
 -i-

Applications for Smart
Devices

Andrea Dhimitri

SID: 3301100017

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in ICT Systems

SEPTEMBER 2011

THESSALONIKI – GREECE

-ii-

Applications for Smart
Devices

Andrea Dhimitri

SID: 3301100017

Supervisor: Prof. Ioannis Vlachavas

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in ICT Systems

SEPTEMBER 2011

THESSALONIKI – GREECE

 -iii-

DISCLAIMER

This dissertation is submitted in part candidacy for the degree of Master of Science in

ICT Systems, from the School of Science and Technology of the International Hellenic

University, Thessaloniki, Greece. The views expressed in the dissertation are those of

the author entirely and no endorsement of these views is implied by the said Universi-

ty or its staff.

This work has not been submitted either in whole or in part, for any other degree

at this or any other university.

Signed: ...

Name: ..

Date: ...

-iv-

 -v-

Abstract
This dissertation investigates and Ambient Intelligence system and proposes algo-

rithms and techniques that can be implemented in a smart building environment. Im-

plementing AmI environments, in regards to the connection infrastructure, essentially

involves dealing with wireless networks Wireless Sensor Networks (WSN) or Wireless

Sensor and Actuator Networks (WSAN). In addition the concept of Service Oriented

Architecture (SOA) which is directly related to ambient systems is implemented using

web services. Such a system is built for the purpose of a research project, namely

Smart IHU. It involves the deployment of heterogeneous WSNs at the International

Hellenic University, and the development of various web an Artificial Intelligence ap-

plications. A SOA compliant web service middleware, named aWESoME, unifies access

to heterogeneous WSN systems, and exposes all their functions through web services

(WS). In this work a Linux embedded computer was investigated, configured and

adapted in order to replace existing gateways, which are simple PCs and consume far

more energy. Experiments were conducted in different scenarios that measured the

power dissipation and response time. Furthermore additional technologies and me-

thods were investigated and used for the development of web services that control

(e.g. shutdown, reboot, wake on LAN) and monitor parameters (e.g. CPU utilization) in

distributed computers. These services utterly extend and enrich the functionality of

the system’s middleware, aWESoME.

-vi-

Acknowledgements

This thesis was developed in the context of my post-graduate studies. The research

was related with the Smart IHU project. For the completion of this dissertation, initially

I would like to thank Professor Ioannis Vlachavas for the acceptance in selecting this

dissertation topic and for providing the facilities both in the International Hellenic Uni-

versity and in the Aristotelian University of Thessaloniki. The development and com-

pletion of this dissertation topic was in collaboration with the Smart IHU Team, which

is formed by the researchers Dr. Aggeliki Tsioliaridou, Mr. Athanasios Stavropoulos and

the supervisors Dr. George Koutitas, Dr. Dimitris Vrakas. I would like to thank the

Smart IHU Team for providing me the appropriate guidelines, helping me in addressing

problems. I would like to thank Mr. Stavropoulos and Mr. Kostas Gottis for their pre-

cious help in the development of some of the Java Applications and Web Applications

including Web Services. Especially I would like to thank Mr. Stavropoulos for providing

me the appropriate guidelines, helping me into addressing and solving problems faced.

Also I would like to thank Dr. Koutitas for his advices and support.

 Last, but not least, I would like to thank my parents and my brother for supporting me

in each step of my professional and academic career.

