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This study is motivated by the previous work [14]. We treat 3 types of the one-dimensional quantum walks
(QWs), whose time evolutions are described by diagonal unitary matrices except at one defected point. In this
paper, we call the QW defined by diagonal unitary matrices, ‘‘the diagonal QW’’, and we consider the stationary
distributions of general 2-state diagonal QW with one defect, 3-state space-homogeneous diagonal QW, and
3-state diagonal QW with one defect. One of the purposes of our study is to characterize the QWs by the stationary
measure, which may lead to answer the basic and natural question, ‘‘What are stationary measures for one-
dimensional QWs?’’. In order to analyze the stationary distribution, we focus on the corresponding eigenvalue
problems and the definition of the stationary measure.
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1. Introduction

Quantum walk (QW) is a quantum mechanical version of classical random walk, whose time evolution are defined
by unitary evolutions of probability amplitudes. For its characteristic properties, QW has attracted much interest of
various fields in the quantum scale, such as quantum algorithms [1, 18] and quantum physics [8, 10, 15, 22]. Many
reviews and books on QWs have been published so far [2, 9, 11, 16, 19, 20]. Owing to wide applications, it is beneficial
to study QWs both theoretically and experimentally. In recent years, QWs have also been implemented experimentally
by several kinds of materials, such as trapped ions [21] and photons [17]. However, because it is difficult to implement
the state of QWs after many steps, we have not succeeded to see experimentally the behavior in the long time-limit. In
addition, for the quantum nature, it is hard for us to intuitively assimilate the properties.

Recently, to derive measures from QWs has become one of the hottest topics in the theoretical study of QWs
[3, 5–7, 12, 14]. Especially, the properties of the stationary measures of the two-state QWs in one dimension have been
gradually studied in the immediate past [3, 5, 7, 12, 14]. As is well known, the stationary measure of the Markov chain
has been deeply studied, however, the fruits of study for the stationary measure of QW has not yet been given. This is
one of the motivations of our study. In this paper, we focus on the 2-state and 3-state QWs in one dimension whose time
evolutions are generally expressed by a diagonal unitary matrix or diagonal unitary matrices with one defect.

Now we explain concisely the previous studies of stationary measures. In 2013, Konno et al. [13] gave a stationary
measure of the QW with one defect whose quantum coin has a phase at x ¼ 0, and Konno [12] gave the uniform
measure as a stationary measure of the one-dimensional QWs in one dimension. Then Endo et al. [5] got a stationary
measure of the QW with one defect whose quantum coins are defined by the Hadamard matrix at x 6¼ 0 and the rotation
matrix at x ¼ 0. Endo and Konno [3] derived a stationary measure of ‘‘the Wojcik model’’ in 2014, and then Endo et al.
[7] obtained a stationary measure of the two-phase QW. Konno and Takei [14] showed that the set of the stationary
measures of the QW except U is diagonal, contains non-uniform stationary measure and they showed that any
stationary measure is uniform for diagonal matrices. Moreover, they proved that the set of the stationary measures for
the QW contains uniform measures in general.

The organization of this paper is as follows. In the next section, we give a description of n-state discrete-time QW
(DTQW) in one dimension. We consider the stationary measures of the 2-state diagonal QW with one defect in
Section 3, and then, we study 3-state case in Section 4.
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2. Description of n-state DTQW in One Dimension

As a quantum version of classical random walk with discrete-time, discrete-time QW (DTQW) has been intensively
studied since the beginning of 2000’. In this section, we explain briefly how the n-state DTQW is generally described,
where n 2 N. The total space is defined by a Hilbert space H:

H ¼ HP �HC;

where HP is spanned by fjxi; x 2 Zg, called a position Hilbert space, and HC is a coin Hilbert space, spanned by
fjJi; J 2 fW1; � � � ;Wngg, where Z is the set of integers. The time evolution of the walk is described by a set of n� n

unitary matrices fUxgx2Z on HC, where

Ux ¼

x11 x12 � � � x1n

x21
. .

. ..
.

..

. . .
. ..

