
 -i-

A Natural Language User
Interface for a Semantic

Web Agent
Samaras Dimitrios
SID: 3301110010

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

OCTOBER 2012

THESSALONIKI – GREECE

-ii-

A Natural Language User
Interface for a Semantic
Web Agent

Samaras Dimitrios
SID: 3301110010

Supervisor: Dr. Nick Bassiliades

Supervising Committee Members:

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

OCTOBER 2012

THESSALONIKI – GREECE

 -iii-

Abstract
This dissertation was written as a part of the MSc in ICT Systems at the International

Hellenic University.

One explanation as to why the Semantic Web has not quite caught on yet is that the bar-

rier to entry is too high. During this dissertation the background and implementation of

the “ACE Interface External Web Agent”, an open source semi-autonomous web plat-

form serving as an intermediate with the RuleML Rule Responder System is described.

Everyone, specialists in knowledge management to non-experts, can access it and pose

queries the Rule Responder System. This is accomplished by automatically translating

natural language queries written in Attempto Controlled English into the Reaction Rule

Markup Language which is the knowledge representation format. Furthermore, the re-

sponses are provided to the user in a friendly and easy to understand way via simple

web pages.

At this point I would like to thank Dr. Nick Bassiliades, academic coordinator in the

School of Science and Technology at the International Hellenic University, for the trust

he showed in me and the assignment of this dissertation project, the guidance and the

assisting bibliography. I would also like to thank Dr. Efstratios Kontopoulos, academic

assistant in the School of Science and Technology at the International Hellenic Univer-

sity, for his unselfish and unfailing support and understanding as my dissertation advi-

sor. Last but not least I would like to thank my fellow classmates for their input and

most of all for their moral support during the period in which this master’s thesis was

conducted.

Samaras Dimitrios

October 15th, 2012

 -v-

Contents
ABSTRACT ... III

CONTENTS ... V

1 INTRODUCTION .. 9

2 LITERATURE REVIEW .. 13

2.1 CONTROLLED NATURAL LANGUAGES .. 13

2.1.1 General-purpose CNLs .. 14

2.1.2 Business-purpose CNLs .. 14

2.2 ATTEMPTO CONTROLLED ENGLISH (ACE) ... 15

2.2.1 Introduction to Attempto Controlled English 15

2.2.2 ACE Syntax .. 16

2.2.3 ACE Tools .. 20

2.2.4 ACE to First-Order Logic .. 27

2.3 PROCESSABLE ENGLISH (PENG) ... 27

2.3.1 The PENG system .. 28

2.3.2 PENG Text Editor .. 29

2.4 COMPUTER PROCESSABLE LANGUAGE (CPL) ... 30

2.4.1 Interpreting CPL .. 31

2.4.2 CPL- Lite ... 31

2.5 SEMANTICS OF BUSINESS VOCABULARY AND BUSINESS RULES (SBVR) 32

2.5.1 SBVR Business Vocabulary .. 33

3 ADDRESSING THE PROBLEM .. 37

3.1 THE PROBLEM .. 37

3.2 IMPLEMENTATION CHOICES ... 38

3.2.1 Programming Language Selection ... 38

3.2.2 Selection of the Input and Communication Languages 39

3.3 SEMANTIC WEB RULES AND RULEML ... 39

3.3.1 RuleML .. 41

-vi-

3.3.2 The RuleML Family of Sublanguages ... 42

3.3.3 Reaction RuleML .. 43

3.4 THE RULE RESPONDER SYSTEM .. 49

3.4.1 Interchange of Knowledge between Agents 50

3.4.2 Query Delegation among the Agents .. 53

3.5 RELATED WORK .. 54

4 CONTRIBUTION ... 57

4.1 THE ACE INTERFACE EXTERNAL WEB AGENT .. 57

4.2 SYSTEM ARCHITECTURE ... 58

4.3 IMPLEMENTATION .. 58

4.4 USER INTERFACE .. 59

4.4.1 Additional Content .. 65

4.5 TRANSLATION PROCEDURE .. 68

4.6 CLASSES AND METHODS .. 69

4.6.1 Parsing the input ... 69

4.6.2 Creating the Reaction RuleML request .. 72

4.6.3 Transmitting the request ... 75

4.6.4 Collecting and Storing the Response .. 75

4.6.5 Displaying the Response to the User .. 76

4.7 AGENT INSTALLATION MANUAL ... 78

5 CONCLUSIONS .. 79

5.1 PROBLEMS MET DURING THE IMPLEMENTATION ... 80

5.1.1 XPath Navigation Incompatibility ... 80

5.1.2 SymposiumPlanner-2012 Unavailability 81

5.1.3 Prolog Engine Necessity ... 81

5.2 FUTURE IMPROVEMENTS .. 82

5.2.1 Text analysis and Interpretation ... 82

5.2.2 Collaboration with ACE tools .. 83

5.3 BUSINESS APPLICATIONS ... 83

BIBLIOGRAPHY ... 85

 -vii-

Figures and Schemas

Figure 1.1.1: Example response through the “ACE Interface External Web

Agent” ... 11

Figure 2.2.1: Attempto APE (ACE Parser) Webclient snapshot 21

Figure 2.2.2: Consistency checking with RACE ... 22

Figure 2.2.3: Theorem proving with RACE .. 23

Figure 2.2.4: Query answering with RACE .. 24

Figure 2.2.5: Attempo demo AceWiki .. 25

Schema 1.3.1: Architecture of the PENG system ... 28

Figure 2.5.1: Simple View of SBVR model .. 33

Figure 2.5.2: Business Vocabulary development ... 33

 Figure 3.3.1: The Semantic Web layers .. 40

Figure 3.3.2: The modularization of RuleML ... 42

Figure 3.3.3: Reaction RuleML applications .. 44

Figure 3.3.4: Reaction RuleML sublanguages .. 44

Figure 3.4.1: Animated representation of the External Agent interoperation

with Rule Responder ... 50

Figure 3.4.2: Query Delegation with the use of a role assignment matrix for the

RuleML symposium ... 54

Figure 4.2.1: Schematic representation of the systems architecture. 58

Figure 4.3.1: Schematic representation of the “ACE Interface External Web

Agent” Implementation. ... 59

Figure 4.4.1: Semantic Web Agent front-end, Main page 61

Figure 4.4.2: Malformed or no input response .. 62

Figure 4.4.3: ACE Interface External Web Agent Query analysis result a. 63

Figure 4.4.4: ACE Interface External Web Agent Query analysis result b. 63

Figure 4.4.5: ACE Interface External Web Agent Query transformed to

Reaction RuleML. ... 64

Figure 4.4.6: ACE Interface External Web Agent Response page. 65

Figure 4.4.7: About.html Snapshot ... 66

Figure 4.4.8: Cookbook.html Snapshot .. 67

-viii-

Figure 4.5.1: Schematic representations of the three phases of ACE to

Reaction RuleML and Reaction RuleML to HTML translation. 69

 -9-

1 Introduction

The World Wide Web (WWW) or simply “Web” is following an exponential growth

that has resulted in its transformation into a huge repository of information spread in

billions of pages and shared among nearly 2.3 billion internet users [Internet World

Stats, 2012]. Despite the WWW usage increase around the globe, the human ability to

extract and use the information remains limited.

The evolutionary step of the Semantic Web over the current Web is to enable users to

find, share, and combine information easily. It provides a common framework that al-

lows data to be shared and reused across application, enterprise, and community

boundaries [W3C Semantic Web Activity, 2011]. As it was originally envisioned, it

enables machines to "understand" and respond to complex human requests based on

their meaning. Such an "understanding" requires that the relevant information sources

are semantically structured. The term was rounded up by Tim Berners-Lee, director of

the World Wide Web Consortium (W3C), who oversees the development of the pro-

posed Semantic Web standards and defines the Semantic Web as "a web of data that

can be processed directly and indirectly by machines." [Berners-Lee, T. et al., 2001].

It has been described in a variety of terms: as a utopic vision, as the Web of Data, as a

revolutionary change in the daily use of the Internet. Most of all the Semantic Web has

inspired and urged many individuals into creating a variety of semantic technologies

and applications.

As Feigenbaum L. [Feigenbaum L, 2007] mentions over the Semantic Web: “While its

critics have questioned the feasibility, proponents argue that applications in industry,

biology and human sciences research have already proven the validity of the original

concept. Scholars have explored the social potential of the Semantic Web in the busi-

ness and health sectors, and for social networking.”

To this end, various semantic web agents have been implemented in order to navigate

and manipulate the structured data of the Semantic Web. Despite that, all these struc-

tured and machine readable data provided by the agents, due to the nature of computer

-10-

science, are not easily comprehended by humans and the rule and knowledge represen-

tation languages currently employed require a vast amount of familiarization time.

A key factor for spreading the Semantic Web usage among the internet users is to

lower the entry barrier by offering a more user-friendly format. While the intuitiveness

and expressiveness of natural language (e.g. English, Greek, etc.) makes it a logical

candidate, it is inherently ambiguous and has therefore largely been ignored for formal

applications. Fortunately, recent work has shown that principles from computational

linguistics can be applied to translate between language and machine-interpretable log-

ic. This is accomplished by using a subset of language that remains completely natu-

ral. One such controlled language is Attempto Controlled English (ACE), whose de-

velopment over the past ten years has also included its own Attempto Parsing Engine

(APE) and Reasoner (RACE).

The focus of this work is using ACE as the means to pose formal rules to the Organi-

zational Agents of structured domains in the Semantic Web via a newly-developed

Semantic Web Agent the “ACE Interface External Web Agent”. Specifically, queries

written in ACE are taken as input, parsed and then mapped into formal representation

in the XML-based, Rule Markup Language (Reaction RuleML). RuleML is the prod-

uct of a long-standing effort toward standardizing rule markup on the Web and is

compatible with other Semantic Web languages. Especially with the use of Reaction

RuleML a variety of reaction rules serving in various domains are covered.

The outcome of this dissertation is the “ACE Interface External Web Agent” which

allows non-programmers to pose their queries to the Rule Responder Organizational

Agent for the RuleML Symposium 2012 and retrieve information about the symposi-

um chairs of the RuleML symposia. As a trivial example, users may write:

What is the r:contact-information of the n:general-chair-

of-RuleML-2012-ECAI?

Instead of something formal, like the following (the corresponding Reaction RuleML):

<?xml version="1.0" encoding="UTF-8"?>

<RuleML xmlns="http://www.ruleml.org/0.91/xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ruleml.org/0.91/xsd"
xmlns:ruleml2012="http://ibis.in.tum.de/projects/paw#">

 -11-

 <Message directive="query-sync" mode="outbound">

 <oid>

 <Ind>SymposiumPlannerSystem</Ind>

 </oid>

 <protocol>

 <Ind>esb</Ind>

 </protocol>

 <sender>

 <Ind>User</Ind>

 </sender>

 <content>

 <Atom>

 <Rel>getContact</Rel>

 <Ind>ruleml2012ATecai_GeneralChair</Ind>

 <Var>Contact</Var>

 </Atom>

 </content>

 </Message>

</RuleML>

Furthermore, instead of receiving a response in the same XML-format, the response is

presented to the user in a graphical and easy to comprehend way, as shown in figure

1.1.1:

Figure 1.1.1: Example response through the “ACE Interface External Web
Agent”

-12-

During the chapters that follow, the background knowledge that covers the implemen-

tation of the project, the design and implementation as well the projects’ future devel-

opment topics are covered.

In the 2nd chapter of this dissertation “Literature Review”, the background and the

state of the art in the field of controlled natural languages (CNLs) are described. The

use of a controlled natural language, ACE for this project, is the first step that makes

the Semantic Web Agent that is created accessible by non-experts. In the 3rd chapter,

“Addressing the Problem”, the problem that initiated this master thesis is explained.

Additionally, since Rule Responder is the basic infrastructure that the ACE Interface

External Web Agent is collaborating with, a brief description is given over its architec-

ture and its knowledge interchange format (Reaction RuleML). The 4th chapter,

“Contribution”, focuses on the development of the “ACE Interface External Web

Agent”. The system architecture is described along with the web pages that the user

interacts with and their functionality. Getting into more detail, the translation process

from ACE to Reaction RuleML and from Reaction RuleML to the HTML final re-

sponse is explained in steps (design) as well as in the programming language with

code fragments (implementation). Finally in the 5th chapter, “Conclusions”, final con-

clusions are drawn over the project implementation and improvements left for future

implementation are collocated. What is more, additional applications of the implemen-

tation are presented beyond the boundaries of the academia.

 -13-

2 Literature Review
In this chapter, the background and the state of the art in the fields of controlled natu-

ral languages (CNLs) are described. CNLs in general are discussed first: An overview

of the main subtypes of CNLs is featured in Section 2.1. In sections 2.2 to 2.5, a closer

look is taken at the language Attempto Controlled English (ACE) which is the lan-

guage to be used throughout this master thesis, and three more CNLs are described:

Processable English (PENG), Computer Processable Language (CPL) and Semantics

of Business Vocabulary and Business Rules (SBVR).

2.1 Controlled Natural Languages
Controlled natural languages (CNLs) are subsets of a full natural language (any hu-

man speaking language) with explicit restrictions on grammar, lexicon, and style fol-

lowing strict rules. They have an unambiguous syntax and clean semantics leading to

an error reduction on the represented knowledge [Wyner A., 2009]. CNLs have been

deployed to the writing of specifications serving the knowledge representation and

translation tasks in a two-fold way, meaning that they are comprehensive and usable

by both human users and computers alike.

All CNLs are either directly or indirectly related to formal logic. Further advantages

that these languages offer are: the ease of learning, as they bare strong resemblance to

natural languages, along with the ease of use, as they don’t require any specialized

type of knowledge.

General purpose (see Section 2.1.1) as well as business purpose (see Section 2.1.2)

machine-oriented CNLs have been developed to facilitate the translation of technical

documents and assist in the knowledge extraction and processing by machines. Addi-

tionally, non – specialist users are supported by intelligent tools and agents developed

for writing specification texts for knowledge representation in a familiar notation

without the need to formally encode the information [Schwitter, R., 2004].

-14-

2.1.1 General-purpose CNLs

General-purpose CNLs have been developed to be exploited in various domains with-

out a specific application scenario in mind. The general-purpose CNLs discussed in

this chapter are ACE (2.2), PENG (2.3) and CPL (2.4).

