=0

Context Manager

package com.example.dkotsopoulos.testdiploma;

import android.app.Activity;

import android.content.ComponentName;

import android.content.ContentResolver;

import android.content.ContentUris;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;

import android.content.pm.PackageManager;

import android.content.pm.ResolveInfo;

import android.database.Cursor;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.graphics.BitmapShader;

import android.graphics.Canvas;

import android.graphics.Matrix;

import android.graphics.Paint;

import android.graphics.Shader;

import android.graphics.drawable.BitmapDrawable;

import android.graphics.drawable.Drawable;

import android.media.AudioManager;

import android.net.Uri;

import android.os.Bundle;

import android.os.Handler;

import android.preference.PreferenceManager;

import android.provider.ContactsContract;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

import com.google.android.gms.location.Geofence;

import com.google.android.gms.maps.model.LatLng;

import java.io.IOException;

import java.io.InputStream;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.Collections;

import java.util.Date;

https://www.dropbox.com/s/vg0qth94y54hoby/DiplomaThesis_SourceCode.rar?dl=0

-96-

import java.util.List;

import java.util.Timer;

import java.util.TimerTask;

public class ContextManager extends Activity {

 private static final String TAG_SERVICE = "GroupingLocations";

 private static final String TAG = "InstallShortcuts";

 private static double threshold = 300; // Distance between two points in

METERS

 public static List<GroupPointObject> points = new Ar-

rayList<GroupPointObject>();

 DBHelper dbHelper;

 ArrayList<Geofence> mGeofences;

 ArrayList<LatLng> mGeofenceCoordinates;

 ArrayList<Integer> mGeofenceRadius;

 String[] geocoordinate = new String[2];

 GeofenceStore mGeofenceStore;

 List<ApplicationObject> Newapp;

 CalendarAdapter adapter;

 Button mapbutton,ShowEvents,Directions,StopAlarm,add,remove;

 Timer timer;

 Timer timerservices;

 Timer timerservicesShortcuts;

 TimerTask timerTask;

 TimerTask timerTaskservices;

 TimerTask timerTaskservicesShortcuts;

 final Handler handler = new Handler();

 final Handler handlerservices = new Handler();

 final Handler handlerservicesShortcuts = new Handler();

 String TimersAreRunning;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 SharedPreferences location = PreferenceManag-

er.getDefaultSharedPreferences(getApplicationContext());

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_context_manager);

 mapbutton = (Button) findViewById(R.id.mapbutton);

 ShowEvents=(Button) findViewById(R.id.ShowEvents);

 Directions = (Button) findViewById(R.id.directionsbutton);

 StopAlarm = (Button) findViewById(R.id.stopalarmServicesbutton);

//

/////////////////

/*Here we create the clustering for Work centroid and Home centroid*/

 dbHelper = new DBHelper(this);

 points = dbHelper.GetGroupedGPS();

 Log.d(TAG_SERVICE, String.valueOf(points.size()));

 for (int i = 0; i < points.size(); i++) {

 for (int j = i + 1; j < points.size();) {

 GroupPointObject pointHere = points.get(i);

 GroupPointObject pointThere = points.get(j);

 double length = distance(pointHere.getY(), pointThere.getY(),

pointHere.getX(), pointThere.getX(), 0.0, 0.0);

 if (length <= threshold) {

 points.get(i).xCluster = (points.get(i).xCluster +

points.get(j).getX());

 points.get(i).yCluster = (points.get(i).yCluster +

points.get(j).getY());

 -97-

 points.get(i).cluster_volume++;

 try {

 if (check-

time(points.get(j).getdatetime()).equals("Work")) {

 points.get(i).Work++;}

 else {points.get(i).Home++;}

 } catch (ParseException e) {e.printStackTrace();}

 points.remove(j);

 } else {j += 1;}

 }

 }

 LatLng Home = new LatLng(0, 0);

 LatLng Work = new LatLng(0, 0);

 Collections.sort(points);

 location.edit().clear();

 if (points.size() >= 2) {

 if (points.get(0).Work < points.get(0).Home) {

 //Here i should create the markers for map

 Log.d("Home: ", points.get(0).toString());

 Home = new LatLng(points.get(0).getX(), points.get(0).getY());

 } else {

 //Here i should create the markers for map

 Log.d("Work: ", points.get(0).toString());

 Work = new LatLng(points.get(0).getX(), points.get(0).getY());

