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We discuss the description of eigenspace of a quantum walk model U with an associating linear operator T in
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mapping theorem of U without the spectral decomposition of T . Arguments in this direction reveal the eigenspaces
of U characterized by the generalized kernels of linear operators given by T .

KEYWORDS: quantum walk model, spectral mapping theorem, generalized eigenspace

1. Introduction

Quantum walks are quantum analogues of classical random walks. Their primitive forms of the discrete-time
quantum walks on Z can be seen in Feynman’s checker board [1]. It is mathematically shown (e.g. [4]) that this
quantum walk has a completely different limiting behavior from classical random walks, which is a typical example
showing a difficulty of intuitive description of quantum walks’ behavior.

One of main aims of studies of quantum walks from the mathematical point of view is to understand their asymptotic
behavior. There are two typical approaches for detecting asymptotic behavior of quantum walks:

. Calculation of density functions for long time limits of quantum walks;

. Description of the spectrum of quantum walks as unitary operators.
In [2], the spectral mapping theorem of the twisted Szegedy walk U is derived with spectral decomposition of the

associated self-adjoint operator T . According to [2], the eigenstructure of T induces those of the operator of the form

~T ¼
0 �I
I 2T

� �
;

where I is the identity on an appropriate linear space, and eigenstructure of ~T determines an invariant subspace of U. As
mentioned before, their arguments rely on the spectral decomposition and the eigenstructures of T .

In this paper, we propose a spectral analysis method of U without directly using the spectral decomposition of T . The
motivation of this study is to overcome the difficulty concerning with spectral structure of T such as a quantum walk
model discussed in [5]. As a first step in this direction, we try to apply our new method to the problems whose spectral
structures have been well developed, that is, Szegedy walks [7, 10] and abstract quantum walks [6, 8, 9]. We obtain the
following new observation of U by this method which has not discussed well before. Let

SpecðAÞ ¼ � 2 C j 0 6¼ 9 2
[
n2N

kerð�I � AÞn
( )

ð1:1Þ

for a linear operator A on a Hilbert space. Here we treat SpecðAÞ as a multi-set. Then
. As for � 2 SpecðUjLÞ n f�1g, we have kerð�I � UjLÞ ¼ Lðkerð�I � ~TÞÞ.
. As for � 2 SpecðUjLÞ \ f�1g, we have kerð�I � UjLÞ ¼ Lðkerð�I � ~TÞ2 n kerð�I � ~TÞÞ.

Detailed descriptions of U, L and L are shown in Sections 2 and 3. The new insight of our study is the presence of the
generalized eigenspace of the linear operator ~T . We expect that such generalized eigenstructures reflect not only the
geometric feature of underlying graphs such as their bipartiteness and underlying random walks such as their
reversibility ([2]), but also performance of quantum search algorithms on graphs [7, 10]. We also expect that our result
explicitly reveals such hidden structure and will lead to deeper study of spectra and asymptotic behavior of quantum
walks from the viewpoint of functional analysis and geometry.
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Throughout our discussions, we consider an abstract quantum walk model given below, which extracts the essence of
well-known Szegedy walks on graphs (e.g. [2]). Our study will cover spectral analysis for a general class of quantum
walks (e.g. [5, 7]).

Remark that there are preceding works of quantum walks in such an abstract setting: [8, 9]. There quantum walks on
infinite dimensional Hilbert spaces are considered. On the other hand, we restrict our considerations to finite
dimensional spaces in this paper.

2. Abstract Quantum Walk Models

Throughout this paper, we study the spectrum of quantum walks in the following setting. Note that the following
settings are finite dimensional analogue of [8, 9].

. K1 and K2: finite dimensional Hilbert spaces over C with inner products h�; �iKi
.

. S : K2! K2: a self-adjoint, unitary operator.

. dA : K2! K1: a bounded linear operator with the adjoint operator d�A : K1! K2.

. dB : K2! K1: a bounded linear operator given by dB ¼ dAS. The adjoint operator d�B is given by the similar way
to d�A.

. T : K1! K1: a bounded linear operator given by T ¼ dAd
�
B, which is called the discriminant operator.

Note that the linear operator T is actually self-adjoint since S : K2! K2 is self-adjoint and unitary.
Now we assume the following property, which is crucial to our setting.

Assumption 2.1. dAd
�
A ¼ I : K1 ! K1.

Lemma 2.2. Under Assumption 2.1, the linear operator C :¼ 2d�AdA � I : K2 ! K2 is a self-adjoint and unitary
operator.

Proof. It easily follows that d�AdA is self-adjoint in K2, and so is C. It is thus sufficient to prove that
CyC ¼ C2 ¼ I : K2! K2. We immediately have

C2 ¼ ð2d�AdA � IÞ2 ¼ 4d�AdAd
�
AdA � 4d�AdA þ I ¼ 4d�AdA � 4d�AdA þ I ¼ I;

which shows the statement. Note that we have used Assumption 2.1 in the above calculation. �

Our quantum walk model is given by the following definition.