.

xn1 � � � � � � xnn

2
6666664

3
7777775
ðxij 2 C; i; j 2 NÞ;

which is called the quantum coin. Note that the subscript x 2 Z represents the position of the walker. To define the time
evolution, let us divide the matrix Ux into n parts as follows:

Ux ¼ V ð1Þx þ V ð2Þx þ � � � þ V ðnÞx ;

where

V ð1Þx ¼

x11 x12 � � � x1n

0 . .
.

0

..

. . .
. ..

.

0 � � � � � � 0

2
6666664

3
7777775
; V ð2Þx ¼

0 � � � � � � 0

x21 x22 � � � x2n

..

. . .
. ..

.

0 � � � � � � 0

2
66664

3
77775; � � � ;V ðnÞx ¼

0 � � � � � � 0

..

. . .
. ..

.

0 . .
.

0

xn1 xn2 � � � xnn

2
6666664

3
7777775
:

As the general setting of DTQW, the inner state of the walker consists of n chiralities:

jW1i ¼ T½1; 0; � � � ; 0�n; jW2i ¼ T½0; 1; � � � ; 0�n; � � � ; jWni ¼ T½0; 0; � � � ; 1�n;

with T½� � ��n 2 Cn. At each time step, the walker steps according to the chirality as follows:
(1) When n is even, writing n ¼ 2 j,

. jW1i; � � � ; jWji: the walker moves to the left with j; � � � ; 1 step(s), respectively.

. jWjþ1i; � � � ; jW2ji: the walker moves to the right with 1; � � � ; j step(s), respectively.
(2) When n is even, writing n ¼ 2 jþ 1,

. jW1i; � � � ; jWji: the walker moves to the left with j; � � � ; 1 step(s), respectively.

. jWjþ1i: the walker stays at the same position.

. jWjþ2i; � � � ; jW2jþ1i: the walker moves to the right with 1; � � � ; j step(s), respectively.
The walker at time t and position x has a coin state expressed by the n-dimensional vector;

�tðxÞ ¼ T½�W1
t ðxÞ;�

W2
t ðxÞ; � � � ;�

Wn

t ðxÞ�n 2 C
n

and the time evolution is determined by the recurrence formula:
. if n is odd, we have

�tðxÞ ¼ V1�t�1ðxþ ðn� 1Þ=2Þ þ V2�t�1ðxþ ðn� 3Þ=2Þ þ � � � þ Vn�1�t�1ðx� ðn� 3Þ=2Þ þ Vn�t�1ðx� ðn� 1Þ=2Þ:

. if n is even, we have

�tðxÞ ¼ V1�t�1ðxþ n=2Þ þ V2�t�1ðxþ ðn� 2Þ=2Þ þ � � � þ Vn�1�t�1ðx� ðn� 2Þ=2Þ þ Vn�t�1ðx� n=2Þ:

Now let

�t ¼ T � � � ;

�W1
t ð�1Þ

..

.

�Wn
t ð�1Þ

2
664

3
775;

�W1
t ð0Þ

..

.

�Wn
t ð0Þ

2
664

3
775;

�W1
t ð1Þ

..

.

�Wn
t ð1Þ

2
664

3
775; � � �

2
664

3
775 2 ðCnÞZ

and

UðsÞ ¼ SU
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with

U ¼
X
x2Z
jxihxj � Ux

and

Sjx; �i ¼

jxþ k; � ¼ Wjþki
jx� k; � ¼ Wj�kþ1i

�
ðn ¼ 2jÞ

jxþ k; � ¼ Wjþkþ1i
jx; � ¼ Wjþ1i
jx� k; � ¼ Wj�kþ1i

0
B@ ðn ¼ 2jþ 1Þ

8>>>>>><
>>>>>>:

;

where T means the transposed operation. Here S is called the shift operator. The1�1 unitary matrix UðsÞ is a time
evolution operator on H, that is, the state of the walker at position x and time t can be defined by �t ¼ ðUðsÞÞt�0.