 }

 if (points.get(1).Work < points.get(1).Home) {

 //Here i should create the markers for map

 Log.d("Home: ", points.get(1).toString());

 Home = new LatLng(points.get(1).getX(), points.get(1).getY());

 } else {

 //Here i should create the markers for map

 Log.d("Work: ", points.get(1).toString());

 Work = new LatLng(points.get(1).getX(), points.get(1).getY());

 }

 } else {

 Toast.makeText(getApplicationContext(), "Less than two clusters!",

Toast.LENGTH_LONG).show();

 }

 // Writing data a variable and pass them to the map activity for dis-

playing them

 geocoordinate[0] = String.valueOf(Home.latitude) + "," +

String.valueOf(Home.longitude);

 geocoordinate[1] = String.valueOf(Work.latitude) + "," +

String.valueOf(Work.longitude);

 SharedPreferences.Editor editor = location.edit();

 editor.putString("LatHome", String.valueOf(Home.latitude)).commit();

 editor.putString("LogHome", String.valueOf(Home.longitude)).commit();

 editor.putString("LatWork", String.valueOf(Work.latitude)).commit();

 editor.putString("LogWork", String.valueOf(Work.longitude)).commit();

 mapbutton.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Log.d(TAG_SERVICE, "onClick: starting ContextManager");

 startActivity(new Intent(ContextManager.this, MapActivi-

ty.class).putExtra("Geolocations", geocoordinate));

 }

 });

/***End of clustering creation

***********************/

//

/////////////////

/*********************Here we implement the geofenc-

-98-

ing***/

 // Initializing variables

 mGeofences = new ArrayList<Geofence>();

 mGeofenceCoordinates = new ArrayList<LatLng>();

 mGeofenceRadius = new ArrayList<Integer>();

 mGeofenceRadius.add(100); //Radious in meters

 mGeofenceCoordinates.add(Work);

 mGeofenceCoordinates.add(Home);

 // Home, the coordinates of the center of the geofence and the radius

in meters.

 mGeofences.add(new

Geofence.Builder().setRequestId("Home").setCircularRegion(mGeofenceCoordinates

.get(1).latitude, mGeofenceCoordinates.get(1).longitude,

 mGeofenceRadius.get(0).intValue())

.setExpirationDuration(Geofence.NEVER_EXPIRE).setLoiteringDelay(3600000)

 .setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER |

Geofence.GEOFENCE_TRANSITION_DWELL |

Geofence.GEOFENCE_TRANSITION_EXIT).build());

 // Work, the coordinates of the center of the geofence and the radius

in meters.

 mGeofences.add(new Geofence.Builder().setRequestId("Work")

 .setCircularRegion(mGeofenceCoordinates.get(0).latitude,

mGeofenceCoordinates.get(0).longitude, mGeofenceRadius.get(0).intValue())

 .setExpirationDuration(Geofence.NEVER_EXPIRE)

 // Required when we use the transition type of

GEOFENCE_TRANSITION_DWELL

 .setLoiteringDelay(3600000)// 60minutes inside the geofence an

alert will be sent

 .setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER |

Geofence.GEOFENCE_TRANSITION_DWELL |

Geofence.GEOFENCE_TRANSITION_EXIT).build());

 // Add the geofences to the GeofenceStore object.

 mGeofenceStore = new GeofenceStore(this, mGeofences);

/***************End of geofenc-

ing** */

//

/////////////////

/*************************Here we implement mute after 23:59

event*********************************/

 SharedPreferences shareref = PreferenceManag-

er.getDefaultSharedPreferences(getApplicationContext());

 TimersAreRunning= shareref.getString("TimerOn", "");

 if (TimersAreRunning.equals("True"))

 {

 try {

 startTimerServices();

 } catch (Exception e) {

 e.printStackTrace();

 }

 /**************************End mute after 23:59

event***/

 /*************************Here we implement shortcuts

rule*********************************/

 // 3 most used apps

 try {

 startTimer();

 //whatsapp, hangouts, top three callers

 startTimerShortcuts();

 } catch (ParseException e) {

 e.printStackTrace();

 -99-

 }

 }

/**************************End shortcuts

***/

//

/////////////////

/***********************Here we implement the selection of shortcuts manual-

ly******************/

 add = (Button) findViewById(R.id.buttonAddShortcut);

 add.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 //Add shortcut on Home screen

 addShortcut();

 AddContactShortcut();

 AddWhatsShortcuts();

 AddSMSShortcuts();

 }

 });