Andrea Dhimitri

25/09/2011

 -vii-

List of Contents

ABSTRACT ..V

ACKNOWLEDGEMENTS ...VI

LIST OF CONTENTS ... VII

LIST OF FIGURES ... X

LIST OF TABLES ... XIV

LIST OF CHARTS ... XV

1 INTRODUCTION .. 1

2 LITERATURE REVIEW ... 3

2.1 AMBIENT INTELLIGENCE .. 3

2.1.1 Sensing ... 5

2.1.2 Reasoning ... 6

2.1.3 Acting ... 7

2.1.4 Human-Computer Interaction .. 8

2.1.5 Privacy and Security ... 9

2.1.6 AMI Applications .. 9

2.2 WIRELESS SENSOR NETWORKS... 15

2.2.1 Wireless Sensor Nodes ... 17

2.2.2 Sensors ... 18

2.2.3 Network Topologies ... 18

2.2.4 OSI Model ... 19

2.2.5 Standards ... 28

2.2.6 Wireless Sensor Network Applications .. 33

2.3 SERVICE ORIENTED ARCHITECTURE ... 35

2.3.1 Overview .. 35

2.3.2 Web Services .. 37

-viii-

2.3.3 Related Protocols... 38

2.3.4 Web Services in Java .. 43

3 PROBLEM DEFINITION .. 47

3.1 THE SMART IHU PROJECT .. 47

3.1.1 System Architecture .. 49

3.1.2 Devices ... 50

3.1.3 aWESoME Middleware .. 60

3.2 POWER CONSUMPTION ... 63

3.3 REMOTE CONTROL AND MONITORING .. 65

3.4 SOFTWARE TOOLS AND HARDWARE .. 65

3.4.1 Hardware ... 65

3.4.2 Software .. 72

4 CONTRIBUTION .. 77

4.1 FOXBOARD GATEWAY ... 77

4.1.1 Installation and Configuration .. 78

4.1.2 Experiments Results and Comparisons .. 91

4.2 WEB SERVICES ... 107

4.2.1 Wake On LAN (WOL) ... 107

4.2.2 LAN Shutdown ... 111

4.2.3 CPU utilization and other Information .. 115

4.2.4 Web Application .. 117

4.3 CORRELATION BETWEEN CPU AND POWER CONSUMPTION .. 125

5 CONCLUSIONS .. 129

BIBLIOGRAPHY... 133

APPENDIX A: TERMS .. 137

APPENDIX B: CONFIGURING FOXBOARD .. 141

CREATE A BOOTABLE MICROSD WITH DEBIAN LENNY ... 141

KERNEL UIMAGE AND ROOTFS CONTENTS .. 143

HOW TO SET A STATIC IP ADDRESS... 144

 -ix-

SETTING THE SYSTEM CLOCK ...144

SETTING THE REAL TIME CLOCK ...145

CHANGE THE HOSTNAME ON A RUNNING SYSTEM ..145

-x-

List of Figures

Figure 2.1: People and Computing power ratio .. 3

Figure 2.2: Indicative Size of Microprocessors used in portable Devices 4

Figure 2.3: Smart Home Appliances .. 4

Figure 2.4: Relationship between AmI and contributing technologies 5

Figure 2.5: RFID Bracelet ... 6

Figure 2.6: The study of PEIS-Ecologies lays at the intersection of several different

fields .. 7

Figure 2.7: Philips iCat ... 7

Figure 2.8: Autonomous Robot in Dustbot ... 8

Figure 2.9: AmI Devices and users .. 10

Figure 2.10: THE Gator Tech Smart House .. 11

Figure 2.11: Smart Plugs .. 12

Figure 2.12: ESP Sensors ... 13

Figure 2.13: Architecture of an AmI system which supports management in

transportation infrastructure .. 14

Figure 2.14: Interactive board ... 15

Figure 2.15: Sensor Networks Interconnected ... 16

Figure 2.16: Example of a Sensor and Actuator Network ... 16

Figure 2.18: ZigBee Sensor node ... 17

Figure 2.17: Sensor Node Block diagram .. 17

Figure 2.19: Basic Network Topologies ... 19

Figure 2.20: Simplified OSI model ... 19

Figure 2.21: Example of Data Aggregation .. 22

Figure 2.22: Route Selection example... 23

Figure 2.23: MAC Classification ... 26

Figure 2.24: 802 Protocols Range and Data Rate .. 28

Figure 2.25: IEEE 802.15.4 channel Structure ... 30

file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936321
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936335
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936337
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936338