Attempto Controlled English (ACE) is a general-purpose controlled English language

that can be defined in a concrete and declarative way [Fuchs, N. E., 2012]. ACE

comes with a parser –ACE parser–that translates ACE text into a logic-based represen-

tation as well as editing tools, anaphorically: ACE Editor, APE (ACE parser), RACE

(ACE Reasoner), ACE View, AceRules and AceWiki that facilitate its use. It is the

language mainly used throughout this dissertation and for this reason; it will be de-

scribed more thoroughly in the next section (2.2). Also ACE has been applied in the

area of the Semantic Web [Berners-Lee, T. et al., 2001] and can be mapped into OWL

and SWRL.

Processable English (PENG) is a CNL bearing strong resemblance to ACE but covers

a smaller subset of natural English. It is designed for an incremental parsing approach

and was one of the first languages used within a special editor with predictive features

to tell the user how a partial sentence can be continued [Schwitter, R., 2004].

Computer Processable Language (CPL) is a controlled English language developed at

Boeing research facilities. Instead of applying a small set of strict interpretation rules,

the CPL interpreter resolves various types of ambiguities. Apart from being the more

liberal controlled language, CPL probably has the most sophisticated implementation

of the error messages approach [Kuhn, T.,2009].

2.1.2 Business-purpose CNLs

CNLs for business purpose allow companies to express business rules about their ap-

plication area in a structured and coherent way. The end users are business people with

no particular background in knowledge representation and logic and CNLS can offer

them an intuitive representation for knowledge management. The business CNL that

will be briefly discussed is Semantics of Business Vocabulary and Business Rules

(SBVR) (2.5).

 -15-

SBVR Structured English is defined informally by sets of guidelines based on experi-

ences of best practice in rule systems. It is not strictly formal language, and therefore

does not come with a parser as those implemented in general-purpose CNLs [Chapin,

D., 2010].

2.2 Attempto Controlled English (ACE)

2.2.1 Introduction to Attempto Controlled English

Attempto Controlled English (ACE) is a controlled natural language specifically de-

signed for requirements specifications and knowledge representation. It is a precisely

defined subset of English with a restricted grammar in the form of a small set of con-

struction and interpretation rules that can automatically and unambiguously be trans-

lated into full first-order logic, making ACE readable both by humans and machines.

Although all ACE sentences are syntactically acceptable English, not all English sen-

tences are allowed in ACE, meaning that while it seems completely natural, is in fact a

language that has to be learned [Fuchs, N. E. et. al., 2005]. In brief, domain specialists

and un-familiarized users alike are provided with a controlled language to express and

process knowledge in a familiar way (English language subset) and to combine this

with the rigor of formal specification languages.

ACE has been under development at the University of Zurich since 1995. In 2004,

ACE was adopted as the controlled natural language of the EU Network of Excellence

REWERSE (Reasoning on the Web with Rules and Semantics) [Bry, F., 2008]. In 2008,

ACE version 6.0 was announced [Fuchs, N. E. et. al., 2008], currently in version 6.6.

Apart from its syntax, various tools have been developed for the implementation and

control of the language, which are briefly presented in subsequent subsections.

Among the fields it applies, ACE has been exploited in order to improve the usability

of policy languages such as the Protune policy language. Also a translator that con-

verts ACE texts into the Rule Markup Language-RuleML (TRANSLATOR) has been

implemented [Hirtle, D. Z., 2006]. Another translator has been developed that trans-

lates a subset of ACE into the REWERSE Rule Markup Language-R2ML [Lukichev,

G. W., 2007]. Additionally, ACE has been used as a front-end for the Process Query

Language (PQL) that allows users to query MIT’s Process Handbook. It has been

-16-

shown that queries expressed in ACE and automatically translated into PQL provide a

more user-friendly interface to the Process Handbook [Juri Luca De Coi, et al., 2009].

The full list of ACE application domains includes software and hardware specifica-

tions, agent control, legal and medical regulations, and ontology construction.

2.2.2 ACE Syntax

ACE syntax consists of vocabulary as well as grammar. The vocabulary contains a

full-form common lexicon of close to 100,000 entries, function words, predefined

fixed phrases (e.g. ‘it is necessary’, ‘there is’) and content words (nouns, proper

names, verbs, adjectives and adverbs). The ACE grammar, on the other hand, defines

and constrains the form and the meaning of ACE text and sentences. It comprises of

sets of construction rules (syntax) and sets of interpretation rules (semantics).

The syntactic rules and examples presented later on are adopted from: [Kuhn, T.,

2011; Fuchs et.al., 2008; Fuchs, N. E. et. al., 2005; Juri Luca De Coi, et al., 2009].

2.2.2.1 ACE Vocabulary

The set of content words is infinitely large and dynamic with a full-form common lex-

icon of close to 100,000 entries. Users can also import domain specific lexica of con-

tent words or missing content words can be temporarily introduced with their respec-

tive word class (e.g. A a:trusted man a:deliberately v:backs-up the n:web-page of the

n:external-agent-web-service). Additionally, with the use of ACE parser, unknown

content words can be added to the correct word class based on its content.

As predefined function words: determiners, quantifiers, prepositions, coordinators, ne-

gation words, pronouns, query words and numbers are used. Also, predefined fixed

phrases such as “there is /there are…such that” and “it is false that” add to the set of

limited and unchanging function words.

2.2.2.2 ACE Grammar

The construction rules define admissible sentence structures for ACE and comprise of

words, phrases, declarative sentences forming ACE text.

 -17-

ACE interpretation rules specify the correct meaning of an ACE sentence out of the

conceivable ones. This is due to ambiguity that full English language has compared to

ACE when interpreted.

For complete ACE 6.6 interpretation rules refer to [Kuhn, T., 2011]

ACE texts consist of a sequence of anaphorically interrelated simple, ‘there is/are’

composite and imperative sentences.

Simple ACE sentences follow the structure:

Subject + verb + complement +adjuncts

e.g.: “A customer inserts two cards manually in the morning.”

In Simple sentences format, subject and verb are present. Complements (direct and in-

direct objects) accompany transitive verbs (“insert something”) and ditransitive verbs

(“give something to somebody”). Adjuncts (adverbs and prepositional phrases) that

modify the verb are optional.

An alternative for simple sentences is:

‘There is/there are’ + noun phrase

e.g.: “There is a customer.”

Adjectives, adverbs possessive nouns and prepositional phrases, or variables as appo-

sitions are added to specify nouns and specify the situation in detail.

e.g.: “A customer inserts some cards manually.” (Adverb ‘some’ adds detail to verb

‘insert’).

e.g.: “ A customer inserts some cards into an ATM.” (prepositional phrase added).

Furthermore relative clauses enhance the noun modifications (‘that’).

e.g.: “A customer who is trusted inserts two cards that he owns.”

Composite ACE sentences are created by coordination, subordination, quantification

and negation of simple ACE sentences

• Coordination by “and” and ‘or’ is achieved between sentences, phrases and

relative clauses.

-18-

e.g.: “A customer inserts a card and an automated teller checks the code.”

e.g.: “A customer owns a card that is invalid or that is damaged.”

• Subordination is constructed via if-then sentences, modality and sentence sub-

ordination.

If-then sentences define hypothesis and necessary conditions.

e.g.: “If a card is valid then the customer inserts it”

Modality gives the user the ability to express possibility and necessity.

e.g.: “A trusted customer can insert a card.”

With sentence subordination sentences are used as objects

e.g.: “It is not provable that a customer inserts his own card”

• Through quantification we refer to the whole or a specific object of the class. It

is achieved by indefinite determinants.

e.g.: “Every customer inserts a card.”

e.g.: “There is a card that every customer inserts”

• Negation is used to express that something is not the case.

e.g.: “A customer does not insert a card.”

e.g.: “No customer inserts more than 2 cards.” (negation for all objects using ‘no’).

e.g.: “It is false that a customer inserts a card.” (Sentence negation used to negate the

whole statement).

e.g.: “It is not provable that a customer inserts a card.” (Negation as failure).

Interrogative ACE sentences are formed as ‘Yes/No –queries’ and ‘Wh- queries’

e.g.: “Does a customer insert a card?”

e.g.: “What does a customer insert?”

Formation of queries for interrogation of text is accomplished with the use of a ques-

tion mark in the end of the sentence.

Imperative ACE sentences or commands are formed with the use of exclamation mark

in the end of the sentence.

 -19-

e.g.: “John and Mary, wait!”

2.2.2.3 Constraining Ambiguity in ACE

The ambiguity of full English is constrained in ACE by two means. Ambiguous con-

structs are replaced by unambiguous alternatives in their place and the ambiguous con-

structs that remain are interpreted deterministically on the basis of some interpretation

rules. The user either accepts the assigned interpretation or can rephrase the text to get

another one.

e.g.: “A customer inserts a card that is valid and opens an account.”

This is interpreted as: There is a customer X1. There is a card X2. The card X2 is val-

id. The customer X1 inserts the card X2. The customer X1 opens an account.

To express that the card opens the account the ACE text has to be: “A customer inserts

a card that is valid and that opens an account.”

2.2.2.4 Anaphoric References in ACE

ACE copes with anaphoric references with the use of the definitive article, personal

pronouns or via variables. All the anaphoric references during the processing of ACE

text are replaced by the most recent and most specific accessible noun phrase that

agrees in gender and number [Kaljurand, K., 2011b].

e.g.: “A customer enters a card and a code. If the code is valid then the ATM accepts

the card.” (Using the definitive article).

e.g.: “A customer enters a red card and a blue card. The card is correct.” (The most

recent defines that the blue card is correct).

while

“A customer enters a red card and a blue card. The red card is correct.”(The most spe-

cific defines that the red card is correct).

“A customer does not enter a card. The card is correct.” (Cannot refer to a card).

e.g.:”A customer enters a card X and a code Y. If Y is valid then the ATM accepts X.”

(Use of variables X,Y)

-20-

2.2.3 ACE Tools
This section gives a brief overview of the main ACE-related software tools.

2.2.3.1 Attempto Parsing Engine (APE)

Attempto Parsing Engine (APE) is a tool that translates ACE text unambiguously into

Discourse Representation Structures (DRSs). The basic features of the parser are:

§ Technical feedbackon the input text,

§ Various logical forms and representations deriving from DRS (First-Order

Logic form, DRS in XML,OWL & SWRL),

§ ACE paraphrase of the input, translating DRS into a subset of ACE,

§ Error debugger pinpointing the location and cause of errors,

§ Model solutions to the problem,

§ ACE syntax is implemented in the form of nearly 200 definite clause grammar

rules using feature structures,

§ A complete lexicon of ACE is fitted into APE,

§ User defined lexica can be added or replace the lexicon

[Juri Luca De Coi, et al., 2009].

APE is implemented in SWI-Prolog and released under the LGPL open source license.

The distribution also includes among other tools the DRS verbalizer, translator from

ACE to OWL/SWRL [Fuchs, N. E. et. al., 2008b] .APE has a command-line client and

can be also used from Java, or over HTTP as a REST web service or from its demo

client [APE Webservice., 2010 ; APE Webclient Help., 2008].

In figure 2.2.1 can be seen the APE Webclient and the produced output of input text

“If somebody does not belong to the n:organizational-comitee then he is a symposium-

attendant” analysis operation.

 -21-

Figure 2.2.1: Attempto APE (ACE Parser) Webclient snapshot

2.2.3.2 Attempto Reasoner (RACE)

RACE offers three main functions: (a) Consistency checking and information about

the axioms that lead to text inconsistency, (b) Textual entailment and (c) Query an-

swering of ACE text.

RACE checks whether ACE axioms entail or not the ACE theorems/ACE queries and

underlines the axioms entailing theorems, respectively queries or the parts of the ACE

theorems/ACE queries that could not be entailed. Additionally, consistency checking

is applied over ACE axioms. All the first-order logic subset of ACE is covered by the

-22-

Reasoner with the exception of imperative sentences; negation as failure and the mod-

al operators “may” and “should” [Fuchs, N. E., 2011].

The output as well as the input of the Reasoner is in ACE. Also, no previous

knowledge of formal logic or theorem proving is required by the user, nor it is re-

quired to understand the way Reasoner works or any user control is necessary over the

reasoning process [Kaljurand, K., 2011c ; RACE Web Client Help. (n.d.)].

RACE can be called via a SOAP web service and can be easily accessed via a web cli-

ent [Kaljurand, K., 2011c]. A presentation of the RACE with an example can be seen

in the following figures, figure 2.2.2, figure 2.2.3 and figure 2.2.4.

 In figure 2.2.2 text input “Every n:attendant is a person. Every n:commitee-member

is an n:attendant. p:Dimitris is an n:attendant. p:Strator is a n:commitee-member.” is

checked for axioms consistency with the use of RACE. Annotated ACE input is used

as annotated ACE format is going to be using throughout the implementation of the

project. In the second figure (2.2.3) the theorem “There is a person.” is proved ac-

cording to the predefined and consistent axioms. In the third figure (2.2.4) the query

“Who is an n:attendant?”, is answered based on the axioms and the answer process is

depicted in the steps.

Figure 2.2.2: Consistency checking with RACE

 -23-

Figure 2.2.3: Theorem proving with RACE

-24-

Figure 2.2.4: Query answering with RACE

2.2.3.3 AceView Ontology and Web Editor

AceView is an ontology and rule editor that uses ACE in order to create, view, edit

and query OWL ontologies and SWRL rule sets. Snippets (sequences of anaphorically

 -25-

linked ACE sentences) which form the ACE text are parsed and translated to

OWL/SWRL automatically when asserted to the editor [Kaljurand, K., 2011a].

AceView is integrated in the Protégé framework and all of its operations are complet-

ed via the Protégé menu, allowing the user to view and edit the ACE text at several

levels:

• Word level that enables the user to access individual words.

• Snippet level, allowing access to asserted declarative, asserted interrogative

and entailed snippets.

Additionally, vocabulary can be sorted in various ways and complete ACE text can be

filtered, sorted and searched through the editor [Kaljurand, K., 2007a]. Furthermore,

the user can switch at any moment to one of the other Protégé views for further ontol-

ogy editing.

2.2.3.4 AceWiki

AceWiki is a semantic wiki that uses ACE to formally represent its content. The ex-

pressiveness of formal ACE statements is exploited for the development of a semantic

wiki where users can edit the textual content in a collaborative manner over the web

while giving information well-defined meaning for computers and people to cooperate

[Kuhn, T., (n.d.)].

In figure 2.2.5 the AceWiki, a demonstration purpose Attempto wiki is displayed.

