

Network management aspects
in SDN

Panagiotis Apostolidis

SID: 3301130006

Supervisor: Prof. Andreas Pitsillides

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

DECEMBER 2015

THESSALONIKI – GREECE

-iii-

Contents

ABSTRACT ... V

1 INTRODUCTION .. 1

1.1 THE PROBLEM(S) WITH NETWORK MANAGEMENT .. 1

1.2 DOES SDN ADD MORE PROBLEMS IN NETWORK MANAGEMENT? 2

1.3 THE IMPORTANCE OF NETWORK MANAGEMENT ... 3

1.4 THESIS GOAL AND OUTLINE .. 5

2 BACKGROUND ... 7

2.1 NETWORK MANAGEMENT ... 7

2.1.1 Definition of Network Management ... 7

2.1.2 History of Network Management ... 8

2.1.3 ISO Functional model for network management (FCAPS) 9

2.2 SOFTWARE DEFINED NETWORKING .. 11

2.2.1 History of SDN ... 12

2.2.2 SDN architecture ... 12

2.3 OPENFLOW ... 15

2.3.1 History of OpenFlow ... 15

2.3.2 OpenFlow basic architecture ... 15

2.3.3 Open Flow Switch .. 16

2.3.4 SDN OpenFlow Controller .. 20

2.3.5 Communication between OpenFlow devices 21

2.4 OF-CONFIG ... 21

2.5 SDN AND NFV ... 21

-iv-

3 SDN MANAGEMENT AND FCAPS .. 23

3.1 FAULT MANAGEMENT IN SDN .. 23

3.2 CONFIGURATION MANAGEMENT IN SDN.. 28

3.3 ACCOUNTING MANAGEMENT IN SDN ... 34

3.4 PERFORMANCE MANAGEMENT IN SDN .. 37

3.5 SECURITY MANAGEMENT IN SDN .. 45

4 FCAPS EVALUATION IN SDN ... 52

4.1 METHODOLOGY OF EVALUATION .. 52

4.2 EVALUATION ISSUES ... 54

4.3 EVALUATION OF FAULT MANAGEMENT IN SDN ... 55

4.4 EVALUATION OF CONFIGURATION MANAGEMENT IN SDN 58

4.5 EVALUATION OF ACCOUNTING MANAGEMENT IN SDN 60

4.6 EVALUATION OF PERFORMANCE MANAGEMENT IN SDN 62

4.7 EVALUATION OF SECURITY MANAGEMENT IN SDN ... 64

5 CONCLUSIONS AND FUTURE WORK .. 66

5.1 SUMMARY OF MAIN POINTS IN SDN MANAGEMENT .. 66

5.2 CONCLUDING STATEMENTS ... 66

5.3 RECOMMENDATIONS AND FUTURE WORK ... 67

BIBLIOGRAPHY ... 68

APPENDIX .. 72

-v-

Abstract

This dissertation was written as a part of the MSc in ICT Systems at the International

Hellenic University.

SDN is a network approach that separates the control plane from the underlying systems

that forward traffic to the selected destination. In SDN networks, management functions

have to be effective to ensure performance and availability. In this master thesis, man-

agement functions of SDN networks are studied through the perspective of the FCAPS

ISO framework. Existing studies, use cases and ONF SDN features are used as sources

of information that help in identifying and evaluating management functions. The cate-

gorization of the evaluated functions according to the FCAPS model, allows us to argue

that, through the perspective of FCAPS model, the Network Management of OpenFlow

based SDN networks can be considered effective as soon as it is supported with tradi-

tional network management mechanisms and third party OpenFlow-companion solu-

tions. Issues that still exist in limited number of management functions mainly concern

carrier-grade networks. Further investigation, programmability effort and continuous

development of OpenFlow is required.

I would like to thank my supervisor, Professor Andreas Pitsillides for giving me the op-

portunity to work with an interesting and emerging technology. His guidance and sup-

port played a very significant role to the development and completion of this thesis. I

would also like to thank my family for being supportive and patient throughout the the-

sis work.

Panagiotis Apostolidis

10/12/2015

-vi-

-1-

1 Introduction

SDN (Software-Defined Networking) is a network approach that aspires to simplify

network design and operation by separating the control plane from the underlying sys-

tems, the data plane, that forward network to the destination. In SDN approach, the pro-

cess of overseeing a network and taking corrective actions to ensure performance and

availability, as has always been in traditional networks, continues to be challenging and

of great importance.

In this study, the effectiveness of SDN management will be investigated in the context

of the ISO network management model. The identified issues will be reported in order

to contribute to future improvement of SDN management.

1.1 The problem(s) with Network Management

Since 1980s network management has been continuously evolving. However, certain

problems in network management remain unsolved while new challenges in network

management are also expected to arise from the deployment of SDN.

Network management of traditional networks is strongly affected by complexity and

heterogeneity. Network operators and corporate network administrators quite often have

to deal with low-level vendor-specific configuration activities in order to implement

higher level network policies. The “closed” and proprietary integration of network de-

vices prevent the adoption of best possible solutions in network management as the

network operators remain “locked-in” by vendors. Network operators have to imple-

ment frequent changes to the state or the configuration of a network in order to enforce

various high–level, and sometimes urgent, policies aiming to respond to security threats,

data traffic needs or performance issues. Nowadays, network management is not yet

able to provide sufficient mechanisms to address the wide range of network events that

may occur [1].

Another issue in network management is the lack of network tools that would facilitate

network operators to implement complex tasks and sophisticated policies. Most of the

-2-

complex operations upon network devices, require from network operators the

knowledge of vendor-specific low level configuration commands. The expertise of the

network operators play an important role in implementing such configurations. Howev-

er, expertise is not enough when network operators have to perform frequent configura-

tion changes that affect the operational state of the network. The risk of misconfigura-

tion increases and operators chose to use ad hoc scripts or external tools.

Today’s networks consist of many interconnected, proprietary and vertically integrated

devices. Due to vertical integration, vendors strive to fulfill the demand of network op-

erators for deployment of new network protocols and functions. Innovation in network

management is then limited resulting in lack of techniques and tools that would allow

network operators to analyze and troubleshoot low-level configurations. Obviously,

there is a need to improve the visibility and the tools that facilitate complex network

policies.

1.2 Does SDN add more problems
in network management?

In ONF (Open Networking Foundation) SDN architecture the network topology offers

centralization which is supported by a relatively new communication standard, the

OpenFlow. OpenFlow with its potential and limitations is expect to play a determinant

role in the future of network management over SDN networks.

Software Defined networking is a new approach in computer networks that simplifies

network design and operation by decoupling network control and data planes [2], and

and is expected to reduce the cost of managing networks by providing programmable

network services [3]. In SDN, network devices (switches, routers and firewalls) are

simple packet forwarders while the intelligent part of control logic is implemented in

the controllers. Some obvious benefits of this architecture are the centralization of net-

work configuration and the ability to introduce new ideas in the network through soft-

ware programs [1]. But what could happen if control plane is misconfigured while oper-

ating? Could this cause unexpected outages in network services?

Although SDN architecture has been discussed in many studies that explore the poten-

tial benefits of SDN in computer networks, there is limited study of the ways that SDN

could affect positively or negatively the network management. The fact that the control

-3-

plane determines how the data plane handles and forwards data traffic might create a

need for a new management architecture for SDN networks. Prior to standardizing net-

work management techniques in SDN, certain questions need to be answered:

The study of management functions SDN within the context of existing management

model(s) can provide valuable information needed to answer certain questions such as:

 Can SDN protocols and proposed architecture support effectively network manage-

ment?

 Is there any need for improving or upgrading existing protocols?

 Can existing management model(s) be implemented in SDN?

Today’s network management practices needs more effective automation. The features

of the SDN architecture, SDN companion protocols and programming effort must be

able to support management automation. Also, the need for facilitating Network Func-

tions Virtualization (NFV) is a new challenge for modern network management. ISPs

need to reduce costs and enhance service delivery. Could this need be met by enabling

NFV with OpenFlow-enabled SDN? [5].

1.3 The importance of Network Management

SDN networks or traditional networks that operate in enterprises or in ISPs are complex

structures that require attention supported by certain management tasks. Faults in the

networks do occur and must be recognized, isolated, corrected and logged. Service lev-

els agreed by customers or users need to be ensured and monitored. Configuration

changes on network devices should not affect the network performance. Network secu-

rity and ability to track network resources need to be ensured as well.

There is close relation between management tasks and the following important factors:

 Cost saving

 Quality (reliability and availability)

 Revenue (ISPs)

-4-

As a consequence, network management is at the core of the business for ISPs. Enter-

prises can also benefit from effective network management. Savings in operational cost

along with fast deployment of new services that maintain high quality level, can provide

competitive advantage. The way that cost, quality and revenue factors are related to

network management will be presented in details in the next paragraphs.

The total cost of network equipment ownership (TCO) consists of the equipment cost

and the operational cost. Effective network management can reduce TCO by several

ways. Management tools enable network operators to detect, isolate and troubleshoot

problems or even predict errors (trend analysis). The prevention of network failures or

the fast restoration of abnormal behavior ensures minimum impact on offered services.

Reporting and analysis of performance enable network operators to achieve better re-

source allocation. Proper management tools can also reduce the need for higher quali-

fied personnel since it can substitute or minimize human intervention.

Another important aspect of network management concerns the quality of provided net-

work services. Some of the most important goals of network management is to ensure

availability and reliability of the network. Those two attributes are associated with the

network itself. End-to-end provisioning is supported by automated services that take

over all the required configuration steps. In this way, the risk for misconfiguration is

eliminated, providing an important contribution to higher network availability. Perfor-

mance analysis can also prevent reliability issues. For example, through bandwidth

trend analysis, the network management can predict the future expansion needs of net-

work infrastructure. Actual outages in network availability can also be minimized by

analyzing the root cause of failures. Since quality requirements are not met or general

quality issues exist in provided network services, affected customers may switch to an-

other network provider to do business with. The total network cost can also be affected

by quality issues and poor fault management as the aforementioned factors may result in

over-provisioning of network infrastructure.

Network management opens market opportunities to ISPs resulting in revenue increase.

Service provisioning systems attract new customers that need quick deployment of new

network services. In certain cases, network management enable ISPs to offer more

competitive services that provide management capabilities. For example SLA monitor

or accounting statistics offer to customers more valuable services. The cost savings due

-5-

to effective network management enables ISPs (Internet Service Providers) or business-

es to invest on new services that will offers them competitive advantage.

Summing up, it is clear that effective network management can provide tangible bene-

fits. It plays an important role in reducing cost, and also in providing efficiency and ef-

fectiveness in network services. Network providers and ISP could benefit even more,

since the network management is vital to increase revenue [4].

1.4 Thesis goal and outline

The goal of this dissertation is to investigate the effectiveness of network management

in SDN networks and also identify any existing problems. The study of SDN network

management will be carried out within the context of an existing network management

model.

The objective of this master thesis is to investigate existing studies, use cases and SDN

features in order to isolate and then evaluate network management functions. Prior to

evaluation process, the SDN management functions will be categorized according to

specific ISO model used for network management. Network management functions that

cannot be implemented effectively or cannot be supported by SDN architecture, will be

reported. The aim is to contribute to SDN’s evolution in respect with the ISO network

management model.

The structure of this dissertation is as follows:

 Chapter 2 contains background and related literature review. Important topics such as

Network Management, Software-Defined Networking, OpenFlow protocol, OF-

Config protocol and Network Functions Virtualization are discussed extensively.

 Chapter 3 contains studies, uses cases and important SDN protocol features that pro-

vide valuable information about network management functions. All sources follow a

coarse categorization according to the FCAPS (Fault, Configuration, Accounting,

Performance, Security) network management model. The investigation takes place in

a manner that helps in isolating and later evaluating network management functions.

 Chapter 4 includes the methodology used for the evaluation of network management

in Software Defined Networks. The problems that could affect the evaluation pro-

cesses are discussed as well. This chapter also contains tables that show SDN’s con-

-6-

tribution in management functions along with the evaluation of effectiveness for each

function. All evaluated functions are categorized according to the FCAPS model.

