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Abstract 
This dissertation was written as a part of the MSc in ICT Systems at the International 

Hellenic University.  

We are living in the information age, where a daily flood of messages of any kind takes 

place. The objective scope of this dissertation is to find a way to take advantage of these 

innumerable messages in order to discover what people like and what they dislike, what 

they prefer or how they feel about a particular product or topic. 

To achieve this we developed a java program that can be used in order to build and use 

models suitable for giving sentiment ratings to sentences’ parts. An attempt was made 

to combine more than one regression algorithms in order to create a more reliable and 

robust mechanism.  

My thesis was completed under the supervision of Professor I. Vlahavas and Dr. C. 

Berberidis, to whom I owe heartfelt thanks for both their valuable assistance and guid-

ance as well as for their overall contribution to my future career. On this occasion I 

would also like to thank Dr. E. Kontopoulos for his assistance, advices and support that 

he has given me throughout the implementation of this thesis. Finally, I would like to 

thank my family, my girlfriend and my friends who supported me and advised me in 

every step of my student life. 

 

 

Antoniou C. Georgios 
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1 Introduction 
Extracting information from Twitter is relatively easy. There is no need for the devel-

opment and use of a special wrapper since Twitter offers a very powerful API for most 

of the currently used programming languages (e.g. Java, Python). This is very im-

portant, because it is very difficult to develop and especially maintain a wrapper to 

properly work after all possible minor changes that happen very frequently. 

In the current dissertation an effort is being made to build a system that will be able to 

give a sentiment rating to pieces of sentences that have been extracted from their sen-

tences based on their semantics. After experimenting a lot we decided to use a system 

that will integrate three different regression models using the Stacking method. A java 

application has been created for this reason that makes use of the publicly available al-

gorithm implementations of Weka (Waikato Environment for Knowledge Analysis), 

which is a free suite of machine learning software written in Java, developed at the Uni-

versity of Waikato, New Zealand (Waikato, 2013). 

This application is able to create different models, to constantly train them and of course 

to use each time the appropriate model in order to rate segments of sentences. 

1.1 Capital Structure 
In Chapter 2 it will be examined briefly what has been done so far in the field of Senti-

ment Analysis in Social Networks. An effort will also be made to discover the strengths 

and weaknesses in the literature, uncovering gaps which will justify the significance of 

the current work. 
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In Chapter 3 the requirements of the system will be elaborated and the application archi-

tecture will be briefly described. 

In Chapter 4 the various components of the algorithm that was used will be justified and 

analyzed. Furthermore the results of the experiments that provide evidence in support of 

my thesis will also be presented in this chapter. 

In chapter 5 an effort will be made to summarize what was learned and how it can be 

applied. The possibilities for future research and possible extensions will also be men-

tioned here. 
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2 Literature Review 

2.1 Opinion mining / Sentiment Analysis 
Whenever we want to make a decision, no matter how important it is, we seek the opin-

ion of the others. Single people just ask for it, whereas organizations conduct polls, sur-

veys, or hire special consultants. Terms “Opinion Mining” and “Sentiment Analysis” 

are used interchangeably; with the first one used more in the industry field. Sentiment 

analysis’ scope is to determine the attitude, view, emotion or judgment of a person con-

cerning some specific topic or the overall contextual polarity of a document. 

The biggest problem is that almost every document that we want to harvest is written in 

natural language text, which is unstructured data. Other problems rely on the fact that it 

is extremely difficult to discern between the nuanced usages of words (for example be-

tween “No way! The new iPhone 5S has a really convenient menu.” and “No way am I 

buying the new iPhone 5S!”). Extremely difficult is also to detect sarcasm or noisy data. 

Most of the approaches try to classify a document after training appropriately some pos-

itive/negative classifiers and compare their results. In this case Sentiment Analysis is a 

classification problem, where the task is to classify documents into two categories (posi-

tive, negative). In (Pang, Lee, & Vaithyanathan, Thumbs up? Sentiment Classification 

using Machine Learning, 2002) the authors showed that three of the most used machine 

learning techniques (Naïve Bayes, Maximum Entropy Classifiers and Support Vector 

Machines) do not perform in sentiment analysis problems as well as in simple topic 

classification problems. In many approaches also a sentiment lexicon is used to deter-

mine which words/phrases have a positive or negative meaning. One of the most fa-

mous lexicons is the Harvard’s General Inquirer.   
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Something that matters a lot when trying to perform sentiment analysis is how subjec-

tive or objective a document is. Subjectivity is inextricably linked with emotions, views 

or beliefs. In another subsequent approach again from the same authors (Pang & Lee, A 

Sentimental Education: Sentiment Analysis Using Subjectivity, 2004) a machine learn-

ing method is proposed that makes use only of the subjective portions of a document 

that are manually pre-declared. 

Something that is already happening, but is still in research phase, is trying to perform 

sentiment analysis on documents derived from all over the web and especially coming 

from Social Networks. If that could be successfully achieved, there would be no more 

need for conducting opinion polls.  

In (Liu, Huang, An, & Yu, 2007) an effort is being made to assess the public’s opinion 

from blogs in order to predict product sales performance. They focused on blogs con-

taining reviews of products (e.g. movies). In their approach they focus mainly on the 

words that are sentiment related and try to make a step further from just classifying a 

movie as good or bad. Others (Park, Ko, Kim, Liu, & Song, 2011) or (Bakliwal, et al., 

2013) have tried to perform opinion mining from news stories or tweets respectively in 

order to identify political views. In the latter approach an effort was also was made to 

take into consideration whether a tweet has sarcastic content or not (The annotators 

marked a tweet as sarcastic if its literal sentiment was different to its actual sentiment). 

Sentiment Analysis is also used in order to give predictive power concerning the various 

investors’ choices (Dergiades, 2012). 

2.1.1 Aspect-based Sentiment Analysis 
According to (Liu B. , 2012) someone could examine a document in three possible 

ways. This would mean in case of Twitter and tweets that we could examine a tweet at 

the: 

• Tweet level, is the specific tweet positive or negative in total? 

• Sentence level, is each sentence positive or negative? 

• Entity and feature/aspect level 

Document level 
The easiest of the three for mentioned approaches is surely the first one and it is what 

most current sentiment mining approaches at the moment do (simply classifying docu-

ments or posts like tweets as positive and negative). It does not take into account the 
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different angles of the document, but it can have relatively good results especially in 

cases, where we are interested only in finding which documents does a specific user 

want to read (Antoniou, 2012).   

Sentence level 
There are many approaches that deal with the problem of sentence level and try to pre-

dict whether each opinion sentence is positive or negative (Zhang, Xu, & Li, 2012) (Hu 

& Liu, 2004). An opinion sentence is a sentence, which contains one or more opinion 

words. There are also some approaches (Brody & Elhadad, 2010) that although working 

at a sentence level, they employ a small number of topics, to automatically infer some 

aspects. This approach is a step away from working completely at an entity level. 

Entity and feature/aspect level  
Examining a document at an entity level is the approach that could lead to the best con-

clusions and performs more in-depth sentiment analysis. It is important to be able to un-

derstand the different aspects of a document (a tweet for example) reviewing a specific 

product or a document that compares two or three similar products. Imagine a tweet that 

speaks only about the new iPhone 5S. The twitterer may express a positive opinion 

about the phone battery, but in the same time a negative one about the phone’s proces-

sor. The result of a regular sentiment classifier would be a classification as neutral or a 

score near zero (if the possible scores can also receive negative values) for the whole 

tweet. In this way, however an important piece of information gets lost.  

Especially in the case of comparing different products the problem is even more serious. 

