

Memory Forensics and Bitcoin min-
ing malware: Expanding the Volatility

Framework for recovering Bitcoin
keys and addresses from RAM ac-

quired from multiple Operating Sys-
tems

Student Name: Dimotikalis Panagiotis
SID: 3301140003

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

DECEMBER 2015

THESSALONIKI – GREECE

Memory Forensics and Bitcoin mining
malware: Expanding the Volatility

Framework for recovering Bitcoin keys
and addresses from RAM acquired from

multiple Operating Systems

Student Name: Dimotikalis Panagiotis
SID: 3301140003

Supervisor: Prof. Vasilis Katos

Supervising Committee Mem-

bers:

Prof. Vasilis Katos

Dr. Christos Berberidis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

DECEMBER 2015

THESSALONIKI – GREECE

 -iii-

Abstract

Crime in the digital world has become a daily occurrence. Criminals adopt to new tech-

nologies with a faster pace than we are, people defending against new threats, giving them

the advantage against unsuspecting victims. Their advantage is not due to their superior-

ity; Offense has to succeed only once to be considered successful while defence has to

succeed every single time to not be considered a failure.

Defending successfully against multiple threats using innovative technologies is hard and

can only be achieved with careful planning and effective applying of knowledge acquired

by examining those threats. Digital forensics is the epitome of this. Investigators need to

have a firm grasp of up-to-date threats and how to locate and neutralize them. Memory

forensics are the cornerstone of digital forensics. In recent years, memory acquisition and

preservation of the state of a system when suspicious activity is undergoing, is the number

one priority by every digital forensics investigator. To improve the capabilities of the

investigator, in this thesis we examine the current threats associated with malware and

the newly introduced technology of digital currencies, by proposing a series of enhance-

ments to one of the most complete set of tools for memory analysis, the Volatility Frame-

work.

Acknowledgments
I would like to thank my supervisor, Professor Vassilis Katos, for his advice throughout

my thesis and his work as an information security researcher, inspiring me to become one.

Zed Shaw for writing Learn Python the Hard Way book. Mikko Hypponen and Brod

Aquilino of F-Secure, for providing malware samples for my research. Matt Suiche, for

giving away for free a copy of MoonSols Memory Toolkit Pro. My parents for supporting

me in every step of the way. Finally, I want to thank Emilie for believing in me, without

you this would never have happened.

Dimotikalis Panagiotis

Date: 11/12/2015

 -iv-

Contents

Abstract .. iii	

Contents .. iv	

1	 Chapter 1 - Introduction ..1	

1.1	 BACKGROUND ..1	

1.2	 PROBLEM STATEMENT ..1	

1.3	 RESEARCH QUESTION ...4	

1.4	 METHODOLOGY: DESIGNING A VOLATILITY FRAMEWORK PLUGIN5	

1.5	 THESIS OUTLINE ..6	

2	 Chapter 2 – Literature Review ..7	

2.1	 DIGITAL CURRENCIES ...7	

2.1.1	 Definition and functionality ...7	

2.1.2	 Types of Digital Currencies ..10	

2.1.3	 Present Status ..11	

2.2	 BITCOIN MALWARE ..12	

2.2.1	 Definition ...12	

2.2.2	 Types of Malware ..13	

2.2.3	 Evolution and Present Status ...14	

2.3	 MEMORY FORENSICS ..15	

2.3.1	 Forensic Tools ...15	

2.3.2	 Importance of Memory Forensics ..17	

3	 Chapter 3 - The Volatility Framework ...19	

3.1	 DEFINITION ..19	

3.2	 BRIEF HISTORY AND OVERVIEW ..19	

3.3	 STRUCTURE AND FUNCTIONALITY ..21	

3.4	 EXISTING PLUGINS ..32	

3.5	 PLUGIN CASE STUDIES ..34	

3.5.1	 Windows ..34	

3.5.2	 Linux ...41	

 -v-

3.5.3	 OS X ...46	

3.6	 BITCOIN MALWARE CASE STUDY ...50	

3.7	 INSTALLATION AND SETTING UP A TEST ENVIRONMENT53	

3.7.1	 Memory Dumps ...56	

4	 Chapter 4 - Design and Development of a Volatility Framework Plugin62	

4.1	 SETTING UP THE TEST BED ..62	

4.1.1	 Operating Systems and Platforms ..62	

4.1.2	 Hardware Requirements ...67	

4.1.3	 Software Requirements ...68	

4.2	 A BITCOIN PLUGIN FOR THE VOLATILITY FRAMEWORK70	

5	 Chapter 5 - Evaluation of the proposed plugin ..73	

5.1	 ANALYSIS OF THE CODE ..73	

5.2	 CASE STUDY AND EVALUATION OF THE PLUGIN ...77	

5.3	 STRONG AND WEAK POINTS OF THE IMPLEMENTATION79	

6	 Chapter 6 - Conclusions ...81	

6.1	 SUMMARY ..81	

6.2	 CONTRIBUTION ..82	

6.3	 FUTURE DEVELOPMENT ..82	

7	 Bibliography ..83	

8	 Appendix A ..88	

	

-1-

1 Chapter 1 - Introduction

1.1 Background

This chapter will introduce the current trends in malware technologies, cybercrime eco-

nomics and digital currencies, the fight against cybercrime and the important role of dig-

ital forensics and malware analysis in this struggle.

1.2 Problem Statement

Cybercrime is an ever-growing economy all over the world. Intel Corporation in 2014

estimated that the annual cost of cybercrime to the global economy is more than $400

billion [1], while other estimates claim losses of $575 billion or even a trillion US dollars

annually [2][3]. To top this, many organizations and companies that are victims of such

activity simply choose not to report cybercrimes to the authorities or the government, due

to the nature of the crime and due to the fact that they do not know how this information

is going to be used and interpreted by third parties; Doing so would most probably result

in hurting their reputation and creating a notion of betrayal to their customers trust, thus

leading to more economic damages. Since they have the option to keep the information

to themselves and move on, they choose this solution in hope that they can survive the

possible financial loss and resulting in the wide margin of the estimate losses mentioned

earlier.

To make things worse, cybercriminals were introduced in their mischievous efforts to an

unexpected ally; a solution to monetize their efforts in the most anonymous ways possi-

ble, digital currencies [4]. Although Bitcoin and other digital currencies were not invented

in an effort to help and endorse such kind of behaviour, cyber crime is one of their top

uses. Their high anonymity level and the almost non existing paper and digital trail they

provide, resulted in cyber crime being one of their top uses. Moreover, automation and

-2-

luck of need of human interaction for transactions involving digital currencies have re-

sulted in the rise of software that tries to exploit this king of behaviour [5] [6]; Malware

that occupies ones device usually without her knowledge in order to produce a digital

currency or even worse, tries to steal digital currencies already residing on the device.

According to a report from Trend Micro [7], a security and antivirus company, in 2013

there was a rise of Bitcoin related malware in almost all major countries worldwide, with

Japan and United States leading in infections rate as shown above. More recently sophis-

ticated software known as ransomware, upon infection encrypts the files of the user and

requests to be paid a bitcoin ransom within a matter of days in order for the user to gain

back access to his encrypted files [8] [9].

Fortunately, security and antivirus companies like Trend Micro are doing their best in

order to protect users, either via specialized software like antivirus and antimalware, ei-

ther via sharing vital information on how to prevent and remove malicious software.

However, the creators of said software, like in a cat and mouse game, are also trying to

evolve their software in order to avoid being detected by antimalware solutions, making

it really hard for victims to avoid paying [10] or both. This leads to rapid evolution of

software from both perspectives, making it quite hard for an individual to keep up with

all the techniques involved in fighting and creating advanced malware.

 -3-

One can safely assume that sophisticated malware was not always the case. One of the

first viruses, the Morris Worm [11] in November 1988, although exploiting vulnerabili-

ties in Unix sendmail, finger and exec software, did not actually take advantage of its

success, since -according to its creator- its only purpose was to figure out how many

devices were connected to the Internet by then, it was easy to stop and its source code is

a couple of hundred lines [12] only. It was In another case, according to a Microsoft

report [13] one of the most well know cases of malware, the LoveLetter virus in 2000

relied on social engineering techniques in order to propagate itself further; the user had

to manually open a mail attachment which was send to her, which led to code execution

and further spreading of the virus. On the other hand, Code Red in July 2001 did not

require any human interaction for spreading since it was exploiting a bug in Microsoft’s

software, Internet Information Services (IIS). Similarly, SQL Slummer [14] in 2003 re-

lied on a buffer overflow vulnerability existing in Microsoft SQL Server products to prop-

agate itself to almost every vulnerable server around the world within ten minutes upon

its release, resulting to a slowdown of the whole Internet. In more recent years, in 2010

we witnessed one of the most complicated and extremely sophisticated malware that was

ever discovered and probably created as of now; Stuxnet [15] [16]. Stuxnet managed from

tens of thousands of kilometres away to infect its highly specific and well guarded targets,

the computers of a nuclear facility in Iran that were never connected to the Internet, while

managing to remain undetected for enough time to create malfunctions in the program-

mable logic controllers that were responsible for controlling the machinery of the facility,

in a manner that was confusing enough in order to avoid detection by well trained engi-

neers responsible for the well being of the faculty.

When examining a malicious software, in order to fully understand its impact, there are

multiple perspectives that need to taken under consideration. There are the more obvious

ones; the creator of the software or attacker, whose purpose is to infect as many victims

as possible, spread the infection as far as possible, in the least required time. Then, it is

the defender, who is dedicated in stopping the malicious intents of the attacker either by

preventing the original infection or by blocking its further propagation. Finally, the third

perspective is the examiner, referring to the one responsible for finding out how a partic-

ular malware works, documenting its behaviour and providing as many valuable infor-

mation as possible for its neutralization. Usually the defender works in conjunction with

the examiner or in some cases may be the same entity.

-4-

According to Kizza et all [17] “Computer forensics is the application of forensic science

techniques to computer-based material. This involves the extraction, documentation, ex-

amination, preservation, analysis, evaluation, and interpretation of the computer-based

material to provide relevant and valid information as evidence in civil, criminal, admin-

istrative, and other cases”. Although computer forensics ultimate target is the presentation

of evidence in court, in a well documented and scientifically approved manner, the simi-

larities of a computer forensic examiner’s ultimate goal compared to to the defender per-

spective that was mentioned earlier, are more than obvious: the defender acts as a forensic

examiner would, with the only difference being that she –usually- will not have to present

her findings in front of a judge. And as a computer forensic examiner, the defender has

multiple areas of interest when dealing with a particular malware; from the connections

it makes over the internet and the use of resources of the device it occupies to the files it

uses to exploit the operating system and the RAM footprint it has while working in the

background.

1.3 Research Question

In most of the aforementioned malware cases and generally every malware related case,

careful examination of the infected device by specialized personnel will pinpoint the

source of the problem, even in the case of extremely sophisticated malware like Stuxnet.

This is a fact that the creators of the malicious software are aware of and try to counter-

attack by making it harder and harder for investigators to analyse interpret their software

and its behaviour. There are multiple ways to achieve this, one of which is to make the

software have the smallest possible footprint both while operating and after it has fulfilled

its purpose. A reasonable way to achieve such kind of tactics is for the software to fully

operate in RAM and never touch the hard disk or any other parts of the device that might

lead to persistent storage. By fully operating in RAM, apart from being faster, the mal-

ware will be erased by simply turning off the device, leaving no traces to be found.

The aim of this master thesis is to study and develop a way to examine traces of Bitcoin

related malware that tries to implemented this scenario. More specifically, the creation of

a plugin for an already acknowledged software in the computer forensics community, the

Volatility Forensic Framework, will be introduced, in order to expand its capabilities for

 -5-

the newly appeared Bitcoin malware family. Moreover, the behaviour of various types of

Bitcoin related malware will be examined, along with proposed ways of confronting them

in multiple operating systems.

1.4 Methodology: Designing a Volatility Framework
Plugin

In order to achieve a thorough understanding of how the Bitcoin malware family operates

and be able to counterattack it, a detailed Literature Review will take place, regarding

malware in general and in more details malware related to Bitcoin and other digital cur-

rencies. Techniques of malware creation, propagation and avoidance of detection will be

examined and more specifically those that are related to RAM will be put under scrutiny.

Related malware samples for all major operating systems will be acquired via multiple

sources like security companies (F-Secure, Symantec, etc.) or sites dedicated to malware

analysis and malware samples like virusshare.com, http://vxheaven.org and

http://openmalware.org.

In addition, the functionality of Bitcoin, the technology behind it, the network infrastruc-

ture and the Bitcoin users operate, are going to be researched for us to be able to have a

deep understanding of how a malware that tries monetize by taking advantage of Bitcoin.

Alternative currencies and their structure will also be taken under consideration.

More over, the Volatility Forensic Framework will be thoroughly studied via its official

guide written by its creators [18], books closely related to malware analysis [19] [20] and

multiple presentations of other researchers in conferences around the world [21] [22]

[23][24], in order to make sure that a deep understanding of its inner workings is at hand

and a useful plugin can be created, following their guides. Plugins of the framework writ-

ten by other users will be examined, while focusing specifically to those related to mal-

ware activity for every major operating system.

Multiple Test Beds will be created and used in order to test Bitcoin related malware to

various conditions and operating systems, study their behaviour which will ultimately

lead to valuable assumptions about their operation and ways to detect them. Linux and

OSX will serve as hosts for multiple Virtual Machines running on top of them and having

as guests at least two versions of each major operating system being in use today, with

-6-

multiple snapshots for every one of them, in various stages of their infection and opera-

tions in order to collect as much information as possible regarding the behaviour of

Bitcoin malware. Along with the Virtual Machines Snapshots, a number of memory

dumps will be acquired which will be analysed using the Volatility Forensic Framework.

The proposed plugin will be heavily depended on the data acquired in the previous step.

Relations and common patterns in the analysis of all the malware samples used will help

the implementation. Python related literature [25] [26] will help overcome any difficulties

that may arise.

Finally, the evaluation of the plugin will be tested using the Test Beds mentioned earlier.

Weaknesses and strong points will be pointed out and suggestions for further develop-

ment based on the experience acquired will be proposed.

1.5 Thesis outline

Each chapter of the dissertation and its contents will be outlined in order to provide the

reader with a clear perspective and holistic view of the subject.

-7-

2 Chapter 2 – Literature Review

This chapter is dedicated to a thorough literature review related to the evolution of mal-

ware, digital currencies and more specifically Bitcoin, the Volatility Memory Forensics

Framework and its plugins. An examination of the most significant books, research pa-

pers, major conference presentations and hands-on trainings was performed in order to

gain an insight on the past and current trends of said technologies and their applications.

The most significant findings are presented next.

2.1 Digital Currencies

In 2008 a paper written by Satoshi Nakamoto [27], a alias of an as of yet unknown person,

introduced the idea of a peer-to-peer electronic currency that would allow transactions

from one party to another without the need of a 3rd party financial institution taking veri-

fying said transaction. However, this introduces a problem; Without the existence of a

trusted 3rd party one or both ends of the transaction parties may double spend their funds.

Nakamoto’s proposed solution is the hashing of all transaction that are time stamped and

verified by the network and then saved in an ongoing hash-based proof-of-work record

that cannot be alternated. This electronic currency was named Bitcoin and was released

as an open source software less than a year after the paper was published[28].

2.1.1 Definition and functionality

Bitcoin is the cornerstone of a series of technologies that are encapsulated into it. Its

foundation is pure mathematics. Cryptography and computer networks are of great usage

for Bitcoin. To make it clear of how Bitcoin works we will introduce an example of two

users, Alice and Bob who would like to make a transaction.

-8-

Alice wants to transfer some Bitcoins to Bob, either because she bought something from

him or she owns him some money. The main condition is that Alice has to make sure that

Bob can accept Bitcoins, meaning that he has the appropriate means to do so. What Alice

does when she sends Bob some Bitcoins, is sending him a series of numbers that have

some certain mathematical attributes that make them hard to track, considering that there

may be a malicious user, Eve, that wants to defraud the system in a number of ways, like

as mentioned previously, double spending. This transaction like every other transaction

is verified by the Bitcoin network, creating a permanent record binding it to the digital

signature of Alice, a unique attribute given to every Bitcoin user in the network. For Alice

to achieve the transaction she either has to use a special software called a Bitcoin client

or use a service that can deal with the mechanics of the transaction (i.e. produce those

numbers Alice will send) for her. From Bob’s perspective, he too has to meet the same

conditions; He has to have a Bitcoin client or use a service that will deal with Bitcoin

transactions on his behalf.

One might wonder what Bob can do with the Bitcoins he receives from Alice. The obvi-

ous answer is that he can use them in order to acquire products or services from users or

companies that they also accept Bitcoins. The other option is to exchange them for a

physical currency of his choice via Bitcoin exchange services123. The value of a Bitcoin

fluctuates in any given time, with the current rate being at 389 US Dollars at the time this

lines were written. As stated earlier, Bitcoin transactions have some unique attributes

when compared to transactions made with physical currency and these attributes may be

the reason someone would want to use Bitcoin[29].

• Absence of 3rd party financial institution or services. It can lead to an increase of

cost per transaction and add time consuming activities

• Privacy. Bitcoin transactions are pseudo anonymous4 and private. Users making

a transaction are certain that no other party can verify reliably that a transaction

has taken place amongst them.

• Open source. Everyone can engage in Bitcoins transactions without the need of

verification from 3rd parties (i.e. a bank) or knowledge of specific technical de-

tails.

1 https://www.coinbase.com/
2 https://www.kraken.com/
3 https://www.bitstamp.net/
4 http://www.coindesk.com/how-anonymous-is-bitcoin/

 -9-

• Bitcoin is decentralized. When Alice sends Bob a Bitcoin, the transactions does

not go through a 3rd party. As a result, there is no entity that can control the money

supply or can seize the assets of a user or even reverse a transaction that has al-

ready taken place.

While decentralization may seem to have some disadvantages due to the absence of fi-

nancial institutions that provide the security and verification of every transaction, this

functionality is provided via the hash-based proof of work record that is shared via the

peer-to-peer Bitcoin network.

Figure 2-1, Bitcoin transactions verification schema [27]

One important part of the Bitcoin network and generally the whole ecosystem are the

miners. Those are the users that participate in the network by providing computer power

that is used in order to verify the unique attributes of every transaction that is being made

and after validating that they are indeed legitimate, store the records of said transaction

to the permanent record distributed to everyone which is called a transaction block. While

validating transactions, miners will also add a record of their work, a proof of work, the

verification of each transaction they achieved, which will result to a reward for them for

-10-

all the work they provided. Moreover, miners will add to the transaction block an encod-

ing of the previous valid transaction so as to achieve a level of continuity for the whole

record shared by everyone in the network.

2.1.2 Types of Digital Currencies

Since the introduction of Bitcoin in 2009, thanks to its open source nature and the en-

dorsement of its developer for creating forks5 of its source code a number of alternative

digital currencies have emerged, all based on the same principles.

• Litecoin6. A digital currency similar to Bitcoin developed in 2011 by Charles Lee,

a former Google engineer [30]. The major difference from Bitcoin in the hashing

algorithm implemented for the verification of the transactions. The exchange rate

at the time this lines were written was 3.3 US Dollars to 1 Litecoin

• Darkcoin7. Created in 2013, its main focus is anonymity. As mentioned earlier,

Bitcoin is pseudo anonymous and Darkcoin by mixing up transaction records and

not providing the continuity used in Bitcoin, makes it harder to track the parties

involved[31]. The exchange rate at the time these lines were written was 2.44 US

Dollars to 1 Darkcoin.

• Dogecoin8. Introduced in 2013 and according to its creator Billy Markus its main

purpose being the introduction of a digital currency with greater demographic that

Bitcoin. As a result, while also using the same principles of Bitcoin, contrary to

its predecessor and the cap of total Bitcoins that will ever be produced set to

twenty-one million, Dogecoin has already more than 100 billion coins into circu-

lation with more than 5 billion added each year. Due to this, the exchange rate at

the time this lines were written was 0.13 US Dollars to 1000 Dogecoins.

5 https://help.github.com/articles/fork-a-repo/
6 https://litecoin.org/
7 https://bitcointalk.org/index.php?topic=421615.0
8 http://dogesilo.dogecanabank.info/

 -11-

Those are some of the well know digital currencies existing. There is a vast majority of

them, introducing slight changes to the core functions of Bitcoin. As of mid 2015 there is

not a digital currency with deviations to the principles introduced by Satoshi Nakamoto

in his original paper[27] [32].

2.1.3 Present Status

Since 2009 and its introduction, Bitcoin has an increasing popularity, growing bigger by

the day. Started by basically having no value in 2009 and an exchange rate of one US

cent per Bitcoin in 2010, it has come to have an average exchange rate of more that 300

US dollars in 2015.

Figure 2-2, Bitcoin exchange rate in US dollars from March 2015 to December 2015

Major companies like Dell9 and services like Paypal10 have adopted Bitcoin as an alter-

native payment method for its tuition fees11, the University of Nicosia is accepting Bitcoin

as a payment method, while blockchain technology is being investigated as a foundation

for financial transactions all over the world[32].

However, like every other technology, Bitcoin due to privacy attributes has risen to be

the preferred way of payment in cyber crimes. From sites selling illegal substances[33],

money laundering[34] to botnets used for illegal mining[5][7] and malware that encrypts

the contents of hard drivers demanding ransom for their decryption[9], Bitcoin is always

present.