Definition 2.3 (Quantum walk model). Let C be the unitary operator given in Lemma 2.2. Then the operator
U ¼ SC : K2! K2 is also a unitary operator. We shall say the operator U a quantum walk model on K2 associated with
the pair ðK1; dAÞ of an auxiliary Hilbert space K1 and the linear operator dA acting on it.

Note that the discriminant operator T , which is the center of our considerations, and the operator dB are naturally
defined by dA and S.

Now we have defined the unitary operator U as a quantum walk, while U may not be seen as a ‘‘quantum walk’’ at a
glance. The following example shows that this abstract model U includes the well-known quantum walks such as
Grover walk and Szegedy walk.

Example 2.4 (Szegedy walk on a graph). Let G ¼ ðVðGÞ;EðGÞÞ be a simple and finite graph, where VðGÞ is the set of
vertices in G and EðGÞ is the set of (undirected) edges in G. It can be regarded as the digraph G ¼ ðVðGÞ;DðGÞÞ, where
DðGÞ ¼ fe; �e j e 2 EðGÞg and �e ¼ ðv; uÞ for each e ¼ ðu; vÞ, u; v 2 VðGÞ. For each edge e ¼ ðu; vÞ 2 DðGÞ, oðeÞ ¼ u

denotes the origin of e and tðeÞ ¼ v denotes the terminus of e.
Now define a C-linear space ‘2ðDðGÞÞ by

‘2ðDðGÞÞ :¼ f f : DðGÞ ! C j k fkDðGÞ <1g:
Here the inner product is given by the standard inner product, that is,

h f ; giDðGÞ :¼
X

e2DðGÞ
f ðeÞgðeÞ;

where f ðeÞ denotes the complex conjugate of f ðeÞ. Let k � kDðGÞ be the associated norm, namely, k fkDðGÞ :¼ h f ; f i
1=2
DðGÞ.

We take

�ð1Þe ðe
0Þ :¼

1 if e0 ¼ e

0 if e0 6¼ e

�

as the standard basis of ‘2ðDðGÞÞ. One knows that the C-linear space ‘2ðDðGÞÞ associated with the inner product
h�; �iDðGÞ is a Hilbert space. We can also define the Hilbert space ‘2ðVðGÞÞ in the similar manner.

Next, call a function w : DðGÞ ! C a weight if wðeÞ 6¼ 0 for all e 2 DðGÞ and
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X
e:oðeÞ¼u

jwðeÞj2 ¼ 1 for all u 2 VðGÞ:

Let S : ‘2ðDðGÞÞ ! ‘2ðDðGÞÞ be defined by S f ðeÞ ¼ f ð �eÞ, called the shift operator. Under such settings, define dA; dB :

‘2ðDðGÞÞ ! ‘2ðVðGÞÞ as

ðdA�ÞðvÞ ¼
X

e:oðeÞ¼v
wðeÞ�ðeÞ; ðdB�ÞðvÞ ¼

X
e:oðeÞ¼v

wðeÞ�ð �eÞ;

respectively. It immediately follows that dB ¼ dAS. Their adjoints d�A; d
�
B : ‘2ðVðGÞÞ ! ‘2ðDðGÞÞ are defined by

ðd�A ÞðeÞ ¼ wðeÞ ðoðeÞÞ; ðd�B ÞðeÞ ¼ wð �eÞ ðtðeÞÞ;
from the relationship h�; d�J iDðGÞ ¼ hdJ�;  iVðGÞ (J 2 fA;Bg) for all  2 ‘2ðVðGÞÞ and � 2 ‘2ðDðGÞÞ. Then, from the
property of the weight w, we can prove that dAd

�
A ¼ dBd

�
B ¼ I : ‘2ðVðGÞÞ ! ‘2ðVðGÞÞ (cf. [2]). In particular, the

Szegedy walk U ¼ SC ¼ Sð2d�AdA � IÞ in this setting is contained in our current setting. We often call unitary operators
S the shift operator and C the quantum coin operator. The discriminant operator T ¼ dAd

�
B is also defined in the natural

way.
If we further assume that wðeÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
degðoðeÞÞ
p

for all e 2 EðGÞ, the resulting quantum walk model U is nothing but
the Grover walk on G.

3. Spectral Analysis of Abstract Quantum Walk Models

3.1 Invariant Subspaces of U

Now we consider SpecðUÞ, the spectrum of U in the sense of (1.1). As can be seen in preceding works such as [2],
SpecðUÞ consists of eigenvalues inherited from those of a self-adjoint operator T : K1! K1 via the spectral mapping
property and specific ones to U.