 //Add listener to remove shortcut button

 remove = (Button) findViewById(R.id.buttonRemoveShortcut);

 remove.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 //Remove shortcut from Home screen

 removeShortcut();

 RemoveContactShortcut();

 RemoveSMSShortcuts();

 RemoveWhatsShortcuts();

 }

 });

/*********************************End selection of the

shortcuts*************************/

//

/////////////////

/* *****************************Show all the events in your ar-

ea***/

 ShowEvents.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 startActivity(new Intent(ContextManager.this, EventfullActivi-

ty.class));

 }

 });

/**********************End of showing all the events in your ar-

ea***/

//

/////////////////

/* *****************************Show Direction for mobili-

-100-

ty***/

 Directions.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v)

 {

 startActivity(new Intent(ContextManager.this,

ChooseTransportMode.class));

 }

 });

/**********************End of showing Direction for mobili-

ty***/

//

/////////////////

/* *****************************Stop Tim-

ers!***/

 StopAlarm.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 TimersAreRunning="false";

 stoptimertask();

 stoptimertaskServices();

 stoptimerShortcuts();

 }

 });

/**********************End of Timer for weekly most used applications mod-

ule***/

 }

/***End OnCreate

***/

///***Start OnPause

***/

// @Override

// protected void onPause() {

//

// super.onPause();

// }

///***End OnPause

***/

//

///***Start OnResume

***/

// @Override

// protected void onResume() {

// super.onResume();

// }

//

///***End OnResume

***/

 /************************************Assisting func-

tions****************************/

 -101-

//////////////////////Here we are checking the

time////////////////////////////////

 public static String checktime(Long time) throws ParseException {

 //Checking whether the timestamp is on home or work based on fixed

values. (We exclude Weekends because they affect the reliability of the sam-

ple)

 //Start Time

 Date inTime = new SimpleDateFormat("HH:mm:ss").parse("09:00:00");

 Calendar calendar1 = Calendar.getInstance();

 calendar1.setTime(inTime);

 //End Time

 Date finTime = new SimpleDateFormat("HH:mm:ss").parse("18:00:00");

 Calendar calendar2 = Calendar.getInstance();

 calendar2.setTime(finTime);

 //Current Time

 String timeLog2 = new SimpleDateFormat("EEEE").format(time);

 String timeLog = new SimpleDateFormat("HH:mm:ss").format(time);

 Date checkTime = new SimpleDateFormat("HH:mm:ss").parse(timeLog);

 Calendar calendar3 = Calendar.getInstance();

 calendar3.setTime(checkTime);

 Date actualTime = calendar3.getTime();

 if (timeLog2.matches("Saturday|Sunday")) {

// Log.d(TAG_SERVICE, "Nothing");

 return "Nothing";

 } else {

 if (actualTime.after(calendar1.getTime()) && actual-

Time.before(calendar2.getTime())) {

// Log.d(TAG_SERVICE, "Work");

 return "Work";

 } else {

// Log.d(TAG_SERVICE, "Home");

 return "Home";

 }

 }

 }

//////////////////////Here we are checking the distance between two

points/////////////////////////

 public static double distance(double lat1, double lat2, double lon1,

 double lon2, double el1, double el2) {

 final int R = 6371; // Radius of the earth

 //Wg84 and this is a function that calculates coordinates to meters

 Double latDistance = Math.toRadians(lat2 - lat1);

 Double lonDistance = Math.toRadians(lon2 - lon1);

 Double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)

 + Math.cos(Math.toRadians(lat1)) *

Math.cos(Math.toRadians(lat2))

 * Math.sin(lonDistance / 2) * Math.sin(lonDistance / 2);

 Double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

 double distance = R * c * 1000; // convert to meters

 double height = el1 - el2;

 distance = Math.pow(distance, 2) + Math.pow(height, 2);

 return Math.sqrt(distance);

 }

//////////////////////////////Add delete shortcut applica-

tions//////////////////////////////

 public void addShortcut()

 {

 Log.d(TAG, "Adding Shorcuts");

 //Adding shortcut for MainActivity

 //on Home screen

 Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);

-102-

 mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);

 final PackageManager pm = getPackageManager();

 List<ResolveInfo> appList = pm.queryIntentActivities(mainIntent, 0);

 Collections.sort(appList, new ResolveInfo.DisplayNameComparator(pm));

 Newapp=dbHelper.GetAllApplications();

 if(!Newapp.equals(null))