Figure 2.2.5: Attempo demo AceWiki

-26-

2.2.3.5 AceRules

AceRules is a rule system prototype with a multi-semantics architecture, using ACE

both as input and as output language. AceRules is designed for forward-chaining in-

terpreters that calculate the complete answer set [Kuhn, T., 2007]. One of the proper-

ties of AceRules is the semantics incorporated by the rule system, namely: courteous

logic programs, stable models and stable models with strong negation. Another prop-

erty is the representation of two types of negation, strong negation and negation as

failure. Finally, construction of valid programs is achieved through AceRules by intel-

ligent grouping.

AceRules comes with three interfaces, a web service for integration of AceRules in

any program and two more interfaces for human interaction. A technical interface for

advanced users and one for the end-users unfamiliar to formal notations [Kuhn, T.,

2007].

2.2.3.6 OWL verbalizer (ACE to OWL and SWRL)

The initial intention of ACE is to offer the necessary naturalness in the expression

when undertaking knowledge engineering tasks. In order to make ACE interoperable

with some of the existing Semantic Web languages several mappings have been de-

veloped between ACE and OWL, SWRL and DL-Query [Kaljurand, K., 2007a],

[Kaljurand, K., 2007b]. Respectively the inverse mapping has also been implemented,

OWL 2 to ACE, verbalizing this way the OWL 2 ontologies as ACE text.

These mappings provide a user friendly front-end syntax editor for OWL 2 and SWRL

which makes the differences between OWL 2 and SWRL transparent and provides

“linguistically motivated syntactic sugar” [Juri Luca De Coi, et al., 2009].

2.2.3.7 ACE Editor

The ACE Editor demonstrates how editing of ACE texts can be done in a convenient

way. The ACE Editor is not a finished tool but rather a general basis to create domain-

specific tools on top of it. [Fuchs, N. E., 2006]

 -27-

2.2.4 ACE to First-Order Logic

ACE text can be translated into Discourse Representation Structures (DRS)

[Kaljurand, K., 2011b]. DRSs use a syntactic variant of the language of standard first-

order logic which is extended by some non-standard structures for modality, sentence

subordination, and negation as failure. The characteristics of DRSs are:

§ Use a small number of predefined predicates,

§ Representation of information derived from words as arguments of the prede-

fined predicates,

§ Appearance of eventuality types,

§ Use of lattice-theoretic representation of objects that allows the encoding of

plurals in first-order language,

§ Quantity information is contained [Fuchs et al., 2005].

A more thorough and comprehensive description of DRSs, notation and practical ex-

amples is found on [Kaljurand, K., 2011b].

2.3 Processable English (PENG)
Processable English (PENG) is a machine-oriented controlled natural language, con-

sisting of a restricted controlled grammar and controlled lexicon, designed for non-

specialists to write precise specification texts in a seemingly informal notation

[Schwitter, R., 2002]. PENG [Schwitter, R., 2009] is similar to ACE but the subset of

English covered by the vocabulary is limited, yet fully tractable. The vocabulary and

syntactic correctness when writing in PENG is ensured by a intelligent text editor

ECOLE with an intelligent feedback mechanism that has been developed in order to

assist the creation of well-formed linguistic structures that are translated unambiguous-

ly into first-order logic via discourse representation structures (DRSs), a technique

similar to the one applied in ACE. On the contrary to ACE that uses the produced dis-

course representation structure for the resolution anaphoric references, PENG trans-

forms the DRS into a format processable by a top-down chart parser and resolves ana-

phoric references during the parsing process in the same time a discourse representa-

tion structure is constructed. Additionally PENG was the first CNL that was supported

by a predictive editor that automatically detects what the user’s possible input and au-

-28-

to-completes it [Schwitter, R. et al., 2003]. The text created can be instantly validated

for its acceptability constraints using a third-party reasoning service, like the OTTER

theory prover [Schwitter, R., (n.d.)b]. Additionally, the logic theory resulting can be

used for question answering. Texts written in PENG look seemingly informal and are

easy to write and understand for humans but have first-order equivalent properties

[Schwitter, R., 2004]

PENG can be used for similar applications to ACE language but has recently been

mostly used for the construction of an interface for a situation awareness system [Baa-

der F., et al., 2009].

2.3.1 The PENG system
The PENG system’s architecture includes four components. The intelligent text editor

ECOLE, the controlled language (CL) processor, a server, and reasoning services (a

theorem prover and model builder) as depicted in the schema (2.3.1) below.

Schema 1.3.1: Architecture of the PENG system [Schwitter, R., 2004].

The CL processor is communicating with ECOLE through a socket interface. It runs as

a client service and connects through a server to the reasoning services which are run-

ning separate client processes and are the fourth component of the PENG system. The

reasoning services check the acceptability constraints of an inserted text and answer

questions about a specified piece of domain improving the knowledge acquisition pro-

cess.

 -29-

2.3.2 PENG Text Editor

Controlled natural language is the means of communication between the user and the

editor, while the editor dynamically enforces the grammatical restrictions of the lan-

guage over the inserted text and displays the interpretation of a sentence in the form of

a paraphrase in a CNL. As text is inserted the allowed syntactic structures that can fol-

low are automatically proposed by the look-ahead function of the editor guiding the

writing process. Additionally a spelling checker module is a part of the editor.

The controlled lexicon of the PENG system consists of a base lexicon and a user lexi-

con. The base lexicon contains frequent content words (proper nouns, common nouns,

verbs, adjectives, and adverbs) and pre-defined function words (determiners, preposi-

tions, coordinators, subordinators, and disambiguation markers) which build the syn-

tax of the CNL.

The user defined lexicon can be extended with domain-specific content words by the

author with the use of the pop-up lexical editor interferes when unknown words are

inserted [Tilbrook, M. & Schwitter, R., 2006].

Every sentence is checked dynamically for t constraints violations so that the user gets

immediate feedback from the editor.

2.3.2.1 PENG online

PENG Online is a version of the PENG editor implemented as a Java applet which

runs in a web browser and communicates with the server via a socket interface. It can

be used for summarizing and augmenting web-pages as well as other documents writ-

ten in controlled natural language. This authoring tool offers built-in browser func-

tionality for viewing web pages and provides an RSS mode for summarizing the con-

tent of these web pages in a CNL. Child processes are created for every java client

connecting to the Prolog server to manage multiple user sessions [Tilbrook, M. &

Schwitter, R., 2006]. The resulting text from the editor can be stored in an RSS feed

format accompanied by the user defined lexicon and later on exported as an XML

document [Schwitter, R., (n.d.)b].

-30-

2.3.2.2 PENG light

PENG translates generated text and posed questions into first-order notations via dis-

course representation structures for automated reasoning but not backwards into a

CNL. Ιn the case of PENG Light the same grammar as PENG is used to translate sen-

tences and questions into a first-order notation (augmented with syntactic information)

and this notation is used as a starting point for generating answers to questions in a

CNL. PENG Light distinguishes between simple, complex, and interrogative sentences

[Schwitter, R., 2009], [Schwitter, R., (n.d.)a].

2.4 Computer Processable Language (CPL)
Computer Processable Language (CPL) is a controlled language developed at Boeing

Research and Technology. Formal knowledge representation (KR) with semantics de-

rives from the interpretation of CPL in order to be used in reasoning and question an-

swering [Clark, P. et al., 2005].

In contrast to ACE which applies to restricted interpretation rules, and in contrast to

PENG, which relies on a predictive editor, the CPL interpreter directly resolves vari-

ous types of ambiguities using heuristic rules for a variety of language processing ac-

tivities [Peter, C. et al., 2010].

For a brief description of the CPL syntax and grammar: A CPL sentence has the fol-

lowing structure:

subject + verb + complements + adjuncts

 a structure similar to that of ACE simple sentences. Complements are obligatory

while adjuncts are optional modifiers for a sentence to be complete. Basic sentences

can be conjoined together using the keyword “AND”. CPL grammar includes handling

of prepositional phrases, compound nouns, ordinal modifiers, proper nouns, adjectives,

passive and gerundive forms, relative clauses, and limited handling of conjunctive co-

ordination. Definite reference substitutes pronouns.

CPL accepts three types of sentences: ground facts which are basic sentences, ques-

tions (“wh-” type of questions e.g. “what…”, “who…”), and rules implemented by

seven rule templates, for logical implications, preconditions and actions. “Sentences

that express states add facts to a situation, and sentences that express actions trigger

rules that update the situation, reflecting the changes that the action has on the situa-

 -31-

tion. The user can ask questions about an emerging situation directly in CPL” [Schwit-

ter R., 2010].

2.4.1 Interpreting CPL
As every CPL is interpreted instantly the user gets a continuous feedback in order to

correct misinterpretations.

There are three main steps for the interpretation of CPL sentences to logic. First of all

the sentences are parsed with the use of SAPIR, a bottom-up, broad coverage chart

parser, using attachment patterns for common word preference, which are stored in a

manually constructed database.

Second step, is the generation of an intermediate simplified “logical form” (LF). The

outcome is a normalized tree structure with logic-type elements, generated according

to rule sets, containing variables for noun phrases and additional expressions for other

sentence elements [Clark, P. et al., 2005].

During the third step, knowledge machine (KM) assertions are generated based on the

logical form. KM is a frame-based, well-defined semantics knowledge representation

language. The KM interpreter which applies to user defined rules is responsible for

reasoning, including reasoning about actions using a situation calculus mechanism

[Schwitter, R., 2010].

2.4.2 CPL- Lite
CPL-Lite was created to be used by knowledge engineers understanding the ontologies

and its vocabulary that needed a controllable and comprehensive way for question pos-

ing [Clark, P. et al., 2005].

While CPL relies on heuristics searching for the best interpretation, CPL-Lite is a

slimmed down version of CPL that can be interpreted deterministically in a similar

manner to PENG (Schwitter R. , Controlled Natural Languages for Knowledge

Representation, 2010). These two languages have the same expressiveness but the

grammar of CPL-Lite is even more restricted to a set of template sentences and the

vocabulary is equally restricted and requires the generation of verbose sentences that

map directly to ontology concepts.

-32-

2.5 Semantics of Business Vocabulary and Busi-
ness Rules (SBVR)

SBVR is a completely declarative meta-model with a solid logical foundation that was

developed with the intention to form the basis for formal and detailed natural language

providing declarative descriptions of a complex entity’s definition and rules, such as a

business. Apart from serving as a terminological dictionary it provides the context for

sharing these meanings and terms [Chapin, D., 2010].

It was developed in response to Object Management Group’s (OMG) request for pro-

posal “Business Semantics of Business Rules”. The development team consisted of 17

organizations in 7 countries. SBVR formalizes complex compliance rules, such as op-

erational rules for an enterprise, security policy, standard compliance, or regulatory

compliance rules [Hall, J., 2006]. Every rule is typed and respectively annotated by the

user with the use of template applied on a text editor. No particular language for vo-

cabulary and rules is standardized for common concepts such as date and time, quanti-

ties, currencies and units of measure. Such a case was not the intention of SBVR, yet it

is stated in bibliography addressed in this section that the need for a common vocabu-

lary is needed in business use of the language.

After being adopted by the OMG in 2005 and released in December 2007 (SBVR 1.0),

SBVR is an intergraded part of the Model Driven Architecture (MDA). SBVR de-

scribes business concepts and requirements without addressing their implementation.

Except from applications in commerce, for example manufacturing and finance,

SBVR also fits domains such as education, government, medicine and law.

For the vocabulary and rule examples that will follow “Structured English”, a restrict-

ed form of the natural language is used as defined by the OMG’s standard so that con-

sistent interpretation of the vocabulary and rules is enabled, using font styles: nouns

are underlined, verbs are in italics, literal values and instance names are shown in dou-

ble underlines, keywords are in bold and uninterpreted text is shown in normal font

style [Linehan, M. H., 2009].

In the following figure 2.5.1, it is depicted how vocabulary and rules overlay for the

creation of a simple SBVR model. According to [Hall, J., 2006]: SBVR realizes the

 -33-

business rules ‘Mantra’: “Rules are built on facts. Facts are built on terms.” presented

in figure 2.5.2.

Figure 2.5.1: Simple View of SBVR model [Hall, J., 2006]

Figure 2.5.2: Business Vocabulary development [Hall, J., 2006]

2.5.1 SBVR Business Vocabulary

The SBVR’s first aspect is the Business Vocabulary. The basic ingredients are the

business glossary, the taxonomy, the thesaurus and the natural language ontology.

-34-

Business glossary defines noun concepts and definition as well as primary terms. The

taxonomy defines the hierarchical relationships (equivalent to UML and OWL classes)

and the thesaurus contains multilingual grammar terms such as synonyms, acronyms,

abbreviations, etc. Also instances of concepts are defined in the taxonomy e.g. Busi-

ness Events and Business Entities and verb concepts meaning Business facts and Rela-

tions among concepts. Finally, in the ontology, relations among instances of concepts

are described, structural business rules as well as definitions, relationships and rules

specified in formal logic (equivalent to UML and OWL relationships [Hall, J., 2006].

Noun concepts form class hierarchies via subtype relationships, providing this way the

basis for submission reasoning [Linehan, M. H., 2009].

Furthermore, as proposed by [Linehan, M. H., 2009], SBVR vocabularies are “refer-

ence ontologies” as their primary intended use of is descriptive and rather than execu-

tion. Despite that, SBVR vocabularies can be employed as implementation structures,

given the following example:

customer

Definition: one that purchases a commodity or service

Source: Merriam Webster Collegiate Dictionary

customer submits order to company

Definition: the customer transmits the order to thecompany

firm order

Definition: order that is final

letter of intent

Definition: order that is not final

Synonym: LOI

Note: A customer may submit an LOI to get a price quote, delivery schedule, or other

terms of sale.

 -35-

order

Definition: customer request for items

order has item

Necessity: Each order has at least one item.

SBVR Operative Business Rules the second aspect of SBVR, the model rules, are

based on predicate logic formulas. SBVR provides a means for describing the struc-

ture of the meaning of rules expressed in the natural language that business people use.

In SBVR this is called “semantic formulation”. Semantic formulations are formulas

that make up meaning utilizing the given vocabulary and not statements.

Rules governing the business actions are distinguished from most other rule systems

by the use of alethic and deontic modalities from the world of philosophy and logic

(Halpin, 2006). Alethic modalities allow structural formulation, e.g. “It is possible

that a car has more than one driver” while deontic modalities describe behavior, e.g.

“Every rental must be paid in advance”. Also, SBVR supports exception rules, which

serve in authorization or access rules creation, e.g. “The gate may be opened only for

authorized users.”

Although business rules are expressed in natural language, some rules are often de-

picted graphically.

