
 -i-

Validation of simple RSSI based
fingerprint algorithms for posi-
tioning in wireless networks

Vasiliki Tzouveli
SID: 3301110013

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

OCTOBER 2012

THESSALONIKI – GREECE

-ii-

Validation of simple RSSI based
fingerprint algorithms for posi-
tioning in wireless networks

Vasiliki Tzouveli
SID: 3301110013

Supervisor: Prof. Maria Papadopouli

Supervising Committee Mem-

bers:

Prof. Vasilis Katos

Dr. George Koutitas

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

OCTOBER 2012

THESSALONIKI – GREECE

 -iii-

Abstract
This dissertation was written as a part of the MSc in ICT Systems at the International

Hellenic University.

It is based on the concept of fingerprinting which is used for positioning in wireless

networks, primarily. Fingerprints can be generated using statistical information of the

collected signal-strength measurements from various landmarks (e.g. Access Points). In

particular, in the context of the algorithms for location-sensing systems, we implement-

ed two simple algorithms, the Nearest Neighbor(s) in Signal Space algorithm – as de-

scribed in RADAR system [5] – and the Percentiles method [8]. In order to obtain the

respective simulation results, we have been provided with two datasets (training and

runtime) with signal-strength values from known positions and an unknown position,

respectively, from the Telecommunications and Networks Laboratory (TNL) at

FORTH.

At this point, I would like to sincerely thank Prof. Maria Papadopouli and Dr. George

Koutitas for their guidance, instructions during this work as well as their significant

support and patience. I would like also to mention that without the support and the con-

tinuous encouragement from my family and friends, as well, this project could not be

achieved.

Vasiliki Tzouveli

29 Oct. 2012

 -v-

Contents
ABSTRACT ... III

CONTENTS ... V

1 INTRODUCTION .. 7

2 LITERATURE REVIEW ON POSITIONING .. 8

2.1 LOCATION-SENSING PROPERTIES ... 8

2.1.1 Description of Position .. 8

2.1.2 Location Computation ... 9

2.1.3 Methodology .. 9

2.1.4 Scale ... 10

2.1.5 Recognition .. 10

2.1.6 Cost ... 10

2.1.7 Limitations and Dependencies .. 11

2.2 IEEE 802.11 ... 12

2.3 LOCATION-SENSING TECHNIQUES .. 12

2.3.1 Distance-prediction based techniques ... 12

2.3.2 Signature or map-based techniques .. 16

2.3.3 Proximity ... 17

2.4 GENERATION OF FINGERPRINTS .. 18

2.5 RELATED WORK ... 19

2.5.1 RADAR ... 19

2.5.2 Practical Robust Localization System .. 22

2.5.3 Device-free passive localization system .. 24

2.5.4 Collaborative Location System (CLS) .. 25

3 IMPLEMENTATION OF ALREADY EXISTING ALGORITHMS 27

3.1 DESCRIPTION OF ALGORITHMS .. 27

3.1.1 Percentiles .. 27

3.1.2 Confidence Intervals ... 28

-vi-

3.1.3 Empirical Distribution ... 29

3.1.4 Multivariate Gaussian model .. 30

3.2 SIMULATION RESULTS ... 32

3.3 CONCLUSIONS ... 34

4 VALIDATION OF TWO SIMPLE ALGORITHMS AND TESTING 35

4.1 DEVELOPMENT OF ALGORITHMS ... 35

4.2 DEFINING EUCLIDEAN DISTANCE AND PERCENTILES 36

4.3 DESCRIPTION OF SCENARIO ... 37

4.3.1 Reading the data .. 37

4.3.2 Uploading Training and Runtime data ... 40

4.3.3 Comparing the data .. 41

4.4 SIMULATION RESULTS AND COMPARISONS .. 43

4.4.1 Estimated position and location error .. 43

4.4.2 Error Analysis .. 46

5 CONCLUSIONS .. 47

BIBLIOGRAPHY ... 48

 -7-

1 Introduction

“Difficulties are opportunities to better things,
they are stepping stones to greater experience.”

~ Bryan Adams (from 'How to Succeed') ~

“Emerging mobile computing applications often need to know where things are physi-

cally located. To meet this need, many different location systems and technologies have

been developed.” [2] Over the last few years, significant research has been done in the

domain of location-sensing using signal-strength measurements. The framework of the

following location-sensing systems will be analyzed in this project, with a Literature

Review on Positioning, presenting the basic properties and techniques used for location-

sensing as well as a survey of research related work (Section 2).

In Section 3, we will describe the framework for the existing fingerprinting methods

(percentiles, confidence intervals, empirical distribution and Multivariate Gaussian mo-

del). Afterwards, a comparative performance analysis will be analysed with some simu-

lation results, as they were presented at the respective Paper [8] for the testbed of Tele-

communication and Network Lab (TNL) at FORTH.

Finally, in Section 4, there will be a description of the development of two simple algo-

rithms for a fingerprinting location-sensing system in order to infer position, using the

methods of RADAR and Percentiles. The fingerprinting position system will read RSSI

values per AP from training and runtime cells. Finally, the cell with the minimum Eu-

clidian Distance/weight will be reported as the estimated position.

-8-

2 Literature Review on Posi-
tioning

In this Chapter, we will analyze the basic characteristics of location-sensing systems,

based on the research that conducted on relative publications. Specifically, the location-

sensing systems are classified based on their location-sensing properties. We will de-

scribe the IEEE 802.11 technology that is usually used in location-sensing systems as

well as the basic concepts of each principal technique used for location-sensing. Fur-

thermore, we will focus on the generation of statistical-based fingerprints using the col-

lected RSSI measurements per Access Point. Finally, we will end up with the related

work in the area of location-sensing using signal-strength measurements.

2.1 Location-Sensing Properties
Location-sensing system can be classified in several categories based on their properties

that are presented below. This classification forms a reasonable taxonomy for character-

izing or evaluating location systems, independent of the technologies or techniques they

use. [2]

2.1.1 Description of Position
First of all, the location of a respective system can be described as either physical or

symbolic. In the first case, the location-sensing system provides the physical position

(e.g. GPS, which is a clearly physical positioning technology) while in the second case,

the system provides a virtual-grid representation of the physical space (e.g. barcode

scanners and systems that monitor computer login activity).

In addition, coordination systems can be characterized as absolute or relative. An abso-

lute location system uses a shared reference grid for all located objects (e.g. all GPS re-

ceivers use latitude, longitude, and altitude). In a relative system, each object can have

its own frame of reference (e.g. 2 meters from an Access Point).

Some significant requirements needed for evaluating location-sensing systems is the

distinction between accuracy and precision. Accuracy is the difference between the es-

timated position from the real-value position, by reporting the location error. A result is

 -9-

considered to be accurate, if it is consistent with the true or accepted value for that re-

sult. Precision of a system is the repeatability of a measurement or the percentage of

times that position will be in an acceptable region of errors, after having put a threshold,

indicating how often we can expect to get that accuracy. It does not require to us to

know the correct or true value. The main goal of all location-sensing systems is to

achieve both high accuracy and high precision and be considered robust. [1], [2], [3]

2.1.2 Location Computation
Another classification concerning the computations is whether the collection of the

measurements takes place locally or remotely. Locally means that the measurement col-

lection takes place in the same device that is going to compute the user's position later

on (like GPS [2] or RADAR [5]), whereas remotely means that a device (i.e. laptop,

PDA) does the collection of measurements and send them to another device (e.g. a serv-

er) which makes all the appropriate computations for estimating the position of the mo-

bile device. Small devices (e.g. smartphones) use remote computations βecause of their

size. If all these computations took place at such a device, more processing power

would be required, thus, the operations of the device would be very slow.

2.1.3 Methodology
Each location-sensing system can estimate the distances, orientation, and position, using

one of the methods below:

• Signal-strength measurements (e.g., Radar [5]), if the velocity of the signal and a

signal attenuation model for the given environment, respectively, are known. Re-

ceived signal-strength indication (RSSI) is a relative measurement of the strength of

a radio signal's energy as measured by a wireless network interface card (NIC).

RSSI is used by a wireless NIC to determine if other devices are transmitting on the

channel or if it is "Clear To Send" (CTS). It is also used to determine when a wire-

less signal decreases enough that the device should attempt to roam to a new device,

called the “roaming threshold”. The RSSI scale is different for each NIC vendor be-

cause the vendor defines its own RSSI maximum which is less than or equal to 255.

In order to compute an average RSSI, we use a free wireless network monitoring

tool that measures the RSSI values at regular intervals and divides their sum by the

number of observations. [9]

-10-

• Time of Arrival – ToA (e.g. GPS [2]) is a travel time measurement. It is about a met-

ric that can comment on the quality of the link.

• Angle of Arrival; this is another method to take into consideration since it is used in

the Angulation technique, as described below. [2]

2.1.4 Scale
A location-sensing system may be able to locate objects worldwide, within a metropoli-

tan area, throughout a campus, in a particular building, or within a single room. Further,

the number of objects the system can locate with a certain amount of infrastructure

amount of infrastructure or over a given time may be limited. For example, GPS can

serve an unlimited number of receivers worldwide using 24 satellites plus three redun-

dant backups. On the other hand, some electronic tag readers cannot read any tag if

more than one is within range.