In this case a twitterer might say that iPhone 5S has the best battery ever, whereas HTC 

One S has the best display. Classifying this particular tweet simply as positive (because 

it contains two times the word “best”) would lead to misleading conclusions.    

Of course extracting these entities and aspects is a lot harder than simply determining 

sentiments and the combination of these two (extracting entities and determining senti-

ments) is even harder. One solution to the problem is the deployment of Ontology-based 

techniques (Kontopoulos, Berberidis, Dergiades, & Bassiliades, 2013). An ontology is 

an explicit and formal specification of a conceptualization (Gruber, 1993). It consists of 

terms (e.g. Smartphone), relationships between terms, properties, restrictions and vari-

ous other statements. This way it provides a complete vocabulary to model successfully 

any domain. Ontologies constitute the principal component of Semantic Web. 
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The methodology that is followed in (Kontopoulos, Berberidis, Dergiades, & Bassili-

ades, 2013) is divided in two distinct phases. First of all, the domain ontology that will 

be used is built and then sentiment analysis is performed in tweets based on this particu-

lar ontology. The ontologies were built using the Formal Concept Analysis (Ganter & 

Wille, 1999), which applies a user-driven step-by-step methodology for creating domain 

models. The biggest advantage of this approach is that the ontology is built progressive-

ly according to the needs that are presented in the tweets. In the example of the tweet 

speaking of the properties of smartphones, this approach would not just find a ready on-

tology for smartphones with thousands of attributes and relationships, but it would cre-

ate a new one based only on the given data set. This way we end up with a more data 

specific ontology with smaller size. 

In another relevant paper (Nebhi, 2012) the author focuses just in the information ex-

traction from tweets. He uses a ready ontology from DBpedia and creates an integrated 

disambiguation module based on popularity score and syntax-based similarity in order 

to select each time the right entity from the given ontology. That is an existing need, 

since simply extracting words out of a tweet is not always enough in order to classify it 

into the right ontology. There are many words (like “Washington” for example) that 

may refer to more than 90 different entities of the DBpedia ontology. 

 

2.2 Sentiment Analysis in Social Networks 
As we have already seen, with Sentiment Analysis we try to extract emotion or attitude 

out of a document or a piece of it concerning the whole document or a specific aspect of 

it. In social networks a document could be a tweet or a post at a social networking site 

like facebook or any piece of text possibly containing some opinion. If someone could, 

in some automatic way make sense of every possible piece of text in the web, he would 

be definitely the most powerful person on earth. People share opinions and personal ex-

periences about any possible subject in the web. They submit reviews, write comments 

about various products or people (e.g. politicians, athletes etc.) or write articles in blogs, 

micro-blogs, forums and other forms of websites. 

Performing opinion mining from micro-blogs is considered easier compared to other 

kinds of documents. The main reason for this is the short size of documents used in mi-

cro blogging, leading those most of the times to be straighter to the point. The most fa-
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mous micro blogging service at the moment is Twitter and that’s the reason that we are 

going to use it as a reference most of the times. Furthermore most of the research that 

has been done on Sentiment Analysis in micro-blogs up to now is around Twitter. 

2.2.1 Existing Approaches 
In (Barbosa & Feng, 2010) an approach is presented to automatically detect sentiments 

on tweets. The scope here is to classify the subjective tweets as a whole into three cate-

gories (positive, neutral, negative). It takes into consideration biased and noisy labels as 

input, since tweets due to the character restriction do not always contain syntactically 

consistent words. 

Apart from syntactically inconsistent words and phrases that are used mostly in the oral 

speech, twitter users use special tags and smileys, which make it even more difficult to 

apply the same sentiment analysis approaches as those that are applied for other docu-

ments like reviews for example. In (Davidov, Tsur, & Rappoport, 2010) the authors uti-

lize 50 twitter tags and 15 smileys as sentiment training labels. This way they take ad-

vantage of this peculiarity of Twitter messages and it is easier for them to give a highly 

positive rating to a tweet containing the smiley “;)” or the hashtag “#happy”. But the 

paper itself makes it clear that it is far more difficult than it seems since people express 

often in the same sentence contrast sentiments and the hashtags do not seem to help a 

lot (e.g. “happy days of training going to end in a few days #sad #happy”). Another pa-

per (Kouloumpis, Wilson, & Moore, 2011) attempts something similar by selecting and 

using only some hashtags that are used a lot and were deemed representative of the 

three categories (positive, neutral, negative) by the authors. As far address of the smi-

leys problem mentioned before they choose to omit all tweets from the training process 

all tweets that contain both positive and negative emoticons. 

Something that current research is deliberately ignoring until now is the reader’s stand-

ing point. For example a tweet could be “I am so sad that Barcelona F.C. lost yesterday 

the game”. The specific tweet gives a clear sentiment, but different readers could feel 

totally different about this. 
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2.3 Classifiers for Sentiment Analysis of Opinion-
ated Text 

2.3.1 Classifiers 
There is a plethora of available machine learning-based classifiers that can be used for 

Sentiment Analysis. Some of the most popular data mining algorithms used for classifi-

cation are according to (Wu, et al., 2007): 

C4.5: Quinlan, J. R. 1993 
It is used to generate a decision tree from a set of training data. It is an extension of an-

other Quinlan’s DM algorithm called ID3. In the Weka data mining tool C4.5 is imple-

mented as J48 

K nearest Neighbours (kNN): Hastie, T., Tibshirani, R. 1996 
It is an algorithm for classifying objects based on closest training examples in the fea-

ture space. It is very easy both to understand and implement.  

Naïve Bayes: Hand, D. J., Yu, K. 2001 
It is a probabilistic classifier based on the well known Bayes’ theorem. It is perhaps the 

easiest classifier to understand how exactly it works and it is used most of the times 

when someone wants to compare the effectiveness of a new classifier/method. 

It can work fine on any dataset that can be shown as lists of features. A feature could be 

anything that can be present or absent. In the case of documents or tweets in general, 

features can be the words. It assumes that all variables are independent with each other, 

meaning that the presence or absence of a specific feature is totally unrelated to that of 

any other feature. 

CART: Breiman, L., Friedman, J., Olshen, R., Stone, C. 1984 
CART stands for “Classification and Regression Tree” and is used to refer to the two 

main types of decision trees used in data mining, Classification Trees and Regression 

Trees. This technique produces either a classification tree or a regression one depending 

on whether the dependent variable is categorical or numeric, respectively. 

Support Vector Machines 
SVMs are the combination of linear modeling and instance-based learning and are of 

course algorithms and not machines. A basic SVM takes a set of input data and predicts, 

for each given input, in which of two possible classes it belongs. Support Vectors are 

some critical boundary instances from each class. A great advantage of SVMs is that is 
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more difficult to end up with overfitting situations, when using them. SVM algorithms 

for numeric prediction have also been deployed. 

 

Regardless of the selection of the classifier there are two preponderant approaches that 

are used. The lexicon-based, that uses a lexicon of commonly used opinion words (e.g. 

good/bad), emoticons etc and the learning-based approach. The lexicon-based ap-

proaches can achieve high precision, but low recall. A significant factor for this low re-

call is the use of informal language in posts of micro-blogs like tweets. That’s the rea-

son that it has been a lot of effort in order to combine those two dominant approaches 

(Zhang, Ghosh, Dekhil, Hsu, & Liu, 2011). 

2.3.2 Techniques to Improve Classification Accuracy 
A lot of techniques exist to improve the efficiency of classifying algorithms like those 

described in the previous section. This is also known in statistics and machine learning 

as ensemble learning or ensemble methods. These techniques are used to combine vari-

ous models learned from the data. In many cases it proves to be better not simply select-

ing the classifier with the most accurate results, but use more than one and combine 

their results. The three most dominant schemes at the moment, which can be used in 

both classification and regression problems are bagging, boosting and stacking, which 

are very briefly described below. The biggest disadvantage of all of them however is 

that it is very difficult to analyze them and indentify which exact factors led to the im-

provement in performance.  