Tools such as the ACE Reasoner (RACE) for rule parsing for consistency checking,

textual entailment or query answering do not exist. Therefore many user-defined vo-

cabularies and rule combinations lead to impractical and incoherent computations. As

predicate logic is the basis for SBVR rules, rule validation and rule conflicts develop-

ment of such tools is feasible. Furthermore, formal semantics of SBVR allow the rule

simulation.

 -37-

3 Addressing the Problem

In this chapter, the idea that initiated this master thesis is explained. The problem state-

ment is analyzed in section 3.1 in more detail. In section 3.2, the implementation choic-

es of the programming language of this project, the knowledge representation and tran-

sition languages are justified. Furthermore an introduction into Rules and RuleML is

given into section 3.3and in section 3.4 the Rule Responder System is presented. Lastly,

part of the problem definition is the understanding of similar applications, presented in

section 3.5, and how the solution that will be developed needs to differentiate from

them.

3.1 The Problem

The problem that is addressed in this dissertation project consists of creating a simple

and easy to use interface for non-expert users to access the semantic web. In the Seman-

tic Web this is the task of External Semantic Web Agents. A semantic web external

agent has to provide the ability to access the semantic web in a convenient way in order

to provide a low entry level for non-experts. A convenient way can be defined as the

way users are already accustomed to search the Web, like key-word searching in search

engines.

Natural languages, offer such a possibility to pose structured sentence-like queries that

can be processed by machines. Likewise answers can be returned to the users in an easy

to process and comprehensive way.

The RuleML symposium has implemented the Rule Responder Semantic Web Agents

System that assist in organizing and retrieving information about the symposium chairs

of the RuleML symposia, with an External Web Agent called Symposium Planner, cur-

rently SymposiumPlanner-2012. Although this External Web Agent is accessible by an-

yone who wants to get informed about the symposium, it requires the knowledge of a

markup language and most specifically Reaction RuleML. As an alternative the devel-

-38-

opers of the system offer the possibility to the users to select predefined queries and also

select the organizational or sub-organizational agent the user wants to address to. Alt-

hough this eliminates the previous restriction it creates a new one, that of a finite num-

ber of possible queries.

The RuleML Symposium Planner External Web Agent can be accessed online in the

RuleML symposium webpage1.

Furthermore, as H. Boley [Boley, H. 2010], one of the main contributors to the Rule

Responder System mentions in one of his presentations about the system, the communi-

cation improvement between Personal Agents and Humans is addressed as future work

for the Rule Responder System. To this end, he mentions the semi-formal interaction

with the use of Controlled English in posing questions and receiving answers. Similar

extension can apply to other known implementations such as the ones that will be pre-

sented in section 3.7.

Also H.Boley addresses the issue of Query Decomposition and proposes the queries be-

ing decomposed into sub-queries, delegated to multiple PAs, and partial answers re-

integrated and secondly the application in information with data and knowledge integra-

tion.

In order to offer a simple and easy to use interface for the Rule Responder Organiza-

tional Agent and meet the new requirements of the Rule Responder System the ACE

Interface External Web Agent is created and thoroughly described in Chapter 4.

3.2 Implementation Choices

3.2.1 Programming Language Selection

As programming language for the ACE Interface External Web Agent, Java was select-

ed. The choice was encouraged by the fact that the Rule Responder System is imple-

mented in Java and Prova (a combination of Java and Prolog) and the selection of the

same language for this project can also assist to future improvement and integration to

other applications by any of the involved parties.

1 http://dbis.informatik.tu-cottbus.de/ruleml2012/ruleresponder.html.

 -39-

3.2.2 Selection of the Input and Communication Languages

Among the decisions that have to be taken in order to approximate a feasible solution to

the implementation of the project, is the selection firstly of the controlled natural lan-

guage that is going to be used in the front-end of the Interface and secondly the

knowledge modeling language used for the agent-to-agent communication. The two

languages, which are going to be used for these purposes, are ACE and Reaction

RuleML.

ACE as thoroughly discussed earlier in Chapter 2, is a precisely defined subset of Eng-

lish specifically designed for requirements specifications and knowledge representation.

As it can be seen in the examples, with a minimum practice one can easily use the lan-

guage to its full potential, along with the use of the provided tools. Additionally, users

can extend its use to private knowledge domains, by defining their own vocabularies

and with the use of special annotations.

The XML-based Rule Markup Language (RuleML) is used for representing and ex-

changing rules over the web that are used for derivation, query, transformation, integrity

checking and reactive behavior. The Rule Responder system is using Reaction RuleML

as knowledge interchange format. Reaction RuleML allows the expression of rules, via

queries, towards the coordinating personal agents that assist to the retrieval of infor-

mation about the symposium chairs of the RuleML symposia. The responses obtained

from the Rule Responder system are in Reaction RuleML as well.

Reaction RuleML covers constructs for (complex) events, actions and states/ fluent/

transition (changeable properties and transitions) definition and processing/ reasoning

for different derivation rules, production rules and reaction rules programs.

3.3 Semantic Web Rules and RuleML
As mentioned in previous sections rules form a component of vast importance for

knowledge representation and management systems and also serve as the basis for the

design of the Semantic Web. The Semantic Web aims at improving the current Web, by

augmenting its content with semantics and encouraging the cooperation among human

users and machines. Since the basic Semantic Web infrastructure is reaching sufficient

-40-

maturity, research efforts are shifting towards logic, proof and trust and rule-based sys-

tems inevitably concentrate most of the attention. Nevertheless, in order for human us-

ers to trust system answers, they have to be presented with adequate explanations that

justify the derived results [Kontopoulos E. et. al., 2008]. And, even more importantly,

these explanations have to be presented in a user-comprehensible format.

The Semantic Web principles are implemented in the layers of Web technologies and

standards. The layers are presented in figure 3.3.1. The Unicode and URI layers ensure

that the characters sets used are international and provide common means for identify-

ing the objects in Semantic Web. The XML layer with namespace and schema defini-

tions ensure that XML based standards apply in the Semantic Web. With RDF [RDF]

and RDFSchema [RDFS] it is possible to make statements about objects with URI's and

define vocabularies that can be referred to by URI's. This is the layer where types to re-

sources and links are applied. The Ontology layer supports the evolution of vocabularies

as it can define relations between the different concepts. With the Digital Signature lay-

er for detecting alterations to documents, these are the layers that are currently being

standardized in W3C working groups.

Figure 3.3.1: The Semantic Web layers [Koivunen M.R., Miller E., 2001]

The top layers: Logic, Proof and Trust, are the topic of all modern researches and sim-

ple application demonstrations are being constructed. The Logic layer enables the writ-

ing of rules while the Proof layer executes the rules and evaluates together with the

 -41-

Trust layer mechanism for applications whether to trust the given proof or not [Koi-

vunen M.R., Miller E., 2001].

Logic is currently the target of the majority of the upcoming efforts towards the realiza-

tion of the Semantic Web vision, namely making the content of the Web accessible not

only to humans, as it is today, but to machines as well. The Rule Markup Language

(RuleML) is the language enabling the derivation and transmition of rules.

3.3.1 RuleML
RuleML (Rule Markup Language) is a family of sublanguages implemented via modular

XML schemas spanning across all industrially relevant kinds of Web rules. This type of

implementation employs the modularity software engineering principle, resulting in in-

creased maintainability (inheritance of rules) and interoperability, accommodating rule

sub-communities who are able to specify the best serving language from the family

[Hirtle, D. et al., (n.d.)]. Rules in RuleML are written as a combination of natural lan-

guage and formal notation (a semiformal XML-based markup language). This language

permits the Web-based rule modeling, markup, translation, archiving, interchange, exe-

cution and publication in XML or even UML, RDF and ASCII for platform independ-

ence and interoperability.

Markup standards and initiatives related to RuleML include:

§ Mathematical Markup Language (MathML)

§ DARPA Agent Markup Language (DAML)

§ Predictive Model Markup Language (PMML)

§ Attribute Grammars in XML (AG-markup)

§ Extensible Stylesheet Language Transformations (XSLT) [RuleML Symposium,

2010].

RuleML is the product of the RuleML Initiative2, an international non-profit organiza-

tion consisting of an open network of individuals and groups from both industry and

2 www.ruleml.org

-42-

academia that share the interest of the interoperation of Semantic Web rules. RuleML

specification, tool, and application development are the tasks of the technical groups of

the Initiative. The Initiative has been collaborating with OASIS on Legal XML, Policy

RuleML, LegalRuleML, and related efforts since 2004. Further on, the initiative has

been interacting with the developers of ISO Common Logic (CL), which became an In-

ternational Standard in October 2007. RuleML is also a member of OMG, contributing

to its Semantics of Business Vocabulary and Business Rules (SBVR), and to its Produc-

tion Rule Representation (PRR). Moreover, participants of the RuleML Initiative have

been supporting the development of the W3C Rule Interchange Format (RIF) [RuleML

Symposium, 2010].

3.3.2 The RuleML Family of Sublanguages
Each sublanguage, represented as a rectangle in the following figure (3.3.2), corre-

sponds to a well-established rule system (e.g. datalog and hornlog), allowing users to

pick and choose to a sublanguage, according to their respective.

Figure 3.3.2: The modularization of RuleML [Hirtle, D. et al., (n.d.)]

 -43-

The most expressive "class" (i.e. sublanguage) is shown at the top and generality de-

creases in top-down order. As in the UML, a diamond-headed arrow indicates an aggre-

gation association (e.g. "datalog is part of hornlog" and "cterm is part of hornlog")

while regular-headed arrows indicate generalization as used for inheritance (e.g.

"bindatalog is a datalog"). Certain aggregation associations, such as hornlog to

nafhornlog and hornlogeq, branch and have multiple (in the figure 3.3.1, two) targets.

This notation logically places all target nodes on the same (horizontal) level. The ovals

in the above model represent elementary modules which act as "private" constituents of

the actual sublanguages (which are represented as rectangles). This composition may

happen directly, as is most obvious for datalog, or indirectly through subsequent associ-

ations. According to these conventions, elementary modules cannot be associated with

one another because they are dependent on rectangles [Hirtle, D. et al., (n.d.)].

3.3.3 Reaction RuleML

Reaction RuleML belongs to the RuleML family of languages and is a general, practical

and user friendly language. It is based on XML, which is the primary means for rules

interchange. It embodies different kinds of production, action and reaction rules, com-

posite facts and timely logic rules in the RuleML syntax using a system of step-by-step

extensions. Most significantly a variety of reaction rules serving in various domains are

covered. Reaction Rules can be defined in combination with other sets of rules like con-

clusion derivation rules or integrity constraints or even inbound in other rue sets. Figure

3.3.3 represents schematically the main application domains for Reaction RuleML.

-44-

Figure 3.3.3: Reaction RuleML applications [Paschke, A. et al., 2007a]

Reaction RuleML covers constructs for (complex) events, actions and states/ fluent/

transition (changeable properties and transitions) definition and processing/ reasoning

for different derivation rules, production rules and reaction rules programs.

3.3.3.1 Modularization of Reaction RuleML

Reaction RuleML follows the RuleML design patterns and defines new types in single

modules which are added in the RuleML family as layers on top of RuleML’s hornlog

layer. In Version 0.2 the syntax of rules is generalized to a core rule format which can

be specialized in different language families to different rule types such as derivation

rules, production rules, and reaction rules as well as mixed formats. [Paschke, A. et al.,

2007a]. Every layer adds different modeling expressiveness to the Reaction RuleML

core for the representation of behavioral (re)action and KR event/action logic (figure

3.3.4).

Figure 3.3.4: Reaction RuleML sublanguages [Paschke, A. et al., 2007a]

 -45-

The language fulfils the criteria for good language design as defined by McCarthy and
Hayes [McCarthy, J., Hayes, P. J., 1969] such as minimality, symmetry, orthogonality
and adequacy.

§ Minimality declares that in Reaction RuleML only a restricted set of language

constructs is provided in addition to the existing RuleML constructs.

§ Symmetry means that the same language constructs always express the same se-

mantics regardless of the context they are used in.

§ Orthogonality permits every meaningful combination of a language constructs to

be applicable.

§ Adequacy means that the user has adequate resources to express his knowledge

over Reaction RuleML.

3.3.3.2 Reaction RuleML Production Rules

Production rules are a part of Reaction RuleML and contain actions of update (Assert,

Retract) and actions (do). For the production rules definition and example the main

sources used are [Paschke, A. et al., 2007b ; Paschke, A. (n.d.)a].

Production rules are defined in an XML schema file and in this file the following ele-

ments and characteristics of Reacion RuleML are defined:

§ The Rule is redefined with the addition of actions using the words ‘do’ and

‘elseDo’ and meta-conditions using the words ‘after’ and ‘elseAfter’.

§ Elementary update actions are defined (Assert, Retract).

§ Action ‘Assert’ gets redefined adding the characteristics ‘@safety’ and ‘@all’.

§ Action ‘Retract’ gets redefined adding the characteristics ‘@safety’ and ‘@all’.

Additionally, the actions ‘Assert’ and ‘Retract’ can be used in the part of action ‘do’ or

in the form of a series of Horn rules in the if-part of a production rule.

In the following PR schema the Rule element is redefined and derivation and production

of mixed production rules are added.

(oid?, label?, scope?, quantification?,
(

(if, ((do, after?, else?, elseDo?, elseAfter?) |
(then, else?, elseDo?, elseAfter?)))

)

-46-

)
Rules are redefined so that production rules are in the form: (if, do, after?, else?,
elseDo?, elseAfter?).

<xs:group name="ProductionRule.content">

<xs:sequence>

<xs:group ref="ProductionRule.content"/>

<xs:element ref="do"/>

<xs:element ref="after" minOccurs="0"/>

<xs:element ref="else" minOccurs="0"/>

<xs:element ref="elseDo" minOccurs="0"/>

<xs:element ref="elseAfter" minOccurs="0"/>

</xs:sequence>

</xs:group>

Actions ‘elseDo’ and ‘elseAfter’ are added so that derivation rules are in the form: (if,

then, else?, elseDo?, elseAfter?).