 Chapter 5 contains a summary of main points in SDN management, concluding

statements and recommendations.

-7-

2 Background

An approach of both Network Management and SDN backgrounds can help in the com-

prehension of SDN management functions that will be investigated in chapter 3. For

this purpose, Network Management, the ISO model for network management, SDN ar-

chitecture, SDN protocols and NVF (Network Functions Virtualization) will be dis-

cussed in this chapter.

2.1 Network Management

2.1.1 Definition of Network Management

Network management in general is the process of overseeing a network and supporting

it by preventive or corrective actions that ensure performance and availability at a rea-

sonable cost. Network management can also be defined as Operations, Administration,

Maintenance and Provisioning (OAMP) of a network.

 Operations deals with overseeing procedures that ensure the smooth operation of the

network. It also involves monitoring the network and addressing problems.

 Administration deals with for keeping records of network infrastructure.

 Maintenance is about repairing and upgrading network components, and also imple-

menting measures that optimal operation of network devices

 Provisioning is concerned with the assignment of resources needed to support re-

quired services and users.

An ISO framework for network management, the FCAPS, categorizes the working ob-

jectives of network management into five areas: fault, configuration, accounting, per-

formance and configuration. The FCAPS model will be discussed in section 2.1.3.

-8-

2.1.2 History of Network Management

In early 1980s, networking technology and the Internet Protocol which was an open

protocol, enabled computers to communicate with each other. At the very beginning,

computer networks looked like research artifacts and the “ping” tool was the ultimate

tool for troubleshooting in networks [5]. As local area networks and public internet

started growing up, the need for managing network equipment grew up. The need for

managing networks with multi-vendor compatibility led to the development of open

standards for network management. The specifications for SNMP (Simple Network

Management Protocol) and CMIP (Computer Management Information Protocol) were

issued in late 1980’s. Both management protocols were based on the agent-manager

model which is a dominant management architecture until today.

SNMP was an innovative management model which eclipsed CMIP. The management

information base (MIB) of SNMP was standardized. The development of standards en-

abled management systems to understand management information from different

equipment.

In early 1990s, a new approach to implement distributed systems, CORBA (Common

Object Request Broker Architecture) was introduced. Compared to SNMP, CORBA

objects could provide complex management information while SNMP could represent

structured information in association with network devices. In CORBA, management

product vendors had to define custom specifications. Security issues was a major draw-

back for SNMP.

During 1990’s Web-Based Enterprise Management (WBEM) was introduced. WBEM

uses CIM (Dommon information Model) and XML over HTTP and it is based on object

oriented programming that standardizes management information [6].

During the last years, protocols and management information bases have evolved and

useful practices from emerging technologies have been adopted. Management infor-

mation is stored in relational databases and management functions operate and manipu-

late the databases. Nowadays, many management consoles are browser-based while

modern management is generally policy-based and supported by automations. Attempts

to adopt new technologies has not been very successful till now. Research continuous

on certain emerging technologies such as virtualization.

-9-

2.1.3 ISO Functional model for network management (FCAPS)

The International Organization for Standardization (ISO) has defined a functional mod-

el for network management. According to this model, there are five functional areas of

network management: Performance, Configuration, Accounting, Performance and Secu-

rity (FCAPS) management.

Fault Management. Fault Management is concerned with detecting, isolating, correct-

ing, and logging fault events in the network. A fault event in the network can be a de-

vice hardware failure, a software failure, or a network service failure that affect network

normal operation and availability. Network monitoring is of great importance for fault

management as it the tool that allows network administrators to detect the fault whenev-

er it occurs and enable reaction. The network monitor includes alarm management and

some advanced processing functions for alarm handling. . These alarms are the notifica-

tions triggered by the network components at fault occurrences and sent to network

management systems. The detection of faults may require fault diagnosis, root cause

analysis and troubleshooting. Fault management functionality also includes trouble

ticketing and proactive fault management. Fault occurrences trigger network compo-

nents to send notifications to network management systems. Certain open or proprietary

protocols are used to collect information about the network. In traditional networks, the

most widely used protocol is SNMP.

Configuration Management. Configuration management is concerned with the configu-

ration information of network equipment, awareness of devices that belong to the man-

aged network and tracking of configuration changes. Configuration information is gath-

ered from all managed network elements and it is stored. In networks, configuration

changes made to network elements, software updates, or changes in hardware, are

sometimes the cause for network issues. In these cases, configuration management

should be able to roll back the network conditions in the previous known and operation-

al state.

Accounting Management. Accounting management deals with gathering information

about the usage of network resources or network services and correlating of this stored

data with users or devices. The gathered information is used for accounting purposes

such as billing. Accounting management is supported by the functions that help organi-

zations or network providers to get credits for the network services they provide. The

gathered information (usage data) is usually based on volume, duration and offered

-10-

quality. For example, accounting measurements may include: traffic (volume), minutes

of phone calls (duration), use status of QoS (quality). If there is no charging need in the

organization, network managers may need to track usage of network resources by user

or by class, in order to ensure smooth operation of the network. Accounting systems can

be supported by network standards and protocols such as RADIUS, TACACS+ and

SNMP in order to fulfill authentication, authorization, accounting and capacity planning

requirements [6].

Performance Management. Performance management aims to ensure that network per-

formance will be maintained at acceptable levels. It deals with the performance of dif-

ferent network components. It quantifies, measures, reports, analyzes and controls net-

work elements such as routers, switches, links, hosts etc. Important measurements (sta-

tistics) used by performance management are utilization, throughput, delay, and error

ratio. The SNMP plays a key role in the performance management of traditional net-

works. An SNMP management system provides active monitoring of the network and it

also sends alerts to administrator in case of out-of-band performance parameters. Trends

in statistics and active monitoring, enable network administrators to prevent future reli-

ability or availability issues.

Security Management. Security Management is concerned with securing the network

resources and services from threats, and also with securing the management system it-

self. The security threats usually target end users (PCs) and IT systems (web servers,

databases, etc.). A network must be secure enough to deter such actions that could have

negative impact in the areas of confidentiality, integrity and availability. For example,

viruses and worms could corrupt or destroy systems or files, denial-of-service attacks

could overload portions of a system or network, or hackers could obtain control of sys-

tems connected to the network. Securing the network and the management system from

threats requires a comprehensive approach of security management. Network manage-

ments can use certain techniques that reduce the risk of minimizing the effects of at-

tacks that could be implemented via the network infrastructure. Such techniques may

depend on [4]:

 intrusion detection systems

 policies that limit unexpected usage of resources

 blocking of potentially dangerous traffic destinations

 “honeypot” computers.

-11-

Security functions have to underpin all other functional areas (Fault, Configuration, Ac-

counting and Performance) to allow security to be effective [9]. The interactions of the

FCAPS functions can be seen in figure 1.

Figure 1: Interactions of the FCAPS functions [9]

2.2 Software Defined Networking

Software-Defined Networking (SDN) is a new approach in networking and it is based

on the concept of decoupling the part of the network that makes decisions about data

forwarding (control plane) from the underlying systems that forward the data to their

destination (data plane).

The migration of control plane into computing devices (SDN controllers) allows not

only the abstraction of the underlying infrastructure but also and its use for applications

and network services. The Software Defined Network can then be treated as a logical or

virtual entity [2].

The SDN can also be considered as set of techniques that facilitate design, operations

and delivery of network services in a dynamic, deterministic and scalable manner [10].

-12-

2.2.1 History of SDN

The first approach of separating the forwarding and the control planes was followed by

ATM switches in late 1990s. A set of open and programmable ATM interfaces were

proposed for ATM switches aiming to separate the control software from the hardware.

This work was followed by the creation of GSMP (General Switch Management Proto-

col). GSMP was allowing a central controller to establish connections with ATM

switches. The fact that MPLS (Multi-Protocol Label Switching) in late 1990s, was es-

tablishing semi-static paths for forwarding flows in traditional routers, can be consid-

ered as a small step towards SDN approach.

Network access control methods such as RADIUS and COPS can also be viewed as

SDN precursors because they allowed networking attribute changes. Both methods were

based on the identity of the computer resource that required connectivity. SNMP or-

chestration that was used to automatically configure network equipment is also consid-

ered as a precursor of SDN (late 2000s). The ForCES work in 2003, was one of the pro-

posals that recommended the decoupling of control and forwarding planes. Another im-

portant step towards SDN approach was the network tools that were used in virtualized

environments to perform network reconfiguration.

The Ethane project (2007) and its predecessor SANE utilized a centralized controller in

networks where the control plane was decoupled from the data plane. The operational

deployment of Ethane project in Stanford University had just triggered the creation of

the original OpenFlow SDN API [47].

In 2008, OpenFlow an open standard that supports SDN approach was born. OpenFlow

defined how the data plane and the control plane will be decoupled, and the communi-

cation protocol between these two planes. The SDN term appeared in a research com-

munity and since 2011 SDN begun to affect networking industry.

2.2.2 SDN architecture

During the last years, research communities and industry have both proposed and de-

veloped a variety of architectural approaches. The industry-led development is mainly

based on proprietary protocols. Research communities support and develop an open-

source approach which is documented by the Open Network Foundation (ONF). This

dissertation will focus on the Open-SDN approach which is based on the OpenFlow

standardization. The reasons for focusing on ONF Open-SDN is the fact that research

-13-

can be facilitated by a variety of open source software and tools while it is increasingly

accepted and implemented by network equipment vendors. For example, in 2013,

Google announced the deployment of a hybrid OpenFlow based SDN network. Also,

OpenFlow is increasingly supported by most SDN-capable network devices manufac-

tured by HP, Cisco, Alcatel, Juniper and NEC.

The separation of control and data planes within a network is the main characteristic of

SDN. In traditional network architecture, both planes are incorporated within the net-

work elements (switches, routers) while in SDN architecture the control plane is ab-

stracted and becomes centralized (figure 2).

Figure 2: Control plane and Data plane in SDN

The data plane is responsible for forwarding incoming packets. The forwarding func-

tionality is based on flow tables that define actions for the incoming packets considering

certain packet characteristics such as source IP address and MAC address. A packet that

arrives in the SDN switch may be dropped, forwarded or modified. For example, pack-

ets with source IP that doesn’t match the address table within an SDN switch will be

dropped. A packet that matches the source ip address and the DSCP value will be for-

warded to a certain hardware port with queue priority as indicated by the lookup in the

tables. In the same way, if the packet is multicast, it will be forwarded to more than one

port. Packets that need further processing, are forwarded to the control plane. Network

devices that belong to the data (forwarding) plane are the SDN enabled switches, rout-

ers and firewalls.

-14-

The control plane dictates the data plane behavior by programming or configuring it.

Logic, algorithms and protocols needed to configure the data plane are all part of the

control plane. The control plane has the knowledge of the network within its domain. It

builds the flow tables for the data plane devices, runs the routing and switching proto-

cols, and ensures the synchronization of the flow tables of the data plane devices. In

SDN, the control is completely separated from the data plane devices and it resides in

SDN controllers.

The communication between control plane and data plane is defined by the OpenFlow

standard (Figure 3) which, in the SDN architecture, is considered either as a southbound

interface (SBI) or as an application programming interface (API). OpenFlow allows

SDN controllers to access and also manipulate the data plane of the network devices.

With OpenFlow, the controller is able to add, remove or change the internal flow tables

of SDN data plane devices and consequently maintain or change network behavior ac-

cording to controller’s instructions.

Figure 3: SDN architecture [2]

-15-

As can be seen in figure 3, the basic components of SDN architecture are the data plane

(infrastructure layer), the control plane (control layer) and the application plane (appli-

cation layer). The application plane includes applications that run above the control

plane (SDN controllers). The applications are programs that communicate all the de-

sired network requirements and behavior via the controller dependent API (Northbound

Interface). Each SDN application contains the logic that has to be implemented to the

network and the NBI driver(s).

2.3 OpenFlow

The OpenFlow standard is a communications protocol that defines the content and the

format of messages exchanged between OpenFlow controllers and the OpenFlow

switches. In open SDN networks, OpenFlow is the southbound interface that defines

both the behavior of the data plane and the communication between data plane and con-

trol plane. The adoption of OpenFlow in SDN networks allows an SDN network to op-

erate with switches manufactured from different vendors.