Bagging 
In bagging we consider all classifiers used as equal. That means in the case of classifi-

cation that the bagged classifier counts the votes of the independent classifiers and as-

signs the class with the most votes. In the case of regression or prediction it gives as an 

output the average value of all predictions. Something that holds is that the more votes 

from independent classifiers, the more reliable the results are. It turns out that the com-

bined model from bagging can be better or not than the original model, but it is never 

worse. One restriction of bagging is that it must combine models of the same type (e.g. 

decision trees). 
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Boosting 
It is perhaps the most powerful technique among the three most prominent. It has a lot 

of similarities with bagging, with the difference that weights are assigned to the various 

models that form the boosted classifier. It pays attention especially to the training tuples 

that are misclassified. This way it can achieve higher accuracy with the risk neverthe-

less to over-fit a specific dataset. 

Stacking 
Stacking is less widely used than the other two techniques. The main reason is that it is 

even more difficult to be analyzed and there are no commonly accepted proper ways of 

using it. The biggest advantage of this particular technique is that unlike the other two 

approaches, it can combine models that are not of the same type (e.g. only decision 

trees). Stacking introduces the notion of the metalearner, which is another algorithm 

used to decide which is the most reliable of the classifiers used and how to combine in 

the best way the outcomes of the other models. 

2.4 Existing Systems – Similar Applications 
In this section applications that perform in some way sentiment analysis for social net-

works will be examined. Two are the biggest weaknesses of all of them that our ap-

proach in the current dissertation will try to solve.  

The first weakness is that all of these web apps do not reveal exactly how they work or 

which exact methods they use in their opinion mining process. For example some of 

them say that they use a sentiment lexicon, without coming into more details like which 

exact lexicon or how many words does it contain. Such methods could also be the clas-

sifiers that were used and their exact set-up. That means that they operate for the end 

user as a black box that he has to trust, without even know some basic metrics for the 

evaluation of the application, like the percentage of correctly classified instances or the 

percentage of a relative absolute error. 

The second weakness is that most of the existing web applications examine and classify 

the document (this could be a tweet or a post) as a whole. They do not take into account 

the different aspects that it may contain. A different approach related to this particular 

weakness is attempted by OpenDover, which gives a different rating to some specific 

predefined aspects. For example it has a pre-built ontology for hotel reviews, so in the 
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sentiment analysis of a hotel review it can give a different rating for the hotel, the res-

taurant and the flight.   

2.4.1 Open Dover 
Open Dover is a web service that performs sentiment tagging on any piece of text. The 

user provides the text that it wants to be analyzed. The content is returned as feedback 

with sentiment tags and negative/positive appraisal of the whole document. In order to 

achieve this, OpenDover makes use of a knowledge base of opinion words, domain-

related words and intensifiers and distinguishes between context dependent and context 

independent opinion words. Furthermore OpenDover tries to indentify some commonly 

used domains and evaluates a piece text taking into consideration these domains. Unfor-

tunately the result is not always the desired one, since there is a limit in the available 

domains ready to be used. 

In the following picture we can see an example of how OpenDover works and what it 

returns. 

 

Figure 1 - OpenDover Application 

More about OpenDover you can find in (B.V., 2013) 

2.4.2 Tweetviz 
TweetViz is a web-tool that retrieves tweets containing some specific keywords provid-

ed by the user. It places them along two axes, one describing pleasant versus unpleasant, 

and the other describing how strong the sentiment is. It offers eight different ways of 

presenting the for-mentioned tweets, including presenting them according to their sen-

timent or their timeline, or as a tag cloud. 
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Figure 2 - TweetViz Application 

An estimate of the total emotion contained in a tweet is calculated and each tweet is 

shown as a circle positioned by sentiment. As we see in picture 2 unpleasant tweets are 

colored blue on the left whereas pleasant ones are colored green on the right. Sedate 

tweets are darker and active tweets are brighter on the top. 

In order to estimate the sentiment of the tweet, a sentiment dictionary is used. Each 

tweet is being searched for the specific words that are contained in the dictionary. The 

words’ pleasure ratings are then combined to give the overall rating of the whole tweet. 

It doesn’t take into account sarcasm and that’s the reason that tweets like “Love how my 

iPhone battery skips from 20% down to 3% for sending one text” are classified as “hap-

py”. Furthermore it does not take into account the different aspects of a tweet. For ex-

ample the tweet “I love my iPhone, but the battery life sucks.” is simply classified as 

“elated” despite the fact that we were searching for tweets having to do with the iPhone 

battery (meaning that we were mainly interested in the second half of the above tweet, 

which undoubtedly has a negative meaning). 

More about TweetViz you can find in (Tweet Sentiment Visualization). 

2.4.3 Sentiment140 
SEE PAPER Sentiment Knowledge Discovery in Twitter 
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2.4.4 Social Mention 
Social Mention is a web platform that aggregates content from many different sources 

like facebook, Twitter, Ask, Google, YouTube etc. It tries to measure what people think 

about a particular topic in the web. As we can see in picture 3 an effort is also made to 

classify all the reports that are retrieved into 3 sentiment categories (positive, neutral, 

negative). Regardless of the topic of the query it seems that almost always more than 

the half results are classified as neutral. There is no information available about how 

exactly this sentiment is calculated. Finally it provides an API for developers, who want 

to integrate these functionalities in some web application. 

 

Figure 3 - Social Mention Application 

More about SocialMention you can find in (Cianciullo). 
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3 Problem Definition and Ar-
chitecture 

There is no single machine learning model that is appropriate to every data mining 

problem. The same holds also for sub problems like mining Twitter. Data mining is an 

experimental process. That’s the reason that we compared lots of different schemes to 

find the most suitable for classifying Tweets into specific ontologies and after that give 

a rating to each different aspect that is contained into them. 

Our objective scope is to provide a working mechanism, which will take as an argument 

a phrase or a sub-sentence and it will return a sentiment score to this particular part of 

speech. A prerequisite for this to happen is the development of another mechanism that 

will take a piece of text (a tweet for example), and will break it into as many sub-

sentences as the different ontologies that are contained in it. This is something that is 

already the subject of research of another dissertation that is conducted at our university 

alongside this current dissertation. 

3.1 Ontology-based Opinion Mining / Sentiment 
Analysis 

It is very important to distinguish the different aspects of a piece of document and give 

a distinct rating for each different aspect of it. A tweet’s content could be for example: 

“Disappointed about the minimum focal distance of my Nokia-Lumia 800s camera, but 

its screen display is simply superb”. If we don’t follow an ontology-based opinion min-

ing approach, and regardless of the technique that will be used, we will probably end up 

with a neutral rating of this particular tweet, since in the first part of the tweet a clearly 
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negative sentiment is expressed in stark contrast of the positive sentiment of the second 

half. That is certainly not the desirable result. 

Using ontologies would have as a result firstly to find out that the whole tweet refers to 

an ontology named for example “Mobile Phone” or “Cell Phone” or something similar. 

For this reason we could make use of the equivalent classes in OWL. Subsequently we 

should indentify classes that are connected somehow with the main superclass named 

for example “Cell Phone”. These classes could be subclasses of the superclass or can be 

related to the main class via various properties. In the first case two possible subclasses 

of the “Cell Phone” class could be “Nokia Phone” and “HTC phone” or “Windows 

Phone” and “Android Phone” depending on the respective ontology used. In the second 

case (where classes are related via properties), a “Cell Phone” may consist of a battery, 

a screen, a camera and many other components. “Battery”, “Screen” and “Camera” are 

classes that are related to the “Cell Phone” class via the “Consists of” property. 