<xs:group name="DerivationRule.content">

<xs:sequence>

<xs:group ref="DerivationRule.content"/>

<xs:element ref="elseDo" minOccurs="0"/>

<xs:element ref="elseAfter" minOccurs="0"/>

</xs:sequence>

</xs:group>

Additionally, in the PR schema the element ‘Assert’ is redefined and the characteristics

‘@all’ and ‘@safety’ are added for the interchange updates:

@safety = normal | transactional; default = normal

@all = yes | no; default = no

(oid?, (formula | Rulebase | Atom | Rule | Equivalent | Entails | Forall | Equal |Neg)*)

<xs:attributeGroup name="Assert.attlist">

<xs:attributeGroup ref="Assert.attlist"/>

<xs:attributeGroup ref="safety.attrib"/>

<xs:attributeGroup ref="all.attrib"/>

</xs:attributeGroup>

 -47-

Moreover, in the PR schema the element ‘Retract’ is redefined and the characteristics

‘@all’ and ‘@safety’ are added for the interchange updates:

<xs:attributeGroup name="Retract.attlist">

<xs:attributeGroup ref="Retract.attlist"/>

<xs:attributeGroup ref="safety.attrib"/>

<xs:attributeGroup ref="all.attrib"/>

</xs:attributeGroup>

The actions ‘Assert’, ‘Retract’, ‘Update’ are added in the body of PR so that it goes to

the form: (Atom | And | Or | Equal | Naf | Neg | Assert | Retract | Update)

<xs:group name="body.content">

<xs:choice>

<xs:group ref="body.content"/>

<xs:group ref="update_primitives.content" />

The actions ‘Assert’, ‘Retract’, ‘Update’ are added so that the content type of the model

is: (Atom | Naf | Neg | And | Or | Equal | Assert | Retract | Update)

<xs:group name="formula-and-or.content">

<xs:choice>

<xs:group ref="formula-and-or.content"/>

<xs:group ref="update_primitives.content" />

</xs:choice>

</xs:group>

3.3.3.2.1 A derivation rule example

In the following example the ruleː

(occurs (heartbeat ?Service), ?T) => (assert (alive ?Service, ?T))

 is implemented:

Variable begin with “?”. The <Assert> label is used to import actions and conditions in

the database. (style="active") is the first assertion rule and the condition marked by the

<Atom > label are included in the <if> part.The sentence includes the predicate <Rel>

occurs, an expression <Expr>, containing a function <Fun> heartbeat. With a variable

<Var> Service and the time period the variable is in (<Var>). All this is translated as: A

-48-

‘Service’ in a certain moment ‘T’ has ‘heartbeats’. The actions as mentioned in the pre-

vious section are included within the <do> labels. In this rule there is only one action

and this is declared within the second <Assert> labels. It declares that the logical as-

sumption written within the <Atom> labels will be included if the condition is true. The

<oid > declared the action identifier <Ind>availability. The logical assumption include

the predicate <Rel> alive and the variables <Var> Service & T. The action called

‘availability’ inserts to the system knowledge base the logical sentence that a ‘service’

is ‘alive’ at ‘T’.

<Assert>

<Rule style="active">

<if>

<Atom>

<Rel use="value">occurs</Rel>

<Expr>

<Fun use="value">heartbeat</Fun>

<Var>Service</Var>

</Expr>

<Var>T</Var>

</Atom>

</if>

<do>

<Assert>

<oid><Ind>availability</Ind></oid>

<Atom>

<Rel>alive</Rel>

<Var>Service</Var>

<Var>T</Var>

</Atom>

</Assert>

</do>

</Rule>

</Assert>

 -49-

3.4 The Rule Responder System

Since Rule Responder is the basic infrastructure that the ACE Interface External Web

Agent will collaborate with, a brief description over its architecture and its knowledge

interchange format will be given. No further implementation is done over the Rule Re-

sponder apart from the connection with the system.

Rule Responder is a multi-agent system for collaborative team and community support

on the (Semantic) Web that enables the rule-based collaboration between the distributed

human members of such a virtual organization [Paschke, A., Boley H., 2011]. It is im-

plemented and deployed for RuleML symposium since 2008. Persons of an organization

are assisted by semi-automated rule-based agents, which use rules, to describe the deci-

sion and behavioral logic. The languages of the RuleML family used for rule serializa-

tion based on logic and XML are:

• Hornlog RuleML: Reasoning (decision)

• Reaction RuleML: Interaction (behavior)

The Rule Responder is implemented on top of a Mule-based Enterprise Service Bus

(ESB) as a Service Oriented Architecture (SOA). Mule3 is used to create communica-

tion end points at each personal and organizational agent of Rule Responder. The

transport protocols used are Hyper Text Transfer Protocol (HTTP) and Java Message

Service (JMS).

The semi-automated agents are distinguished to Personal, Organizational and External

Agents. A personal agent (PA) assists a person − or selected group of persons − of an

organization, semi-autonomously acting on their behalf. A personal agent works on a

profile of FOAF-like (Friend of a Friend) facts plus FOAF-extending rules that encode

‘routine’ knowledge of its human owner(s). Each personal agent is realized in the Rule

Responder multi-agent infrastructure with a servlet using one or more rule engine(s).

An organizational agent represents goals and strategies shared by each member of the

organization. It contains rule sets (that consist of facts) that describe the policies, regula-

tions, opportunities, and expertise of its organization. Every organizational agent is real-

ized with an instance of a rule engine.

3 http://www.mulesoft.org/

-50-

External agents exchange messages with (the public interface of) organizational agents,

sending queries (requests), receiving answers (results), or interchanging complete rule

sets. End users, via external agents, employ the Web (HTTP) interface of Rule Re-

sponder (currently an API-like browser interface), figure 3.4.1.

The rule engines used by the Rule Responder are Prova (Prolog + Java), OO jDREW:

(Object Oriented java Deductive Reasoning Engine for the Web) [Boley, H., Craig B.

2008] and DR-Device (Defeasible Logic Reasoner for the Semantic Web), [Kontopou-

los E., et.al., 2011]. Rules can be shared among personal agents and rules that apply to

all, are lifted a level higher, to the organizational agent level.

Figure 3.4.1: Animated representation of the External Agent interoperation with
Rule Responder. [Boley, H. 2010]

3.4.1 Interchange of Knowledge between Agents

Each rule engine can use its own rule language. On the other hand, agents require an

interchange language so they can communicate with each other. For this matter Rule

 -51-

Responder uses RuleML, most specifically Reaction RuleML as its interchange lan-

guage. Translations between the interchange language and the personal agent individual

languages are done by the personal agents. The Reaction RuleML messages and rule

bases between the agents are sent through the ESB as requests and results. Each PA has

a knowledge base containing the responsibilities of the position in order to answer que-

ries relevant to the chair's role. An example of a Reaction RuleML message transmitted

between agents is given bellow.

<?xml version="1.0" encoding="UTF-8"?>

<RuleML xmlns="http://www.ruleml.org/0.91/xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ruleml.org/0.91/xsd"
xmlns:ruleml2012="http://ibis.in.tum.de/projects/paw#">

 <Message directive="query-sync" mode="outbound">

 <oid>

 <Ind>SymposiumPlannerSystem</Ind>

 </oid>

 <protocol>

 <Ind>esb</Ind>

 </protocol>

 <sender>

 <Ind>User</Ind>

 </sender>

 <content>

 <Atom>

 <Rel>getContact</Rel>

 <Ind>ruleml2012ATecai_GeneralChair</Ind>

 <Var>Contact</Var>

 </Atom>

 </content>

 </Message>

</RuleML>

Through this request message the contact information of the General Chair from the

Rule Responder system Super-Organizational Agent. The response is shown below:

<Message mode="outbound" directive="answer">
 <oid>
 <Ind>httpEndpoint:143</Ind>
 </oid>
 <protocol>
 <Ind>esb</Ind>

-52-

 </protocol>
 <sender>
 <Ind>httpEndpoint</Ind>
 </sender>
 <content>
 <Atom>
 <Rel>getContact</Rel>
 <Ind>ruleml2012ATecai_GeneralChair</Ind>
 <Expr>
 <Fun>person</Fun>
 <Expr>
 <Fun>name</Fun>
 <Ind>Grigoris Antoniou</Ind>
 </Expr>
 <Expr>
 <Fun>email</Fun>
 <Ind>antoniouATdomainname</Ind>
 </Expr>
 <Expr>
 <Fun>phone</Fun>
 <Ind>302810391624</Ind>
 </Expr>
 <Expr>
 <Fun>title</Fun>
 <Ind>Dr</Ind>
 </Expr>
 <Expr>
 <Fun>role</Fun>
 <Ind>General Chair</Ind>
 </Expr>
 <Expr>
 <Fun>affiliation</Fun>
 <Ind>University of Huddersfield</Ind>
 </Expr>
 </Expr>
 </Atom>
 </content>
</Message>

<Message mode="outbound" directive="answer">
 <oid>
 <Ind>httpEndpoint:143</Ind>
 </oid>
 <protocol>
 <Ind>esb</Ind>
 </protocol>
 <sender>
 <Ind>httpEndpoint</Ind>
 </sender>
 <content>
 <Atom>
 <Rel>getContact</Rel>
 <Ind>ruleml2012ATecai_GeneralChair</Ind>
 <Expr>
 <Fun>person</Fun>
 <Expr>
 <Fun>name</Fun>
 <Ind>Guido Governatori</Ind>
 </Expr>
 <Expr>
 <Fun>email</Fun>

 -53-

 <Ind>guidoDOTgovernatoriATnictaDOTcomDOTau</Ind>
 </Expr>
 <Expr>
 <Fun>phone</Fun>
 <Ind>610733652907</Ind>
 </Expr>
 <Expr>
 <Fun>title</Fun>
 <Ind>Dr</Ind>
 </Expr>
 <Expr>
 <Fun>role</Fun>
 <Ind>General Chair</Ind>
 </Expr>
 <Expr>
 <Fun>affiliation</Fun>
 <Ind>NICTA</Ind>
 </Expr>
 </Expr>
 </Atom>
 </content>
</Message>

The attribute directive="…" specifies the pragmatic performance, which is either a

request ("answer") or a response ("query-sync").

3.4.2 Query Delegation among the Agents

The requests (queries) are delegated to the appropriate personal agents by the organiza-

tional agent. A role assignment matrix is responsible for the correct task management.

As seen in figure 3.4.2, (meta)topics are assigned to personal agents within the virtual

organization.

-54-

Figure 3.4.2: Query Delegation with the use of a role assignment matrix for the

RuleML symposium [Boley, H. 2010].

Some queries have more than one answers, as in the example given in section 4.1.1, the

personal agent send the answers one at the time, interleaving backtracking and transmis-

sion increasing the overall performance of the system. When no more answers are found

by the personal agent an end-of-transmission message is sent to the organizational agent

and then a complete answer is displayed.

3.5 Related Work

The existing work most related to the “ACE Interface External Web Agent” includes the

following:

 -55-

TRANSLATOR
TRANSLATOR4 (TRANSlator from LAnguage TO Rules). Specifically, rules written in

ACE are taken as input, parsed (using the APE Web service) into a variant of first-order

logic known as a Discourse Representation Structure (DRS) and then mapped into for-

mal representation in the XML-based Rule Markup Language (RuleML). TRANSLA-

TOR is available as a Java Web Start application and allows non-programmers to write

their own rules on the Semantic Web via familiar natural language.

Symposium Planner 2011
The Symposium Planner 20115. Distributed rule agents in Symposium Planner 2011

consist of Prova Agent and OO jDREW Agent. Symposium Planner 2011 consults the

knowledge not only from its knowledge repository, but also from Semantic Web Dog

Food Corpus found online6.

DRACE
A prototype tool called DRACE is already available for translating a DRS into ACE

(subject to some limitations) [Fuchs N.E, et.al. 2005b]. If this tool were accessible (e.g.,

as a Web service), any application using as knowledge representation language one of

the RuleML family of languages, could be extended to be bidirectional, supporting

translation from RuleML back to ACE by reversing the DRS-RuleML mapping.

Unfortunately, during the progress of the current thesis, it was not possible to have ade-

quate access to the above tools. The reasons for this lie on unavailability or inconsistent

behaviors and functionality of the corresponding services. Therefore, the reports, as pre-

sented in this chapter, rely solely on the available documentation of the tools and no

practical assessment could be made.

4 http://ruleml.org/translator/
5
http://198.164.40.210:8080/ACE2ReactionRuleML/index.jsp?agent=SymposiumPlannerSystem
6 http://data.semanticweb.org/

 -57-

4 Contribution

In this chapter a detailed presentation is given over the implementation of the “ACE In-

terface External Web Agent” for the RuleML Rule Responder created in the terms of

the project as a solution to the problem statement of the dissertation (Chapter 3). In the

following sections the architecture, the user interface and the basic components are ana-

lyzed.

Starting with the basics about the project, a brief overview and the system architecture

along with the implementation schemas are presented in sections 4.1, 4.2 and 4.3. The

interface which is the user interaction medium, the web pages and their functionality are

analyzed in section 4.4. Over at section 4.5 the basic steps of ACE to Reaction RuleML

translation are presented. At section 4.6 fragments of the code are presented and ex-

plained in order to help the reader of this thesis understand how the project is imple-

mented. Finally, in section 4.7 a short manual is provided in order to install the agent

locally on a personal computer and the minimum system requirements.

4.1 The ACE interface External Web Agent

The developed ACE Interface External Web Agent is an open source semi-autonomous

web platform serving as an intermediate with the RuleML Rule Responder Organiza-

tional Agent that allows anyone to access it and write queries in natural language with-

out any knowledge of Reaction RuleML employed by the Organizational Agent. This is

accomplished by taking input sentences expressed in annotated ACE (having the ap-

pearance of plain English but is in fact a formal language) and translating it into Reac-

tion RuleML (a structured, restricted subset of RuleML). The aim is that this user-

friendly front-end will offer an alternative to the RuleML SymposiumPlanner-2012 and

additionally in future extensions will help lower the barrier to enter the Semantic Web

and encourage non-experts to get involved.

-58-

4.2 System Architecture

The “ACE Interface External Web Agent” is an intermediate interface between the non-

experienced user and the RuleML symposium’s Rule Responder Organizational Agent

(figure 4.2.1). The system is tightly coupled with Reaction RuleML and assists in re-

trieving information about the chairs of the symposium

Figure 4.2.1: Schematic representation of the systems architecture.

4.3 Implementation

The Interface is implemented, as it can be seen in figure 4.3.1, as a web service and its

source code is in Java. Unlike the known competition implementations that use the At-

tempto project tools, the Prolog engine (Prova) is not used. The web pages for accepting

the input, calling the functions and displaying the output are written in JSP amplified

with Javascript code for better functionality and timely responses. Furthermore, the in-

teroperation of the web pages and the source code is implemented by Java servlets.

 -59-

Figure 4.3.1: Schematic representation of the “ACE Interface External Web

Agent” Implementation.