9 www.dell.com/bitcoin
10https://www.cryptocoinsnews.com/breaking-paypal-merchants-can-now-accept-
bitcoin/
11 http://www.unic.ac.cy/digitalcurrency

-12-

2.2 Bitcoin Malware

Gaining attraction has always its downsides and Bitcoin is not an exception to this rule.

Since early 2013, when for the first time its exchange rate value was equal to a couple

hundreds of US dollars, criminal activity targeting the Bitcoin ecosystem evolved and

started targeting users of the Bitcoin network[6]. As users along with the vendors of op-

erating systems and security software adapted to this new status quo by implementing a

series of antimalware techniques and by making available information regarding mali-

cious activity related to Bitcoin and how to avoid it, malicious users evolved too; By late

2013 new techniques implementing Bitcoin related malware emerged[9].

2.2.1 Definition

Oxford dictionary defines malware as a “software which is specifically designed to dis-

rupt or damage a computer system”12. Malware related to Bitcoin clearly falls into this

category of malicious software. Although there are not any known cases of computer

systems that were damaged due infections from malware related to Bitcoin, the disruption

of usage is the epitome of any related malware. Since 2013 where the price of Bitcoin

started to rise (see earlier in this chapter13) criminal activity related to Bitcoin is on the

rise and can be divided into two main categories; Illegal mining and ransomware.

12 https://www.oxforddictionaries.com/definition/english/malware
13 Chapter 2, Present Status

 -13-

2.2.2 Types of Malware

Mining was the first practice of the Bitcoin ecosystem targeted by malicious users. Usu-

ally the unsuspected victim would install a software that came with bundled with miner.

The miner would replicate itself into the system, register itself as a service or set a flag to

start on every boot of the system and would mine for Bitcoins. Periodically would connect

to a dedicated command server set by the developer of the malware, report or send the

results of his mining activity and fetch new data for further mining. This would go on as

long as the user did not notice its presence or the remote server was shut down.

There are many variations of this type of activity. For example, the miner is set to occupy

only a maximum percent of the resources of the system he resides, in order to avoid de-

tection for longer periods. The miner can also be setup to update itself daily via a web site

or a server so as to avoid detection of an updated security software or a patched operating

system.

Bitcoin mining on home computers is no longer a profitable activity even if the system is

a state-of-the-art computer. Bitcoin mining has moved on to using dedicated application

specific intergraded circuits (ASICs)14, that exceed by far the power of any computer

system a typical user might operate. Even in the case of a large botnet of thousands of

bots, Bitcoin mining might not be the top priority for a malicious user considering the

value-for-money ratio he can achieve.

However, even though it is well known that illegal home computer mining isn’t worth the

risk, there are still stories of malware related to it, even by legitimate companies who fall

victims of rogue employees bundling miners into legitimate software[35].

Since mining is no longer the case for criminals, a different scheme related to Bitcoin has

emerged in early 2014; Ransomware. A type of malware that encrypts a set of specific

files or in some cases the whole hard drive and afterwards warns the user that she has to

pay a ransom in Bitcoins within a short period of time usually of about 72 hours, in order

to receive the decryption key of her files[9] [36].

These two kinds of Bitcoin malware are mainly targeting Microsoft Windows operating

systems. Despite the fact that Bitcoin clients and Bitcoin miners are available for all three

major operating system platforms (Windows, Linux, OS X), the overwhelming majority

14https://en.bitcoin.it/wiki/ASIC

-14-

of malware is developed for Microsoft’s platform. Although there are recent cases of

miners targeting Linux and OS X or the even more rare ransomware developed for these

two operating systems, the ratio is disproportionally higher on behalf of Windows.

2.2.3 Evolution and Present Status

Unfortunately ransomware malware infections that mostly rely on social engineering15

has proven to be lucrative for the its developers, resulting in more complicated attacks

and updated versions of said malware; According to a research paper by Symantec in

2012 more that 5 million US dollars were extorted by the victims of such kind of malware

in the United States alone[37]. As of late 2015 due to the efficient use of cryptography by

the criminals, ransomware is still one of the most dangerous malware infections.
On the other hand, mining since it is no longer a lucrative business model for the crimi-

nals, has declined in volume, with the news stories like a miner for Linux focusing mostly

on the fact that the miner was developed for a platform other than Windows.

15http://www.csoonline.com/article/2124681/leadership-management/security-aware-
ness-social-engineering-the-basics.html

 -15-

2.3 Memory Forensics

Memory acquisition has evolved to become the first step every forensic investigator and

malware analyst makes when examining a system. When in a criminal investigation case

failure to perform such a step may lead to the dismissal of the case[38]. Memory analysis

is what follows the acquisition; The examination of the memory stored in a non-volatile

manner, preserving evidence of activity present at the system at the time. A series of tools

have been developed for all major operating systems and architectures in order to acquire

and extract everything related to memory from a system. The analysis and interpretation

of data residing on those files can be performed from a series of tools, one of which is the

Volatility Framework, presented in Chapter 3.

2.3.1 Forensic Tools

This is a list of software tools that be used in order to acquire the memory of a system.

The list in not complete and in no particular order, since unlike the state of hard disk

acquisition software, there are no formal specifications that must be complied and thus

be evaluated against them as a memory acquisition software developer. However there is

a research paper regarding by S.Vömel and Stüttgen[39], introducing a platform for the

evaluation of said software.

The main idea behind this type of memory acquisition is loading a module into the kernel

which helps the software map the desired physical addresses of tasks running on the sys-

tem into the virtual address space and then acquire the date from the virtual address space

and store it to a storage device like a hard disk or a memory stick[18].

• Belkasoft Live RAM Caputer 16. A free tool that according to the developer works

in kernel-mode allowing it to bypass proactive anti-debugging protections.

16 http://belkasoft.com/ram-capturer

-16-

• WindowsSCOPE Cyber Forensics17, a memory acquisition suite that can also be

used for analysis.

• mdd18. A memory acquisition tool for imaging Windows based computers offi-

cially supporting Windows versions up to Vista, but is also working on Windows

7.

• Memoryze19. Another free tool that supports capturing and analyzing memory.
According to its developer it does not rely on API calls, allowing it to capture
the full range of memory.

• KnTTools20. A tool for acquiring memory from Windows based systems.
• MoonSols Windows Memory Toolkit21. A toolkit containing all the utilities

needed to perform any kind of memory acquisition or conversion during an inci-
dent response, or a forensic analysis for Windows platforms.

• FTK Imager22. A free tool supporting both x86 and x64 architectures of all ma-
jor operating systems.

• Pmem Memory acquisition suite23. A series of tools for capturing memory from
Windows (WinPmem) , Linux(LinPmem) and OS X (OSXPmem) by using a
signed kernel module/driver in order to acquire the full range of memory of each
system.

• LiME24. According to its developer, “a loadable kernel module (LKM) which al-
lows for volatile memory acquisition from Linux and Linux-based devices, in-
cluding Android”.

• Second Look Professional Edition25. A commercial product dedicated to
memory acquisition from Linux based systems.

• fmem26. Another Linux kernel module, similar to LiME. It must be complied
and loaded to the kernel of the system for memory acquisition. Its development
has stoppen in 2010.

• Goldfish27. A memory acquisition tool over a FireWire connection, for OS X.

In case of virtualisation solutions, memory acquisition is usually provided by the devel-
opers. For example, Qemu and Xen allow the dumping of the contents of memory and
VMware files can be analysed natively by the Volatility Framework.

17 http://www.windowsscope.com/
18 http://sourceforge.net/projects/mdd/
19 https://www.fireeye.com/services/freeware/memoryze.html
20 http://www.gmgsystemsinc.com/knttools/
21 http://www.moonsols.com/windows-memory-toolkit/
22 http://accessdata.com/product-download/?/support/adownloads#FTKImager
23 http://www.rekall-forensic.com/docs/Tools/
24 https://github.com/504ensicslabs/lime
25 https://secondlookforensics.com/linux-incident-response/
26 https://onyx.koli.ch/get/4480/fmem_current.tgz
27 http://digitalfire.ucd.ie/?page_id=430

 -17-

2.3.2 Importance of Memory Forensics

Throughout the history of digital forensics from early ‘80s to this day, there is a notable

shift of thinking regarding the way a forensic investigator must operate when dealing with

a crime scene involving a computer; One of the first steps he was required to take was the

unplugging of the system from the network, in order to disrupt any effort of destroying

digital evidence. This has changed; An investigator is now required to preserve the state

of the system at all costs, in order to acquire as much evidence as possible.

This is a strong indicator that a great deal of system information in a volatile state and

shutting it down or alternating its state like for example disconnecting it from the network

may lead to loss of a huge portion of evidence.

Digital criminal activity has also shifted towards this direction; Advanced malware, like

Stuxnet and Duqu[16][15], are operating in the memory of the system they infect. Per-

forming a memory capture of a system ensures that the entire state of said system along

with all the running applications including all the related data structures and variables is

preserved in a non-volatile storage and can be investigated at will, without the eminent

threat of alternating or loosing evidence.

Apart from malware that may only run in the memory of the system it infects, there is

also the case of traditional malware that despite the fact that it resides on non-volatile

storage it manages to hide its presence by injecting code to monitoring tools. While it

may hide its presence it cannot hide its activity which at some point will rely on the

memory of the system to achieve its goals. A memory capture while the malware operates

will result in a number of indicators revealing its malicious purposes.

In other words, memory acquisition and memory analysis have come to be a crucial part

of digital forensics and rightly so.

3 Chapter 3 - The Volatility
Framework

In this chapter the Volatility Memory Forensics Framework is going to be analysed. A

detailed overview of its features and structure is going to be presented in order for the

reader to acquire an insight of its inner workings, its importance in the field of computer

forensics and the ongoing development it undergoes. Moreover, notable plugins created

by the open source community to expand its functionality are going to be presented. Fi-

nally, details about the test environment that is going to be used for the investigation of

Bitcoin malware infections will be introduced along with software that accompanies this

investigation.

3.1 Definition

The Volatility Framework is a complete collection of open source tools written in Python

[40] [41] under the GNU General Public License for extracting and analysing digital ar-

tifacts from volatile memory (RAM) samples of multiple operating systems, acquired via

3rd party software. This extraction and analysis of the volatile memory is performed sep-

arately of the original system giving the investigator a great advantage considering that

RAM constitutes a crucial and vital part of the runtime of a system [42].

3.2 Brief History and Overview

The Volatility Framework was firstly introduced in 2007, in one of the most important

computer security conferences in the world that was taking pace in Washington DC at the

time [43]. A. Walters and N. Petroni argued about the integral role of volatile memory

analysis in digital forensics investigation process and the advantages it can provide to the

forensics investigator. Moreover, they stressed the point of keeping multiple snapshots of

-20-

RAM and avoid performing a digital investigation on a live target when there are alter-

native solutions arguing that such practice will can alter the state of the device and thus

become an obstacle to the investigation itself. To prove this, they created two virtual ma-

chines and monitored the state of their volatile memories for changes while they were

idle. The results are shown in Table 3-1 that follows.

Table 3-1, Bytes of physical memory that changed as a function of time [43]

Then, they proceeded in introducing Volatools, the software that will later become the

Volatility Framework.

Up until their presentation every digital forensics investigation was focused on artifacts

located on hard disks and other similar, permanent storage type devices. The volatile

memory of the system was not taken under consideration although it almost certainly

contains valuable information about the runtime of this very system and in some cases

like the Stuxnet malware that were mentioned earlier in this thesis or the TrueCrypt en-

cryption suite and its encryption keys, it contains the only artifacts that can lead to a suc-

cessful forensic investigation.

The concept was welcomed by the digital forensics community and the software later to

become the Volatility Framework, was embraced by developers and volunteers around

the world due to its open source nature; It provided a cross-platform, modular and exten-

sible platform that encouraged further work into a field that was making its first steps in

the digital forensics era [41]. Since then, the Volatility Framework has evolved to one of

the most highly used forensic tools and is being developed in a rapid pace with thousands

of code commits. Its core developers have written a book dedicated solely to Volatility

Framework [18], they perform trainings and have founded the Volatility Foundation, a

non profit organization which was established to promote the usage of Volatility, protect

its intellectual properties and help the advancement of memory forensics [41]

 -21-

Figure 3-1, Code commits as shown in github.com, a code repository and the ongoing
development of the Volatility Framework

3.3 Structure and Functionality

The Volatility Framework in not the only memory forensics application. However, its

features make it unique. Some of its core features according to its developers that makes

it an ideal choice when it comes to memory forensics [18]:

• A single, cohesive framework. It can analyze memory snapshots originating from

versions of all major operating systems of today like:

o 64-bit Windows Server 2012 and 2012 R2

o 32-bit and 64-bit Windows 8 and 8.1

o 32-bit and 64-bit Windows 10

o 32- and 64-bit Windows 7 (all service packs)

o 32- and 64-bit Windows Server 2008 (all service packs)

-22-

o 64-bit Windows Server 2008 R2 (all service packs)

o 32- and 64-bit Windows Vista (all service packs)

o 32- and 64-bit Windows Server 2003 (all service packs)

o 32- and 64-bit Windows XP (SP2 and SP3)

o 32- and 64-bit Linux kernels from 2.6.11 to 3.5

o 32-bit 10.5.x Leopard (the only 64-bit 10.5 is Server, which isn't sup-

ported)

o 32- and 64-bit 10.6.x Snow Leopard

o 32- and 64-bit 10.7.x Lion

o 64-bit 10.8.x Mountain Lion (there is no 32-bit version)

o 64-bit 10.9.x Mavericks (there is no 32-bit version)

along with all recent versions of Linux and in addition to memory snapshots of

32bit versions of Android, the mobile operating system of 80% of all mobile

phones in the world [44].

• It is open source under the GNU General Public License v2, which means that it

is completely free for everyone and gives access to its source code to every inter-

ested party.

• Python is the language used for its development. A well established programming

language in the engineering and forensic world, easy to learn with huge potential

while maintaining the easy-to-use mentality that it promotes.

• An extensible and scriptable application programming interface (API) giving the

ability to developers to extend its capabilities in whichever way they may require:

automatically explore kernel memory, create your own custom plugin or write a

new malware sandbox.

• It is efficient. Volatility’s algorithms can analyze memory dumps from systems

with 32 or 64 GB of RAM in a fraction of time while respecting the consumption

of RAM of the system the analysis is performed.

• The community behind it apart from amateurs and individuals, has members com-

ing from a law enforcement background like the Department of Justice of the

United States, international companies like Google and Facebook, as well as the

majority of antivirus and computer security firms.

The Volatility Framework supports multiple inputs for analysis [45]:

 -23-

• Raw/Padded Physical Memory

• Firewire (IEEE 1394)

• Expert Witness (EWF)

• 32- and 64-bit Windows Crash Dump

• 32- and 64-bit Windows Hibernation

• 32- and 64-bit MachO files

• Virtualbox Core Dumps

• VMware Saved State (.vmss) and Snapshot (.vmsn)

• HPAK Format (FastDump)

• LiME (Linux Memory Extractor)

• QEMU VM memory dumps

Volatility is not a memory acquisition software. For this purpose, third party software

should be used in order to acquire the memory dumps of a target device. There are mul-

tiple solutions for this purpose, while different operating systems require different soft-

ware to achieve this. For Microsoft Windows there are solutions like MoonSols Windows

Memory Toolkit [46] with free and retail versions, supporting 32bit and 64bit versions of

Windows, compatible up to Windows 8.1.

For OSX there is OSXPmem [47], the Mac OS X Physical Memory acquisition tool which

can capture memory dumps from versions 10.6 up to the most recent 10.11, while it pri-

marily focused on 64bit versions of the operating system.

For Linux, depending on the version, there are also multiple solutions. The most common

tool used is the Linux Memory Extractor (LiME) [48], a Loadable Kernel Module

(LKM), which allows the acquisition of volatile memory from Linux and Linux-based

devices. This last characteristic also makes it ideal for memory acquisition on Android

devices, since Android is a Linux-based operating system. For older versions of Linux it

is possible to capture the critical parts of memory by using the program dd [49] and coping

the contents of the /dev/mem/ directory, a characteristic that has been deprecated in more

recent versions.

As mentioned earlier, the Volatility Framework is implemented in Python. However,

most of operating systems and the applications that run on them are primarily using the

C programming language, with myriad uses of data structures in order to organize related

-24-

variables and attributes [18]. In order for Volatility to translate all those C data structures

in Python source files, it implements its own data structures, called VTypes. According to

the authors of The Art of Memory Forensics, with VTypes one “can define structures

whose member names, offsets, and types all match the ones used by the operating system

one is analyzing, so that when she finds an instance of the structure in a memory dump,

Volatility knows how to treat the underlying data (i.e., as an integer, string, or pointer).”

[18][21]

This is an example of a C data structure and the equivalent VType for Volatility, written

in Python:

struct process
{ int pid;
int parent_pid;
char name[10];
char * command_line;
void * ptv;

};

In this case, there are two integers, an array of characters, a pointer to a string and a void

pointer. The translation of the above data structure to a VType data structure for use in

Volatility Framework is as follows:

'process' : [26, {
'pid' : [0, ['int']],
'parent_pid' : [4, ['int']],
'name' : [8, ['array', 10, ['char']]],
'command_line' : [18, ['pointer', ['char']]],
'ptv' : [22, ['pointer', ['void']]],

}]

Here, the name of the structure is declared (‘process’) which is the first dictionary key

and it is accompanied by its size, which in this case is equal to 26. Then we proceed

declaring the attributes of each member of the structure, their types and offsets. For ex-

ample, the pointer to the string (‘command line’) is at offset 18 and its type is pointer.

This is done for all the data structures of an operating system which, as mentioned earlier,

are myriads and usually change from version to version of a single operating system or

even by its updates, let alone amongst different editions. Fortunately, there are ways to

 -25-

automate this process for most of the data structures existing in an operating system. For

example, there is pdbparse [50] [51], a software that can be used to generate VTypes from

the proprietary format of Microsoft’s debugging symbols and thus be used in Volatility

Framework. In other cases, when the data structures cannot be automatically produced,

they must be manually developed after reverse engineering of specific parts of the oper-

ating system takes place.

Another important part of Volatility’s inner workings are overlays. Referring to the data

structure mentioned earlier28, the use of void pointers is more than common in operating

systems. Void pointers –in this case ptv- are used when the data type they point to is

unknown at the time of the allocation. Overlays are used to fix up or patch automatically

generated structure definitions when those type of pointers exist. The overlay that will be

used in order to patch the ptv pointer when for example we know that it points to a pro-

cess, has this structure[18]:

'process' : [None, {
'ptv' : [None, ['pointer', ['process']]],

}

The ‘None’ attributes are used to point out that there should be no change regarding the

offset and the size of the pointer, while ‘void’ becomes ‘process’ after the patch, indicate

that the pointer from now on refers to a process.

A Volatility object is another crucial part of its core structure; According to the developers

[18] [45], “it is an instance of a structure that exists at a specific address within an address

space (AS)29. An object class gives the user the ability to extend the functionality of an

object. In other words, she can attach methods or properties to an object that then become

accessible to all instances of the object”. As a result, plugins can share the same code,

making their development a lot easier.

The combination of VTypes, ovelays and object classes that are derived from a specific

operating system version including the hardware architecture, constitute the profile of this

version of the operating system. Along with these characteristics, a profile includes the

following:

28 See page 14
29 The total amount of memory that is allocated for a process

-26-

• Metadata: Information regarding the operating system’s name, kernel version

number, etc.

• System call information: Indexes and names of system calls

• Constant values: Global variables that can be found at hard-coded addresses in

some operating systems

• Native types: Low-level types for native languages (usually C), including the sizes

for all variable types

• System map: Addresses of critical global variables and functions (this information

exists only in Linux and OSX profiles)

Profiles are necessary for correctly analyzing memory dumps and are already created for

most of the versions and hardware architectures of all major operating systems. They can

also be build and integrated into the framework manually.

 One more major aspect of the Volatility framework are the plugins and the mechanisms

they implement. The reason they are employed is the expansion of the existing capabili-

ties of the framework in ways that differ from its original ones. For example, the support

of newer CPU architectures can be achieved by an address space30 plugin, whilst an anal-

ysis plugin is used to locate and analyze different components of an operating system, a

malicious application, etc.

The basic plugin architecture of the latter according to the authors of The Art of Memory

Forensics is a Python class that inherits from commands .Command which results in over-

riding some of the base methods like calculate and render_text. The first one and the code

that it encapsulates is responsible for parsing the memory dump and analyzing any objects

it locates, while render_text is used to pass the results of this analysis and present them

on the terminal [18][41]. Following is a sample analysis plugin [52] for identifying the

processes of a system which RAM has been acquired.

import volatility.utils as utils
import volatility.commands as commands
import volatility.win32.tasks as tasks
class ExamplePlugin(commands.Command):
 """This is an example plugin"""
 def calculate(self):

30 An interface that provides flexible and consistent access to data in RAM, it handles the
translation of virtual to physical address and provides the necessary background for in-
terpreting differences in proprietary file formats

 -27-

 """This method performs the work"""
 addr_space = utils.load_as(self._config)
 for proc in tasks.pslist(addr_space):
 yield proc
 def render_text(self, outfd, data):
 """This method formats output to the terminal.
 :param outfd | <file>
 data | <generator>
 """
 for proc in data:
 outfd.write("Process: {0}\n".format(proc.ImageFileName))

There are two possible ways of importing a plugin into the Volatility Framework and use

it. Either copy the corresponding Python file into the plugins directory (/volatility/plugins)

or direct Volatility to load the plugin by specifying its location via the - -plugins switch.