After indentifying to which ontology or ontologies the tweet that has to be evaluated 

belongs, we would like to give a distinct rating to every class that is included. In the 

case of the preceding example we would like to end up with two different ratings for the 

two components and perhaps a third rating for the specific Nokia Phone as a whole. To 

do so we must find a way as already mentioned to break the initial tweet in semantic 

portions and use each of them as an argument to a classifier that will be used to return 

this way a semantic rating.       

It will not be examined in this work how the ontologies that will be used are created. An 

effort will only be made to implement a custom methodology that will extract sentiment 

from the distinct features/aspects of a tweet. 

3.2 User - System Requirements 
An attempt is made to create an application that will be able to give a sentiment rating 

to various pieces of text that will be given to the application as an argument. There are 

two main approaches to achieve this. 

1. The first one relies on counting sentiment-related words and optionally give 

weights to them. These words come from various sentiment lexicons (dictionar-

ies of words) that have been created and evaluated by experts. Such widely used 

lexicons are for example Harvard Inquirer (Stone, Dunphry, Smith, & Ogilvie, 

1966), SentiWordNet (Esuli & Sebastiani, 2006), WordNet (Miller, 1995) and 
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Micro-WNOp (Cerini, Compagnoni, Demontis, Formentelli, & Gandini, 2007). 

In the case of the Twitter these lexicons can be enhanced with a list of emoticons 

that express positive or negative sentiments. 

2. The second one relies on learning the classifier that will be used on previously 

rated text pieces. This way a more targeted approach can be achieved. This is the 

approach that is adopted in most recent papers and books like for example in 

(Kumar, Morstatter, & Liu, 2013). 

Although the first approach is the simplest one, we will use the second approach for 

building our application. This way we can overcome the big disadvantage of simply us-

ing a sentiment vocabulary. This disadvantage is that various sentiment lexicons are 

built for different purposes and for this reason they contain specific words. But even in 

the case where they use the same words, these words can have totally different meaning. 

For example the word “bomb” usually has a negative meaning but in the case of mobile 

phone reviews it has a positive one (“The new i-phone 5S was the bomb!”). So this way 

we would need a different sentiment vocabulary for almost every different model that 

we would build. This is of course something very difficult for someone to achieve.  

But even using the second approach we should built different models for different on-

tologies that we want to semantically evaluate.  

3.2.1 Typical Usage Scenario 
In this section it will be described how the current application is intended to work in or-

der to achieve the best possible results. 

As mentioned before, a different model should be used for totally different semantic en-

tities. So, we should firstly classify every entity that is found to a group according to the 

semantic domain that this particular entity belongs to. For example if the entity Nokia-

Lumia Camera occurs, the tweet that contains it should be classified to a group named 

“Technology”. Other groups can be “Health”, “Sports” and “Music”. For this purpose 

we could make use of the ready categorization that Twitter uses when someone searches 

who to follow according to desired topics. For each of these groups a separate model 

will be trained and used subsequently. 

After having collected a significant number of tweets, divided into pieces of text con-

taining different aspects, the training of the classifier begins. All pieces of text that are 

grouped together are used as a training set to build a model. In this phase the user of the 
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application should also provide a rating to each of these portions of text. This is of 

course a time consuming procedure but it is the safest method to train every model ex-

actly as someone wants. 

After the initial training the user will be able to save the created model. 

Furthermore the user will be able to load any previously created model and re-evaluate 

it on another set or another instance in order to: 

• give new sentiment scores to portions of text that refer to specific entities. 

• further train the existing model if that is needed.     

3.2.2 Functional Requirements 
FR-1: The output sentiment score has to be given on a scale from one (1) to six (6), 

where one refers to the most negative possible sentiment score and six refers to the most 

positive possible sentiment score. 

 User priority: 5 

 Technical Priority: 3 

Justification: A simple characterization as positive or negative is not enough. We need a 

larger gradation. It is important to distinguish between the totally negative and a less 

negative rating. And of course it is important to have also a rating (in our case this is 

3.5) for neutral sentiment rating. 

FR-2: The user should be able to further train any model at any time. 

 User priority: 5 

 Technical Priority: 5 

Justification: The user needs to know that he has the ability to improve the performance 

of the classifier, when deemed appropriate. 

FR-3: The system should be operated for a long time without problems. 

 User priority: 4 

 Stability: 5 

Justification: The volume of data is such that their processing takes time. 

FR-4: The model that will be used for training and rating should work reliably in spite 

of textual errors. 

 User priority: 5 

 Stability: 4 
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Justification: This is very important since it is very often for documents in social media 

to contain misspellings, abbreviations, slang language etc.  

FR-5: The system must be efficient and it must consume as little storage and processing 

power and time as possible. 

 User priority: 5 

 Stability: 4 

Justification: This is needed because of the very big volume of documents that are go-

ing to be handled.  

FR-6: The user should give as arguments to the algorithm a phrase and optionally a rat-

ing. The algorithm should decide based on that input if the user wants to train a model 

or if he requests from the algorithm a rating. 

 User priority: 5 

 Stability: 5 

Justification: The user should be facilitated. He should be able to use the same mecha-

nism both for training and rating. 

3.2.3 Non-Functional Requirements 
NFR-1: The system must be able to respond in a reasonable time depending on the 

stimuli it receives. 

 User priority: 5 

 Technical Priority: 5 

 Stability: 5 

Justification: The system must be fast. 

NFR-2: It must be easy to use. 

 User priority: 5 

 Technical Priority: 3 

 Stability: 4 

NFR-3: Must be accompanied by a short manual that will describe and document all 

individual system functions. 

 User priority: 5 

 Technical Priority: 2 

 Stability: 5 
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Justification: The aim is to facilitate those users who are not so familiar with such ap-

plications. 

3.3 Architecture 
The architecture of the application that is implemented in the current dissertation is pre-

sented in the following diagram. 

The following diagram shows briefly the steps used to generate and evaluate the various 

models that are needed. At first the training data set is loaded in the form of an .arff 

ASCII text file. In such files a list of instances sharing a set of attributes is described. 

ARFF files are used with the Weka machine learning software (Waikato, 2013). 

Afterwards we have to apply a filter to our data that will break the initial text into indi-

vidual words or N-Grams. This is absolutely necessary since most classifiers are not ca-

pable of handling directly string attributes. To do so we use the FilteredClassifier class 

based on Weka 3.6. This class applies a classifier to the data after previously having ap-

plied an unsupervised filter. In our case this filter is StringToWordVector. All the archi-

tecture’s components, as well as why they were selected, will be analyzed in the next 

chapter (Contribution and Implementation). 

 



  -21- 

 

Figure 4 - Sentiment Analysis Application's Architecture 
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4 Contribution - Implementa-
tion 

In the current chapter there will be an attempt to analyze how exactly the application, 

which is used to give sentiment ratings to tweets, works. Additionally every component 

choice will be completely justified. Finally the results of the experiments that provide 

evidence in support of my thesis will also be presented in this chapter. 

4.1 Design and implementation 

4.1.1 Regression vs. Classification 
The first dilemma that we had to face was to choose if our problem was better described 

as a regression or a classification problem. In regression problems we predict a response 

and the output variable takes continuous values. In classification problems the output 

variable takes class labels. In our case we want to give a rating to a piece of text that 

refers to a specific entity. If we address the problem as a regression one, we will have as 

a result any real number from one to six (as defined in the first functional requirement). 

