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We define the quaternionic quantum walk on a finite graph and investigate its properties. This walk can be
considered as a natural quaternionic extension of the Grover walk on a graph. We explain the way to obtain all the
right eigenvalues of a quaternionic matrix and a notable property derived from the unitarity condition for the
quaternionic quantum walk. Our main results determine all the right eigenvalues of the quaternionic quantum walk
by using complex eigenvalues of the quaternionic weighted matrix which is easily derivable from the walk. Since
our derivation is owing to a quaternionic generalization of the determinant expression of the second weighted zeta
function, we explain the second weighted zeta function and the relationship between the walk and the second
weighted zeta function.
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1. Introduction

The discrete-time quaternionic quantum walk on a graph is a quantum process on a graph which is governed by a
unitary matrix. The study of quantum walks started in earnest as quantum versions of random walks around the end of
the last century, and quantum walks have been developed rapidly for more than two decades in connection with various
fields such as quantum information science and quantum physics. Detailed information on quantum walks can be found
in several books at present, for example, Manouchehri and Wang [12], Portugal [13], Konno [8]. An important example
of the quantum walk on a graph is the Grover walk which originates from Grover’s algorithm. Grover’s algorithm
which was introduced in [5] is a quantum search algorithm that performs quadratically faster than the best classical
search algorithm. Later various researchers investigated the Grover walk and developed the theory of discrete-time
quantum walks intensively.

Recently, Konno [9] established a quaternionic extension of quantum walks, which can be viewed as quaternionic
quantum dynamics. One of the important backgrounds of quaternionic quantum walk is quaternionic quantum
mechanics. The origin of quaternionic quantum mechanics goes back to the axiomatization of quantum mechanics by
Birkhoff and von Neumann in 1930s. After that, the subject was studied further by Finkelstein, Jauch, and Speiser [4],
and more recently by Adler [1] and others. One significant motivation of studying quaternionic quantum mechanics is
that physical reality might be described by quaternionic quantum system at the fundamental level, and this dynamics
is described asymptotically by the (ordinary) quantum field theory at the level of all presently known physical
phenomena. A detailed exposition of quaternionic quantum mechanics can be found in Adler [1].

On the other hand, Zeta functions of graphs have been investigated for half a century. Their origin is the Ihara zeta
function which was defined by Ihara [7], and various extensions have appeared so far. Among them we focus on
the second weighted zeta function of a graph. The second weighted zeta function proposed by Sato [14] is a kind of
generalization of that in [2, 6]. This is a multi-weighted version of the Ihara zeta function, and has several applications
in discrete-time quantum walks and quantum graphs. For example, the second weighted zeta function played essential
roles in the concise proof of the spectral mapping theorem for the Grover walk on a graph in [11].

In this paper, we define the discrete-time quaternionic quantum walk on a graph as a quaternionic extension of the
Grover walk on a finite graph, and discuss its right spectrum and the relationship between the walk and the second
weighted zeta function of a graph. Our results can be viewed as a generalization of [10].
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2. The Grover Walk on a Graph

Let G ¼ ðVðGÞ, EðGÞÞ be a finite connected graph with the set VðGÞ of vertices and the set EðGÞ of undirected edges
uv joining two vertices u and v. We assume that G is finite connected and has neither loops nor multiple edges
throughout. For uv 2 EðGÞ, we mean by an arc ðu; vÞ the directed edge from u to v. Let DðGÞ ¼ fðu; vÞ; ðv; uÞ j uv 2
EðGÞg and jVðGÞj ¼ n; jEðGÞj ¼ m; jDðGÞj ¼ 2m. For e ¼ ðu; vÞ 2 DðGÞ, oðeÞ ¼ u and tðeÞ ¼ v denote the origin and
the terminus of e, respectively. Furthermore, let e�1 ¼ ðv; uÞ be the inverse of e ¼ ðu; vÞ. The degree du ¼ deg u ¼
degG u of a vertex u of G is the number of edges incident to u. A path P of length ‘ in G is a sequence P ¼ ðe1; . . . ; e‘Þ
of ‘ arcs such that ei 2 DðGÞ and tðeiÞ ¼ oðeiþ1Þ for i 2 f1; . . . ; ‘� 1g. We set oðPÞ ¼ oðe1Þ and tðPÞ ¼ tðe‘Þ. jPj denotes
the length of P. A path P ¼ ðe1; . . . ; e‘Þ is said to be a cycle if tðPÞ ¼ oðPÞ and to have a backtracking if eiþ1 ¼ e�1

i for
some ið1 � i � ‘� 1Þ. The inverse of a path P ¼ ðe1; . . . ; e‘Þ is the path ðe�1

‘ ; . . . ; e
�1
1 Þ and is denoted by P�1.