In the first case, the framework will automatically load the plugin each time it is executed

with no interference from the user, while on the latter case the user must point to the

plugin every time. In both cases, multiple plugins can be used concurrently by simply

adding them to the /plugins directory or declaring them manually by adding colons after

each declaration (directory path to plugin1:directory path to plugin2:directory path to

plugin3). All available plugins that are picked up automatically by the framework and are

loaded upon its execution can be listed by passing the –info switch to the main Python

script.

Usage of the framework relies on the main Python script (vol.py) and switches that are

passed to it via the command line. For example, in order to load a memory dump, one has

to use the –f switch, followed by the directory that the file resides. In addition, the user

must specify the operating system that the file was captured, the profile, that as mentioned

earlier is a combination of VTypes, ovelays and object classes. If this information is not

known, there is function that can be used prior to the analysis and determine the operating

system. After this, additional options like plugin switches and arguments can be passed

to the main python script for further analysis.

python vol.py –f <FILENAME> --profile=<PROFILE> <PLUGIN> [ARGS]

If the operating system profile information is not at the user’s disposal, the imageinfo

plugin is used to retrieve it. Following is an example of such usage:

-28-

python vol.py -f zeus.vmem imageinfo

The Volatility Framework will determine the most likely operating system that the file

was created and present results similar to these:

Volatility Foundation Volatility Framework 2.5
INFO : volatility.debug : Determining profile based on KDBG search...
Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with
WinXPSP2x86)
AS Layer1 : IA32PagedMemoryPae (Kernel AS)
AS Layer2 : FileAddressSpace (/Users/Thesis/Memory Dumps/zeus.vmem)
PAE type : PAE
DTB : 0x319000L
KDBG : 0x80544ce0L
Number of Processors : 1
Image Type (Service Pack) : 2
KPCR for CPU 0 : 0xffdff000L
KUSER_SHARED_DATA : 0xffdf0000L
Image date and time : 2010-08-15 19:17:56 UTC+0000
Image local date and time : 2010-08-15 15:17:56 -0400

In this case, the capture of memory contents was performed on a Windows XP SP2 x86

system and was correctly identified by the framework as it can be seen by the suggested

profiles option. From now on the analysis of this sample will be performed by passing the

corresponding profile to the main python file of Volatility:

python vol.py -f zeus.vmem --profile=WinXPSP2x86 sockets

which results to the analysis shown below:

Volatility Foundation Volatility Framework 2.5
Offset(V) PID Port Proto Protocol Address Create Time
---------- -------- ------ ------ --------------- --------------- -----------
0x80fd1008 4 0 47 GRE 0.0.0.0 2010-08-11 06:08:00 UTC+0000
0xff258008 688 500 17 UDP 0.0.0.0 2010-08-11 06:06:35 UTC+0000
0xff367008 4 445 6 TCP 0.0.0.0 2010-08-11 06:06:17 UTC+0000
0x80ffc128 936 135 6 TCP 0.0.0.0 2010-08-11 06:06:24 UTC+0000
0xff37cd28 1028 1058 6 TCP 0.0.0.0 2010-08-15 19:17:56 UTC+0000
0xff20c478 856 29220 6 TCP 0.0.0.0 2010-08-15 19:17:27 UTC+0000
0xff225b70 688 0 255 Reserved 0.0.0.0 2010-08-11 06:06:35 UTC+0000
0xff254008 1028 123 17 UDP 127.0.0.1 2010-08-15 19:17:56 UTC+0000
0x80fce930 1088 1025 17 UDP 0.0.0.0 2010-08-11 06:06:38 UTC+0000
0xff127d28 216 1026 6 TCP 127.0.0.1 2010-08-11 06:06:39 UTC+0000
0xff206a20 1148 1900 17 UDP 127.0.0.1 2010-08-15 19:17:56 UTC+0000
0xff1b8250 688 4500 17 UDP 0.0.0.0 2010-08-11 06:06:35 UTC+0000
0xff382e98 4 1033 6 TCP 0.0.0.0 2010-08-11 06:08:00 UTC+0000

 -29-

0x80fbdc40 4 445 17 UDP 0.0.0.0 2010-08-11 06:06:17 UTC+0000

In this case the sockets argument was passed which prints a list of open sockets on the

systems at the time of the capture. Another core plugin that can be used is pstree which

prints the process list tree of the system, along with information about the PID31, threads,

handles and relationships:

Volatility Foundation Volatility Framework 2.5
Name Pid PPid Thds Hnds Time
-- ------ ------ ------ ------ ----
 0x810b1660:System 4 0 58 379 1970-01-01 00:00:00
UTC+0000
. 0xff2ab020:smss.exe 544 4 3 21 2010-08-11 06:06:21
UTC+0000
.. 0xff1ec978:winlogon.exe 632 544 24 536 2010-08-11 06:06:23
UTC+0000
... 0xff255020:lsass.exe 688 632 21 405 2010-08-11 06:06:24
UTC+0000
... 0xff247020:services.exe 676 632 16 288 2010-08-11 06:06:24
UTC+0000
.... 0xff1b8b28:vmtoolsd.exe 1668 676 5 225 010-08-11 06:06:35
UTC+0000
..... 0xff224020:cmd.exe 124 1668 0 ------ 2010-08-15 19:17:55
UTC+0000
.... 0x80ff88d8:svchost.exe 856 676 29 336 2010-08-11 06:06:24
UTC+0000
.... 0xff1d7da0:spoolsv.exe 1432 676 14 145 2010-08-11 06:06:26
UTC+0000
.... 0x80fbf910:svchost.exe 1028 676 88 1424 2010-08-11 06:06:24
UTC+0000
..... 0x80f60da0:wuauclt.exe 1732 1028 7 189 2010-08-11 06:07:44
UTC+0000
..... 0x80f94588:wuauclt.exe 468 1028 4 142 2010-08-11 06:09:37
UTC+0000
..... 0xff364310:wscntfy.exe 888 1028 1 40 2010-08-11 06:06:49
UTC+0000
.... 0xff217560:svchost.exe 936 676 11 288 2010-08-11 06:06:24
UTC+0000
.... 0xff143b28:TPAutoConnSvc.e 1968 676 5 106 2010-08-11 06:06:39
UTC+0000
..... 0xff38b5f8:TPAutoConnect.e 1084 1968 1 68 2010-08-11 06:06:52
UTC+0000
.... 0xff22d558:svchost.exe 1088 676 7 93 2010-08-11 06:06:25

31 Process Identifier, a unique number to identify an active process

-30-

UTC+0000
.... 0xff218230:vmacthlp.exe 844 676 1 37 2010-08-11 06:06:24
UTC+0000
.... 0xff25a7e0:alg.exe 216 676 8 120 2010-08-11 06:06:39
UTC+0000
.... 0xff203b80:svchost.exe 1148 676 15 217 2010-08-11 06:06:26
UTC+0000
.... 0xff1fdc88:VMUpgradeHelper 1788 676 5 112 2010-08-11 06:06:38
UTC+0000
.. 0xff1ecda0:csrss.exe 608 544 10 410 2010-08-11 06:06:23
UTC+0000
 0xff3865d0:explorer.exe 1724 1708 13 326 2010-08-11 06:09:29
UTC+0000
. 0xff374980:VMwareUser.exe 452 1724 8 207 2010-08-11 06:09:32
UTC+0000
. 0xff3667e8:VMwareTray.exe 432 1724 1 60 2010-08-11 06:09:31
UTC+0000

Similarly, Volatility can be used to analyze files acquired from Apple’s Mac OS X family

operating systems. In this case, there is an additional step one must make in order to

properly configure the framework for such a task; the corresponding operating system

profile must be added since it is not included by default. The Volatility Foundation main-

tains an active list of those profiles32. The user can download the profile she requires and

paste the zip file to volatility/plugins/overlays/mac or volatility/plugins/overlays/linux di-

rectories, depending on the system the analysis refers to. In the example that follows, the

OS X Yosemite 10.10.5 profile was used:

python vol.py -f Yosemite.vmem --profile=MacYosemite_10_10_5_14F27x64 mac_arp

The result can be shown in Figure 3-2 bellow. The plugin mac_arp was used in order to

print the ARP table33 of the system

Figure 3-2, Printing the ARP table of an OS X system

32 https://github.com/volatilityfoundation/profiles
33 A cache of the Address Resolution Protocol used for storing IP addresses and their
resolved Ethernet physical addresses.

 -31-

Another example is mac_dmesg which implements a well know command for UNIX-like

operating systems, dmesg

python vol.py –f Yosemite.vmem --profile=MacYosemite_10_10_5_14F27x64 mac_dmesg

which is used to print the message buffer of the kernel:

Volatility Foundation Volatility Framework 2.5
x: svga: Start: FB size=0x300000, FIFO size=0x200000
Apple16X50UARTSync1: Detected 16550AF/C/CF FIFO=16 MaxBaud=115200
gfx: svga: Start: host_bpp=32, bpp=32, num_displays=1
Apple16X50UARTSync2: Detected 16550AF/C/CF FIFO=16 MaxBaud=115200
gfx: fb: start: maxWidth 1920 maxHeight 1080 vramSize 134217728
gfx: fb: setDisplayMode: (1) wxh=1024x768, 32 4096
gfx: svga: SetMode: mode w,h=1024, 768 bpp=32
gfx: svga: SetMode: pitch=4096
gfx: fb: setDisplayMode: Display ID=1, Depth ID=0
gfx: fb: setDisplayMode: wxh=1024x768, bpp=32, pitch=4096
gfx: gfx: UpdateTraces: Enabling traces.

Previous shutdown cause: 0
Waiting for DSMOS...
0x1face000, 0x00000000 Intel82574L::setLinkStatus - not active
0x1face000, 0x00000000 Intel82574L::setLinkStatus - not active
0x1face000, 0x00000000 Intel82574L::setLinkStatus - not active
0x1face000, 0x00000000 Intel82574L::setLinkStatus - not active
0x1face000, 0x00000000 Intel82574L::setLinkStatus - not active
Ethernet [Intel82574L]: Link up on en0, 1-Gigabit, Full-duplex, No flow-control,
Debug [796d,ac08,01e1,0200,41e1,7c00]
0x1face000, 0x0000000a Intel82574L::setLinkStatus - active
DSMOS has arrived
[snip]

In general, several of the command options supported by Volatility can used in conjunc-

tion with most of the plugins regardless of the file that is being analyzed. Included there

is a help menu that can be displayed by passing the –help (or –h) argument:

Volatility Foundation Volatility Framework 2.5
Usage: Volatility - A memory forensics analysis platform.

Options:
 -h, --help list all available options and their default values.
 Default values may be set in the configuration file
 (/etc/volatilityrc)
 --conf-file=/Users/Gi0/.volatilityrc
 User based configuration file
 -d, --debug Debug volatility
 --plugins=PLUGINS Additional plugin directories to use (colon separated)
 --info Print information about all registered objects

-32-

 --cache-directory=/Users/Gi0/.cache/volatility
 Directory where cache files are stored
 --cache Use caching
 --tz=TZ Sets the (Olson) timezone for displaying timestamps
 using pytz (if installed) or tzset
 -f FILENAME, --filename=FILENAME
 Filename to use when opening an image
 --profile=WinXPSP2x86
 Name of the profile to load (use --info to see a list
 of supported profiles)
 -l LOCATION, --location=LOCATION
 A URN location from which to load an address space
 -w, --write Enable write support
 --dtb=DTB DTB Address
 --shift=SHIFT Mac KASLR shift address
 --output=text Output in this format (support is module specific, see
 the Module Output Options below)
 --output-file=OUTPUT_FILE
 Write output in this file
 -v, --verbose Verbose information
 -g KDBG, --kdbg=KDBG Specify a KDBG virtual address (Note: for 64-bit
 Windows 8 and above this is the address of
 KdCopyDataBlock)
 --force Force utilization of suspect profile
 --cookie=COOKIE Specify the address of nt!ObHeaderCookie (valid for
 Windows 10 only)
 -k KPCR, --kpcr=KPCR Specify a specific KPCR address

Also in the help menu a list of plugins loaded by the framework and are available for

use is show.

3.4 Existing Plugins

Plugins shown in the help menu of Volatility are a fraction of the whole list that is actually

supported. This list of more than 250 plugins (see Appendix) for all major operating sys-

tems can be printed by passing the -- info argument:

python vol.py -- info

The functionality of those plugins cover a vast area of interest regarding forensic analysis.

There are plugins for detect API34 hooks in process and kernel memory, reconstructing

the a browser’s cache memory and history, connecting to the file via a shell or even for

34 Application Program Interface

 -33-

saving a pseudo-screenshot of what was on the screen of the user at the time by using the

Windows GDI system35.

Apart from the core plugins included by default in the framework, there are more that

forty plugins that are developed and maintained by the Volatility community and are

available to everyone36. Moreover, since 201337 and every year the Volatility Foundation

is holding a contest for the top three plugins produced by members of the community,

awarding them with various ways. For example, in 2013 a OS X rootkit detection plugin

was introduced by Cem Gurkok [53]–[55]. Thanks to his work, Volatility is able to detect

• Direct syscall table modification

• Syscall function inlining (ie DTrace hooks)

• Patching the syscall handler (ie, shadow sycall table)

• Hooked functions in kernel/kext symbol tables

• Modified IDT descriptors

• Modified IDT handlers

In 2014 he expanded the capabilities of his plugins by being able to identify and recover

bitcoin keys and addresses (see Appendix), enumerating threads of tasks running on a

Mac and detecting suspicious behavior regarding the TrustedBSD policy list [45]. An-

other useful feature of plugins is their ability to register their own options, which can be

viewed by the --help or –h switches that can accompany a plugin. For example:

python vol.py pstree --help

will produce the following output:

Volatility Foundation Volatility Framework 2.5
Usage: Volatility - A memory forensics analysis platform.

Options:
 [snip]
 --force Force utilization of suspect profile
 --cookie=COOKIE Specify the address of nt!ObHeaderCookie (valid for
 Windows 10 only)
 -k KPCR, --kpcr=KPCR Specify a specific KPCR address

35 Microsoft Windows Graphics Device Interface
36 https://github.com/volatilityfoundation/community
37 http://www.volatilityfoundation.org/#!2013/c19yz

-34-

Module Output Options: dot, greptext, html, json, sqlite, text, xlsx

Module PSTree

Print process list as a tree

Along with the plugins list printed to the terminal by the --info argument, a list of the

profiles that are supported (see Appendix), including those loaded manually like the OS

X profile shown in a previous example is presented. In addition to these profiles, there

are profiles for both x86 and x64 architectures of six major distributions of Linux38, in-

cluding Fedora, RedHat, Debian and OpenSUSE and more than sixty profiles for OS X

version 10.5 and onwards39

3.5 Plugin Case Studies

In this section a number of case studies will be presented, regarding the functionality of

the framework on analysing files captured from every major operating system today.

3.5.1Windows

One of the most complicated and advanced malware that was ever created is Stux-

net[15][16]. Its origins are yet to be know, but due to its extremely sophisticated nature it

is believed to be a creation of a state or even a coalition of states. Its purpose was to

sabotage Iran’s nuclear program by infecting PLCs40 of a specific nuclear factory in Iran

in order to introduce malfunctions in a way that they would not be traceable, not even by

the engineers working at the premises. It was using four different zero-day exploits[56]

38 https://github.com/volatilityfoundation/profiles/tree/master/Linux
39 https://github.com/volatilityfoundation/profiles/tree/master/Mac
40 Programmable logic controller

 -35-

for Microsoft’s Windows operating system and was designed in such elaborate way that

it could reach its targets although they were not connected to the Internet.

Since its discovery in 2010, Stuxnet has been analyzed by multiple digital investigators

and samples are available from multiple sources41424344 for everyone interested to inves-

tigate further. In order to analyze the behavior of the malware with Volatility, a virtual

machine using VMWare’s Workstation Pro45 software was created and later infected with

Stuxnet. The captured memory file of this machine (stuxnet.vmem) is analyzed below.

First step in analysis is the identification of the profile, a necessary option required by

Volatility in order to perform accurate results. This can be achieved by the imageinfo

plugin:

python vol.py -f stuxnet.vmem imageinfo

which produces the following output:

Volatility Foundation Volatility Framework 2.5
INFO : volatility.debug : Determining profile based on KDBG search...
WARNING : volatility.debug : Overlay structure tty_struct not present in vtypes
 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with
WinXPSP2x86)
 AS Layer1 : IA32PagedMemoryPae (Kernel AS)
 AS Layer2 : FileAddressSpace (stuxnet.vmem)
 PAE type : PAE
 DTB : 0x319000L
 KDBG : 0x80545ae0L
 Number of Processors : 1
 Image Type (Service Pack) : 3
 KPCR for CPU 0 : 0xffdff000L
 KUSER_SHARED_DATA : 0xffdf0000L
 Image date and time : 2011-06-03 04:31:36 UTC+0000
 Image local date and time : 2011-06-03 00:31:36 -0400

41 https://virusshare.com
42 http://openmalware.org/
43 http://malshare.com/
44 http://malwarecookbook.googlecode.com/svn/trunk/stuxnet.vmem.zip
45 https://www.vmware.com/products/workstation

-36-

As a result, the profile used for the rest of the analysis is the one for Windows XP SP3

x86 operating system. One of the most common steps in a forensic analysis is the exam-

ination of the processes running on the system along with their handles, objects, modules,

etc, while the memory capture was performed. This can be achieved by multiple plugins

like pslist, pstree, handles and psxview.

python vol.py –f stuxnet.vmem –profile= WinXPSP3x86 pstree

which produces the output shown in Figure 3-3. By examining the tree of processes there

is an out of the ordinary number of processes posing as lsass.exe, a system service in

Microsoft Windows responsible for the Local Security Authority Subsystem46. On an un-

infected system there is only one instance of lsass.exe. Piping the result of Volatility to

egrep47 will produce an even clearer output:

python vol.py -f stuxnet.vmem -f stuxnet.vmem --profile=WinXPSP3x86 pstree | egrep

'(lsass.exe)'

By focusing the investigation on those suspicious instances of lsass.exe, more clues of

malicious behavior are revealed.

46 https://technet.microsoft.com/en-us/library/cc961760.aspx
47 http://linux.die.net/man/1/egrep

 -37-

Figure 3-3, Executing the pstree plugin on a Stuxnet infected system

One of the three instances has a start time in 2010 while the other two in 2011. Consider-

ing the fact that every other program has started in 2010, the latter instances of lsass.exe

are definitely out of the order.

Another common step when analyzing malicious samples is the examination of network

connections of the operating system. This may not be a clear indication of malicious be-

havior since at the time the memory capture occurred there may be no network connec-

tions present. However, it is always a measure of good practice to take this step under

consideration and use the connections plugin:

python vol.py -f stuxnet.vmem -f stuxnet.vmem --profile=WinXPSP3x86 connections

In this case, there are no network connections at the time the memory was captured. There

is another plugin however that will help detect malicious behavior regarding connections

-38-

to a network, the sockets plugin, responsible for printing a list of open network sockets48.

python vol.py -f stuxnet.vmem -f stuxnet.vmem --profile=WinXPSP3x86 sockets

The output is shown in Figure 3-4 below. Again, there is no sign of malicious activity.

Figure 3-4, Output of the connections plugin

But in conjunction with the results of pstree this absence of some specific network ele-

ments is itself a sign of malicious activity; The highlighted socket in Figure 3-4 belongs

to a process with a PID equal to one of the three instances of lsass.exe we noticed earlier.

The process is listening to port 500 and 4500 which according to Microsoft is normal

behavior. Thus, the two other instances of lsass.exe that do not experience such behavior

are not acting as they should.

Another indicator of a malicious process, especially in Windows systems, is the number

of DLLs49 it is depending on for its functioning. Usually a typical program requires about

40 DLLs or more. By using the dlllist plugin in Volatility to investigate the two suspicious

instances of lsass.exe, we can print a list of loaded DLLs for each process.

python vol.py -f stuxnet.vmem -f stuxnet.vmem --profile=WinXPSP3x86 -p 680 dlllist

where –p 680 is the PID of the lsass.exe instance with timestamp in 2010. The result is

64 DLLs which is to be expected. Running the plugin against the two other instances, the

48 https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
49 https://support.microsoft.com/en-us/kb/815065

 -39-

number is significantly lower; 15 and 35. Which is a third, strong indication that these

processes are not legitimate.

The next plugin we are going to execute against the sample is malfind50, a plugin dedi-

cated in locating and flagging patterns in memory that indicate malicious behavior. In

order to target a specific process, we pass the corresponding PID(s) to malfind:

vol.py -f stuxnet.vmem --profile=WinXPSP3x86 -p 868 malfind

which produces this output:

Figure 3-5, Executing malfind plugin against the malicious process

According to the plugin there are areas in memory that are marked with READ, WRITE

and EXECUTE permissions, as highlighted above. A normal, non-malicious executable

must have READ and EXECUTE permissions and should not be able to write in any part

50 https://code.google.com/p/volatility/wiki/CommandReferenceMal22#malfind

-40-

of the memory. Malfind also provided the ability to export the malicious content for fur-

ther analysis via a disassembler or antivirus services via the --dump-dir {directory}

switch. In a similar pattern, there is the procdump plugin used for dumping a process to

an executable file sample.

Volatility provides another two core plugins that can help us pinpoint any files related to

malware, modscan and moddump. The first one can be used to scan the sample for drivers

and other kernel modules, while the latter can be used to export those for further analysis.

