Macrobenthos Communities of Cambridge, McBeth and Itirbilung Fiords, Baffin Island, Northwest Territories, Canada¹

ALEC E. AITKEN² and JUDITH FOURNIER³

(Received 2 January 1992; accepted in revised form 4 November 1992)

ABSTRACT. Thirty-eight marine invertebrates, including molluscs, echinoderms, polychaetes and several minor taxa, have been added to the previously described benthic macrofauna inhabiting Cambridge, McBeth and Itirbilung fiords in northeastern Baffin Island, Northwest Territories, Canada. The fiords lie fully within the marine arctic zone and organisms exhibiting panarctic distributions constitute the majority of species collected from them. Macrobenthic associations recorded in the fiords are comparable, both with respect to species composition and habitat, to benthic invertebrate associations occurring on the Baffin Island continental shelf and in east Greenland fiords, reflecting the broad environmental tolerances of the organisms constituting the benthic associations. Deposit-feeding organisms dominate the fiord macrobenthos, notably nuculanid bivalves, ophiuroid echinoderms and elasipod holothurians. The foraging and locomotory activities of these organisms may influence benthic community structure by reducing the abundance of sessile and/or tubiculous benthos.

Key words: marine benthos, eastern Baffin Island, fiords, continental shelf, zoogeography, ecology

RÉSUMÉ. Trente-huit invertébrés marins, y compris des mollusques, des échinodermes, des polychètes et divers taxons mineurs ont été ajoutés à la macrofaune benthique décrite précédemment habitant les fjords Cambridge, McBeth et Itirbilung dans le nord-est de la terre de Baffin située dans les Territoires du Nord-Ouest au Canada. Les fjords sont situés entièrement dans la zone arctique marine et des organismes affichant une distribution panboréale constituent la majorité des espèces recueillies dans ces fjords. Les associations macrobenthiques relevées dans les fjords sont comparables, sur le plan de la composition comme sur celui de l'habitat, aux associations d'invertébrés benthiques que l'on trouve sur le plateau continental de la terre de Baffin et dans les fjords du Groenland oriental, ce qui reflète la grande tolérance environnementale des organismes formant les associations benthiques. Les organismes qui se nourrissent sur le fond dominent le macrobenthos des fjords, en particulier les nucules, les ophiurides et les holothuries élasipodes. Les activités de pâturage et de locomotion de ces organismes peuvent influencer la structure de la communauté benthique en réduisant l'abondance du benthos sessile et/ou tubicole.

Mots clés: benthos marin, terre de Baffin orientale, fjords, plateau continental, zoogéographie, écologie

Traduit pour le journal par Nésida Loyer.

INTRODUCTION

The benthic macrofauna inhabiting the fiords of eastern Baffin Island has been the subject of several recent studies (Aitken et al., 1988; Dale et al., 1989; Syvitski et al., 1989). This study focuses on the benthic macrofauna of Cambridge, McBeth and Itirbilung fiords recently described by Syvitski et al. (1989) (Fig. 1). These authors conducted a reconnaissance benthic sampling program within the fiords as part of the Sedimentology of Arctic Fiords Experiment (SAFE) organized by the Geological Survey of Canada (Syvitski and Schafer, 1985). Syvitski et al. (1989) recognized several benthic macrofaunal associations within these three fiords; these are, in order of depth, the *Portlandia* association (mean depth 55 m), the Onuphid association (mean depth 272 m) and the Maldanid association (mean depth 418 m).

The work of Curtis (1972) and Dale *et al.* (1989) indicates that diverse mollusc, polychaete and echinoderm populations, as well as a variety of minor phyla, inhabit Canadian arctic fiords. In light of this information, the authors reexamined the benthic material collected from Cambridge, McBeth and Itirbilung fiords by Syvitski *et al.* (1989) with the goal to 1) refine the systematic study of the benthic organisms in the collections and 2) to further our understanding of the zoogeography and ecology of benthic organisms inhabiting the fiords and continental shelf of Baffin Island. As a result of this research, 15 species of molluscs, 4 species of echinoderms, 17 species of polychaetes, a sponge, an ascidian, a sipunculid and a priapulid have been added to the benthic macrofauna described previously from Cambridge, McBeth and Itirbilung fiords.

PHYSICAL ENVIRONMENT

The physical environment of eastern Canadian arctic fiords differs significantly from the fiord environments of western North America and Europe. The restricted circulation and associated low levels of dissolved oxygen that characterize the latter (Syvitski *et al.*, 1986) have not been observed in Baffin Island fiords (Dale *et al.*, 1989). Circulation occurs throughout depth, largely via isohaline circulation and wind-induced mixing (Gade *et al.*, 1974; Perkin and Lewis, 1978; Neilsen and Ottesen-Hansen, 1980; Gilbert, 1983); thus these waters are oxygen rich (Table 1) and support a diverse benthic macrofauna.

The distribution of water masses within the fiords and over the continental shelf of eastern Baffin Island directly influences the distribution of arctic marine invertebrates (Grainger, 1954, 1955; Macpherson, 1971; Lubinsky, 1980). Several distinct water masses occur along the eastern Baffin Island coast. A seasonally variable shallow water mass develops in July and August from the mixing of Baffin Current water with freshwater from rivers and melting sea ice. The temperature of this water mass ranges from 0°C to 8°C and the salinity ranges from less than 20% to 30% (Ellis, 1960; Fissel *et al.*, 1981). This shallow water mass develops to depths of 5-60 m within the fiords (Gilbert, 1978; Trites, 1985) and 50-100 m depth across the continental shelf (Ellis, 1960; Fissel *et al.*, 1981). The nearshore habitat is defined to be those areas influenced by this seasonally variable shallow water mass.

The Baffin Island Current lies below the shallow surface water mass. It is formed by cold, low-salinity water $(-1.8^{\circ}C \text{ to } 1.8^{\circ}C; < 30.0-34.5^{\circ})$; Dunbar, 1951; Meunch, 1971) that

¹Sedimentology of Arctic Fiords Experiment (SAFE) contribution number 37

²Fisheries and Oceans Canada, Institut Maurice Lamontagne, C.P. 1000, 850 Route de la Mer, Mont-Joli, Quebec, Canada G5H 3Z4; present address: Department of Geography, University of Saskatchewan, Saskatchewan, Saskatchewan, Canada S7N 0W0

³Invertebrate Zoology Division, Annelid Section, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4 ©The Arctic Institute of North America

flows southward at depths of 100-300 m across the continental shelf of eastern Baffin Island. This water mass is of Atlantic origin and enters Baffin Bay via Davis Strait, where it is modified by cooling and mixing with surface runoff in northeastern Baffin Bay, or it is modified by cooling and freshening within the Arctic Ocean prior to entering Baffin Bay via Smith, Jones and Lancaster sounds (Meunch, 1971). Trites (1985) reported Baffin Island Current water at depths as great as 325 m in Baffin Island fiords. The inner shelf habitat is defined to be those areas influenced by the Baffin Island Current.

The Greenland Current flows below the Baffin Island Current. It is a relatively warm, saline water mass (0-2.0°C, 34.2-35‰; Bailey, 1957; Meunch, 1971) that flows southward at depths of 300-1300 m across the outer continental shelf and slope of eastern Baffin Island. This water originates in the Atlantic Ocean and is advected north via Davis Strait into Baffin Bay by the West Greenland Current. Here the Greenland Current water mixes with Baffin Island Current water and loses heat as it flows southward along the Baffin Island coast. Greenland Current waters enter Baffin Island fiords where sill depths permit,

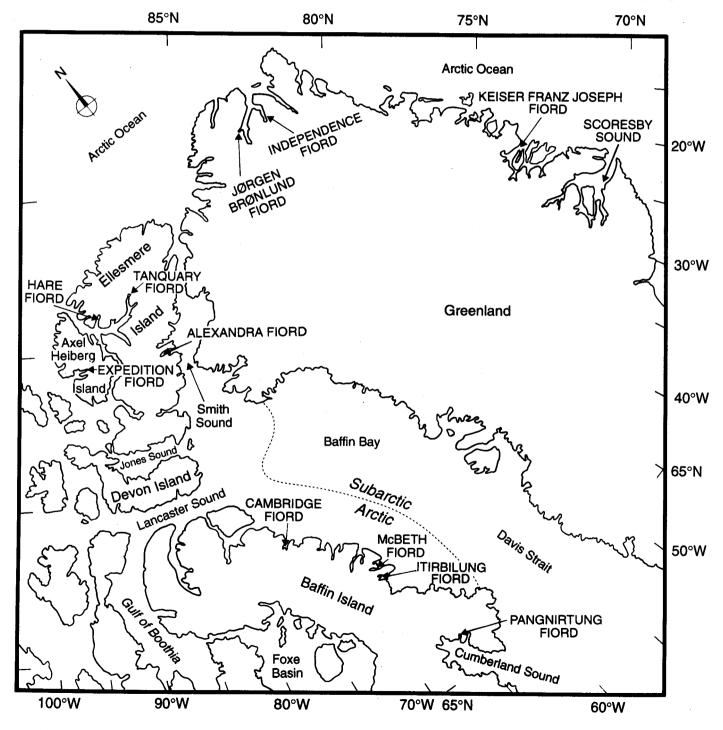


FIG. 1. Map of Baffin Island and Greenland illustrating the location of Cambridge Fiord (CA), McBeth Fiord (MC) and Itirbilung Fiord (IT) and other place names identified in the text. The dashed line in Baffin Bay represents the boundary between arctic waters and subarctic waters.