We give a definition of the discrete-time quantum walk on G. Let H ¼ �e2DðGÞCjei be the finite dimensional
Hilbert space spanned by arcs of G. The transition matrix U of a discrete-time quantum walk consists of the following
two consecutive operations U ¼ SC:

1. For each u 2 V , we perform a unitary transformation Cu on the states jf i that satisfy tð f Þ ¼ u.
2. For all e 2 DðGÞ, we perform the shift S that is defined by Sjei ¼ je�1i.

The transition matrix UGro of the Grover walk on G is defined by setting the Grover’s diffusion matrix as Cu:

Cu ¼

�1þ 2
du

2
du

� � � 2
du

2
du

�1þ 2
du
� � � 2

du

� � � � � � � � � � � �
2
du

2
du

� � � �1þ 2
du

0
BBBB@

1
CCCCA:

Then UGro ¼ ðUGro
ef Þe; f2DðGÞ is given by

UGro
ef ¼

2=doðeÞð¼ 2=dtðf ÞÞ if tð f Þ ¼ oðeÞ and f 6¼ e�1,

2=doðeÞ � 1 if f ¼ e�1,

0 otherwise.

8<
:

UGro is called the Grover matrix.
We denote by SpecðAÞ the multiset of eigenvalues of a complex square matrix A counted with multiplicity. We shall

give examples of Grover walks and their spectra.

Example 2.1. G ¼ K3. Then doðeÞ ¼ 2 for all e 2 DðGÞ and UGro is given as follows:

UGro ¼

1
CCCCCCCCCA

0
BBBBBBBBB@

e1 e�1
1 e2 e�1

2 e3 e�1
3

e1 0 0 0 0 1 0

e�1
1 0 0 0 1 0 0

e2 1 0 0 0 0 0

e�1
2 0 0 0 0 0 1

e3 0 0 1 0 0 0

e�1
3 0 1 0 0 0 0

:

SpecðUGroÞ ¼ f1; 1; �1�
ffiffi
3
p

i
2

; �1�
ffiffi
3
p

i
2
g.

Example 2.2. G ¼ K1;3. Then doðe1Þ ¼ doðe2Þ ¼ doðe3Þ ¼ 1, doðe�1
1
Þ ¼ doðe�1

2
Þ ¼ doðe�1

3
Þ ¼ 3 and UGro is given as follows:

UGro ¼

1
CCCCCCCCCA

0
BBBBBBBBB@

e1 e�1
1 e2 e�1

2 e3 e�1
3

e1 0 1 0 0 0 0

e�1
1 � 1

3
0 2

3
0 2

3
0

e2 0 0 0 1 0 0

e�1
2

2
3

0 � 1
3

0 2
3

0

e3 0 0 0 0 0 1

e�1
3

2
3

0 2
3

0 � 1
3

0

:

SpecðUGroÞ ¼ f�i;�i; 1;�1g.

Let T ¼ ðTuvÞu;v2VðGÞ be the n� n matrix defined as follows:
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Tuv ¼
1=du if ðu; vÞ 2 DðGÞ,
0 otherwise.

�

In [3], Emms et al. determined the spectrum of UGro by using that of T.

Theorem 2.3 (Emms, Hancock, Severini and Wilson [3]). Let G be a connected graph with n vertices and m edges.
The transition matrix UGro has 2n eigenvalues of the form:

� ¼ �T � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

T

q
;

where �T is an eigenvalue of the matrix T. The remaining 2ðm� nÞ eigenvalues of UGro are �1 with equal
multiplicities.

As stated in Section 1, Konno and Sato [11] gave a concise proof of Theorem 2.3 by using the second weighted zeta
function of a graph.