Remark 3.1. Since U is a normal operator, we do not usually need to consider the spectrum in the sense of (1.1).
However, in the consideration of the eigensystem of U, we need the notion of generalized eigenspaces. This is the
reason why we introduce (1.1).

To characterize the spectral mapping property of SpecðUÞ, we consider the following operators. Let L : K2
1 ! K2 by

Lð f ; gÞT ¼ d�A f þ d�Bg, where d�B ¼ Sd�A. Note that L is a linear map. Indeed, for any �i 2 C and  i ¼ ð fi; giÞT 2 K2
1 ,

i ¼ 1; 2, we have

Lð�1 1 þ �2 2Þ ¼ Lð�1 f1 þ �2 f2; �1g1 þ �2g2ÞT

¼ d�Að�1 f1 þ �2 f2Þ þ d�Bð�1g1 þ �2g2Þ

¼
X2

i¼1

�iðd�A fi þ d�BgiÞ ¼
X2

i¼1

�iL i:

Also, let ~T : K2
1 ! K2

1 by

~T ¼
0 �I
I 2T

� �
: ð3:1Þ

Lemma 3.2.

UL ¼ L ~T : K2
1 ! K2: ð3:2Þ

Proof. Let  ¼ ð f ; gÞT 2 K2
1 . Direct calculations yield

UL ¼ Uðd�A f þ d�BgÞ ¼ Sð2d�AdA � IÞðd�A f þ d�BgÞ
¼ Sfd�A f þ ð2d

�
AT � d�BÞgg ¼ d�B f þ ð2d

�
BT � d�AÞg

On the other hand,

L ~T ¼ L
0 �I
I 2T

� �
f

g

� �

¼ L
�g

f þ 2Tg

� �
¼ �d�Agþ d�Bð f þ 2TgÞ

and the proof is completed. �

Let L :¼ Im L ¼ d�AK1 þ d�BK1 � K2, which is the center of our considerations in this paper. First we have the
following statement.
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Lemma 3.3. The mapping ~T is a bijective map on K2
1 .

Proof. It immediately follows that

2T I

�I 0

� �
~T ¼ ~T

2T I

�I 0

� �
¼

I 0

0 I

� �
;

which implies that ~T is bijective. �

Using this fact, we obtain the following.

Lemma 3.4. UðLÞ ¼ L.

Proof. For any � 2 L, there is an element  2 K2
1 such that � ¼ L . Combining the statement of Lemma 3.2, we have

U� ¼ UL ¼ Lð ~T Þ 2 L;

which yields UðLÞ � L.
Conversely, for any  2 K2

1 , there is a unique element ~ 2 K2
1 such that ~T ~ ¼  , which follows from Lemma 3.3;

namely, ~T is a bijection from K2
1 onto itself. Therefore, for any  2 K2

1 , we have

L ¼ L ~T ~ ¼ UL ~ 2 UðLÞ;
which yields L � UðLÞ and the proof is completed. �

Definition 3.5. We say the invariant subspace L the inherited eigenspace of U. The orthogonal complement L? of L
in K is said the birth eigenspace of U.

Easy calculations yield that the subspace L? is characterized by

L? ¼ kerðdAÞ \ kerðdBÞ: ð3:3Þ
In [2], SpecðUÞ is studied after decomposing it into two components: SpecðUjLÞ and SpecðUjL?Þ. Note that this

decomposition makes sense due to Lemma 3.4.

Here we consider the eigenvalue problem on the inherited eigenspace L:

UjL� ¼ ��; � 2 L: ð3:4Þ
By Lemmas 3.2 and 3.4, Eq. (3.4) is equivalent to the following problem:
Find  =2 kerðLÞ and � 2 C such that

Lð�I � ~TÞ ¼ 0: ð3:5Þ
By Eq. (3.5), there are two possibilities:
(C1)0  2 kerð�I � ~TÞ and  =2 kerðLÞ.
(C2)0  =2 kerð�I � ~TÞ,  2 kerðLð�I � ~TÞÞ and  =2 kerðLÞ.

Now a natural question arises: What role does ker L play in SpecðUÞ? The following three lemmas answer this
question and clarify our focus.

First we have the following.

Lemma 3.6. Let L and ~T be as above. Then

kerðLÞ ¼ kerðI � ~T
2Þ: ð3:6Þ

Proof. First assume that  ¼ ð f ; gÞT 2 ker L � K2
1 . This implies d�A f þ d�Bg ¼ 0. Acting the operator dA on both sides,

we have f þ Tg ¼ 0. Similarly, acting the operator dB on both sides, we also have T f þ g ¼ 0. These observations
imply

f 2 kerðI � T2Þ; g 2 kerðI � T2Þ with f ¼ �Tg:
On the other hand,

~T
2 ¼

0 �I
I 2T

� �
0 �I
I 2T

� �
¼
�I �2T

2T 4T2 � I

 !
:

Thus

ðI � ~T
2Þ

f

g

� �
¼

2I 2T

�2T �4T2 þ 2I

 !
f

g

� �
¼

2 f þ 2Tg

�2T f � 4T2gþ 2g

 !
¼

0

0

� �
; ð3:7Þ

which implies kerðLÞ � kerð1� ~T
2Þ.