 {

 for (ResolveInfo temp : appList) {

 for (int i = 0; i < 3; i++) {

 if

(temp.activityInfo.packageName.equals(Newapp.get(i).getApplicationPackageName(

))) {

 Intent shortcut = new In-

tent("com.android.launcher.action.INSTALL_SHORTCUT");

 // Shortcut name

 shortcut.putExtra(Intent.EXTRA_SHORTCUT_NAME,

temp.loadLabel(pm).toString());

 shortcut.putExtra("duplicate", true); // Just create once

 // Setup current activity shoud be shortcut object

 ComponentName comp = new Component-

Name(temp.activityInfo.packageName, temp.activityInfo.name);

 shortcut.putExtra(Intent.EXTRA_SHORTCUT_INTENT, new In-

tent(Intent.ACTION_MAIN).setComponent(comp));

 Drawable d = temp.loadIcon(pm);

 Bitmap bitmap = ((BitmapDrawable) d).getBitmap();

 shortcut.putExtra(Intent.EXTRA_SHORTCUT_ICON, bitmap);

 sendBroadcast(shortcut);

 }

 }

 }

 }

 }

 public void removeShortcut() {

 Log.d(TAG, "Deleting Shorcuts");

 //Deleting shortcut for MainActivity on Home screen

 Intent mainIntent = new Intent(Intent.ACTION_MAIN, null);

 mainIntent.addCategory(Intent.CATEGORY_LAUNCHER);

 final PackageManager pm = getPackageManager();

 List<ResolveInfo> appList = pm.queryIntentActivities(mainIntent, 0);

 Collections.sort(appList, new ResolveInfo.DisplayNameComparator(pm));

 Newapp = dbHelper.GetAllApplications();

 if (!Newapp.equals(null)) {

 for (ResolveInfo temp : appList) {

 for (int i = 0; i < 3; i++) {

 if

(temp.activityInfo.packageName.equals(Newapp.get(i).getApplicationPackageName(

))) {

 Intent shortcut = new In-

tent("com.android.launcher.action.UNINSTALL_SHORTCUT");

 shortcut.putExtra(Intent.EXTRA_SHORTCUT_NAME,

temp.loadLabel(pm).toString());

 String appClass = temp.activityInfo.packageName + "."

+ temp.activityInfo.name;

 ComponentName comp = new Component-

Name(temp.activityInfo.packageName, appClass);

 shortcut.putExtra(Intent.EXTRA_SHORTCUT_INTENT, new

Intent(Intent.ACTION_MAIN).setComponent(comp));

 sendBroadcast(shortcut);

 -103-

 }

 }

 }

 }

 }

//////////////////////////////// Add delete contacts

shortuts//////////////////////////////

 private void AddContactShortcut() {

 Log.d(TAG, "Adding Contact Shorcuts");

 DBHelper dbHelper= new DBHelper(this);

 List<CallObject> tester= new ArrayList<CallObject>();

 String checker= null;

 try {

 checker = checktime(System.currentTimeMillis());

 } catch (ParseException e) {

 e.printStackTrace();

 }

 if (checker.equals("Work"))

 {

 tester= dbHelper.GetTopThreeCallers();

 }

 else{

 tester= dbHelper.GetTopThreeCallersAfterWork();

 }

 for (int i=0; i<tester.size();i++) {

 if (!tester.get(i).getcallname().equals("Unknown")) {

 Log.d(TAG, tester.get(i).getcallname());

 Log.d(TAG, tester.get(i).getphnumber().toString());

 Intent shortCutInt = new Intent(Intent.ACTION_DIAL);

 shortCutInt.setData(Uri.parse("tel:" + test-

er.get(i).getphnumber().toString()));

 shortCutInt.putExtra("duplicate", true); // Just create once

 Intent addInt = new Intent();

 addInt.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortCutInt);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_NAME, test-

er.get(i).getcallname().toString());

 Bitmap bitmap = retrieveContactPhoto(getApplicationContext(),

tester.get(i).getphnumber().toString());

 Drawable myDrawable =

getResources().getDrawable(R.drawable.phone);

 Bitmap myLogo = ((BitmapDrawable) myDrawable).getBitmap();

 if (bitmap == null) {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,

 Intent.ShortcutIconResource.fromContext(this,

R.drawable.phone));

 } else {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, over-

lay(myLogo,bitmap));

 }

addInt.setAction("com.android.launcher.action.INSTALL_SHORTCUT");

 sendBroadcast(addInt);

 }

 }

 }

 private void RemoveContactShortcut(){

 DBHelper dbHelper= new DBHelper(this);