3. A Quaternionic Extension of the Grover Walk on a Graph

In this section, we define a quaternionic extension of the Grover walk on G and discuss some of its properties.
Beforehand, we give a brief account of quaternionic matrices and their right eigenvalues. Let H be the set of
quaternions. H is a noncommutative associative algebra over R, whose underlying real vector space has dimension 4
with a basis 1; i; j; k which satisfy the following relations:

i2 ¼ j2 ¼ k2 ¼ �1; ij ¼ �ji ¼ k; jk ¼ �kj ¼ i; ki ¼ �ik ¼ j:

For x ¼ x0 þ x1iþ x2 jþ x3k 2 H, x� ¼ x0 � x1i� x2 j� x3k denotes the conjugate of x in H. jxj ¼
ffiffiffiffiffiffiffi
xx�
p

¼
ffiffiffiffiffiffiffi
x�x
p

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
0 þ x2

1 þ x2
2 þ x2

3

p
is called the norm of x. Since x�1 ¼ x�=jxj2 for a nonzero element x 2 H, H constitutes a skew

field. Since quaternions do not mutually commute in general, we must treat left eigenvalues and right eigenvalues
separately. In this paper, we concentrate only on right eigenvalues.

Let Matðm� n;HÞ be the set of m� n quaternionic matrices and Matðn;HÞ the set of n� n quaternionic square
matrices. For M 2 Matðm� n;HÞ, we can write M ¼MS þ jMP uniquely where MS;MP 2 Matðm� n;CÞ. Such an
expression is called the symplectic decomposition of M. MS and MP are called the simplex part and the perplex part of
M, respectively. The quaternionic conjugate M� of a quaternionic square matrix M is obtained from M by taking the
transpose and then taking the quaternionic conjugate of each entry. A quaternionic square matrix M is said to be
quaternionic unitary if M�M ¼MM� ¼ I. We define  to be the map from Matðm� n;HÞ to Matð2m� 2n;CÞ as
follows:

 : Matðm� n;HÞ �! Matð2m� 2n;CÞ M 7!
MS �MP

MP MS

 !
;

where A is the complex conjugate of a matrix A. Then  is an R-linear map. We can easily check that

Lemma 3.1. Let M 2 Matðm� n;HÞ and N 2 Matðn� m;HÞ. Then

 ðMNÞ ¼  ðMÞ ðNÞ:

Moreover, if m ¼ n, then  is an injective R-algebra homomorphism. We consider Hn as a right vector space. � 2 H
is said to be a right eigenvalue of M and v 2 Hn a right eigenvector corresponding to � if Mv ¼ v� for M 2 Matðn;HÞ.
Now we state the facts about right eigenvalues of a quaternionic matrix as follows:

Theorem 3.2. For any quaternionic matrix M 2 Matðn;HÞ, there exist 2n complex right eigenvalues of M counted
with multiplicity, which can be obtained by solving detð�I2n �  ðMÞÞ ¼ 0. They appear in complex conjugate pairs
�1; �1; . . . ; �n; �n. The set of right eigenvalues �rðMÞ is given by �rðMÞ ¼ �H

�

1 [ � � � [ �H
�

n where �H
� ¼

fh�1�h j h 2 H� ¼ H� f0gg.

Remark 3.3. If Mv ¼ v� then Mvq ¼ vqðq�1�qÞ for every q 2 H� and hence vq is a right eigenvector corresponding
to the right eigenvalue q�1�q.

Example 3.4. M ¼
�

1 0

0 i

�
; detð�I4 �  ðMÞÞ ¼ det

� � 1 0 0 0

0 � � i 0 0

0 0 � � 1 0

0 0 0 � þ i

0
BB@

1
CCA ¼ 0

, � ¼ 1;�i, �rðMÞ ¼ f1g [ iH
�
.
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Example 3.5. M ¼
�

1 j

k i

�
; detð�I4 �  ðMÞÞ ¼ det

� � 1 0 0 1

0 � � i i 0

0 �1 � � 1 0

i 0 0 � þ i

0
BB@

1
CCA ¼ 0

, � ¼
1þ

ffiffiffi
3
p

2
�

1�
ffiffiffi
3
p

2
i;

1�
ffiffiffi
3
p

2
�

1þ
ffiffiffi
3
p

2
i, �rðMÞ ¼

1þ
ffiffiffi
3
p

2
þ

1�
ffiffiffi
3
p

2
i

� �H�
[

1�
ffiffiffi
3
p

2
þ

1þ
ffiffiffi
3
p

2
i

� �H�
.

