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This article extends recent research on item parameter drift by investigating the robustness
properties of basic unidimensional IRT models. Specifically, the article explores whether it is
possible to advocate the consistent choice of one model over another based on its robustness
properties under drift. On the one hand, it is shown that the biases that are introduced due to
drift are minor for most practically relevant circumstances across all models. On the other
hand, it is shown that the mathematical structure of the biases is theoretically complex so that
globally superior performance of one model over another is observed only under restrictive
side conditions.

Although various measurement models based on item response theory (IRT)
are available to psychometric modelers (for overviews see, e.g., Junker, 1999;
Rupp, 2002; van der Linden & Hambleton, 1997), the practical day-to-day
applications of more complex IRT models are rather limited. Instead, it is
common for testing agencies, research institutes, and consultants to use one of
the more basic unidimensional IRT models. For dichotomously scored items,
the one-parameter logistic (1IPL) or Rasch model, the two-parameter logistic
(2PL), or the three-parameter logistic (3PL) models are commonly used,
whereas for polytomously scored items the graded response model (Samejima,
1969) and the multiple-response model (Thissen & Steinberg, 1984) are com-
monly used. In fact, some of the most popular estimation software such as
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996) and MULTILOG
(Thissen, 1991) are designed to estimate primarily these basic powerful models.

Given some of the discrepancies between theoretical availability of models
and practical model choice, it is of inherent interest to understand some of the
driving forces behind model choice and to investigate whether it is possible to
collect some evidence that supports the eventual model choice based on math-
ematical criteria about its inferential properties. This article seeks to provide
some pieces of evidence that underscore that the process of model choice is
complex and cannot be unambiguously resolved by invoking certain robust-
ness properties under lack of invariance (LOI) due to item parameter drift
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(IPD). The developments in this article build on recent research in IPD, which
has investigated the effect of certain types of item parameter drift on examinee
parameter estimates (Wells, Subkoviak, & Serlin, 2002) as well as the effect of
IPD on item response probabilities (Rupp & Zumbo, 2003). In this article, then,
these investigations are extended to incorporate a cross-model comparison,
and it is shown how biases due to drift of the item difficulty parameter may be
only minor from a practical perspective, but their implications about model
choice are rather complex from a mathematical perspective.

Consequently, the issue of model choice as viewed through this LOI lens
can either be considered practically unimportant, as biases in response prob-
abilities are relatively minor across all models; or theoretically important, as
the bias patterns show that no single model possesses globally superior bias
property under drift of the item difficulty parameter. But before these argu-
ments are analytically and numerically developed, it is worthwhile to say a few
words about the process of model choice in general.

Choosing a Measurement Model

At the simplest level choosing a measurement model can be a matter of training
or tradition. In the former case, knowledge about a certain class of measure-
ment models such as classical test theory (CTT) models or structural equation
models (SEM) may lead one to choose one modeling approach over the other.
This is, of course, a reasonable course of action, because in order to use a model
responsibly, one needs to be knowledgeable, at least to a reasonable degree,
about its mathematical structure, its parameter estimation process, the mean-
ing of the different parameters, the meaning of information provided in the
output, and the contexts in which it can be used. Hence if one is knowledgeable
about a particular class of models, one is typically at least a responsible user of
those models, which may be better than being an irresponsible user of a larger
class of models that one knows little about. If model choice is driven by
tradition, a similar logic often underlies the process. For example, by reputa-
tion and perception the Educational Testing Service and CTB McGraw /Hill are
companies that are known often to use the 3PL IRT model whereas many
language testers and the National Board of Medical Examiners often use the
1PL IRT or Rasch model. Similarly, many educational and psychological re-
searchers still use CTT models, and the University of Iowa is often thought of
as one of the centers for its cousin, generalizability theory. As in almost all areas
of life, traditions have histories that are hard to break, because they have been
shown to be consistently beneficial to the users and be of high practical utility.