Figure 3-6, Volatility plugin modscan into action

The result is a long list of modules and drivers, a couple of whom are located in a non-

common location, as shown in Figure 3-6. Moddump plugin can be used to export them

for further analysis. In addition, since we now hold a reference to the name of a possibly

malicious driver, we can examine any references to it in the Windows Registry51, via the

strings5253 program.

strings stuxnet.vmem | grep mrx -i | grep HKLM54

This will result to an output where everything related to Windows Registry will be printed

and can be further manipulated again by piping the results to grep.

python vol.py -f stuxnet.vmem printkey -K 'ControlSet001\Services\MrxNet'

python vol.py -f stuxnet.vmem printkey -K 'ControlSet001\Services\MrxCls'

51 https://support.microsoft.com/en-us/kb/256986
52 http://linux.die.net/man/1/strings
53 https://technet.microsoft.com/en-us/sysinternals/strings.aspx
54 http://www.computerhope.com/jargon/h/hklm.htm

 -41-

Finally, by using the printkey plugin which is used to print a registry key along with is

values and subkeys, we can verify that Stuxnet starts executing every time the operating

systems reboots by locating the appropriate registry key.

3.5.2 Linux

Linux may not be as popular target as Windows are when it comes to malware, but that

should not be advocated as reason for Linux being a platform with complete lack of mal-

ware. On the contrary due to the fact that Linux is installed in the majority of servers on

the Internet[57] and Google’s Android, which is based on Linux, has became the most

used operating system globally[58][44], instances of malware are on the rise and forensic

analysis tools should be prepared.

Volatility has more that 65 plugins dedicated to memory captures that are derived from

Linux. The list of those plugins can be printed by grepping the info output for linux:

python vol.py --info | grep linux

Following we are going to demonstrate the usage of some of those plugins to a memory

capture taken from a system running Centos 6.3 x6455.

Just like the previous case study when examining a Windows memory capture, we start

by enumerating the processes of the system

python vol.py -f centos.mem --profile=LinuxCentOS63x64 linux_pstree

The output is a quite long list which can be further manipulated by piping the results to

grep in order to produce a friendlier output. Checking information related to network

connections and interfaces can be achieved by linux_netscan, linux_netstat, and

linux_ifconfig respectively. Another useful plugin when suspecting a malicious executa-

ble is linux_elfs which locates ELF binaries in process mappings.

55 https://secondlookforensics.com/linux-memory-images/

-42-

Figure 3-7, Locating ELF binaries via the linux_elfs plugin

When performing malicious actions on a Linux system, an advanced use is well aware

that every command she uses is stored in bash56 profile history and must take precautions

in order to avoid this feature. Such precautions may be to manipulate the history file

(HISTFILE)57 or when logging in via secure shell to use the T switch, which disables the

pseudo-terminal allocation58. However even when some or all of these measures are

taken, bash history can still be retrieved by Volatility since the commands have to exist

at memory at some point.

56 https://www.gnu.org/software/bash/
57 https://www.gnu.org/software/bash/manual/html_node/Bash-History-Facilities.html
58 http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/ssh.1?query=ssh

 -43-

Figure 3-8, Retrieving bash history via the linux_bash plugin

In this case the creator of a Linux rootkit[59] inserted it into the kernel and later hide it

from lsmod59, a program used to show the status of modules in the Linux Kernel. Alt-

hough the creator of the rootkit was clever enough to hide its presence from user space

[60], tools like Volatility which can analyse user space and kernel space, are able to detect

it:

python vol.py -f centos.mem --profile=LinuxCentOS63x64 linux_lsmod | grep rootkit

Figure 3-9, Using linux_lsmod to detect loaded kernel modules

There are cases though that the creator of the malware may hide its presence from lsmod

even when kernel space is checked. For this kind of manipulations there is the sysfs file

system [61], a virtual file system that exports information about various parts of the sys-

59 http://linux.die.net/man/8/lsmod

-44-

tem including hardware, kernel subsystems and everything related to device drivers. Vol-

atility has a Linux plugin dedicated to using sysfs for gathering all the modules loaded

into the kernel[21][62]:

python vol.py -f ubuntu.mem --profile=LinuxUbuntu1404x64 linux_check_module

One more way for a malicious user to hide her activity is to hook systems calls like read,

write, kill, etc. which can be traced via the linux_check_call plugin.

Figure 3-10, Looking into system calls via the linux_check_call plugin

 -45-

Table 3-2, Volatility Framework plugins dedicated to Linux

-46-

Table 3-3, Volatility Framework plugins dedicated to Linux

As in the Windows case study, usage of a combination of plugins along with critical

thinking can help a forensic analyst detect abnormal behaviour and dig further to pinpoint

the root of the problem.

3.5.3 OS X

As in the previous case studies, most of the advanced malware targeting users of Apple’s

operating systems operates only in memory to avoid detection and make its analysis

harder, making Volatility Framework a crucial tool for the forensic analyst.

 -47-

There are a handful of plugins for process enumeration, like mac_pslist, mac_tasks and

mac_pstree, which can be really helpful for detecting methods of malware persistence on

OS X described by P.Wardle [63][64].

Figure 3-11, mac_tasks plugin provides a complete list of processes running on OSX
along with attributes like PID, architecture and start time

When a particular process is suspicious, an investigator can retrieve details like the

memory mapping of said process by using the mac_proc_maps plugin and providing the

PID

Figure 3-12, Mapping of UserEventAgent process

Moreover, mac_handles and mac_threads can provide an even deeper insight into the

internals of a process.

As in other operating systems, network activity is always a factor of high importance

when trying to detect malicious behavior. Mac_netstat, mac_arp and mac_ifconfig are

the equivalent plugins of linux_netstat, linux_arp and linux_ifconfig, printing the network

interfaces and network related activity.

There are also plugins like mac_adium and mac_contacts designed to extract information

about the contacts of the user and his account registered to Adium, a popular instant mes-

saging program for OS X60:

60 https://adium.im/

-48-

Figure 3-13, Extracting OSX’s contact list with mac_contacts plugin

 -49-

Table 3-4, Volatility Framework plugins dedicated to OS X

-50-

Table 3-5, Volatility Framework plugins dedicated to OS X

In a recent paper presented in DFRWS 2015 by A.Case and G.Richard III [65], they in-

troduced a series of new Volatility plugins, designed for detecting advanced rootkits for

Mac OS X, a clear indication of the rapid expansion of The Volatility Framework but on

the other hand, an strong clue of the unwanted attention the platform is attracting from

malware authors.

3.6 Bitcoin Malware Case Study

Since its invention in 2008, Bitcoin has become the pinnacle of digital currencies [66].

One of the outcomes of this recognition was the increased attention of malicious users

targeting legitimate users and their digital wallets. One of the ways a digital currency like

Bitcoin differentiates from a physical currency, lies on the possible means of deception a

legitimate user can be a victim of. Apart from stealing the actual Bitcoins, a malicious

user can use the resources of a legitimate user (mining) to produce Bitcoins without the

knowledge of the latter. This trend was on the rise until late 2013[6][7][4] but since

Bitcoin mining has become uneconomic on home computers even if there is a collabora-

tion of thousands of them[5], nowadays there is a decline of those kind of activities with

the occasional news story every couple of months[67][35].

 -51-

One of those illegal Bitcoin mining efforts in 2013 was spreading in Thessaloniki, Greece

via USB sticks and later it passed the limits of the city and the country616263. The malicious

file responsible is a portable executable targeting Microsoft Windows, which is renaming

itself to random strings, based on the contents of USB drives it detects. Upon execution

it is replicating to C:\Users\{Username}\AppData\Roaming as abab32.exe along with a

copy of a file named sys32.exe, which is a way of trying to avoid drawing attention if

examined via the task manager. More over, to achieve persistence, it creates a registry

entry to HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run so

as to execute every time the operating system reboots. While the first file turns out to be

a legitimate Bitcoin miner64, the original executable that extracted abab32.exe and

sys32.exe into the system, falls into the definition of malware; It sneaks two executables

into the system, tries achieves persistence of execution by modifying the registry and

camouflages its icon to a the one of a folder in order misguide the unsuspicious user into

executing it.

By reverse engineering the sample, a relationship diagram of its functions was produced:

Figure 3-14, Functions of the malware after reverse engineering

61 https://forums.malwarebytes.org/index.php?/topic/127472-remove-abab32exe-fold-
ers-turned-into-apps/
62 http://www.thelab.gr/topic/122166-abab32exe/
63 https://social.technet.microsoft.com/Forums/systemcenter/en-US/457b9bd3-65ba-
4fbf-8fb3-35ee9357874f/appdataroamingabab32exe?forum=w7itprogeneral
64 https://github.com/jgarzik/cpuminer

-52-

One of the most interesting functions of the malware highlighted in Figure 3-14 is min-

erInfo. After further analysis the source code of the function was available:

Figure 3-15, Source code of minerInfo function

The malware after executing it connects to a specific domain and port, using a combina-

tion of username and password, awaiting for either pushing the results of its mining or

receiving data for further mining.

Detection of this Bitcoin miner through Volatility relies on steps mentioned earlier in

either of the case studies presented. Looking at the process list of the system via pslist,

pstree or psscan and exporting suspicious processes to a file via procdump for further

analysis like reverse engineering is one of the steps.

Figure 3-16 Pstree plugin locating the malicious process

Figure 3-17, Exporting to a file via procdump

Moreover, examining everything related to network activity considering the nature of the

malware and its need to connect to a server in order to operate, reveals a lot of information

regarding its nature. By using netscan plugin a series of IPs are printed, information for

whom can be obtained from sites like DNSstuff 65or IPduh66.

65 http://www.dnsstuff.com/
66 http://ipduh.com/

 -53-

The username used by the miner in order to login to the remote server and the fact that

the connection made were to IPs in Greece led to the identity of its creator, which resulted

to an apology and seize of its operations[68][69].

3.7 Installation and setting up a test environment

The Volatility Framework supports all three major operating systems, Microsoft Win-

dows, Apple OS X and Linux. In all cases there are two available means of installation;

Building the framework from source code which is publicly available to everyone via

git67, a version control system created by Linus Torvalds68, the creator of Linux, or using

the binaries provided for each platform by the Volatility Foundation site69. If the user

chooses the latter, the only prerequisite is Python 2.770, which for the Windows version

is bundled into the installation executable. In the case of Linux and OS X, Pythons is

already included into the operating system, thus simply running the binary is sufficient.

Using the source code for installation might add some overhead when upgrading or unin-

stalling if one used the setup.py file, but on the other hand it provides more inside into the

inner workings of the framework, giving the opportunity to a researcher for further inves-

tigation and development.

In our case the test environment is based on OS X and Volatility Framework was installed

via the source code, after downloading it via git and using the main Python file, vol.py:

git clone https://github.com/volatilityfoundation/volatility.git Volatility

After cloning the source code from git, the Volatility directory shown in Figure 3-18,

contains everything needed for executing the framework. Particularly for OS X, apart

from the source code and the binaries provided by the Foundation, there is an additional

way of installation; a third party, free and open-source package manager for OS X, Home-

brew71. Installation of Homebrew can be achieved via the terminal, with a single line:

67 https://github.com/volatilityfoundation/volatility
68 https://www.britannica.com/biography/Linus-Torvalds
69 http://www.volatilityfoundation.org/#!releases/component_71401
70 https://www.python.org/download/releases/2.7/
71 http://brew.sh/

-54-

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

After this, Volatility can be installed by invoking Homebrew:

brew install volatility

In other words, Homebrew is the equivalent of the Apt package manager72 in Debian

Linux and its derivatives.

Figure 3-18, The Volatility Framework installation folder

Cloning the source code from git to a directory of our choice and running the main Python

file vol.py from that directory has the disadvantage of not being able to use Volatility as

a library but on the other hand it is easier to execute, upgrade or test multiple versions of

it.

72 https://wiki.debian.org/Apt

 -55-

Although Volatility can be used to analyse files without the installation of any other soft-

ware, there are packages that greatly enhance its abilities, with many of the plugins func-

tionality relying on them and are recommended for optimal results.

• Distorm373 - A powerful disassembler library for x86/AMD64 architecture

• Yara74 - A malware identification and classification tool

• PyCrypto75 - The Python cryptography toolkit

• PIL76 – a Python imaging library

• OpenPyxl77 – A Python library for reading and writing Microsoft Excel files

• Ujson78 - A JSON parsing library for exporting to HTML files

Installation of the above additional open source software can be either achieved via their

source code or for OS X and our case via the pip79, a package management system similar

to homebrew but dedicated to software packages written in Python. Searching a package

via pip is as simple as the following:

pip search ujson

resulting to:

ujson - Ultra fast JSON encoder and decoder for Python

ujson_delta - A diff/patch pair for JSON-serialized data structures.

SudokuJson2Pdf - This project provides a tool which convert json file of

 sudokuinformation to pdf.

drf_ujson - Django Rest Framework UJSON Renderer

ujsoncompare - Json comparison tool

Then, to install the desired package like ujson in our case:

73 https://github.com/gdabah/distorm
74 https://plusvic.github.io/yara/
75 https://www.dlitz.net/software/pycrypto/
76 http://www.pythonware.com/products/pil/
77 https://pypi.python.org/pypi/openpyxl
78 https://pypi.python.org/pypi/ujson
79 https://pip.pypa.io/en/stable/

-56-

pip install ujson

After completing the installation of all the recommended packages, the Volatility Frame-

work is armed to the max for analysing memory dumps.

3.7.1 Memory Dumps

Putting the Volatility Framework into practice requires the memory files that are to be

analysed. Acquiring these files in some cases may not be a trivial task and may require a

series of considerations and steps to be taken in order to preserve the evidence a forensic

analyst is looking for. Following is a decision tree diagram for dealing with memory ac-

quisition and the decision one has to make, made by the creators of the framework [18]:

Figure 3-19, Memory acquisition decision tree diagram

 -57-

Apart from these factors mentioned in Figure 3-19, there are some more, equivalently

important to be taken under consideration for memory acquisition:

• Cost. Hardware solutions like CaptureGUARD80 or EnCase81 require thousands

of US dollars but they have the advantage of being platform agnostic, as Carrier

and Grand point out in their paper[70]. Software solutions like the Moonsols Win-

dows Memory Toolkit82 may cost way less or even be free of charge like

Belkasoft’s Live RAM Capturer83. However, in this case memory acquisition on

different platforms require a separate solution for each platform.

• Timeline. Memory most of the times volatile. A successful acquisition does not

guarantee that the artifacts required by a forensic analyst will be included in the

memory dump, especially when the acquisition has to be achieved on a live sys-

tem. For example, when looking for the activity of a specific malware that com-

municates with its command and control server via UDP84, one has to acquire the

RAM of the system when there is a connection with said servers in order for the

information to be present in the memory dump.

The Volatility Framework is a not a memory acquisition tool, nor does it contain on.

However, it does support memory acquisition of up to 4 GB via Firewire for OS X and

Linux, by taking advantage of a library85

python vol.py –l firewire://forensic1394/<devno> plugin [options]

where devno is the number of the device attached via Firewire.

Following are some examples of software memory acquisition along with the tool used

in each case.

80 http://www.windowsscope.com/index.php?page=shop.product_details&flypage=fly-
page.tpl&product_id=29&category_id=3&option=com_virtuemart&Itemid=34
81 https://www.guidancesoftware.com/
82 http://www.moonsols.com/#pricing
83 https://belkasoft.com/ram-capturer
84 User Datagram Protocol, a transport layer protocol
85 https://freddie.witherden.org/tools/libforensic1394/

-58-

For OS X, there is OSXPMem by Johannes Stuettgen[47] which works reliably for every

major version of the operating system from 10.7 and onwards.

Figure 3-20, OSXPMem directory contents and memory acquisition

OSXPMem works without a problem for the x64 architecture but according to its devel-

oper it can also be compiled to work for the x86 architecture.

For the Linux platform an open source solution for memory acquisition is Lime86 a

loadable kernel module, introduced in 2012 by Joe Sylve[48]. To use Lime, we have to

build the module via make87 for the particular system which the memory acquisition will

take place. Upon creating the module, we load it into the kernel with insmod88:

sudo insmod lime-3.19.0-39-generic.ko “path=tcp:4445 format=lime”

This way the operating system loads the module into the kernel and awaits for a TCP

connection on port 4445 in order to send the contents of RAM to the remote system, in

lime format.

Figure 3-21, Lime module loaded into the Linux kernel

86 https://github.com/504ensicslabs/lime
87 https://www.gnu.org/software/make/
88 http://linux.die.net/man/8/insmod

 -59-

To acquire the memory dump we connect to the system with netcat89 and dump the con-

tents into a file

nc 192.168.169.131 > ubuntu.lime

where 192.168.169.131 the IP of the target system and Ubuntu.lime the content of its

memory. Since Ubuntu has most of ports closed by the kernel firewall, in order to connect

to the target system we are required to open port 4445 using iptables90, a utility for con-

figuring the firewall:

sudo iptables -I INPUT -p tcp --dport 4445 -j ACCEPT

Using the above command, we configure the firewall to allow by default input connection

at port 4445 using the TCP protocol.

In Windows platforms there is a plethora of software solutions for memory acquisition.

We used the Moonsols Memory Acquisition Tool mentioned earlier. More specifically,

the edition we used is the Consultant Edition which on the contrary to the Free edition,

supports both Microsoft Windows x86 and x64 architectures[46]. The toolkit contains

five executables:

• DumpIt.exe that works for Microsoft Windows XP, 2003, 2008, Vista, 2008 R2,

7, 8 32-bits and 64-bits (x64) Edition. DumpIt can be used with scripts or/and

batch files. It also provides an interactive mode for the acquisition of memory.

• Hibr2dmp.exe and hibr2bin.exe which works with Microsoft Windows XP, 2003,

2008, Vista, 2008 R2, 7, 8 32-bits and 64-bits (x64) Microsoft Windows hiberna-

tion files, including corrupted hibernation files. The produced file is hashed with

the md591 algorithm.

• Dmp2bin.exe which works with Microsoft Windows XP, 2003, 2008, Vista, 2008

R2, 7, 8 32-bits and 64-bits (x64) Microsoft full memory crash dump files. The

produced file is hashed with the md5 algorithm.

89 http://linux.die.net/man/1/nc
90 http://linux.die.net/man/8/iptables
91 https://www.ietf.org/rfc/rfc1321.txt

-60-

• Bin2dmp.exe that works with Microsoft Windows XP, 2003, 2008, Vista, 2008

R2, 7, 8 32-bits and 64-bits (x64) raw memory snapshots (windd92, VMWare93).

The produced file is hashed with the md5 algorithm.

Although the Toolkit does not officially support the latest version of Microsoft’s operat-

ing system, it works as expected (Figure 3-22)

Figure 3-22, Acquiring the memory of a Windows 10 x64 system

As stated earlier, the Volatility Framework can analyze a series of file formats from RAW

and lime files to Windows hibernation files and memory snapshots originating from vir-

tualization software like Oracle’s Virtualbox94 and VMWare’s Workstation95.

Following are two cumulative tables of every memory image and file format that are

supported by the Volatility Framework (Tables 3-6 and 3-7)

92 A deprecated tool for memory dumping, http://forensicswiki.org/wiki/WinDD
93 https://www.vmware.com/
94 https://www.virtualbox.org/
95 https://www.vmware.com/products/workstation

 -61-

64-bit Windows Server 2012 and 2012 R2 32- and 64-bit Windows XP (SP2 and SP3)

32- and 64-bit Windows 10 (initial/basic support)
32- and 64-bit Linux kernels from 2.6.11 to
4.2.3

32- and 64-bit Windows 8, 8.1, and 8.1 Update 1 32-bit 10.5.x Leopard
32- and 64-bit Windows 7 (all service packs) 32- and 64-bit 10.6.x Snow Leopard
32- and 64-bit Windows Server 2008 (all service packs) 32- and 64-bit 10.7.x Lion
64-bit Windows Server 2008 R2 (all service packs) 64-bit 10.8.x Mountain Lion
32- and 64-bit Windows Vista (all service packs) 64-bit 10.9.x Mavericks
32- and 64-bit Windows Server 2003 (all service packs) 64-bit 10.10.x Yosemite

64-bit 10.11.x El Capitan

Supported memory images

Table 3-6, Supported memory images

Firewire (IEEE 1394) 32- and 64-bit MachO files
Raw/Padded Physical Memory Virtualbox Core Dumps
Expert Witness (EWF) VMware Saved State (.vmss) and Snapshot (.vmsn)
32- and 64-bit Windows Crash Dump HPAK Format (FastDump)
32- and 64-bit Windows Hibernation QEMU memory dumps

Supported file formats

Table 3-7, Supported file formats

For our research we implemented a series of virtual machines using VMWare’s virtual-

ization solution, Workstation and Fusion96, whose memory images formats, .vmsn (snap-

shots) and .vmss (saved states), can be analysed thanks to an open source python parser,

vmsnparse97. It should be noted that there is one more related memory format, .vmem,

which is similar to the RAW format.

96 https://www.vmware.com/products/fusion
97 https://code.google.com/p/vmsnparser/

-62-

4 Chapter 4 - Design and Develop-
ment of a Volatility Framework
Plugin

4.1 Setting up the test bed

Multiple Operating Systems are going to be tested in order to test and verify the function-

ality of the Volatility plugins and the respective malware samples.

4.1.1 Operating Systems and Platforms

Multiple virtual machines have been created and a number of snapshots of their states

were generated. The virtualization software of choice is VMWare Workstation Pro for

Linux and VMWare Fusion Pro for OS X. The host operating systems are Ubuntu 15.04

x64 and OSX El Capitan, version 10.11.2. In total nine different virtual machines have

been created. All are implemented for testing purposes and from their memory states

samples are going to be acquired after infecting them with malware. For the analysis of

the acquired samples, reverse engineering, coding and forensic analysis two physical sys-

tems are going to be used as test beds.