2.1.5 Recognition
An automatic identification mechanism is needed for applications that have to recognize

or classify located objects for a specific action based on their location. For example, a

modern airport baggage handling system automatically routes outbound and inbound

luggage to the correct flight or claim carousel, through tag scanners installed at key lo-

cations. In contrast, GPS satellites have no inherent mechanism for recognizing individ-

ual receivers. Systems with recognition capability like cameras and vision systems may

recognize only some feature types (e.g. color or shape of an object but not individual

people), thus, the question is if there are capabilities for identification of the user in

terms of location-sensing.

2.1.6 Cost
There are various types of cost for a location-sensing system. Time costs include factors

such as installation process's length and system's administration needs. Space costs in-

volve the amount of installed infrastructure and the hardware's size. Capital costs in-

clude factors such as the price per mobile unit or infrastructure element and the salaries

of support personnel that will monitor the system. [2]

 -11-

2.1.7 Limitations and Dependencies
Positioning systems can be classified depending on their specialized infrastructure, their

hardware availability as well as the different modalities that may employ.

With regards to specialized infrastructure, there are various systems depending on in-

frastructure and other that do not. For example, there are systems that receive position-

ing information from an AP which is wired connected with the Internet and, as a result,

the users can have Internet connection. However, a dense deployment of a wireless in-

frastructure for communication and location-sensing may not be feasible due to envi-

ronmental, cost, and regulatory barriers. In such situations, ad-hoc location-sensing sys-

tems determine positioning mechanisms so as to exploit cooperation by enabling devic-

es to share positioning estimates (e.g. CLS [3]). However, the ad-hoc approach is still

under research but it has not been applied in a real-life testbed. [10]

In terms of limitations, there are systems that do not function in certain environments.

For instance, GPS is very useful outdoors but it is ineffective indoors because buildings

block LOS from the GPS transmission. [2]

Regarding hardware availability, there are location-sensing systems that depend on

specialized hardware (i.e. tags used for placing QR codes for traceability reasons) to

locate a wireless device. However, there are others (like fingerprinting methods that will

be described below) that have no need of specialized hardware, but they are based on

existing infrastructure, such as the IEEE 802.11 infrastructure of Access Points (APs).

The devices that have a priori knowledge of their location (e.g. APs configured with

their positioning coordinates) will be referred as landmarks. The landmarks can broad-

cast positioning information (e.g. local id, maximum wireless range and estimated posi-

tion) in the form of beacon.

Finally, positioning systems may employ different modalities, such as:

• IEEE802.11 (Radar [5], CLS [3])

• Ultrasonic (Cricket [12, 13], Active Bat [14])

• Infrared (Active Badge [16])

• Bluetooth

• 4G

• Vision

• Physical contact with pressure (Smart Floor), touch sensors or capacitive detectors

-12-

The popularity of IEEE802.11 infrastructures, their low deployment cost, and the ad-

vantages of using them for both communication and positioning, make them an attrac-

tive choice. [3]

2.2 IEEE 802.11
IEEE 802.11 is a set of standards (802.11a, 802.11b, 802.11g, or 802.11n) for imple-

menting Wireless Local Area Network (WLAN) communication in the 2.4, 3.6 and 5

GHz frequency bands. These standards provide the basis for wireless network products

using the Wi-Fi brand name. [11]

2.3 Location-Sensing Techniques
Most of the signal-strength based localization systems can be classiffed into the follo-

wing two categories, namely the distance-prediction based and the signature or map-

based. We will also examine the Proximity location-sensing technique.

2.3.1 Distance-prediction based techniques
This type uses signal-strength values to estimate the distance of a wireless client from

any landmark (i.e. an AP) based on radio propagation models. What is applied is the

triangulation technique, which uses the geometric properties of triangles to compute ob-

ject locations. Triangulation is divisible into the subcategories of lateration, using dis-

tance measurements, and angulation, using primarily angle or bearing measurements. A

survey of positioning systems can be found in [2].

Lateration
Lateration computes the position of an object by measuring its distance from multiple

reference positions. Calculating an object's position in two dimensions requires distance

measurements from 3 non-collinear points as shown in Figure 1. In 3 dimensions, dis-

tance measurements from 4 non-coplanar points are required. Domain-specific

knowledge may reduce the number of required distance measurements.

 -13-

Figure 1: Determining 2D position using lateration requires distance measurements between the object

'X' and 3 non-collinear points.

In order to measure the distances required by the lateration technique, there are three

general approaches:

1. Direct measurement of distance, which uses a physical action or movement, which is

simple to understand but difficult to obtain automatically due to the complexities in-

volved in coordinating autonomous physical movement. [2]

2. Path Loss Attenuation (in dB), which is calculated based on the transmitted and the

received signal strength and is proportional to the square of the distance between the

transmitter and receiver. The measurement of path loss provides a distance estimate be-

tween the mobile object and the base station. This means that the mobile object must lie

on a circle which has as a center the base station and as radius the distance between

them. The path loss can be found if the mobile object knows the power transmitted from

the base station and the received power. The general path loss model is shown below:

)/(log10)(0100 ddnPdP −=

n: path loss exponent
P(d): the average received power in dB at distance d
P0: the received power in dB at a short distance d0

Thus, using three base stations as it is represented in Figure 1, the system can compute

the distance (e.g. the radius of each circle) between the mobile object and each base sta-

tion, respectively, as an equation for a given velocity and time of arrival of the signal.

The intersection of the 3 circles (or the solution of the system of the 3 equations that are

coordinated) is the estimated position of the user.

However, attenuation varies based on the environment. Signal propagation issues such

as shadowing and multipath cause the attenuation to correlate poorly with distance re-

-14-

sulting in inaccurate and imprecise distance estimates. [2] Therefore, examining the ra-

dio propagation models, we can conclude the following:

• The Free Space model is an Empiric Model and is based on the several measure-

ments of the signals with the path loss exponent to be equal to two. Because of the

reasons that were indicated above, this model does not correspond to the real envi-

ronmental situations.

• The Two-Ray model is a Deterministic Model and observes the existence of two

empiric phenomena; the reflection of the transmitted signal and the Line-Of-Sight

(LOS). The path loss exponent in this case is equal to four. This model is more

complex than the previews one, but it does not incorporate the need for precise envi-

ronmental profiling.

• The Probabilistic Model is suggested due to the fact that it models the environment

by fitting the signal strength measurements in probability distributions with the path

loss exponent to be equal to n. This model tries to find the probability that the esti-

mated position of the user will be in an acceptable region of errors (e.g. fading,

shadowing) that occur during the radio propagation. For example, Gaussian distribu-

tion describes very well the case when there are no errors during propagation, while

Rayleigh distribution is appropriate for describing fading in NLOS situations. [1],

[7]

3. Time-of-flight, which measures the time it takes the emitted signal to travel from an

object to some point P, requiring a known velocity. For example, sound waves have a

velocity of approximately 344 m/s in 21°C air. Therefore, an ultrasound pulse sent by

an object and arriving at point P 14.5 milliseconds later allows us to conclude that the

object is 5 meters away from point P. Measuring the time-of-flight of light or radio may

also require clocks with much higher resolution (by six orders of magnitude) than those

used for timing ultrasound. For example, a light pulse emitted by the object has a ve-

locity of 299,792,458 m/s and will travel the 5 meters to point P in 16.7 nanoseconds.

Some time-of-flight location-sensing systems include GPS and the Cricket Location

System [12]. Ignoring pulses arriving at point P via an indirect (and hence longer) path

caused by reflections in the environment is a challenge in measuring time-of-flight since

direct and reflected pulses look identical. [1]

 -15-

GPS, an excellent lateration framework using time-of-flight approach
The Global Positioning System is a space-based satellite navigation system and is per-

haps the most widely publicized location-sensing system, based on an unobstructed

LOS from four or more GPS satellites which are at fixed positions. GPS is actually a

constellation of 27 earth-orbiting satellites (24 in operation and three extras in case one

fails). The orbit altitude is such that the satellites repeat the same track and configura-

tion over any point approximately each 24 hours.

The receiver is not synchronized with the satellite transmitters and thus cannot precisely

measure the time it took the signal to reach the ground from space. Therefore, GPS sat-

ellites are precisely synchronized with each other and transmit their local time in the

signal, allowing receivers to compute the difference in time-of-flight.