	Fiord length	Maximum depth	Outer sill depth	Large tidal range			d oxygen ·L ⁻¹)
Fiord	(km)	(m)	(m)	(m)	Date (D/M/Y)	Surface ^a	Bottom ^b
Cambridge	61	708	439	1.8	22-23/09/82 20-24/09/83	8.16 8.78	5.00 5.61
McBeth	93	563	249	1.2	18-19/09/82 29/09-02/10/83	8.39 8.74	5.29 4.98
Itirbilung	55	435	249	1.2	17/09/82 25-29/09/83	8.38 8.82	5.87 6.33

TABLE 1. Physical parameters of the fiords studied

^aFrom 0 to 5 m depth.

^bWithin 20 m of the bottom.

Source: Trites et al., 1983; Petrie and Trites, 1984; and Syvitski et al., 1989.

forming a warmer bottom layer at the greatest depths in the fiords (Trites, 1985). The outer shelf habitat is defined to be those areas influenced by the Greenland Current.

Mixing of arctic and Atlantic water masses occurs across a broad front extending from Padloping Island (67°N) on eastern Baffin Island to Thule (77°N) on western Greenland (Fig. 1). The region occupied by waters of mixed arctic and Atlantic origin is known as the subarctic marine zone (Dunbar, 1951). The boundary between subarctic and boreal waters is established at the point of farthest penetration of arctic waters (Dunbar, 1951). The marine subarctic zone extends from the Scotian Shelf and the Gulf of St. Lawrence to Hudson Strait and along the coast of Baffin Island to Padloping Island.

METHODS AND MATERIALS

In 1983, 42 grab sample stations and 20 bottom camera stations were occupied in Cambridge, McBeth and Itirbilung fiords between 20 September and 1 October during C.S.S. Hudson cruise 83-028 (Table 2). Sample station locations are illustrated in Syvitski et al. (1989: Fig. 2, p. 235). The marine invertebrates were recovered from the sediments retained in a single 40 cm \times 40 cm Van Veen or Shipek sampler at each grab sample station. The shallow prodelta at the head of McBeth Fiord was sampled with a 24 cm \times 24 cm Ekman grab sampler operated by hand from a launch. The marine invertebrates were recovered from a single grab at each of 7 stations at this location. Approximately 5% of the total volume of sediment retained in the grab samplers was removed for other analyses and the remainder was seived through a 2 mm screen. Marine organisms retained on the screen were picked onboard ship and preserved in formalin (10% formaldehyde in seawater). All the organisms identified by the present authors are based on the examination of specimens recovered from the sieves. In their original study, Syvitski et al. (1989) converted the number of animals recovered in the grabs to individuals m⁻² (Table 2). These data were employed to calculate the relative abundance of marine invertebrate taxa reported in this study.

Underwater photographs were taken by a stereo Benthos camera system triggered by a compass bearing weight. The area photographed was $1.7 \text{ m} \times 1.2 \text{ m}$. In their original study, Syvitski *et al.* (1989) identified organisms to the level of higher taxa (e.g., ophiuroid echinoderms, buccinid gastropods) from enlarged photographs. Identification of organisms was facilitated through comparison with live specimens recovered in the bottom grab samples or with figures in the published literature. Syvitski *et al.* (1989) counted the organisms observed in the bottom photographs and divided their numbers by two to obtain TABLE 2. Distribution of sampling effort for macrobenthos during C.S.S. *Hudson* cruise 83-028 in Cambridge (CA), McBeth (MC) and Itirbilung (IT) fiords, Baffin Island, Northwest Territories

	Grab station			Total abundance ^a	Pho	to sta	Total abundance ^a	
Benthic association	CA	MC	IT	(no.•m ⁻²)	CA	MC	IT	(no.•m ⁻²)
Portlandia		7	4	6356			4	98
Onuphid	11		2	2398	6			578
Maldanid	8	4	6	3017	4	3	3	96
Total	19	_11	12		10	3	7	

^aThese data were employed to calculate the relative abundance of marine invertebrate taxa in Tables 3, 5 and 7.

individuals m^{-2} (Table 2). These data were employed to calculate the relative abundance of marine invertebrate taxa reported in this study.

The marine invertebrates recovered from Cambridge, McBeth and Itirbilung fiords have been arranged within the *Portlandia* association, the Onuphid association and the Maldanid association, as designated in Syvitski *et al.* (1989). Organisms constituting the *Portlandia*, Onuphid and Maldanid associations were ranked according to their abundance based on the information presented in Syvitski *et al.* (1989:246-247). The method of feeding employed by the various organisms represented in this study was determined from information presented by Barnes (1980), Fauchald and Jumars (1979), Kohn (1983), and Morton (1983). Benthic invertebrates were designated as carnivores, scavengers, suspension feeders or deposit feeders using the classification scheme developed by Walker and Bambach (1974) based on this information.

FAUNAL COMPOSITION AND ZOOGEOGRAPHY OF THE FIORD BENTHIC MACROFAUNA

Portlandia Association

The Portlandia association occurs on soupground substrates, consisting of underconsolidated mud and sand, which develop in areas of rapid sedimentation at the heads of McBeth and Itirbilung fiords (Dale et al., 1989) (Fig. 2). This benthic association is characterized by the presence and abundance of Portlandia arctica, maldanid polychaetes (e.g., Maldane sarsi) and ophiuroid echinoderms (Table 3). Suspension-feeding bivalves — Hiatella arctica, Musculus discors and Mya truncata — are apparently restricted to the shallow water depths (less than 50 m) sampled in McBeth Fiord. The bivalve fauna in McBeth Fiord is replaced by sabellid polychaetes, ophiuroid

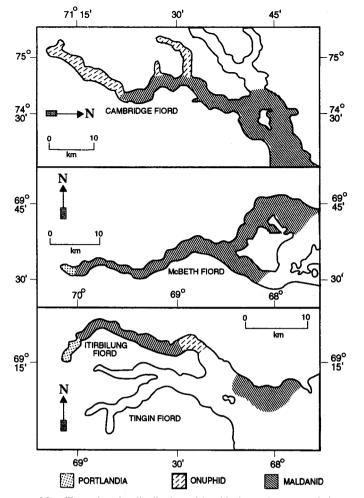


FIG. 2. Map illustrating the distribution of benthic invertebrate associations identified by Syvitski *et al.* (1989) within Cambridge, McBeth and Itirbilung fiords. Note that the *Portlandia* association occurs at the fiord head in McBeth and Itirbilung fiords but is replaced by the Onuphid association in Cambridge Fiord. The Maldanid association occurs farther seawards and at greater depths than the other two benthic associations.

echinoderms and buccinid gastropods in Itirbilung Fiord. The *Portlandia* association in McBeth Fiord includes species characteristic of *Portlandia* and *Macoma-Astarte* associations that inhabit mud and sand substrates associated with seasonally variable, shallow surface waters in the Canadian Arctic and Greenland: *Portlandia arctica, Macoma calcarea, Mya truncata, Hiatella arctica* and *Musculus discors* (Table 4). In eastern Greenland fiords *Portlandia arctica* occurs in great abundance in association with *Macoma calcarea, Astarte borealis* and *Hiatella arctica* at depths of 5-40 m; in Franz Joseph Fiord the presence of *Portlandia arctica* in the *Macoma-Astarte* association is restricted to the inner fiord (Thorson, 1933), as is the situation in McBeth Fiord. In Jørgen Brønlund Fiord, however, *Portlandia arctica* is present in the *Macoma-Astarte* association throughout the length of the fiord (Schiøtte, 1989).