The virtual machine created and used for testing purposes are:

• Windows XP Pro SP3 x86

• Windows 7 Pro N SP1 x86

• Windows 7 Pro N SP1 x64

• Windows 8.1 x64

• Windows 10 Pro x64

• Ubuntu LTS 14.04.01 x86

• Ubuntu LTS 14.04.01 x64

• OS X Mountain Lion (10.8.5)

 -63-

The host systems used for the analysis are based on Ubuntu Linux 15.04 x64 and OSX El Cap-

itan, 10.11.2.

Following are pictures of said virtual machines, along with their hardware specifications:

Figure 4-1, Windows XP and Windows 7 x64 VMs

-64-

Figure 4-2, Windows 7 x86 and Windows 8.1 x64 VMs

 -65-

Figure 4-3, Windows 10 and Ubuntu LTS 15.04 x64 VMs

-66-

Figure 4-4, Ubuntu LTS 15.04 x86 and OS X Mountain Lion VMs

 -67-

4.1.2 Hardware Requirements

Since virtualization software is the primary mean of research, hardware requirements of

the test-bed must meat those of the software we are using, VMWare Workstation Pro and

VMWare Fusion Pro. More specifically, for Workstation Pro hardware requirements98

are a standard x86-PC with Intel and AMD processor. VMware recommends the follow-

ing:

• 64-bit x86 Intel Core Duo Processor or equivalent, AMD Athlon 64 FX Dual Core

Processor or equivalent

• 1.3GHz speed or faster

• 2GB RAM minimum, 4GB RAM and above recommended

Workstation Pro installation requires:

1.2 GB of available disk space for the application. Additional hard disk space required

for each virtual machine, depending on the minimum requirements of the operating sys-

tem it hosts.

For Windows DirectX 10 support in a virtual machine:

• 3GB RAM (Host PC)

• Intel Dual Core, 2.2GHz and above or AMD Athlon 4200+ and above

• NVIDIA GeForce 8800GT and above or ATI Radeon HD 2600 and above

For VMWare Fusion Pro the hardware requirements are the following99:

• Any 64--bit capable Intel® Mac, compatible with Core 2 Duo, Xeon, i3, i5, i7

processors or better

• Minimum 4GB of RAM

• 750MB free disk space for VMware Fusion and at least 5GB for each virtual ma-

chine, depending on the client’s operating system

• Mac OS X 10.9.0 or later

• Operating system installation media (disk or disk image) for virtual machines.

98 https://www.vmware.com/products/workstation/faqs/install-requirements
99 https://www.vmware.com/support/fusion/faq/requirements

-68-

The recommended graphics hardware for Windows DirectX 10 or OpenGL 3.3 support

according to VMWare is equivalent to:

• NVIDIA 8600M or better

• ATI 2600 or better

Regarding the hardware specifications of the clients, all virtual machines meat the mini-

mum requirements specified by the developers of each operating system. Moreover, due

to antimalware techniques[71] [72] introduced to various modern malware, some hard-

ware features like the size of the hard disk are purposely set to values well beyond the

requirements of the client operating system. One of the advantages of virtualization is the

ability to change the hardware settings of the operating system on the fly or after a reboot,

which in some cases, like the analysis of a malware anti-debugging and anti-virtualization

techniques similar to the Tinba[73], is a valuable feature.

4.1.3 Software Requirements

The client machines are default installations of the operating systems, updated to the latest

version via their respective update mechanisms. In each case the appropriate software

solution for memory acquisition was installed100, so as to have the option of acquire the

memory natively from inside the client, apart from the .vmss files prvided from

VMWare’s software.

For the host machines, Volatility Framework along with all the recommended packages

was installed101. VMWare Workstation and Fusion as stated earlier were installed on both

computers. Both products support all versions of Linux and Windows for client systems,

however OS X is not supported by default. In order to run Apple’s operating system via

VMWare Workstation or Fusion, we patched the them via an open source tool written in

Python, Unlocker102.

100 See Chapter 3, Memory Dumps
101 See Chapter 3, Installation and setting up a test environment
102 http://www.insanelymac.com/forum/files/file/339-unlocker/

 -69-

For research purposes, three samples of DevilRobber103, a Bitcoin malware for OSX, have

been acquired thanks to Mikko Hypponen104, CRO of F-Secure and are used to infected

the corresponding virtual machine. The MD5 hashes of the samples:

 MD5 (mdsa.1) = 16e3bc0415056eb15b2752613970b79d

MD5 (mdsa.2) = a123cc209802aa37cc62d23682e8cf8d

MD5 (mdsa.3) = 9e22ceb19f397f8cd018f90c857ab638

In order to test the functionality of a Volatility Framework plugin related to Bicoin, de-

veloped by Cem Gurkok[45] (see Appendix A), MultiBit HD105, a Bitcoin wallet was also

installed. For the Windows platform two samples of BadMiner106 malware were investi-

gated for the same purposes. The MD5 hashes of the samples:

 MD5 (BadMinerSample1.exe) = 0761d41068167c83047d06b89f497343

MD5 (badminerSample2) = 6defe9a02352ddc0dba8f9949602c1d7

For the Linux platform, two samples of a Linux malware that in 2014 was found to hav

infected more than 31.000 devices that were running Linux, the Darlloz worm [74], were

used. The MD5 hashes of the samples:

MD5 (Darlloz sample 1) = df70db2fa08985c237892e83861bed50

MD5 (Darlloz sample 2) = bd3870a568e1019797bff113c39ad3e0

103 https://www.f-secure.com/v-descs/backdoor_osx_devilrobber_a.shtml
104 https://mikko.hypponen.com/
105 https://multibit.org/
106 https://www.symantec.com/security_response/writeup.jsp?docid=2011-081115-
5847-99

-70-

4.2 A Bitcoin plugin for the Volatility Framework

The Volatility Foundation every year holds a plugins contest, for everyone to participate,

awarding the top three plugins that are judged by them for their intuition, creativity and

usefulness. In 2014 Cem Gurkok’s [45] plugin for finding Bitcoin addresses and keys of

a specific Bitcoin desktop client, Multibit HD107 received an honorary mention.

Upon examining said plugin source code (see Appendix A), we researched the possibility

of expanding its features to more than locating artifacts of the aforementioned client.

Firstly, we compiled a list of all the Bitcoin desktop clients for OSX, which are used

worldwide and are endorsed by the top sites regarding Bitcoin in the world108. The list in

no particular order:

• Hive

• Bither

• Copay

• Electrum

• mSiGNA

• ArmoryQt

• Multibit HD

Then we proceeded installing each one of them and examine their footprint on three of

the latest versions of OS X; Mountain Lion, Yosemite, El Capitan. In all cases we focused

on unique attributes that would help pinpoint the existence of the clients on the system in

order to enhance the plugin mentioned earlier for detecting an analyzing them. There are

many possible ways of doing so. One of them is by using Yara109, “a tool aimed at helping

malware researchers to classify and identify malware samples”. By using Yara, we can

examine the executables and create rules that can uniquely identify them. A sample rule

that contains information regarding its creator and the pattern of strings that is used, fol-

lows:

107 https://multibit.org/
108 http://www.alexa.com/topsites/category/Science/Social_Sciences/Economics/Finan-
cial_Economics/Currency_and_Money/Alternative_Monetary_Systems/Bitcoin
109 https://plusvic.github.io/yara/

 -71-

rule thesis_sample : sample
{
 meta:
 description = "This is an example"
 thread_level = 5
 in_the_wild = no

 strings:
 $a = {0A 00 00 30 90 00 00 8A 14 1D 90}
 $b = {0F 5Q D0 0F CC 11 90 00 2B 9E FF E7 00}
 $c = "TDGFOIHHNALMPQLOI"

 condition:
 $a or $b or $c
}

Another way of identifying unique properties in every client’s footprint is by examining

the process listing. Every client has a unique process name tied to their actual name, mak-

ing it an ideal way of locating their memory. More specifically:

• Hive is identified as Hive

• Bither is identified as JWrapper-Bither

• Multibit HD is identified as JavaApplicationS

• Copay is based on node.js110 and should not be identified by the nwjs string alone.

Coppay.app is used instead.

• Electrum as Electrum

• mSIGNA as mSigna

• ArmoryGt as ArmoryQt

Figure 4-5, All clients running and their identifiers

110 https://github.com/nwjs/nw.js

-72-

In addition, we analyzed samples of three OS X malware families that can lead to back-

dooring a system and illegal Bitcoin mining, DevilRober111, Kitmos112 and Morcut113.

Since their processes and executables are on purpose randomly created in order to avoid

such a similar kind of detection, Yara was used to create rules that will help locate them.

Creating a Yara rule can be achieved either by using the Python command line tool yar-

agenerator114:

python yaraGenerator.py ../OSX/ -r DevilRobber -a "Giotis" -d "DevilRobber sample" -
t "OSX" -f "exe"

or by using an automated service like yaragenerator.com. It is also possible to create them

manually after reading the documentation, however the two solution mentioned are far

more efficient when dealing with multiple samples.

111https://www.f-secure.com/v-descs/backdoor_osx_devilrobber_a.shtml
112https://www.symantec.com/security_response/writeup.jsp?docid=2013-051616-5911-
99
113https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spy-
ware/OSX~Morcut-A.aspx
114https://github.com/Xen0ph0n/YaraGenerator

 -73-

5 Chapter 5 - Evaluation of the
proposed plugin

In this chapter we are discussing the enhancements made to the Bitcoin plugin, along with

the advantages and disadvantages they introduce.

5.1 Analysis of the code

Following is a snippet of code with the enhancements introduced (see Appendix A).

def calculate(self):
 all_tasks = pstasks.mac_tasks(self._config).allprocs()
 bit_tasks = []
 btcclients = ['Electrum', 'Hive', 'JavaApplicationS', 'JWrapper-Bither',

'Coppay.app', 'mSigna', 'ArmoryQt']

 try:
 if self._config.PID:
 pidlist = [int(p) for p in self._config.PID.split(',')]
 bit_tasks = [t for t in all_tasks if t.p_pid in pidlist]
 else:
 i = 0
 while i<len(btcclients):
 client2check=btcclients[i]
 name_re = re.compile(client2check, re.I)
 bit_tasks = [t for t in all_tasks if name_re.search(str(t.p_comm))]
 i=i+1
 except:
 pass

 if len(bit_tasks) == 0:
 yield (None, None)

-74-

The framework upon request will search the memory sample for one or all of the clients

introduced in the list btcclients and check their memory space for structures indicating

the presence of a Bitcoin wallet or key.

For the malware samples referred earlier, a number of Yara rules where created for em-

bedding into the plugin, that will help detecting their existence in a memory sample.

DevilRobber

rule DevilRobber : OSX
{
meta:
 author = "Giotis"
 date = "2015-11-10"
 description = "OSX"
 hash0 = "a123cc209802aa37cc62d23682e8cf8d"
 hash1 = "16e3bc0415056eb15b2752613970b79d"
 hash2 = "9e22ceb19f397f8cd018f90c857ab638"
 sample_filetype = "exe"
 yaragenerator = "https://github.com/Xen0ph0n/YaraGenerator"
strings:
 $string0 = "_read$UNIX2003"
 $string1 = "content-length"
 $string2 = "URLBase"
 $string3 = "/usr/lib/dyld"
 $string4 = "[FF02::C]"
 $string5 = "_listen$UNIX2003"
 $string6 = "_curl_global_init"
 $string7 = "_close$UNIX2003"
 $string8 = "_malloc"
 $string9 = "__const"
 $string10 = "rm -f s.txt"
 $string11 = "_inet_addr"
 $string12 = "presentationURL"
 $string13 = "__common"
 $string14 = "_recv$UNIX2003"
 $string15 = "_curl_easy_init"
 $string16 = "__DefaultRuneLocale"
 $string17 = "_freeaddrinfo"
 $string18 = "_strcmp"
condition:
 18 of them
}

 -75-

Kitmos

rule Kitmos : OSX
{
meta:
 author = "Giotis"
 date = "2015-11-10"
 description = "Kitmos"
 hash0 = "39faa22eb9d6b750ec345efcb38189f5"
 hash1 = "d43dec59fa8e6629ff46ae9e56f698d8"
 hash2 = "2e5345da904bba1c116b818fc9d5ab8f"
 hash3 = "b3d49091875de190f200110c2f2032d4"
 hash4 = "f9fabd1637d190e0e0a5c117c71921fc"
 sample_filetype = "exe"
 yaragenerator = "https://github.com/Xen0ph0n/YaraGenerator"
strings:
 $string0 = "m_nLoadedCount"
 $string1 = " before "
 $string2 = "addObject:"
 $string3 = "/bin/sh"
 $string4 = "m_ExtArray"
 $string5 = "requestWithURL:"
 $string6 = "m_nSavedMoment"
 $string7 = "copyItemAtPath:toPath:error:"
 $string8 = "N37CXSRXLD110/"
 $string9 = "__TEXT"
 $string10 = "121207052050Z"
 $string11 = "removeAllObjects"
 $string12 = "N37CXSRXLD1"
 $string13 = "/System/Library/Frameworks/AppKit.framework/Ver-

sions/C/AppKit"
 $string14 = "dictionaryWithObjectsAndKeys:"
 $string15 = "TaskWrapperController"
 $string16 = "NSWindow"
 $string17 = "$Developer ID Certification Authority1"
 $string18 = "/usr/lib/libobjc.A.dylib"
condition:
 18 of them
}

-76-

Morcut

rule Morcut : OSX
{
meta:
 author = "Giotis"
 date = "2015-11-10"
 description = "Morcut"
 hash0 = "2c684cad7e75f17a57b6a6a1ca7198f3"
 hash1 = "acec5f00057d3ec94849511f3eddcb91"
 hash2 = "faab883598c8c379acfd0b9dccc93d0c"
 hash3 = "7c3a2225792be3087d6e8c073cb8a58d"
 hash4 = "8b08a91726ff8e4218af1336b4bf1f1d"
 hash5 = "6f055150861d8d6e145e9aca65f92822"
 hash6 = "59fe83e0ae12e085e0fa301ecca6776f"
 sample_filetype = "exe"
 yaragenerator = "https://github.com/Xen0ph0n/YaraGenerator"
strings:
 $string0 = "setKey:"
 $string1 = "setSharedMemoryID:"
 $string2 = "writeMemorybyXPC:offset:fromComponent:"
 $string3 = "_getuid"
 $string4 = "/usr/lib/libSystem.B.dylib"
 $string5 = "/System/Library/Frameworks/Foundation.framework/Ver-

sions/C/Foundation"
 $string6 = "/tmp/launchch-%d"
 $string7 = "/usr/lib/system/libsystem_sandbox.dylib"
 $string8 = "readMemory:fromComponent:"
 $string9 = "mSemaphoreName"
 $string10 = "fileExistsAtPath:"
 $string11 = "initWithFormat:"
 $string12 = "__NSConcreteGlobalBlock"
 $string13 = "mAmIPrivUser"
 $string14 = "mSharedMemoryID"
 $string15 = "mSemaphoreID"
 $string16 = "com.apple."
condition:
 16 of them
}

 -77-

5.2 Case study and evaluation of the plugin

The enhanced plugin was tested against multiple instances of a virtual machine running

OS X with Bitcoin clients installed. Following is a showcase of some of the results.

The Hive Bitcoin client for desktop was one of the tests. A wallet was created and three

Bitcoin addresses were used, two of whom are shown in Figure 5-1 that follows.

Figure 5-1, The Hive Bitcoin client
Running Volatility against the memory of the system resulted in all three Bitcoin ad-

dresses revealed to the investigator, as show in the following Figure

Figure 5-2, Bitcoin addresses of Hive revealed

-78-

Moreover, apart from Bitcoin clients an investigator may a also search for other processes

by adding the name of the process to the bccclients list. For example, the native applica-

tion of notes for OS X:

Figure 5-3, A Bitcoin wallet address in Notes

and the detection of the Bitcoin key by Volatility:

Figure 5-4, Recovering an address from Notes

Yara signatures are implemented in a similar way. Following is the snippet of code for

detected the DevilRobber malware in a process115:

bit_addrs = []
 devil_rule = yara.compile(sources = {'n' : 'rule r1 {meta: author = "Giotis"

date = "2015-11-10" description = "OSX" hash0 =
"a123cc209802aa37cc62d23682e8cf8d" hash1 =
"16e3bc0415056eb15b2752613970b79d" hash2 =
"9e22ceb19f397f8cd018f90c857ab638" sample_filetype = "exe" yaragenerator =
"https://github.com/Xen0ph0n/YaraGenerator strings: $string0 = "_read$UNIX2003"
$string1 = "content-length" $string2 = "URLBase" $string3 = "/usr/lib/dyld" $string4 =
"[FF02::C]" $string5 = "_listen$UNIX2003" $string6 = "_curl_global_init" $string7 =
"_close$UNIX2003" $string8 = "_malloc" $string9 = "__const" $string10 = "rm -f s.txt"
$string11 = "_inet_addr" $string12 = "presentationURL" $string13 = "__common"
$string14 = "_recv$UNIX2003" $string15 = "_curl_easy_init" $string16 = "__De-
faultRuneLocale" $string17 = "_freeaddrinfo" $string18 = "_strcmp" condition: 18 of
them}'})

 for task in bit_tasks:
 scanner = mac_yarascan.MapYaraScanner(task = task, rules =

devil_rule)
 for hit, address in scanner.scan():
 content = scanner.address_space.zread(address, 34)
 bit_addrs.append('DevilRobber detected!')

115 The Yara rule for DevilRobber was created earlier, at Chapter 5.1

 -79-

5.3 Strong and weak points of the implementation

By expanding the list an investigator can virtually examine every process for artifacts

associated with Bitcoin. One can even implement Python’s regular expressions for de-

tecting random names usually associated with malware. This however would require a

great amount of CPU resources and can be time consuming, making this a non-optimal

solution for investigations where the systems used to perform the analysis are not state of

the art from their CPU perspective.

Yara rules for detecting malware are also an efficient way of dealing malware like Devil

Robber that cannot be detected due to the random names it uses. Like in the previous

case, they have the disadvantage of having to be updated along with the updates of the

malware itself and their effectiveness is directly connected with the number of samples

used for their generation: The merrier the better.

A implementation in the plugin of both ways of detection for each process of interest,

along with an update mechanism is the next step towards a more efficient way of per-

forming analysis focused on Bitcoin related processes.

6 Chapter 6 - Conclusions

Summary of the thesis and future development

6.1 Summary

For this thesis we examined the current state of malware and malware economy. We fo-

cused on a portion of malware programs, closely related to a recently introduced innova-

tion, digital currencies. We examined the current state of digital currencies, focusing at

the predominant of them, Bitcoin, and compared it with other digital currencies. We in-

troduced the way it works, why is it considered by some the future of global economy.

We also took a close look on how criminals are combining those two technologies,

Bitcoin and malware, in order to locate and take advantage of both unsuspecting and ed-

ucated victims.

We advocated on the need of digital forensics a section of forensics introduced officially

in the early ‘80s, a lot later than the creation of computers and other forensic sciences.

We debated on why memory forensics are a vital part of digital forensics and researched

the inner workings of one of the cornerstone frameworks of memory forensics, the Vola-

tility Framework.

We investigated the current state of plugins for the Volatility framework, and enhanced

it by implementing a series of additions regarding Bitcoin related legitimate programs

and malware, after inspecting a variety of them. Finally, we propose a series of improve-

ments that will further expand and advance the field of memory forensics against mal-

ware.

-82-

6.2 Contribution

All the code created for this thesis along with future development, will be made available

as an open-source project, in a public repository116 under the MIT Licence117

6.3 Future Development

Creating equivalent plugins for Windows and Linux is considered the top priority regard-

ing future development. Adding multithreading or multiprocessing futures to the plugin

would greatly improve the experience of a forensic investigator who is working a home

computer. Moreover, multiprocessing support will be the gateway to another improve-

ment that as of now is not cost and time effective; The examination for Bitcoin related

artifacts in every process that is found in a memory dump, by automatically loading its

PID into a list similar to the one introduced in the thesis and then separately analyzing

them. Furthermore, combining Yara rules in the above scenario will result in an all

around solution for detecting Bitcoin related malware.

116 https://github.com/GiotisD
117 https://opensource.org/licenses/MIT

 -83-

7 Bibliography

[1] N. Losses, “Estimating the Global Cost of Cybercrime,” McAfee, Cent. Strateg.
Int. Stud., 2014.

[2] “Cyber crime costs global economy $445 bn annually.” [Online]. Available:
http://www.telegraph.co.uk/technology/internet-security/10886640/Cyber-crime-
costs-global-economy-445-bn-annually.html. [Accessed: 16-Jun-2015].

[3] E. Mills, “Cybercrime Cost Firms $1 Trillion Globally,” 2009.

[4] D. Huang, “Profit-driven abuses of virtual currencies,” Univ. California, San
Diego, 2013.

[5] H. Dharmdasani, “Botnets and Crypto Currency-Effects of Botnets on the Bitcoin
Ecosystem,” 2013.

[6] K. Poulsen, “New malware steals your bitcoin,” 2011.

[7] A. Chiang, “Bitcoin-mining Malware is rising in APAC region,” 2013. [Online].
Available: http://apac.trendmicro.com/apac/about-
us/newsroom/releases/articles/20131224091333.html. [Accessed: 10-Sep-2015].

[8] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting intelligence from
the bitcoin network,” Financ. Cryptogr. Data …, 2014.