2.3.1 History of OpenFlow

The first experimental OpenFlow versions were released in 2008. OpenFlow version 1.0

(Dec 2009) was the first OpenFlow release with official vendor support. The specifica-

tion evolved passing through releases 1.1 (Feb 2011), 1.2 (Dec 2012), 1.3 (June 2012),

1.4 (Oct 2013) up to the current one (1.5 Dec 2014). Each prior version has addressed

problems with previous releases and also provided incremental functionality [11]. In

this dissertation, OpenFlow specifications study will be focused on the latest OpenFlow

release because earlier releases are missing features that can play a significant role in

the management of SDN networks.

2.3.2 OpenFlow basic architecture

A basic OpenFlow system is consisted from one or more OpenFlow Switches that

communicate with SDN controller. The OpenFlow messages specify the behavior of the

switch which responses to the commands sent by the controller. A simplified architec-

ture of the OpenFlow approach can be seen in Figure 4.

-16-

Figure 4: Simplified OpenFlow architecture

The basic operations of OpenFlow can be described as follows:

 The controller maintains the desired flow table entries in the switch.

 The switch matches incoming packets to flows and then treats them according to

flow table entries.

 Non-matched packets are sent to the controller and the controller sends back to

the switch new entries that allow switch to handle the packet

2.3.3 Open Flow Switch

The main components of the OpenFlow switch (Figure 5) are:

 The OpenFlow communication channel

 The flow tables

 The group table.

OpenFlow messages are exchanged between the controller and the switch through the

OpenFlow Channel. The OpenFlow protocol allows the controller to modify proactively

or reactively the content of the flow tables (add, update, delete). The records within the

Flow Tables are called Flow Entries and they consist of matching fields, counters and

sets of instructions for matching packets.

-17-

Figure 5: The main components of the OpenFlow Switch [12]

Each time a packet arrives to the switch, the matching procedure is prioritized according

to the order of the flow tables. Within flow tables, the matching procedure starts by

checking the first flow entry and then the next ones. When a packet can be matched

with a flow entry, the instruction defined in the specific entry is executed. The outcome

for non-matching packets may vary depending on the table-miss entry. For example, the

packet will be dropped, it will follow the matching procedure in the next flow table, or

it will be forwarded to the controller. The instructions are associated with flow entries

and define either the modification of the pipeline processing or the actions that should

be taken each time a packet is matched with a flow entry. Such actions could be packet

modification, packet forwarding or further processing by the group table. The Group

Table entries are associated with certain number of actions (Action Buckets) such as

flooding, link aggregation, multipath and fast-reroute. The main components of entries

in Group Tables are: The Group Identifier, The Group Type, The Counters and the Ac-

tion Buckets.

Some additional important terms frequently used in OpenFlow 1.5 are the following:

 Control Channel: The components of an OpenFlow switch used for communication

with controllers.

 Counter: A major element of statistics. Their typical role is the counting of bytes and

packets passing through OpenFlow elements.

 Data path: The Aggregation of all components involved in traffic manipulation.

 Header: The information contained to a packet that is used for matching purposes.

-18-

 Metadata: Maskable register for transferring information between tables

 Meter: A switch element used for measuring and controlling the rate of packets.

 Pipeline: The aggregation of flow tables within an OpenFlow switch, used in packet

matching, forwarding and modification processes.

 Port: Ingress or egress of OpenFlow pipeline. Ports can be physical, logical or re-

served ones.

 Queue: Being used for scheduling packet forwarding and provide Quality of Service.

The packet flow through the OpenFlow pipeline can be seen in figure 6. The flow tables

are sequentially numbered and the pipeline processing is implemented in two stages.

The first stage is the ingress processing and starts at the first flow table. The outcome of

this first matching attempt will determine whether the packet will be further processed

with the next flow tables or will be forwarded to an egress port. The second stage which

is optional, is the egress processing. Since egress flow table(s) exist, the packet will be

processed by the outgoing port.

Figure 6: Pipeline processing [12]

-19-

The main components (Table 1) of flow entries contained in flow tables are:

 Match fields: Contain incoming port and packet headers. Optionally, metadata may

be contained as well.

 Priority: Flow entry precedence.

 Counters: Change according to matching status.

 Instructions: Affect action sets or pipeline process.

 Timeouts: Time thresholds that specify the duration of a switch flow.

 Cookie: Data value used by controller to alter flow entries being affects by statistics

or flow modifications.

 Flags: Used for changing the way of managing flow entries

As OpenFlow evolves, the ability of an OpenFlow switch to match the incoming pack-

ets against various fields is improving. The latest OpenFlow Switch Specification (ver-

sion 1.5.0), refers to 40 header fields that can be matched with flow entries. For exam-

ple certain header fields include:

 Ingress – Egress switch ports

 Source and destination Ethernet addresses

 IP protocol type

 Source and destinations IP addresses

 VLAN parameters

 DSCP / ECN / ToS values

 MPLS information

-20-

Matching fields have a varying length of up to 128 bits. As can be seen in Appendix –

Table 1, almost all matching fields except for ingress/egress port headers, are related to

Layer 2, Layer 2.5 (MPLS), Layer 3 and Layer 4 of network protocol stack. All Open-

Flow switches must support at least the match fields being noted as “required” in AP-

PENDIX – Table 1. The value “ANY” can be used as a field type that matches all the

header fields.

2.3.4 SDN OpenFlow Controller

The SDN controller plays the role of the operating system (OS) for the network and im-

plements the network control plane. The controller implements the network policy, con-

trols the SDN devices that belong to the network and provides the northbound API for

use by applications [11]. The southbound API is OpenFLow and it allows the interfac-

ing between the controller and the OpenFlow switches.

The main components of the SDN controller can be seen in Figure 7. The modules sec-

tion shows the main functions which are discovery of devices and topology, device

management, statistics and flow management.

Figure 7: OpenFlow Controller components [11]

Although the southbound API has been standardized, the northbound API varies de-

pending on the controller used. Such northbound APIs are: Python (Ryu Controller,

POX Controller), Java (Floodlight Controller), C++ (NOX Controller) and REST

(Floodlight Controller). Depending on the controller type, the northbound API can be a

low level interface that allows developers to gain access to network devices, or it can be

a high level API that provides developers with an abstraction of the network.

-21-

2.3.5 Communication between OpenFlow devices

There are three types messages exchanged between OpenFlow Switches and OpenFlow

Controllers

 Symmetric messages: These messages are “hello” and echo messages between switch

and controller, used for presence indication and monitoring communication latency.

 Asynchronous messages: These messages are sent by the switch in case a packet

cannot be matched to a flow table entry or if the switch has to inform the controller

of a change related to port, error or flow removal.

 Controller-to-switch messages: These messages are sent by the controller whenever

the controller needs specific information from the switch or the switch has to modify

flow tables.

2.4 OF-Config

The OpenFlow Management and Configuration Protocol (OF-Config) is a companion

protocol to OpenFlow that allows OpenFlow switches to be configured remotely. Com-

pared to OpenFlow’s time-scale operations (e.g. flow modification), OF-Config per-

forms operations such as disabling a switch port on a slower time-scale.

Since OF-Config’s implementation is directly related with configuration management, it

will be discussed in 3.2 (Configuration Management in SDN networks).

2.5 SDN and NFV

The Network Functions Virtualization (NFV) is the concept of implementing the func-

tionality of network devices with software. This means that generalized components of

a network such as routers, firewalls, switches or intrusion detection systems (IDS) can

be implemented in software that runs in multi-purpose server appliances. The servers

used for NFV purposes include multicore processors and network controllers. They

were initially deployed to support virtual machines and virtual switches in data centers.

Decoupling the network functions from proprietary dedicated hardware can result in

reducing capital and operational expenses (CAPex & OPex) in several ways:

-22-

 No need to purchase dedicated hardware. Standard x86 servers can be used for NFV

implementation.

 No need for network administrators to over-provision datacenters. Virtual machines

can be run on different physical servers according to required needs (e.g. bandwidth

expansion).

The NFV was first presented at the SDN and OpenFLOW Congress in 2012. NFV and

SDN can be each one complimentary to the other one or sometimes they may be over-

lapping. NFV can be partially be implemented by SDN and other non-SDN technolo-

gies [11].

-23-

3 SDN management and FCAPS

The study of management functions in SDN networks through the perspective of the

FCAPS framework can provide strong indication whether SDN networks can be man-

aged effectively. Since, OpenFlow is a standard that defines the features and the behav-

ior of the network equipment used by the data plane, its study can reveal strengths and

weaknesses related to network management. The study of OpenFlow based SDN within

the context of the FCAPS model can provide valuable information needed to answer

certain questions such as:

 Can OpenFlow support or leverage network management in SDN networks?

 Does SDN network management need OpenFlow accompanying protocols?

 Can FCAPS information be queried by the network management software in SDN

networks?

Existing literature, SDN use cases and OpenFlow Switch specifications can be studied

through the FCAPS perspective aiming to collect all this information that will help in

answering the aforementioned questions.

3.1 Fault management in SDN

The fault management in SDN network must be able to detect, isolate, correct and log

fault events in the network. Typically, a link failure can result in loss of certain hosts,

loss of network services or network separation. A peculiarity in SDN networks is the

fact that a link failure can also affect the communication between the SDN controller

and the SDN switches. The study of scenarios where the failed link is not just affecting

network data flows but also the OpenFlow control channel, can help in evaluating a crit-

ical aspect of fault management.

For in-band OpenFlow networks, one physical connection is used for both control chan-

nels. Link connections may carry data traffic and communication messages being ex-

-24-

changed between controllers and switches (Figure 8a). In the case of the out-of-band

OpenFlow networks the control channel and the data traffic channel operate through

separate physical paths (Figure 8b).

Figure 8a: In-band OpenFlow control. Figure 8b: Out-of-band OpenFlow control.

For both topologies, certain protection and restoration techniques have been proposed to

address link-fail events. The network protections techniques deal with reserving net-

works resources (e.g. paths) prior to link-failures. Restoration techniques have to do

with the selection of certain replacement resources that can be allocated after a failure

occurs. Such protection and restoration approaches will be discussed for both OpenFlow

control topologies.

The failure recovery problem for in-band OpenFlow topology is addressed by the work

of [13] which studies the recovery of failed links through a carrier-grade perspective. In

the network of figure 8a it is assumed that the controller communicates with switch-2

through switch-1. A link failure between switch-1 and switch-2 (Figure 9a) will discon-

nect switch 1 from the controller. According to the proposed restoration technique, the

controller can detect the loss of communication with switch 2 either through port status

messages on neighboring switches (switch-1 and switch-3) or through Echo request

timeout. Then, the network controller can update the flow tables of switches 1, 4 and 3,

to reroute the control traffic to switch-2 (Figure 9a). However, the controller still cannot

communicate with switch 2 because the control channel is associated with the port on

the failed link. The authors of [13] propose that switch-2 should be configured to flood

-25-

the control traffic in order to achieve communication with the controller after the link

failure through switches 3-4-1.

Concerning the proposed protection technique, an OpenFlow feature, the Group Table

can be used to enable the switches themselves to react in the case of a link failure. By

choosing the fast failover Group Type in the Group Table (2.3.3), the switch is enabled

to change forwarding [12] without involving the controller. Each “fast failover” Group

entry contains at least two action buckets in defined order. The first action describes the

behavior (packet treatment) under normal operation while the second action defines the

behavior when a state–change occurs. For example, when the status of the monitored

port changes from “up” to “down”, the second action bucket is enabled. In the case of

network shown in Figure 9a, the switch-2 will detect the “down” status of the port con-

nected to the failed link and it will forward the traffic through switch-3 and the prede-

fined ports of involved switches. Once the communication between the controller and

the switch is restored through switches 3-4-2, the controller will update the flow tables

in switch-2 and data traffic communication will be restored as well. The protection of

data traffic can be achieved by the use of the Group Table feature that already has been

discussed in control channel protection technique.