In many practical scenarios, model choice is driven by real constraints that
models place on the data input and the consumer of their output. For example,
simpler models have fewer parameters that need to be estimated and thus
make less stringent sample size requirements for stable parameter estimation.
But even if parameters in more complex models can be estimated to a desired
degree of accuracy, it may be difficult to interpret them meaningfully from a
substantive theoretical viewpoint, and this may be what is desired. Concep-
tually, one could thus argue that the question of model choice can be answered
by invoking more fundamental properties of measurement, which would, for
example, favor the 1PL or Rasch model over other models because it can be
considered an instance of additive conjoint measurement (Perline, Wright, &
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Wainer, 1979). Researchers working seriously in cognitive assessment might
not even consider a mathematical model unless it allows them formally to
operationalize elements of the substantive theory as parameters in the model.
For these researchers, a model of choice needs to have an appropriate mathe-
matical structure and needs to provide adequate fit to the data and the under-
lying theory that generated the data.

Alternatively, one could argue that the choice between models can be
considered a question of empirical model fit, which implies that every new
dataset should be modeled with the model that best fits the data. However,
detecting model fit for real datasets can be a tricky issue in particular for
smaller datasets. Indeed, as seen above in the discussion of model complexity,
sample size is often one of the main determining factors for model choice, even
though sample size requirements are somewhat moderated these days by
advances in the theory and implementation of Bayesian estimation paradigms
(see Rupp, Dey, & Zumbo, in press, for an overview). But although it is
relatively easy to find fault with a given application of a model to a dataset
either on empirical or theoretical grounds, even strong critics are not always
able to offer superior alternatives (see, e.g., Traub, 1983, for a passionate criti-
cism of unidimensional IRT models).

It is thus of inherent interest to determine whether a consistent preference
for a given model bears positive or negative consequences in the long run. To
answer this question, this article explores under what conditions of IPD the
largest amounts of bias in response probabilities occurs to determine whether
one can argue for globally superior properties of one model over another. IPD,
an instantiation of LOI, is a commonly observed phenomenon where item
parameters from a previous calibration of an item set appear to have changed
(i.e., drifted) over time. IPD has a practical effect on decision-making, because
if it goes undetected, a bias in response probabilities is introduced that affects
the true score estimates of examinees and, by implication, their respective 0
estimates. Thus if one could make general statements that showed one model
to be superior in that it resulted generally in smaller amounts of bias across
different drift conditions, more substantial arguments about model choice
could be developed. This article explores analytical, numerical, and visual
methods to answer this question and highlight the conditions that have to hold
to make such general claims. The article focuses on basic unidimensional IRT
models for dichotomously scored item sets (i.e., the 1PL, 2PL, and 3PL models)
as these facilitate discussions of the underlying theoretical concerns. All discus-
sions are developed at the population level and hence circumvent the problem of
detecting the true amount of bias in the population with calibration samples.
This is not necessary for the purpose of this article, as the population analogue
as a clean idealization shows the minimum and maximum amounts of biases
with no confounding due to sample-to-sample fluctuation.

In an earlier study (Rupp & Zumbo, 2003), the relationships that exist
between parameters from different populations on both the logit and probabil-
ity scale were made explicit, and the effect of IPD on item response probabil-
ities as well as examinee true scores was demonstrated analytically,
numerically, and visually. Recall that for basic unidimensional IRT models the
parameter that indicates the inflexion point of an item characteristic curve
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(ICC) is often called the “item difficulty” parameter and is denoted by B; the
parameter that indicates the slope of an ICC at its inflexion point (i.e., the
“steepness” of the curve) is often called the “item discrimination” parameter
and is denoted by o; and the parameter that indicates the lower asymptote of
an ICC is often called the “item pseudo-guessing” parameter and is denoted by
¥, Consistent with previous research (Wells et al., 2002) it was found that for
moderate amounts of item discrimination parameter drift (i.e., a-drift), item
difficulty parameter drift (i.e., B-drift), and joint o- and B-drift, the effect on
examinee true scores was relatively minimal. The model that was used in these
studies was the 2PL, and this article presents their natural extension by offering
a cross-model comparison of the effect of IPD on item response probabilities
and examinee true scores.