 List<CallObject> tester= new ArrayList<CallObject>();

 tester= dbHelper.GetTopThreeCallers();

 for (int i=0; i<tester.size();i++) {

-104-

 if (!tester.get(i).getcallname().equals("Unknown"))

 {

 Intent shortCutInt = new Intent(Intent.ACTION_DIAL);

 shortCutInt.setData(Uri.parse("tel:" + test-

er.get(i).getphnumber().toString()));

 Intent removeshortcut = new Intent();

 removeshortcut.putExtra(Intent.EXTRA_SHORTCUT_INTENT,

shortCutInt);

 removeshortcut.putExtra(Intent.EXTRA_SHORTCUT_NAME, test-

er.get(i).getcallname().toString());

 re-

moveshortcut.setAction("com.android.launcher.action.UNINSTALL_SHORTCUT");

 sendBroadcast(removeshortcut);

 }

 }

 }

//////////////////////////////// Add delete whatup

shortuts//////////////////////////////

 private void AddWhatsShortcuts(){

 Log.d(TAG, "Adding WhatsApp Shorcuts");

 DBHelper dbHelper= new DBHelper(this);

 List<CallObject> tester= new ArrayList<CallObject>();

 tester= dbHelper.GetTopThreeCallers();

 Drawable AppIcon = null;

 boolean installed = appInstalledOrNot("com.whatsapp");

 if (installed) {

 try {

 AppIcon = getPackageManag-

er().getApplicationIcon("com.whatsapp");

 } catch (PackageManager.NameNotFoundException e) {

 e.printStackTrace();

 }

 Bitmap Appbitmap = ((BitmapDrawable) AppIcon).getBitmap();

 for (int i = 0; i < tester.size(); i++) {

 if (!tester.get(i).getcallname().equals("Unknown")) {

 Cursor c = getContentResolv-

er().query(ContactsContract.Data.CONTENT_URI,

 new String[]{ContactsContract.Contacts.Data._ID},

ContactsContract.Data.DATA1 + "=?",

 new String[]{tester.get(i).getphnumber() +

"@s.whatsapp.net"}, null);

 c.moveToFirst();

 if (c.getCount() != 0) {

 Intent whatupsintent = new Intent(Intent.ACTION_VIEW,

Uri.parse("content://com.android.contacts/data/" + c.getString(0)));

 Intent addInt = new Intent();

 addInt.putExtra("duplicate", false);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_INTENT, whatup-

sintent);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_NAME, test-

er.get(i).getcallname().toString());

 Bitmap bitmap = retrieveContactPho-

to(getApplicationContext(), tester.get(i).getphnumber().toString());

 if (bitmap == null) {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, Ap-

pbitmap);

 } else {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, over-

lay(Appbitmap, bitmap));

 }

addInt.setAction("com.android.launcher.action.INSTALL_SHORTCUT");

 sendBroadcast(addInt);

 -105-

 }

 c.close();

 }

 }

 }

 }

 private void RemoveWhatsShortcuts(){

 DBHelper dbHelper= new DBHelper(this);

 List<CallObject> tester= new ArrayList<CallObject>();

 tester= dbHelper.GetAllCalls();

 Drawable AppIcon = null;

 try {

 AppIcon = getPackageManager().getApplicationIcon("com.whatsapp");

 } catch (PackageManager.NameNotFoundException e) {

 e.printStackTrace();

 }

 Bitmap Appbitmap = ((BitmapDrawable)AppIcon).getBitmap();

 for (int i=0; i<tester.size();i++) {

 if (!tester.get(i).getcallname().equals("Unknown"))

 {

 Cursor c = getContentResolv-

er().query(ContactsContract.Data.CONTENT_URI,

 new String[]{ContactsContract.Contacts.Data._ID}, Con-

tactsContract.Data.DATA1 + "=?",

 new String[]{tester.get(i).getphnumber() +

"@s.whatsapp.net"}, null);

 c.moveToFirst();

 if (c.getCount()!=0)

 {

 Intent whatupsintent = new Intent(Intent.ACTION_VIEW,

Uri.parse("content://com.android.contacts/data/" + c.getString(0)));

 Intent addInt = new Intent();

 addInt.putExtra(Intent.EXTRA_SHORTCUT_INTENT, whatupsin-

tent);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_NAME, test-

er.get(i).getcallname().toString());