 Figure 9a: In-band link failure Figure 9b: Out-of-band data link failure

In the case of out-of-band control, protection and restoration techniques for OpenFlow

networks are discussed in [14] and [15]. Since the controller remains connected with the

switches involved in link failure events, the data recovery procedure is simplified if

compared to the case of link failure in in-band topology. As soon as the link between

-26-

switch-1 and switch-2 fails (Figure 9b), the affected OpenFlow switch notifies the con-

troller about the link status change and the controller reacts immediately aiming to

achieve fast flow restoration. Flow entries being related to failed link are deleted from

switch-1 and switch-2 and new flow entries are installed to switches along the restora-

tion path. In any case the controller have to be aware of the network topology or the

spanning tree protocol must be used in the network.

Figure 10: Out-of-band control channel failure. The new path is in-bound.

According to the out-of-band data protection scheme, there is no need for the failure-

affected switch to notify the controller in order to establish a restoration path. The alter-

native data path is precomputed and no further flow entry deletions, modifications or

additions are required after the failure event. Fast recovery requires an end-to-end con-

tinuous monitor of the path. The protection mechanism can depend on the BFD (Bidi-

rectional Forwarding Detection) network protocol which provides fault detection on

lower levels of network stack layers.

Concerning the out-of-band control plane resiliency there are two proposed solutions

[15]. The rationale behind the first solution is the same with the one discussed in the in-

bound recovery techniques. The control channel between the controller and the switch is

re-established through a separate data path between the controller and the switch-2 im-

plementing an in-bound topology (Figure 10). The second proposed solution is based on

the use of two controllers. Once the control channel between a switch and the first con-

troller fails, the pre-configured control channel between the second controller and the

switch is activated.

-27-

A critical aspect of failure recovery is the time needed for a network to restore the oper-

ational state. In carrier networks, 50ms is considered a tolerable value of time needed

for network recovery [16]. Experiments with OpenFlow recovery mechanisms [13] [14]

have shown that only the protection schemes could allow network recovery within an

interval of 50ms in carrier-grade networks. Recovery with restoration techniques can

meet the target of less than 50ms only in smaller networks [15].

OpenFlow and SDN are able to provide flexibility for programming networks without

being constrained by distributed network protocols. However, reactive response to net-

work events must always depend on the OpenFlow controller. Time delays needed for

controller notification and updating of forwarding rules, along with signaling overheads,

make the implementation of network resiliency neither efficient, nor easy [17]. The

OpenFlow switch specification 1.4 introduced the fast-failover mechanism that allow

switches to react locally using more than one action bucket within a flow entry. Howev-

er, in complex network topologies the protective scheme requires complicated scenarios

with path reservations. This approach then becomes inefficient from the aspect of re-

source allocation.

The OpenFlow native mechanism for detecting failures is a LOS (loss of signal) indica-

tion that operates at the data plane. This mechanism doesn’t provide any information to

switches located along the affected data path. Since the path protection needs an end-to-

end mechanism to detect path failures, the BFD protocol can be used in the whole

OpenFlow network to provide fast failure detection [15]. Another study [19] shows the

benefits of implementing the BFD protocol in SDN networks. A proposed failover

scheme with precomputed link-paths by the controllers and BFD sessions in every link

can reduce significantly the recovery time while it is not affected by network size and

path length.

An alternative way to implement fast failure detection with OpenFlow networks is the

implementation of Link Layer Discovery Protocol (LLDP). The LLDP allows an Open-

Flow SDN controller to detect failed nodes or link failures and trigger path restoration

actions. A study [18] have shown that this approach has scalability limitations caused

by the volume of network’s LLDP messages that reach to the controller and must be

processed requiring CPU resources. The proposal of [18] for overcoming this issue con-

tradicts the SDN concept. The authors propose a slightly relaxed separation of control

plane and data plane operations. This OpenFlow proposed extension, places general

-28-

message generators and functions on switches, and provides failure recovery within

50ms in a scalable way.

The need for logging flow-related fault events in SDN networks is addressed by the ap-

plication plane. Northbound APIs provide syslog handlers to allow developers pro-

cessing fault messages sent by the OpenFlow controllers and develop applications that

provide:

 Monitoring of topology-based faults through failed link and device status.

 List of affected hosts and the corresponding flow entries.

 Analysis of flow paths for root-cause process and determination of problems.

Concerning the monitoring of non-flow data, the SDN OpenFlow is not able to deal

with equipment-centric data. For example, fault management or even performance man-

agement must be aware of the operational state of submodules contained in data plane

devices (power supplies, resilient CPU unit, fans). Such data, related to the performance

of hardware that doesn’t have an immediate impact on data plane performance, doesn’t

belong either to the data plane or the control plane. Till today, there are not any studies

that attempt to address this issue of monitoring and managing device-centric data. The

latest OpenFlow switch specification [12] doesn’t deal with non-flow data. For the mo-

ment, only existing mechanisms used for monitoring device health-status such as SNMP

can be used. SNMP has been successfully used in network monitoring and could fit to

the SDN approach until a new OpenFlow accompanying protocol is implemented.

3.2 Configuration Management in SDN

The traditional network architecture is based on distributed and autonomous operation

of network elements. Each network device contains an operating system and runs its

own processes while implementing various network protocols. Processes related to net-

work functions (e.g. routing) run within the device and an internal API is used to allow

the operating system to program the forwarding hardware. The discovery or the pro-

gramming of traditional network elements require the management of a distributed con-

trol plane (Figure 11a). According to the SDN architecture (Figure 11b), a centralized

Network Operating System is responsible for certain network needs and functions that

-29-

support configuration management. The responsibilities of the Network Operating Sys-

tem have to do with [20]:

 Maintaining network topology

 Being aware of network state

 Handling changes in network topology and network state

 Transferring network changes to network applications and hardware

 Figure 11a: Distributed Control Plane Figure 11b: Centralized Control Plane

The responsibilities mentioned above can be supported by:

 Techniques that have been used in section 3.1.1 to provide the control plane with in-

formation about link failures and link failure-affected hosts.

 Network applications which are software packages that implement particular func-

tionalities of the network. They utilize the northbound API interface provided by the

SDN controllers and they can be responsible for implementing network updates.

Considering the FCAPS model with the configuration management tasks that have been

discussed in 2.1.3, it becomes clear that the centralized approach of the control plane

with the Network Operating System plays a key role in configuration management.

However, OpenFlow which is used as the southbound API is not able to perform certain

important functions required by configuration management. For example, the assign-

ment of the IP address to an OpenFlow switch cannot be done by OpenFlow. The need

for various network management functionalities led to the proposal of a companion pro-

tocol to OpenFlow, the OpenFlow Configuration and Management Protocol which is

-30-

also referred as OF-Config. The service used to communicate OF-Config messages to

an OpenFlow Switch is called Configuration Point. The OpenFlow configuration port

exchanges OF-Config messages with the operational context that includes an OpenFlow

Switch (Figure 12) [21]. The OF-Config protocol provides various functionalities to

configuration management [21]:

 IP address configuration of the controller

 IP address configuration of the OpenFlow switch

 Configuration of transport layer used in communication (TCP/TLS)

 Configuration of queues (rates) and ports

 Enable or disable ports

 Adjust speed on ports

Figure 12: OpenFlow and OF-Config

The OF-Config requires the implementation of NETCONF (RFC4741), a protocol that

implements remote procedure calls via an SSL channel. The NETCONF protocol used

by OF-Config is extended with YANG models (RFC6020).The work of [20] has fo-

cused on network configuration by analyzing the ONF SDN model and its implementa-

-31-

tion on virtualized network environment of a network operator. This use case takes in to

account the fact that various virtual network operators (VNOs) share the same physical

infrastructure used in carrier-grade networks while the provided services can be from a

point-to-point service up to a virtualized SDN environment (figure 13). The virtual con-

nections are implemented by tunnels and can be monitored with methods already dis-

cussed in 3.1.1 (e.g. BFD). Each VNO controls the network offered to its customers via

its own Network Operating System (NOS).

Figure 13: Carrier-grade SDN virtualization [20]

According to the aforementioned use case [20], the configuration management physical

and virtual network infrastructure involves device configuration, network bootstrap-

ping, physical network configuration and virtual network setup.

The device configuration procedure, for newly connected switches, can be initiated with

OF-Config and DHCP (Dynamic Host Configuration Protocol) protocols. The basic

connection identifiers required by the OpenFlow Configuration Point are the IP ad-

dresses of the switch and the IP address of the Configuration point. The IP assignment

can be done automatically via DHCP. If any authentication certificates are required, cer-

tain identifiers can be provided as well. The credentials needed for a secure connection

to the OpenFlow Controller and the OpenFlow Configuration Point can be preconfig-

ured on a network device. The network’s bootstrapping process can also be supported

-32-

by the Authentication and Authorization (AA) service which enables an initial trust. The

trust allows the OpenFlow switches to obtain certificates such as SSH keys, for securing

the configuration channel. Once the encryption is ensured, the OpenFlow switch estab-

lishes an OF-Config connection with Configuration Point.

The physical network configuration initially involves the discovery of physical re-

sources and capabilities. The OF-Configuration Point discovers physical resources (e.g.

switch memory, CPU, ports) and capabilities (e.g. OpenFlow actions, supported tools)

via the established OF-Config session. Prior to connecting a controller with a switch,

the OF Configuration Point needs to represent as instance a logical switch with access

to all of its physical ports. The logical switch is configured with minimum CPU and

bandwidth allocation, and high traffic priority to ensure control under heavy traffic con-

ditions. Then, the OpenFlow Configuration Point provides credentials and identifiers to

a central controller, and finally establishes an OpenFlow session. Once the OpenFlow

session is established, the central OpenFlow Controller which is connected to the logical

switch uses discovery mechanisms such as LLDP in order to map the physical topology

of the OF switches. The information obtained by discovery procedure is also sent to the

central OF Configuration Point. Alternatively, OpenFlow Switches can contribute to the

discovery of the topology by allowing switches to use discovery mechanisms (LLDP,

Spanning Tree), switch-local topologies can be retrieved in a distributed manner. The

OF Configuration Point then retrieves the distributed topology information in order to

create the physical topology of the network.

The setup of the virtual network and specifically the virtual network topology is deter-

mined by the discovered topology, the discovered switch capabilities, and customer’s

requirements that affect network topology. Involving OpenFlow to configure flow ta-

bles, the central OpenFlow Configuration Point creates tunnels (virtual links) between

the endpoints of the virtual network. Parts of physical resources and assigned capabili-

ties, define logical switches operating within the virtual network.

While SDN has the ability to introduce programmatically new functionalities into net-

works, the configuration consistency depends on applications that enable controllers to

implement the network. Since any software bugs increase the risk of triggering network

outages or internet outages in carrier-grade networks, the centralized programming ap-

proach should minimize the likelihood of any bugs. OpenFlow applications must con-

sider the fact that the system is asynchronous, with simultaneous events at multiple

-33-

switches and delays that may affect control channel communication. An example can be

seen in figure 14 where a packet is not reaching its destination due to delayed installa-

tion of flow entry in the second switch.

Figure 14: Delay in installation of flow entry

According to the work of [22] the wide system state, the variety of data packets and the

many event driven actions contribute to scalability issue in OpenFlow networks. A pro-

posed tool (NICE) can effectively automate the testing of OpenFlow applications writ-

ten for NOX controllers by using symbolic execution with event handlers [22].

Instead of using low level interfaces to implement network changes, the study of [23]

presents a different approach of higher level abstract operation that allows SDN pro-

grammers to apply the network configuration in one step. The study considers two ab-

stractions:

 Per-packet consistency: This is the main abstraction assuming that each packet being

forwarded within the network is treated according to one consistent network configu-

ration. The packet may be processed according to the old configuration or the new

but never as a mixture of the two.

 Per-flow consistency: This is a generalization of the per-packet consistency that as-

sume packets of the same flow are forwarded according to the rules of the same

configuration

-34-

The study of [23] led to the built of a system (Kinetic) that is implemented to the top of

NOX controllers. A two-phase mechanism applies configuration updates using version-

ing in order to isolate the traffic and the old configuration from the new configuration.