Technically, there are nine scenarios to consider for this purpose, because
one is dealing with two design factors that can be crossed, (a) the generating
model (3 levels: 1PL, 2PL, 3PL), and (b) the fitted model (3 levels: 1PL, 2PL,
3PL). However, certain types of parameter drift cannot be considered for all
scenarios. In particular, one cannot consider o-drift for the 1PL, because by
default all discrimination parameter values are held constant for this model
(typically (o = 1 for all items) and a “drift” for some items would effectively
constitute going from a 1PL to a 2PL. In other words, it would constitute an
instance of model misfit and not IPD, which presumes that the same model
holds across calibrations for the item set under consideration. In addition, one
cannot consider y-drift for either the 1PL or the 2PL, because this would
constitute another instance of model misfit as only the 3PL allows differing
lower asymptote parameters across items. It is clear that item parameter drift
can only be considered across models for an item parameter that is common
across all models; hence one has to limit attention to the item difficulty para-
meter f.

The guiding idea and questions for this article are the following. Consider
an item that displays B-drift and further consider that the item is calibrated
with a 1P1, 2PL, and 3PL. For what combinations of a-values, examinee loca-
tions on the latent scale, and amounts of B-drift is the bias in item response
probabilities and examinee true score smallest (i.e., where are local minima for
bias)? In addition, is it possible to identify one of these models as the one that
has the smallest overall amount of bias due to the mathematical structure of the
model (i.e., is there a global minimum of bias across models)? To answer these
questions, a formalization of bias is necessary.

Formalization of Bias in Response Probabilities
Tobegin, define the bias in response probabilities for examinee i on item j as the
difference A; = P(0,) - P’(6") where the first probability is computed using the
original value of the item difficulty parameter 3, whereas the second probabil-
ity is computed using §'; the drifted value of the item difficulty parameter (i.e.,
for a drift of magnitude t, ;= B;+ 7). The response probability is computed
using the model under consideration so that for the 3PL,

exp(a, (6,- B,)) .
T+ exp(c, (6 B)) ;0 > 0,—0< B,.,e,.< 0 y<1,

P;@)= v+ (1-1v)
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for the 2PL,

eXP(OLj (e,'_ Bj)) .
1+ exp(o; 6,- B)) * %~

and for the 1PL or Rasch model,

P,(68)= 0, o< B, 6,< oo,

__op6-B) -
Pj (9,) 1+ eXP(ei - B]) ’ < Bj’ ei < .

Because the 3PL is the most general of the three unidimensional models, one
can compare the difference in biases across models most easily if one uses it as
a starting point. The above definition of A; results in the following expression
of bias for the 3PL:

3PL _ i ; oy PO G- B || 1-y; exp(©; 6 - (B; + %))
Al/ Y+ ¢! 'Y]) 14 exp(aj ©; - B])) N+ ( ’Y]) 1+ eXp((!]' (9i‘(Bj+T]‘)))

I /SIS 7/ VY . N (/N VN B B /A
T+ y mi+wi| 7] 1+ mi+ g Pl 1+ v mj+ i

where n;= exp (o7) and y;;= exp (0,(6,—p)).

Because the 2PL is a special case of the 3PL with = ¢, c € (0,1), where c is
typically chosen to be 0, one can analytically see that bias for the 2PL can be
considered a “special case” of the bias for the 3PL under certain conditions as

Az.PL - Wl( _ \VN ,
K 14 Vi MtV
and hence
A?jPL= (1 _ ,Y/)AIZ]PL .

This equation illustrates analytically the first result of cross-model com-
parisons. If one calibrates an item with a 2PL and a 3PL and the item dis-
crimination value is the same under both model calibrations, then for an
identical difference between examinee and item location on the latent 0 scale,
the introduced bias is smaller under the 3PL. Specifically, it is smaller by a
factor proportional to the probability of not guessing.