Now we prefer to introduce a map �t : Z! ½0; 1�:

�tðxÞ ¼ k�tðxÞk2 ¼ j�W1
t ðxÞj

2 þ � � � þ j�Wn

t ðxÞj
2 for x 2 Z:

Assuming k�0k2 ¼ 1, �t becomes the probability measure, and we can define the random variable Xt from �t, that is,
the walker can be observed at position x and time t with the probability

PðXt ¼ xÞ ¼ �t:

Here we define the stationary measure. Put Rþ ¼ ½0;1Þ, and we set a map � : ðCnÞZ! R
Z

þ such that for

� ¼ T � � � ;

�W1ð�1Þ

..

.

�Wnð�1Þ

2
664

3
775;

�W1 ð0Þ

..

.

�Wn ð0Þ

2
664

3
775;

�W1 ð1Þ

..

.

�Wn ð1Þ

2
664

3
775; � � �

2
664

3
775 2 ðCnÞZ;

we define the measure � : Z! Rþ by �ðxÞ ¼ �ð�ÞðxÞ (x 2 Z) with

�ð�Þ ¼ ðj�W1 ðxÞj2 þ � � � þ j�WnðxÞj2Þx2Z:

Now let

�s ¼ f�ð�Þ 2 RZþ : there exists � such that �ððU(s)Þt�Þ ¼ �ð�Þ for any t � 0g; ð2:1Þ

and we call the element of �s, the stationary measure of the QW. The amplitude � in the definition of �s is called the
stationary amplitude. Now we consider the eigenvalue problem of the QW

UðsÞ�ð�Þ ¼ ��ð�Þ ð� 2 CÞ: ð2:2Þ

Since the unitarity of UðsÞ, we have j�j ¼ 1, and therefore we see �ð�ð�ÞÞ 2 �s.

3. Case 1: 2-state Diagonal QW with One Defect

In this section, we study the DTQW whose quantum coins are given by the set of diagonal unitary matrices with one
defect at the origin:

fUxg ¼
ei�	 0

0 �ð	Þe�i�	

" #
x¼	1;	2;���

;
a b

c d

" #
x¼0

( )
; ð3:1Þ

where �	 2 ½0; 2�Þ, a; b; c; d 2 C, and �ð	Þ 2 C with j�ð	Þj ¼ 1. Note that Eq. ð3.1Þ is defined by the double sign.
We assign the two different quantum coins to the positive and negative parts, respectively. For the unitarity, we have
jaj2 þ jcj2 ¼ jbj2 þ jdj2 ¼ 1, abþ cd ¼ 0, c ¼ ��b, and d ¼ �a, where � 2 C is the determinant of U0 with
j�j2 ¼ 1. Putting

V ð1Þx ¼

ei�	 0

0 0

" #
x¼	1;	2;���

ðx ¼ 	1;	2; � � �Þ

a b

0 0

� �
x¼0

ðx ¼ 0Þ

8>>>><
>>>>:

; V ð2Þx ¼

0 0

0 �ð	Þe�i�	

� �
x¼	1;	2;���

ðx ¼ 	1;	2; � � �Þ

0 0

c d

� �
x¼0

ðx ¼ 0Þ

8>>><
>>>:

;

then, the time evolution of the walk is defined by

�tþ1ðxÞ ¼ V ð1Þxþ1�tðxþ 1Þ þ V ð2Þx�1�tðx� 1Þ:
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Here we show the stationary measure obtained by using the splitted generating function method (the SGF method)
developed in the previous studies [3, 7, 13]. The detail of the derivation of Theorem 3.1 is given in Section 3.1.

Theorem 3.1. A class of stationary measures of the QW is given by

�ðxÞ ¼
ð1þ jbj2Þj�j2 þ jaj2j	j2 � 2<ðab�	Þ ðx � 1Þ
j�j2 þ j	j2 ðx ¼ 0Þ
jaj2j�j2 þ ð1þ jbj2Þj	j2 þ 2<ðab�	Þ ðx 
 �1Þ

8><
>: ;

where � ¼ �Lð0Þ, 	 ¼ �Rð0Þ, and <ðxÞ is the real part of x ðx 2 CÞ. The stationary measures are obtained by solving
(2.2) with � ¼ 	

ffiffiffiffiffiffiffiffiffi
�ð	Þ
p

.