Now, we give a quaternionic extension of the Grover walk on G. A discrete-time quaternionic quantum walk is a
quantum process on G whose state vector, whose entries are quaternions, is governed by a quaternionic unitary matrix
called the quaternionic transition matrix. Let G be a finite connected graph with n vertices and m edges. We define the
state space to be the quaternionic right Hilbert space H H ¼ �e2DðGÞjeiH. We define the quaternionic transition matrix
U ¼ ðUef Þe; f2DðGÞ of G as follows:

Uef ¼
qðeÞ if tð f Þ ¼ oðeÞ and f 6¼ e�1,

qðeÞ � 1 if f ¼ e�1,

0 otherwise,

8><
>: ð3:1Þ

where q is a map from DðGÞ to H. U can be viewed as the time evolution operator of a discrete-time quaternionic
quantum system. In [10], we obtained the necessary and sufficient condition for U to be quaternionic unitary as follows:

Theorem 3.6 (Konno-Mitsuhashi-Sato [10]).
U is unitary , q0ðeÞ2 þ q1ðeÞ2 þ q2ðeÞ2 þ q3ðeÞ2 � 2q0ðeÞ

doðeÞ
¼ 0, where qðeÞ ¼ q0ðeÞ þ q1ðeÞiþ q2ðeÞjþ q3ðeÞk, and

qðeÞ ¼ qð f Þ for any two arcs e; f 2 DðGÞ with oðeÞ ¼ oð f Þ.

From Theorem 3.6, it follows that q0ðeÞ must satisfy

0 � q0ðeÞ �
2

doðeÞ
:

Moreover, for every u 2 VðGÞ, j
P

e:oðeÞ¼u qðeÞ � 1j ¼ 1. Furthermore we can readily see if qðeÞ is positive real for each
e 2 DðGÞ, then U must be UGro.

4. The Second Weighted Zeta Function of a Graph

In this section, we give a brief summary of the second weighted zeta functions of a graph. We introduce an
equivalence relation between cycles in G. Two cycles C1 ¼ ðe1; . . . ; e‘Þ and C2 ¼ ð f1; . . . ; f‘Þ are said to be equivalent
if there exists k such that fj ¼ ejþk for all j where indices are treated modulo ‘. Let ½C	 be the equivalence class which
contains the cycle C. Let Br be the cycle obtained by going r times around a cycle B. Such a cycle is called a power of
B. A cycle C is said to be reduced if both C and C2 have no backtracking. Furthermore, a cycle C is said to be prime if
it is not a power of a strictly smaller cycle.

The Ihara zeta function of a graph G is a function of t 2 C with jtj sufficiently small, defined by

ZðG; tÞ ¼ ZGðtÞ ¼
Y
½C	
ð1� tjCjÞ�1;

where ½C	 runs over all equivalence classes of prime, reduced cycles of G.
ZðG; tÞ has two types of determinant expressions as explained below. Let B ¼ ðBef Þe; f2DðGÞ and J0 ¼ ðJef Þe; f2DðGÞ be

2m� 2m matrices defined as follows:

Bef ¼
1 if tðeÞ ¼ oð f Þ,
0 otherwise,

�
Jef ¼

1 if f ¼ e�1,

0 otherwise.

�
ð4:1Þ

The matrix B� J0 is called the edge matrix of G. Then we can state two determinant expressions of ZðG; tÞ as follows:

Theorem 4.1 (Hashimoto [6]; Bass [2]). The reciprocal of the Ihara zeta function of G is given by

ZðG; tÞ�1 ¼ detðI2m � tðB� J0ÞÞ ¼ ð1� t2Þr�1 detðIn � tAþ t2ðD� InÞÞ; ð4:2Þ
where r and A are the Betti number and the adjacency matrix of G, respectively, and D ¼ ðDuvÞu;v2VðGÞ is the diagonal
matrix with Duu ¼ deg u for all u 2 VðGÞ.