108 MATSUE et al.



Conversely, assume  ¼ ð f ; gÞT 2 kerðI � ~T
2Þ. Then (3.7) (in this case, it is a consequence of the assumption

 2 kerðI � ~T
2Þ) yields f þ Tg ¼ 0 and gþ T f ¼ 0, which means g 2 kerðI � T2Þ. Since dAd

�
A ¼ I and dBd

�
B ¼ I,

these two equations also imply

dAðd�A f þ d�BgÞ ¼ 0 and dBðd�A f þ d�BgÞ ¼ 0:

Thus d�A f þ d�Bg 2 ker dA \ ker dB ¼ L? and hence d�A f þ d�Bg 2 L \L? ¼ f0g. Finally we have d�A f þ d�Bg ¼ 0 and
hence kerðI � ~T

2Þ � kerL. �

Lemma 3.6 indicates that Eq. (3.5) is equivalent to

ðI � ~T
2Þð�I � ~TÞ ¼ 0 and  =2 kerðI � ~T

2Þ: ð3:8Þ
Consequently, the case (C2)0 is equivalent to the following:
(C2)00  =2 kerð�I � ~TÞ,  =2 kerðI � ~T

2Þ and ðI � ~T
2Þð�I � ~TÞ ¼ 0.

We thus have translated the structure of ker L into the corresponding nullspace of ~T . Thanks to this fact, we can
provide the following lemmas.

Lemma 3.7. Let ~T , U and L be as above. Then we have

Specð ~TÞ � SpecðUjLÞ: ð3:9Þ

Proof. Let � 2 SpecðUjLÞ and � 2 L be a nonzero vector satisfying U� ¼ ��. Since L ¼ Im L, we have � ¼ L with
some  2 K2

1 . Since

L ~T ¼ UL ¼ U� ¼ �� ¼ �L 

by Lemma 3.2, Lð�I � ~TÞ ¼ 0. Using Lemma 3.6 and the fact that I � ~T
2

and �I � ~T commute each other, we obtain

ð�I � ~TÞðI � ~T
2Þ ¼ ðI � ~T

2Þð�I � ~TÞ ¼ 0:

Let us assume that � =2 Specð ~TÞ. Since �I � ~T is injective, it holds that ðI � ~T
2Þ ¼ 0, and thus L ¼ 0 by Lemma 3.6,

which contradicts to L ¼ � 6¼ 0. Consequently, we obtain � 2 Specð ~TÞ. �

The spectra of ~T and UjL coincide except �1, as shown in the following lemma.

Lemma 3.8. Let ~T , U and L be as above. Then we have

Specð ~TÞ n f�1g ¼ SpecðUjLÞ n f�1g:

Proof. By Lemma 3.7, Specð ~TÞ n f�1g � SpecðUjLÞ n f�1g. Now we show the converse: Specð ~TÞ n f�1g �
SpecðUjLÞ n f�1g. If ð�I � ~TÞ ¼ 0 for � 6¼ �1, then we have ðI � ~T

2Þ 6¼ 0, which implies the case (C1)0 holds,
thus � 2 SpecðUjLÞ. �

We have seen that, from Lemma 3.6, (3.5) is equivalent to (3.8). Using this fact and Lemma 3.8, we have the
following equivalences.

Proposition 3.9. (C1)0 is equivalent to
(C1) � 2 Specð ~TÞ n f�1g and (3.8).
Similarly, (C2)0, namely (C2)00, is equivalent to
(C2) � 2 Specð ~TÞ \ f�1g and (3.8).

Proof. It is sufficient to show the equivalence between (C1) and (C1)0.
Since the proof of Lemma 3.8 indicates that (C1) implies (C1)0, we will show that (C1)0 implies (C1). If not,

� 2 f�1g may also satisfy (C1)0. For example, assume that � ¼ 1 satisfies (C1)0. We then have

 2 kerðI � ~TÞ � kerðI þ ~TÞðI � ~TÞ ¼ kerðI � ~T
2Þ;

which contradicts (3.8). Similar arguments holds for � ¼ �1. We thus obtain (C1)0 is equivalent to (C1) and complete
the proof. �

Proposition 3.9 guarantees that the study of SpecðUjLÞ is reduced to individual cases (C1) and (C2).