The proposed technique uses configuration version stamping in incoming packets by

storing configuration version in VLAN tags while every configuration is modified so

that only packets with specific version are processed. New configurations are enabled

by installing rules at network’s perimeter only after intermediary switches have been

populated with newer version configurations. Provided libraries are mitigating this

heavyweight programming approach.

3.3 Accounting Management in SDN

Accounting management for SDN networks can be related to the questions of charging

customers in carrier-grade networks or just tracking the usage of network resources in

corporate networks. Some examples of accounting management are:

 Once a customer exceeds a predefined bandwidth threshold of no-charge, the Net-

work Operator charges its customers according to the consumed bandwidth.

 A network administrator maintains an archive with user associated bandwidth con-

sumption.

Thus, SDN network should be able to identify users and determine the resources con-

sumed by each user. This information should be sent via the NBI to the application lay-

er for further processing. Generated reports of throughput or transactions logs can then

be used by billing department or network administrators.

According to the OpenFlow switch specification 1.5.0, the flow table entries can match

packets according to ingress port, source IP, egress port, destination IP etc. [12] [Ap-

pendix – Table A1]. The “match field” is the component of the flow entry used for dis-

tinguishing traffic according to the source IP which can later be associated with particu-

lar user.

Counters such as Bytes Received that could be used for accounting management pur-

poses, are marked as optional even in latest OpenFlow Switch Specification (Table 2).

-35-

OpenFlow enabled switch vendors are not required to support the particular counters

that would allow the gathering of accounting statistics.

Flow entry statistics can be requested by the OpenFlow controller taking advantage of

the “Counters” component (Table 1). Counters being maintained separately for each

flow are considered as hardware counters and have limited ranges. In order to resolve

the limited-range issue, OpenFlow-compatible counters (software defined counters) can

be maintained by polling the hardware counters. Depending on accounting needs, a va-

riety of counters can be used to log user statistics such as Received Bytes, Transmitted

Bytes, Duration (Seconds) etc.

-36-

As already seen, OpenFlow controllers can be aware of network statistics supported by

the data plane equipment. Accounting application should then be able to correlate statis-

tics (generated by specific source IP addresses or ingress switch ports) with network

users. The management of network users except for security management, is also close-

ly related to accounting management as it allows the accounting applications to share a

user database, aiming to assign network usage statistics to particular users. Therefore,

users of networks resources must be recognized and associated with particular data

flows in SDN networks. Since it is impossible in most cases to map ingress switch ports

to particular users, user authentication could be used prior to correlating users’ id, ip

addresses and flow entries.

Accounting and billing for usage can also be supported by sFlow-RT engines [41], [42]

that uses OpenFlow and sFlow protocols to associate real time statistics with users.

The work of [24] shows how Single Sign-On authentication technique can be imple-

mented in OpenFlow SDN networks. The rationale behind this proposal is the creation

of flow entries in OpenFlow switches only after a user is authenticated. A simplified

OpenFlow SDN network implementing user authentication can be seen in Figure 15.

Assuming that a host (Host 1) has just been attached to the OpenFlow switch obtaining

an IP address by DHCP server, then it will attempt to establish communication with a

web server (WebServer 1). The Sign-on operation can be seen in the following steps:

 Host 1 attempts to send an HTTP request to Webserver 1.

 The OpenFlow Switch checks its flow table for a matching flow entry with source

Host’s 1 IP. As such entry doesn’t exist, the packet is send to the controller for fur-

ther processing.

 A packet control module installed in OpenFlow controller, checks permission status

for source IP. Since permission hasn’t been granted yet, the destination of HTTP

packet request is modified in order to allow redirection of the packet to WebServer

Auth.

 Through the Webserver Auth page, the user of client 1 is forced to authenticate.

 Upon successful authentication, the database is updated with a new entry containing:

user ID, permission status, client IP and client MAC address. A new flow entry is al-

so installed in the OpenFlow switch allowing Host’s IP to reach WebServer 1.

-37-

Figure 15: Host authentication in OpenFlow SDN network

3.4 Performance Management in SDN

Performance management can be based either on passive or active measurement meth-

ods [25]. The passive methods measure certain characteristics of existing data traffic

while active methods inject additional network traffic to be used exclusively for meas-

uring purposes. Monitoring network traffic and collecting network statistics can be sup-

ported by both methods. However, each method has its pros and cons. The passive

method has the advantage of not generating additional overhead in network but they re-

lies on pre-installed network monitor points. The passive measurement method cannot

be implemented in all networks and would increase deployment cost. The active meas-

urement method increases network overhead but it can support performance manage-

ment by measurements without increasing infrastructure cost. For example, ICMP

packets can be used for round-trip delay measurements. The problem with the active

method is the fact that network monitor traffic may affect the performance of the

“measured” network. Measurements can be performed on both network and application

OSI layers depending on the requirements of performance management.

As already seen, through OpenFlow based data plane management, the SDN controller

is able to request counter statistics for particular flows and also retransmit captured

packets. According to OpenFlow switch specification, the switch sends an unmatched

-38-

packet (PacketIn message) to the controller which installs a new path (FlowMod mes-

sage). The controller orders the switch to send (PacketOut message) the previously un-

matched packet via the newly installed flow. The OpenFlow message notifications

(PacketIn, FlowRemoved) allow the controller to be aware of existing active flows. The

FlowRemoved message informs the controller of the duration and byte values of the

removed flow. The work of [25] uses the above information along with periodical re-

quest of statistics (StatsRequest messages) to acquire information from flows (figures

16a, 16b) and also monitor the end-to-end delay by injecting packets into the network.

A proposed monitoring solution named OpenNetMon [25], an add-on for the OpenFlow

POX controller, has shown that throughput, packet loss and round-trip delay statistics

can be monitored in SDN networks by taking advantage of the OpenFlow features.

OpenNetMon uses the method discussed in the previous paragraph in order to retrieve

flow statistics. Regularly, the controller queries the switches and retrieves bytes sent

and flow duration. Then, the OpenNetMon module calculates the throughput for queried

flows. To improve efficiency and reduce complexity the polling involves only the last

switch in each network path and the polling intervals adapt to flow’s behavior.

An important requirement for performance management, is the ability to maintain link

utilization at high levels to reduce costs without degrading the performance of network

services. Thus, throughput statistics should be accurate enough to show the fluctuating

traffic needs of applications (e.g. high-definition stream) that may vary from 1Mbps up

to 9Mbps. Measurements that take into account increased intervals for retrieving statis-

Figure 16a: When a flow exists,

the controller retrieves flow statis-

tics

Figure 16b: When a flow ends, a

FlowRemoved message notifies

the controller

-39-

tics, are much more prone to lose throughput traffic-peaks. OpenNetMon attempts to

address this issue by adapting the sampling rate to traffic’s profile. The sampling rate

increases when new flows are defined or flow statistics vary, and backs-off when there

is no fluctuation in measured bandwidth. As can be seen in figure 17, the proposed

method takes into account the most, but not all, the transmitted traffic. TcpStat shows

that transmitted traffic is not always captured by OpenNetMon. The authors of [25]

claim that a synchronization issue between the two setups causes a bandwidth meas-

urement inaccuracy.

Figure 17: Comparison of OpenNetMon measurement and transmitted throughput [25]

Typically, packet loss in an OpenFlow switch can be estimated by polling port statistics

while considering that the relation between throughput rate and packet loss is linear.

This approach produces false estimations in case the traffic is affected by QoS configu-

ration. An alternative estimation technique is the retrieval of flow statistics from the in-

gress and egress switches of each path. The abstraction of the first measurement (in-

gress) with the second one (egress), allows the estimation of packet loss.

Path delay can be calculated by using OpenFlow features. Although OpenFlow switches

are not able to use tagged packets with timestamps to measure and compare inter-arrival

times, OpenNetMon takes advantage of OpenFlow’s capability to send packets into the

-40-

network. In monitored paths, a packet is sent from the controller to the first switch of

the path. The path delay can be expressed as the difference between the initial and the

end switch's time-stamps while the subtraction of estimated delay between the controller

and the first switch gives an accurate estimation of actual path delay (figure 18).

Figure 18: Path delay measurement

The delay between the controller and the delay (Δt) can be estimated by measuring the

round-trip time (RTT) required for a packet sent by the controller to reach the first

switch and then arrive back to the controller (Δt=RTT/2). Experiments have shown that

software schedules running in the switches could affect delay measurements [25]. This

issue can be addressed by using exclusively a separate VLAN for the transportation of

probe packets, and also by adjusting the rate of injected packets according the size of

the measured flow.

The work of [27] have also shown how OpenFlow’s per-flow statistics can be used in

monitoring network traffic. The proposed technique (OpenTM) keeps track of flow sta-

tistics and provides a Traffic Matrix (TM). The controller application builds a TM by

querying OpenFlow switches on fixed intervals and storing the results. The comparison

of several polling algorithms shows that the most accurate statistics can be gathered by

polling switches located in the end of path.

Beyond the measurement techniques being based on OpenFlow features, alternative so-

lutions might also be implemented is SDN networks. OpenSketch [26] is a whole new

-41-

monitoring architecture for SDN networks. This OpenSketch proposal addresses the

measurement issue by introducing a new measurement API in order to support efficien-

cy and a wide variety of traffic measurement tasks. The OpenSketch architecture is

based on the separation of the measurement data plane from control plane and its im-

plementation requires the replacement of existing network nodes. Another measurement

technique that relies on both OpenFlow and sFlow protocols, provides the capability for

real-time measurements for SDN networks being based on sFlow-RT (proprietary)

measurement engine [41] [42]. SFlow-RT and OpenFlow based controllers, can con-

tribute to SDN scalability and also to the development of performance aware SDN ap-

plications such as load balancing or queue priority marking, by providing real-time noti-

fications and detection of flows [41] (Figure 19).

Figure 19: Using sFlow for measuring in SDN networks

The performance of an SDN network should be maintained within acceptable or prede-

fined levels of operation not only by monitoring performance indexes but also by pro-

ceeding timely in proactive changes in network’s configuration. For example, a proac-

-42-

tive or a reactive load balancing configuration in network topology can improve per-

formance indexes such as bandwidth utilization, packet loss and delay.

A typical load balancing implementation in a SDN network has been discussed in the

work of [27] (figure 20). Web clients attempt to connect to a web site via internet. The

web site is served from two virtual or physical server with different IPs. Whenever a

client attempts to connect to the web site, the client sends a DNS request and receives

the IP of one server (e.g. server 1). The OpenFlow switch receives from the client a

packet with the destination IP. A software module is executed in the controller and adds

flow-rules that forward the packet to server1 or modify the IP and the MAC address of

the packet and forwards it to server2. The decision of which server will be selected by

the controller depends on the load balancing policy.

Figure 20. Load Balancing in SDN

Different balancing policies such as Random, Round Robin or Load Based can be ap-

plied [27]. If the server2 has been selected, the switch is instructed by the controller to

modify the packets being send back to the client; Source IP and MAC address are re-

placed by the IP and the MAC address of server1.

-43-

High quality of experience in network applications requires proper QoS (Quality of

Service) configuration on the underlying SDN network. The Unified Communications

Operability Forum (UCIF) has published a use case that deals with the dynamic mark-

ing of video and voice traffic with QoS markings. In this use case, API events are com-

municated between a UC&C infrastructure and a “middleware” automated QoS applica-

tion [45]. The middleware communicates with the SDN controller, as shown in figure

21, and allows the UC&C infrastructure to express QoS requirements using DiffServ

(Differentiated Services) or IntServ (Integrated Services). It also translates the required

class of service to particular DSCP (DiffServ Control Point) values and allocates queu-

ing resources. According to the authors of [45], the automated QoS solution allows the

implementation of automated QoS policies, makes simpler the deployment of QoS with-

in SDN network and lowers deployment cost. Another important value delivered is the

mitigation of QoS configuration errors due to misconfiguration.