ACE text is accepted through the User Interface and transmitted to the Java Servlet that

parses and translates the input to Reaction RuleML. Java classes add to the functionality

of the project as object oriented design patterns are employed, for example the text pars-

ing and analysis methods that will be presented later on in section 4.6. As it is schemati-

cally depicted ACE with the assistance of the library files is formatted to Reaction

RuleML in order to be sent to the Rule Responder System. The response is formatted in

the same knowledge representation language which is parsed again and with the use of

XSLT is displayed to the user as HTML. In order to offer a user friendly interface that

will ease the navigation of the user in the website all the web pages share a common

CSS layout.

4.4 User Interface

The two primary design goals of ACE Interface External Web Agent were that it be

a. Widely accessible, and

b. User friendly.

-60-

Both goals mentioned above are satisfied by its availability as the agent can easily be

accessed (cross-platform) online via its website and provides users with an easy to use

graphical user interface depicted in figure 4.4.1.

The web site comprises of 3 web pages, a link for downloading the paper of the project

and a link for contacting the author7. For the web interface a light-weight and simplistic

approach was taken so that the focus of the user is not distracted from the main purpose

of the web site and at the same time it is easy to navigate in the rest of the web site’s

pages.

The first page (initial page), figure 4.4.1, consists of a text area, a dropdown menu, and

action buttons. In the text area the user can insert the ACE query on its own or select a

predefined query through the dropdown menu.

The input text accepted in the text area or the one produced through the predefined op-

tions uses special annotations for denoting nouns and predicates in the ACE text. This

method of writing ACE is applied because unlike other applications for translating ACE

to RuleML or other structured languages and formats, the APE parser, provided by the

Attempto project, is not used and instead it is bypassed with custom dictionaries. Also

ACE input is directly translated to RuleML through the Java source code and not

through the DRS outcome of the APE parser. Bypassing the APE parser and using cus-

tom dictionaries also gives to the ACE Interface External Web Agent the advantage of

even looser interpretation of the query, meaning that as long as the keywords necessary

for the query to be interpreted are correct the response will be correct despite any con-

sistency flaws.

7 Samaras Dimitrios , dimitris.samaras1@gmail.com

 -61-

Figure 4.4.1: Semantic Web Agent front-end, Main page

After the query is inserted in the text area, either manually or through selecting a prede-

fined query, there are two action buttons. The first: “Analyze Query” performs the anal-

ysis of the query and provides the result to the user. In case of malformed or no input an

error message is displayed “Fails. No input. Please go to main page and enter ACE que-

ry”, figure 4.4.2.

-62-

Figure 4.4.2: Malformed or no input response

 If the input text is valid, it is split to words (tokens) and analyzed as to what is the

grammatical context of each word in the sentence according to the dictionaries and what

function words (words denoting a query) exist in the sentence, figure 4.4.3. Furthermore

the ACE Interface External Web Agent is capable of analyzing more than one sentence

at the time, figure 4.4.4.

 -63-

Figure 4.4.3: ACE Interface External Web Agent Query analysis result a.

Figure 4.4.4: ACE Interface External Web Agent Query analysis result b.

-64-

The second action button “Contact Rule Responder” initiates the operation of transmit-

ting the query to the Symposium Planner super-organizational agent and receiving the

response. By clicking on the button the translation of the input text to Reaction

RuleML is initiated. The resulting page is the query translated into Reaction RuleML in

order to be sent to the organizational agent that assist the symposium chairs of the

RuleML symposia, figure 4.4.5. The resulting Reaction RuleML as it is displayed at the

text area can also be modified by the user before being sent to the organizational agent.

Figure 4.4.5: ACE Interface External Web Agent Query transformed to Reaction

RuleML.

As a following step of the posing the query procedure the “Send Request” action button

is responsible for sending the Reaction RuleML formed query to the Semantic Web

 -65-

agents, and then receiving and translating the answer in an easy-to-read format. The an-

swer initially is received as Reaction RuleML, then it is processed internally and finally

it is displayed as a simple HTML document, figure 4.4.6.

Figure 4.4.6: ACE Interface External Web Agent Response page.

4.4.1 Additional Content

Apart from the ACE Interface External Web Agent additional explanatory content about

the project and assisting content for the use of the external agent is provided for the us-

ers.

-66-

4.4.1.1 About.html

A link containing useful information about the author and the academics involved in the

project and the project abstract.

Figure 4.4.7: About.html Snapshot

4.4.1.2 Cookbook.html

Use cases are provided on how to use the ACE Interface External Web Agent with the

assistance of the set of predefined queries and how to annotate text in order for the user

to compose its own text.

 -67-

Figure 4.4.8: Cookbook.html Snapshot

4.4.1.3 Contact Author - hyperlink

Simple email contact form.

4.4.1.4 Download the paper - hyperlink

The thesis submitted for the degree of Master of Science (MSc) in Information and

Communication Systems from International Hellenic University with the title “A natu-

ral language user interface for a semantic web agent” can be found in this hypelink.

-68-

4.5 Translation Procedure
After the user has inserted his/her input in the text area of the initial page or since a pre-

defined query is selected, the translation process can be broken down into the following

9 basic steps:

1. The input text is read and a primary check is initiated whether the sentence is

empty,

2. The input text is parsed into sentences,

3. Sentences are parsed into words,

4. Words are characterized according to their form and meaning

a. Function words, meaning word denoting the beginning of a query

(“What”, “Who”, “How”, “Where”, “When”, “Which”).

b. Categorized words: “Predicate”, “Noun”, “Adjective/Adverb”, “Verb”,

“Proper Name” as they can be found in the dictionaries.

c. Nonfunctional, non-predefined words marked as “other”.

d. Change of sentence – end of query characters (“?”, “!”, “.”),

5. Input is translated to the appropriate Reaction RuleML XML serialized format,

6. The Reaction RuleML output of the previous steps is displayed in aJSP file for

the user to change or modify the output and proceed with the next steps,

7. The output of step 5(as possibly altered by step 6) is sent to the Rule Responder

Organizational Agent as a server request,

8. Once a response is transmitted back from the Rule Responder Organizational

Agent,the Reaction RuleML message is parsed, and finally,

9. The answer is transformed into HTML with the use of XSLT and displayed to

the user.

Interpreting ACE to Reaction RuleML and Reaction RuleML to easy-to-read format

output can be depicted in three major phases as it can be seen in the figure 4.5.1.

 -69-

Figure 4.5.1: Schematic representations of the three phases of ACE to Reaction

RuleML and Reaction RuleML to HTML translation.

4.6 Classes and Methods

4.6.1 Parsing the input

In every possible action as a starting point the user input is parsed to sentences, then to

words and words are characterized according to the dictionaries or whether they have a

functional purpose. For every action a separate action button exists.

<input TYPE="submit" name="com" value="Analyze Query" >
<input TYPE="submit" name="com" value="Contact Rule Responder" >

When a button is pressed its value is transferred to the java servlet class “Implemen-

tACE2RuleML”.

With the following code the input is checked if it is blank and the parsing to sentences is

initiated.

-70-

// Check there is an input or if the text area is blank!
if ((input == null) || input.equals("")) {
 displayResult(response, com, "Fails. No input.
Please go to
main page and enter ACE query");
 } else {

// Retrieve input and parse using ".", "!" and "?" delimiters.
 String[] sentence =
GlobalFunctions.stringToSentenceArr(input,".!?");

As described above, sentences are separated by the symbols ".", "!" and "?". The

“stringToSentenceArr” method is displayed bellow. String arrays are created

while parsing the input in order to separate words and characterize them based on the

dictionaries.

public static String[] stringToSentenceArr(String wordString , String
nontokenDelims) {

//String nontokenDelims = ".?!";
 String[] result;

// index into the next empty array element
 int i = 0;

//--- Declare and create a StringTokenizer
 StringTokenizer st =new StringTokenizer(wordString,nontokenDelims);

//--- Create an array which will hold all the tokens.
 result = new String[st.countTokens()];

//--- Loop, getting each one of the tokens
 while (st.hasMoreTokens()) {
 result[i++] = st.nextToken();
 }
 return result;
}

The same way sentences are parsed into words “tokens” and instead of using delimiters

".", "!" and "?" , space “ ” is taken into account.

publicstatic String[] stringToTokensArr(String wordString){
 String[] result;
 int i =0;

//--- Declare and create a StringTokenizer
 StringTokenizer st =new StringTokenizer(wordString);

//--- Create an array which will hold all the tokens.
 result=new String[st.countTokens()];

//--- Loop, getting each of the tokens
 while(st.hasMoreTokens()){
 result[i++]= st.nextToken();
 }
 return result;

 -71-

}

As long as sentences are broken down to tokens, each token is looked up for special an-

notations that indicate its grammatical meaning so that is correctly transformed later on

to the element nodes or double quotes that indicate that an element node with string type

attribute needs to be created. The “findAnnotation” method of the “Glob-

alFunctions” class is presented bellow.

public static String findAnnotation(String s) {
 String strType;
 strType = null;
 String subStr;

 if (s.length() > 2 && s.charAt(0) == '"') {
 subStr = s.substring(1, s.length());
 s = subStr;
 strType = "user defined string start";
 } else if (s.length() > 2

&& s.charAt(s.length()-1) == '"') {
 subStr = s.substring(0, s.length() - 1);
 s = subStr;
 strType = "user defined string end";
 } else if (s.length() > 2 || s.charAt(1) == ':') {
 if ((s.charAt(1) == ':') && (s.charAt(0) == 'r')) {
 subStr = s.substring(2, s.length());
 s = subStr;
 strType = "Predicate";
 } else if ((s.charAt(1) == ':') && (s.charAt(0) == 'n')) {
 subStr = s.substring(2, s.length());
 s = subStr;
 strType = "Noun";
 } else if ((s.charAt(1) == ':') && (s.charAt(0) == 'a')) {
 subStr = s.substring(2, s.length());
 s = subStr;
 strType = "Adgective/Adverb";
 } else if ((s.charAt(1) == ':') && (s.charAt(0) == 'v')) {
 subStr = s.substring(2, s.length());
 s = subStr;
 strType = "Verb";
 } else if ((s.charAt(1) == ':') && (s.charAt(0) == 'p')) {
 subStr = s.substring(2, s.length());
 s = subStr;
 strType = "ProperName";
 }
 }
 if(strType != null){
 return s + " : " + strType;
 }else return s;
 }
}

-72-

When a word (token) has a grammatical meaning then it is displayed next to the word in

the query analysis (figures 4.4.3, 4.4.4). Finally, input is looked up for function words

denoting request (query) operation.

public static HashSet<String> functionWords =
new HashSet<String>(Arrays.asList(new String[]{
 "What", "Who", "How", "Where", "When", "Which"

}));

public static boolean isFunctionWord(String s) {
 return functionWords.contains(s);
}

Function words are referenced in the end of the query analysis along with the number of

the occurrences in case there is more than one.

4.6.2 Creating the Reaction RuleML request

In order to create the Reaction RuleML request an XML-like document is created and

displayed to the user (figure 4.4.5) and onwards sent to the Rule Responder organiza-

tional agent. This is implemented by the “XMLTreeCreator” class. For this purpose

dom4j open source library is used [Dom4j (n.d)].

public static Document createDocument(ArrayList tokens) {

//initialization of new document
 Document document = DocumentHelper.createDocument();
 String xmlns = "http://www.ruleml.org/0.91/xsd";

//Create root element, add attributes
 Element root = document.addElement("RuleML", xmlns);

root.addAttribute("xmlns:xsi",
"http://www.w3.org/2001/XMLSchema-instance");
root.addAttribute("xsi:schemaLocation",
"http://www.ruleml.org/0.91/xsd");
root.addAttribute("xmlns:ruleml2012",
"http://ibis.in.tum.de/projects/paw#");

After the new document is initialized the root element of the tree is created. The xml

namespace since it cannot be imported as a root element attribute is inserted as a string

input when root is created. Element nodes that are the same for every request are creat-

ed in the appropriate format so that the Reaction RuleML request message is correctly

created, code fragment presented bellow.

 -73-

//Create subsequent elements
Element message =
root.addElement("Message").addAttribute("directive", "query-
sync").addAttribute("mode", "outbound");

 Element oid = message.addElement("oid");

Element ind =
oid.addElement("Ind").addText("SymposiumPlannerSystem");

 Element protocol = message.addElement("protocol");
 ind = protocol.addElement("Ind").addText("esb");

 Element sender = message.addElement("sender");
 ind = sender.addElement("Ind").addText("User");

 Element content = message.addElement("content");
 Element atom = content.addElement("Atom");

Atom nodes consist of sets of element nodes. The element nodes are named and filled

up according to the grammatical analysis of the input text. In the following code frag-

ment the way words are distinguished according to their grammatical meaning with the

use of annotations is presented.

for (int i = 0; i < tokens.size(); i++) {
 String prod = null;
 String ToNode = (String) tokens.get(i);

//Search for char "n","r" or double quotes
 char c = ToNode.charAt(0);
 switch (c) {
 case 'r':

//if the word-token is annotated as a prepricate "r" then look
at the predicate.txt

String predicate = SearchTxt-
File.SearchThe("C:\\predicate.txt", ToNode.substring(2,
ToNode.length()));

 Element elmnt1 = atom.addElement("Rel").addText(predicate);
 break;
 case '"':

//if the word-token is annotated as a user defined string inside
"quotes"

 String tempstr = "";
 for (int j = 0; j < tokens.size(); j++) {

// Reconstruct the initial user input to get the value be-
tween the "quotes"

 String temp = (String) tokens.get(j);
 tempstr = tempstr + " " + temp;
 }
 Pattern p = Pattern.compile("\"([^\"]*)\"");
 Matcher m = p.matcher(tempstr);
 while (m.find()) {
 prod = m.group(1);
 }
 Element elmnt2 = atom.addElement("Ind").addText(prod);

 //add the type="string" attribute to the node
 elmnt2.addAttribute("type", "string");

-74-

 break;
 case 'n':

//if the word-token is annotated as a noun "n" then look at the
noun.txt

String noun = SearchTxtFile.SearchThe("C:\\noun.txt",
ToNode.substring(2, ToNode.length()));

 Element elmnt3 = atom.addElement("Ind").addText(noun);
 break;
 }
}
Element elmnt4 = atom.addElement("Var")
 .addText("Contact");
return document;

Element nodes that hold the information about the request are included inside the “At-

om” node. An <Atom> node with children nodes that needs to be created from the code

presented previously has the following format:

 <Atom>
 <Rel>getContact</Rel>

 <Ind>ruleml2012ATecai_GeneralChair</Ind>

 <Var>Contact</Var>

 </Atom>

In order for the produced request to be timely displayed to the user, the following JSP

code is employed:

<textarea name="content" rows="20" cols="80" wrap="off">
<% try {
 FileInputStream fstream = new FileInputStream("C:\\ACE2Ruleml Se
mantic web agent\\web\\output.xml");
 // Get the object of DataInputStream
 DataInputStream in = new DataInputStream(fstream);
 BufferedReader br = new BufferedReader(new InputStreamReader(in));
 String strLine;
 //Read File Line By Line
 while ((strLine = br.readLine()) != null) {
 // Print the content on the console
 out.println(strLine);
 }

//Close the input stream
 in.close();

 } catch (Exception e) {

 //Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }
%></textarea>

 -75-

Through the JSP presented above, the request XML document is called directly when

the page opens. Otherwise the previous produced result would be displayed, although

the new one would be produced. This happened because the page opened before the re-

sult was cached in the server. With this solution the page is forced to open directly once

the result is produced and the problem where the resulting Reaction RuleML message

was displayed after the XML document was refreshed manually through the Apache

server is avoided.