This result makes sense if one considers the ICCs for this scenario. Both
ICCs would have the same slope and the same location displacement under
drift; yet because the lower-asymptote for the 3PL is higher than for the 2PL,
the horizontal displacement due to B-drift results in a smaller vertical difference
A;; between the curves for the 3PL than the identical displacement for the 2PL.
It is already clear that the difference is not going to be very large because
lower-asymptote parameter values are rarely larger than .3; Figure 1 illustrates
this for an item with B/- =0, B’j = .6,0;= 15, and ¥, = .3 under the 3PL.

Because the 1PL is a special case of the 2PL and, by implication, of the 3PL,
the bias under a 1PL is also a special case of the bias under a 2PL and 3PL.
However, it cannot be written as compactly in an equation as above, because
the difference between a 1PL and the other two models is that the discrimina-
tion parameter is fixed, which is a parameter that is not directly on the prob-
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ability scale and hence precludes a simple analytic equation. This scenario is
discussed further in the next section where graphics are used to illustrate these
biases, which makes patterns in biases easier to describe.

Visualization of Biases Using the Aij Function
To appreciate the differential effect of various types of biases and their depend-
encies on model parameters, it is useful to visualize graphically the A; values.
To understand the meaning of such plots, it is important to realize that A, is
actually a function of four variables:
1. The discrimination parameter (o)
2. The location difference (6i — Bj)
3. The lower-asymptote parameter (%)
4. The amount of B-drift (1j)

One way to explore the differential effect these values have on the response
probability bias is to plot the A; values as a function of the location difference
and the discrimination parameter, which yields three-dimensional surfaces,
and then to consider a matrix of these three-dimensional surfaces where the
rows are defined by different values of the drift parameter 1, and the columns
are defined by different values of the lower-asymptote parameter y. For illus-
trative purposes, attention is restricted to the following ranges of values:

1. The discrimination parameter (q): 0,2]
2. The location difference (6i — B): [-3,3]

2PL calibration (y; = 0)

Prab
1 —

0.8
0.6}
0.4 /S /S

0.2 Py
7

e = '3 Theta - Beta

3PL calibration (y =.3)

Pracb
Y

Figure 1. Effect of drift for item with identical discrimination calibrated with 2PL and 3PL.
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3. The lower-asymptote parameter (): 0p:1,:2::3
4. The amount of B-drift (1j)): 2,4,6,.8

This results in the 4 x 4 matrix of three-dimensional plots shown in Figure 2.

The plots in Figure 2 reflect the nested nature of the three unidimensional
models and illustrate some general trends. First, it is apparent that the intro-
duced bias is generally largest for the largest amount of drift (row 1 with 7,=.8)
and smallest for the smallest amount of drift (row 4 with 1, = .2), which is
intuitively clear. Second, it can be seen how for each amount of drift the
amount of bias gets progressively less as the lower asymptote parameter in-
creases (i.e., within a row, the surfaces are generally flatter for higher values of
¥)- Third, for a given model and fixed amount of drift (i.e., for a particular
three-dimensional surface), the bias appears to be largest for items that have
higher discrimination values than for items that have lower discrimination
values for many location differences. Fourth, it is clear that the introduced
biases are not very large in absolute magnitude across all surfaces unless there
is an unusually large amount of drift. For example, if the introduced bias is .1,
which is a reasonable typical value for many of the cases shown above, then 10
items with that amount of drift are required to produce a true-score difference
of 1 point. This is a minute difference for most practical purposes and hence
speaks well to the robustness properties of IRT models. This robustness result
furthermore presumes that no other items in the data set display drift in the
opposite direction, in which case effects might cancel out, leading to even less
of an overall effect on examinee true scores for item sets.