We call the middle formula of (4.2) the determinant expression of Hashimoto type and the right hand side the
determinant expression of Bass type.

We shall define the second weighted zeta function by using a modification of the edge matrix. Consider an n� n

complex matrix W ¼ ðWuvÞu;v2VðGÞ with ðu; vÞ-entry equals 0 if ðu; vÞ =2 DðGÞ. We call W a weighted matrix of G. Let
wðu; vÞ ¼Wuv for u; v 2 VðGÞ and wðeÞ ¼ wðu; vÞ if e ¼ ðu; vÞ 2 DðGÞ. then Wuv is given by
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Wuv ¼
wðeÞ if e ¼ ðu; vÞ 2 DðGÞ,
0 otherwise.

�
ð4:3Þ

For a weighted matrix W of G, let Bw ¼ ðBðwÞef Þe; f2DðGÞ be a 2m� 2m complex matrix defined as follows:

BðwÞef ¼
wð f Þ if tðeÞ ¼ oð f Þ,
0 otherwise.

�
ð4:4Þ

Then the second weighted zeta function of G is defined by

Z1ðG;w; tÞ ¼ detðI2m � tðBw � J0ÞÞ�1: ð4:5Þ

One can consider (4.5) as a multi-parametrized deformation of the determinant expression of Hashimoto type for
ZðG; tÞ. If wðeÞ ¼ 1 for all e 2 DðGÞ, then the second weighted zeta function of G coincides with ZðG; tÞ. In [14], Sato
obtained the determinant expression of Bass type for Z1ðG;w; tÞ as follows:

Theorem 4.2 (Sato [14]).

Z1ðG;w; tÞ�1 ¼ ð1� t2Þm�n detðIn � tWþ t2ðDw � InÞÞ;
where n ¼ jVðGÞj, m ¼ jEðGÞj and Dw ¼ ðDðwÞuv Þu;v2VðGÞ is the diagonal matrix defined by

DðwÞuu ¼
X

e:oðeÞ¼u
wðeÞ ð4:6Þ

for all u 2 VðGÞ.

Remark 4.3. We mention that taking transpose, the following equation also holds:

detðI2m � tðTBw � J0ÞÞ ¼ ð1� t2Þm�n detðIn � tTWþ t2ðDw � InÞÞ; ð4:7Þ

where TM denotes the transpose of M. We will show a quaternionic generalization of (4.7) and apply it to the spectral
problem for our quaternionic quantum walk on G in later sections.

5. A Quaternionic Generalization of the Determinant Expressions

In this section, we shall give a quaternionic generalization of (4.7). Assume that wðeÞ is in H for every e 2 DðGÞ in
(4.3), (4.4) and (4.6). Let K ¼ ðKevÞe2DðGÞ;v2VðGÞ and L ¼ ðLevÞe2DðGÞ;v2VðGÞ be 2m� n matrices defined as follows:

Kev ¼
wðeÞ if oðeÞ ¼ v,

0 otherwise,

�
Lev ¼

1 if tðeÞ ¼ v,

0 otherwise,

�
where column index and row index are ordered by fixed sequences v1; . . . ; vn and e1; . . . ; e2m such that e2r ¼ e�1

2r�1 for
r ¼ 1; . . . ;m, respectively. Then we can readily see that TBw ¼ KTL, TW ¼ TLK and TLJ0K ¼ TDw.

Theorem 5.1. Let t be a complex variable. Then

detðI4m � t ðTBw � J0ÞÞ ¼ ð1� t2Þ2m�2n detðI2n � t ðTWÞ þ t2ð ðDwÞ � I2nÞÞ:

Proof. Using Lemma 3.1, we can show that

detðI4m � t ðTBw � J0ÞÞ ¼ detðI4m � t ðKTL� J0ÞÞ
¼ detðI4m � t ðKÞ ðTLÞ þ t ðJ0ÞÞ
¼ detðI4m � t ðKÞ ðTLÞðI4m þ t ðJ0ÞÞ�1Þ detðI4m þ t ðJ0ÞÞ
¼ ð1� t2Þ2m detðI4m � t ðKÞ ðTLÞðI4m þ t ðJ0ÞÞ�1Þ
¼ ð1� t2Þ2m detðI2n � t ðTLÞðI4m þ t ðJ0ÞÞ�1 ðKÞÞ:

ð5:1Þ

Since the following holds:

ðI4m þ t ðJ0ÞÞ�1 ¼
1

1� t2
ðI4m � t ðJ0ÞÞ;

we have

 ðTLÞðI4m þ t ðJ0ÞÞ�1 ðKÞ ¼
1

1� t2
 ðTLÞðI4m � t ðJ0ÞÞ ðKÞ

¼
1

1� t2
 ðTLÞ ðKÞ �

t

1� t2
 ðTLÞ ðJ0Þ ðKÞ

¼
1

1� t2
 ðTLKÞ �

t

1� t2
 ðTLJ0KÞ

¼
1

1� t2
 ðTWÞ �

t

1� t2
 ðTDwÞ:

ð5:2Þ
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Consequently, we obtain the following equation from (5.1) and (5.2) as desired.

detðI4m � t ðTBw � J0ÞÞ ¼ ð1� t2Þ2m det I2n �
t

1� t2
 ðTWÞ þ

t2

1� t2
 ðDwÞ

� �
¼ ð1� t2Þ2m�2n detðð1� t2ÞI2n � t ðTWÞ þ t2 ðDwÞÞ
¼ ð1� t2Þ2m�2n detðI2n � t ðTWÞ þ t2ð ðDwÞ � I2nÞÞ:

�

6. The Right Spectrum of the Quaternionic Quantum Walk on a Graph

In this section, we derive the set of right eigenvalues of the quaternionic transition matrix U by using eigenvalues of
a complex matrix which can be easily derived from the map q : DðGÞ �! H given in (3.1). Putting t ¼ 1=� in
Theorem 5.1, we obtain

detð�I4m �  ðTBw � J0ÞÞ ¼ ð�2 � 1Þ2m�2n detð�2I2n � � ðTWÞ þ  ðDwÞ � I2nÞ: ð6:1Þ

Setting wðeÞ ¼ qðeÞ and comparing (3.1), (4.1) and (4.4), we readily see U ¼ TBw � J0. Thus applying (6.1), we obtain

detð�I4m �  ðUÞÞ ¼ ð�2 � 1Þ2m�2n detð�2I2n � � ðTWÞ þ  ðDwÞ � I2nÞ: ð6:2Þ

If  ðTWÞ and  ðDwÞ are simultaneously triangularizable, namely, there exists a regular matrix P 2 Matð2n;CÞ such
that

P�1 ðTWÞP ¼

�1 0 � � � 0

� �2 � � � 0

..

. . .
. . .

. ..
.

� � � � � �2n

0
BBBB@

1
CCCCA; P�1 ðDwÞP ¼

�1 0 � � � 0

� �2 � � � 0

..

. . .
. . .

. ..
.

� � � � � �2n

0
BBBB@

1
CCCCA; ð6:3Þ

then by (6.2) the characteristic equation of  ðUÞ turns out to be

detð�I4m �  ðUÞÞ ¼ ð�2 � 1Þ2m�2n detð�2I2n � �P�1 ðTWÞPþ P�1 ðDwÞP� I2nÞ:

¼ ð�2 � 1Þ2m�2n
Y2n
r¼1

ð�2 � ��r þ �r � 1Þ ¼ 0:
ð6:4Þ

We notice if ð�r; �sÞ (r 6¼ s) is a complex conjugate pair as stated in Theorem 3.2 then so is ð�r; �sÞ. Observing that
detð�I4m �  ðUÞÞ is a polynomial of � , we obtain by solving (6.4) that

Theorem 6.1. jSpecð ðUÞÞj ¼ 4m. Suppose that  ðTWÞ and  ðDwÞ are simultaneously triangularizable. If G is not a
tree, then 4n of them are

� ¼
�r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r � 4ð�r � 1Þ

p
2

ðr ¼ 1; . . . ; 2nÞ;

where �r 2 Specð ðTWÞÞ; �r 2 Specð ðDwÞÞ as presented in (6.3). The remaining 4ðm� nÞ are �1 with equal
multiplicities. If G is a tree, then