Figure 21: Automated QoS Network Service App

Latest OpenFlow switch specifications (1.3 and newer) support per-flow meters that

reside in meter tables. Per-flow meters allow OpenFlow to implement basic QoS func-

tions such as rate-limiting and can be used with per-port queues to support DiffServ

-44-

[12]. QoS schemes for queues, schedule schemes and queue management can be con-

figured in OpenFlow switches through OF-config protocol by using the OF-config point

[44].

Although network statistics along with load balancing mechanisms can help in predict-

ing congestion, in many cases congestion may be unavoidable. In Software Defined

Networks, the centralized control may allow the network itself to tune existing conges-

tion control mechanisms of TCP [RFC5681]. The study of [46] shows that an SDN -

TCP adaptation framework (OpenTCP) allows network operators to tune TCP accord-

ing to traffic and network conditions. According to OpenTCP approach (figure 22), the

SDN controller (Oracle) is the core of OpenTCP and it collects statistics about traffic

and network. When congestion occurs, the SDN controller application calculates chang-

es in TCP parameters needed in order to improve network performance. Updated mes-

sages (CUEs) including TCP adjustment parameters are send to terminal hosts that run a

Congestion Control Agent (CCA). The CCA modifies the TCP protocol parameters on

each terminal host, resulting in an end to end congestion control.

Figure 22: TCP congestion control in Software Defined Networks [46]

-45-

3.5 Security Management in SDN

The security management in SDN must be concerned with securing network resources

and services form threats. OpenFlow offers to network management the ability to con-

trol data flows with specific characteristic. Some flows can then be regarded as hostile if

they meet certain criteria defined by policies. OpenFlow security applications can halt a

hostile flow or forwarded it to specific destination, or implement complex procedures

[28]. For example, the hostile-flow producer may be isolated or a suspected flow may

be further analyzed by a counter-acting intelligent application without affecting it.

As seen in 2.3.3, the OpenFlow switch can match the incoming packets against various

fields such as source IP, destination IP, IP protocol type and TCP/UDP port. The switch

can be instructed by the controller to drop traffic according to OpenFlow’s matching

headers [Appendix – Table A1]. Therefore, simple firewalling policies based on access

control lists (ACL) can be implemented within SDN networks by taking advantage of

OpenFlow features. More advanced firewalling techniques require the examination and

action on fields that cannot be matched by OpenFlow (Figure 23). For example, URLs,

viruses and hostnames included in packet payload (OSI layers 5-7) cannot be examined.

OpenFlow must then forward the suspicious packets to a device or module that will im-

plement a deep packet inspection [11]. Another limitation of SDN security-related ap-

plications that rely on OpenFlow is the lack of stateful awareness. The latest OpenFlow

switch specification does not specify any stateful behavior for flows. Thus, specialized

hardware or software could be used to address the lack of stateful awareness [11], [43].

Figure 23: Packet inspection by OpenFlow [11]

-46-

The detection of traffic anomaly in SDN networks can be based in algorithms imple-

mented in the control plane [29]. The study of [29] deals with the implementation of

four existing threat detection algorithms in OpenFlow SDN networks with NOX con-

troller. This study involves the following algorithms:

 TRW-CB algorithm [30]. It is based on the fact that a benign host establishes more

successful TCP connections than a malicious one.

 Rate Limiting algorithm [31]. It considers the virus propagation behavior. When a

virus propagates, the attacker attempts to establish connections to many different cli-

ents in a small time span.

 Maximum Entropy Detector algorithm [32]. It provides the normal traffic distribution

by using a maximum entropy estimation. Although this algorithm requires the exam-

ination of every packet to build distributions, an indirect approach was used to avoid

forwarding excessive amount of traffic to the controller: distributions were based on-

ly on TCP SYN/RST packets.

 NETAD algorithm [33]. It uses the assumption that traffic anomalies can be detected

by examining the first packet of a connection. Since anomalies are detected, the rest

of the traffic is rejected as “uninteresting”. For example, the NETAD implementation

can result in the rejecting all incoming traffic to network where incoming traffic is

not expected.

The work of [29] have shown that OpenFlow SDN networks allow the flexible and ac-

curate detection of traffic anomalies within SOHO (Small Office – Home Office) net-

works. The programmability of SDN allows the development of applications that detect

attempts for network exploitation and also mitigate the risk by immediate reaction to

network threats.

A security challenge for networks is Distributed Denial of Service (DDoS) which con-

sists of the most common attacks in Internet. DDoS is faced by the work of [34] within

the context of OpenFlow SDN. The proposed method for detecting DDoS attacks as-

sumes that a NOX SDN controller monitors OpenFlow switches during predefined in-

tervals. During monitoring intervals, interesting features from flow entries are extracted

and then passed to the classifier module. The classifier module uses the SOM algorithm

[35] to evaluate gathered information and indicates whether the information corre-

-47-

sponds to an attack or normal traffic. The proposed method (Figure 24) uses a detection

loop consisted of three modules:

Figure 24: Detection of DDoS attack

1. Flow collector. This module periodically requests flow entries from all OpenFlow

switches. The communication between the flow collector module and the switches

remains isolated from any hosts attached to the switches as it is carried through a se-

cure channel.

2. Feature Extractor. This module receives flows collected by Flow Collector, extracts

important for DDoS detection features and forwards them to the Classifier module.

3. Classifier. This module analyzes the data provided by Feature Extractor and uses the

SOM classification method to detect DDoS attacks.

The proposed solution for detecting DDoS attacks shows the flexibility of OpenFlow

networks in implementing detector applications by obtaining flow-information from the

data plane. The method is based on SDN’s centralized approach and OpenFlow’s effi-

ciency in providing information required. According to the results of the work, detec-

tion rate and false alarm rate are similar with the results of other approaches. Due to the

fact that the controller does not collect all packets sent to the attacked host but classifies

patterns of flow-based information being obtained every 3 seconds, the overhead is re-

-48-

markably lower compared to other approaches. As already seen in performance man-

agement section, flow statistics that support applications such as DDoS protection can

be also be provided by sFlow implementation in OpenFlow SDN networks [41].

Security management can also be supported by automated malware quarantine (AMQ)

[30] which takes advantage of OpenFlow features and existing security systems to reac-

tively isolate infected hosts. An OpenFlow switch forwards traffic to a threat monitor

system (e.g. an IDS) which monitors flows and detects infected hosts in real time (fig-

ure 25).

Figure 25: Automatic malware quarantine in SDN

In an AMQ case, a host is compromised by a rootkit which attempts to infect other hosts

in the local network or to call home via internet. The threat monitoring system monitors

network traffic and malicious patterns from the rootkit in order to create the infection

profile. The source IP of the rootkit indicates the infected host enabling the security ap-

plication to instruct the controller to isolate the infected host. The isolated host can then

be connected to another VLAN where a web server is enabled to notify the user about

the quarantine status and further actions that might be needed. Assuming that the threat

has been fully analyzed and the necessary software patch is available, the host can be

patched to remove the rootkit and then be connected back to the default VLAN.

-49-

Compared to traditional networks, the centralization of the control plane in SDN intro-

duces a central control-point that needs protection against attacks [11]. Considering the

case of a traditional campus network, there may be hundreds or thousands of control

nodes that can be targeted by attackers. In an SDN campus network with similar size,

the control nodes (SDN controllers) might be less than 30. In the first case, a compro-

mised node most likely will bring down a part of the network or a subnet. In the case of

SDN, the compromising of a controller could bring down the campus network. So,

SDN’s main benefits which are control centralization and programmability, introduce

new attack and fault planes. The work of [36] identifies seven important threat vectors

that could lead to exploit of OpenFlow SDN vulnerabilities and proposes a reliable and

secure control platform for SDN. The seven potential security threats along with possi-

ble solutions are:

1. Faked or forged data flows. Such flows can be triggered by an attacker who uses

network elements aiming to initiate a DoS attack against controller’s or switch’s re-

sources. Authentication mechanisms can minimize the risk only if authentication ser-

vice hasn’t been compromised. Intrusion detection systems (IDS), coupled with

switch behavior analysis and control, can help in identifying abnormalities within

flows.

2. Vulnerabilities in OpenFlow switches. An affected switch might be used for slowing

down packets, dropping packets, deviating traffic or injecting traffic for further ex-

ploits. The proposed mechanisms for counteracting this threat are: autonomic trust

management [37], monitoring and detection of abnormal traffic.

3. Compromising control plane communications. Typically, the OpenFlow messages

exchanged between the controller and the switches is implemented on top of TLS or

SSL. Several studies and reports have shown that TLS/SSL cannot ensure the secure

exchange of OpenFlow messages [38], [39]. Potential weakness can be any untrusted

Certificate Authorities, self-signed certificates and vulnerabilities in applications.

Moreover, trust between the controllers cannot be guaranteed with TLS/SSL model.

Certification and trust issues between data plane and control plane devices can be

addressed by using per controller or per subdomain certification authorities, improv-

ing encryption, and by using automated and dynamic device association.

4. Vulnerabilities in controllers. An attack that exploits a controller vulnerability could

bring down the entire network. The detected malicious events may be a hard task as

-50-

such events must be identified and isolated. Several countermeasures can be imple-

mented: replication, diversity and recovery,[36]. Security policies should also en-

force the acceptable behavior of applications e.g., not allowing an application to use

specific interfaces.

5. Trust between management applications and controllers. There are not any mecha-

nisms to support the establishment of a trusted connection between a controller and

the management application. Trust management mechanisms should be implemented

to ensure the trust and eliminate this vulnerability.

6. Vulnerabilities in administrative hosts. Administrative hosts play a critical role in

SDN network since they have the ability to program and change the behavior of the

entire network. Obviously, an attacker who manages to exploit a vulnerability in an

administrative host is able to reprogram the network. To minimize the risk of losing

administrative control of the network, more strict policies can be applied to user-

authentication protocols. For example, double authentication may be required to gain

access to the management system. Furthermore, recovery mechanisms should be

available in order to roll back the network to the last operational state in case an at-

tacker has reprogrammed the network exploiting a vulnerability.

7. Lack of forensics and remediation mechanisms. As soon as a problem is detected,

specific actions should be followed to ensure network recovery and ability to investi-

gate the incident. Recovery requires historical snapshots of all network elements to

guarantee a successful and fast remediation. The investigation of the incident re-

quires information from all network elements. Logging must be enabled in all net-

work devices from the data plane up to the management plane and logs should be

kept in secure data storages.

The aforementioned seven threats of SDN and their association with of SDN’s planes

can be seen in figure 26. These potential security threats can affect the entire network

by exploiting vulnerabilities in data or control plane. Countermeasures based an existing

techniques, or in OpenFlow features can be implemented to mitigate the risk.

-51-

Figure 26: SDN threats [36]

-52-

4 FCAPS evaluation in SDN

Several aspects of network management have been discussed and analyzed through

studies, use cases and ONF specifications in chapter 3. All the material used has been

categorized according to FCAPS management model relativity. Network management

tasks can then be isolated and evaluated preserving the categorization according to the

FCAPS model.

4.1 Methodology of evaluation

The methodology for evaluating network management in OpenFlow SDN networks is

based on the following steps:

1. Identification and isolation of tasks implemented in network management.

2. Categorization of network management tasks according to the FCAPS model.

3. Network management task evaluation.

4. FCAPS category evaluation

The identification and isolation of functions is based on SDN studies, use cases and

OpenFlow features that have been discussed in the previous chapter. For example, the

case of detecting a link failure within an SDN network and the recovery techniques fol-

lowed, allows the identification of network management tasks such as “Detection of

link failure”, “Restoration of a failed link” and “Fast recovery (less than 50ms)”.

The coarse categorization used in chapter 3, helps in isolating and categorizing specific

network management tasks according to the FCAPS model. However, particular func-

tions may belong in more than one categories of the FCAPS model. For example, tasks

related to user identification will belong to both accounting management and security

management categories.

-53-

Since this dissertation aims to investigate whether ONF SDN can follow the FCAPS

model, the evaluation of the functions will be based on questions that allow us to rate:

 ONF SDN’s contribution in management functions

 need for additional protocols or techniques

 efficiency within the OpenFlow SDN context

The question that will be asked in order to rate management tasks are the following:

1. Is the function supported by OpenFlow, or an OpenFlow companion protocol such as

OF-Config, or generally by the ONF SDN architecture?