3.2 The Case (C1)

The problem in the setting of case (C1) is reduced to the one that we find � 2 C with � 6¼ �1 and  6¼ 0 such that
ð�I � ~TÞ ¼ 0. We then have

ð�I � ~TÞ ¼ 0,
�I I

�I �I � 2T

� �
f

g

� �
¼

0

0

� �
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, � f þ g ¼ 0 and � f þ ð�I � 2TÞg ¼ 0

, g 2 kerð�2I � 2�T þ IÞ and � f þ g ¼ 0:

Since ~T is invertible from Lemma 3.3, 0 =2 Specð ~TÞ holds, which means � 6¼ 0. The above statement is thus equivalent
to

g 2 ker
� þ ��1

2

� �
I � T

� �
and f ¼ ���1g:

Therefore we have

kerð�I � ~TÞ ¼
1

��

� �
� ker

� þ ��1

2

� �
I � T

� �
:

Putting � ¼ ð� þ ��1Þ=2, we have

kerðe�iarccos�I � ~TÞ ¼
1

�e�iarccos�

 !
� kerð�I � TÞ:

Remarking e�iarccos� ¼ �1 if and only if � ¼ �1, we have the following lemma, which describes eigenpairs of U

associated with � 6¼ �1.

Lemma 3.10. The eigenpair of U associated with � 2 SpecðUjLÞ n f�1g is characterized by the following.

SpecðUjLÞ n f�1g ¼ fe�iarccos�j� 2 SpecðTÞ n f�1gg;
kerðe�iarccos�I � UjLÞ ¼ ðd�A � e�iarccos�d�BÞ kerð�I � TÞ:

3.3 The Case (C2)

Our main aim here is the complete description of SpecðUjLÞ in the case (C2). The key point is the structure of the
eigenspaces kerðI � ~TÞ as well as the generalized eigenspaces kerðI � ~TÞn, n 	 2. To this end, we provide the following
lemma.

Lemma 3.11. For each n 	 1, we have

ðI � ~TÞ2n ¼ 2nð� ~TÞn
ðI � TÞn 0

0 ðI � TÞn

� �
; ð3:10Þ

ðI þ ~TÞ2n ¼ 2n ~T
n ðI þ TÞn 0

0 ðI þ TÞn

� �
: ð3:11Þ

Proof. First consider ðI � ~TÞ2n. The case n ¼ 0 is trivial. We have

ðI � ~TÞ2 ¼
I I

�I I � 2T

� �
I I

�I I � 2T

� �

¼
0 2ðI � TÞ

�2ðI � TÞ �4TðI � TÞ

� �
¼ 2

0 I

�I �2T

� �
I � T 0

0 I � T

� �
;

which means (3.10) for n ¼ 1. Notice that

I � T 0

0 I � T

� �
0 I

�I �2T

� �
¼

0 I

�I �2T

� �
I � T 0

0 I � T

� �
: ð3:12Þ

Assume that (3.10) holds for some n ¼ n0 	 1. Then

ðI � ~TÞ2ðn0þ1Þ ¼ 2n0ð� ~TÞn0
ðI � TÞn0 0

0 ðI � TÞn0

� �
0 2ðI � TÞ

�2ðI � TÞ �4TðI � TÞ

� �

¼ 2n0þ1ð� ~TÞn0
ðI � TÞn0 0

0 ðI � TÞn0

� �
ð� ~TÞ

I � T 0

0 I � T

� �

¼ 2n0þ1ð� ~TÞn0þ1
ðI � TÞn0þ1 0

0 ðI � TÞn0þ1

 !

by (3.12), which proves (3.10) for n ¼ n0 þ 1. By induction, (3.10) holds for all n 	 0.

Next consider ðI þ ~TÞ2n. The case n ¼ 0 is trivial. We have
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ðI þ ~TÞ2 ¼
I �I
I I þ 2T

� �
I �I
I I þ 2T

� �

¼
0 �2ðI þ TÞ

2ðI þ TÞ 4TðI þ TÞ

� �
¼ 2

0 �I
I 2T

� �
I þ T 0

0 I þ T

� �
;

which means (3.11) for n ¼ 1. By the same arguments as the proof of (3.10) we obtain (3.11). �

With the help of Lemma 3.11, we can prove the following, which gives us the description of eigenspaces of ~T

associated with eigenvalues � ¼ �1.

Proposition 3.12.

kerðI � ~TÞ ¼
1

�1

� �
� kerðI � TÞ; ð3:13Þ

kerðI � ~TÞn ¼ C2 � kerðI � TÞ ðn 	 2Þ; ð3:14Þ

kerðI þ ~TÞ ¼
1

1

� �
� kerðI þ TÞ; ð3:15Þ

kerðI þ ~TÞn ¼ C2 � kerðI þ TÞ ðn 	 2Þ: ð3:16Þ

Proof. We only prove (3.13) and (3.14). Remaining statements (3.15) and (3.16) can be proved by the same arguments.
First we have

I � ~T ¼
I I

�I I � 2T

� �
; ðI � ~TÞ2 ¼

0 2ðI � TÞ
�2ðI � TÞ �4TðI � TÞ

� �
: ð3:17Þ

For  ¼ ð f ; gÞT 2 kerðI � ~TÞ, we have

I I

�I I � 2T

� �
f

g

� �
¼

f þ g

� f þ ðI � 2TÞg

� �
¼

0

0

� �
;

which yields f ¼ �g and T f ¼ f , and hence kerðI � ~TÞ � fð f ;�f ÞT : f 2 kerðI � TÞg. The converse is trivial and
(3.13) holds true.