By contrast if we address the problem as a classification one, the input argument (in our 

case the part of the tweet that refers to a specific entity) will be classified in one of the 

following classes: “1”, “2”, “3”, “4”, “5” or “6”. What we should and took care of is the 

fact that rating is not simply a categorical variable but an ordinal one. When we refer to 

an ordinal variable, we mean a variable where the order between values matters. The 

difference between the values on the contrary is not that important (This does not hold 

in our case where we want to give a rating, so the difference between the values plays a 

significant role). If we asked for instance mobile phone users to evaluate their experi-
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ence in a scale from one to six, a rating of 5 is better than a rating of 4. This means that 

well known classifying algorithms such as Naïve Bayes, kNN, C4.5 and many others 

cannot be used in this case. 

There are however two proposed techniques to handle ordinal variables. These are: 

1. A Meta classifier called CostSensitiveClassifier. 

2. A Meta classifier called OrdinalClassClassifier (Hall & Frank, 2001). 

We have tested both of the above classification techniques but unfortunately the results 

were not the expected ones. 

In order to test the effectiveness of the above two classification techniques we had first 

to convert the rating attribute from a numeric one to a nominal one. We did this using 

the NumericToNominal Filter of Weka library. This way we created the seperat-

ed_tweets_OneToSix – Nominal.arff file that was used for the evaluation of the classifi-

cation algorithms. 

In order to use properly the Cost Sensitive Classifier we had to define the following cost 

matrix. 

 

Figure 5 - Cost Matrix used in the Cost Sensitive Classifier 

This way we declared that we are not interested only in the percentage of correctly clas-

sified instances but we are interested even more to see to which class a misclassified 

instance is classified. For both cases we wouldn’t bother at all if for example only 30% 

of the instances were correctly classified and all the rest were classified in a neighbor 

class. For example if a training instance had a rating of ‘four’ we would expect that with 

the use of the above algorithms it would get a rating of three or five (if not ideally four). 

Using the CostSensitiveClassifier on a J48 tree we get 48.6% correctly classified in-

stances. This is a high percentage taking into account that we have six distinct classes. 

Similarly using the OrdinalClassClassifier on a J48 tree we get 45.2% correctly classi-

fied instances, which is also a very high accuracy percentage. 
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The reason why we did not prefer one of these two solutions for our solution is dis-

played in the next two figures. In these figures we observe that there is a dispersion of 

the misclassified instances in all the remaining five classes. We see for example in the 

confusion matrix of the Cost Sensitive Classifier that the instances that should be rated 

with “one” don’t get classified only to neighbor classes (“two” and “three”) as we 

would expect. On the contrary we observe many instances that are classified in classes 

“five” (9 instances) and “six” (11 instances). 

Something similar holds when using the Ordinal Class Classifier as we can see in figure 

7. 

 

a   b   c   d   e   f   <-‐-‐  classified  as  

34   10   0   1   9   11   |      a  =  1  
8   15   3   2   11   22   |      b  =  2  
5   9   0   0   8   8   |      c  =  3  
12   2   1   22   40   23   |      d  =  4  
9   4   0   12   102   85   |      e  =  5  
3   5   2   6   52   170   |      f  =  6  

Figure 6 - Confusion Matrix of the CostSensitiveClassifier 

 

a   b   c   d   e   f   <-‐-‐  classified  as  

15   21   4   9   15   1   |      a  =  1  
4   16   8   10   18   5   |      b  =  2  
2   1   2   9   14   2   |      c  =  3  
1   8   1   32   43   15   |      d  =  4  
0   6   10   35   109   52   |      e  =  5  
0   5   6   22   60   145   |      f  =  6  

Figure 7 - Confusion Matrix of the OrdinalClassClassifier 

 

4.1.2 StringToWordVector Filter 
There is no way to use directly a string and take advantage of it in order to come up 

with useful results. We need to analyze it and break it into individual words or N-Grams 

(we chose this alternative). The regression algorithms will use these attributes together 

of course with the rating attribute (if we speak of the training phase) in order to create 

and evaluate models. So whereas the user feeds the algorithm with only two attributes, 
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the phrase that needs to be rated and optionally a rating, the algorithm as a matter of fact 

uses hundreds of attributes.  

We used WEKA's text filter “StringToWordVector” to convert string attributes into a 

set of attributes representing word occurrence information from the text contained in the 

strings. We are interested only in which terms occur and not how many times each one 

occurs. Pang et al. showed that simply term presence achieves better results than word 

frequency in problems having to do with sentiment analysis (Pang, Lee, & Vaithya-

nathan, Thumbs up? Sentiment Classification using Machine Learning, 2002). 

Furthermore we turn all N-Grams into lowercase. This way we avoid mix-ups. Almost 

all of the current studies use this technique although someone could claim that a word in 

capitals express a different sentiment from the same word written in lowercase. This is 

true but it is very difficult to benefit from this fact.  

NGram Usage vs Stanford’s CoreNLP  
Simply observing which words are contained in a sentence is not enough. One easy way 

to prove that is the use of the adverb “not”, which can change completely the sentiment 

of a whole phrase. For example let’s take the phrase “My dog is not the best dog in the 

world”. This phrase would get a sentiment rating around four (in a scale from one to 

six). On the contrary the same phrase without the adverb “not” would get a rating of six. 

In a reverse case where the main adjective of the phrase had a negative meaning the use 

of the adverb “not” increases the sentiment rating of the phrase. The phrase: “My dog is 

not the worse dog in the world.” should take a sentiment rating around 3 whereas the 

same phrase without the adverb “not” would take the absolute negative rating. This 

means that just the presence of this specific adverb does not necessarily imply a nega-

tive sentiment. 

Our first approach to tackle this issue was to use a Natural Language Processing tool 

like Stanford’s CoreNLP (Stanford University, 2013). Unfortunately this was proved to 

be more complicated than it firstly seemed. We used the CoreNLP’s ParserAnnotator. 

We wanted to examine some simple grammatical relations like the negation modifier 

that we mentioned before. This modifier is the relation between a negation word and the 

word it modifies. 

After examining the phrase of our previous example (“My dog is not the best dog in the 

world.”) we ended up with the following typed dependencies: 

poss(dog-2, My-1) 



  -27- 

nsubj(dog-7, dog-2) 

cop(dog-7, is-3) 

neg(dog-7, not-4) (which is undesirable ...) 
det(dog-7, the-5) 

amod(dog-7, best-6) 

root(ROOT-0, dog-7) 

prep(dog-7, in-8) 

det(world-10, the-9) 

pobj(in-8, world-10) 

 

The results were not the expected concerning the sentiment analysis of a phrase. We 

would like to come up with a dependency between the adverb “not” and the adjective 

“best”. We faced analogous problems with other kinds of dependencies too. 

That’s why we decided to make use of N-Grams. Using N-Grams is relatively easy and 

offers to our algorithm an ability to scale up. Furthermore this way we end up with a 

small, robust, fast and relatively credible system.  

In our system, we use unigrams (ngram of size 1), bigrams (ngrams of size 2), and tri-

grams (ngrams of size 3). N-grams of length one to length three simultaneously. Below 

are presented a few of the N-Grams that our model built during the training process that 

have to do with the adverb ‘not’.  