For cross-model comparisons, the nested nature of the three models be-
comes important. First, the 2PL is a special case of the 3PL with a fixed
lower-asymptote parameter (typically ¥, = 0 for all items) and hence in order to
compare the biases introduced under a 2PL with those introduced under a 3PL
one has to look across a row. Here one can see that the introduced bias is
globally less for the 3PL for all identical location differences given that the item
discrimination value is identical under both calibrations; this is shown analyti-
cally above. As an illustrative example, consider an extreme case where an item
with discrimination parameter value of o= 1.5 is calibrated under a 2PL (with
¥, = 0) and under a 3PL (with ¥ = .3) and displays a drift of 7, = .8. This
corresponds to the two slices in the first and last three-dimensional surfaces in
the first row of the above matrix as shown in Figure 3.

In accordance with Figure 1, one can see how the introduced bias is lower at
all location differences for the 3PL, which would hold for other discrimination
values as well. Note, however, that if the discrimination parameter values for a
given item are different under the two models, or if different location differen-
ces are considered, one would have to inspect the height of the surfaces locally,
which is discussed below.

Second, the 1PL is a special case of the 2PL with a fixed discrimination
parameter value (typically o, = 1 for all items) and so comparing bias under the
1PL with that under the 2PL is tantamount to inspecting a horizontal slice from
a particular three-dimensional surface in relation to the rest of the surface. For
most location differences the introduced bias is higher if the item has a higher
discrimination value under the 2PL than under the 1PL (i.e., typically an o
greater than 1 under the 2PL); however, that it is not true for all location
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differences. As an illustrative example, consider an extreme case where an item
is calibrated under a 1PL (with (o; = 1) and also under a 2PL (with (o =2) and
displays a B-drift of 7, = .8. This corresponds to the three-dimensional surface in
the upper left-hand corner of the above matrix and leads to the two horizontal
slices shown in Figure 4. Here one can see that for location differences of about
less than —.7 units or more than 1.5 units, more bias is introduced under the 1PL
than under the 2PL, whereas for location differences between —.7 and 1.5 units
the opposite is true.

Translating Theoretical Conditions into Practical Contexts

In order to make statements about the amount of bias introduced into the
response probabilities and hence true scores under B-drift, several conditions
had to be explicitly stated in each of the above case. Practitioners will recognize
that most of these conditions appear somewhat unrealistic. For example, if an
item set were calibrated once with a 2PL and once with a 3PL and both models
seemed to provide adequate fit, as perhaps judged by some empirical fit
statistic, then it is unlikely that a given item would have the same discrimina-
tion value under both models allowing for the global statements that were
made earlier. Similarly, for a given examinee the 0 estimate is likely to be
different under the two models in this situation as well, which will result in
different location differences relative to the item difficulty value for the two
models, further complicating matters. Moreover, the amount of bias for an item
calibrated under a 2PL on separate occasions is probably going to be different
from the bias for the same item calibrated under a 3PL on separate occasions,
adding yet another layer of complexity to the issue.

It thus appears that the answer to the question of which model leads to the
most optimal properties in terms of introduced biases cannot be answered
simply and is indeed complex. In an attempt to provide some closure, how-
ever, a few general considerations about the types of biases can be made. These
considerations look at the biases one can expect if the population data are
generated with a certain model (e.g., the 1PL) but a different model (e.g., a 2PL)
is fit and deemed acceptable. Given the analytical results in this article, these
synthetic descriptions should be understood as simplifications only.

Case 1: Generating Model is 1PL

If one fits a 1PL to data, one is effectively choosing one of the horizontal slices
in a particular three-dimensional surface in a particular column in the above
matrix. Fitting a 2PL or a 3PL to such data, which is really an example of
overfitting, does not lead to differences in o or B values compared with those
that are obtained under a 1PL calibration, because the assumptions of constant
o values and zero y values hold. Hence theoretically no differences in biases
exist and practically any differences in biases between the different calibrations
will be due to sampling fluctuations, will be extremely minor, and will have
almost no practical effect on decision-making.