We see that the stationary measure does not contain the parameters �þ and ��. We should remark that the stationary
measure does not have an exponential decay for the position, which is in remarkable contrast to the QWs we treated in
our previous studies [3, 7]. In addition, the stationary measure is generally non-uniform for the position, however, if
b ¼ 0, that is, the defect is defined by the diagonal unitary matrix, or if

j�j2 � j	j2 � 2
<ðab�	Þ
jbj2

¼ 0;

then, the stationary measure becomes a uniform measure. Here one of the interesting future problems is to elucidate the
whole picture of the set of the stationary measure.

3.1 Proof of Theorem 3.1

Taking advantage of the SGF method, let us solve the eigenvalue problem

UðsÞ� ¼ ��; ð3:2Þ

where � 2 C with j�j ¼ 1. Rewriting the eigenvalue problem, we have

��ðxÞ ¼ V ð1Þxþ1�ðxþ 1Þ þ V ð2Þx�1�ðx� 1Þ: ð3:3Þ

Now Eq. ð3.3Þ can be expressed according to each position as follows:

(1) Case of x ¼ 	2;	3; � � �.

��LðxÞ ¼ ei�	�Lðxþ 1Þ;
��RðxÞ ¼ �ð	Þe�i�	�Rðx� 1Þ:

(2) Case of x ¼ 1.

��Lð1Þ ¼ ei�þ�Lð2Þ;
��Rð1Þ ¼ c�Lð0Þ þ d�Rð0Þ:

(3) Case of x ¼ 0.

��Lð0Þ ¼ e�þ�Lð1Þ;
��Rð0Þ ¼ �ð�Þe�i���Rð�1Þ:

(4) Case of x ¼ �1.

��Lð�1Þ ¼ a�Lð0Þ þ b�Rð0Þ;
��Rð�1Þ ¼ �ð�Þe�i���Rð�2Þ:

Here we introduce the generating functions of � jðxÞ ð j ¼ L;RÞ as follows:

f
j
þðzÞ ¼

X1
x¼1

� jðxÞzx; f j�ðzÞ ¼
X�1
x¼�1

� jðxÞzx: ð3:4Þ

Then we obtain

Lemma 3.2. Put

A	 ¼
� �

ei�	

z
0

0 � ��ð	Þe�i�	z

2
4

3
5; f	ðzÞ ¼

f L	ðzÞ
f R	ðzÞ

" #
;

aþðzÞ ¼
���

ðc�þ d	Þz

� �
; a�ðzÞ ¼

ða�þ b	Þz�1

��	

" #
:

Then,
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A	f	ðzÞ ¼ a	ðzÞ ð3:5Þ

hold.

Noting

detA	 ¼ �
��ð	Þ

ei�	z
z�

�ei�	

�ð	Þ

� �
z�

ei�	

�

� �
; ð3:6Þ

we choose 
ð	Þs , 
ð	Þl 2 C satisfying

detA	 ¼ �
��ð	Þ

ei�	z
ðz� 
ð	Þs Þðz� 


ð	Þ
l Þ ð3:7Þ

and j
ð	Þs j 
 1 
 j
ð	Þl j. Here Eqs. ð3.6Þ and ð3.7Þ give 
ð	Þs 
ð	Þl ¼ ð�ð	ÞÞ
�1e2i�	 .

From now on, let us derive f L	ðzÞ and f R	ðzÞ by solving Eq. ð3.5Þ in Lemma 3.2.