@attribute 'not a better' numeric 
@attribute 'not a fan' numeric 
@attribute 'not a lot' numeric 
@attribute 'not all' numeric 
@attribute 'not all hyped' numeric 
@attribute 'not all that' numeric 
@attribute 'not bad' numeric 
@attribute 'not bad eh' numeric 
@attribute 'not bad ley' numeric 
@attribute 'not blurry' numeric 
@attribute 'not blurry whataphone' numeric 
@attribute 'not brilliant' numeric 
@attribute 'not brilliant for' numeric 
@attribute 'not camera' numeric 
@attribute 'not camera front' numeric 
@attribute 'not clear' numeric 
@attribute 'not confidence' numeric 
@attribute 'not confidence to' numeric 
@attribute 'not edited' numeric 
@attribute 'not edited and' numeric 
@attribute 'not expect' numeric 
@attribute 'not expect it' numeric 
@attribute 'not giving' numeric 
@attribute 'not giving it' numeric 
@attribute 'not going' numeric 
@attribute 'not going to' numeric 
@attribute 'not last' numeric 
@attribute 'not last enough' numeric 
@attribute 'not look' numeric 
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@attribute 'not look at' numeric 
@attribute 'not much' numeric 
@attribute 'not much else' numeric 
@attribute 'not much worse' numeric 
@attribute 'not one' numeric 
@attribute 'not one advert' numeric 
@attribute 'not only' numeric 
@attribute 'not only blackberry' numeric 
@attribute 'not really' numeric 
@attribute 'not really htc' numeric 
@attribute 'not so' numeric 
@attribute 'not so hot' numeric 
@attribute 'not sure' numeric 
@attribute 'not sure how' numeric 
@attribute 'not sure i' numeric 
@attribute 'not tech' numeric 
@attribute 'not tech at' numeric 
@attribute 'not to' numeric 
@attribute 'not to buy' numeric 
@attribute 'not too' numeric 
@attribute 'not too favorable' numeric 
@attribute 'not very' numeric 
@attribute 'not very good' numeric 
@attribute 'not working' numeric 
@attribute 'not working good' numeric 
 

We notice that some of the words of the above N-Grams have been reduced deliberately 

to their stem, base or root form. In the next section it is briefly explained why this is 

happening. 

Stemmer 
Stemming is a process where every word is reduced to its’ stem. This stem does not 

need to be the morphological root of the word, but we want related words to map to the 

same stem.  

We make use of the Iterated Lovins Stemming Algorithm. This is an improvement of 

the first ever published stemming algorithm, Lovins JB (1968). It is a relatively fast – 

single pass algorithm, which is able to handle efficiently grammatical effects like the 

removal of double letters in words (for example ‘getting’ is transformed to ‘get’). Addi-

tionally it can handle many irregular plurals like – mouse and mice etc. In comparison 

to the Lovins Stemming algorithm it tries also to extenuate the over stemming and un-

der stemming problem. 

The combination of using N-Grams along with a stemmer helps us to deal with FR-4. 

That’s because we do not only use a conventional lexicon that contains only formal and 

grammatically correct words. Contrariwise our algorithm is being trained to take ad-
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vantage of every possible word combination regardless of whether it contains misspell-

ings, abbreviations or slang language. 

Use of Stoplist 
It is not our intention to build an extremely large dataset. To moderate this problem we 

remove from our feature set very frequently used words or very short words (having 

less than two letters). These words appear almost equal number of times in all catego-

ries, so it makes no sense for someone to take them into account. The stopwords that 

were used are based on Rainbow. We used an english stopwords list, but it is relatively 

easy to add any stopword list we want. 

4.1.3 Stacking Classifiers 
As already mentioned our proposed solution combines two different classifiers using the 

stacking method that is briefly described in paragraph 2.3.2. A meta-classifier is then 

used to do the final classification taking into consideration the results of the other two 

classifiers. 

The two classifiers that are “stacked” are: 

SMOreg Classifier 
SMOreg implements the support vector machine for regression. 

PLS Classifier 
PLSClassifier is a wrapper classifier for the PLSFilter. This classifier exploits the pre-

dictive ability of the PLSFilter, which runs Partial Least Square Regression over the 

given instances and computes the resulting beta matrix for prediction (Naes, Isaksson, 

Fearn, & Davies, 2002). 

The Meta-classifier that is used by the Stacking method is the: 

Kstar Classifier  
K* is an instance-based classifier, which uses an entropy-based distance function (John 

G. Cleary, 1995). 

4.2 Evaluation Criteria/Methodology 

4.2.1 Training Data Set 
As a training set we decided to use the same set of tweets that were used in 

(Kontopoulos, Berberidis, Dergiades, & Bassiliades, 2013). The tweets of this set are 
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tweets containing keywords related to the domain of Mobile Phones. For all these 

tweets a preprocessing phase took place, which included removing strings that would 

not help in the training and the evaluation process. More precisely the following items 

were removed: 

• URLs and tiny urls (which are used a lot in Twitter) 

• Replies to other users’ tweets (starting with ‘@’) 

• The “#” character that is used to indicate that a specific string is a hashtag. 

This way we reduced some of the noise of our training data set. This initial dataset was 

consisted of 632 tweets (a lot of these were the same since they were automatically re-

trieved and many of these were retweets of other tweets). The next step was to remove 

all these duplicate tweets. We would not want in any case the same tweet to appear in 

the training set five or ten times for example, because this would lead to misleading in-

ferences. 

Most of the abovementioned tweets referred to only one aspect, but some of them re-

ferred to two or three different aspects. So the final step of preprocessing the data was to 

break them into sentence segments that refer to only one aspect. For example the tweet 

'Hate my iPhone now = = Samsung-Galaxy SII Camera so damn clear' would lead to 

two distinct instances (‘Hate my iPhone now’ and ‘Samsung-Galaxy SII Camera so 

damn clear’). Another example would be that of the following tweet: 

'My phone problems were settled yesterday I now have an HTC-One X Quad core pro-

cessor huge clear screen amazing camera crap battery life'  

This breaks into five different segments that will be used for training. 

1. ‘My phone problems were settled yesterday’ 

2. ‘I now have an HTC-One X Quad core processor’ 

3. ‘huge clear screen’ 

4. ‘amazing camera’ 

5. ‘crap battery life’. 

This way we ended up having 706 instances out of the initial 632 tweets. Of course if 

we used a dataset ten times this one, our classifier would have even better results.  

Every instance has two attributes. The first attribute refers to the tweet itself (or the part 

of the tweet that refers to a certain aspect). Its’ type is “string”. Instances have been se-
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lected in a way that this attribute is unique in a percentage of 95%. To achieve this we 

simply removed from our dataset tweets with the same content.  

The second attribute is the “Rating” and it is of type “Numeric”. Its’ values range one to 

six according to Functional Requirement FR-1. The rating’s mean is 4.483 and the 

standard deviation is 1.624. Ideally we would prefer a mean around 3.5 and to have al-

most equal number of instances with negative, neutral and positive sentiment rating. 

This would have as a result for our model to have a lot better results but it would not be 

so realistic, as it would be something artificially built. 

How exactly the 706 instances are divided in a scale of one to six is shown graphically 

below in figure 5. 

 

Figure 8 - Instances according to their Rating 

4.2.2 Cross Validation and Evaluation Measures 
What we wanted to ensure is that our experimental results would be the same as if they 

were obtained on completely independent test sets. To do so we used an evaluation 

technique called 10-fold Cross Validation, which practically does the following: 

1. Break data into 10 sets of size n/10. 

2. Train on 9 datasets and test on 1. 

3. Repeat 10 times and take a mean accuracy. 
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We used 10-fold cross validation instead of 3-fold or 20-fold, because extensive tests on 

many different datasets have shown that with 10-fold cross validation is what is needed 

to get the best estimate of error. 

Another way to do so would be to use a large training set in order to build our model 

and then test it on another large independent test set. Of course in this case we suppose 

that both samples are representative.  

One big decision that we had to take was the choice of the right evaluation metrics for 

the comparison of the various algorithms that were used. 