 Bitmap bitmap = retrieveContactPho-

to(getApplicationContext(), tester.get(i).getphnumber().toString());

 if (bitmap == null) {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, Appbit-

map);

 } else {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, over-

lay(Appbitmap,bitmap));

 }

addInt.setAction("com.android.launcher.action.UNINSTALL_SHORTCUT");

 sendBroadcast(addInt);

 }

 c.close();

 }

 }

 }

//////////////////////////////// Add delete Hangouts

shortuts//////////////////////////////

 private void AddSMSShortcuts() {

 Log.d(TAG, "Adding SMS Shorcuts");

 DBHelper dbHelper = new DBHelper(this);

 List<SmsObject> tester = new ArrayList<SmsObject>();

 tester = dbHelper.GetMostThreeSMS();

 Drawable AppIcon = null;

 boolean installed = appInstalledOrNot("com.google.android.talk");

 if (installed) {

 try {

-106-

 AppIcon = getPackageManag-

er().getApplicationIcon("com.google.android.talk");

 } catch (PackageManager.NameNotFoundException e) {

 e.printStackTrace();

 }

 Bitmap Appbitmap = ((BitmapDrawable) AppIcon).getBitmap();

 for (int i = 0; i < tester.size(); i++) {

 if (!tester.get(i).getPerson().equals("Unknown")) {

 Intent smsIntent = new Intent(Intent.ACTION_VIEW);

 smsIntent.setType("vnd.android-dir/mms-sms");

 smsIntent.setData(Uri.parse("sms:" + test-

er.get(i).getaddress()));

 Intent addInt = new Intent();

 addInt.putExtra("duplicate", true);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_INTENT, smsIntent);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_NAME, test-

er.get(i).getPerson().toString());

 Bitmap bitmap = retrieveContactPho-

to(getApplicationContext(), tester.get(i).getaddress().toString());

 if (bitmap == null) {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, Appbit-

map);

 } else {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, over-

lay(Appbitmap, bitmap));

 }

addInt.setAction("com.android.launcher.action.INSTALL_SHORTCUT");

 sendBroadcast(addInt);

 }

 }

 }

 }

 private void RemoveSMSShortcuts() {

 DBHelper dbHelper= new DBHelper(this);

 List<CallObject> tester= new ArrayList<CallObject>();

 tester= dbHelper.GetTopThreeCallers();

 Drawable AppIcon = null;

 boolean installed = appInstalledOrNot("com.google.android.talk");

 if (installed) {

 try {

 AppIcon = getPackageManag-

er().getApplicationIcon("com.google.android.talk");

 } catch (PackageManager.NameNotFoundException e) {

 e.printStackTrace();

 }

 Bitmap Appbitmap = ((BitmapDrawable) AppIcon).getBitmap();

 for (int i = 0; i < tester.size(); i++) {

 if (!tester.get(i).getcallname().equals("Unknown")) {

 Intent smsIntent = new Intent(Intent.ACTION_VIEW);

 smsIntent.setType("vnd.android-dir/mms-sms");

 smsIntent.setData(Uri.parse("sms:" + test-

er.get(i).getphnumber()));

 Intent addInt = new Intent();

 addInt.putExtra(Intent.EXTRA_SHORTCUT_INTENT, smsIntent);

 addInt.putExtra(Intent.EXTRA_SHORTCUT_NAME, test-

er.get(i).getcallname().toString());

 Bitmap bitmap = retrieveContactPho-

to(getApplicationContext(), tester.get(i).getphnumber().toString());

 -107-

 if (bitmap == null) {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, Appbit-

map);

 } else {

 addInt.putExtra(Intent.EXTRA_SHORTCUT_ICON, over-

lay(Appbitmap, bitmap));

 }

addInt.setAction("com.android.launcher.action.UNINSTALL_SHORTCUT");

 sendBroadcast(addInt);

 }

 }

 }

 }

////////////////////////////////Find the contact photo from the call num-

ber/////////////////////////

 public static Bitmap retrieveContactPhoto(Context context, String number)

{

 ContentResolver contentResolver = context.getContentResolver();

 String contactId = null;

 Uri uri =

Uri.withAppendedPath(ContactsContract.PhoneLookup.CONTENT_FILTER_URI,

Uri.encode(number));

 String[] projection = new

String[]{ContactsContract.PhoneLookup.DISPLAY_NAME, ContactsCon-

tract.PhoneLookup._ID};