4.6.3 Transmitting the request

Once the request is created and displayed to the user (figure 4.4.5) when the button
“Send message” is pressed the “ImplementRuleML2ACE” Java Servlet class is
called.

String iniUrl = "http://131.202.242.154:8888";
String com2;
String content;
String horde;
 if (com2.equals("Send Message")) {
 content = request.getParameter("content");
 horde = request.getParameter("Horde");

//encode string to url
 String contURL = URLEncoder.encode(content);

//add all parts of the url form the correct adress
URL myUrl = new URL(iniUrl + "/?Horde=" + horde + "&content=" +
contURL);
//establish connection and get responce from server

 URLConnection conn = myUrl.openConnection();
…
 }

In order to contact the Rule Responder a URL containing the Rule Responder IP ad-

dress with the complete request message needs to be created. The IP address where Rule

Responder is hosted is 131.202.242.154 and the port is 8888.

4.6.4 Collecting and Storing the Response

As soon as the Rule Response publishes the response, it is caught by the “Imple-

mentRuleML2ACE” Java Servlet class in the back end without being displayed to the

user and directly saved as a string.

-76-

//write responce to string
BufferedReader in = new BufferedReader(

new InputStreamReader(conn.getInputStream()));
StringBuffer sb = new StringBuffer();

String inputLine;

while ((inputLine = in.readLine()) != null) {
 //System.out.println(inputLine);
 sb.append(inputLine);
 }
in.close();
String Res = sb.toString();

An XML document is created so that it is displayed to the user as an html page with the

use of XSL transformation.

//save string as XML file
OutputStream outputStream;
byte buf[] = Res.getBytes();

outputStream = new FileOutputStream("C:\\ACE2Ruleml Semantic web
agent\\web\\qAnswer.xml");

for (byte element : buf) {
 outputStream.write(element);
 }
outputStream.close();
uf = null;
SimpleXMLTransform.transfXML();
request.getRequestDispatcher ("howToHtml.jsp").forward(request,
response);

4.6.5 Displaying the Response to the User

The transformed response is displayed to the user as an HTML page and this is done

through the “SimpleXMLTransform” class.

static public void transfXML() {
String inXML = "C:\\ACE2Ruleml Semantic web agent\\web\\qAnswer.xml";
String inXSL = "C:\\ACE2Ruleml Semantic web agent\\web\\qAnswer.xsl";
String outTXT = "C:\\ACE2Ruleml Semantic web agent\\web\\howto.html";

 SimpleXMLTransform st = new SimpleXMLTransform();

 try {
 st.transform(inXML,inXSL,outTXT);
 } catch(TransformerConfigurationException e) {
 System.err.println("Invalid factory configuration");
 System.err.println(e);
 } catch(TransformerException e) {
 System.err.println("Error during transformation");

 -77-

 System.err.println(e);
 }
}

The “transfXML” method accepts as input the response XML file and the necessary

XSL file for the transformation and produces the html output of the operation by calling

the “transform” method. The code of the “transform” method is presented below:

public void transform(String inXML,String inXSL,String outTXT)
 throws TransformerConfigurationException,
 TransformerException {

 TransformerFactory factory = TransformerFactory.newInstance();

 StreamSource xslStream = new StreamSource(inXSL);
 Transformer transformer = factory.newTransformer(xslStream);
 transformer.setErrorListener(new MyErrorListener());

 StreamSource in = new StreamSource(inXML);
 StreamResult out = new StreamResult(outTXT);
 transformer.transform(in,out);
}

Once again in order to have a timely response and ensure that the correct response is

displayed to the user the following JSP code is applied in the webpage where the final

output is presented (figure 4.4.6):

<% try {

// Open the file that is the first
// command line parameter

 FileInputStream fstream = new FileInputStream("C:\\ACE2Ruleml
Semantic web agent\\web\\howto.html");

// Get the object of DataInputStream
 DataInputStream in = new DataInputStream(fstream);

 BufferedReader br = new BufferedReader(new InputStreamRead
er(in));

 String strLine;
//Read File Line By Line

 while ((strLine = br.readLine()) != null) {
// Print the content on the console

 out.println(strLine);
 }

//Close the input stream
 in.close();
 } catch (Exception e) {//Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }
%>

-78-

4.7 Agent Installation Manual

The complete project with all of its components can be downloaded from the following

link: https://www.dropbox.com/sh/6g4562og06e6rhu/vDN7ATGv_2.

In order to run the project on localhost, “Netbeans”, preferably, or any other integrated

development environment (IDE) for java web applications and a web browser are re-

quired along with an internet connection. The steps to execute the project are described

below:

1. Import project "ACE Interface External Web Agent" on the hard drive "C:\".

2. Import contents of "lib_files_on_c" and "project_files_on_c"

folders directly on the hard drive "C:\".

3. Open project using Netbeans.

3a. Apache tomcat is necessary for the project to run on localhost. If not installed it

can be found on: http://tomcat.apache.org/download-60.cgi

4. When Netbeans opens the project will encounter an error as the external library

files cannot be found! The .lib files are on the hard drive. Selecting the resolve is-

sues suggestion by Netbeans will initiate the guide to find the missing library file.

Selecting .lib file will fix all issues!

5. Compile and Run project.

Alternatively the ACE Interface External Web Agent can be accessed online at:

http://iskp.eu/ACE_Interface_External_Web_Agent/

* Suggested web browsers for the "ACE Interface External Web Agent" are Google

Chrome, Mozilla Firefox and Internet Explorer 9.0.1 or later version.

 -79-

5 Conclusions

The market requirements (e.g. B2B applications) were those that raised at high priority

the need for semantic description of services. The rigid model of a keyword-based

search service, leads to many false-positive results (low precision), limited degree of

flexibility because of the limited criteria and, most important, ignorance of what the

search results are really about, having as a consequence the thorough inspection of each

result, which is a time consuming and often expensive process. By incorporating seman-

tic features describing the services or websites, the search is based on what really the

service is about, rather than ineffective string comparison.

Therefore, it is imperative that the World Wide Web evolves into something much more

than just a platform that allows users and organizations to host websites. There is a need

to develop a mechanism which will allow machines to collect content from different

sources, processing information and exchange the results with other computer programs

(agents) and users.

A successful example of employment of multiple-agent-systems for knowledge extrac-

tion from the Semantic Web is accomplished by the RuleML symposia with the “Rule

Responder System” implementation. The Rule Responder System is a multi-agent sys-

tem for collaborative team and community support on the Semantic Web that enables

the rule-based collaboration between the distributed human members of such a virtual

organization. Persons of an organization are assisted by semi-automated rule-based

agents, which use rules with the use of Reaction RuleML as knowledge interchange

language, to describe the decision and behavioral logic.

The External Agent of the Rule Responder System, called Symposium Planner, assists

in retrieving information about the symposium chairs of the RuleML symposia by

communicating with the Organizational and the Personal Agents. Although this Exter-

nal Agent is accessible by anyone who wants to get informed about the symposium, it

requires the knowledge of Reaction RuleML. In order to offer a simple and easy to use

web interface to retrieve information from the Rule Responder System and create an

-80-

External Web Agent that uses the state of art controlled natural language the “ACE In-

terface External Web Agent” project has been implemented.

The developed ACE Interface External Web Agent, presented in the 4th chapter, is an

open source semi-autonomous web platform serving as an External Agent intermediate

with the RuleML Rule Responder Organizational Agent allowing everyone to access it

and write queries in natural language without any knowledge of Reaction RuleML em-

ployed by the Rule Responder multi-agent system. Sentences expressed by the user in

annotated ACE are translated into Reaction RuleML so that communication can be es-

tablished with the Rule Responder System. The aim is that this user-friendly front-end

will offer an alternative to the RuleML SymposiumPlanner-2012 and additionally in

future extensions will help lower the barrier of entry to the Semantic Web and encour-

age non-experts to get involved.

As part of the conclusions, the problems met during the implementation of the project

are presented in section 5.1. During the implementation period, several improvement

possibilities were discovered which are presented in section 5.2 and are suggested to be

studied and implemented in the future. Lastly in this chapter the additional applications

of the “ACE Interface External Web Agent” implementation are dιscussed.

5.1 Problems met during the Implementation

5.1.1 XPath Navigation Incompatibility

The use of XPath navigation in order to go through elements and attributes of the Reac-

tion RuleML response from the Rule Responder Organizational Agent is not feasible.

This is due to one of the namespace attributes used in the response message, in the

“RuleML” parent node as it is transmitted from the organizational agent. Most specifi-

cally: xmlns=http://www.ruleml.org/0.91/xsd cannot be found thus the

document is not navigated with xpath.

 XPath would offer a greater functionality and flexibility in the manipulation of the re-

sponse. In order to use Xpath navigation each response should be parsed and the prob-

lematic namespace should be removed.

 -81-

As an alternative to the problem addressed above EXtensible Stylesheet Language

(XSL) and transformations (XSLT) are used in order to provide an easy-to-read re-

sponse to the users of the ACE Interface External Web Agent. This approach does not

lack functionality or display feasibility to the XPath solution. The only drawback is that

for responses formatted in different ways have to be accompanied by separate

stylesheets because of the different child element that have to be read in every case.

5.1.2 SymposiumPlanner-2012 Unavailability

Rule Responder server is unresponsive at times. However, the most recent Rule Re-

sponder version is significantly more reliable than previous versions, which were either

delaying too long to produce the answer or were frequently unavailable altogether.

5.1.3 Prolog Engine Necessity

The use of a Prolog engine for parsing and analyzing input in FOL (First Order Logic),

proved to be a necessity. This is due to the fact that even though ACE is well structured

only through DRS analysis of the input and then with syntactical analysis along with the

use of user-defined dictionaries can knowledge be extracted in its fullest extend. In this

matter the use of APE (Attempto Parsing Engine) is the most accepted solution, as doc-

umented in the literature, because of the long lasting work and evolution on the At-

tempto project and its tools.

For example for the transformation of the following query:

 Which are the r:news-feeds?

Into the necessary Reaction RuleML format in order to receive an appropriate answer

from the Rule Responder System (only the Atom node is displayed):

<Atom>

<Rel>mediaNewsFeedResource</Rel>

<Var>Meeting</Var>

<Var>Site</Var>

<Var>News</Var>

</Atom>

-82-

The predicate of the sentence <Rel> can derive from the annotated ACE query but the

variables <Var> that are necessary for the construction of the rule cannot be defined

from the sentence as it is.

Such a construction could only be accomplished with the use of analysis into machine

interpretable logic and rich user defined lexica. As an example the ACE reasoner

(RACE) can be provides where ACE text is translated to DRS. Further on with DRS

and a complete set of rules and lexica the correct assumptions can be made.

5.2 Future Improvements

During the implementation of the project and through the research conducted during

this period, several issues should have been addressed and improvement possibilities

were discovered that are suggested to be studied and implemented in the future.

There are several possible opportunities of future development for the ACE Interface

External Web Agent. These improvements refer to the possibility of a greater range of

query analysis and transformation and involve collaboration with the Attempto project

tools as described in section 5.1.4.

5.2.1 Text analysis and Interpretation

The ACE Interface External Web Agent would have an even more user friendly inter-

face by offering text prediction and vocabulary assisting functions, such as those that

modern search engines offer (i.e. Google8).

§ Text predictor to work at real-time as the user inputs its own text at the ACE In-

terface External Web Agent’s input text area.

§ Text analyzer to correct user input in case of misspell or syntactic errors.

Furthermore, by enhancing the External Agent dictionaries and with the option for

greater user interaction would lead to a global application.

8 www.google.com

 -83-

§ Design of more detailed dictionaries, covering a greater number of words and

different parts of the speech.

§ Implement the possibility for users to define their custom dictionaries in order to

use them with Organizational and External Agents of different domains.

5.2.2 Collaboration with ACE tools

The Attempto project, while developing ACE language, has also developed a set of

powerful open source tools that are easy to use and offer a stable basis for further de-

velopment. Thus we recommend the adherence of the External Agent with ACE Editor

and RACE.

§ Collaboration with RACE (ACE Reasoner offered by the Attempto project) for

consistency, grammatical and syntactical checking of the user input text.

§ Collaboration with ACE Editor (offered by the Attempto project) for allowing

user defined lexica as implemented by the online tool.

5.3 Business Applications

A further significant part of this thesis is to specify which are the potential applications

of such an implementation apart from offering acontrolled language interface for the

Rule Responder Organizational Agent of the RuleML symposium.

The ACE Interface External Web Agent for the Semantic Web outside the scientific

community boundaries can serve as an External Agent for any structured Semantic Web

agent’s system applied over various domains. Since it is implemented as a web applica-

tion with low requirements, it is easily installed and widely accessible. Furthermore, the

dictionaries used for ACE to Reaction RuleML mapping can be enrichedor changed, so

that it perfectly fits every given domain.

A sample application could potentially be an add-on to PLIS [Viktoratos, I et.al, 2008],

a Personalized Location Information System that delivers personalized and contextual-

ized information to users according to rule-based policies. These policies are represent-

ed via Reaction RuleML, making the ACE Interface External Web Agent a perfect fit to

-84-

serve as the front-end for users that are not familiarized with the specifics of the Ru-

leML syntax.