(1) Case of f LþðzÞ. Eq. (3.5) gives

f LþðzÞ ¼
��ðþÞ�

ei�þ detAþ
z�

�ei�þ

�ðþÞ

� �
:

Putting 
ðþÞs ¼ �ð�ðþÞÞ
�1ei�þ , we have

f LþðzÞ ¼
�ð
ðþÞl Þ

�1z

1� ð
ðþÞl Þ
�1z

¼ �ð
ðþÞl Þ
�1zþ �ð
ðþÞl Þ

�2z2 þ � � � :
Hence we see

f LþðzÞ ¼ �
X1
x¼1

ð
ðþÞl Þ
�xzx ¼ �

X1
x¼1

ð�ðþÞe�2i�þÞxð
ðþÞs Þ
xzx: ð3:8Þ

Equation ð3.8Þ and the definition of f LþðzÞ imply

�LðxÞ ¼ �ð�ðþÞe�2i�þÞxð
ðþÞs Þ
x ðx ¼ 1; 2; � � �Þ; ð3:9Þ

where


ðþÞs ¼ �ð�
ðþÞÞ�1ei�þ : ð3:10Þ

(2) Case of f RþðzÞ. Putting 
ðþÞs ¼ ��1ei�þ , we have from Eq. (3.5)

f RþðzÞ ¼ �
ð�ðþÞÞ�1ei�þðc�þ d	Þz

z� 
ðþÞl

¼
ð�ðþÞÞ�1ei�þðc�þ d	Þð
ðþÞl Þ

�1z

1� ð
ðþÞl Þ
�1z

¼ ð�ðþÞÞ�1ei�þðc�þ d	Þ
X1
x¼1

ðð
ðþÞl Þ
�1zÞx

¼ ð�ðþÞÞ�1ei�þðc�þ d	Þ
X1
x¼1

ð�ðþÞe�2i�þ
ðþÞs zÞx: ð3:11Þ

Equation ð3.11Þ and the definition of f RþðzÞ give

�RðxÞ ¼ ð�ðþÞÞ�1ei�þðc�þ d	Þð�ðþÞe�2i�þ
ðþÞs Þ
x ðx ¼ 1; 2; � � �Þ; ð3:12Þ

where


ðþÞs ¼ �
�1ei�þ : ð3:13Þ

(3) Case of f L�ðzÞ. Putting ð
ð�Þl Þ
�1 ¼ ��1�ð�Þe�i�� , Eq. ð3.5Þ gives

f L�ðzÞ ¼ �
ð�ð�ÞÞ�1ei��ða�þ b	Þð
ð�Þs Þ

�1ð
ð�Þl Þ
�1z�1

z�1 � ð
ð�Þs Þ�1
:

Hence we have

f L�ðzÞ ¼
ð�ð�ÞÞ�1ei��ða�þ b	Þð
ð�Þl Þ

�1z�1

1� 
ð�Þs z�1
ð3:14Þ
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¼
e�i��ða�þ b	Þ
ð�Þs z�1

1� 
ð�Þs z�1
ð3:15Þ

¼ e�i��ða�þ b	Þ
X�1
x¼�1

ð
ð�Þs Þ
�xzx: ð3:16Þ

Equation ð3.16Þ and the definition of f L�ðzÞ yield

�LðxÞ ¼ e�i��ða�þ b	Þð
ð�Þs Þ
�x ðx ¼ �1;�2; � � �Þ;

where


ð�Þs ¼ �
�1ei�� : ð3:17Þ

(4) Case of f R�ðzÞ. Putting ð
ð�Þl Þ
�1 ¼ �e�i�� , we have from Eq. ð3.5Þ

f R�ðzÞ ¼ 	
X�1
x¼�1

ðð
ð�Þs Þ
�1zÞx: ð3:18Þ

Therefore, Eq. ð3.18Þ and the definition of f R�ðzÞ give

�RðxÞ ¼ 	ð
ð�Þs Þ
�x ðx ¼ �1;�2; � � �Þ;

where


ð�Þs ¼ �ð�
ð�ÞÞ�1ei�� : ð3:19Þ

In view of Eqs. (3.10), (3.13), (3.17), and (3.19), provided that


ðþÞs ¼ �ð�
ðþÞÞ�1ei�þ ¼ ��1ei�þ ð3:20Þ

and


ð�Þs ¼ �
�1ei�� ¼ �ð�ð�ÞÞ�1ei�� ; ð3:21Þ

we obtain

�ðxÞ ¼

�ð�ðþÞe�2i�þ
ðþÞs Þ
x

ð�ðþÞÞ�1ðc�þ d	Þei�þð�ðþÞe�2i�þ
ðþÞs Þ
x

" #
ðx � 1Þ

�

	