 -xi-

Figure 2.26: ZigBee network elements ... 31

Figure 2.27: ZigBee Stack .. 32

Figure 2.28: WSN in agriculture .. 34

Figure 2.29: WSN in a forest ... 34

Figure 2.30: WSAN in a smart home application .. 35

Figure 2.31: SOA find-bind-execute paradigm ... 36

Figure 2.32: Web Services Architecture (by H. Voormann) .. 37

Figure 2.34: XML Example .. 38

Figure 2.33: Web Services protocol Stack .. 38

Figure 2.35: Conceptual SOAP message structure ... 39

Figure 2.36: An actual example of a SOAP message ... 40

Figure 2.37: WSDL major elements .. 41

Figure 2.38: Architecture and APIs of the J2EE 1.4 ... 44

Figure 2.39: Java EE 5 architecture diagram ... 45

Figure 2.40: Java EE 6 architecture diagram ... 46

Figure 3.1: Smart IHU research directions .. 48

Figure 3.2: Smart IHU System ... 49

Figure 3.3: Smart IHU operational layers, technologies and devices. 50

Figure 3.4: Plugwise – power management components .. 51

Figure 3.5: Circle+ Electronic Components and Circuits ... 52

Figure 3.6: Circle+ Zigbee circuit and Flash memory .. 52

Figure 3.7: Plugwise Mesh network .. 53

Figure 3.8: Source user interface .. 54

Figure 3.9: PrismaSense components ... 55

Figure 3.10: Quax MS PRO .. 56

Figure 3.11: Zigbee to WiFi gateway .. 57

Figure 3.12: PrismaSense System Example .. 57

Figure 3.13: OWL power monitoring system .. 58

Figure 3.14: OWL USB Connect ... 59

Figure 3.15: OWL installed .. 59

Figure 3.16: CurrentCost System .. 60

Figure 3.17: The existing topology of aWESoME .. 61

file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936348
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936351
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936352
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936366

-xii-

Figure 3.18: Architecture of the Smart IHU System .. 63

Figure 3.19: FOXBOARD G20 ... 66

Figure 3.20: Single Board Computer Architecture .. 66

Figure 3.21: FoxBoard G20 -Input/outputs ... 68

Figure 3.22: TS-7800 a SBC developed by Technologic Systems 69

Figure 3.23: ITX Series size .. 70

Figure 3.24: Mini, Nano and Pico ITX dimensions ... 70

Figure 3.25: Apache Tomcat 6.0 architecture ... 72

Figure 3.26: NetBeans main categories .. 74

Figure 4.1: FoxBoard’s default web page .. 78

Figure 4.2: Example of a SSH connection .. 79

Figure 4.3: Testing Tomcat 6.0.32 ... 82

Figure 4.4: Tomcat-users xml file .. 83

Figure 4.5: Tomcat Manager’s interface ... 83

Figure 4.6: Deploying of WAR archives using Tomcat Manager 84

Figure 4.7: Sample while Monitoring running processes .. 87

Figure 4.8: aWESoME deployed .. 88

Figure 4.9: Available Web Services and WSDL URL’s .. 88

Figure 4.10: Plugwise Available actions .. 89

Figure 4.11: Experiment 1: Conceptual connection, devices and applications 94

Figure 4.12: ClientReadStatus client Software .. 104

Figure 4.13: Magic Packet Example... 108

Figure 4.14: Wake On LAN java application software. .. 109

Figure 4.15: Wake On LAN java application Main.java ... 109

Figure 4.16: Magic Packet Captured by Wireshark ... 110

Figure 4.17: Bytes found in Magic Packet ... 110

Figure 4.18: Details of the Magic packet ... 111

Figure 4.19: Access denied in a remote shutdown example .. 113

Figure 4.20: Setting up the local security policy ... 113

Figure 4.21: Java code that remotely shuts down a PC .. 114

Figure 4.22: Shutdown command monitored communication 114

Figure 4.23: The getCPU() java code ... 116

file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936377
file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936394