Soupground substrates grade into softground substrates over distances of 1-5 km from the fiord head (Dale *et al.*, 1989). Softground substrates, composed of variable portions of mud, sand and gravel, occur in areas characterized by moderate to low sedimentation rates, which allow for gradual dewatering of the sediment and the development of firmer substrates. The Onuphid association is consistently associated with gravel on

TABLE 3. Benthic organisms occurring within the *Portlandia* association in McBeth and Itirbilung fiords

Benthic grab samples	Mean rank abundance ^a	Relative abundance ^b (%)	Life habit	Feeding mode
Bivalvia				
Portlandia arctica	1.8	43.3	Infaunal	Deposit feeder
portlandia				
(Hitchcock)				
Axinopsida orbiculata				
(G.O. Sars)	3.0	3.0	Infaunal	Deposit feeder
Macoma calcarea			T C .1	Den 12 Contra
(Gmelin) Nucula belloti	3.2	1.1	Infaunal	Deposit feeder
Adams	3.4	0.3	Infaunal	Deposit feeder
Thyasira gouldi				-
(Philippi)*			Infaunal	Deposit feeder
Mya truncata (Linné)	3.3	0.6	Infaunal	Suspension feeder
Thracia sp.*			Infaunal	Suspension feeder
Hiatella arctica	• •		.	
(Linné) Musculus discort	3.0	6.3	Epifaunal	Suspension feeder
Musculus discors (Linné)§*	3.3	2.5	Epifaunal	Suspension feeder
Periploma			-	-
abyssorum Bush*			Infaunal	Carnivore
Gastropoda				
Cylichna cf.				
occulata Mighels and Adams*			Enifounal	Carnivore
			Epitauliai	Carmvore
Polychaeta Maldanidae				
Maldane sarsi				
Malmgren*			Infaunal	Deposit feeder
Unidentified				
maldanid polychaetes	1.8	42.6	Infaunal	Deposit feeder
Ampharetidae	1.6	42.0	Intaunai	Deposit reader
Amphicteis				
sundevalli				a
(Malmgren)*			Infaunal	Suspension feeder
Nephthyidae Nephthys ciliata				
(Müller)*			Motile	Carnivore
Oweniidae				
Owenia fusiformis			Infaunal	Domosit foodor
delle Chiaje* Sabellidae			maunai	Deposit feeder
Unidentified				
sabellid				
polychaetes			Infaunal	Deposit feeder
Echinodermata				
Ophiuroid echinoderms	3.3	0.4	Epifaunal	Deposit feeder
	5.5	0.4	Epitauliai	Deposit reader
Anthozoa Actinians				
(anemones)			Epifaunal	Carnivore
Pottom	Mean rank	Relative abundance	Life	
Bottom photographs	abundance		habit	Feeding mode
Gastropoda		(///		
Buccinum sp.	3.0	0.4	Epifaunal	Carnivore
Polychaeta			-	
Sabellid				
polychaetes	2.5	2.9	Infaunal	Suspension feeder
Echinodermata				
Ophiuroid				
	1.0	95.8	Epifaunal	Deposit feeder
Ophiuroid	1.0	95.8	Epifaunal	Deposit feeder
Ophiuroid echinoderms	1.0 3.0	95.8 0.9	-	Deposit feeder

*Those species recorded for the first time in these fiords.

§Identified as Modiolaria sp. in Syvitski et al., 1989.

^a Mean rank abundance = sum of the ranks/total number of samples.

^bRelative abundance = (number of individuals for a taxon/total number of individuals) × 100%.

softground substrates, while the Maldanid association occurs on substrates largely free of gravel.

Onuphid Association

The Onuphid association occurs at the head of Cambridge Fiord and on the outer sill in Itirbilung Fiord (Fig. 2). This benthic association is characterized by the presence and abundance of onuphid polychaetes (e.g., Nothria conchylega), maldanid polychaetes, the bivalves Yoldiella intermedia and Yoldiella lenticula, ophiuroid echinoderms and agglutinated foraminifera (Table 5). The species composition of the Onuphid association resembles that of a variety of benthic invertebrate associations inhabiting mud, sand and gravel substrates associated with arctic waters (Table 4). Macoma calcarea, Yoldiella spp. and Ophiura robusta are characteristic species of *Macoma-Astarte* associations that occur at 50-300 m depth on the Baffin Island continental shelf. *Dacridium vitreum*, *Myriochele heeri*, maldanid polychaetes and agglutinated foraminifera are abundant in an oweniid polychaete association occurring at 50-250 m depth in Eclipse Sound. *Yoldiella* spp., *Axinopsida orbiculata*, *Dacridium vitreum* and *Ophiura robusta* occur abundantly in the *Bathyarca glacialis–Astarte crenata* association recorded from 45 to 200 m depth in Keiser Franz Joseph Fiord in East Greenland.

The presence of *Chlamys islandica* in the nearshore habitat of northern Baffin Island is of considerable zoogeographic interest. Its presence in the SAFE collections records a substantial range extension for this species in the eastern Canadian Arctic. A single live specimen of *Chlamys islandica* was recovered from 19 m depth at the head of Cambridge Fiord (station CAFE;

TABLE 4. Benthic invertebrate associations present within Baffin Island fiords on the Baffin Island continental shelf and within East Greenland fiords

1.	Baffin Island fiords		nd Shelf — nearshore			land fiords
	Itirbilung Fiord, McBeth Fiord	Frobisher Bay	Scott Inlet	Eclipse Sound, Lancaster Sound, NW Baffin Island	Keiser Franz Joseph Fiord, Scoresby Sound	Keiser Franz Joseph Fiord, Scoresby Sound
	Portlandia association		Portlandia association	Macoma-Astarte association	Portlandia association	Macoma association
	Portlandia arctica	Astarte borealis	Portlandia arctica	Astarte borealis	Portlandia arctica	Macoma calcarea
	Musculus discors	Hiatella arctica	Thyasira spp.	Astarte montagui	Myriotrochus rinki	Macoma moesta
	Mya truncatà	Mya truncata		Macoma moesta		Astarte borealis
	Hiatella arctica	Macoma calcarea		Macoma calcarea		Astarte montagui
	Macoma calcarea	Musculus discors		Mya truncata		Astarte elliptica
	Maldanid polychaetes	Ophiacantha bidentata		Musculus niger		Mya truncata
		Ophiopus arcticus		Nuculana minuta		Hiatella arctica
		Nichomache lumbricalis		Ophiura robusta		Musculus discors
		Nephtys spp.		Myriotrochus rinki		Ophiocten sericeum Priapulus caudatus
Depth (m): Substrate: Source:	5-40 Sandy mud Syvitski <i>et al.</i> , 1989; Aitken and Fournier (this study)	30-75 Sandy mud Wacasey <i>et al.</i> , 1979, 1980	5-20 Muddy sand Thomson <i>et al.</i> , 1986	15-50 Silty sand Thomson et al., 1986	10-60 Mud Spärck, 1933; Thorson, 1934	5-45 Muddy sand Thorson, 1933, 1934; Bertelsen, 1937
2.	Baffin Island fiords	Baffin Islan	d Shelf — inner shelf	f associations	East Green	land fiords
	Cambridge Fiord, Itirbilung Fiord	Hudson Strait, Davis Strait	Eclipse Sound, Lancaster Sound, NW Baffin Bay	Eclipse Sound, Scott Inlet	Keiser Franz Joseph Fiord	
	Onuphid association		Macoma-Astarte association	Oweniid association	Bathyarca-Astarte crenata association	
	Macoma calcarea	Astarte striata	Macoma calcarea	Dacridium vitreum	Bathyarca glacialis	
	Nucula belloti	Macoma calcarea	Astarte montagui	Ophiocten sericeum	Astarte crenata	
	Yoldiella spp.	Thyasira gouldi	Hiatella arctica	Ophiura sarsi	Yoldiella spp.	
	Axinopsida orbiculata	Nuculana pernula	Margarites sp.	Myriochele spp.	Axinopsida orbiculata	
	Dacridium vitreum	Yoldiella lucida	Lepeta caeca	Nephtys ciliata	Thyasira gouldi	
	Ophiacantha bidentata	Lepeta caeca	Ophiura robusta	Maldane sarsi	Dacridium vitreum	
	Ophiura robusta	Ophiura robusta	Ophiocten sericeum	Agglutinated foraminifera	Delectopecten greenlandicus	
	Gorgonocephalus arcticus	Ophiopholis aculeata	Strongylocentrotus droebachiensis		Lepeta caeca	
	Nothria conchylega	Strongylocentrotus droebachiensis			Strongylocentrotus droebachiensis	
	Maldanid polychaetes Agglutinated foraminifera	Scoloplos armiger			Ophiura robusta	
Depth (m): Substrate:	100-560 Sandy mud, gravel	100-300 Sandy mud, gravelly sand	50-250 Muddy sand	50-250 Muddy sand	45-200 Mud	
Source:	Syvitski <i>et al.</i> , 1989;	Stewart et al., 1985	Thomson, 1982	Thomson, 1982	Spärck, 1933;	

71°11.5'N, 75°02.5'W). This record extends the range of this species 700 km northward from Cumberland Sound, the approximate present northern limit of *Chlamys islandica* in eastern Canadian waters, where large populations inhabit depths greater than 30 m (Dale *et al.*, 1989).