Secondly, consider ðI � ~TÞ2 ¼ 0. (3.17) immediately yields

ðI � ~TÞ2 ¼
0 2ðI � TÞ

�2ðI � TÞ �4TðI � TÞ

� �
f

g

� �
¼

0

0

� �
, f 2 kerðI � TÞ; g 2 kerðI � TÞ:

Next consider ðI � ~TÞ4 ¼ 0. By Lemma 3.11 with n ¼ 2, we have

ðI � ~TÞ4 ¼ 22ð� ~TÞ2
ðI � TÞ2 0

0 ðI � TÞ2

 !
f

g

� �
¼

0

0

� �
:

Since the operator � ~T is invertible by Lemma 3.3, the above equation implies f 2 kerðI � TÞ2 and g 2 kerðI � TÞ2.
Here note that kerðI � TÞ2 ¼ kerðI � TÞ, since T is Hermitian and hence diagonalizable and it implies kerðI � TÞ2 ¼

kerðI � TÞ. Thus we observe that f 2 kerðI � TÞ and g 2 kerðI � TÞ. In particular, kerðI � ~TÞ4 ¼ kerðI � ~TÞ2 holds.
The similar arguments hold for all n by Lemma 3.11 and the invertibility of � ~T .

In general, kerðI � ~TÞn � kerðI � ~TÞnþ1 holds for all n, which is a fundamental property from linear algebra.
Combining the fact kerðI � ~TÞ4 ¼ kerðI � ~TÞ2, we have kerðI � ~TÞ2 � kerðI � ~TÞ3 � kerðI � ~TÞ4 ¼ kerðI � ~TÞ2.

Finally we have kerðI � ~TÞn ¼ kerðI � ~TÞ2 for all n 	 2 by recursive arguments and the proof is completed. �

Remark 3.13. In the proof of Proposition 3.12, the operator T being self-adjoint is used to guarantee
kerðI � TÞ2 ¼ kerðI � TÞ. Our arguments here also hold even for diagonalizable matrices which are not necessarily
self-adjoint.

The following proposition characterizes the eigenvalues �1 of UjL.

Proposition 3.14. For  ¼ ð f ; gÞT 2 K2
1 , the following four statements are equivalent.

(i) UL ¼ �L 6¼ 0.
(ii)  2 Z� n kerðLÞ, where Z� ¼ kerðI 
 ~TÞ2ðI � ~TÞ.
(iii)  ¼  1 þ  2, such that  1 2 X� � kerðI 
 ~TÞ2 n kerðI 
 ~TÞ and that  2 2 kerðLÞ.
(iv) f ¼ f1 þ f2 and g ¼ g1 þ g2, such that f1; g1 2 kerðI 
 TÞ with f1 � g1 6¼ 0 and that ð f2; g2ÞT 2 kerðLÞ.

Proof. We first claim that X� � Z� by Lemma 3.6 and that kerðLÞ � Z�. In what follows, we consider � ¼
þ1 2 SpecðUjLÞ with Z ¼ Zþ and X ¼ Xþ. The similar arguments to below yield the corresponding equivalence for
the eigenvalue � ¼ �1.
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Notice that since I � ~T
2 ¼ ðI þ ~TÞðI � ~TÞ, if ~T ¼ � 6¼ 0, then L ¼ 0 by Lemma 3.6, and thus L is not an

eigenfunction of UjL.
Since þ1 2 SpecðUjLÞ if and only if there exists � 2 L such that U� ¼ � 6¼ 0, we can see that 1 2 SpecðUjLÞ is

equivalent to that there exists  2 K2
1 such that

L 6¼ 0 and LðI � ~TÞ ¼ 0;

which is also equivalent to

L 6¼ 0 and ðI þ ~TÞðI � ~TÞ2 ¼ 0

by Lemma 3.6. This is also equivalent to

 =2 kerðLÞ and  2 Z:

Thus we obtain that (i) and (ii) are equivalent to each other.
Now we assume  2 Z n kerðLÞ. Then there are two vectors  1 2 kerðI � ~TÞ2 and  2 2 kerðI þ ~TÞ such that

 ¼  1 þ  2 =2 kerðLÞ. Now it holds that  2 2 kerðI þ ~TÞ � kerðLÞ. If  1 belongs to kerðI � ~TÞ, then  1 2 kerðLÞ also
holds and hence  ¼  1 þ  2 2 kerðLÞ, which is contradiction. Therefore  1 2 kerðI � ~TÞ2 n kerðI � ~TÞ ¼ X. This
shows ‘‘(ii) ) (iii)’’.