Case 2: Generating Model is 2PL

If one fits a 1PL to data that were originally generated with a 2PL, one forces all
o values to be equal when in fact they are not. Depending on the degree of
deviation from the fixed value the 1PL imposes and the true generating values
as well as the location differences of examinees, one observes higher or lower
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Figure 2. Surfaces for Aij as a function of location differences, item discrimination values, and
amounts of parameter drift.

biases for either model as one effectively chooses different slices of a selected
surface. In extreme cases these differences might lead to some differences in
decision-making, but due to potential cancellation effects across item sets these
are probably going to be minor. If one fits a 3PL to data that were generated
with a 2PL one will theoretically not observe any bias differences as the con-
stant lower-asymptote assumption holds.
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2PL calibration (y, = 0)
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3PL calibration (y; = .3)
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0.4

0.3
0.2,

01

r . - ‘ ‘ . Theta - Beta
-3 -2 -1 1 2 3

Figure 3. Effect of drift for item with identical discrimination calibrated with 2PL and 3PL.

to be uniformly larger for those items that have v values different from 0 under
the 3PL, but identical discrimination values otherwise.

Throughout this article biases in response probabilities are the focus of
discussion and practitioners may wonder what the effect of such biases is on
examinee parameter values. As was demonstrated in Wells et al. (2002), a
vertical displacement in response probabilities—due to a shift in an ICC as a
result of IPD-leads to a horizontal displacement of the associated examinee
parameter values (see Figure 2, p. 80, and Figure 6, p. 85, for examples under
item difficulty parameter drift). Stated differently, the overall test characteristic
curve drift, which captures the cumulative effect of response probability biases
from individual items on examinee true scores, can be easily translated into a
related overall effect for the examinee parameters. Not surprisingly, as the
authors demonstrate, minor biases in response probabilities lead to minor
biases in examinee parameters (i.e., typically, the biases in examinee paramet-
ers are at most .01 units under item difficulty parameter drift). This is, of
course, also true for a cross-model comparison where probability biases of
similar magnitudes are observed. Assessing the exact magnitude of such effects
in practice is complicated by sample-to-sample fluctuations in parameter es-
timates, however. This process was avoided for the purposes of this article, but
the minor population effects presented in this article as an idealization of any
observable real-life effects continue to speak strongly for the robustness
properties of IRT models under IPD.
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1PL calibration (oj= 1)
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Figure 4. Effect of drift for item with different discrimination calibrated with 1PL and 2PL.

Conclusion

This article sets out to take an analytical look at the issue of model optimality to
see how one could gather evidence for making the case that one of the three
unidimensional IRT models is more robust than the others under different
forms of item parameter drift, IPD. For all practical purposes this is not possible
and it is only theoretically possible if one compares 2PL and 3PL calibrations
under restrictive side conditions. The goal of this article is not to address
calibration issues that may further compound the complexity of the problem,
because it is clear that sample-to-sample fluctuations in parameter estimates
affect the estimation of population biases and hence an investigator’s ability to
detect cleanly which case he or she is working with. At the same time, circum-
venting this problem is advantageous as it clarifies the underlying logic, for
which it is irrelevant whether one is able to pinpoint exactly what the true
parameter values are.

It is, of course, up to the modeler to decide whether robustness properties of
this kind are indeed desirable. On the one hand, one may argue that IPD is a
feature of the data to which a model should be sensitive so that a drift of a
certain magnitude should have a strong effect on model-based inferences. On
the other hand, one may argue that it is practically difficult to disentangle IPD
from other factors that could lead to a differential functioning of items so that
it is a nuisance that IRT models should be robust toward. Depending on the
philosophical beliefs about what models are supposed to accomplish that are
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brought to the table by the modeler, either line of reasoning could be con-
sidered appropriate. Therefore, it is apparent that the important decision of
which model to choose in which context cannot be defended on purely mathe-
matical grounds. At the same time, it neither can nor should be defended on
purely philosophical grounds, because the mathematical structure of models
affects the inferences that one draws from their output. This article outlines
several such effect considerations and it is hoped that the results presented
here stimulate thorough and mathematically precise discussion about the fac-
tors that make model choice defensible from both theoretical and practical
perspectives.
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