Marine molluscs with subarctic affinities have been collected from postglacial marine sediments throughout the eastern Canadian Arctic, indicating a greater extension of subarctic waters into Davis Strait and Baffin Bay in the early and middle Holocene than at present (Andrews, 1972; Andrews et al., 1981). Miller (1980) noted the time-transgressive nature of the incursion of subarctic waters along the eastern Baffin Island coast. Subarctic molluscs, notably Astarte striata, Chlamys islandica and Mytilus edulis, expanded their range during the period ca. 10 000-8000 a BP. Diverse macrofaunal assemblages, containing such subarctic water mass indicator species as Chlamvs islandica and Mytilus edulis, are observed in Holocene marine deposits as old as 9725 \pm 120 a BP (QC-450; Miller, 1979) in Frobisher Bay (63°N), 8750 ± 100 a BP (GSC-2508; Miller, 1979) on northern Hall Peninsula (65°N), 8230 ± 160 a BP (Gak-3090; Andrews and Miller, 1972) in Narpaing Fiord (67°N), 8190 ± 120 a BP (Y-1705; Andrews and Drapier, 1967) in Inugsuin Fiord (69°N) and 7780 \pm 115 a BP (SI-2620; Andrews, 1976) at Cape Hunter, Buchan Gulf (71°N) along the eastern Baffin Island coast.

Ameliorated marine climates persisted throughout the interval ca. 5500-3000 a BP, culminating with the appearance of *Macoma balthica* in postglacial marine deposits on eastern Baffin Island (Andrews, 1972). Subsequent deterioration of the marine climate of Baffin Bay coincided with the expansion of glaciers on Baffin Island over the last 3000 years (Andrews, 1972; Miller, 1973; Dyke, 1979) and the retreat of subarctic

molluscs southwards along the Baffin Island coast. It is most probable that the live specimen of *Chlamys islandica*, sampled at the head of Cambridge Fiord, is derived from a relict population isolated during the southward retreat of subarctic molluscs described above.

New bathymetric records for the eastern Canadian Arctic are recorded for the bivalves *Dacridium vitreum* and *Yoldiella lenticula* among the organisms constituting the Onuphid association (Table 6).

Maldanid Association

The Maldanid association occurs on muddy sand substrates throughout the central and outer portions of all three fiords (Fig. 2). This benthic association is characterized by the presence and abundance of maldanid (e.g., Asychis biceps) and sabellid (e.g., Myxicola infundibulum) polychaetes, ophiuroid echinoderms, elasipod holothurians, the bivalves Axinopsida orbiculata and Bathyarca glacialis, sea anemones and agglutinated foraminifera (Table 7). The species composition of the Maldanid association resembles that of a variety of benthic invertebrate associations inhabiting mud and sand substrates associated with Atlantic waters (Table 4). Bathyarca glacialis, Astarte crenata, Gorgonocephalus arcticus and Ophiopleura borealis are characteristic species of the Bathyarca-Astarte crenata association recorded from 40 to 550 m depth in Scoresby Sound, East Greenland. Two benthic associations, characterized by the abundance of Bathyarca spp., recorded from the continental shelf of Baffin Island are analogous to the Maldanid association: a Bathyarca raridentata association developed on mud substrates at 250-500 m depth in Lancaster Sound, and a Bathyarca pectunculoides-Astarte crenata association developed on mud substrates at 300-700 m depth in Davis Strait.

TABLE 4. Continued

3.	Baffin Island fiords	Baffin Islar	nd Shelf - outer shel	f associations	East Gree	nland fiords
	Cambridge Fiord, McBeth Fiord, Itirbilung Fiord	Davis Strait	Lancaster Sound, NW Baffin Bay	Lancaster Sound, NW Baffin Bay	Scoresby Sound	Keiser Franz Joseph Fiord, Scoresby Sound
	Maldanid association		Bathyarca association	Praxillura-Golfingia association	Bathyarca-Astarte crenata association	Foraminifera association
	Astarte crenata	Astarte crenata	Bathyarca raridentata	Ophiacantha bidentata	Bathyarca glacialis	Agglutinated foraminifera
	Bathyarca glacialis	Bathyarca pectunculoides	Praxillella gracilis	Praxillura sp.	Astarte crenata	Yoldiella frigida
	Axinopsida orbiculata	Nucula delphinodonta		Nothria conchylega	Nucula tenuis	Yoldiella lenticula
	Yoldiella intermedia	Nothria conchylega		Asychis biceps	Nothria conchylega	Ctenodiscus crispatus
	Yoldiella lenticula			Goldfingia margaritacea	Gorgonocephalus arcticus	Asychis biceps
	Ophiacantha bidentata				Ophiopleura borealis	Axinopsida orbiculata
	Ophiopleura borealis				Agglutinated for a minifera	Thyasira gouldi
	Gorgonocephalus arcticus					
	Elasipod holothurians					
	Asychis biceps					
	Agglutinated foraminifera					
Depth (m): Substrate: Source:	255-750 Sandy mud Syvitski <i>et al.</i> , 1989; Aitken and Fournier (this study)	300-700 Mud Stewart <i>et al.</i> , 1985	250-500 Mud Thomson, 1982	250-500 Coarse silt, fine sand Thomson, 1982	40-550 Mud Thorson, 1934	50-780 Mud Spärck, 1933; Thorson, 1934

TABLE 5. Benthic organisms occurring within the Onuphid association in Cambridge and Itirbilung fiords