 -85-

Bibliography

[APE Webclient Help., 2008] APE Webclient Help. (2008). Retrieved June 25, 2012,

from APE Webclient Help website:

http://attempto.ifi.uzh.ch/site/docs/ape_webclient_help.html

[APE Webservice., 2010] APE Webservice. (2010, November 04). Retrieved June 25,

2012, from APE Webservice website:

http://attempto.ifi.uzh.ch/site/docs/ape_webservice.html

[Baader F., et al., 2009] Baader Franz, Andreas Bauer, Peter Baumgartner, Anne Cre-

gan, Alfredo Gabaldon, Krystian Ji, Kevin Lee, Dave Rajaratnam and R. Schwitter.

2009. A Novel Architecture for Situation Awareness Systems, In: Proceedings of TAB-

LEAUX 2009, LNAI 5607, pp. 77–92.

[Berners-Lee, T. et al., 2001] Tim Berners-Lee, James Hendler, Ora Lassila(2001, May

17). “The Semantic Web”. Scientific American Magazine at ScientificAmerican.com

[Boley, H., Craig B. 2008] Harold Boley, Benjamin Craig. ““Rule Responder Agents in

Virtual Organizations” Institute for Information Technology National Research Council,

Canada Fredericton, NB, Canada, presentation at APICS 2007, 3 December 2008.

[Boley, H. 2010] Harold Boley. ““Distributed Rule Responder Querying on the Seman-

tic Web” Institute for Information Technology National Research Council, Canada

Fredericton, NB, Canada, Keynote presentation at ICDIM, 6 July 2010.

-86-

[Bry, F., 2008] Bry, F. (2008, February 29). Reasoning on the Web with Rules and Se-

mantics. Retrieved June 25, 2012, from REWERSE : http://rewerse.net

[Chapin, D., 2010] Chapin, D. (2010, June 22). SBVR: A Standard for the Language of

Business and its Policies and Rules. OMG Business Rules Standards Symposium. Busi-

ness Semantics Ltd.

[Clark, P. et al., 2005] Clark, P., Harrison, P., Jenkins, T., Thompson, J., & Wojcik, R.

(2005). Acquiring and Using World Knowledge using a Restricted Subset of English.

Mathematics and Computing Technology Boeing Phantom Works. Seattle.

[Dom4j (n.d)] dom4j open source library for working with XML, XPath and XSLT on

the Java platform. Retrieved June 25, 2012, http://dom4j.sourceforge.net/dom4j-

1.6.1/index.html.

[Feigenbaum L, 2007] Lee Feigenbaum (May 1, 2007). "The Semantic Web in Action".

Scientific American Magazine at ScientificAmerican.com. Retrieved September 24,

2012.

[Fuchs, N. E. et. al., 2005] Norbert E. Fuchs, Stefan Hofler, Kaarel Kaljurand, Fabio

Rinaldi and Gerold Schneider (2005). Attempto Controlled English: A Knowledge

Representation Language Readable by Humans and Machines. [book auth.] N. E. Ma-

luszynski, Reasoning Web 2005 (pp. 213-250). Heidelberg: Springer-Verlag.

[Fuchs N.E, et.al. 2005b] Norbert E. Fuchs, Kaarel Kaljurand, and Gerold Schneider.

Deliverable I2-bD5. Verbalizing Formal Languages in Attempto Controlled English I.

Technical report, REWERSE, 2005. http://rewerse.net/deliverables.html.

[Fuchs, N. E., 2006] Fuchs, N. E. (2006). Attempto project. Retrieved June 25, 2012,

from Attempto project website: http://www.ifi.unizh.ch/attempto

 -87-

[Fuchs, N. E. et. al., 2008] Fuchs, N.E., Kaljurand, K., Kuhn, T. (2008). Discourse Rep-

resentation Structures for ACE 6.0. Zurich: Technical Report ifi-2008.02, Department

of Informatics, University of Zurich, Switzerland.

[Fuchs, N. E. et. al., 2008b] Norbert E. Fuchs, Kaarel Kaljurand, Tobias Kuhn (2008).

Attempto Controlled English for Knowledge Representation. Bonn: University of Bonn.

[Fuchs, N. E., 2011] Fuchs, N. E. (2011, December 15-16). Reasoning in Attempto

Controlled English. Conference on Computing Natural Reasoning COCONAT . Til-

burg.

[Fuchs, N. E., 2012] Fuchs, N. E. (2012, January 12-13). Attempto Controlled English

and its tools. MOLTO Extended Kick-Off Meeting , 1-41. Gothenburg.

[Hall, J., 2006] Hall, J. (2006, May 23). Semantics of Business Vocabulary and Busi-

ness Rules (SBVR). Presented at the BPM Think Tank. Alington, VA.

[Halpin, T., 2006] Halpin, T. (2006). Business Rule Modality. Presented at EMMSAD

'06 the 11th International Workshop on Exploring Modeling Methods in System Analy-

sis and Design. Luxembourg.

[Hirtle, D. Z., 2006] Hirtle, D. Z. (2006, October). TRANSLATOR: A TRANSlator

from LAnguage TO Rules. Canadian Symposium on Text Analysis (CaSTA) . Frederic-

ton, Canada.

[Hirtle, D. et al., (n.d.)] David Hirtle, Tshering Dema, Harold Boley (n.d.). The Modu-

larization of RuleML. Retrieved July 12, 2012:

http://ruleml.org/modularization/#Model

[Hoefler, S., 2004] Hoefler, S. (2004). The Syntax of Attempto Controlled English: An

Abstract Grammar for ACE 4.0. Zurich: Technical Report ifi 2004.03.

-88-

[Internet World Stats, 2012] Internet World Stats (2012), “TOP 20 COUNTRIES

WITH THE HIGHEST NUMBER OF INTERNET USERS World Internet Users and

Population Stats”, Retrieved October 9, 2012 from:

http://www.internetworldstats.com/top20.htm

[Juri Luca De Coi, et al., 2009] Juri Luca De Coi, Norbert E. Fuchs, Kaarel Kaljurand,

and Tobias Kuhn. Controlled English for Reasoning on the Semantic Web (2009).

[book auth.] F.Bry and J.Maluszynski. Semantic Techniques for the Web. Heidelberg :

Springer-Verlag, pp. 276-307.

[Kaljurand, K., 2007a] Kaljurand, K. (2007). ACE View - an ontology and rule editor

based on controlled English.

[Kaljurand, K., 2007b] Kaljurand, K. (2007). Attempto Controlled English as a Seman-

tic Web language. Tartu: Faculty of Mathematics and Computer Science, University of

Tartu.

[Kaljurand, K., 2011a] Kaljurand, K. (2011, june 14). ACE View Ontology and Rule

Editor. Retrieved june 26, 2012, from ACE View website:

http://attempto.ifi.uzh.ch/aceview/

[Kaljurand, K., 2011b]Kaljurand, K. (2011, August 16). APE parser. Retrieved June 25,

2012, from APE parser website: http://attempto.ifi.uzh.ch/site/tools/

[Kaljurand, K., 2011c] Kaljurand, K. (2011, August 16). Reasoner ACE. Retrieved June

26, 2012, from Reasoner ACE website: http://attempto.ifi.uzh.ch/site/tools/

[Koivunen M.R., Miller E., 2001] Marja-Riitta Koivunen and Eric Miller, W3C Seman-

tic Web Activity. Published on Semantic Web Kick-off Seminar in Finland Nov 2, 2001.

 Retrieved November 20, 2012, from http://www.w3.org/2001/12/semweb-fin/w3csw

 -89-

[Kontopoulos E. et. al., 2011] Efstratios Kontopoulos, Nick Bassiliades, Grigoris Anto-

niou, Visualizing Semantic Web proofs of defeasible logic in the DR-DEVICE system.

Journal: Knowledge Based Systems - KBS , vol. 24, no. 3, pp. 406-419, 2011

[Kontopoulos E. et. al., 2008] Efstratios Kontopoulos, Nick Bassiliades, Grigoris Anto-

niou, Deploying defeasible logic rule bases for the semantic web. Journal: Data &

Knowledge Engineering - DKE , vol. 66, no. 1, pp. 116-146, 2008

 [Kuhn, T., 2007] Kuhn, T. (2007). AceRules: Executing Rules in Controlled Natural

Language. Zurich: Department of Informatics, University of Zurich, Switzerland.

[Kuhn, T., 2009] Kuhn, T. (2009). Controlled English for Knowledge Representation.

Zurich: Faculty of Economics, Business Administration and Information Technology of

the University of Zurich.

[Kuhn, T., 2011d] Tobias Kuhn (2011) Attempto project. ACE Documentation, Re-

trieved June 23, 2012, Attempto project website: http://attempto.ifi.uzh.ch/site/docs/

[Kuhn, T., (n.d.)] Kuhn, T. (n.d.). ACE Wiki. Retrieved June 26, 2012, from ACE Wiki

website: http://attempto.ifi.uzh.ch/acewiki/

[Linehan, M. H., 2009] Linehan, M. H. (2009). SBVR Use Cases. IBM T.J. Watson Re-

search Cesnter. Yorktown Heights, NY 10598.

[Lukichev, G. W., 2007] Lukichev, G. W. (March 2007). Tool improvements/ exten-

sions 2: Verbalization Component. Technical report, REWERSE IST.

[McCarthy, J., Hayes, P. J., 1969] McCarthy, J., Hayes, P. J. (1969), “Some Philosophi-

cal Problems from the Standpoint of Artificial Intelligence”. In Meltzer, B. and Michie,

D., editors, Machine Intelligence 4, pages 463-502. Edinburgh University Press, from

http://wwwformal.stanford.edu/jmc/mcchay69.html.

-90-

[Osmun T., Smith D., 2010] Taylor Osmun, Derek M. Smith(2010). Rule Responder.

Retrieved july 08, 2012, from Rule Responder : http://ruleml.org/RuleResponder/

[Paschke, A., (n.d.)a] Paschke, A. Reaction RuleML Examples. Retrieved July 12,

2012, from legal ruleml: https://lists.oasis-

open.org/archives/legalruleml/201202/msg00023.html

[Paschke, A. (n.d.)b] Paschke A., Reaction RuleML 0.2 Schema - Production RuleML

Layer. Retrieved July 29, 2012, from

http://ibis.in.tum.de/research/ReactionRuleML/0.2/pr.xsd.

[Paschke, A. et al., 2007] Paschke, A., Boley, H., Kozlenkov, A., & Craig, B. (2007).

Rule responder: RuleML-based agents for distributed collaboration on the pragmatic

web. Proceedings of the 2nd international conference on Pragmatic web ICPW '07 (pp.

17-28). New York: ACM.

[Paschke, A. et al., 2007a] Adrian Paschke, Alexander Kozlenkov, Harold Boley, Said

Tabet, Michael Kifer, Mike Dean (2007, july 22). Reaction RuleML. Retrieved July 10,

2012, from Reaction RuleML: http://ruleml.org/reaction/

[Paschke, A. et al., 2007b] Adrian Paschke, Alexander Kozlenkov, Harold Boley, Said

Tabet, Michael Kifer, Mike Dean (2007). Reaction RuleML 0.2 Primer. RuleML con-

sortium. Available: http://ruleml.org/reaction/0.2/

[Paschke, A., Boley H., 2011] Adrian Paschke and Harold Boley, Rule Responder:

rule-based agents for the semantic-pragmatic web. International Journal on Artificial

Intelligence Tools 2011 20:06, 1043-1081

 -91-

[Peter, C. et al., 2010] Peter, C., Murray, W. R., Harrison, P., & Thompson, J. (2010).

Naturalness vs. Predictability: A Key Debate in Controlled Languages. Proceedings

2009 Workshop on Controlled Natural. Seattle: Boeing Research and Technology.

[RACE Web Client Help. (n.d.)] RACE Web Client Help. (n.d.). Retrieved June 26,

2012, from RACE Web Client Help website:

http://attempto.ifi.uzh.ch/site/docs/race_webclient_help.html

[RuleML Symposium, 2010] RuleML 2010. (n.d.). Retrieved July 08, 2012, from The

4th International Web Rule Symposium: Research Based and Industry Focused:

http://www.csw.inf.fu-berlin.de/ruleml2010/objectives.html

[Schwitter, R., 2002] Schwitter, R. (2002). English as a Formal Specification Language.

In: Proceedings of the Thirdteenth International Workshop on Database and Expert Sys-

tems Applications.

[Schwitter, R. et al., 2003] Schwitter, Rolf, Anna Ljungberg, David Hood(2003).

ECOLE – A Look-ahead Editor for a Controlled. Proceedings of EAMTCLAW 03, (pp.

141–150).

[Schwitter, R., 2004] Schwitter, R. (2004). Representing Knowledge in Controlled Nat-

ural Language: A Case Study. Sydney, Australia: Centre for Language Technology,

Macquarie University.

[Schwitter, R., 2009] Schwitter, R. (2009). Working for Two: a Bidirectional Grammar

for a Controlled Natural Language. Sydney, Australia: Centre for Language Technology

Macquarie University.

[Schwitter, R., 2010] Schwitter, R. (2010). Controlled Natural Languages for

Knowledge Representation. Coling 2010: Poster Volume, (pp. 1113–1121). Beijing.

-92-

[Schwitter, R., (n.d.)a] Schwitter, R. (n.d.). PENG light processable English. Retrieved

July 30, 2012, from http://web.science.mq.edu.au/~rolfs/PENG-Light.html

[Schwitter,R., (n.d.)b] Schwitter, R. (n.d.). PENG online processable English. Retrieved

july 29, 2012, from http://web.science.mq.edu.au/~peng/PengEditor.html

[Tilbrook, M. & Schwitter, R., 2006] Tilbrook, Mark. and Schwitter, Rolf. (2006). Writ-

ing RSS Feeds in a Machine-Processable Controlled Natural Language. Sydney, Aus-

tralia: Centre for Language Technology Macquarie University.

[Viktoratos, I et.al, 2008] I. Viktoratos, A. Tsadiras, N. Bassiliades (2008). Personaliz-

ing Location Information through Rule-Based Policies. Retrieved from:

http://iskp.csd.auth.gr/paper_details.asp?publicationID=370

[W3C Semantic Web Activity,2011] “W3C Semantic Web Activity”. World Wide Web

Consortium (W3C). November 7, 2011. Retrieved September 24, 2012, from:

http://www.w3.org/2001/sw/

[Wyner A., 2009]Adam Wyner, Krasimir Angelov, Guntis Barzdins, Danica Damlja-

novic, Brian Davis, Norbert E. Fuchs, Stefan Höfler, Ken Jones, Kaarel

Kaljurand, Tobias Kuhn: On Controlled Natural Languages: Properties and Pro-

spects. CNL 2009: 281-289. Workshop on Controlled Natural Language, CNL 2009,

Marettimo Island, Italy, June 8-10, 2009.

 -93-