Conversely, we assume (iii); namely,  ¼  1 þ  2 with 0 6¼  1 2 X � Z and  2 2 kerðLÞ � Z. Then we have
 2 Z. Note that Z is a vector space. Let us prove  62 kerðLÞ. Since  2 2 kerðLÞ, it is sufficient to prove that
 1 =2 kerðLÞ. Suppose the converse; namely,  1 2 kerðLÞ ¼ kerðI � ~TÞðI þ ~TÞ. Since  1 2 X � kerðI � ~TÞ2, we obtain
that ðI � ~TÞ 1 2 kerðI þ ~TÞ \ kerðI � ~TÞ ¼ f0g. Therefore, we have ðI � ~TÞ 1 ¼ 0, which contradicts the assumption
0 6¼  1 2 X. We thus obtain  1 62 kerðLÞ and  2 Z n kerðLÞ.

Consequently, (ii) and (iii) are equivalent.

Next assume  ¼  1 þ  2 with 0 6¼  1 2 X and  2 2 kerðLÞ. Write  i ¼ ð fi; giÞT 2 K2
1 for i ¼ 1; 2. By (3.13) and

(3.14) in Proposition 3.12,  1 ¼ ð f1; g1ÞT with f1 þ g1 6¼ 0 and f1; g1 2 kerðI � TÞ hold true. This implies ‘‘(iii) )
(iv)’’. The converse also follows from Proposition 3.12. �

This proposition indicates that the eigenfunctions of UjL associated with the eigenvalues � ¼ �1 are characterized
by purely generalized kernels X
 ¼ kerðI 
 ~TÞ2 n kerðI 
 ~TÞ up to kerðLÞ.

3.4 The Final Result

Summarizing the above arguments, we have the following spectral mapping theorem of U.

Theorem 3.15 (Spectral Mapping Theorem of U). Let ’QW ðxÞ ¼ ðxþ x�1Þ=2 be the Joukowsky transform. Then

kerð�I � UjLÞ ¼

Lðkerð�I � ~TÞÞ if � =2 f�1g,
fL j  ¼ ð f ; gÞT ; f ; g 2 kerðI � TÞ; f þ g 6¼ 0g
¼ LðkerðI � ~TÞ2 n kerðI � ~TÞÞ if � ¼ 1,

fL j  ¼ ð f ; gÞT ; f ; g 2 kerðI þ TÞ; f � g 6¼ 0g
¼ LðkerðI þ ~TÞ2 n kerðI þ ~TÞÞ if � ¼ �1.

8>>>>>><
>>>>>>:

ð3:18Þ

In particular, we have

SpecðUjLÞ ¼ Specð ~TÞ ¼ ’�1
QW ðSpecðTÞÞ: ð3:19Þ

For � 2 SpecðUjLÞ n f�1g, the eigenspace Lðkerð�I � ~TÞÞ is given by

fd�A f’QW ð�Þ � �d
�
B f’QW ð�Þ j f’QW ð�Þ 2 kerð’QW ð�ÞI � TÞg:

The spectrum of UjL? has the following relationship : SpecðUjL?Þ ¼ Specð�SÞ. Moreover, we have

kerð�I � UjL?Þ ¼
0 if � 6¼ �1,

kerðdAÞ \ kerðI þ SÞ if � ¼ 1,

kerðdAÞ \ kerðI � SÞ if � ¼ �1.

8<
: ð3:20Þ

Proof. Eigenstructures of UjL with � ¼ �1 directly follow from Proposition 3.14. Note that ’QW ð�1Þ ¼ �1, which
yield kerð’QW ð�1ÞI � TÞ ¼ kerðI 
 TÞ. For � 6¼ �1, Lemma 3.8 says SpecðUjLÞ n f�1g ¼ Specð ~TÞ n f�1g. The
spectral mapping property Specð ~TÞ n f�1g ¼ ’�1

QW ðSpecð ~TÞ n f�1gÞ ¼ ’�1
QW ðSpecð ~TÞÞ n f�1g is the consequence of

Lemma 3.10.
Let � 2 L? be an eigenfunction of U. Then U� ¼ Sð2d�AdA � IÞ ¼ �S� and hence � is an eigenfunction of �S.

Note that SpecðSÞ ¼ f�1g, since S is an involution, namely, self-adjoint and unitary. In such a case, we also have
dB� ¼ dAS� ¼ 
dA� ¼ 0. Thus the statement � 2 L? \ kerðI � SÞ is consequently equivalent to
� 2 kerðdAÞ \ kerðI � SÞ.
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Combination of these results yields our statement. �

Before stating the corollary of Theorem 3.15, we provide the following lemma.