We already mentioned one of such metrics when speaking of the Nominal Classifiers in 

paragraph 4.1.1, which is the percentage of correctly classified instances. But in the end 

we decided that it is preferable to work with regression algorithms. Error rates are used 

for numeric prediction. In numeric prediction, predictions aren't just right or wrong, the 

error has a magnitude, and these measures reflect that. There are many performance 

measures for evaluating numeric prediction as in our case. We decided to use Mean-

absolute error and Relative-absolute error, which we considered to be most appropriate 

and easier to understand. We will explain briefly each of these two metrics. 

Consider that the predicted values of the instances of the training test are pr1, pr2, …, 

prn, whereas the actual values are ac1, ac2, …, acn and a𝑐 is the mean value over the 

training data. 

Mean-absolute error is defined by the following formula: 

Mean− absolute  error =
pr1− ac1 +⋯+ prn− acn

n  

Relative-absolute error is defined by: 

Relative− absolute  error =
pr1− ac1 +⋯+ prn− acn
ac1− a𝑐 +⋯+ acn− a𝑐  

Therefore, smaller values for both these measures are better. 

The results of the experiments are shown in section 4.3. 

Something else that played very important role to our final choice of the classification 

scheme that was used was the ability that is offered to us by weka to output all the pre-

dictions of a regression algorithm for the instances that were used as a training set. 
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4.3 Experimental Results 
In this point we should mention that the data that were used for the training and the 

evaluation of the models are:  

1. seperated_tweets_OneToSix – Nominal.arff 

2. seperated_tweets_OneToSix – Numeric.arff 

Below are presented only few of the experimental results.  

The results below are taken after having decided to work with regression algorithms, N-

Grams and the Iterated Lovins Stemmer.  

In Figure 9 is displayed the performance of seven different regression algorithms. We 

observe that SMOReg and PLSClassifier have the best performance among the others. 

 

Classifier	  used	   Mean	  Absolute	  Error	   Relative	  Absolute	  Error	  

SimpleLinearRegression 1.1965 89.5046 % 

SMOReg 0.92 69.17% 

PLSClassifier 0.88 65.92% 

Gaussian Processes for re-

gression without hyperpa-

rameter-tuning 

1.2945 96.8355 % 

K-nearest neighbours clas-

sifier (IBk) 

1.1843 88.5923 % 

Using a decision stump 1.1965 89.5046 % 

M5Base (Implements base 

routines for generating M5 

Model trees and rules) 

1.0502 78.5596 % 

Figure 9 - Comparing Regression Algorithms after having chosen the right filters 

 

In the next figure we compare the previous two best algorithms (SMOReg and 

PLSClassifier) with two ensemble techniques (Stacking and Vote) that combine these 

two classifiers.  
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Classifier	  used	   Mean	  Absolute	  Error	   Relative	  Absolute	  Error	  

Stacking of SMOreg, 

PLSClassifier with KStar 

as meta classifier  

0.88 67% 

SMOReg 0.92 69.17% 

PLSClassifier 0.88 65.92% 

Vote using SMOreg, 

PLSClassifier, KStar and 

Maximum Probability 

0.90 67% 

Vote using SMOreg, 

PLSClassifier, KStar and 

Minimum Probability 

0.90 67% 

Figure 10 - Comparing the 2 best Regression Algorithms with Ensemble Methods 

As we can see from the above figure the difference by just observing the  measures is 

not significant. The difference resides in the fact that the predicted values using the 

Stacking Method are much closer to the actual ones compared to any other method. We 

can see the result of output predictions using the Stacking of SMOreg and PLSClassi-

fier with KStar as meta classifier in the next frame for some of the training instances. 

=== Predictions on test data === 

 

  inst#,    actual, predicted, error      

 

     1      4          5.105      1.105 

     2      6          4.225     -1.775 

     3      5          4.84      -0.16  

     4      6          4.047     -1.953 

     5      6          5.673     -0.327 

     6      4          4.102      0.102 

     7      4          5.008      1.008 

     8      6          5.307     -0.693 

     9      5          4.324     -0.676 

    10      6          5.464     -0.536 

    11      2          3.773      1.773 

    12      2          3.105      1.105 

    13      5          5.288      0.288 

    14      6          4.174     -1.826 

    15      4          4.913      0.913 
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    16      4          4.768      0.768 

    17      1          2.299      1.299 

    18      5          5.142      0.142 

    19      5          3.149     -1.851 

    20      6          5.231     -0.769 

    21      4          3.37      -0.63  

    22      5          5.028      0.028 

    23      3          4.642      1.642 

    24      4          3.928     -0.072 

    25      6          5.722     -0.278 

    26      6          5.455     -0.545 

    27      5          4.854     -0.146 

    28      1          3.227      2.227 

    29      4          3.772     -0.228 

    30      6          5.194     -0.806 

    31      5          3.953     -1.047 

    32      6          5.469     -0.531 

    33      5          3.686     -1.314 

    34      5          4.891     -0.109 

    35      2          3.114      1.114 

    36      4          5.174      1.174 

    37      4          3.642     -0.358 

    38      5          4.598     -0.402 

    39      6          5.752     -0.248 

    40      5          4.828     -0.172 

    41      3          5.056      2.056 

    42      4          5.082      1.082 

    43      6          5.147     -0.853 

    44      4          4.885      0.885 

    45      2          4.002      2.002 

    46      1          2.178      1.178 

    47      5          4.665     -0.335 

    48      3          4.062      1.062 

    49      2          2.566      0.566 

    50      6          5.76      -0.24  

    51      1          3.957      2.957 

    52      5          5.078      0.078 

    53      4          4.032      0.032 

    54      2          3.116      1.116 

    55      3          3.111      0.111 

    56      5          5.533      0.533 

    57      4          3.853     -0.147 

    58      5          5.205      0.205 

    59      6          5.255     -0.745 

    60      4          5.014      1.014 

    61      4          2.896     -1.104 

    62      3          1.853     -1.147 

    63      2          1.995     -0.005 
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    64      5          4.231     -0.769 

    65      5          4.776     -0.224 

    66      2          3.13       1.13  

    67      6          5.13      -0.87  

    68      6          5.724     -0.276 

    69      2          3.16       1.16  

    70      2          3.797      1.797 

 

We see that with Stacking we don’t simply get a mean absolute error of 0.88, which is 

extremely significant but we don’t have many outliers. This means that we don’t see 

instances that should be rated as “two” to get a prediction of “five” or “six”. 

Finally another reason that we prefer the Stacking over the Vote method is that it is 

much faster. 
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5 Conclusions and Future 
Work 

One of the biggest advantages that our approach offers is that it is completely independ-

ent of the language that the documents we want to rate are written in. This algorithm 

can be used to create models for giving a basic sentiment rating in any language. The 

reason is that no lexicon is being used, only N-Grams from the training documents that 

are given to the algorithm as an input.  

Something that would be very useful and relatively simple as a future improvement is to 

find a way to indentify the language in which a document is written and use in some 

automatic way the appropriate model in order to rate it. To classify documents accord-

ing to their language we could use N-Gram Frequency Profiles (Cavnar & John, 1994). 

The most difficult part that should be done, in order to speak of a complete sentiment 

analysis tool is to create the mechanism that will indentify all the entities of a document. 

After doing so, the same mechanism should break the sentences in appropriate parts. 

These parts will be given to our algorithm as arguments pending for rating. Then ac-

cording to the ontology that each entity belongs to, the appropriate model will be chosen 

to be used for the evaluation. 
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Appendix 
Below is presented the source code for the main class of the MessageClassifier. It is 

based on a sample application that is used in a companion book for the Weka software, 

which is written by the development team of Weka (Witten, Frank, & Hall, 2011). We 

could consider it as a manual that describes various machine learning techniques and 

how these techniques can be used with the help of Weka. There are some comments that 

make the reading of the code easier. 

package SentimentAnalysis; 

 

/** 

 * 

 * @author Antoniou Georgios 

 */ 

/** 

* Java program for attaching a sentiment score from one to six. 