There are four unknowns to describe the position of a GPS receiver; not only the three

components of GPS receiver position (longitude, latitude and elevation) but also the

clock bias, e.g. the error between the receiver clock and the synchronized satellite

clocks [x, y, z, b]. Because of the forth unknown, an additional measurement from a

fourth satellite is required in GPS receiver instead of only 3 satellites that would nor-

mally be required to estimate a 3D position. As a consequence, with four equations (4

satellite signals) and four unknowns, the GPS receiver solves for the unknowns. Assum-

ing that the GPS receiver knows the location of 4 satellites in orbit and the distance

from each satellite to the receiver, he can calculate its position in time and space. [2,15]

It is worth mentioning that other GPS error sources are noise, troposphere delays due to

weather changes (e.g. temperature, pressure, humidity), ionospheric delays (the speed of

a electromagnetic wave will deviate from the speed of light in a vacuum as the wave

encounters water vapor and other atmospheric material) and multipath which is very

difficult to be detected and sometimes hard to be avoided (caused by reflected signals

near the receiver that can either interfere with or be mistaken for the signal that follows

the LOS from the satellite).

To maintain synchronization, each of the 27 GPS satellites contains four ce-

sium/rubidium atomic clocks which are locally averaged to maintain accuracy and are

updated daily by US Air Force GPS ground control. [1, 2, 15] For an excellent summary

of GPS theory, you may refer to [2].

-16-

Angulation
Angulation is similar to lateration except, instead of distances, angles are used for de-

termining an object’s position. 2D angulation requires at least two angle measurements

and the distance measurement between two reference points (Figure 2). Phased antenna

arrays are an excellent enabling technology. Multiple antennas with known separation

measure the ToA of a signal. Given the differences in arrival times and the geometry of

the receiving array, it is possible to compute the angle from which the emission origi-

nated. If there are enough elements in the array and large enough separations, the angu-

lation calculation can be performed. [2]

Figure 2: 2D angulation, for locating the object 'X' using angles relative to a 0° reference vector and the

distance between two reference points.

2.3.2 Signature or map-based techniques
This type creates a Signal-Strength (SS) signature or map of the physical space after

gathering RSSI values from beacons collected from APs at various positions (APs are at

a fixed and known positions). The physical space is represented as a grid of cells with

fixed size and well-known coordinates. The basic concept of this technique is that SS is

a function of the user location, i.e. a location-sensing system may estimate the position

by applying pattern matching algorithms that relate SS measurements, acquired from

messages exchanged between devices, to their position on the terrain or their distance in

wireless networks [1], [3]. A description of such algorithms is presented at the follow-

ing chapters.

The advantage of signature-based technique is that the objects’ location can be deter-

mined using passive observation and features that do not correspond to geometric an-

gles or distances. However, their main disadvantage is that environmental changes alter

the signal strength, thus a reconstruction of the predefined dataset or retrieval of an en-

tirely new dataset may be needed. [2] Signature-based techniques will be analyzed in

this project, starting from Chapter 2.4.

 -17-

2.3.3 Proximity
A proximity location-sensing technique entails determining when an object is “near” a

known location. The object's presence is sensed using a physical phenomenon with lim-

ited range. There are three general approaches for sensing proximity:

1. Detecting physical contact with an object, using e.g. pressure, touch and capacitive

field detectors. Capacitive detection has been used to replace the Computer Mouse and

implement a Touch Mouse using direct contact with a person’s skin [2].

2. Monitoring the connectivity of a mobile device when it is in the range of one or more

access point in a wireless cellular network. The cell geometry is associated with the

wireless technology used in this implementation. For example, a radio cellular network

cell may have the shape of the region containing object 'X' while a diffuse infrared cell

in a room is constrained by the walls resulting in a square shape (used by Active Badge

[16]).

Figure 3: Objects 'X', 'Y', and 'Z' are located by monitoring their connectivity to one or more access point

in a wireless cellular network.

3. Observing automatic ID systems, using automatic identification systems such as cred-

it card point-of-sale terminals, computer login histories and identification tags (e.g.

electronic highway E-Toll systems and UPC product codes. If the device scanning the

label, interrogating the tag, or monitoring the transaction has a known location, then the

location of the mobile object can be determined.

Proximity approaches may need to be combined with identification systems. For exam-

ple, the Contact system enables communication between the objects that a user is touch-

ing. Then, all these objects can exchange identification information over the same

communication channel. In contrast, the Touch Mouse and pressure sensors require an

additional identification system since the method used to detect proximity does not pro-

vide identification directly. [2]

-18-

2.4 Generation of Fingerprints
As we mentioned previously, the physical space is represented as a grid of cells with

fixed size and well-known coordinates. A wireless device that listens to a channel re-

ceives the beacons sent by APs (at that channel) periodically and records their RSSI

values. Wireless devices that run fingerprint based positioning systems acquire such

measurements and generate statistical fingerprints, each of them representing different

environmental conditions, for a position using these measurements. [8]

The concept of such systems is that during the Training Phase, there is a mobile user

with a mobile device that walks to different, known locations, associating the observed

signal-strength measurements (ssj) acquired from the jth Access Point with the physical

coordinates (x, y, z) at each cell i. Thus, a training fingerprint is generated e.g. a vector

with entries of the form (xi, yi, zi, ssj (j =1...n)). Each entry of the vector corresponds to one

AP.

Similarly, during the Runtime Phase, a static user tries to determine its position by

measuring the signal strength of the jth AP within range at the unknown position of the

cell i* with coordinates (x*, y*, z*). The runtime fingerprint that is created is a vector

with entries of the form (x*, y*, z*, ssj (j =1...n)). In order to estimate its position, the user

is running a pattern-matching algorithm which compares the two fingerprints by finding

the cell whose training fingerprint has the minimum “distance” from the runtime one.

There are various methods that can be derived for the fingerprint comparison, based on

the statistical characteristics of the signal-strength measurements, such as confidence

intervals and percentiles, the empirical distribution or the parameters of a theoretical

distribution (e.g. Multivariate Gaussian) [3], [8]. Fingerprint comparison depends on the

statistical properties of the fingerprint e.g. Euclidean distances of the vectors and Kull-

back-Leibler Divergence test. [1]

A fingerprint can be built using various statistical properties e.g. mean and standard de-

viation, percentiles, empirical distribution (entire set of signal strength values), theoreti-

cal models (e.g. multivariate Gaussian).

An extensive description of fingerprinting methods will follow at Chapter 3.

 -19-

2.5 Related Work
Over the last few years, significant research has been done in the domain of location-

sensing using signal-strength measurements. The framework of the following location-

sensing systems will be analyzed.

2.5.1 RADAR
RADAR is a location and tracking system, developed by a Microsoft Research group in

order to compute the 2D position of a user within few meters of his actual position on a

single floor of a building. The basic system was built over an off-the shelf RF WLAN.

Bahl et al. improved its performance using a WLAN under IEEE 802.11 protocol to in-

crease the chances of large-scale deployments. The algorithm that was implemented

was the Nearest Neighbor(s) in Signal Space (NNSS) which is based on the calculation

of the Euclidian distance between the two vectors (e.g. training and runtime fingerprint,

respectively) for each cell and their size is equal to the number of APs that appear in

both the training and runtime measurements. [5]

Algorithm 1: NNSS based on the Euclidian Distance between 2 vectors
1. During Training phase:

• Collect RSSI measurements from APs at each cell at known position

• Create the training fingerprint Tij(c) which is an m×n matrix of training RSSI

values collected for each cell i=c (i=1,…,m) from j=1,…,n APs.

2. During Runtime phase:

• Collect RSSI measurements from each AP at the unknown position.

• Create the runtime fingerprint Rj which is an 1×n vector of runtime RSSI values

collected at the unknown cell i=i* from the jth AP

3. During Runtime phase, compare the runtime with the training fingerprint by calcu-

lating the Euclidian distance between the 2 vectors (e.g. training and runtime finger-

prints) for each cell 1.

()∑
=

−=
n

j
jij cTRd

1

2
,)(, i=1,…,m and j=1,…,n

-20-

Where,

• m is the number of cells

• n the number of APs, thus, the number of RSSI values acquired from APs

• Ti,j(c) is an mxn vector with training RSSI values from the jth AP at the cell i=c,

• Rj is an 1xn vector with runtime RSSI values from the jth AP at the unknown cell i=i*.

4. Report as the estimated position the cell c* with the minimum Euclidian distance.

For example, let’s suppose that:

1. Rj = [ss1’ ss2’] e.g. 2 RSSI values from 2 APs at cell i* with coordinates (x*,y*,z*).

2. Tij = [ss1 ss2; ss3 ss4] e.g. 2 RSSI values from 2 APs at the 2 different cells with co-

ordinates (x1, y1, z1) and (x2, y2, z2), respectively.

3. Then, the minimum Euclidian distance corresponds to the cell

c* = argmin{sqrt((Rj – Tij(1))2 + …+ (Rj – Tij(n))2), for i=1,2 and j=1,2} or

argmin{sqrt((ss1’–ss1’)2 + (ss2’–ss2’)2), sqrt((ss1’–ss3’)2+(ss2’ – ss4’)2)}

4. The minimum is the estimated position at cell i* with coordinates (x*, y*, z*) e.g.

If min{(x*, y*, z*) corresponds to (x1, y1, z1)}

else {(x*, y*, z*) corresponds to (x2, y2, z2)}

One variant of the basic NNSS algorithm is the NNSS-AVG algorithm, which is used in

case that there is more than one SS tuple in the Radio Map “close” in signal space to

measured SS tuple. Then, the NNSS-AVG algorithm picks a small number of closely

matching tuples and averages their physical location to obtain an estimate of the user’s

location. Often this results in a better estimate than any individual tuple.