 Cursor cursor =

 contentResolver.query(

 uri,

 projection,

 null,

 null,

 null);

 if (cursor != null) {

 while (cursor.moveToNext()) {

 contactId = cur-

sor.getString(cursor.getColumnIndexOrThrow(ContactsContract.PhoneLookup._ID));

 }

 cursor.close();

 }

 Bitmap photo = null;

 try {

 InputStream inputStream = ContactsCon-

tract.Contacts.openContactPhotoInputStream(context.getContentResolver(),

 ContentU-

ris.withAppendedId(ContactsContract.Contacts.CONTENT_URI, new

Long(contactId)));

 if (inputStream != null) {

 photo = BitmapFactory.decodeStream(inputStream);

 assert inputStream != null;

 inputStream.close();

 }else

 {

 photo=null;

 }

 } catch (IOException e) {

-108-

 e.printStackTrace();

 }

 if (photo!=null) {

 Bitmap circleBitmap = photo.createBitmap(photo.getWidth(), pho-

to.getHeight(), Bitmap.Config.ARGB_8888);

 BitmapShader shader = new BitmapShader(photo,

Shader.TileMode.CLAMP, Shader.TileMode.CLAMP);

 Paint paint = new Paint();

 paint.setShader(shader);

 paint.setAntiAlias(true);

 Canvas c = new Canvas(circleBitmap);

 c.drawCircle(photo.getWidth() / 2, photo.getHeight() / 2, pho-

to.getWidth() / 2, paint);

 return circleBitmap;

 }

 else

 return photo;

 }

 // Merge the application icon with the contact photo

 public static Bitmap overlay(Bitmap bmp1, Bitmap bmp2) {

 Bitmap bmOverlay = Bitmap.createBitmap(bmp1.getWidth(),

bmp1.getHeight(), bmp1.getConfig());

 Canvas canvas = new Canvas(bmOverlay);

 canvas.drawBitmap(bmp1, new Matrix(), null);

 canvas.drawBitmap(bmp2, 0, 0, null);

 return bmOverlay;

 }

////////Timer for weekly repeated applications' shortcuts install-

ment.//////////////////////////////

 public void startTimer() throws ParseException {

 // get start of this week in milliseconds

 Calendar cal = Calendar.getInstance();

 cal.set(Calendar.HOUR_OF_DAY, 0); // ! clear would not reset the hour

of day !

 cal.clear(Calendar.MINUTE);

 cal.clear(Calendar.SECOND);

 cal.clear(Calendar.MILLISECOND);

 cal.set(Calendar.DAY_OF_WEEK, cal.getFirstDayOfWeek());

 Log.d("Start of this week: ", cal.getTime().toString());

 Date finaldate = cal.getTime();

 int interval = 1000 * 60 *10080;//1440;// 24 hour

 //set a new Timer

 timer = new Timer();

 //initialize the TimerTask's job

 initializeTimerTask();

 //schedule the timer, after the first 10sec the TimerTask will run

every 24 hour

 timer.schedule(timerTask, finaldate, interval); //

 }

 public void stoptimertask() {

 //stop the timer, if it's not already null

 Log.d(TAG, "Stopping timer task");

 if (timer != null)

 {

 timer.cancel();

 timer = null;

 }

 }

 -109-

 public void initializeTimerTask() {

 Log.d(TAG, "initializeTimerTask");

 timerTask = new TimerTask() {

 public void run() {

 //use a handler to run a toast that shows the current

timestamp

 handler.post(new Runnable() {

 public void run()

 {

 removeShortcut();

 addShortcut();

 }

 });

 }

 };

 }

//

////////////////////

 // Check if user is home and the time is 23:57 and mute phone

 public void startTimerServices()

 {

 //set a new Timer

 timerservices = new Timer();

 //initialize the TimerTask's job

 initializeTimerTaskServices();

 //schedule the timer, after the first 10sec the TimerTask will run

every 2,5min

 timerservices.schedule(timerTaskservices, 10000,150000); //

 }

 public void stoptimertaskServices()

 {

 Log.d(TAG, "Stopping timer task Services");

 //stop the timer, if it's not already null

 if (timerservices != null)

 {

 timerservices.cancel();

 timerservices = null;

 }

 }

 public void initializeTimerTaskServices() {

 timerTaskservices = new TimerTask() {

 public void run() {

 //use a handler to run a toast that shows the current

timestamp

 handlerservices.post(new Runnable() {

 public void run()

 {

 //Calendar Service

 startService(new Intent(ContextManager.this, Calendar-

Listener.class));