Benthic	Mean rank	Relative abundance ^b	Life		Benthic	Mean rank	Relative abundance ^b	Life	
grab samples	abundance ^a	(%)	habit	Feeding mode	grab samples	abundance ^a	(%)	habit	Feeding mode
Bivalvia					Capitellidae				
Astarte crenata					Notomastus				
(Gray)*			Infaunal	Suspension feeder	latericeus Sars*			Infaunal	Deposit feeder
Astarte striata					Lumbrineridae				
(Leach)	3.8	0.3	Infaunal	Suspension feeder	Lumbrineris				
Periploma					fragilis			Matila	Comissono
abyssorum Bush*			Infaunal	Suspension feeder	(Müller)* Oweniidae			Motile	Carnivore
Bathyarca	20	0.2	E-:6	Commentary for the	Myriochele heeri				
glacialis (Gray) Chlamys islandica	3.8	0.3	Epitaunai	Suspension feeder	Malmgren*			Infaunal	Deposit feeder
(Müller)		-	Enifounal	Suspension feeder	Owenia fusiformis				
Dacridium vitreum			Epitauliai	Suspension recuei	delle Chiaje*			Infaunal	Deposit feeder
(Möller)§*	3.7	0.6	Enifaunal	Suspension feeder	Spionidae				-
Musculus discors	217	0.0	Demannar	Suspension reduct	Laonice cirrata				
(Linné)*			Epifaunal	Suspension feeder	Sars*			Infaunal	Deposit feeder
Axinopsida			- F		Echinodermata				
orbiculata					Ophiuroidea				
(G.O. Sars)	3.5	2.7	Infaunal	Deposit feeder	Òphiacantha				
Macoma calcarea				•	bidentata				
(Gmelin)	3.6	1.5	Infaunal	Deposit feeder	(Retzius)*			Epifaunal	Deposit feeder
Macoma loveni					Ophiura robusta				
(Steenstrup)					(Ayres)*			Epifaunal	Deposit feeder
Jensen*			Infaunal	Deposit feeder	Ophiura sarsi			Eniformal	Demosit feeder
Nucula belloti					(Lütken)* Unidentified			Epiraunai	Deposit feeder
Adams	3.5	1.8	Infaunal	Deposit feeder	ophiuroid				
Nuculana pernula			Terformal	Demosit feeder	echinoderms	3.7	2.5	Epifaunal	Deposit feeder
costigera Leche* Portlandia arctica	3.8	0.3	Infaunal Infaunal	Deposit feeder		211	210	Dpilauliui	Deposit itedel
portlandia	5.0	0.5	Infaunai	Deposit feeder	Sipunculida				
(Hitchcock)					Phascolion strombi (Montagu)*			Infaunal	Deposit feeder
Thyasira gouldi					•			Iniaunai	Deposit leedel
(Philippi)*			Infaunal	Deposit feeder	Agglutinated				
Yoldiella spp.‡	3.2	7.6	Infaunal	Deposit feeder	foraminifera	3.3	11.4	Epifaunal	Deposit feeder
Cuspidaria glacialis		,,,,		2					
(G.O. Sars)	3.8	0.3	Infaunal	Carnivore					
Gastropoda					Bottom				
Lepeta caeca					photographs				
(Müller)*			Epifaunal	Browser	Gastropoda				· · ·
()					Buccinum sp.	4.5	0.03	Epifaunal	Scavenger
Polychaeta					Polychaeta			•	•
Onuphidae					Onuphid				
Nothria conchylega	t i i i i i i i i i i i i i i i i i i i				polychaetes	1.5	97.8	Epifaunal	Scavenger
(Sars)*			Epifaunal	Scavenger	Sabellid polychaetes		0.02	Infaunal	Suspension feed
Unidentified									
onuphid			-	~	Echinodermata Gorgonocephalus				
polychaetes	1.6	32.0	Epifaunal	Scavenger	arcticus (Leach)	3.7	0.11	Enifaunal	Suspension feed
Maldanidae					Ophiuroid	5.7	0.11	Lphaunai	ouspension reed
Nichomache					echinoderms	2.7	1.8	Epifaunal	Deposit feeder
lumbricalis (Febricius)*			Infour-1	Deposit fooder				•	
(Fabricius)*			Infaunal	Deposit feeder	Bryozoa Unidentified				
Petaloproctus longissima					bryozoans	4.7	0.03	Enifannal	Suspension feed
Arwidsson*			Infaunal	Deposit feeder	•	7./	0.05	Spriauria	Suspension recto
Praxillura			muuna	20posit iouoi	Porifera				
longissima					Unidentified	4.0	0.00	F . (c)	a
Arwidsson*			Infaunal	Deposit feeder	sponges	4.8	0.02	Epitaunal	Suspension feed
Unidentified			muunui		Anthozoa				
maldanid					Actinians			_ /-	- · ·
polychaetes	2.1	35.3	Infaunal	Deposit feeder	(anemones)	3.0	0.19	Epifaunal	Carnivore
Sabellidae					Pennatulaceans		0.04	n	<u> </u>
Euchone analis					(sea pens)	4.7	0.01	Epifaunal	Carnivore
(Kröyer)*			Infaunal	Suspension feeder	Alcyonaceans	4 0	0.00	Eniformal	Cominers
Unidentified					(soft coral)	4.8	0.02	cpnaunal	Carnivore
sabellid					Arthropoda				
polychaetes	3.5	3.3	Infaunal	Suspension feeder	Pycnogonids	5.0	0.03	Patternal	Carnivore

*Those species recorded for the first time in these fiords.

§Identified as Modiolaria sp. in Syvitski et al., 1989.

[‡]Both Yoldiella intermedia (M. Sars) and Yoldiella lenticula (Möller) were identified in the grab samples; both are recorded for the first time in these fiords. ^aMean rank abundance = sum of the ranks/total number of samples.

^bRelative abundance = (number of individuals for a taxon/total number of individuals) $\times 100\%$.

					Previous	records
Species	Station ^a	North latitude	West longitude	Depth (m)	Depth (m)	Source
Dacridium vitreum (Möller)	CA 2.2 CASill3.5	71° 19.4′ 71° 42.1′	74° 46.2′ 74° 23.6′	292 255	31 77-245 31-73	Ellis, 1960 Arctic Biological Station, 1980 Wacasey <i>el al.</i> , 1979, 1980
Nuculana pernula (Müller)	IT 2 .1	69° 25.3′	68° 51.2′	310	4-40 20-50 35, 245 30-73 145, 292	Greig, 1909 Ellis, 1960 Arctic Biological Station, 1980 Wacasey <i>et al.</i> , 1979, 1980 Stewart <i>et al.</i> , 1985
Ophiopleura borealis (Danielssen and Koren)	MC 2.0	69° 33.5′	69° 40.2′	320	450-160 0	Mortensen, 1932
Tetilla sp.	CASill3.1	71° 41.5′	74° 15.0′	397	<150	Dale et al., 1989
Yoldiella lenticula (Möller)	CA 1.5 CA 1.7 CA 4.1 MC 4.1 IT 6.0	71° 14.0' 71° 15.0' 71° 25.5' 69° 36.6' 68° 52.7'	74° 57.0' 74° 54.0' 74° 45.7' 69° 44.5' 66° 24.5'	262 310 520 549 502	192 10-130	Wagner, 1964 Lubinsky, 1980

TABLE 6. New bathymetric records for marine invertebrates in the eastern Canadian Arctic

^aThe location of the various stations within the three fiords is illustrated in Syvitski et al., 1989.

CA = Cambridge Fiord; MC = McBeth Fiord; IT = Itirbilung Fiord.

Ophiacantha bidentata and Asychis biceps are represented abundantly in a polychaete-sipunculid association developed on fine sand substrates at 250-500 m depth in Lancaster Sound. Axinopsida orbiculata, Yoldiella spp., Asychis biceps and agglutinated foraminifera are characteristic species of the Foraminifera association recorded from 50 to 780 m depth in East Greenland fiords.

New bathymetric records in the eastern Canadian Arctic are recorded for the bivalves *Nuculana pernula* and *Yoldiella lenticula*, the ophiuroid echinoderm *Ophiopleura borealis* and the sponge *Tetilla* sp. among the organisms constituting the Maldanid association (Table 6).

The three fiords lie fully within the marine arctic zone as defined by Dunbar (1951); hence it is not surprising that 45 of the 52 species recorded in this study inhabit arctic waters. Of these 45 organisms, 11 are restricted to arctic waters: Portlandia arctica portlandia, Cuspidaria glacialis, Dacridium vitreum, Macoma loveni, Thyasira gouldi, Yoldiella intermedia, Yoldiella lenticula, Astarte crenata, Bathyarca glacialis, Ophiopleura borealis and Periploma abyssorum. The remaining 34 species possess a broad tolerance to higher temperatures and salinities and inhabit the marine subarctic zone as well. Many common arctic marine invertebrates are included in this group of panarctic organisms: Axinopsida orbiculata, Buccinum spp., Macoma calcarea, Musculus discors, Mya truncata, Nucula belloti, Nuculana pernula, Ophiacantha bidentata, Ophiura sarsi and Thyasira gouldi. Subarctic and cosmopolitan species are poorly represented in the macrofaunas of the fiords. Chlamys islandica, Astarte striata, Astarte montagui and Myxicola infundibulum are among the subarctic organisms inhabiting the fiords; cosmopolitan organisms inhabiting the fiords are represented by Hiatella arctica, Maldane sarsi and Owenia fusiformis.

ECOLOGY OF THE FIORD BENTHIC MACROFAUNA

The interaction of fiord macrofaunal organisms with bottom substrates and with one another can be examined through trophic analysis (Walker and Bambach, 1974). One method of describing the trophic structure of benthic associations employs the feeding habits of organisms (Scott, 1978). A comparison of the trophic structure, based on organism feeding habits, of various benthic associations inhabiting eastern Baffin Island and Greenland fiords is presented in Table 8. Deposit-feeding taxa are well represented in the fiord benthic associations and are the most abundant taxa composing the benthic macrofauna of Cambridge, McBeth and Itirbilung fiords. The foraging activities of mobile deposit-feeding taxa, notably nuculanid bivalves (Portlandia, Yoldiella, Nuculana and Nucula), ophiuroid echinoderms and holothurians, and scavenging, tubiculous onuphid polychaetes contribute to the vigorous reworking of fiord bottom sediments (Gilbert, 1982) and may influence the structure of benthic communities. Changes in sediment fabric produced by the feeding and locomotory activities of mobile benthic organisms contribute to enhanced resuspension and deposition of sediment and mortality of sessile and/or tubiculous organisms (Brenchley, 1981; Wilson, 1981; Thayer, 1983). Dale et al. (1989) noted that low abundances of sessile tubiculous polychaetes and cerianthid anemones were associated with high densities of ophiuroid echinoderms on soupground substrates in Baffin Island fiords.