Performance of RADAR
Regarding the performance of the system, the NNSS algorithm computes the location

error as the Euclidian Distance between the true location and the estimated location of

the user. The location error has a median of 2 to 3 meters, about the size of a typical of-

fice room in the building.

Regarding the performance of the 2 deployments of RADAR, the mean location error

and the 90th percentile of the error distance for the basic version are 2.65 m and 5.93 m,

respectively, while the corresponding values for the extended version are 2.37 m and

 -21-

5.97 m. Moreover, the number of APs with overlapping coverage affects the perfor-

mance of the system, since there is a significant benefit in terms of location error to go-

ing from 1 AP to 2 APs and again from 2 APs to 3 APs; however, there is little benefit

in going beyond 3 APs. This is because of the interference that imposes a limit on how

accurately location can be inferred using the NNSS. Off course, the more APs, the more

the deployment cost for the system.

The extended version of Radar was built in order to alleviate the side effects that result

from SS nature e.g. aliasing and multipath. The three main improvements that were im-

plemented in order to achieve the mentioned results were the following:

• The continuous user tracking technique to cope with aliasing, based on Viterbi-like

algorithm [5]. Aliasing is the phenomenon that can happen because of the complex

indoor propagation environment and depends on the building layout and the place-

ment of APs. The signal strength at a point close to an AP may be similar to another

point that is far away simply because of an obstruction (such as a wall) that attenu-

ates the signal received at the former point while the latter point receives an unob-

structed signal. In this case, the system uses past information (something that NNSS

did not) so as to have a better guess of current location. The concept is that, due to

physical constraints, the user cannot “jump around” over large distances at random,

but it follows a path, based on past information. The mid-point of the path is

guessed to be the user’s location. This technique improved the accuracy of user lo-

cation by over 33%.

• The environmental profiling to alleviate multipath phenomenon, achieved by using

two different fingerprints. This technique improved the accuracy of the system by

over a factor of 3.

• An extension of the basic NNSS algorithm to 3D space (i.e. to multiple floors in a

building) to test if RADAR would work well, as well. The measurements were satis-

fied, however aliasing should be considered thoroughly (e.g. sending a document to

a printer of another floor).

A big question is how well RADAR would perform in a “real-world” setting, such as a

shopping mall, where the constant movement of a varying number of people changes

the RF propagation environment considerably. To answer to this question, the group has

some deployments and testing regarding a local mall. [5]

-22-

2.5.2 Practical Robust Localization System
The basic idea of this system as presented by Kavraki et al. [6] is based on the use of

probabilistic techniques that remarkably determine the accurate location of a mobile de-

vice across an entire office building of over 12,000 m2 under IEEE 802.11 protocol. The

most important aspect in this system is the scale, since the mentioned building corre-

sponds to a more realistic and practical use. The building was divided into 510 different

cells (each cell represents a whole office with average size of 24.6 m2) on the topologi-

cal map in order to determine the position of a device. The fact that the location of the

device is mapped to a cell instead of a point makes the system very effective, due to the

fact that instead of measuring each BS’s signal strength at points spaced 1-2 meters

apart in order to achieve accuracy, SS measurements were collected for whole offices,

treating the entire office as a single position. The system supports both static localiza-

tion and dynamic tracking at speeds of over 3 m/s.

Regarding static localization (e.g. a static environment and a stationary agent), the

method that was performed was Bayesian Framework [6] since it can quantify the un-

certain relationship between the observed RSSI values and the position.

Algorithm 2: Bayesian Localization framework

1. During Training phase:

• Collect RSSI measurements from base station scans in various positions of each

cell, so as to cover the entire cell.

• Create a matrix of conditional probabilities P(oj|si) which encode the probability

of observing the RSSI values oj given that the agent is in state si (e.g. the agent

being in cell i).

2. During Runtime period:

• Create iπ which is a vector including a prior estimate of the user’s state.

• Perform Bayesian filtering [6] which updates the estimated location 'iπ at a spe-

cific cell, e.g.
η

π
π iij
i

soP)|(
'=

where η is the estimate normaliser or confidence e.g. ∑
=

=
n

i
iij soP

1
)|(πη

• Repeat the above steps until estimates converge.

 -23-

This matrix of conditional probabilities is referred to as the sensor model. In order to

determine the basic localization performance of the system, the Group used two meth-

ods for modeling the conditional probabilities:

• The Histogram sensor model. For each si, the P(oj|si) are determined by the normal-

ized signal intensity histograms recorded during the training phase.

• The Gaussian fit sensor model, by fitting the ss measurements in a normal distribu-

tion for a given observation set O = B×V, where B= {bj=1,…,k} is the set of base sta-

tions and V = {0,…,255} is the set of signal intensity values. The probability of ob-

serving (bj,v) ∈ O at state si adds a null hypothesis and normalizes the resulting dis-

tribution which is given by the formula:

ji

ji
ij N

vG
svbP

,

,)()|),((β+
=

Where:

- Gi,j(v) refers to Gaussian distribution determined by mean µi,j and standard deviation σi,j

- β is a small constant used to represent the probability of observing an artifact and

- Ni, j is a normalizer such that ∑
=

=
255

0

1)|),((
ν

ij svbP

Performance of the system
Gaussian model proved to be a high-precision topological location technique for posi-

tioning a device to one of these 510 cells. Over all experimental trials, the Gaussian

method was correct in over 97% of trials, while the histogram method in over 95% of

trials. Despite the fact that both models achieved excellent accuracy, in several cells, the

Histogram method had fewer than 50% accuracy. Furthermore, Gaussian model re-

quires less training data (95% accuracy is achieved with 84 scans for Histogram and 30

scans for Gaussian), thus, much lower training time (less than 1 min per office or re-

gion) than Histogram model. As a result, a user can obtain high level of accuracy with

only two or three ss measurements (with possibility for only 1 cell error, among 510

cells). Even in the worst case scenario, Gaussian can localize a user in adjacent offices.

The Gaussian model is more robust than histogram-based model as the first one can be

described by only two parameters for each base station and cell, while keeping the en-

tire histogram requires as much as 30 times more storage. This reduction increases the

speed and reduces the memory requirements for localization, making it more suitable

for low-power embedded devices. [6]

-24-

2.5.3 Device-free passive localization system
The concept of Device-free passive (DfP) localization is that the tracked entity need nei-

ther carry devices nor participate actively in the localization algorithm. The idea is to

use installed wireless data networks to detect changes in the environment and track the

location of entities passively and without requiring any devices to be attached to these

entities. The DfP concept relies on the fact that RF signals are affected by changes in

the environment due to the movement of the user, especially for the frequency ranges of

the common wireless data networks that are currently deployed, such as WiFi, or envi-

sioned, such as WiMax. By placing monitoring stations that continuously record physi-

cal quantities, such as signal strength or time-of-flight, DfP can analyze these signals to

detect the changes in the environment and correlate them with entities and their loca-

tions.

The DfP system consists of signal transmitters (e.g. APs and stations used in traditional

WiFi deployment), monitoring points (e.g. standard wireless sniffers), along with an

application server for processing and initiating actions as needed (see Figure 4). Figure

5 shows an example of the measured changes of the environment due to the movement

of a person. DfP functions include detecting the presence or absence of entities, tracking

entities, and identifying entities. [4]

Figure 4: An example of the different components
of a DfP system.

Figure 5: An example of changes in the environ-
ment due to the movement of a person (raw data)
reported for four different transmitter-receiver
pairs. The time of different events, such as move-
ment of a person, is indicated by E1 through E10.

 -25-

2.5.4 Collaborative Location System (CLS)
CLS is a location-sensing system proposed by the Telecommunications and Networks

Laboratory (TNL) of FORTH-ICS that uses the following two features:

• probabilistic-based frameworks for transforming measurements from various

sources to position and distance estimates

• the peer-to-peer paradigm.

CLS employs the peer-to-peer paradigm, enabling wireless-enabled devices to adaptive-

ly position themselves by using the existing communication infrastructure (WiFi APs)

without the need of specialized hardware or training. CLS adopts a grid-based repre-

sentation of the physical space; each cell of the grid corresponds to a physical position

in the physical space e.g. is associated with a value that indicates the likelihood that the

node is in that cell. These values are computed iteratively using a simple voting algo-

rithm to accumulate and evaluate the received positioning information. [3]

Algorithm 3: Voting algorithm approach
A node tries to position itself on its local grid through a voting process in which the de-

vices participate by sending position information and casting votes on specific cells. In

particular, each local CLS instance runs an algorithm that transforms (maps) signal-

strength data from beacons collected from other peers (and act as landmarks) to either

distance or position estimates. The transformation algorithm can be based on a radio

attenuation model or a pattern matching algorithm. These algorithms relate signal-

strength measurements, acquired from messages exchanged between devices, to their

position on the terrain or their distance. Based on the position information of the sender

and this distance estimation, the receiver estimates its own position on the local grid. An

iteration of the voting process at a local CLS instance is described below:

• Gather positioning information from other neighboring peers who act as landmarks

and have already positioned themselves

• record SS measurements from the received information

• transform this information to a probability of being at a certain cell of its local grid

• add this probability to the existing value that this cell already has, and

• estimate its distance from its peers by reporting a position that corresponds to the

centroid of the set of cells with maximal weight.