 -xiii-

Figure 4.24: The getCPUAvg() java code .. 117

Figure 4.25: Example of Calling the getCPUAvg() function .. 117

Figure 4.26: The structure of ManagementWS .. 118

Figure 4.27: Adding an operation ... 119

Figure 4.28: Example of adding the CPUAvg operation ... 119

Figure 4.29: Operation’s initially generated code .. 120

Figure 4.30: The Java code of the CPUAvg operation ... 121

Figure 4.31: Final structure of ManagementWS .. 121

Figure 4.32: Screenshot of the Web Service Tester ... 123

Figure 4.33: Results after invoking the wol method .. 124

Figure 4.34: Results after invoking CPUAvg .. 124

-xiv-

List of Tables

Table 2.1: TYPES of Sensors and their outputs .. 18

Table 2.2 Possible routes between the sink and a node T 23

Table 2.3: Qualitative overview of MAC protocols .. 26

Table 2.4: ISM Bands and transmission power limits ... 27

Table 2.5: Bluetooth, OPERATING frequency bands ... 29

Table 2.6: 802.15.4 PHY Data and Spreading Parameters 30

Table 3.1: Power dissipation in Watts, regarding different types of PCs

(excluding displays), in 2007 .. 64

Table 3.2: FoxBoard G20 technical specifications .. 67

Table 3.3: TS-7800 Technical Specifications ... 69

Table 3.4: Pico ITX technical specifications ... 71

Table 3.5: Tomcat 6.0 key elements ... 73

Table 3.6: NetBeans Highlights .. 74

Table 4.1: Description of Software used in the experiments 92

Table 4.2: Description of hardware used in the experiments 92

Table 4.3: Scenarios and Power Dissipation averages .. 93

Table 4.4: Response time samples of FoxBoard .. 95

Table 4.5: Response Time Samples of the Mini Note Book 97

Table 4.6 Response Time Samples of the Mini Note Book 99

Table 4.7: Average power dissipation when idle and active 101

Table 4.8: Response time overall distribution .. 101

Table 4.9: Average time elapsed to execute Client1 .. 102

Table 4.10: Comparison between Foxboard and Mini Notebook 103

Table 4.11: Parameters and Settings while using wake on LAN 110

Table 4.12: The arguments of the shutdown command in Windows 112

Table 4.13: The parameters of typeperf ... 115

Table 4.14: Description of each operation of the WS ... 118

 -xv-

List of Charts

Chart 4.1: CPU and Memory percentage used ... 87

Chart 4.2: Response time Distribution of FoxBoard ... 96

Chart 4.3: Power dissipation of FoxBoard while active .. 96

Chart 4.4: Memory Usage (%) and CPU(%) utilization in FoxBoard 97

Chart 4.5: Response time Distribution of the Mini Note Book 98

Chart 4.6: Power dissipation of Mini while active (W) ... 98

Chart 4.7: Memory Usage (%) and CPU(%) utilization in Mini 98

Chart 4.8: Response time Distribution of the PC2 .. 99

Chart 4.9: Power dissipation of Mini while active (W) ... 100

Chart 4.10: Memory Usage (%) and CPU (%) utilization in PC2 100

Chart 4.11: Server power dissipation comparison ... 101

Chart 4.12: Overall Distribution. ... 102

Chart 4.13: ReadStatus Response Time Distributions in seconds 105

Chart 4.14: ReadPower Response time distributions in seconds 106

Chart 4.15: CPU utilization in PC1 ... 126

Chart 4.16: Power dissipation in PC1 .. 126

4.17: CPU Utilization in Dell Optiplex 330 .. 127

4.18: Power Dissipation in Dell Optiplex 330 ... 127

file:///C:/Users/Andrew/Desktop/2nd_Semester/MSC_Disertation/Writing/2.8Andrea_Dhimitri-Applications_for_Smart_Devices.docx%23_Toc306936594

 -1-

1 Introduction

The main objective of this work is to investigate concepts like ambient intelligence

(AmI) and service oriented architecture (SOA). AmI is all about sensing, reasoning and

acting. Initially the system senses the environment. Afterwards, based on predefined

algorithms, makes decisions and finally acts. To implement such systems, the existence

of a wireless sensor network is required. Concepts like Service Oriented Architecture,

which can be implemented by Web Services (WS), are useful in order to connect appli-

cations. Therefore Chapter 2 includes the review of previous and present literature re-

garding Ambient Intelligence (AmI), Wireless Sensor Network (WSN), Service Oriented