� �
ðx ¼ 0Þ

ða�þ b	Þe�i��ð
ð�Þs Þ
jxj

	ð
ð�Þs Þ
jxj

" #
ðx 
 �1Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

: ð3:22Þ

This can be achieved by setting � ¼
ffiffiffiffiffiffiffiffiffi
�ðþÞ
p

and � ¼ �
ffiffiffiffiffiffiffiffiffi
�ð�Þ
p

in Eqs. ð3.20Þ and ð3.21Þ, respectively. Now the proof of
Theorem 3.1 is completed.

4. Case 2: 3-state Model

4.1 3-state Diagonal QW with One Defect

In this subsection, we study the DTQW whose quantum coins are given by the set of diagonal unitary matrices with
one defect at the origin:

Ux ¼
ei�	 0 0

0 e�i�	 0

0 0 �ð	Þ

2
64

3
75

x¼	1;	2;���

;

a b c

d e f

g h i

2
64

3
75

x¼0

8><
>:

9>=
>;; ð4:1Þ

where �	 2 ½0; 2�Þ, a; b; c; d; e; f ; g; h; i 2 C, and �ð	Þ 2 C with j�ð	Þj ¼ 1. Here Eq. ð4.1Þ is defined by the double
sign in same order. We give the two different quantum coins in the positive and negative parts, respectively. Putting

V ð1Þx ¼

ei�	 0 0

0 0 0

0 0 0

2
64

3
75

x¼	1;	2;���

ðx ¼ 	1;	2; � � �Þ

a b c

0 0 0

0 0 0

2
64

3
75

x¼0

ðx ¼ 0Þ

8>>>>>>>>><
>>>>>>>>>:

; V ð2Þx ¼

0 0 0

0 e�i�	 0

0 0 0

2
64

3
75

x¼	1;	2;���

ðx ¼ 	1;	2; � � �Þ

0 0 0

d e f

0 0 0

2
64

3
75

x¼0

ðx ¼ 0Þ

8>>>>>>>>><
>>>>>>>>>:

;
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and

V ð3Þx ¼

0 0 0

0 0 0

0 0 �ð	Þ

2
64

3
75

x¼	1;	2;���

ðx ¼ 	1;	2; � � �Þ

0 0 0

0 0 0

g h i

2
64

3
75

x¼0

ðx ¼ 0Þ

8>>>>>>>>><
>>>>>>>>>:

;

then, the time evolution of the walk is defined by

�tþ1ðxÞ ¼ V ð1Þxþ1�tðxþ 1Þ þ V ð2Þx �tðxÞ þ V ð3Þx�1�tðx� 1Þ:
Here we construct a family of stationary measures obtained by using the SGF method [3, 7, 13]. We omit the proof.

Theorem 4.1. A class of stationary measures of the QW is given by

�ðxÞ ¼
ð1þ jgj2Þj�j2 þ jhj2j�j2 þ jij2j	j2 þ 2<ðg�h� þ g�i	þ g�i	Þ ðx � 1Þ
j�j2 þ j�j2 þ j	j2 ðx ¼ 0Þ
j�j2 þ ð1þ jcj2Þj	j2 þ jbj2j�j2 þ 2<ða�b� þ a�c	þ b�c	Þ ðx 
 �1Þ

8><
>: ;

where � ¼ �Lð0Þ, 	 ¼ �Rð0Þ, � ¼ �Lð1Þ, � ¼ �Rð�1Þ, and <ðxÞ means the real part of x (x 2 C).
Note that the eigenvalues which contribute to the stationary measure are � ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð	Þei�	
p

.