 //CalendarEvents Service

-110-

 startService(new Intent(ContextManager.this, Calendar-

Service.class));

 ///Application Service

 startService(new Intent(ContextManager.this, Applica-

tionListener.class));

 /**********************Rule number 2- Check if user is

home and midnight***/

 SharedPreferences check = PreferenceManag-

er.getDefaultSharedPreferences(getApplicationContext());

 String Checker= check.getString("CheckHome", "");

 Calendar currTime = Calendar.getInstance();

 Log.d("ContextManager Outside",Checker);

 int hour = currTime.get(Calendar.HOUR_OF_DAY);

 int minute = currTime.get(Calendar.MINUTE);

 // 0 ==work ,1== home

 if ((Checker.equals("1")) && (hour==23) && (mi-

nute>57))

 {

 /***********************************Here we imple-

ment the walking service**************************/

 stopService(new Intent(ContextManager.this, Walk-

ingService.class));

 /***********************************End of the

walking service**************************/

 AudioManager mAudioManager = (AudioManager) get-

SystemService(Context.AUDIO_SERVICE);

 mAudioManag-

er.setVibrateSetting(AudioManager.VIBRATE_TYPE_RINGER, AudioManag-

er.VIBRATE_SETTING_OFF);

 mAudioManag-

er.setRingerMode(AudioManager.RINGER_MODE_SILENT);

 Log.d("ContextManager Inside",Checker);

 }

 /**********************End of Rule number 2- Check if

user is home and midnight***/

 }

 });

 }

 };

 }

//

////////////////////

// For adding or removing contact shortcuts

 public void startTimerShortcuts() throws ParseException {

 Log.d(TAG, "Entering timer task Shortcuts");

 //set a new Timer

 timerservicesShortcuts = new Timer();

 //initialize the TimerTask's job

 initializeTimerShortcuts();

 //schedule the timer, after the first 10sec the TimerTask will run

every 2,5min

 timerservicesShortcuts.schedule(timerTaskservicesShortcuts,

10000,150000); //

}

 public void stoptimerShortcuts() {

 -111-

 //stop the timer, if it's not already null

 if (timerservicesShortcuts != null)

 {

 timerservicesShortcuts.cancel();

 timerservicesShortcuts = null;

 }

 }

 public void initializeTimerShortcuts() {

 timerTaskservicesShortcuts = new TimerTask() {

 public void run() {

 //use a handler to run a toast that shows the current

timestamp

 Log.d(TAG, "initializeTimerShortcuts");

 handlerservicesShortcuts.post(new Runnable() {

 public void run()

 {

 try {

 int check-

er=checkcurrenttime(System.currentTimeMillis());

 if (checker==1) {

 AddContactShortcut();

 AddSMSShortcuts();

 AddWhatsShortcuts();

 }

 } catch (ParseException e) {

 e.printStackTrace();

 }

 }

 });

 }

 };

 }

//

////////////////////

 public static int checkcurrenttime(Long time) throws ParseException {

 //End Time

 Date inTime = new SimpleDateFormat("HH:mm:ss").parse("17:15:00");

 Calendar calendar1 = Calendar.getInstance();

 calendar1.setTime(inTime);

 //Current Time

 String timeLog2 = new SimpleDateFormat("EEEE").format(time);

 String timeLog = new SimpleDateFormat("HH:mm:ss").format(time);

 Date checkTime = new SimpleDateFormat("HH:mm:ss").parse(timeLog);

 Calendar calendar3 = Calendar.getInstance();

 calendar3.setTime(checkTime);

 Date actualTime = calendar3.getTime();

 if (actualTime.after(calendar1.getTime())) {return 1;} else {return

0;}

 }

//

-112-

////////////////////

 private boolean appInstalledOrNot(String uri) {

 PackageManager pm = getPackageManager();

 boolean app_installed;

 try {

 pm.getPackageInfo(uri, PackageManager.GET_ACTIVITIES);

 app_installed = true;

 }

 catch (PackageManager.NameNotFoundException e) {

 app_installed = false;

 }

 return app_installed;

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is pre-

sent.

 getMenuInflater().inflate(R.menu.menu_context_manager, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 // Handle action bar item clicks here. The action bar will

 // automatically handle clicks on the Home/Up button, so long

 // as you specify a parent activity in AndroidManifest.xml.

 int id = item.getItemId();

 //noinspection SimplifiableIfStatement

 if (id == R.id.action_settings) {

 return true;

 }

 return super.onOptionsItemSelected(item);

 }

}