[9] L. Abrams, “CryptoLocker Ransomware Information Guide and FAQ,” Viitattu,
2013.

[10] P. Outbreaks, “Malicious-Advertising Attacks Inflict Ransomware on Victims,”
ieeexplore.ieee.org.

[11] H. Orman, “The Morris worm: A fifteen-year perspective,” IEEE Secur. Priv.,
2003.

[12] R. Morris, “The Morris Worm source code,” 1988. [Online]. Available:
http://www.foo.be/docs-free/morris-worm/worm/. [Accessed: 16-Oct-2015].

[13] Microsoft, “The Evolution of Malware and the Threat Landscape – a 10-Year
review,” 2012.

[14] C. Shannon and D. Moore, “The spread of the witty worm,” Secur. Privacy, IEEE,
2004.

[15] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” Secur. Privacy, IEEE,
2011.

[16] N. Falliere, L. Murchu, and E. Chien, “W32. stuxnet dossier,” White Pap.
Symantec Corp., Secur. …, 2011.

-84-

[17] J. M. Kizza, Guide to Computer Network Security. London: Springer London,
2015.

[18] M. Ligh, A. Case, J. Levy, and A. Walters, The art of memory forensics: detecting
malware and threats in Windows, Linux, and Mac memory. 2014.

[19] M. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware analyst’s cookbook and
DVD: tools and techniques for fighting malicious code. 2010.

[20] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to
Dissecting Malicious Software. 2012.

[21] A. Case, “Mac Memory Analysis with Volatility,” DFIR Summit, 2012. [Online].
Available: https://reverse.put.as/wp-content/uploads/2011/06/sas-summit-mac-
memory-analysis-with-volatility.pdf. [Accessed: 24-Aug-2015].

[22] M. KA, “Linux Memory Diff Analysis using Volatility,” 2015. [Online].
Available: http://malware-unplugged.blogspot.in/2015/09/linux-memory-diff-
analysis-using.html. [Accessed: 25-Sep-2015].

[23] A. Case, “Mac Memory Analysis with Volatility,” 2011. [Online]. Available:
https://digital-forensics.sans.org/summit-archives/2012/mac-memory-analysis-
with-volatility.pdf. [Accessed: 24-Aug-2015].

[24] A. F. Hay, “Forensic Memory Analysis for Apple OS X.” [Online]. Available:
https://reverse.put.as/wp-content/uploads/2011/06/FORENSIC-MEMORY-
ANALYSIS-FOR-APPLE-OS-X.pdf. [Accessed: 24-Aug-2015].

[25] J. Seitz, Gray Hat Python: Python programming for hackers and reverse
engineers. 2009.

[26] Z. Shaw, “Learn Python the hard way,” 2010.

[27] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Consulted, 2008.

[28] J. DAVIS, “The Crypto-Currency,” The New Yorker, 2011. [Online]. Available:
http://www.newyorker.com/magazine/2011/10/10/the-crypto-currency.
[Accessed: 11-Dec-2015].

[29] A. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocurrencies. 2014.

[30] R. McMillan, “Ex-Googler Gives the World a Better Bitcoin | WIRED,” Wired,
2013. [Online]. Available: http://www.wired.com/2013/08/litecoin/. [Accessed:
11-Dec-2015].

[31] A. Greenberg, “Darkcoin, the Shadowy Cousin of Bitcoin, Is Booming | WIRED,”
Wired, 2013. [Online]. Available: http://www.wired.com/2014/05/darkcoin-is-
booming/. [Accessed: 11-Dec-2015].

[32] M. Swan, Blockchain: Blueprint for a New Economy. 2015.

[33] J. Bearman, “The Untold Story of Silk Road, Part 1 | WIRED,” 2015. [Online].
Available: http://www.wired.com/2015/04/silk-road-1/. [Accessed: 23-Aug-
2015].

[34] M. Moser, R. Bohme, and D. Breuker, “An inquiry into money laundering tools in
the Bitcoin ecosystem,” eCrime Res. Summit (…, 2013.

[35] A. Kujawa, “Potentially Unwanted Miners,” Malwarebytes Unpacked, 2013.

 -85-

[Online]. Available: https://blog.malwarebytes.org/fraud-
scam/2013/11/potentially-unwanted-miners-toolbar-peddlers-use-your-system-to-
make-btc/. [Accessed: 05-Dec-2015].

[36] J. Cannel, “Cryptolocker Ransomware: What You Need to Know,” Malwarebytes
Unpacked, 2013.

[37] G. O’Gorman and G. McDonald, Ransomware: a growing menace. 2012.

[38] J. Ami-Narh and P. Williams, “Digital forensics and the legal system: A dilemma
of our times,” Aust. Digit. Forensics Conf., 2008.

[39] S. Vömel and J. Stüttgen, “An evaluation platform for forensic memory acquisition
software,” Digit. Investig., 2013.

[40] “Welcome to Python.org.” [Online]. Available: https://www.python.org/.
[Accessed: 17-Oct-2015].

[41] Volatility Foundation, “An advanced memory forensics framework.” .

[42] “ForensicsWiki.” [Online]. Available: http://forensicswiki.org/wiki/Main_Page.
[Accessed: 25-Aug-2015].

[43] A. Walters and N. Petroni, “Volatools: integrating volatile memory forensics into
the digital investigation process. Blackhat Hat DC 2007,” 2007.

[44] D. Olenick, “Apple iOS And Google Android Smartphone Market Share
Flattening: IDC - Forbes,” Forbes.com LLC, 2015. [Online]. Available:
http://www.forbes.com/sites/dougolenick/2015/05/27/apple-ios-and-google-
android-smartphone-market-share-flattening-idc/2/. [Accessed: 17-Oct-2015].

[45] Cem Gurkok, “The Volatility Foundation - Open Source Memory Forensics |
2014,” 2014. [Online]. Available:
http://www.volatilityfoundation.org/#!2014/cjpn. [Accessed: 25-Aug-2015].

[46] MoonSols, “MoonSols Windows Memory Toolkit | MoonSols.” [Online].
Available: http://www.moonsols.com/windows-memory-toolkit/. [Accessed: 24-
Aug-2015].

[47] J. Stuettgen, “OSXPmem - pmem - The OSX Pmem memory acquisition tool. -
Pmem is a suite of memory acquisition tools. - Google Project Hosting.” [Online].
Available: https://code.google.com/p/pmem/wiki/OSXPmem. [Accessed: 24-
Aug-2015].

[48] R. Endsley, “Physical Memory Analysis with the LiME Linux Memory Extractor,”
2012. [Online]. Available: https://www.linux.com/learn/tutorials/565969-
physical-memory-analysis-with-the-lime-linux-memory-extractor. [Accessed: 24-
Aug-2015].

[49] S. K. Paul Rubin, David MacKenzie, “dd(1): convert/copy file - Linux man page.”
2010.

[50] Brendan Dolan-Gavitt, “pdbparse, a GPL-licensed library for parsing Microsoft
PDB files.” 2015.

[51] B. Dolan-Gavitt, “Brendan Dolan-Gavitt -- Home.” [Online]. Available:
http://www.cc.gatech.edu/~brendan/. [Accessed: 18-Oct-2015].

[52] VolatilityTeam, “VolatilityTeam - volatility - Volatility Development Team - An

-86-

advanced memory forensics framework,” 2012. [Online]. Available:
https://code.google.com/p/volatility/wiki/VolatilityTeam. [Accessed: 02-Nov-
2015].

[53] C. Gurkok, “What’s in your silicon?: Hooking IDT in OS X and Detection,” 2013.
[Online]. Available: http://siliconblade.blogspot.gr/2013/07/idt-hooks-and-
detecting-them-in-osx.html. [Accessed: 03-Dec-2015].

[54] C. Gurkok, “What’s in your silicon?: Back to Defense: Finding Hooks in OS X
with Volatility,” 2013. [Online]. Available:
http://siliconblade.blogspot.gr/2013/07/back-to-defense-finding-hooks-in-os-
x.html. [Accessed: 03-Dec-2015].

[55] C. Gurkok, “What’s in your silicon?: Offensive Volatility: Messing with the OS X
Syscall Table,” 2013. [Online]. Available:
http://siliconblade.blogspot.gr/2013/07/offensive-volatility-messing-with-os-
x.html. [Accessed: 03-Dec-2015].

[56] L. Bilge and T. Dumitras, “Before we knew it: an empirical study of zero-day
attacks in the real world,” Proc. 2012 ACM Conf. …, 2012.

[57] L. Foundation, “2014 Enterprise End User Report,” 2014. [Online]. Available:
https://www.linuxfoundation.org/publications/linux-foundation/linux-end-user-
trends-report-2014. [Accessed: 04-Dec-2015].

[58] M. Butler, “Android: Changing the mobile landscape,” Pervasive Comput. IEEE,
2011.

[59] M. Fontanini, “Average coder: Linux rootkit implementation,” 2011. [Online].
Available: http://average-coder.blogspot.gr/2011/12/linux-rootkit.html.
[Accessed: 04-Dec-2015].

[60] S. McCarty, “Architecting Containers Part 1: Why Understanding User Space vs.
Kernel Space Matters | Red Hat Enterprise Linux Blog,” Red Hat Enterprize Linux
Blog, 2015. [Online]. Available:
http://rhelblog.redhat.com/2015/07/29/architecting-containers-part-1-user-space-
vs-kernel-space/. [Accessed: 04-Dec-2015].

[61] P. Mochel, “The sysfs filesystem,” Linux Symp., 2005.

[62] A. Case, “Analyzing Linux Kernel Rootkits with Volatility,” OMFW, 2012.
[Online]. Available: http://volatility-labs.blogspot.gr/2012/10/omfw-2012-
analyzing-linux-kernel.html. [Accessed: 05-Dec-2015].

[63] P. Wardle, “Malware Persistence on OS X Yosemite | USA 2015 RSA
Conference,” 2015. [Online]. Available:
https://www.rsaconference.com/events/us15/agenda/sessions/1591/malware-
persistence-on-os-x-yosemite. [Accessed: 31-Aug-2015].

[64] P. Wardle, “Virus Bulletin : VB2014 - Methods of malware persistence on Mac
OS X,” 2014. [Online]. Available:
https://www.virusbtn.com/conference/vb2014/abstracts/Wardle.xml. [Accessed:
31-Aug-2015].

[65] A. Case and G. Richard, “Advancing Mac OS X rootkit detection,” Digit. Investig.,
2015.

 -87-

[66] Virtualcurrency.com, “The current Bitcoin acceptance market - Payments Cards &
Mobile,” 2014. [Online]. Available:
http://www.paymentscardsandmobile.com/current-bitcoin-acceptance-market/.
[Accessed: 19-Aug-2015].

[67] K. McMillan, “Gaming Company Fined $1M for Turning Customers Into Secret
Bitcoin Army | WIRED,” Wired, 2013. [Online]. Available:
http://www.wired.com/2013/11/e-sports/. [Accessed: 05-Dec-2015].

[68] P. Dimotikalis, “Bitcoin mining: The stupid way - Gi0’s Blog,” 2013. [Online].
Available: http://giot.is/bitcoin-mining-the-stupid-way/. [Accessed: 24-Aug-
2015].

[69] P. Dimotikalis, “Lets Talk Bitcoin - Ponzis, Malware, and the Hashing Cartel,”
Let’s Talk Bitcoin, 2013. [Online]. Available: https://letstalkbitcoin.com/e27-
ponzis-malware-and-the-hashing-cartel/. [Accessed: 05-Dec-2015].

[70] B. Carrier and J. Grand, “A hardware-based memory acquisition procedure for
digital investigations,” Digit. Investig., 2004.

[71] X. Chen, J. Andersen, and Z. Mao, “Towards an understanding of anti-
virtualization and anti-debugging behavior in modern malware,” … Networks With
…, 2008.

[72] K. Kendall and C. McMillan, “Practical malware analysis,” Black Hat Conf. USA,
2007.

[73] O. Bach, “Tinba: World’s Smallest Malware Has Big Bag of Nasty Tricks,”
Security Intelligence IBM, 2015. [Online]. Available:
https://securityintelligence.com/tinba-worlds-smallest-malware-has-big-bag-of-
nasty-tricks/. [Accessed: 10-Dec-2015].

[74] J. Kirk, “The Darlloz Linux worm diversifies to mine cryptocurrencies |
Computerworld,” ComputerWorld, 2014. [Online]. Available:
http://www.computerworld.com/article/2488828/malware-vulnerabilities/the-
darlloz-linux-worm-diversifies-to-mine-cryptocurrencies.html. [Accessed: 10-
Dec-2015].

 -88-

8 Appendix A

Source code

bitcoin.py

Volatility
Copyright (C) 2007-2013 Volatility Foundation

This file is part of Volatility.

Volatility is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 2 as
published by the Free Software Foundation. You may not use, modify or
distribute this program under any other version of the GNU General
Public License.

Volatility is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Volatility. If not, see <http://www.gnu.org/licenses/>.

"""
@author: Cem Gurkok
@license: GNU General Public License 2.0
@contact: cemgurkok@gmail.com
@organization:
"""

import re
import volatility.obj as obj
import volatility.plugins.mac.common as common
import volatility.plugins.mac.pstasks as pstasks
import volatility.debug as debug
import volatility.utils as utils
import volatility.plugins.mac.mac_yarascan as mac_yarascan

 -89-

try:
 import pycoin.key as pykey
 import pycoin.encoding as pyenc
except ImportError:
 print "You need to install pycoin for this plugin to run [pip install pycoin]"

try:
 import yara
except ImportError:
 print "You need to install yara for this plugin to run
[https://github.com/plusvic/yara]"

class mac_bitcoin(common.AbstractMacCommand):
 """Get bitcoin artifacts from OS X multibit client memory"""

 def __init__(self, config, *args, **kwargs):
 common.AbstractMacCommand.__init__(self, config, *args, **kwargs)
 self._config.add_option('PID', short_option = 'p', default = None, help = 'Operate
on these Process IDs (comma-separated)', action = 'store', type = 'str')

 def calculate(self):
 all_tasks = pstasks.mac_tasks(self._config).allprocs()
 bit_tasks = []

 try:
 if self._config.PID:
 # find tasks given PIDs
 pidlist = [int(p) for p in self._config.PID.split(',')]
 bit_tasks = [t for t in all_tasks if t.p_pid in pidlist]
 else:
 # find multibit process
 name_re = re.compile("JavaApplicationS", re.I)
 bit_tasks = [t for t in all_tasks if name_re.search(str(t.p_comm))]
 except:
 pass

 if len(bit_tasks) == 0:
 yield (None, None)

 # scan for bitcoin addresses with yara, 34 chars, https://en.bitcoin.it/wiki/Address
 # Most Bitcoin addresses are 34 characters. They consist of random digits and up-
percase
 # and lowercase letters, with the exception that the uppercase letter "O", upper-
case
 # letter "I", lowercase letter "l", and the number "0" are never used to prevent vis-
ual ambiguity.
 bit_addrs = []
 addr_rule = yara.compile(sources = {'n' : 'rule r1 {strings: $a = /[1-9a-zA-

-90-

z]{34}(?!OIl)/ condition: $a}'})
 for task in bit_tasks:
 scanner = mac_yarascan.MapYaraScanner(task = task, rules = addr_rule)
 for hit, address in scanner.scan():
 content = scanner.address_space.zread(address, 34)
 if pyenc.is_valid_bitcoin_address(content) and content not in bit_addrs:
 bit_addrs.append(content)

 # scan for bitcoin keys with yara, 52 char compressed base58, starts with L or K,
https://en.bitcoin.it/wiki/Private_key
 addr_key = {}
 key_rule = yara.compile(sources = {'n' : 'rule r1 {strings: $a = /(L|K)[0-9A-Za-
z]{51}/ condition: $a}'})
 for task in bit_tasks:
 scanner = mac_yarascan.MapYaraScanner(task = task, rules = key_rule)
 for hit, address in scanner.scan():
 content = scanner.address_space.zread(address, 52)
 if pyenc.is_valid_wif(content):
 secret_exp = pyenc.wif_to_secret_exponent(content)
 key = pykey.Key(secret_exponent = secret_exp,is_compressed=True)
 if key.address() not in addr_key.keys():
 addr_key[key.address()] = content
 yield(content, key.address())

 # addresses with no known keys
 for bit_addr in bit_addrs:
 if bit_addr not in addr_key.keys():
 yield ("UNKNOWN", bit_addr)

 def render_text(self, outfd, data):
 self.table_header(outfd, [("Bitcoin Key (Base58, compressed pub key)",
"<52"),("Bitcoin Address","<34")])
 for key, address in data:
 self.table_row(outfd, key, address)

unlocker.py

"""
The MIT License (MIT)

Copyright (c) 2014-2015 Dave Parsons & Sam Bingner

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the 'Software'), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

 -91-

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN
THE SOFTWARE.

vSMC Header Structure
Offset Length struct Type Description
--
0x00/00 0x08/08 Q ptr Offset to key table
0x08/08 0x04/4 I int Number of private keys
0x0C/12 0x04/4 I int Number of public keys

vSMC Key Data Structure
Offset Length struct Type Description
--
0x00/00 0x04/04 4s int Key name (byte reversed e.g. #KEY is YEK#)
0x04/04 0x01/01 B byte Length of returned data
0x05/05 0x04/04 4s int Data type (byte reversed e.g. ui32 is 23iu)
0x09/09 0x01/01 B byte Flag R/W
0x0A/10 0x06/06 6x byte Padding
0x10/16 0x08/08 Q ptr Internal VMware routine
0x18/24 0x30/48 48B byte Data
"""

import os
import sys
import struct
import subprocess

if sys.version_info < (2, 7):
 sys.stderr.write('You need Python 2.7 or later\n')
 sys.exit(1)

Setup imports depending on whether IronPython or CPython
if sys.platform == 'win32' \
 or sys.platform == 'cli':
 from _winreg import *

-92-

def rot13(s):
 chars = 'AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz'
 trans = chars[26:] + chars[:26]
 rot_char = lambda c: trans[chars.find(c)] if chars.find(c) > -1 else c
 return ''.join(rot_char(c) for c in s)

def bytetohex(bytestr):
 return ''.join(['%02X ' % ord(x) for x in bytestr]).strip()

def printkey(i, offset, smc_key, smc_data):
 print str(i + 1).zfill(3) \
 + ' ' + hex(offset) \
 + ' ' + smc_key[0][::-1] \
 + ' ' + str(smc_key[1]).zfill(2) \
 + ' ' + smc_key[2][::-1].replace('\x00', ' ') \
 + ' ' + '{0:#0{1}x}'.format(smc_key[3], 4) \
 + ' ' + hex(smc_key[4]) \
 + ' ' + bytetohex(smc_data)

E_CLASS64 = 2
E_SHT_RELA = 4

def patchELF(f, oldOffset, newOffset):
 f.seek(0)
 magic = f.read(4)
 if not magic == b'\x7fELF':
 raise Exception('Magic number does not match')

 ei_class = struct.unpack('=B', f.read(1))[0]
 if ei_class != E_CLASS64:
 raise Exception('Not 64bit elf header: ' + ei_class)

 f.seek(40)
 e_shoff = struct.unpack('=Q', f.read(8))[0]
 f.seek(58)
 e_shentsize = struct.unpack('=H', f.read(2))[0]
 e_shnum = struct.unpack('=H', f.read(2))[0]
 e_shstrndx = struct.unpack('=H', f.read(2))[0]

 # print 'e_shoff: 0x{:x} e_shentsize: 0x{:x} e_shnum:0x{:x} e_shstrndx:0x{:x}'.for-
mat(e_shoff, e_shentsize, e_shnum, e_shstrndx)

 for i in range(0, e_shnum):
 f.seek(e_shoff + i * e_shentsize)

 -93-

 e_sh = struct.unpack('=LLQQQQLLQQ', f.read(e_shentsize))
 e_sh_name = e_sh[0]
 e_sh_type = e_sh[1]
 e_sh_offset = e_sh[4]
 e_sh_size = e_sh[5]
 e_sh_entsize = e_sh[9]
 if e_sh_type == E_SHT_RELA:
 e_sh_nument = e_sh_size / e_sh_entsize
 # print 'RELA at 0x{:x} with {:d} entries'.format(e_sh_offset, e_sh_nument)
 for j in range(0, e_sh_nument):
 f.seek(e_sh_offset + e_sh_entsize * j)
 rela = struct.unpack('=QQq', f.read(e_sh_entsize))
 r_offset = rela[0]
 r_info = rela[1]
 r_addend = rela[2]
 if r_addend == oldOffset:
 r_addend = newOffset
 f.seek(e_sh_offset + e_sh_entsize * j)
 f.write(struct.pack('=QQq', r_offset, r_info, r_addend))
 print 'Relocation modified at: ' + hex(e_sh_offset + e_sh_entsize * j)

def patchkeys(f, vmx, key, osname):
 # Setup struct pack string
 key_pack = '=4sB4sB6xQ'
 smc_old_memptr = 0
 smc_new_memptr = 0

 # Do Until OSK1 read
 i = 0
 while True:

 # Read key into struct str and data byte str
 offset = key + (i * 72)
 f.seek(offset)
 smc_key = struct.unpack(key_pack, f.read(24))
 smc_data = f.read(smc_key[1])

 # Reset pointer to beginning of key entry
 f.seek(offset)

 if smc_key[0] == 'SKL+':
 # Use the +LKS data routine for OSK0/1
 smc_new_memptr = smc_key[4]
 print '+LKS Key: '
 printkey(i, offset, smc_key, smc_data)

 elif smc_key[0] == '0KSO':
 # Write new data routine pointer from +LKS
 print 'OSK0 Key Before:'