Sessile, suspension-feeding organisms associated with hard substrates are restricted largely to fiord walls and sills, environments characterized by low rates of sedimentation and/or strong currents (Dale *et al.*, 1989; Syvitski, 1989). The presence of ice-rafted debris (e.g., gravel, boulders) on the fiord bottom (Gilbert, 1984) provides these organisms with suitable substrates for attachment in otherwise unsuitable softground substrates. These hard substrates are readily colonized by a variety of taxa associated with hard substrates: *Gorgonocephalus arcticus*, ascidians, bryozoans and sponges, creating the "faunal islands" described by Dale *et al.* (1989).

The data presented in Table 8 indicate that the total number of marine invertebrate taxa and the proportion of carnivorous/scavenging taxa constituting the east Greenland fiord benthos are greater than in the three Baffin Island fiords examined in this study. The differences in diversity and trophic structure may be attributed to the greater variety of gastropod, polychaete, crustacean and asteroid echinoderm taxa recorded from Greenland fiords. Many of these invertebrates are motile,

TABLE 7. Benthic organisms occurring within the Maldanid association in Cambridge, McBeth and Itirbilung fiords

Benthic grab samples	Mean rank abundance ^a	Relative abundance ^b (%)	Life habit	Feeding mode	Benthic grab samples	Mean rank abundance ^a	Relative abundance ^b (%)	Life habit	Feeding mode
grad samples Bivalvia	abundance	(70)		rounig mode	Echinodermata		(70)		T traing mode
Axinopsida					Holothuroidea				
orbiculata					Elasipod				
(G.O. Sars)	3.6	11.8	Infaunal	Deposit feeder	holothurians	4.1	0.7	Epifaunal	Deposit feeder
Nucula belloti					Ophiuroidea				
(Adams)	4.1	1.0	Infaunal	Deposit feeder	Ophiacantha				
Macoma calcarea (Gmelin)	4.3	1.0	Infaunal	Deposit feeder	bidentata				
Nuculana pernula	4.5	1.0	maunta	Deposit locael	(Retzius)*			Epifaunal	Deposit feeder
costigera Leche			Infaunal	Deposit feeder	Ophiopleura borealis				
Thyasira gouldi					(Danielssen and				
(Philippi)*			Infaunal	Deposit feeder	Koren)*			Epifaunal	Deposit feeder
Yoldiella intermedia (M. Sars)*			Infaunal	Deposit feeder	Ophiura robusta				
Yoldiella lenticula			maunai	Deposit feater	(Ayres)*			Epifaunal	Deposit feeder
(Möller)*			Infaunal	Deposit feeder	Unidentified ophiuroid				
Astarte spp. §	4.1	0.9	Infaunal	Suspension feeder	echinoderms	4.2	0.5	Epifaunal	Deposit feeder
Periploma			* ^ 1						
abyssorum Bush*			Infaunal	Suspension feeder	Ascidiacea Ciona intestinalis				
Bathyarca glacialis (Gray)	3.8	2.4	Enifounal	Suspension feeder	(Linné)			Epifaunal	Suspension feeder
Dacridium vitreum	5.0	2.7	Chuantier	Suspension reeder	Porifera			- 1	· · · · r
(Möller)*			Epifaunal	Suspension feeder	Tetilla sp.*			Enifaunal	Suspension feeder
Musculus discors			-					Dpinuunui	Suspension recei
(Linné)*			Epifaunal	Suspension feeder	Priapulida Priapulus caudatus				
Cuspidaria glacialis (G.O. Sars)	4.2	0.7	Infaunal	Carnivore	Lamarck*			Motile	Carnivore
(U.U. Sais)	4.2	0.7	Illiaullai	Carmivore					
astropoda					Agglutinated foraminifera	3.2	41.5	Epifaunal	Deposit feeder
Lepeta caeca			T ' C 1		Torummioru				
(Müller)*‡ Natica clausa			Epifaunal	Browser					
(Broderip and									
Sowerby)*			Epifaunal	Carnivore	Detter				
			-		Bottom photographs				
olychaeta					<u> </u>				
Maldanidae Asychis biceps					Gastropoda Buccinum spp.	4.6	0.7	Enifaunal	Scavenger
Sars*			Infaunal	Deposit feeder		4.0	0.7	Dpinuunui	Souronger
Praxillella gracilis				1	Polychaeta Onuphid				
Sars*			Infaunal	Deposit feeder	polychaetes	4.3	6.2	Epifaunal	Scavenger
Unidentified					Sabellid polychaetes		3.3	Infaunal	Suspension feeder
maldanid polychaetes	2.1	24.2	Infaunal	Deposit feeder	Echinodermata				-
Dnuphidae	2.1	24.2	mauna	Deposit feeder	Holothuroidea				
Nothria conchylega	1				Elasipod				
(Sars)*			Epifaunal	Scavenger	holothurians	4.1	5.3	Epifaunal	Deposit feeder
Unidentified					Ophiuroidea				
onuphid polychaetes	4.3	0.2	Enifaunal	Scavenger	Ophiuroid echinoderms	1.7	77.3	Epifaunal	Deposit feeder
Sabellidae	4.5	0.2	Epitauliai	Scavenger	Gorgonocephalus	1.7	1115	Dpiluumui	Deposit indust
Myxicola					arcticus Leach	4.8	3.7	Epifaunal	Suspension feede
infundibulum					Ascidicea				
(Renier)*			Infaunal	Suspension feeder	Unidentified				
Unidentified					ascidians	5.2	0.1	Epifaunal	Suspension feede
sabellid polychaetes	3.4	10.2	Infaunal	Suspension feeder	Porifera				
Capitellidae	2	10.2	2		Unidentified				
Notomastus					sponges	5.3	0.1	Epifaunal	Suspension feede
latericeus Sars*			Infaunal	Deposit feeder	Anthozoa				
Scalibregmidae					Actinians		. .	- 10 -	a .
Polyphysia crassa (Oersted)*			Motile	Carnivore	(anemones)	3.5	2.4	Epifaunal	Carnivore
(Juismu)			1110000	Quint VIV	Pennatulaceans	5.2	0.2	Eniformal	Carnivore
Inidentified					(sea pens)	3.4	0.4	Ephaunal	Catinivoic
ampharetid					Arthropoda				- ·
polychaetes			Infaunal	Suspension feeder	Pycnogonids	4.4	0.6	Destaure	Carnivore

*Species recorded for the first time in these fiords.

SThree species of Astarte have been identified in the collections: Astarte borealis (Schumacher), Astarte montagui (Dillwyn) and Astarte crenata (Gray), which is recorded for the first time in Cambridge Fiord.

‡A single empty shell was collected.

^a Mean rank abundance = sum of the ranks/total number of samples.

^bRelative abundance = (number of individuals for a taxon/total number of individuals) $\times 100\%$.

TABLE 8. Trophic composition of various bethnic invertebrate associations inhabiting eastern Baffin Island and eastern Greenland fiords (the number of taxa in each category is presented in the table)¹

	Trophic category								
Benthic association	Deposit feeders	Suspension feeders	Browsers	Carnivores/ scavengers					
Portlandia§	10	6	0	5					
Portlandia*	5	3	0	3					
Macoma calcarea*	33	23	4	37					
Onuphid§	17	11	1	9					
Bathyarca glacialis-									
Astarte crenata*	20	15	1	28					
Maldanid§	18	13	0	10					
Bathyarca glacialis-									
Astarte crenata*	20	15	1	28					
Foraminifera*	25	9	0	20					

¹The trophic terminology follows Walker and Bambach (1974). Data for invertebrate taxa occurring within each benthic association are taken from the following sources: Baffin Island fiords — § Syvitski *et al.*, 1989; Aitken and Fournier (this study); Greenland fiords — * Spärck, 1933; Thorson, 1933, 1934; Bertelsen, 1937.

carnivorous/scavenging organisms that occur less abundantly in the fiord benthos and hence may be underrepresented in the Baffin Island benthos due to the small samples recovered at each station in the three fiords (see Methods and Materials).

SUMMARY

Syvitski *et al.* (1989) identified three macrofaunal associations in Cambridge, McBeth and Itirbilung fiords; proceeding seawards from the heads of the fiords these are the *Portlandia* association (mean depth 55 m), the Onuphid association (mean depth 272 m) and the Maldanid association (mean depth 418 m). The present study has demonstrated that the species composition of each of these macrofaunal associations is broadly similar to that of macrofaunal associations occurring over the same bathymetric range on similar substrates along the continental shelf of eastern Baffin Island and in the fiords of eastern Greenland. The similarity of benthic macrofaunal associations along the eastern coasts of Baffin Island and Greenland reflects the broad distribution of arctic and panarctic species in polar and subarctic waters.