2. Does the particular function require additional protocols or techniques to be imple-

mented?

3. Can the implementation be considered as effective?

Since, in many cases the answers to the aforementioned questions cannot be clearly

‘yes’ or ‘no’, answers closer to ‘yes’ will be marked as ‘High’ and answers closer to

‘no’ will be marked as “Low”.

In question 1, if there is unambiguous involvement and contribution of OpenFlow or

OF-config protocols in the effective implementation of the management task, the an-

swer will be ‘High’. In all other cases, the answer will be ‘Low’.

In question 2, if there are any additional protocols needed to effectively implement the

management task, or programming effort is required in control/application planes, the

answer will be ‘High’. If there is no such need, the answer will be ‘Low’

In question 3, if the implemented management task achieves its objective, the imple-

mentation will be considered as effective and the answer will be ‘High’. The insuffi-

ciency to meet its goals will result in an answer marked as ‘Low’. For example:

 Fast Detection of path failure (Fault Management): OpenFlow supports partially this

operation (OpenFlow support is “Low”), there is a need for additional protocols such

-54-

as BFD to be implemented (need for additional protocol is “High”) and the final im-

plementation is acceptable (effectiveness is “High”)

 Enabling or disabling switch ports (Configuration Management): OF-Config is

enough to perform such tasks (OpenFlow’s companion protocol support is “High”),

there is no need to apply additional techniques or protocols (need is “Low”) and the

implemented task is acceptable (effectiveness is “High”).

In each one of the five FCAPS categories, an overall assessment will be reported and

discussed along with problems identified during the evaluation process.

4.2 Evaluation issues

Although the latest OpenFlow Switch specification (version 1.5) has been discussed in

this dissertation, all studies and use cases that have been presented in chapter 3 are

based on OpenFlow’s version 1.3 or earlier versions. Simulated networks and experi-

ments in the studies [13], [15], [17], [19], [27] have been carried out using Mininet [47],

an OpenFlow SDN network emulator that emulates SDN switches running versions up

to OpenFlow 1.3. Although new features and advantages of latest OpenFlow version

can obviously improve several aspects of network management, they have not been

studied yet in SDN network simulations.

Different network implementations have different requirements from network manage-

ment systems. Although the FCAPS model may be applied from small enterprise net-

works up to campus or carrier-grade networks, network functions required for fulfilling

specific management needs may vary on importance. Service level agreements (SLAs)

require excessive effort in performance management implementation in order to allow

operators to meet demanding customer expectations while there no such need in SOHO

networks. In this dissertation, the evaluation includes management functions from dif-

ferent network implementation scenarios. This evaluation presents a generalized view of

FCAPS implementation in OpenFlow SDN networks. As this evaluation was mainly

based on existing studies, the management functions required in particular network im-

plementation may not have been reported.

-55-

It should also be mentioned that several management functions may fall not only in one

category of FCAPS. For example, although “user identification” can be classified as a

function that typically belongs in security management, it also plays an important role

in accounting management as it might be associated with billing or per-user network

utilization. Thereafter, some functions that have been identified in a section that deals

with a particular FCAPS category, may be reported again in different categories.

4.3 Evaluation of Fault Management in SDN

The OpenFlow SDN fault management scenarios that have been discussed in chapter 3,

include several fault management functions that can be seen in Table 3. The ONF

SDN’s contribution, the need for additional protocols or techniques and the efficiency

within a general OpenFlow SDN context have been rated according to methodology al-

ready mentioned.

Some particular functions such as those related to recovery time can also be associated

with network’s performance and they will be mentioned again in performance manage-

ment evaluation section. Also, the transfer of network changes to application layer and

hardware, as part of recovery techniques, is considered as a function of configuration

management category and it will be reported in the configuration management evalua-

tion section.

As can be seen in Table 3, most of the examined functions are supported by ONF SDN

architecture. It is clear that OpenFlow’s features play key roles in detection and recov-

ery mechanisms that follow network link failures. In many cases, the fault management

functions require the contribution of traditional network management protocols in order

to be implemented effectively.

Considering that:

1. The fast recovery speed required in carrier-grade networks (which is also related

with network’s performance) cannot be supported sufficiently nor by ONF SDN ar-

chitecture neither by additional protocols.

2. The monitor of device-centric data have not been taken into consideration in SDN’s

architecture.

-56-

3. Three out of eleven fault management function heavily depend on traditional man-

agement protocols.

it can be argued that OND SDN needs further support by future SDN companion proto-

cols. In current SDN management, the data plane equipment must be able to support

protocols such as SNMP, BFD and LLDP. There is obvious need for new OpenFlow

companion protocols to be introduced or existing ones (OpenFlow, OF-Config) to be

upgraded accordingly.

Concerning the involved management mechanisms and the effectiveness rating, it can

be argued that: OpenFlow SDN, programming effort in both control and application

planes and legacy management protocols can result in a quite effective fault manage-

ment.

It is also observed that although certain SNMP features such as port statistics can be ac-

cessed with OpenFlow based techniques, certain SNMP functionalities still play an im-

portant role in fault management.

-57-

-58-

4.4 Evaluation of Configuration Management in SDN

Studies related to configuration management in OpenFlow SDN networks have been

discussed in chapter 3. The identified configuration management functions can be seen

in Table 4. The ONF SDN’s contribution, the need for additional protocols or tech-

niques and the effectiveness within a general OpenFlow SDN context, have been rated

according to methodology already mentioned.

The transfer of network changes to application layer and hardware that has been dis-

cussed in 3.1 as part of recovery techniques, is a sub-function of configuration man-

agement that can be addressed by programming effort and NBI involvement.

As can be seen in table 4, OpenFlow and especially its companion protocol, OF-Config,

contribute in an effective implementation of all examined configuration management

functions. Although OF-Config supports effectively most functions, there is still the

need for using traditional protocols such as BFD and LLDP. OF-Config is focused in

data-plane configuration and as can be seen in table 4, most functions related to data

plane configuration (queues, rates, ports) can be effectively implemented by using OF-

Config.

It can be generally argued, that in all examined configuration management functions the

implementation is effective and also it is highly supported by OND SDN architecture

and protocols. SNMP’s network configuration management features have been success-

fully replaced by OF-Config. However, limited additional support by legacy protocols is

required in certain functions as seen.

-59-

-60-

4.5 Evaluation of Accounting Management in SDN

The evaluation of tasks involved in Accounting Management can be seen in Table 5.

Certain tasks such as user identification, authorized access to network resources and us-

er statistics can also be associated with Security Management Category. Network usage

statistics required in accounting management can also be considered as performance

management functions.

As can be seen in table 5, for an effective accounting management, OpenFlow features,

existing user authentication mechanisms and programming effort in application plane

are required. Traditional authentication services and mechanisms used in accounting

and security management offer the information required for the correlation of user’s

identity (user name, IP) with flows. Thus, it is possible in SDN to personalize the usage

of network resources. The collected data that associate users with network resource us-

age or resource allocation, can be further processed by billing software in order to allow

network providers to charge their customers accordingly.

It can be argued that Northbound interface, software application that interract with data-

bases in application plane and OpenFlow features allow accounting management func-

tions to be implemented effectively.

-61-

-62-

4.6 Evaluation of Performance Management in SDN

The evaluation of functions involved in Performance Management can be seen in Table

6. Although fast recovery after a link failure typically falls under fault management, a

slow recovery (more than 20ms) degrades the performance of real time network appli-

cations such as VoIP or video conference. For this reason, fast recovery function is re-

ported in both fault management and performance management evaluation sections.

In most cases, OpenFlow features along with software modules running in SDN control-

lers support effectively the implementation of the performance management functions.

It can also be observed that traditional network management techniques, play either an

important or a complimentary role along with SDN protocols in the effective implemen-

tation of the related functions. According to fault management evaluation, network per-

formance cannot be managed effectively in case link restoration is involved. Another

performance management issue can be seen in the function of accurate estimation of

fluctuating traffic. There is lack of intrinsic OpenFlow features to support performance

monitor of real time application traffic. However, this problem can be addressed by us-

ing a proprietary solution such as the sFlow-RT controller engine. Throughput and

packet loss measurement functions in passive mode are also ineffectively implemented

although they are typically supported by OpenFlow and SDN control plane features.

Centralization and programmability can also improve network performance by adapting

TCP’s congestion control parameters according to network’s condition. However, adap-

tation speed depends on network statistics and therefore a proprietary controller module

such as sFlow-RT is required again to implement TCP congestion control with co-

existing real time applications’ traffic.

-63-

-64-

4.7 Evaluation of Security Management in SDN

The evaluation of functions involved in Security Management can be seen in Table 7.

Functions related to user identification and user access has also been mentioned in ac-

counting management. As already discussed in 2.1.3 and seen in figure 1, security func-

tions has to underpin all other functional areas (Fault, Configuration, Accounting and

Performance) to allow security to be effective. The interaction between security and

other functions can be clearly seen in key protocols and techniques involved in table 6.

For example, protecting configuration process, recovery (configuration roll back), traf-

fic monitor and user authentication, play important role in the implementation of securi-

ty functions.

OpenFlow’s header matching-fields allow data-plane equipment such as SDN switches

to embed firewalling capabilities that in traditional network management would depend

on the use of firewall-dedicated hardware. Additional mechanisms used for authentica-

tion purposes along with SDN’s access control capabilities improve several aspects of

security management. Malicious flows and hosts can be early detected and isolated re-

sulting in minimized security risks. Access control is based on OpenFlow’s ability to

match header information queried in different OSI layers. However, there is not yet any

SDN capability for implementing stateful packet inspection. The lack of statefulness in

SDN firewalling capabilities shows that although OpenFlow switches can perform par-

tial firewall operations and enhance security, they cannot replace traditional firewalls

yet.

It can also be seen in table 7 that trust between management application and SDN con-

trollers cannot be supported yet neither by SDN architecture nor by additional mecha-

nisms.

Given the evaluation of security management functions as seen in table 7, it can also be

argued that, OpenFlow and SDN’s architecture are not able to support effectively secu-

rity management functions without using additional mechanisms. Security management

heavily depends on techniques and practices used in existing security management sys-

tems. However, OpenFlow’s and OF-Config’s evolution, along with SDN’s architec-

ture, allow control plane and application plane software to address in the future the is-

sues that exist in current security management implementations.

-65-

-66-

5 Conclusions and future work

5.1 Summary of main points in SDN management

Through the perspective of the FCAPS ISO model, OpenFlow-based Software Defined

Networks management can be effectively implemented. However, SDN Management

needs to be supported by traditional management mechanisms and OpenFlow-

companion third party solutions. The openness of ONF SDN architecture enables

through programmability the effective implementation of most management functions

although some features that could facilitate management functions haven’t yet been

adopted in Open-Flow and OF-Config protocols. The issues that still exist in a limited

number of management functions mainly concern carrier-grade networks. For their so-

lution, further investigation, programmability effort and continuous development of

OpenFlow are required.

The generalized conclusion of this master thesis is that SDN networks can be managed

following the FCAPS model.

5.2 Concluding statements

Based on the evaluation of management functions that have been categorized according

to the FCAPS model, the following statements are concluded:

 OpenFlow based SDN network management can be effective in most management

functions implemented within the FCAPS approach.

 Network management cannot be based exclusively on ONF SDN architecture, Open-

Flow and OF-Config.

 Fault management, performance management and security management in SDN

networks, encounter effectiveness issues due to:

o Lack of ONF SDN intrinsic mechanism(s) to support fast detection of failed links

o Lack of mechanisms that ensure trust between software applications and SDN

controllers

-67-

 Since SDN network management techniques and protocols have not yet been stand-

ardized, hardware selection is constrained by network management supported fea-

tures. Regarding the selection of SDN equipment, it is not enough for data plane

hardware to be compatible with particular OpenFlow versions; it must also be com-

patible with traditional management protocols (e.g. SNMP)

 SDN’s data plane equipment can implement several firewall operations that can im-

prove security. However, SDN’s data plane equipment cannot replace traditional

firewall operation due to lack of statefulness.