Specð ðUÞÞ ¼
�r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
r � 4ð�r � 1Þ

p
2

���� r ¼ 1; . . . ; 2n

( )
� f1; 1;�1;�1g:

�rðUÞ ¼
S
�2Specð ðUÞÞ �

H
�

Finally, we discuss quaternionic quantum walks which satisfy the following condition on qðeÞ:X
e:oðeÞ¼u

qðeÞ does not depend on u. ð6:5Þ

We have investigated this case in [10]. In short, this condition says that the sum of the entries in each column of U does
not depend on the column. Quaternionic quantum walks need not satisfy (6.5) in general, however, the Grover walk
satisfies (6.5) by definition. Hence we can consider this condition is inherited from the Grover walk.

Since  is injective, TWDw ¼ Dw
TW is equivalent to  ðTWÞ ðDwÞ ¼  ðDwÞ ðTWÞ. In this case,  ðTWÞ and

 ðDwÞ are simultaneously triangularizable.

Proposition 6.2. ð6:5Þ implies TWDw ¼ Dw
TW. Moreover, if wðeÞ 6¼ 0 for every e 2 DðGÞ, then ð6:5Þ ,

TWDw ¼ Dw
TW.

Proof. If ðv; uÞ 2 DðGÞ, then by Theorem 3.6 we have

14 KONNO et al.



ðTWDwÞuv ¼ wððv; uÞÞ
X

e2DðGÞ
oðeÞ¼v

wðeÞ ¼ dvwððv; uÞÞwððv; uÞÞ;

ðDw
TWÞuv ¼

X
e2DðGÞ
oðeÞ¼u

wðeÞwððv; uÞÞ ¼ duwððu; vÞÞwððv; uÞÞ:

Therefore ð6:5Þ implies dvwððv; uÞÞwððv; uÞÞ ¼ duwððu; vÞÞwððv; uÞÞ for all ðv; uÞ 2 DðGÞ and thereby TWDw ¼ Dw
TW.

If wðeÞ 6¼ 0 for every e 2 DðGÞ, then dvwððv; uÞÞwððv; uÞÞ ¼ duwððu; vÞÞwððv; uÞÞ implies dvwððv; uÞÞ ¼ duwððu; vÞÞ.
Hence

P
e2DðGÞ;oðeÞ¼v wðeÞ ¼

P
e2DðGÞ;oðeÞ¼u wðeÞ for u; v 2 VðGÞ with ðv; uÞ 2 DðGÞ. Since G is connected, the equation

just before holds for every pair of vertices and thereby (6.5) holds. �

Hence one can view Theorem 6.1 as a generalization of [10]. By (6.5), we may put � ¼
P

e:oðeÞ¼u qðeÞ independently
of u. Then we immediately see that qðeÞ ¼ �=doðeÞ for every e 2 DðGÞ. For � 2 H� R, it is known that there exist
nonzero quaternions h� 2 H� such that h�1

� �h� ¼ �� are complex numbers which are complex conjugate with each
other. (For the details, see [10]) Then we readily see

U� ¼ h�1
� Uh� ¼ ððU�Þef Þe; f2DðGÞ 2 Matð2m;CÞ; where ðU�Þef ¼

��

doðeÞ
if tð f Þ ¼ oðeÞ and f 6¼ e�1,

��

doðeÞ
� 1 if f ¼ e�1,

0 otherwise.

8>>>><
>>>>:

It follows that

detð�I4m �  ðUÞÞ ¼ detð ðhþI2mÞ�1ð�I4m �  ðUÞÞ ðhþI2mÞÞ ¼ detð�I4m �  ðhþI2mÞ�1 ðUÞ ðhþI2mÞÞ

¼ detð�I4m �  ðh�1
þ UhþÞÞ ¼ detð�I4m �  ðUþÞÞ ¼

�I2m � Uþ 0

0 �I2m � U�

����
����

¼ detð�I2m � UþÞ detð�I2m � U�Þ ¼ detð�I2m � UþÞ detð�I2m � UþÞ:

Therefore, we can calculate all right eigenvalues of U by calculating eigenvalues of Uþ since eigenvalues of U� ¼ Uþ
are complex conjugates of those of Uþ. Accordingly, W� ¼ h�1

� Wh� and Bw� ¼ h�1
� Bwh� ¼ ðBðw�ÞÞef are given by

ðW�Þuv ¼
��

du
if ðu; vÞ 2 DðGÞ,

0 otherwise,

(
Bðw�Þef ¼

��

doð f Þ
if tðeÞ ¼ oð f Þ,

0 otherwise.