CONCLUSIONS

Thirty-eight species of marine invertebrates have been added to the benthic macrofauna described previously as inhabiting Cambridge, McBeth and Itirbilung fiords (Table 9), bringing the present total to 52 species: 22 bivalves, 4 gastropods, 5 echinoderms, 17 polychaetes and 4 minor taxa. A number of taxa, including ascidians, bryozoans, elasipod holothurians, pennatulaceans, pycnogonids and sponges, were observed in bottom photographs but were not recovered in benthic grab samples. Curtis (1972) recorded 68 species of polychaetes inhabiting depths as great as 100 m in Hare Fiord and Tanquary Fiord, Ellesmere Island. Dale et al. (1989) recorded 145 species of benthic marine invertebrates in Pangnirtung Fiord, Baffin Island: 25 bivalves, 30 gastropods, 32 polychaetes, 25 echinoderms and 33 other taxa. It is apparent that the present study of Baffin Island fiord macrobenthos underestimates the diversity of benthic organisms inhabiting these estuarine environments.

TABLE 9. Summary of the marine invertebrate species recorded for the first time in Cambridge, McBeth and Itirbilung fiords, Baffin Island, Northwest Territories

	Ben	thic associat	ion
	Portlandia	Onuphid	Maldanid
Bivalvia			
Astarte crenata (Gray)		х	х
Dacridium vitreum (Möller)		Х	Х
Macoma loveni (Steenstrup) Jensen		х	
Musculus discors (Linné)	Х	х	х
Nuculana pernula costigera Leche		х	
Periploma abyssorum Bush	Х	х	х
Thracia sp.	х		
Thyasira gouldi (Phillipi)	Х	х	\mathbf{X}_{i}
Yoldiella intermedia (M. Sars)		х	х
Yoldiella lenticula (Möller)		Х	Х
Gastropoda			
Cylichna cf. occulata			
Mighels and Adams	х		
Lepeta caeca (Müller)		X	
Natica clausa (Broderip and Sowerby)			х
Polychaeta			
Amphicteis sundevalli Malmgren	х		
Asychis biceps Sars			х
Euchone analis (Kröyer)		х	
Laonice cirrata Sars		х	
Lumbrineris fragilis (Müller)		x	
Maldane sarsi Malmgren	х		
Myriochele heeri Malmgren		х	
Myxicola infundibulum (Renier)			Х
Nephthys ciliata (Müller)	х		
Nichomache lumbricalis (Fabricius)		х	
Nothria conchylega (Sars)		x	х
Notomastus latericeus Sars		x	x
Owenia fusiformis delle Chiaje	х	х	
Petaloproctus longissima Arwidsson		х	
Polyphysia crassa (Oersted)			х
Praxillella gracilis Sars			X
Praxillura longissima Arwidsson		Х	
Echinodermata			
Ophiuroidea			
Ophiacantha bidentata (Retzius)		х	х
Ophiopleura borealis (Danielssen and			
Koren)			х
Ophiura robusta (Ayres)		Х	х
Ophiura sarsi (Lütken)		Х	
Ascidiacea			
Ciona intestinalis (Linné)			х
Porifera			
Tetilla sp.			x
Priapulida			
Priapulus caudatus Lamarck			х
Sipunculida			
Phascolion strombi (Montagu)		Х	

Future expeditions to this region must devote sufficient time for a dedicated five-replicate grab benthic sampling program, as recommended by Holme and McIntyre (1984), to adequately quantify the fiord benthos.

The feeding and locomotory activities of mobile and/or deposit-feeding organisms play an important role in structuring the marine benthos inhabiting unconsolidated substrates by altering the physical properties of marine sediments (Thayer, 1983). The inverse relation between the abundance of motile ophiuroid echinoderms and sessile tubiculous polychaetes and cerianthid anemones on soupground substrates described by Dale *et al.* (1989) in Baffin Island fiords suggests that bioturbation may influence benthic community structure. Physical disturbance of Baffin Island fiord sediments by motile and/or deposit-feeding organisms has been observed in box cores (Gilbert, 1982) and on bottom photographs (Syvitski *et al.*, 1989). The role of common marine invertebrates such as nuculanid bivalves, ophiuroid echinoderms and onuphid polychaetes in structuring the marine benthos of arctic fiords remains to be investigated.

ACKOWLEDGEMENTS

The work of A.E. Aitken was supported by the Natural Sciences and Engineering Research Council of Canada through operating grants and a postdoctoral fellowship. Dr. John A. Allen and Dr. R.J.A. Atkinson, University Marine Biological Station at Millport, Cumbrae, Scotland, provided access to the material examined in this study. Dr. Edward Grainger, Fisheries and Oceans Canada, Institut Maurice Lamontagne, confirmed the identification of the echinoderms. Iris Hardy of the Geological Survey of Canada, Bedford Institute of Oceanography, and Luci Bossé, Fisheries and Oceans Canada, Institut Maurice Lamontagne, provided assistance in retreiving oceanographic data and library research respectively. Diane Gradowski and Keith Bigelow prepared the text figures. Dr. James Syvitski, coordinator for the SAFE project, has donated the invertebrate specimens examined for this study to the permanent collections of the Canadian Museum of Nature, Ottawa. The content of the paper has been improved through the constructive reviews of the journal referees, Dr. G.V. Winter and Dr. A.G. Lewis.

REFERENCES

- AITKEN, A.E., RISK, M.J., and HOWARD, J.D. 1988. Animal-sediment relationships on a subarctic intertidal flat: Pangnirtung Fiord, Baffin Island, Canada. Journal of Sedimentary Petrology 58:969-978.
- ANDREWS, J.T. 1972. Recent and fossil growth rates of marine bivalves, Canadian Arctic, and Late Quaternary arctic marine environments. Palaeogeography, Palaeoclimatology, Palaeoecology 11:157-176.
- . 1976. Radiocarbon date list III: Baffin Island, N.W.T., Canada. Boulder: Institute of Arctic and Alpine Research, University of Colorado. Occasional Paper No. 21.
- ANDREWS, J.T., and DRAPIER, L. 1967. Radiocarbon dates obtained through Geographical Branch field observations. Geographical Bulletin 9:115-162.
- ANDREWS, J.T., and MILLER, G.H. 1972. The Quaternary of northern Cumberland Peninsula, east Baffin Island, N.W.T. Part X: Radiocarbon date list. Arctic and Alpine Research 4:261-277.
- ANDREWS, J.T., MILLER, G.H., NELSON, A.R., MODE, W.N., and LOCKE, W.W., III. 1981. Quaternary near-shore environments on eastern Baffin Island. In: Mahaney, W.C., ed. Quaternary Paleoclimate. Norwich: Geo Books. 13-44.
- ARCTIC BIOLOGICAL STATION. 1980. A marine biological study of Brevoort Harbour and nearby waters of eastern Baffin Island. Canadian Maunscript Report of Fisheries and Aquatic Sciences No. 1557.
- BAILEY, W.B. 1957. Oceanographic features of the Canadian Archipelago. Journal of the Fisheries Research Board of Canada 14:731-769.
- BARNES, R.D. 1980. Invertebrate zoology. Philadelphia: Saunders College/Holt, Rinehart and Winston.
- BERTELSEN, E. 1937. Contributions to the animal ecology of the fiords of Angmagssalik and Kangerdlugssuaq in east Greenland. Meddelelser om Grønland 108(3):1-38.
- BRENCHLEY, G.A. 1981. Disturbance and community structure: An experimental study of bioturbation in marine soft-bottom environments. Journal of Marine Research 39:767-790.
- CURTIS, M.A. 1972. Depth distribution of benthic polychaetes in two fiords on Ellesmere Island, N.W.T. Journal of the Fisheries Research Board of Canada 29:1319-1327.
- DALE, J.E., AITKEN, A.E., GILBERT, R., and RISK, M.J. 1989. Macrofauna of Canadian arctic fjords. Marine Geology 85:331-358.