-26-

When the local CLS estimates its own position, it broadcasts this set of information, i.e.

CLS entry, to its neighbors. Each node maintains a table with all the received CLS en-

tries. In case that the peers have new positioning information, the host incorporates this

newly received information and iteratively determines its position accordingly.

Votes may have different weights. The larger voting weight a cell has acquired, the

more likely it is for the corresponding node to be located in that cell. The set of cells in

the grid with maximal value indicates the potential region. Figure 6 shows a snapshot of

the grid as three landmarks vote on the location of an unsolved host. Specifically, host u

tries to position itself by gathering information from peers A, B and C that have already

positioned themselves at the center of the co-centric disks, respectively. After accumu-

lating the votes of the peers, host u is determined to be at the position that corresponds

to the centroid of the set of cells in the grid with maximal weight and is depicted as the

brightest area in the figure. [3]

Figure 6: An example of accumulation of votes on grid cells of a host. The brighter an area, the more

voting weight has been accumulated on the corresponding grid cells. The brightest area corresponds to a

potential solution. The grid cell is too small to be distinguishable.

 -27-

3 Implementation of already ex-
isting algorithms

The scope of this Chapter is to describe the framework for the existing fingerprinting

methods (percentiles, confidence intervals, empirical distribution and Multivariate

Gaussian model). Afterwards, a comparative performance analysis will be analysed

with some simulation results, as it was presented at the respective Paper [8] for the test-

bed of Telecommunication and Network Lab (TNL) at FORTH.

3.1 Description of Algorithms

3.1.1 Percentiles
Firstly, each cell is described by a vector of RSSI values of the beacons received from

the corresponding APs. In order to construct the fingerprint of a cell, we compute the

percentiles (e.g. 90th, 100th percentile) per AP for each cell. In other words, the finger-

print of a cell is not a vector of RSSI values but a vector of the calculated percentiles,

each corresponding to an AP.

Algorithm 4: The method of Percentiles

1. During Training phase:

• Collect RSSI measurements from APs at each cell with known position.

• Create an 1×n vector of training RSSI values collected at each cell c from

i=1,…,n APs.

• Compute the j=1,…,p percentile e.g. PERCENTILE([1,n],[p1, p2, …, pn]) using

the training measurements for the ith AP at the cell c.

• Create the training fingerprint Tij(c) which is an 1×p vector containing the jth

percentile for each AP at cell c.

2. During Runtime phase:

• Collect RSSI measurements from each AP at the unknown position.

• Create an 1xn vector of runtime RSSI values collected at the unknown cell from

the ith AP.

• Compute the j=1,…,p percentile e.g. PERCENTILE([1,n],[p1, p2, …, pn]) using

the runtime measurements from the ith AP at the unknown cell.

-28-

• Create the runtime fingerprint Rij which is a 1×p vector containing the jth per-

centile for each AP at the unknown cell

3. During Runtime phase, compare the runtime with the training fingerprint by assign-

ing a weight at cell c w(c) for each i=1,…,n AP

∑ ∑
= =

−=
n

i

p

j

i
j

i
j cTRcw

1 1

2))(()(, for i=1,…,n and j=1,…,p

Where,

• n is the number of APs,

• p the number of percentiles,

• Rij the jth percentile of runtime measurements from the ith AP and

• Tij(c) the jth percentile using the training measurements from the ith AP at the cell c.

4. Report as the estimated position the cell c* with the minimum weight.

In the case of the top 5 weighted percentiles approach, the centroid of the top five cells

with the minimum weights is reported as the estimated position.

This approach is similar to the confidence-interval one. However, a set of percentiles

can capture more detailed information about the signal strength distribution than confi-

dence intervals, and thus, resulting to more accurate fingerprints. [8]

3.1.2 Confidence Intervals
Similarly, each cell is described by a vector of RSSI values per AP for each cell and,

then, the system computes the confidence intervals per AP. Thus, the fingerprint of a

cell is a vector of the calculated confidence intervals, each corresponding to an AP. The

width of the confidence interval gives us some idea about how uncertain we are about

the unknown position (see precision). A very wide interval may indicate that more data

should be collected before making any estimation about the position of the user.

Algorithm 5: The method of Confidence Intervals

1. During Training phase:

• Collect RSSI measurements from APs at each cell at known position.

• Compute the confidence limits of a confidence interval for the ith AP at cell c

e.g.)](),([cTicTi
+−

• Create the training fingerprint Tij(c) which is a vector of these confidence inter-

vals (for all APs) at cell c.

 -29-

2. During Runtime phase:

• Collect RSSI measurements from each AP at the unknown position.

• Compute the confidence limits of a confidence interval for the ith AP at the un-

known position/cell e.g.],[+−
ii RR .

• Create the runtime fingerprint Rij which is a vector containing the calculated

confidence intervals from all APs of that cell.

3. During Runtime phase, compare the runtime with the training fingerprint by assign-

ing a weight at cell c w(c) for each i=1,…,n AP. In the case that:

• the training confidence interval is included in the runtime confidence interval or

• the runtime confidence interval is included in the training confidence interval

the weight of that cell is increased by one. In the case of partial overlap of these two

confidence intervals, the value corresponds to the ratio of this overlap.

4. Report as the estimated position the cell c* with the maximum weight. [8]

3.1.3 Empirical Distribution
This method uses the Kullback-Leibler Divergence (KLD) that quantifies the proximity

of two probability distributions i.e. how close the training fingerprint is to the runtime

fingerprint, in our case. Only APs that appear in both training and runtime are used.

Each fingerprint uses all the RSSI measurements collected per AP.

Algorithm 6: The method of Empirical Distribution

1. During Training phase:

• Collect RSSI measurements from APs at each cell c with known position.

• Create the training fingerprint qi, an 1xn vector of training RSSI values collected

at each cell from i=1,…,n APs.

2. During Runtime phase:

• Collect RSSI measurements from each AP at the unknown position.

• Create the runtime fingerprint pi, an 1xn vector of runtime RSSI values collected

at the unknown cell from the ith AP.

3. During Runtime phase, compare the runtime with the training fingerprint by assign-

ing a weight at cell c w(c) for each i=1,…,n AP which corresponds to the average

-30-

empirical KLD distance (is always non-negative) between the training and runtime

fingerprints pi and qi, respectively, for all APs.

∑=
n

i i

i
iKL q

ppqpD 2log)||(

4. Report as the estimated position the cell c* with the smallest KLD distance.

For instance, if the two vectors match exactly, the KLD is equal to zero. Moreover, we

must have pi = 0 whenever qi = 0, else KLD is equal to infinity.

D(p||q) is not the true distance because it is assymetric between p and q i.e.

D(p||q)≠D(q||p) and it does not satisfy the triangle inequality, as well. [8]

3.1.4 Multivariate Gaussian model

The multivariate Gaussian-based approach takes into consideration not only the ss

measurements from each AP but also the interplay or interdependencies among meas-

urements collected from pairs of APs at a certain position. This approach provides im-

portant information about the geometry of the environment with a more accurate repre-

sentation of the RSSI profiles, leading to improved positioning performance. The algo-

rithm presented below is applied in iterations where the selected region is also divided

into multiple spatial scales (sub-regions). Then, Multivariate Gaussian Model is applied

in multiple spatial scales (regions). The above process is repeated in that region until the

region becomes a cell. The signature comparison and position estimation is based on the

Kullback-Leibler divergence (KLD).

Algorithm 7: The multivariate Gaussian-based method (spatial scale of a cell)

1. Physical space is divided into overlapping regions and each cell corresponds to a

Multivariate Gaussian distribution

2. During Training phase:

• Collect RSSI measurements from APs at each cell i with known position
},{ iiii Sc Σ=→ µ , where

o iµ are the mean values of the received RSSI measurements per AP

o iΣ is the covariance matrix (measure of spatial correlation)

• trainingAP(i): set of APs from which data are collected at cell i

 -31-

3. During Runtime phase:

• Collect RSSI measurements from each AP at the unknown position

},{ RRRR Sc Σ=→ µ

• runtimeAPs: set of APs from data are collected

• effectiveAP(i): trainingAP(i) ∩ runtimeAP

4. During runtime, perform the following steps for each cell i:

• Generate the training signature for cell i using only training measurements col-
lected from APs ∊ effectiveAP(i)

• Generate the runtime signature using only runtime measurements collected from

APs in effectiveAP(i)

• Apply Multivariate Gaussian model through the density function

⎟
⎠

⎞
⎜
⎝

⎛ −Σ−−
Σ

=Σ −Τ
Κ

)()(
2
1exp

||)2(
1),|(1

2/12/ µµ
π

µ xxxp

• Estimate the KLD distance between runtime and ith training cell by measuring

the similarity of the Multivariate Gaussian distributions (MvGs) i.e.