 Programmability is involved in almost all management functions

5.3 Recommendations and future work

There are still unresolved issues in network management of SDNs that require further

investigation. However, their impact is mitigated by traditional management methods,

proprietary solutions and excessive programming effort. OpenFlow, OF-Config and

SDN programmability, play key roles in network management. SDN management can

become more effective by upgrading existing SDN protocols or by introducing new

ones in order to support:

 fast detection and fast response to network changes

 accurate real-time statistics

 authentication and trust mechanisms

 the ability to exchange device-centric data between the SDN planes

Future investigation that will focus on the above areas will allow SDN administrators to

optimize the allocation of network resources, minimize the costs of proprietary man-

agement techniques, reduce security risks and eliminate dependence on traditional

mechanisms.

-68-

Bibliography

 [1] KimH, Feamster N. Improving network management with software-defined net-

working. IEEE Comm Mag, 2013

 [2] ONF White paper. Software-Defined Networking: The New Norm for Networks.

Open Networking Foundation, 2012

 [3] Sakir, S. Scott-Hayward, S. Chouhan, K, Fraser, B. Finnegan, J. VilJoen, N. Mil-

ler, M. Rao, N. “Are ready for SDN? Implementation Challenges for Software-

Defined Networking”, IEEE Comm Mag, 2013

 [4] Clemm, A. Network Management Fundamentals. Cisco Press, 2007

 [5] Kurose, J. Ross, K. Computer Networking: A Top-Down Approach. Pearson,

2013

 [6] Verma, D. Principle of Computer Systems and Network Management, Springer,

2009

 [7] ONF White paper. OpenFlow-enabled SDN and Network Functions Virtualiza-

tion. Open Networking Foundation, 2014

 [8] Aboba, B. Arkko, J. Harrington, D. Introduction to Accounting Management,

RFC 2975, IETF, 2000

 [9] Cisco White paper. Network Reference Management Architecture, Cisco, 2008

[10] Boucadair, M. Jacquenet, C. SDN: A Perspective from within a Service Provider

Environment. IETF, 2014

[11] Goranson, P. Blach, C. Software Defined Networks: A comprehensive approach.

Morgan Kaufman, 2014

[12] ONF White paper. OpenFlow Switch Specification Version 1.5.0. Open Network-

ing Foundation, 2014

[13] Sharma, S. Staessens, D. Colle, D., Pickavet M. Demeester, P. Fast failure recov-

ery for in-band OpenFlow networks. IEEE Comm Mag, 2013

[14] Sharma, S. Staessens, D. Colle, D., Pickavet M. Demeester, P. OpenFlow: Meet-

ing Carrier-Grade requirements. Computer Communications, 2013

-69-

[15] Sharma, S. Staessens, D. Colle, D., Pickavet M. Demeester, P. Enabling Fast fail-

ure recovery for in-band OpenFlow networks, DRCN, 2011

[16] Niven-Jenkins, B. Brungard, D. Betts, M. Sprecher, N. Ueno, S. MPLS-TP re-

quirements, RFC5654, IETF 2009.

[17] Capone, A. Cascone, C. Nguyen, A. Sanso, B. Detour Planning for Fast and Reli-

able Failure Recovery in SDN with OpenState. DRCN, 2015

[18] Kempf, J. Bellagamba, E. Kern, A.Jocha, D. Takacs, A. Scalable Fault Manage-

ment for OpenFlow, IEEE ICC, 2012

[19] Niels, L. Benjamin, J. Kuipers A. Fast Recovery in Software-Defined Networks,

EWSDN, 2014

[20] Devlic, A. John, W. Skoldstrom, P. A use-case based analysis of network man-

agement functions in the ONF SDN model. EWSDN, 2012

[21] ONF White paper. OpenFlow Management and Configuration Protocol. Open

Networking Foundation, 2014

[22] Canini, M. Venzano. D, Kostic, D. Rexford, J., Peresini, P. A NICE way to test

OpenFlow applications, NSDI, 2012

[23] Reitblat, M. Foster, N. Rexford, J. Schlesinger, C. Abstractions for Network Up-

date, ACM SIGCOMM, 2012

[24] Yamashita, S. Tanaka, H. Hori, Y. Development of Network User Authentication

System using OpenFlow, BWCCA, 2013

[25] Adrichem, N. Doerr, C. Kuipers, A. OpenNetMon, Network Monitoring in Open-

Flow Software-Defined Networks, NOMS, 2014

[26] Yu, M. Jose, L. Miao, R. Software Defined Traffic Measurement with

OpenSketch, NSDI, 2013

[27] Du. Q, Zhuang, H. OpenFlow-Based Dynamic Server Cluster Load Balancing

with Measurement Support, Journal of Communications, 2015

[28] Porras, P. Cheung, S. Fong, M. Skinner, K. Yegneswaran, V. Securing the Soft-

ware-Defined Network Control Layer, NDSS, 2015

[29] Mehdi, S. Khalid, J. Khayam, S. Revisiting Traffic Anomaly Detection Using Software

Defined Networking, Recent Advances in Intrusion Detection, Lecture Notes in Comput-

er Science, Sommer, D. Balzarotti, and G. Maier, Eds. Springer, Berlin Heidelberg, 2011

-70-

[30] Schechter, S, Jung, J. Berger, A. Fast detection of scanning worm infections,

RAID-2004-LNCS, Springer Heidelberg, 2004

[31] Williamson, M.: Throttling viruses: Restricting propagation to defeat malicious

mobile code, ACSAC, 2002

[32] Gu, Y. McCallum, A. Towsley, D. Detecting anomalies in network traffic using

maximum entropy estimation. ACM SIGCOMM, 2005

[33] Cai, Z. Cox, A., Eugene, N. Maestro: A System for Scalable OpenFlow Control,

Rice University Technical Report, 2011

[34] Braga, R. Mota, E. Passito, A. Lightweight DDoS Flooding Attack Detection Us-

ing NOX/OpenFlow, IEEE LCN, 2010

[35] Haykin, S. Neural networks: a comprehensive foundation. Prentice Hall PTR Up-

per Saddle River, 1999

[36] Kreutz, D, Ramos, F., Verissimo, P. Towards Secure and Dependable Software-

Defined Networks, ACM SIGCOMM, 2013

[37] Yan, Z. Prehofer, C. Autonomic Trust Management for a Component-Based

Software System, IEEE Trans. Dep. and Sec. Computing, 2011

[38] Cryptanalysis.eu: SSL/TLS broken again,

https://cryptanalysis.eu/blog/2013/03/15/ssltls-broken-again-a-weakness-

in-the-rc4-stream-cipher/, 2013 (retrieved on 28/9/2015)

[39] Holz, R. X.509 Forensics: Detecting and Localizing the SSL/TLS Men-in-the-

Middle, LNCS, 2012

[40] ONF, SDN Security Considerations in the Data Center, Open Networking Foun-

dation, 2013

[41] Application Note, SDN Analytics for Elephant Flow Marking an Inherent, Scala-

ble Solution for the Enterprise, Alcatel-Lucent, 2014

[42] Phaal, P. Panchen, S. InMon Corporation's sFlow: A Method for Monitoring Traf-

fic in Switched and Routed Networks, RFC 3176, IETF, 2001

[43] Hu, H. Han, W. Ahn, G-J, Zhao, Z. FLOWGUARD: building robust firewalls for

software-defined networks, HotSDN ’14, 2014

[44] Mukundha, C. Improving QoS in Cloud Based Networks with Software Defined

Networks, International Journal of Science and Research, 2015

https://cryptanalysis.eu/blog/2013/03/15/ssltls-broken-again-a-weakness-in-the-rc4-stream-cipher/
https://cryptanalysis.eu/blog/2013/03/15/ssltls-broken-again-a-weakness-in-the-rc4-stream-cipher/

-71-

[45] Amdt, M. Kambli, R. Kittappa, T. Lauwers, C. Menezes, P. Rai, S. Tonogai, D.

UC SDN Use Case Version 1.2: Automating QoS, Unified Communications In-

teroperability Forum, 2014

[46] Ghobadi, M. Yeganeh, S. Ganjali, Y. Rethinking End-to-End Congestion Control

in Software-Defined Networks, Proceedings of the 11th ACM Workshop on Hot

Topics in Networks, 2012

[47] Mininet.org: https://github.com/mininet/mininet/wiki/Introduction-to-

Mininet#what (retrieved on 1/11/2015)

[48] Feamster, N. Rexford, J. Zegura, H. The Road to SDN: An Intellectual History of

Programmable Networks, ACM Queue, 2013

https://github.com/mininet/mininet/wiki/

-72-

Appendix

Table A1: OpenFlow header matching fields.

 Field Required Description

1 OXM_OF_IN_PORT YES Ingress port (physical or logical)

2 OXM_OF_ACTSET_OUTPUT YES Egress port from action set

3 OXM_OF_ETH_DST YES Ethernet destination address

4 OXM_OF_ETH_SRC YES Ethernet source address

5 OXM_OF_ETH_TYPE YES Ethernet type of the OpenFlow packet payload (VLAN tag)

6 OXM_OF_VLAN_ID NO VLAN-ID from 802.1Q header

7 OXM_OF_VLAN_PCP NO VLAN-PCP from 802.1Q header

8 OXM_OF_IP_DSCP

NO Diff Serv Code Point (DSCP) – Part of ToS (IPV4) or TC (IPv6)

9 OXM_OF_IP_ECN

NO ECN bits in IP header – Part of ToS (IPV4) or TC (IPv6)

10 OXM_OF_IP_PROTO YES IPv4 or IPv6 protocol number

11 OXM_OF_IPV4_SRC YES IPv4 source address

12 OXM_OF_IPV4_DST YES IPv4 destination address

13 OXM_OF_TCP_SRC

YES TCP source port

14 OXM_OF_TCP_DST

YES TCP destination port

15 OXM_OF_TCP_FLAGS

NO TCP flags

16 OXM_OF_UDP_SRC

YES UDP source port

17 OXM_OF_UDP_DST_

YES UDP destination port

18 OXM_OF_SCTP_SRC

NO SCTP source port

19 OXM_OF_SCTP_DST

NO SCTP destination port

20 OXM_OF_ICMPV4_TYPE

NO ICMP type

21 OXM_OF_ICMPV4_CODE

NO ICMP code

22 OXM_OF_ARP_OP

NO ARP opcode

23 OXM_OF_ARP_SPA

NO Source IPv4 address in ARP payload

24 OXM_OF_ARP_TPA

NO Target IPv4 address in ARP payload

25 OXM_OF_ARP_SHA

NO Source Ethernet address in ARP payload

26 OXM_OF_ARP_THA

NO Target Ethernet address in ARP payload

27 OXM_OF_IPV6_SRC YES IPv6 source address

28 OXM_OF_IPV6_DST YES IPv6 destination address

29 OXM_OF_IPV6_FLABEL NO IPv6 flow label

30 OXM_OF_ICMPV6_TYPE NO ICMPv6 type

31 OXM_OF_ICMPV6_CODE NO ICMPv6 code

32 OXM_OF_IPV6_ND_TARGET NO The target address in an IPv6 Neighbor Discovery_message

-73-

 Field Required Description

33 OXM_OF_IPV6_ND_SLL NO

The source

link-layer

address

option in

IPv6 mes-

sages

34 OXM_OF_IPV6_ND_TLL NO Link-layer target address option in IPv6 (Neighbor Discovery)

Message)
35 OXM_OF_MPLS_LABEL NO LABEL of the first MPLS shim header

36 OXM_OF_MPLS_TC NO TC of the first MPLS shim header.

37 OXM_OF_MPLS_BOS NO The BoS bit in the first MPLS shim header

38 OXM_OF_PBB_ISID NO I-SID in first PBB service instance tag.

49 OXM_OF_IPV6_EXTHDR NO IPv6 Extension Header pseudo-field.

40 OXM_OF_PBB_UCA NO The UCA field in the first PBB service instance tag.

		2016-02-11T19:06:24+0200
	Andreas Pitsillides