The stationary measure does not depend on the two different quantum coins, that is, we have the same measure even if
�þ ¼ ��. We should also remark that the stationary measure does not have an exponential decay for the position.
Furthermore, the defect and initial coin state strongly influence the stationary measure. In addition, the stationary
measure is generally non-uniform for the position, however, if the defect is defined by diagonal unitary matrix, then the
stationary measure becomes a uniform measure.

4.2 3-state Diagonal QW

Here we consider the 3-state space-homogeneous QW, whose time-evolution is described by the following diagonal
unitary matrix:

U ¼
ei� 0 0

0 e�i� 0

0 0 �

2
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3
75; ð4:2Þ

where � 2 C is the determinant of U with j�j ¼ 1.
This is a special case of the 3-state diagonal QW with one defect. Now we construct a family of stationary measures.

We obtain Theorem 4.2 in a similar way as Subsection 3.1, and we omit the proof here.

Theorem 4.2. A class of stationary measures of the QW is given by

�ðxÞ ¼
j�j2 þ j	j2 ðx 6¼ 0Þ
j�j2 þ j�j2 þ j	j2 ðx ¼ 0Þ

(
;

where � ¼ �Lð0Þ, 	 ¼ �Rð0Þ, and � ¼ �Oð0Þ. Remark that the stationary measures are obtained by solving (2.2) with
� ¼ 	

ffiffiffiffiffiffiffiffiffiffi
�ei�
p

.

By putting a ¼ ei� , e ¼ e�i� , i ¼ �, we also obtain the same outcome from Theorem 4.1. We emphasize that the
stationary measure depends on position x, which is in marked contrast to that of 2-state homogeneous case [14]. One of
our basic future problems is to obtain the description of all the stationary measure for the 3-state homogeneous QW by
applying the method developed in Ref. [14].

5. Summary

By using the SGF method [3, 7, 13], we obtained the stationary measure for 3-state homogeneous diagonal QW, 2
and 3-state diagonal QWs with one defect, and then, clarified the characteristic properties. Through all the cases we
saw, we also found that the eigenvalues are strongly influenced by the determinant of the diagonal unitary matrices.
From a viewpoint of classification, one of our essential future problems is to apply the method [14] to the diagonal
QWs we treated, and make clear the whole description of the stationary measure. For instance, it is substantive to
elucidate the conditions of the stationary measure to be homogeneous, which may lead to classify the diagonal QWs
with defects. As our results suggest, it is precious to investigate the influence of the number of states and the diagonality
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of the defects on the uniformity of stationary measure. Also, to develop the method to construct the stationary measure
for the QWs with plural defects is imperative. On the other side, it is interesting to consider the topological invariants
for the 3-state cases, which may lead to establish the interpretation for localization of QWs from a viewpoint of
condensed matter physics [4].
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[17] Schreiber, A., Cassemiro, K. N., Potoček, V., Gábris, A., Mosley, P. J., Andersson, E., Jex, I., and Silberhorn, Ch., ‘‘Photons

walking the line: A quantum walk with adjustable coin operations,’’ Phys. Rev. Lett., 104: 050502 (2010).
[18] Shenvi, N., Kempe, J., and Whaley, K. B., ‘‘Quantum random-walk search algorithm,’’ Phys. Rev. A, 67: 052307 (2003).
[19] Venegas-Andraca, S. E., ‘‘Quantum walks for computer scientists,’’ Synth. Lect. Quant. Comput., 1: 1–119 (2008).
[20] Venegas-Andraca, S. E., ‘‘Quantum walks: A comprehensive review,’’ Quant. Inf. Proc., 11: 1015–1106 (2012).
[21] Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., and Roos, C. F., ‘‘Realization of a quantum walk with one

and two trapped ions,’’ Phys. Rev. Lett., 104: 100503 (2010).
[22] Wojcik, A., Łuczak, T., Kurzynski, P., Grudka, A., Gdala, T., and Bednarska-Bzdega, M., ‘‘Trapping a particle of a quantum

walk on the line,’’ Phys. Rev. Lett. A, 85: 012329 (2012).

64 ENDO et al.