() ()() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ−−Σ+⎟

⎠
⎞⎜

⎝
⎛ −Σ⎟

⎠
⎞⎜

⎝
⎛ −= ∑∑

−−− ||ln
2
1)||(1

,
1

,,
1

,,,
s

R
s
Ti

s

R
s
Ti

s

R

s

Ti
s
Ti

Ts

R

s

TiTiR ItrppD µµµµ

5. Report as the estimated position the cell i* with the minimum KLD distance. [8]

-32-

3.2 Simulation Results
The empirical-based evaluation of the different signature-based approaches took place

in the TNL at FORTH, an area of 7m×12m, which was represented as a grid of cells of

55cm×55cm. During the Training phase and after collecting signal-strength values at

various cells of the grid, two datasets were collected:

• One during a relatively busy period (around 15:00 on weekdays) with at least five

people in the laboratory and several others walking in the hallways outside and

• Another one during a quiet period (around 23:00 on the same weekdays as the busy

period dataset) with only one person in the laboratory.

The busy (quiet) period dataset included measurements from 108 (104) different cells

and 13 (12) APs, respectively. On average 6 APs were detected at a given cell and more

than 300 RSSI values were collected at each cell per AP. The trainer remained still for

approximately 90s (30s) to collect beacons at each position during training (runtime)

period, respectively. In order to capture SS values, iwlist, which polls each channel and

acquires the MAC address and RSSI measurements from each AP (in dBm), and the

tcpdump, a passive scanner relying on libpcap, for the retrieval of each packet were

used.

In order to evaluate the performance of the various fingerprinting methods, the localiza-

tion error was computed, which was measured as the Euclidean distance between the

centers of the reported cell and the cell at which the mobile user was actually located at

runtime (as we saw also in RADAR). 30 measurements were run at different positions

(run time cells). Figures 7(a) and 7(b) illustrate the localization error of the different ap-

proaches during busy and quiet period, respectively.

(a) Busy period dataset (b) Quiet period dataset

Figure 7: The performance of various fingerprint positioning methods at FORTH.

 -33-

After calculating the median error for the signature-based approaches, the multivariate

Gaussian model (MvGs) performs much better than percentiles, confidence interval

(90%) and empirical distribution approaches, as it is shown in Table 1.

Signature-based approaches
Dataset

Quiet period Busy period

Multivariate Gaussian model
(MvGs) 1.72m 1.60m

Percentiles 2.91m 2.65m

90th confidence interval 4.16m 2.82m
Table 1: Median localization error for different signature-approaches

However, transient phenomena or radio propagation characteristics in the given envi-

ronment should be carefully considered, since it might be difficult to distinguish the

correct cell from other further-away cells that have similar training fingerprint with the

runtime one due to aliasing phenomenon (as it was also described previously for RA-

DAR [6]). To measure the impact of the number of APs on the localization accuracy,

each ith AP is associated with a popularity index |{c|APi ∊ effectiveAP(c)} that indicates

the number of cells at which there were measurements (from that AP) at both training

and at runtime. The APs were sorted in a decreasing order based on their popularity in-

dex. The analysis was repeated using the top most popular APs for the busy period

and the quiet period datasets.

Figure 8 shows the impact of the number of APs on location error. “The higher the

number of APs, the lower the location error”. However, after a certain threshold, the

impact of the number of APs diminishes regarding busy period primarily.

Figure 8: Impact of the number of APs on location error.

The x-axis indicates the number of the top x APs considered in both training and runtime datasets.

-34-

This happens due to the fact that the busy period dataset is more vulnerable to transient

phenomena than the quiet period one. Thus, “the impact of the number of APs is more

prominent in the busy period dataset than in the quiet period one”. For example, in the

busy period dataset, the improvement in the location error when the number of APs be-

comes six is about 80cm, while when the number of APs increases from six to 13, the

location error is reduced by only 20cm.

Figures 9(a) and 9(b) illustrate the impact of the measurement size on the accuracy of

the multivariate Gaussian-based method. The percentage (%) indicates the percentage of

measurements considered in both training and runtime datasets out of the corresponding

original datasets (used in the other plots). In general, “the larger the measurement set,

the more accurate the position estimation”.

(a) Busy period dataset (b) Quiet period dataset

Figure 9: Impact of the number of signal-strength measurements on location error.

3.3 Conclusions
The empirical-based evaluation at FORTH revealed that the multivariate Gaussian

method outperforms other signal-strength fingerprint approaches. The presence of peo-

ple, the density and placement of APs as well as the size of the training set have a prom-

inent impact on positioning. [1, 8]

 -35-

4 Validation of two simple Al-
gorithms and Testing

4.1 Development of Algorithms
In this Chapter, there will be a description of the development of algorithms for a fin-

gerprinting location-sensing system in order to infer position, using the methods of

RADAR and Percentiles. The fingerprinting position system will read RSSI values per

AP from training and runtime cells and will compute the Euclidian distance and the

weight (after calculating the 10 percentiles) that corresponds to each cell respectively

for each method. Finally, the cell with the minimum Euclidian Distance/weight will be

reported as the estimated position.

The figure below shows the floorplan of the Telecommunications and Networks La-

boratory (TNL) at FORTH, an area of 7m×12m. The area is divided into cells of equal

size, which was represented as a grid of cells of 0.55cm×0.55cm. The cells are repre-

sented with the gray squares. For better understanding, you may find represented the

cell with coordinates (0, 0) with the red square below.

Figure 10: Grid Representation of the Telecommunications and Networks Laboratory (TNL) at FORTH

-36-

4.2 Defining Euclidean Distance and Percentiles
In mathematics, “the Euclidean distance is the “ordinary” distance between two points

that one would measure with a ruler and is given by the Pythagorean formula. By using

this formula as distance, Euclidean space (or even any inner product space) becomes a

metric space”.

In Cartesian coordinates, if p=(p1, p2,…,pn) and q=(q1, q2, …,qn) are two points in Eu-

clidean n-space, then the distance from p to q or from q to p is given by:

() () () ()∑
−

−=−++−+−==
n

i
iinn pqpqpqpqpqdqpd

1

222
22

2
11 ...),(),(

The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are Eu-

clidean vectors, starting from the origin of the space, and their tips indicate two points.

[17]

In statistics, a percentile can be defined as “the value of a variable below which a cer-

tain percent of observations fall”. For example, the 80th percentile is the smallest value

that is greater than or equal to 80% of the values. In our case, a signal strength meas-

urement would be the 80th percentile if 80% of the observations were below than this.

In our project, in order to calculate the percentiles of a dataset, we used the MATLAB

function:

Y = prctile(X,p)
This MATLAB function returns percentiles of the values in a data vector or matrix X

for the percentages in the interval [0,100]. If X is a vector, then Y is a scalar or a vec-

tor with the same length as the number of percentiles required (length(p)). Y(i) contains

the p(i) percentile.

 -37-

4.3 Description of Scenario

4.3.1 Reading the data
As we mentioned, the development of the algorithms includes reading the RSSI values

from both training and runtime phase. During training, signal strength measurements

from all the active APs are collected for each cell. During runtime, signal strength

measurements are collected from the unknown location of the user. In the programming

exercise in MATLAB, we have been provided with two datasets; the “training” and

“runtime_quiet”, containing the mentioned signal strength measurements per AP, for

some of the cells in the region, captured through iwlist (see Chapter 3.2). Each file in

the dataset is on the form “cellx_y”, indicating the cell with coordinates (x,y). Opening

each file, we will notice that it contains 3 fields:

<timestamp> <AP mac address> <signal strength in dBm>

indicating the time (timestamp) at which a ss measurement from an AP in a cell was

recorded by the mobile device, not the time of the event itself. Each cell with coordi-

nates (x,y) has an id and is described by several rows and each of them corresponds to:

• the AP_id (j=1,…,n) that is described by its MAC address, followed by

• the set of signal strength measurements collected from the specific AP at that cell.

AP1 SS1,1 SS1,2 …

AP2 SS2,1 SS2,2 …

… … … …

APn SSn,1 SSn,2 …

Table 2: Representation of each Cellx_y in the datasets

We should mention that the number of the RSSI values is not fixed but differs per AP,

e.g. in the training cell0_0 there are 83 RSSI values measured from AP with MAC Ad-

dress “00_03_e2_03_d3_bf”, 912 RSSI values from AP “00_11_21_61_84_a0” etc. The

next that we noticed for all the cells separately was the fact that each cell is described by

different number of APs; however, there have been 10 specific APs (see “valid” data

structure in Matlab) in the area of TNL used both in training and runtime datasets. In

order to achieve correct results we took into consideration only the common APs and

-38-

we included them in the “valid” list, avoiding in this way the problem of having APs

that add noise to our system.