(

In this case, we can apply (4.7) to obtain the next theorem which is a special case of Theorem 6.1.

Theorem 6.3 (Konno-Mitsuhashi-Sato [10]). jSpecð ðUÞÞj ¼ 4m. Suppose that (6.5) holds. If G is not a tree, then 4n

of them are

� ¼
�þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
þ � 4ð�þ � 1Þ

p
2

;
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � 4ð�� � 1Þ

p
2

;

where �� 2 SpecðTW�Þ. The remaining 4ðm� nÞ are �1 with equal multiplicities. If G is a tree, then

Specð ðUÞÞ ¼
�þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
þ � 4ð�þ � 1Þ

p
2

;
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � 4ð�� � 1Þ

p
2

����� �� 2 SpecðTW�Þ

( )
� f1; 1;�1;�1g:

�rðUÞ ¼
S
�2SpecðUþÞ �

H
�

We will show an example which does not satisfy (6.5) but do the assumption in Theorem 6.1.

Example 6.4. G ¼ K1;3. Let wðe1Þ ¼ 1þ i;wðe2Þ ¼ 1� j;wðe3Þ ¼ 2;wðe�1
1 Þ ¼ wðe�1

2 Þ ¼ wðe�1
3 Þ ¼ 0.

TW ¼

1
CCCCA

0
BBBB@

v1 v2 v3 v4

v1 0 0 0 0

v2 0 0 0 0

v3 0 0 0 0

v4 1þ i 1� j 2 0

;  ðTWÞ ¼

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1þ i 1 2 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 �1 0 0 1� i 1 2 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Then U, Dw and  ðDwÞ are given by
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U ¼

0 i 0 0 0 0

� 1 0 0 0 0 0

0 0 0 �j 0 0

0 0 �1 0 0 0

0 0 0 0 0 1

0 0 0 0 �1 0

0
BBBBBBBB@

1
CCCCCCCCA
; Dw ¼

1þ i 0 0 0

0 1� j 0 0

0 0 2 0

0 0 0 0

0
BBB@

1
CCCA;

 ðDwÞ ¼

1þ i 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1� i 0 0 0

0 �1 0 0 0 1 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Let P be defined by

P ¼

1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 i �i 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Then

P�1 ðTWÞP ¼

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1þ i 1þ i 1� i 0 2 0 0 0

0 �1þ i �1� i 1� i 0 2 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

P�1 ðDwÞP ¼

1þ i 0 0 0 0 0 0 0

0 1þ i 0 0 0 0 0 0

0 0 1� i 0 0 0 0 0

0 0 0 1� i 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Hence it follows that Specð ðTWÞÞ ¼ f�1; �2; . . . ; �8g ¼ f0; 0; 0; 0; 0; 0; 0; 0g, Specð ðDwÞÞ ¼ f�1; �2; . . . ; �8g ¼
f1þ i; 1þ i; 1� i; 1� i; 2; 2; 0; 0g. Applying Theorem 6.1, we obtain

Specð ðUÞÞ ¼ f�
ffiffiffiffiffiffi
�i
p

;�
ffiffiffiffiffiffi
�i
p

;�
ffiffi
i
p
;�

ffiffi
i
p
;�

ffiffiffiffiffiffiffi
�1
p

;�
ffiffiffiffiffiffiffi
�1
p

;�1;�1g � f1; 1;�1;�1g

¼ �
1� iffiffiffi

2
p ;�

1� iffiffiffi
2
p ;�

1þ iffiffiffi
2
p ;�

1þ iffiffiffi
2
p ;�i;�i

� 	
:

Since �i ¼ j�1ij 2 iH
�
, an eigenvalue and its complex conjugate belong to the same set of all quaternionic conjugations

of the eigenvalue. Thus �rðUÞ ¼ iH
� [

1þ iffiffiffi
2
p

� �H�
[ �

1þ iffiffiffi
2
p

� �H�
.
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