Lemma 3.16. For f 2 K1, f 2 kerðI 
 TÞ holds if and only if d�A f ¼ �d�B f .

Proof. We immediately have

f 2 kerðI � TÞ , dBd
�
A f ¼ f , dBðd�A f � d�B f Þ ¼ dAðd�A f � d�B f Þ ¼ 0

, d�A f � d�B f 2 L \ ðker dA \ ker dBÞ ¼ L \L? ¼ f0g
, d�A f ¼ d�B f :

The same calculations yield f 2 kerðI þ TÞ , d�A f ¼ �d�B f . �

Summarizing the above statements with the preceding work [2], we obtain the complete characterization of the
spectrum of quantum walks on graphs.

Corollary 3.17 ([2], Complete eigenstructure of U on the graph G). Assume that a connected graph G is finite;
namely, jVðGÞj, jEðGÞj <1. Consider the Szegedy walk on G given in Example 2.4. Then we have the following
statements.
(1) Integers m�1 2 f0; 1g denote the multiplicity of eigenvalues �1 of T , respectively, which are given by

mþ1 ¼
1 if 1 2 SpecðTÞ
0 otherwise

�
; m�1 ¼

1 if 1 2 SpecðTÞ and G is bipartite

0 otherwise

�
:

See [2] for details of these definitions.
Let ’QW : C! C be the Joukowsky transform given by ’QW ðxÞ ¼ ðxþ x�1Þ=2. Then we have

SpecðUÞ ¼ ’�1
QW ðSpecðTÞÞ [ fþ1g [ f�1g;

where the multiplicity of þ1 and �1 are Mþ1 ¼ maxf0; jEj � jV j þ mþ1g and M�1 ¼ maxf0; jEj � jVj þ m�1g,
respectively.

(2) The eigenfunctions of the eigenvalue � 2 ’�1
QW ðSpecðTÞÞ generating L are given by

1ffiffiffi
2
p
j sin �j

ðI � ei�SÞd�A f ; where f 2 kerð’QW ð�ÞI � TÞ if � 6¼ �1,

d�A f ; where f 2 kerðI � TÞ if � ¼ 1.

8<
:

If G is further assumed to be bipartite, then UjL has the eigenvalue �1 and its eigenfunction is given by

d�A f ; where f 2 kerðI þ TÞ:
The eigenspaces associated with the eigenvalues þ1 with multiplicity Mþ1 and �1 with multiplicity M�1 except
those corresponding to ’�1

QW ð�1Þ are described by

kerðdAÞ \HS
�1 and kerðdAÞ \HS

þ1; ð3:21Þ
respectively. Here HS

�1 ¼ kerðI 
 SÞ.

Proof. By definition of mþ1, we have dim kerðI � TÞ ¼ 1. Thus  ¼ ð f ; gÞT in (3.18) is written as ð f ; � f ÞT for � 2
R n f�1g. By Lemma 3.16, we have d�A f ¼ d�B f . It thus follows that the eigenfunction L of UjL is written as �d�A f for
some � 2 R n f0g.

Properties that G is bipartite, we have dim kerðI þ TÞ ¼ 1 by definition of m�1 (cf. [2]). The same arguments as
above thus yield (3.21).

All remaining statements follow from Theorem 3.15. �

Remark 3.18. It is shown in [2] that the discriminant operator T has the eigenvalue 1 if and only if the underlying
random walk on a finite graph G is reversible. Moreover, the operator T has the eigenvalue �1 if and only if the graph
G is bipartite, namely, its set of vertices can be partitioned into two parts V1 and V2 such that each edge has one vertex
in V1 and one vertex in V2. Spectral properties around 1 of the twisted random walks has been well studied in [3] and
also its induced quantum walk has been studied in [2]. Analysis in [2] also indicates that the eigenstructure of
SpecðUjL?Þ induces localization of U. Roughly, a cycle structure on G induces localization, since the geometric
multiplicities of f�1g \ UjL? are described with the first Betti number of G, which becomes a motivation of extend
quantum walks on graphs to new quantum walks on simplicial complexes [5]. See [2] for more detailed description of
kerðI � UjL?Þ.

4. Conclusion

In this paper, we have discussed the spectral mapping theorem of quantum walks of the general form containing
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well-known Grover and Szegedy walks on finite graphs. We have derived the spectral mapping theorem of UjL without
using the spectral decomposition of the discriminant operator T to obtain the description of eigenstructures.

We have seen that all eigenvalues of ~T describe whole eigenvalues of UjL even if ~T is not diagonalizable. We also
have obtained that kerð�I � UjLÞ ¼ Lðkerð�I � ~TÞÞ for � 2 SpecðUjLÞ n f�1g. On the other hand, if the eigenvalue �
has degenerate geometric multiplicity, then kerð�I � UjLÞ is described by purely generalized eigenspace of �I � ~T .
This observation is a by-product of introducing our new method.
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