-94-

 printkey(i, offset, smc_key, smc_data)
 smc_old_memptr = smc_key[4]
 f.seek(offset)
 f.write(struct.pack(key_pack, smc_key[0], smc_key[1], smc_key[2],
smc_key[3], smc_new_memptr))
 f.flush()

 # Write new data for key
 f.seek(offset + 24)
 smc_new_data = rot13('bheuneqjbexolgurfrjbeqfthneqrqcy')
 f.write(smc_new_data)
 f.flush()

 # Re-read and print key
 f.seek(offset)
 smc_key = struct.unpack(key_pack, f.read(24))
 smc_data = f.read(smc_key[1])
 print 'OSK0 Key After:'
 printkey(i, offset, smc_key, smc_data)

 elif smc_key[0] == '1KSO':
 # Write new data routine pointer from +LKS
 print 'OSK1 Key Before:'
 printkey(i, offset, smc_key, smc_data)
 smc_old_memptr = smc_key[4]
 f.seek(offset)
 f.write(struct.pack(key_pack, smc_key[0], smc_key[1], smc_key[2],
smc_key[3], smc_new_memptr))
 f.flush()

 # Write new data for key
 f.seek(offset + 24)
 smc_new_data = rot13('rnfrqbagfgrny(p)NccyrPbzchgreVap')
 f.write(smc_new_data)
 f.flush()

 # Re-read and print key
 f.seek(offset)
 smc_key = struct.unpack(key_pack, f.read(24))
 smc_data = f.read(smc_key[1])
 print 'OSK1 Key After:'
 printkey(i, offset, smc_key, smc_data)

 # Finished so get out of loop
 break

 else:
 pass

 i += 1

 -95-

 return smc_old_memptr, smc_new_memptr

def patchsmc(name, osname, sharedobj):
 with open(name, 'r+b') as f:

 smc_old_memptr = 0
 smc_new_memptr = 0

 # Read file into string variable
 vmx = f.read()

 print 'File: ' + name

 # Setup hex string for vSMC headers
 # These are the private and public key counts
 smc_header_v0 = '\xF2\x00\x00\x00\xF0\x00\x00\x00'
 smc_header_v1 = '\xB4\x01\x00\x00\xB0\x01\x00\x00'

 # Setup hex string for #KEY key
 key_key = '\x59\x45\x4B\x23\x04\x32\x33\x69\x75'

 # Setup hex string for $Adr key
 adr_key = '\x72\x64\x41\x24\x04\x32\x33\x69\x75'

 # Find the vSMC headers
 smc_header_v0_offset = vmx.find(smc_header_v0) - 8
 smc_header_v1_offset = vmx.find(smc_header_v1) - 8

 # Find '#KEY' keys
 smc_key0 = vmx.find(key_key)
 smc_key1 = vmx.rfind(key_key)

 # Find '$Adr' key only V1 table
 smc_adr = vmx.find(adr_key)

 # Print vSMC0 tables and keys
 print 'appleSMCTableV0 (smc.version = "0")'
 print 'appleSMCTableV0 Address : ' + hex(smc_header_v0_offset)
 print 'appleSMCTableV0 Private Key #: 0xF2/242'
 print 'appleSMCTableV0 Public Key #: 0xF0/240'

 if (smc_adr - smc_key0) != 72:
 print 'appleSMCTableV0 Table : ' + hex(smc_key0)
 smc_old_memptr, smc_new_memptr = patchkeys(f, vmx, smc_key0, osname)
 elif (smc_adr - smc_key1) != 72:
 print 'appleSMCTableV0 Table : ' + hex(smc_key1)
 smc_old_memptr, smc_new_memptr = patchkeys(f, vmx, smc_key1, osname)

 print

-96-

 # Print vSMC1 tables and keys
 print 'appleSMCTableV1 (smc.version = "1")'
 print 'appleSMCTableV1 Address : ' + hex(smc_header_v1_offset)
 print 'appleSMCTableV1 Private Key #: 0x01B4/436'
 print 'appleSMCTableV1 Public Key #: 0x01B0/432'

 if (smc_adr - smc_key0) == 72:
 print 'appleSMCTableV1 Table : ' + hex(smc_key0)
 smc_old_memptr, smc_new_memptr = patchkeys(f, vmx, smc_key0, osname)
 elif (smc_adr - smc_key1) == 72:
 print 'appleSMCTableV1 Table : ' + hex(smc_key1)
 smc_old_memptr, smc_new_memptr = patchkeys(f, vmx, smc_key1, osname)

 print

 # Find matching RELA record in .rela.dyn in ESXi ELF files
 # This is temporary code until proper ELF parsing written
 if sharedobj:
 print 'Modifying RELA records from: ' + hex(smc_old_memptr) + ' to ' +
hex(smc_new_memptr)
 patchELF(f, smc_old_memptr, smc_new_memptr)

 # Tidy up
 f.flush()
 f.close()

def patchbase(name):
 # Patch file
 print 'GOS Patching: ' + name
 f = open(name, 'r+b')

 # Entry to search for in GOS table
 darwin = (
 '\x10\x00\x00\x00\x10\x00\x00\x00'
 '\x02\x00\x00\x00\x00\x00\x00\x00'
 '\x00\x00\x00\x00\x00\x00\x00\x00'
 '\x00\x00\x00\x00\x00\x00\x00\x00'
 '\xBE'
)

 # Read file into string variable
 base = f.read()

 # Loop thorugh each entry and set top bit
 # 0xBE --> 0xBF
 offset = 0
 while offset < len(base):
 offset = base.find(darwin, offset)

 -97-

 if offset == -1:
 break
 f.seek(offset + 32)
 flag = f.read(1)
 if flag == '\xBE':
 f.seek(offset + 32)
 f.write('\xBF')
 print 'GOS Patched flag @: ' + hex(offset)
 else:
 print 'GOS Unknown flag @: ' + hex(offset) + '/' + hex(int(flag))

 offset += 33

 # Tidy up
 f.flush()
 f.close()
 print 'GOS Patched: ' + name

def patchvmkctl(name):
 # Patch file
 print 'smcPresent Patching: ' + name
 f = open(name, 'r+b')

 # Read file into string variable
 vmkctl = f.read()
 applesmc = vmkctl.find('applesmc')
 f.seek(applesmc)
 f.write('vmkernel')

 # Tidy up
 f.flush()
 f.close()
 print 'smcPresent Patched: ' + name

def main():
 # Work around absent Platform module on VMkernel
 if os.name == 'nt' or os.name == 'cli':
 osname = 'windows'
 else:
 osname = os.uname()[0].lower()

 vmx_so = False

 # Setup default paths
 if osname == 'darwin':
 vmx_path = '/Applications/VMware Fusion.app/Contents/Library/'
 vmx = vmx_path + 'vmware-vmx'
 vmx_debug = vmx_path + 'vmware-vmx-debug'

-98-

 vmx_stats = vmx_path + 'vmware-vmx-stats'
 vmwarebase = ''
 libvmkctl = ''

 elif osname == 'linux':
 vmx_path = '/usr/lib/vmware/bin/'
 vmx = vmx_path + 'vmware-vmx'
 vmx_debug = vmx_path + 'vmware-vmx-debug'
 vmx_stats = vmx_path + 'vmware-vmx-stats'
 vmx_version = subprocess.check_output(["vmplayer", "-v"])
 if vmx_version.startswith('VMware Player 12'):
 vmx_so = True
 vmwarebase = '/usr/lib/vmware/lib/libvmwarebase.so/libvmwarebase.so'
 else:
 vmwarebase = '/usr/lib/vmware/lib/libvmwarebase.so.0/libvmwarebase.so.0'
 libvmkctl = ''

 elif osname == 'vmkernel':
 vmx_path = '/unlocker/'
 vmx = vmx_path + 'vmx'
 vmx_debug = vmx_path + 'vmx-debug'
 vmx_stats = vmx_path + 'vmx-stats'
 vmx_so = True
 vmwarebase = ''
 libvmkctl = vmx_path + 'libvmkctl.so'

 elif osname == 'windows':
 reg = ConnectRegistry(None, HKEY_LOCAL_MACHINE)
 key = OpenKey(reg, r'SOFTWARE\Wow6432Node\VMware, Inc.\VMware
Workstation')
 vmwarebase_path = QueryValueEx(key, 'InstallPath')[0]
 vmx_path = QueryValueEx(key, 'InstallPath64')[0]
 vmx = vmx_path + 'vmware-vmx.exe'
 vmx_debug = vmx_path + 'vmware-vmx-debug.exe'
 vmx_stats = vmx_path + 'vmware-vmx-stats.exe'
 vmwarebase = vmwarebase_path + 'vmwarebase.dll'
 libvmkctl = ''

 else:
 print('Unknown Operating System: ' + osname)
 return

 # Patch the vmx executables skipping stats version for Player
 patchsmc(vmx, osname, vmx_so)
 patchsmc(vmx_debug, osname, vmx_so)
 try:
 patchsmc(vmx_stats, osname, vmx_so)
 except IOError:
 pass

 -99-

 # Patch vmwarebase for Workstation and Player
 # Not required on Fusion or ESXi as table already has correct flags
 if vmwarebase != '':
 patchbase(vmwarebase)
 else:
 print 'Patching vmwarebase is not required on this system'

 if osname == 'vmkernel':
 patchvmkctl(libvmkctl)

if __name__ == '__main__':
 main()

List of plugins included in Volatility Framework 2.5
amcache - Print AmCache information

apihooks - Detect API hooks in process and kernel memory

atoms - Print session and window station atom tables

atomscan - Pool scanner for atom tables

auditpol - Prints out the Audit Policies from HKLM\SECURITY\Pol-
icy\PolAdtEv

bigpools - Dump the big page pools using BigPagePoolScanner

bioskbd - Reads the keyboard buffer from Real Mode memory

cachedump - Dumps cached domain hashes from memory

callbacks - Print system-wide notification routines

clipboard - Extract the contents of the windows clipboard

cmdline - Display process command-line arguments

cmdscan - Extract command history by scanning for _COM
MAND_HISTORY

connections - Print list of open connections [Windows XP and 2003 Only]

connscan - Pool scanner for tcp connections

-100-

consoles - Extract command history by scanning for _CONSOLE_IN-
FORMATION

crashinfo - Dump crash-dump information

deskscan - Poolscaner for tagDESKTOP (desktops)

devicetree - Show device tree

dlldump - Dump DLLs from a process address space

dlllist - Print list of loaded dlls for each process

driverirp - Driver IRP hook detection

drivermodule - Associate driver objects to kernel modules

driverscan - Pool scanner for driver objects

dumpcerts - Dump RSA private and public SSL keys

dumpfiles - Extract memory mapped and cached files

dumpregistry - Dumps registry files out to disk

editbox - Dumps various data from ComCtl Edit controls (experi
mental: ListBox, ComboBox)

envars - Display process environment variables

eventhooks - Print details on windows event hooks

evtlogs - Extract Windows Event Logs (XP/2003 only)

filescan - Pool scanner for file objects

gahti - Dump the USER handle type information

gditimers - Print installed GDI timers and callbacks

gdt - Display Global Descriptor Table

getservicesids - Get the names of services in the Registry and return Calcu-
lated SID

getsids - Print the SIDs owning each process

handles - Print list of open handles for each process

hashdump - Dumps passwords hashes (LM/NTLM) from memory

 -101-

hibinfo - Dump hibernation file information

hivedump - Prints out a hive

hivelist - Print list of registry hives.

hivescan - Pool scanner for registry hives

hpakextract - Extract physical memory from an HPAK file

hpakinfo - Info on an HPAK file

idt - Display Interrupt Descriptor Table

iehistory - Reconstruct Internet Explorer cache / history

imagecopy - Copies a physical address space out as a raw DD image

imageinfo - Identify information for the image

impscan - Scan for calls to imported functions

joblinks - Print process job link information

kdbgscan - Search for and dump potential KDBG values

kpcrscan - Search for and dump potential KPCR values

ldrmodules - Detect unlinked DLLs

limeinfo - Dump Lime file format information

linux_apihooks - Checks for userland apihooks

linux_arp - Print the ARP table

linux_banner - Prints the Linux banner information

linux_bash - Recover bash history from bash process memory

linux_bash_env - Recover a process' dynamic environment variables

linux_bash_hash - Recover bash hash table from bash process memory

linux_check_afinfo - Verifies the operation function pointers of network pro-
tocols

linux_check_creds - Checks if any processes are sharing credential structures

-102-

linux_check_evt_arm - Checks the Exception Vector Table to look for syscall
table hooking

linux_check_fop - Check file operation structures for rootkit modifications

linux_check_idt - Checks if the IDT has been altered

linux_check_inline_kernel - Check for inline kernel hooks

linux_check_modules - Compares module list to sysfs info, if available

linux_check_syscall - Checks if the system call table has been altered

linux_check_syscall_arm - Checks if the system call table has been altered

linux_check_tty - Checks tty devices for hooks

linux_cpuinfo - Prints info about each active processor

linux_dentry_cache - Gather files from the dentry cache

linux_dmesg - Gather dmesg buffer

linux_dump_map - Writes selected memory mappings to disk

linux_dynamic_env - Recover a process' dynamic environment variables

linux_elfs - Find ELF binaries in process mappings

linux_enumerate_files - Lists files referenced by the filesystem cache

linux_find_file - Lists and recovers files from memory

linux_getcwd - Lists current working directory of each process

linux_hidden_modules - Carves memory to find hidden kernel modules

linux_ifconfig - Gathers active interfaces

linux_info_regs - It's like 'info registers' in GDB. It prints out all the

linux_iomem - Provides output similar to /proc/iomem

linux_kernel_opened_files - Lists files that are opened from within the kernel

linux_keyboard_notifiers - Parses the keyboard notifier call chain

linux_ldrmodules - Compares the output of proc maps with the list of li-
braries from libdl

 -103-

linux_library_list - Lists libraries loaded into a process

linux_librarydump - Dumps shared libraries in process memory to disk

linux_list_raw - List applications with promiscuous sockets

linux_lsmod - Gather loaded kernel modules

linux_lsof - Lists file descriptors and their path

linux_malfind - Looks for suspicious process mappings

linux_memmap - Dumps the memory map for linux tasks

linux_moddump - Extract loaded kernel modules

linux_mount - Gather mounted fs/devices

linux_mount_cache - Gather mounted fs/devices from kmem_cache

linux_netfilter - Lists Netfilter hooks

linux_netscan - Carves for network connection structures

linux_netstat - Lists open sockets

linux_pidhashtable - Enumerates processes through the PID hash table

linux_pkt_queues - Writes per-process packet queues out to disk

linux_plthook - Scan ELF binaries' PLT for hooks to non-NEEDED im-
ages

linux_proc_maps - Gathers process memory maps

linux_proc_maps_rb - Gathers process maps for linux through the mappings
red-black tree

linux_procdump - Dumps a process's executable image to disk

linux_process_hollow - Checks for signs of process hollowing

linux_psaux - Gathers processes along with full command line and
start time

linux_psenv - Gathers processes along with their static environment
variables

linux_pslist - Gather active tasks by walking the task_struct->task list

-104-

linux_pslist_cache - Gather tasks from the kmem_cache

linux_pstree - Shows the parent/child relationship between processes

linux_psxview - Find hidden processes with various process listings

linux_recover_filesystem - Recovers the entire cached file system from memory

linux_route_cache - Recovers the routing cache from memory

linux_sk_buff_cache - Recovers packets from the sk_buff kmem_cache

linux_slabinfo - Mimics /proc/slabinfo on a running machine

linux_strings - Match physical offsets to virtual addresses (may take a
while, VERY verbose)

linux_threads - Prints threads of processes

linux_tmpfs - Recovers tmpfs filesystems from memory

linux_truecrypt_passphrase - Recovers cached Truecrypt passphrases

linux_vma_cache - Gather VMAs from the vm_area_struct cache

linux_volshell - Shell in the memory image

linux_yarascan - A shell in the Linux memory image

lsadump - Dump (decrypted) LSA secrets from the registry

mac_adium - Lists Adium messages

mac_apihooks - Checks for API hooks in processes

mac_apihooks_kernel - Checks to see if system call and kernel functions are
hooked

mac_arp - Prints the arp table

mac_bash - Recover bash history from bash process memory

mac_bash_env - Recover bash's environment variables

mac_bash_hash - Recover bash hash table from bash process memory

mac_calendar - Gets calendar events from Calendar.app

mac_check_mig_table - Lists entires in the kernel's MIG table

 -105-

mac_check_syscall_shadow - Looks for shadow system call tables

mac_check_syscalls - Checks to see if system call table entries are hooked

mac_check_sysctl - Checks for unknown sysctl handlers

mac_check_trap_table - Checks to see if mach trap table entries are hooked

mac_compressed_swap - Prints Mac OS X VM compressor stats and dumps all
compressed pages

mac_contacts - Gets contact names from Contacts.app

mac_dead_procs - Prints terminated/de-allocated processes

mac_dead_sockets - Prints terminated/de-allocated network sockets

mac_dead_vnodes - Lists freed vnode structures

mac_dmesg - Prints the kernel debug buffer

mac_dump_file - Dumps a specified file

mac_dump_maps - Dumps memory ranges of process(es), optionally in-
cluding pages in compressed swap

mac_dyld_maps - Gets memory maps of processes from dyld data struc-
tures

mac_find_aslr_shift - Find the ASLR shift value for 10.8+ images

mac_get_profile - Automatically detect Mac profiles

mac_ifconfig - Lists network interface information for all devices

mac_ip_filters - Reports any hooked IP filters

mac_keychaindump - Recovers possbile keychain keys. Use chainbreaker to
open related keychain files

mac_ldrmodules - Compares the output of proc maps with the list of li-
braries from libdl

mac_librarydump - Dumps the executable of a process

mac_list_files - Lists files in the file cache

mac_list_kauth_listeners - Lists Kauth Scope listeners

mac_list_kauth_scopes - Lists Kauth Scopes and their status

-106-

mac_list_raw - List applications with promiscuous sockets

mac_list_sessions - Enumerates sessions

mac_list_zones - Prints active zones

mac_lsmod - Lists loaded kernel modules

mac_lsmod_iokit - Lists loaded kernel modules through IOkit

mac_lsmod_kext_map - Lists loaded kernel modules

mac_lsof - Lists per-process opened files

mac_machine_info - Prints machine information about the sample

mac_malfind - Looks for suspicious process mappings

mac_memdump - Dump addressable memory pages to a file

mac_moddump - Writes the specified kernel extension to disk

mac_mount - Prints mounted device information

mac_netstat - Lists active per-process network connections

mac_network_conns - Lists network connections from kernel network struc-
tures

mac_notesapp - Finds contents of Notes messages

mac_notifiers - Detects rootkits that add hooks into I/O Kit (e.g.
LogKext)

mac_orphan_threads - Lists threads that don't map back to known mod-
ules/processes

mac_pgrp_hash_table - Walks the process group hash table

mac_pid_hash_table - Walks the pid hash table

mac_print_boot_cmdline - Prints kernel boot arguments

mac_proc_maps - Gets memory maps of processes

mac_procdump - Dumps the executable of a process

mac_psaux - Prints processes with arguments in user land (**argv)

 -107-

mac_psenv - Prints processes with environment in user land
(**envp)

mac_pslist - List Running Processes

mac_pstree - Show parent/child relationship of processes

mac_psxview - Find hidden processes with various process listings

mac_recover_filesystem - Recover the cached filesystem

mac_route - Prints the routing table

mac_socket_filters - Reports socket filters

mac_strings - Match physical offsets to virtual addresses (may take a
while, VERY verbose)

mac_tasks - List Active Tasks

mac_threads - List Process Threads

mac_threads_simple - Lists threads along with their start time and priority

mac_trustedbsd - Lists malicious trustedbsd policies

mac_version - Prints the Mac version

mac_volshell - Shell in the memory image

mac_yarascan - Scan memory for yara signatures

machoinfo - Dump Mach-O file format information

malfind - Find hidden and injected code

mbrparser - Scans for and parses potential Master Boot Records

memdump - Dump the addressable memory for a process

memmap - Print the memory map

messagehooks - List desktop and thread window message hooks

mftparser - Scans for and parses potential MFT entries

moddump - Dump a kernel driver to an executable file sample

modscan - Pool scanner for kernel modules

-108-

modules - Print list of loaded modules

multiscan - Scan for various objects at once

mutantscan - Pool scanner for mutex objects

netscan - Scan a Vista (or later) image for connections and sockets

notepad - List currently displayed notepad text

objtypescan - Scan for Windows object type objects

patcher - Patches memory based on page scans

poolpeek - Configurable pool scanner plugin

pooltracker - Show a summary of pool tag usage

printkey - Print a registry key, and its subkeys and values

privs - Display process privileges

procdump - Dump a process to an executable file sample

pslist - Print all running processes by following the EPROCESS
lists

psscan - Pool scanner for process objects

pstree - Print process list as a tree

psxview - Find hidden processes with various process listings

qemuinfo - Dump Qemu information

raw2dmp - Converts a physical memory sample to a windbg crash
dump

screenshot - Save a pseudo-screenshot based on GDI windows

servicediff - List Windows services (ala Plugx)

sessions - List details on _MM_SESSION_SPACE

shellbags - Prints ShellBags info

shimcache - Parses the Application Compatibility Shim Cache registry
key

shutdowntime - Print ShutdownTime of machine from registry

 -109-

sockets - Print list of open sockets

sockscan - Pool scanner for tcp socket objects

ssdt - Display SSDT entries

strings - Match physical offsets to virtual addresses

svcscan - Scan for Windows services

symlinkscan - Pool scanner for symlink objects

thrdscan - Pool scanner for thread objects

threads - Investigate _ETHREAD and _KTHREADs

timeliner - Creates a timeline from various artifacts in memory

timers - Print kernel timers and associated module DPCs

truecryptmaster - Recover TrueCrypt 7.1a Master Keys

truecryptpassphrase - TrueCrypt Cached Passphrase Finder

truecryptsummary - TrueCrypt Summary

unloadedmodules - Print list of unloaded modules

userassist - Print userassist registry keys and information

userhandles - Dump the USER handle tables

vaddump - Dumps out the vad sections to a file

vadinfo - Dump the VAD info

vadtree - Walk the VAD tree and display in tree format

vadwalk - Walk the VAD tree

vboxinfo - Dump virtualbox information

verinfo - Prints out the version information from PE images

vmwareinfo - Dump VMware VMSS/VMSN information

volshell - Shell in the memory image

win10cookie - Find the ObHeaderCookie value for Windows 10

-110-

windows - Print Desktop Windows (verbose details)

wintree - Print Z-Order Desktop Windows Tree

wndscan - Pool scanner for window stations

List of out-of-the-box supported profiles in Volatility
Framework 2.5
VistaSP0x64 - A Profile for Windows Vista SP0 x64