00:11:21:61:84:a0
00:11:93:03:1e:30
00:11:93:03:22:f0
00:11:93:03:29:50
00:15:62:51:f0:90
00:15:62:51:f1:70
00:15:62:51:f3:d0
00:15:62:51:f4:90
00:15:62:51:f6:00
00:15:62:51:f7:30

Table 3: MAC addresses of the 10 APs used both in training and runtime

Reading each file/cell involves creating the appropriate data structures where each field

is the AP_id. Regarding the implementation in MATLAB for:

• RADAR, the function “load_cell(set,x,y)” takes into consideration the three argu-

ments e.g. the dataset that this cell belongs to (training or runtime) as well as its co-

ordinates (x, y) and returns as output the data structure “avgSS” where each value

will be a number that denotes the average of SS measurements per AP for the cell.

In order to achieve the avgSS data structure we had to create other two more struc-

tures e.g.

- the “sums” structure where each value is the sum of SS and

- the “cnts” structure where each value will be the counter of the current AP.

The process involves:

- reading each line of the file/cell

- checking if the current MAC Address is included in the valid list; if yes, then

- storing the current MAC Address as AP_id (in case that it is not already includ-

ed in the “sums”) in the respective field of the structure as well as its RSSI value

- adding its RSSI value to the “sums” of measurements that have been already

read from this specific AP and increasing “cnts” by 1

- repeating the above steps until the whole cell to be read and, finally,

- calculating and returning as output the “avgSS” structure e.g. the average of SS

measurements for the ith AP for this cell according to the formula:

i

i
i cnts
sums

avgSS =

 -39-

• Percentiles, the function “percentiles(set,x,y)” returns as output the data structure

“percentiles” where each value will be an array of the 10 percentiles [10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%] per AP for each cell. In this case,

firstly, we had to create the “maclist” structure where each value is the “list” array

of the SS values per AP. The process involves:

- reading each line of the file/cell

- checking if the current MAC Address is included in the valid list; if yes, then

- storing in the field the current MAC Address as AP_id (in case that it is not al-

ready included in the “maclist”) structure as well as its RSSI value

- storing its RSSI value to the array of the “maclist” structure e.g. “list” after the

measurements that have been already read from this specific AP

- calculating and returning as output the “percentiles” structure per AP for this

cell according to the command:

()]100,90,80,70,60,50,40,30,20,10[,listprctilePercentilei =

In the table below, you may see the results after running both functions that we men-

tioned previously e.g. “load_cell(set,x,y)” – for returning the average of all the RSSI

values that were observed per AP – and “percentiles(set,x,y)” – for returning the 10 per-

centiles that were calculated after reading all the RSSI values per AP – for the cell0_0.

It is obvious that the APs are the same in both cases.

>> load_cell('training',0,0)

ans =

 mac00_11_21_61_84_a0: -62.2862

 mac00_11_93_03_1e_30: -51.0143

 mac00_11_93_03_22_f0: -55.6960

 mac00_11_93_03_29_50: -73.6678

 mac00_15_62_51_f0_90: -57.7430

 mac00_15_62_51_f3_d0: -78.6745

 mac00_15_62_51_f4_90: -79.2055

>> percentiles('training',0,0)

ans =

mac00_11_21_61_84_a0: [-66 -64 -63 -62 -62

 -61 -61 -60 -59 -57]

mac00_11_93_03_1e_30: [-55 -54 -52 -51 -51

 -49 -49 -49 -48 -38]

mac00_11_93_03_22_f0: [-59 -59 -59 -54 -54

 -54 -54 -54 -54 -54]

mac00_11_93_03_29_50: [-78 -77 -76 -74 -73

 -72 -71 -71 -70 -67]

mac00_15_62_51_f0_90: [-58 -58 -58 -58 -58

 -58 -58 -57 -57 -57]

mac00_15_62_51_f3_d0: [-82 -80 -80 -80 -79

 -79 -77 -76 -75 -73]

mac00_15_62_51_f4_90: [-84 -83 -81 -80 -79

 -78 -78 -77 -77 -70]

Table 4: Example with results after uploading the Training cell(0_0) in Command window in Matlab

-40-

4.3.2 Uploading Training and Runtime data
In order to upload the training set and store it to an array (training fingerprint), we took

into consideration the fact that the cells are in the form “cellx_y” with “x=0:2:12 and

y=0:2:22”. Thus, in the MATLAB script “radar.m” for RADAR (“main.m” for Percen-

tiles method respectively) each cell from training dataset is stored in “trainingfn” array

which includes the data structures, each of them corresponding to one cell. As we saw

previously, each data structure comes as output from the function “load_cell” for RA-

DAR (and “percentiles” for Percentiles method respectively) for each cell through the

following for-loops:

for x = 0:2:12
 for y = 0:2:22
 trainingfn(x+1,y+1) = {load_cell('training', x, y)};
 end
end

Table 5: Uploading Training data and creating Training fingerprint (trainingfn array)

It is worth mentioning that in order to avoid the delay after running the main algorithm

and import the data in the training fingerprint a lot of times for testing purposes, we cre-

ated for both algorithms a .mat file (cells.mat and cells2.mat for RADAR and Percen-

tiles respectively).

However, the cells for runtime dataset are not similarly increasing, for this reason we

used the variables “xrun” and “yrun” to store the coordinates x and y for each of the 35

runtime cells. Here, we should notice that the runtime fingerprint is not an array of data

structures but since it corresponds to one specific cell, it is a data structure.

xrun=[0 0 0 0 1 1 2 2 3 4 4 4 5 5 6 6 6 6 6 7 7 8 8 8 8 9 9 10 10 11
11 12 12 13 13];

yrun=[0 8 16 20 2 11 4 14 11 4 14 18 10 21 0 3 14 15 23 5 9 6 12 16 20
1 11 18 22 0 15 4 12 9 17];

for z = 1:length(xrun)
[…]
 runtimefn = load_cell('runtime_quiet', xrun(z), yrun(z));
[…]
end

Table 6: Uploading Runtime data and creating Runtime fingerprint (runtimefn array)

 -41-

4.3.3 Comparing the data
Afterwards, the algorithm compares the runtime and training fingerprint in order to infer

users’ location based on Euclidean distance and Percentiles. The runtime values are

compared with these of training dataset and the cell containing the most “similar” val-

ues is reported as the estimated position.

The concept was the same for both cases; for each of the 35 runtime cells with coordi-

nates (xrun,yrun):

• Initiate mindist, minx and miny variables, indicating the estimated cell that will re-

sult with minimum Euclidean distance or minimum weight for Percentiles.

• Upload the specific runtime cell in the respective structure “runtimefn”

• Compare the two fingerprints e.g. trainingfn and runtimefn that are the arguments of

another function “my_distance” with output a number “dist” that indicates the Eu-

clidian distance or the weight of the cell (see next paragraph for more information)

between the runtime cell and the current training cell

• Check if the calculated distance is minimum from the current minimum distance

(e.g. variable mindist); if yes replace the current value of mindist

• Store as minx and miny the coordinates that correspond to the training cell with min-

imum distance

• Repeat the above steps until the runtime cell will be compared with all the cells

from training dataset and result to an estimated position

• Calculate the location error and store it to the array error_i

Regarding the function “my_distance”, as we mentioned, it gets the two structures as

arguments for their comparison. The first we had to notice is the fact that the runtime

cell should have the same APs with all the training cells and vice versa. For this reason,

we assigned very small (-100) signal strength values to the APs that are not present in

the current cell from training fingerprint and was not included in the runtime fingerprint

(and vice versa).

-42-

Afterwards, since the two structures have the same APs, we calculate for:

• RADAR the Euclidian distance of the average RSSI values for the ith AP according

to the formula:

∑
=

−=
n

i
ii TRd

1

2)(

• Percentiles, the weight of the cell with the difference that now we do not have as

value in the structure a number (avgSS) but an array of j=10 percentiles, e.g.

()∑ ∑ −=
i j

jiji TRcw 2
,,)(

General Instructions for running the algorithms:

In the MATLAB code, you may run the script:

• radar.m for RADAR algorithm and

• main.m for Percentiles method

which calls the other two functions that we mentioned e.g. “load_cell/percentiles” and

“my-distance” for observing the implementation results.

 -43-

4.4 Simulation Results and Comparisons

4.4.1 Estimated position and location error
In the table below, you may see the estimated position after running both algorithms at

MATLAB and the location error as well.