- DUNBAR, M.J. 1951. Eastern arctic waters. Bulletin of the Fisheries Research Board of Canada No. 88.
- DYKE, A.S. 1979. Glacial and sea-level history of southwestern Cumberland Peninsula, Baffin Island, N.W.T., Canada. Arctic and Alpine Research 11:179-202.
- ELLIS, D.V. 1960. Marine infaunal benthos in arctic North America. Montreal: Arctic Institute of North America, Technical Paper No. 5.
- FAUCHALD, K., and JUMARS, P. 1979. The diet of worms: A study of polychaete feeding guilds. Oceanography and Marine Biology, Annual Review 17:193-284.
- FISSEL, D.B., LEMON, D.D., and BIRCH, J.R. 1981. The physical oceanography of western Baffin Bay and Lancaster Sound. Ottawa: Department of Indian and Northern Affairs. Environmental Studies 25.
- GADE, H.G., LAKE, R.A., LEWIS, E.L., and WALKER, E.R. 1974. Oceanography of an arctic bay. Deep-Sea Research 21:547-571.
- GILBERT, R. 1978. Observations on oceanography and sedimentation at Pangnirtung Fiord, Baffin Island. Maritime Sediments 14:1-9.
- . 1982. Contemporary sedimentary environments on Baffin Island, N.W.T., Canada: Glaciomarine processes in fiords of eastern Cumberland Peninsula. Arctic and Alpine Research 14:1-12.
- ______. 1983. Sedimentary processes of Canadian Arctic fjords. Sedimentary Geology 36:147-175.
- . 1984. Coarse particles in the sediments of Cambridge, McBeth and Itirbilung fiords. In: Syvitski, J.P.M., compiler. Sedimentology of Arctic Fjords Experiment: HU 83-028 and HU 82-031 Data Report, Vol. 2. Canadian Data Report of Hydrography and Ocean Sciences No. 28:9-1 to 9-25.
- GRAINGER, E.H. 1954. Polychaetous annelids of Ungava Bay, Hudson Strait, Frobisher Bay and Cumberland Sound. Journal of the Fisheries Research Board of Canada 11:507-528.
- ______. 1955. Echinoderms of Ungava Bay, Hudson Strait, Frobisher Bay and Cumberland Sound. Journal of the Fisheries Research Board of Canada 12:899-916.
- GREIG, J.A. 1909. Brachiopods and molluscs with a supplement to the echinoderms. Report of the 2nd Norwegian Arctic Expedition in the "Fram": 1898-1902, No. 20. Kristiania, Norway: Videnskab-Selskabet I Kristiania.
- HOLME, N.A., and McINTYRE, A.D. 1984. Methods for the study of marine benthos. 2nd ed. Blackwells: Oxford. International Biological Programme Handbook No. 10.
- KOHN, A.J. 1983. Feeding biology of gastropods. In: Saleuddin, A.S.M., and Wilbur, K.M., eds. The mollusca. Vol. 5, Part 2, Physiology. New York: Academic Press. 2-63.
- LUBINSKY, I. 1980. Marine bivalve molluscs of the Canadian central and eastern arctic: Faunal composition and zoogeography. Canadian Bulletin of Fisheries and Aquatic Sciences No. 207.
- MACPHERSON, E. 1971. The marine molluscs of arctic Canada. National Museums of Canada, Publications in Biological Oceanography No. 3.
- MEUNCH, R.D. 1971. The physical oceanography of the northern Baffin Bay region. Washington, D.C.: Arctic Institute of North America. Baffin Bay North Water Project. Scientific Report 1.
- MILLER, G.H. 1973. Late Quaternary glacial and climatic history of northern Cumberland Peninsula, Baffin Island, N.W.T., Canada. Quaternary Research 3:561-583.
- . 1979. Radiocarbon date list IV: Baffin Island, N.W.T., Canada. Boulder: Institute of Arctic and Alpine Research, University of Colorado. Occasional Paper No. 29.
- . 1980. Late Foxe glaciation of southern Baffin Island, N.W.T., Canada. Geological Society of America Bulletin 91:399-405.
- MORTENSEN, Th. 1932. The Godthaab Expedition 1928. Echinoderms. Meddelelser om Grønland 79(2):1-64.
- MORTON, B. 1983. Feeding and digestion in Bivalvia. In: Saleuddin, A.S.M., and Wilbur, K.M., eds. The mollusca. Vol. 5, Part 2, Physiology. New York: Academic Press. 65-147.
- NIELSEN, T.K., and OTTESEN-HANSEN, N.-E. 1980. Mixing and exchange processes in a small west Greenland sill fjord. In: Freeland, H.J., Farmer, D.M., and Levings, C.D., eds. Fjord oceanography. New York: Plenum Press. 219-225.
- PERKIN, R.G., and LEWIS, E.L. 1978. Mixing in an arctic fjord. Journal of Physical Oceanography 8:873-880.
- PETRIE, W.M., and TRITES, R.W. 1984. Synoptic oceanography. In: Syvitski, J.P.M., compiler. Sedimentology of Arctic Fjords Experiment: HU 83-028 and HU 82-031 Data Report, Vol. 2. Canadian Data Report of Hydrography and Ocean Sciences No. 28:2-1 to 2-133.
- SCHIØTTE, T. 1989. Marine mollusca from Jørgen Brønlund Fjord, north Greenland, including the description of *Diaphana vedelsbyae* n. sp. Meddelelser om Grønland, Biosciences 28:1-24.

SCOTT, R.W. 1978. Approaches to trophic analysis of paleocommunities. Lethaia 11:1-14.

- SPÄRCK, R. 1933. Contributions to the animal ecology of the Franz Joseph Fjord and adjacent waters. Meddelelser om Grønland 100(1):1-40.
- STEWART, P.L., POCKLINGTON, P., and CUNJAK, R.A. 1985. Distribution, abundance and diversity of benthic macroinvertebrates on the Canadian continental shelf and slope of southern Davis Strait and Ungava Bay. Arctic 38:281-291.
- SYVITSKI, J.P.M. 1989. On the deposition of sediment in glacier-influenced fjords: Oceanographic controls. Marine Geology 85:301-330.
- SYVITSKI, J.P.M., and SCHAFER, C.T. 1985. Sedimentology of Arctic Fjords Experiment (SAFE): Project introduction. Arctic 38:264-270.
- SYVITSKI, J.P.M., BURRELL, D.C., and SKEI, J.M. 1986. Fjords: Processes and products. New York: Springer-Verlag.
- SYVITŠKI, J.P.M., FARROW, G.E., ATKINSON, R.G.A., MOORE, P.G., and ANDREWS, J.T. 1989. Baffin Island fiord macrobenthos: Bottom communities and environmental significance. Arctic 42:232-247.
- THAYER, C.W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. In: TEVESZ, M.J., and McCALL, P.L., eds. Biotic interactions in recent and fossil benthic communities. New York: Plenum Press. 479-625.
- THOMSON, D.H. 1982. Marine benthos in the eastern Canadian High Arctic: Multivariate analysis of standing crop and community structure. Arctic 35:61-74.
- THOMSON, D.H., MARTIN, C.M., and CROSS, W.E. 1986. Identification and characterization of arctic nearshore benthic habitats. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1434.

THORSON, G. 1933. Investigations on shallow water animal communities in the Franz Joseph Fjord (east Greenland) and adjacent waters. Meddelelser om Grønland 100(2):1-70.

. 1934. Contributions to the animal ecology of the Scoresby Sound Fjord complex (east Greenland). Meddelelser om Grønland 100(3):1-67.

- TRITES, R.W. 1985. Oceanographic reconnaissance of selected Baffin Island fjords. 14th Arctic Workshop, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada. Geological Survey of Canada, Open File 1223:54-58.
- TRITES, R.W., PETRIE, W.M., HAY, A.E., and DeYOUNG, B. 1983. Synoptic oceanography. In: Syvitski, J.P.M., and Blakeney, C.P., compilers. Sedimentology of Arctic Fjords Experiment: HU 82-031 Data Report, Vol. 1. Canadian Data Report of Hydrography and Ocean Sciences No. 12:2-1 to 2-129.
- WACASEY, J.W., ATKINSON, E.G., and GLASSPOLE, L. 1979. Zoobenthos data from upper Frobisher Bay, 1967-1973. Canadian Data Report of Fisheries and Aquatic Sciences No. 164.
- WACASEY, J.W., ATKINSON, E.G., and GLASSPOLE, L. 1980. Zoobenthos data from inshore stations of upper Frobisher Bay, 1969-1976. Canadian Data Report of Fisheries and Aquatic Sciences No. 205.
- WAGNER, F.J.E. 1964. Faunal report II, Marine geology program, Polar Continental Shelf Project, Isachsen, District of Franklin. Geological Survey of Canada Report, Bedford Institute of Oceanography 64-1.
- WALKER, K.R., and BAMBACH, R.K. 1974. Feeding by benthic invertebrates: Classification and terminology for paleoecological analysis. Lethaia 7:67-78.
- WILSON, W.H., Jr. 1981. Sediment-mediated interactions in a densely populated infaunal assemblage: The effects of the polychaete Abarenicola pacifica. Journal of Marine Research 39:735-748.