VistaSP0x86 - A Profile for Windows Vista SP0 x86

VistaSP1x64 - A Profile for Windows Vista SP1 x64

VistaSP1x86 - A Profile for Windows Vista SP1 x86

VistaSP2x64 - A Profile for Windows Vista SP2 x64

VistaSP2x86 - A Profile for Windows Vista SP2 x86

Win10x64 - A Profile for Windows 10 x64

Win10x86 - A Profile for Windows 10 x86

Win2003SP0x86 - A Profile for Windows 2003 SP0 x86

Win2003SP1x64 - A Profile for Windows 2003 SP1 x64

Win2003SP1x86 - A Profile for Windows 2003 SP1 x86

Win2003SP2x64 - A Profile for Windows 2003 SP2 x64

Win2003SP2x86 - A Profile for Windows 2003 SP2 x86

Win2008R2SP0x64 - A Profile for Windows 2008 R2 SP0 x64

Win2008R2SP1x64 - A Profile for Windows 2008 R2 SP1 x64

Win2008SP1x64 - A Profile for Windows 2008 SP1 x64

Win2008SP1x86 - A Profile for Windows 2008 SP1 x86

Win2008SP2x64 - A Profile for Windows 2008 SP2 x64

Win2008SP2x86 - A Profile for Windows 2008 SP2 x86

 -111-

Win2012R2x64 - A Profile for Windows Server 2012 R2 x64

Win2012x64 - A Profile for Windows Server 2012 x64

Win7SP0x64 - A Profile for Windows 7 SP0 x64

Win7SP0x86 - A Profile for Windows 7 SP0 x86

Win7SP1x64 - A Profile for Windows 7 SP1 x64

Win7SP1x86 - A Profile for Windows 7 SP1 x86

Win81U1x64 - A Profile for Windows 8.1 Update 1 x64

Win81U1x86 - A Profile for Windows 8.1 Update 1 x86

Win8SP0x64 - A Profile for Windows 8 x64

Win8SP0x86 - A Profile for Windows 8 x86

Win8SP1x64 - A Profile for Windows 8.1 x64

Win8SP1x86 - A Profile for Windows 8.1 x86

WinXPSP1x64 - A Profile for Windows XP SP1 x64

WinXPSP2x64 - A Profile for Windows XP SP2 x64

WinXPSP2x86 - A Profile for Windows XP SP2 x86

WinXPSP3x86 - A Profile for Windows XP SP3 x86

List of profiles for OS X and Linux maintained by the
Volatility Foundation

./Linux

 4 136 Aug 14 2014 CentOS

 4 136 Aug 14 2014 Debian

 4 136 Aug 14 2014 Fedora

 4 136 Aug 14 2014 OpenSUSE

 4 136 Aug 14 2014 RedHat

-112-

 4 136 Aug 14 2014 Ubuntu

./Linux/CentOS

 19 646 Aug 14 2014 x64

 19 646 Aug 14 2014 x86

./Linux/CentOS/x64

1 363078 Aug 14 2014 CentOS50.zip

 1 368281 Aug 14 2014 CentOS51.zip

 1 405172 Aug 14 2014 CentOS510.zip

 1 371250 Aug 14 2014 CentOS52.zip

 1 377467 Aug 14 2014 CentOS53.zip

 1 389625 Aug 14 2014 CentOS54.zip

 1 393649 Aug 14 2014 CentOS55.zip

 1 398150 Aug 14 2014 CentOS56.zip

 1 400134 Aug 14 2014 CentOS57.zip

 1 402681 Aug 14 2014 CentOS58.zip

 1 404657 Aug 14 2014 CentOS59.zip

 1 614767 Aug 14 2014 CentOS60.zip

 1 628252 Aug 14 2014 CentOS61.zip

 1 634384 Aug 14 2014 CentOS62.zip

 1 637679 Aug 14 2014 CentOS63.zip

 1 653417 Aug 14 2014 CentOS64.zip

 1 673408 Aug 14 2014 CentOS65.zip

./Linux/CentOS/x86

 1 356003 Aug 14 2014 CentOS50.zip

 1 360890 Aug 14 2014 CentOS51.zip

 -113-

 1 391048 Aug 14 2014 CentOS510.zip

 1 363549 Aug 14 2014 CentOS52.zip

 1 369260 Aug 14 2014 CentOS53.zip

 1 377998 Aug 14 2014 CentOS54.zip

 1 381773 Aug 14 2014 CentOS55.zip

 1 384813 Aug 14 2014 CentOS56.zip

 1 386102 Aug 14 2014 CentOS57.zip

 1 388581 Aug 14 2014 CentOS58.zip

 1 390462 Aug 14 2014 CentOS59.zip

 1 610104 Aug 14 2014 CentOS60.zip

 1 623252 Aug 14 2014 CentOS61.zip

 1 629071 Aug 14 2014 CentOS62.zip

 1 637209 Aug 14 2014 CentOS63.zip

 1 630904 Aug 14 2014 CentOS64.zip

 1 649169 Aug 14 2014 CentOS65.zip

./Linux/Debian

 8 272 Sep 18 23:04 x64

 7 238 Aug 14 2014 x86

./Linux/Debian/x64

 1 326904 Aug 14 2014 Debian40r9.zip

 1 345487 Aug 14 2014 Debian5010.zip

 1 503750 Aug 14 2014 Debian608.zip

 1 626681 Aug 14 2014 Debian73.zip

 1 626681 Aug 14 2014 Debian74.zip

 1 750643 Sep 18 23:04 Debian8.zip

-114-

./Linux/Debian/x86

1 305559 Aug 14 2014 Debian40r9.zip

 1 358396 Aug 14 2014 Debian5010.zip

 1 478922 Aug 14 2014 Debian608.zip

 1 603489 Aug 14 2014 Debian73.zip

 1 603394 Aug 14 2014 Debian74.zip

./Linux/Fedora

 18 612 Sep 18 23:04 x64

 17 578 Aug 14 2014 x86

./Linux/Fedora/x64

 1 438498 Aug 14 2014 Fedora10.zip

 1 495947 Aug 14 2014 Fedora11.zip

 1 560676 Aug 14 2014 Fedora12.zip

 1 591772 Aug 14 2014 Fedora13.zip

 1 631149 Aug 14 2014 Fedora14.zip

 1 676212 Aug 14 2014 Fedora15.zip

 1 703578 Aug 14 2014 Fedora16.zip

 1 687968 Aug 14 2014 Fedora17.zip

 1 709434 Aug 14 2014 Fedora18.zip

 1 726188 Aug 14 2014 Fedora19.zip

 1 744548 Aug 14 2014 Fedora20.zip

 1 836452 Sep 18 23:04 Fedora21Workstation.zip

 1 357541 Aug 14 2014 Fedora7.zip

 1 343550 Aug 14 2014 Fedora8.zip

 1 322097 Aug 14 2014 Fedora9.zip

 -115-

 1 361109 Aug 14 2014 FedoraCore6.zip

./Linux/Fedora/x86

 1 425125 Aug 14 2014 Fedora10.zip

 1 513673 Aug 14 2014 Fedora11.zip

 1 550376 Aug 14 2014 Fedora12.zip

 1 579463 Aug 14 2014 Fedora13.zip

 1 609058 Aug 14 2014 Fedora14.zip

 1 658152 Aug 14 2014 Fedora15.zip

 1 686090 Aug 14 2014 Fedora16.zip

 1 666869 Aug 14 2014 Fedora17.zip

 1 719916 Aug 14 2014 Fedora18.zip

 1 724117 Aug 14 2014 Fedora19.zip

 1 724596 Aug 14 2014 Fedora20.zip

 1 366486 Aug 14 2014 Fedora7.zip

 1 352493 Aug 14 2014 Fedora8.zip

 1 360395 Aug 14 2014 Fedora9.zip

 1 352060 Aug 14 2014 FedoraCore6.zip

./Linux/OpenSUSE

 13 442 Aug 14 2014 x64

 13 442 Aug 14 2014 x86

./Linux/OpenSUSE/x64

 1 324375 Aug 14 2014 OpenSUSE102.zip

 1 335823 Aug 14 2014 OpenSUSE103.zip

 1 369578 Aug 14 2014 OpenSUSE110.zip

 1 433928 Aug 14 2014 OpenSUSE111.zip

-116-

 1 549514 Aug 14 2014 OpenSUSE112.zip

 1 568822 Aug 14 2014 OpenSUSE113.zip

 1 629027 Aug 14 2014 OpenSUSE114.zip

 1 708872 Aug 14 2014 OpenSUSE121.zip

 1 694273 Aug 14 2014 OpenSUSE122.zip

 1 715923 Aug 14 2014 OpenSUSE123.zip

 1 746496 Aug 14 2014 OpenSUSE131.zip

./Linux/OpenSUSE/x86

1 319250 Aug 14 2014 OpenSUSE102.zip

 1 341204 Aug 14 2014 OpenSUSE103.zip

 1 359639 Aug 14 2014 OpenSUSE110.zip

 1 416886 Aug 14 2014 OpenSUSE111.zip

 1 527383 Aug 14 2014 OpenSUSE113.zip

 1 605911 Aug 14 2014 OpenSUSE114.zip

 1 672487 Aug 14 2014 OpenSUSE122.zip

 1 693843 Aug 14 2014 OpenSUSE123.zip

 1 721025 Aug 14 2014 OpenSUSE131.zip

 1 620473 Aug 14 2014 OpenSuSE121.zip

 1 485406 Aug 14 2014 openSUSE112.zip

./Linux/RedHat

 19 646 Aug 14 2014 x64

 19 646 Aug 14 2014 x86

./Linux/RedHat/x64

 1 363080 Aug 14 2014 RedHat50.zip

 1 368280 Aug 14 2014 RedHat51.zip

 -117-

 1 405164 Aug 14 2014 RedHat510.zip

 1 371243 Aug 14 2014 RedHat52.zip

 1 377464 Aug 14 2014 RedHat53.zip

 1 389626 Aug 14 2014 RedHat54.zip

 1 393650 Aug 14 2014 RedHat55.zip

 1 398169 Aug 14 2014 RedHat56.zip

 1 400124 Aug 14 2014 RedHat57.zip

 1 402631 Aug 14 2014 RedHat58.zip

 1 404656 Aug 14 2014 RedHat59.zip

 1 614783 Aug 14 2014 RedHat60.zip

 1 628256 Aug 14 2014 RedHat61.zip

 1 634384 Aug 14 2014 RedHat62.zip

 1 643195 Aug 14 2014 RedHat63.zip

 1 653442 Aug 14 2014 RedHat64.zip

 1 673408 Aug 14 2014 RedHat65.zip

./Linux/RedHat/x86

1 356003 Aug 14 2014 RedHat50.zip

 1 360889 Aug 14 2014 RedHat51.zip

 1 391082 Aug 14 2014 RedHat510.zip

 1 363548 Aug 14 2014 RedHat52.zip

 1 369260 Aug 14 2014 RedHat53.zip

 1 377998 Aug 14 2014 RedHat54.zip

 1 381774 Aug 14 2014 RedHat55.zip

 1 398169 Aug 14 2014 RedHat56.zip

 1 386104 Aug 14 2014 RedHat57.zip

-118-

 1 388559 Aug 14 2014 RedHat58.zip

 1 390461 Aug 14 2014 RedHat59.zip

 1 610104 Aug 14 2014 RedHat60.zip

 1 623267 Aug 14 2014 RedHat61.zip

 1 629121 Aug 14 2014 RedHat62.zip

 1 637224 Aug 14 2014 RedHat63.zip

 1 630896 Aug 14 2014 RedHat64.zip

 1 649151 Aug 14 2014 RedHat65.zip

./Linux/Ubuntu

 18 612 Sep 18 23:04 x64

 18 612 Mar 29 2015 x86

./Linux/Ubuntu/x64

1 607331 Aug 14 2014 Ubuntu10044.zip

 1 648266 Aug 14 2014 Ubuntu1010.zip

 1 711829 Aug 14 2014 Ubuntu1104.zip

 1 732281 Aug 14 2014 Ubuntu1110.zip

 1 902974 Aug 14 2014 Ubuntu12044.zip

 1 711523 Aug 14 2014 Ubuntu1210.zip

 1 747224 Aug 14 2014 Ubuntu1304.zip

 1 861852 Aug 14 2014 Ubuntu1310.zip

 1 927103 Sep 18 23:04 Ubuntu1404.zip

 1 311048 Aug 14 2014 Ubuntu610.zip

 1 322102 Aug 14 2014 Ubuntu704.zip

 1 322958 Aug 14 2014 Ubuntu710.zip

 1 338761 Aug 14 2014 Ubuntu8044.zip

 -119-

 1 410502 Aug 14 2014 Ubuntu810.zip

 1 523253 Aug 14 2014 Ubuntu904.zip

 1 598615 Aug 14 2014 Ubuntu910.zip

./Linux/Ubuntu/x86

1 584694 Aug 14 2014 Ubuntu10044.zip

 1 623111 Aug 14 2014 Ubuntu1010.zip

 1 689118 Aug 14 2014 Ubuntu1104.zip

 1 706971 Aug 14 2014 Ubuntu1110.zip

 1 874175 Aug 14 2014 Ubuntu12044.zip

 1 691304 Aug 14 2014 Ubuntu1210.zip

 1 722911 Aug 14 2014 Ubuntu1304.zip

 1 833346 Aug 14 2014 Ubuntu1310.zip

 1 860071 Mar 29 2015 Ubuntu1404.zip

 1 298760 Aug 14 2014 Ubuntu610.zip

 1 332330 Aug 14 2014 Ubuntu704.zip

 1 324667 Aug 14 2014 Ubuntu710.zip

 1 337231 Aug 14 2014 Ubuntu8044.zip

 1 384262 Aug 14 2014 Ubuntu810.zip

 1 500193 Aug 14 2014 Ubuntu904.zip

 1 575041 Aug 14 2014 Ubuntu910.zip

./Mac

 3 102 Sep 18 23:04 10.10

 3 102 Oct 28 22:09 10.11

 3 102 Aug 14 2014 10.5

 4 136 Aug 14 2014 10.6

-120-

 4 136 Aug 14 2014 10.7

 3 102 Aug 14 2014 10.8

 3 102 Aug 14 2014 10.9

./Mac/10.10

10 340 Dec 3 15:14 x64

./Mac/10.10/x64

1 708106 Sep 18 23:04 Yosemite_10.10.2_14C1514.zip

 1 710123 Sep 18 23:04 Yosemite_10.10.3_14D131.zip

 1 710074 Sep 18 23:04 Yosemite_10.10.3_14D136.zip

 1 712410 Sep 18 23:04 Yosemite_10.10.4_14E46.zip

 1 574189 Dec 3 15:14 Yosemite_10.10.5_14F1021.zip

 1 709131 Sep 18 23:04 Yosemite_10.10.5_14F27.zip

 1 708559 Sep 18 23:04 Yosemite_10.10_14A389.zip

 1 708559 Sep 18 23:04 Yosemite_10.10_14B25.zip

./Mac/10.11

1 745234 Oct 28 22:09 ElCapitan_10.11_15A284.zip

./Mac/10.5

9 306 Aug 14 2014 x86

./Mac/10.5/x86

 1 1250296 Aug 14 2014 Leopard_10.5.3_Intel.zip

 1 1251524 Aug 14 2014 Leopard_10.5.4_Intel.zip

 1 1249407 Aug 14 2014 Leopard_10.5.5_Intel.zip

 1 1254176 Aug 14 2014 Leopard_10.5.6_Intel.zip

 1 1152413 Aug 14 2014 Leopard_10.5.7_Intel.zip

 -121-

 1 1154019 Aug 14 2014 Leopard_10.5.8_Intel.zip

 1 1249320 Aug 14 2014 Leopard_10.5_Intel.zip

./Mac/10.6

 10 340 Aug 14 2014 x64

 11 374 Mar 29 2015 x86

./Mac/10.6/x64

 1 1078398 Aug 14 2014 SnowLeopard_10.6.1_AMD.zip

 1 1079186 Aug 14 2014 SnowLeopard_10.6.2_AMD.zip

 1 1078169 Aug 14 2014 SnowLeopard_10.6.4_AMD.zip

 1 1081130 Aug 14 2014 SnowLeopard_10.6.5_AMD.zip

 1 1081198 Aug 14 2014 SnowLeopard_10.6.6_AMD.zip

 1 1088625 Aug 14 2014 SnowLeopard_10.6.7_AMD.zip

 1 1094384 Aug 14 2014 SnowLeopard_10.6.8_AMD.zip

 1 1078398 Aug 14 2014 SnowLeopard_10.6_AMD.zip

./Mac/10.6/x86

 1 1081174 Aug 14 2014 SnowLeopard_10.6.1_Intel.zip

 1 1082113 Aug 14 2014 SnowLeopard_10.6.2_Intel.zip

 1 1078938 Mar 29 2015 SnowLeopard_10.6.3_Intel.zip

 1 1081377 Aug 14 2014 SnowLeopard_10.6.4_Intel.zip

 1 1084183 Aug 14 2014 SnowLeopard_10.6.5_Intel.zip

 1 1083934 Aug 14 2014 SnowLeopard_10.6.6_Intel.zip

 1 1091880 Aug 14 2014 SnowLeopard_10.6.7_Intel.zip

 1 1097540 Aug 14 2014 SnowLeopard_10.6.8_Intel.zip

 1 1081174 Aug 14 2014 SnowLeopard_10.6_Intel.zip

./Mac/10.7

-122-

 8 272 Aug 14 2014 x64

 8 272 Aug 14 2014 x86

./Mac/10.7/x64

 1 1205691 Aug 14 2014 Lion_10.7.1_AMD.zip

 1 1206992 Aug 14 2014 Lion_10.7.2_AMD.zip

 1 1206610 Aug 14 2014 Lion_10.7.3_AMD.zip

 1 1209528 Aug 14 2014 Lion_10.7.4_AMD.zip

 1 1210575 Aug 14 2014 Lion_10.7.5_AMD.zip

 1 1205879 Aug 14 2014 Lion_10.7_AMD.zip

./Mac/10.7/x86

 1 1222054 Aug 14 2014 Lion_10.7.1_Intel.zip

 1 1223954 Aug 14 2014 Lion_10.7.2_Intel.zip

 1 1223590 Aug 14 2014 Lion_10.7.3_Intel.zip

 1 1226080 Aug 14 2014 Lion_10.7.4_Intel.zip

 1 1227728 Aug 14 2014 Lion_10.7.5_Intel.zip

 1 1221746 Aug 14 2014 Lion_10.7_Intel.zip

./Mac/10.8

8 272 Aug 14 2014 x64

./Mac/10.8/x64

 1 1238687 Aug 14 2014 MountainLion_10.8.1_AMD.zip

 1 1239024 Aug 14 2014 MountainLion_10.8.2_AMD.zip

 1 1238934 Aug 14 2014 MountainLion_10.8.3_AMD.zip

 1 1240705 Aug 14 2014 MountainLion_10.8.4_12e55_AMD.zip

 1 1251778 Aug 14 2014 MountainLion_10.8.5_12f37_AMD.zip

 1 1251712 Aug 14 2014 MountainLion_10.8.5_12f45_AMD.zip

 -123-

./Mac/10.9

12 408 Dec 3 15:14 x64

./Mac/10.9/x64

 1 8365062 Oct 14 2014 10.9.5.64bit.symbol.dsymutil

 1 1279883 Oct 14 2014 10.9.5.64bit.vtypes

 1 1333931 Aug 14 2014 Mavericks_10.9.1_AMD.zip

 1 1334545 Aug 14 2014 Mavericks_10.9.2_13C1021.AMD.zip

 1 1334596 Aug 14 2014 Mavericks_10.9.2__13C64.AMD.zip

 1 1335250 Aug 14 2014 Mavericks_10.9.3_AMD.zip

 1 1335990 Aug 14 2014 Mavericks_10.9.4_AMD.zip

 1 1291868 Dec 3 15:14 Mavericks_10.9.5_13F1077_AMD.zip

1 1336065 Oct 21 2014 Mavericks_10.9.5_AMD.zip

		2016-05-05T19:22:39+0100
	Vasilios Katos