 Real cell
(xrun, yrun)

Est. Position
RADAR
(minx, miny)

Est. Position
Percentiles
(minx, miny)

Location
Error

RADAR

Location
Error Per-

centiles
Difference

1 [0,0] [0,2] [0,2] 2 2 0
2 [0,8] [2,6] [2,6] 2,83 2,83 0
3 [0,16] [0,18] [0,16] 2 0 -2
4 [0,20] [0,22] [2,20] 2 2 0
5 [1,2] [2,0] [2,4] 2,24 2,24 0
6 [1,11] [2,10] [2,10] 1,41 1,41 0
7 [2,4] [0,2] [0,2] 2,83 2,83 0
8 [2,14] [2,14] [2,14] 0 0 0
9 [3,11] [2,10] [2,10] 1,41 1,41 0
10 [4,4] [2,2] [2,2] 2,83 2,83 0
11 [4,14] [4,14] [4,14] 0 0 0
12 [4,18] [12,18] [12,18] 8 8 0
13 [5,10] [12,10] [12,10] 7 7 0
14 [5,21] [4,20] [4,20] 1,41 1,41 0
15 [6,0] [8,2] [8,2] 2,83 2,83 0
16 [6,3] [4,4] [4,4] 2,24 2,24 0
17 [6,14] [4,14] [4,14] 2 2 0
18 [6,15] [12,14] [12,8] 6,08 9,22 3,14
19 [6,23] [4,22] [4,22] 2,24 2,24 0
20 [7,5] [8,4] [8,4] 1,41 1,41 0
21 [7,9] [8,8] [10,12] 1,41 4,24 2,83
22 [8,6] [10,4] [8,6] 2,83 0 -2,83
23 [8,12] [6,12] [6,12] 2 2 0
24 [8,16] [8,12] [6,8] 4 8,25 4,25
25 [8,20] [10,22] [10,22] 2,83 2,83 0
26 [9,1] [8,4] [8,4] 3,16 3,16 0
27 [9,11] [8,12] [8,12] 1,41 1,41 0
28 [10,18] [6,18] [6,18] 4 4 0
29 [10,22] [10,22] [12,18] 0 4,47 4,47
30 [11,0] [12,0] [12,0] 1 1 0
31 [11,15] [6,14] [10,16] 5,1 1,41 -3,69
32 [12,4] [12,4] [12,4] 0 0 0
33 [12,12] [6,8] [8,12] 7,21 4 -3,21
34 [13,9] [12,10] [12,10] 1,41 1,41 0
35 [13,17] [12,14] [10,16] 3,16 3,16 0

Table 7: Results for RADAR and Percentiles

-44-

In the table above, there is an analysis of the estimations and location errors for both

algorithms. In general, 69% of the estimated results are the same for both methods re-

gardless if they are accurate enough or not, which means that RADAR and Percentiles

are equivalent enough.

At a first glance, these total results indicate that despite the fact that the algorithm for

Percentiles seems more efficient to identify the real cell, the RADAR algorithm tends to

provide better estimations when there is a remarkable deviation between real and esti-

mated positions (see Table 7).

Figure 11: Graphical Representation of Table 8

From the table above, the 12th case is the biggest failure for both algorithms with loca-

tion error 8 (and 13 as well with 7 location error). [4,18] real position, RADAR and

Percentiles [12,18]

The 24th case is the worst for Percentiles comparing with RADAR with 4.25 difference

in their location error. 24 case [8,16] is the real position, RADAR, [8,12], Percentiles

[6,8]

 -45-

Figure 12: Grid Representation of 12th case, [4,18] real position, RADAR and Percentiles [12,18]

Figure 13: Grid Representation of 24th case, [8,12], Percentiles [6,8]

Real position
[4, 18]

Percentiles & RADAR
position [12, 18]

Real position
[8, 16]

Percentiles position
[6, 8]

RADAR position
[8, 12]

-46-

4.4.2 Error Analysis
The Error Analysis was conducted by computing the location error as the Euclidian dis-

tance between the real cell and the estimated cell. The CDF and the median error are

reported, too. For both cases, after running 35 measurements at the different positions

(runtime cells), the following figures illustrate the location error of the RADAR ap-

proach during runtime period. As it is distinguished from the Cumulative probability

Distribution Functions (which are almost the same) and confirmed with the calculation

of the median error, the median error is 2.24m (same for both cases).

“The cumulative probability functions (CDF) of the distance error is used for measuring

the precision of a system. Since these two positioning techniques are compared, the sys-

tem with CDF graph that reaches high probability values faster is considered more pre-

cise because its distance error is concentrated in small values. In practice, CDF is de-

scribed by the percentile format. For example, in both cases, the system has a location

precision of 50% within 2.24 m (the CDF of distance error of 2.4 m is 0.5), and 95%

within 7 m.” [19]

(a): Cumulative Distribution Function for RADAR (b): Cumulative Distribution Function for Percentiles

Figure 14: The performance of fingerprint positioning methods at FORTH.

 -47-

5 Conclusions
In this project, we have presented the taxonomized location system properties, the basic

techniques used for location sensing as well as a surveyed research/related work in the

specific field. Afterwards, we analyzed some already existing algorithms and described

their framework. We discussed their simulation results and evaluated their performance

(according to [8]) after calculating their median error. From all signature-based ap-

proaches - confidence intervals, percentiles, empirical distribution and multivariate

Gaussian model (MvGs) – the last one performs much better than percentiles, confi-

dence interval (90%) and empirical distribution approaches. Furthermore, the number of

APs has an impact on location error since “the higher the number of APs, the lower the

location error”. Also, “the larger the measurement set, the more accurate the position

estimation”.

Finally, we applied the method of Radar algorithm and percentiles in order to upload

both training and runtime fingerprint based on common APs, calculate the Euclidian

distance/formula for each cell and return the estimated cell with the minimum coordi-

nates. For each of the 35 runtime cells, we calculated the location error for each of the

35 comparisons between Runtime and Training. Two comments that we could summa-

rize are that percentiles and RADAR perform almost the same, although RADAR algo-

rithm tends to provide better estimations when there is a remarkable deviation between

real and estimated positions. It is worth mentioning that the fact that we had only 10

APs, is an ideal situation that does not happen in reality because of the existence of

noise.

-48-

Bibliography
[1] Papadopouli M.: Lectures on Positioning, Wireless Networks and Mobile Computin.

Department of Computer Science, University of Crete

[2] Hightower J., Borriello G.: A Survey and Taxonomy of Location Sensing Systems for

Ubiquitous Computing. Technical Report, University of Washington, Department of

Computer Science and Engineering UW CSE 01-08-03, Seattle, WA, Aug. 2001.

[3] Papadopouli M., Henning Schulzrinne: Peer-to-Peer Computing for Mobile Net-

works: Information Discovery and Dissemination. Springer, July 14, 2008

[4] Moustafa Youssef, Matthew Mah, Ashok Agrawala: Challenges: Device-free Pas-

sive Localization for Wireless Environments. Dept. of Computer Science, University of

Maryland

[5] Paramvir Bahl, Venkata N. Padmanabhan, Anand Balachandran: Enhancements to

the RADAR User Location and Tracking System. Microsoft Research, University of Cal-

ifornia at San Diego

[6] Andreas Haeberlen, Eliot Flannery, Andrew M. Ladd: Practical Robust Localization

over Large-Scale 802.11 Wireless Networks. Rice University

[7] Mobile Innovation Center: Lectures on Mobile Telecommunications

[8] Milioris D., Kriara L., Papakonstantinou A., Tzagkarakis G., Tsakalides P., Papado-

pouli M.: Empirical Evaluation of Signal-Strength Fingerprint Positioning in Wireless

LANs. Computer Science Department, University of Crete and Institute of Computer

Science, Foundation for Research and Technology-Hellas (FORTH)

 -49-

[9] Steve McDonnell: How to Calculate the Average RSSI for an 802.11.

http://www.ehow.com/how_7823781_calculate-average-rssi-80211.html

[10] Lito Kriara: Experimenting with the fingerprinting method using signal-based

measurements for providing positioning information to location-based applications.

MSc. Thesis. Department of Computer Science, University of Crete, July 2009

[11] Standards, IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physi-

cal Layer (PHY) Specifications.

[12] Nissanka B. Priyantha, Anit Chakraborty, Hari Balakrishnan: The Cricket location-

support system. In ACM International Conference on Mobile Computing and Network-

ing (MobiCom), pages 32–43, Boston, MA, USA, August 2000.

[13] Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, Seth Teller: The

Cricket compass for context-aware mobile applications. In ACM International Confer-

ence on Mobile Computing and Networking (MobiCom), pages 1–14, Rome, Italy, July

2001.

[14] 307. R. Harle, A. Ward, A. Hopper: Single reflection spatial voting. In Proceedings

of the First International Conference on Mobile Systems, Applications and Services,

San Francisco, May 2003.

[15] Session 1: Introduction to GPS and GMT resources.

http://mygeologypage.ucdavis.edu/gps/EDUCATION/5_SESSION/SESSION1/session1

_intro.html

[16] Roy Want, Andy Hopper, Veronica Falcao, Jon Gibbons: The Active Badge Loca-

tion System. ACM Transactions on Information Systems, 10(1):91–102, January 1992.

-50-

[17] Elena Deza, Michel Marie Deza: Encyclopedia of Distances, page 94, Springer

2009.

[18] http://www.mathworks.com/help/stats/prctile.html

[19] Hui Liu, Houshang Darabi, Pat Banerjee, Jing Liu: Survey of Wireless Indoor Posi-

tioning Techniques and Systems. IEEE Transactions on Systems, Man and Cybernetics-

Part C: Applications and Reviews 2007. 37(6):1067