*/ 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.Serializable; 

import weka.classifiers.Classifier; 
import weka.classifiers.functions.PLSClassifier; 
import weka.classifiers.functions.SMOreg; 
import weka.classifiers.lazy.KStar; 
import weka.classifiers.meta.FilteredClassifier; 
import weka.classifiers.meta.Stacking; 
import weka.core.Attribute; 

import weka.core.FastVector; 

import weka.core.Instance; 

import weka.core.Instances; 

import weka.core.SerializationHelper; 

import weka.core.Utils; 

import weka.core.stemmers.IteratedLovinsStemmer; 
import weka.core.tokenizers.NGramTokenizer; 
import weka.filters.Filter; 

import weka.filters.unsupervised.attribute.StringToWordVector; 
 

 

public class MessageClassifier implements Serializable { 
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/** The training data gathered so far. */ 

private Instances m_Data = null; 

/** The filter used to generate the word counts. */ 

private StringToWordVector m_Filter = new StringToWordVector(); 

private IteratedLovinsStemmer Stem = new IteratedLovinsStemmer(); 

private NGramTokenizer NGram = new NGramTokenizer(); 

/** The actual classifier. */ 

private FilteredClassifier m_Classifier = new FilteredClassifier(); 

private Stacking m_Classifier1 = new Stacking(); 

private Classifier m_Classifier2 = new SMOreg(); 

private Classifier m_Classifier3 = new PLSClassifier(); 

private Classifier[] StackingClassifiers = {m_Classifier2, 
m_Classifier3}; 

private Classifier m_Classifier4 = new KStar(); 

 

/** Whether the model is up to date. */ 

private boolean m_UpToDate; 

/** For serialization. */ 

private static final long serialVersionUID = -123455813150452885L; 

/** 

* Constructs empty training dataset. 

*/ 

public MessageClassifier() { 

String nameOfDataset = "MessageClassificationProblem"; 

String Rangelist = "first"; 

// Create vector of attributes. 

FastVector attributes = new FastVector(2); 

// Add attribute for holding messages. 

attributes.addElement(new Attribute("Message", (FastVector) null)); 

// Add class attribute which is numeric. 

attributes.addElement(new Attribute("Class")); 

// Create dataset with initial capacity of 100, and set index of 
class. 

m_Data = new Instances(nameOfDataset, attributes, 100); 

m_Data.setClassIndex(m_Data.numAttributes() - 1); 

m_Classifier1.setClassifiers(StackingClassifiers); 

m_Classifier1.setMetaClassifier(m_Classifier4); 

 

m_Filter.setAttributeIndices(Rangelist); 

m_Filter.setDoNotOperateOnPerClassBasis(true); 

m_Filter.setInvertSelection(false); 

m_Filter.setLowerCaseTokens(true); 

m_Filter.setMinTermFreq(1); 

// We are interested only in which terms occur and not how many times 
each one occurs. 

m_Filter.setOutputWordCounts(false); 

m_Filter.setStemmer(Stem); 

m_Filter.setUseStoplist(true); 

m_Filter.setTokenizer(NGram); 
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m_Filter.setWordsToKeep(10000000); 

m_Classifier.setFilter(m_Filter); 

m_Classifier.setClassifier(m_Classifier1); 

 

 

} 

/** 

* Updates model using the given training message. 

* 

* @param message the message content 

* @param classValue the class label 

*/ 

public void updateData(String message, int classValue) { 

// Make message into instance. 

Instance instance = makeInstance(message, m_Data); 

// Set class value for instance. 

instance.setClassValue(classValue); 

// Add instance to training data. 

m_Data.add(instance); 

m_UpToDate = false; 

} 

/** 

* Classifies a given message. 

* 

* @param message the message content 

* @throws Exception if classification fails 

*/ 

public void classifyMessage(String message) throws Exception { 

// Check whether classifier has been built. 

if (m_Data.numInstances() == 0) { 

throw new Exception("No classifier available."); 

} 

// Check whether classifier and filter are up to date. 

if (!m_UpToDate) { 

// Initialize filter and tell it about the input format. 

m_Filter.setInputFormat(m_Data); 

// Generate word counts from the training data. 

//Instances filteredData = Filter.useFilter(m_Data, m_Filter); 

// Rebuild classifier. 

m_Classifier.buildClassifier(m_Data); 

m_UpToDate = true; 

} 

// Make separate little test set so that message 

// does not get added to string attribute in m_Data. 

Instances testset = m_Data.stringFreeStructure(); 

// Make message into test instance. 

Instance instance = makeInstance(message, testset); 

// Filter instance. 
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m_Filter.input(instance); 

Instance filteredInstance = m_Filter.output(); 

// Get index of predicted class value. 

double predicted = m_Classifier.classifyInstance(filteredInstance); 

// Output class value. 

System.err.println("Message classified as : " + 

m_Data.classAttribute().value((int) predicted)); 

} 

/** 

* Method that converts a text message into an instance. 

* 

* @param text the message content to convert 

* @param data the header information 

* @return the generated Instance 

*/ 

private Instance makeInstance(String text, Instances data) { 

// Create instance of length two. 

Instance instance = new Instance(2); 

// Set value for message attribute 

Attribute messageAtt = data.attribute("Message"); 

instance.setValue(messageAtt, messageAtt.addStringValue(text)); 

// Give instance access to attribute information from the dataset. 

instance.setDataset(data); 

return instance; 

} 

/** 

* Main method. The following parameters are recognized: 

* 

* -m messagefile 

* Points to the file containing the message to classify or use 

* for updating the model. 

* -c classlabel 

* The class label of the message if model is to be updated. 

* Omit for classification of a message. 

* -t modelfile 

* The file containing the model. If it doesn't exist, it will 

* be created automatically. 

* 

* @param args the commandline options 

*/ 

public static void main(String[] args) { 

try { 

// Read message file into string. 

String messageName = Utils.getOption('m', args); 

if (messageName.length() == 0) { 

throw new Exception("Must provide name of message + file ('-m 
<file>')."); 

} 

FileReader m = new FileReader(messageName); 



  -47- 

StringBuffer message = new StringBuffer(); 

int l; 

while ((l = m.read()) != -1) { 

message.append((char) l); 

} 

m.close(); 

// Check if class value is given. 

String classValue = Utils.getOption('c', args); 

int classValue2 = 0; 

if (classValue.length() != 0) { 

classValue2 = Integer.parseInt(classValue); 

} 

// If model file exists, read it, otherwise create new one. 

String modelName = Utils.getOption('t', args); 

if (modelName.length() == 0) { 

throw new Exception("Must provide name of model + file ('-t 
<file>')."); 

} 

MessageClassifier messageCl; 

try { 

messageCl =(MessageClassifier) SerializationHelper. read(modelName); 

} catch (FileNotFoundException e) { 

messageCl = new MessageClassifier(); 

} 

// Check if there are any options left 

Utils.checkForRemainingOptions(args); 

// Process message. 

if (classValue.length() != 0) { 

messageCl.updateData(message.toString(), classValue2); 

} else { 

messageCl.classifyMessage(message.toString()); 

} 

// Save message classifier object only if it was updated. 

if (classValue.length() != 0) { 

SerializationHelper.write(modelName, messageCl); 

} 

} catch (Exception e) { 

e.printStackTrace(); 

} 

} 

} 

 