Architecture (SOA) and Web Services. The AmI concept will be presented providing ad-

ditional examples of different approaches and applications. The second part of Chapter

2 includes a detailed presentation about Wireless Sensor Networks (WSN) and Wire-

less Sensor and Actuator Networks (WSAN). In this section some of the existing proto-

cols in each layer, of the simplified OSI model, will be described. In addition IEEE com-

munications standards and protocols (e.g. ZigBee) will be presented including WSN’s

applications. The third and last section of Chapter 2 presents the concept of Service

Oriented Architecture (SOA). In this section the Web Services (WS) will be described

including the protocols used (e.g. XML, SOAP, WSDL and UDDI) and available Java Plat-

forms (e.g. J2EE, Java EE 5 and Java EE 6) for developing web services.

The first part of Chapter 4 describes the research project named Smart IHU. The

overall architecture of the system is presented, along with the available systems (e.g.

Plugwise, PrismaSense, OWL and CurrentCost) used in this project. The system consists

of devices, including the software applications provided by their manufacturers. A

middleware layer, named aWESoME (a WEb Service MiddlewarE), was developed in

order to integrate the heterogeneous systems and to expose data and functions

through web services.

After describing overall system of the Smart IHU project, evaluations were made

and problems were found in combination will possible improvements. In the last sec-

-2-

tion hardware and software tools were presented. These tools could possibly address

existing problems and improve existing systems. Such tools are embedded devices

which offer lower power dissipation and could replace the existing gateways, which

were normal PCs. The software tools used were the Apache Tomcat 6.0, which can be

installed on a Linux embedded single board computer (SBC) and used to deploy the

existing middleware. Another important software tool is the NetBeans IDE 7.0 which is

used to develop Java web applications and web services.

In general, Chapter 4 will describe the work performed in this report including ex-

periments, addressing and solving problems. This chapter is formed in two main parts.

The first consists configuring a SBC, named FoxBoard, to be able to serve as a gateway

by running the middleware (i.e. aWESoME), aggregating data collected by the sensors

and provide functions as web services. The second part is about the development of a

Java Web Application which facilitates the remote monitoring and control of Comput-

ers. The functions of this Web Application will be provided as web services and finally

extend the aWESoME middleware.

To conclude, in chapter 5, the conclusions retrieved by this report will be pre-

sented. In addition future development will be also presented in this chapter.

 -3-

2 Literature Review

This chapter presents the basic concept used in this work, in regards to the pre-

vious and present literature. The main concepts are Ambient Intelligence and Service

Oriented Architecture. Wireless Sensor Networks will be also presented since they

provide interconnection between sensors, actuators, displays and processing devices.

2.1 Ambient Intelligence

Ambient Intelligence (AmI) is linked with electronic environments that are sensitive

and responsive to humans. AmI is a vision developed in the late 1990s for a future digi-

tal system for the time frame 2010-2020. This vision has become very influential in the

development of new concepts for the information processing combining interdiscipli-

nary fields including electrical engineering, computer science, industrial design, user

interfaces, and cognitive sciences (Aarts & Encarnacao, 2008). In an AmI world the de-

vices operate collectively using information and intelligence found in the network con-

necting them. This will support people into their daily activities and will make their sur-

rounding more flexible and adaptive.

The AmI vision is derived from the Ubiquitous or Pervasive Computing technologi-

cal paradigms where users are surrounded by computing devices.

Figure 2.1: People and Computing power ratio

-4-

Initially computers were expensive and considered as a precious resource. There-

fore a single mainframe computer was used by many users. The shift of the people and

computer ratio is shown in Figure 2.1. In the 1980s the PC revolution has changed the

computer per user ratio. Nowadays the industry progressed, the costs dropped and

the ratio is many computing devices to a single user. As a result the computational re-

sources available to each user have dramatically increased comparing to previous dec-

ades.

Figure 2.2: Indicative Size of Microprocessors used in portable Devices

Figure 2.3: Smart Home Appliances

Additionally, as shown in Figure 2.2, due to miniaturization of microprocessors, the

computing power is often embedded in familiar devices like home appliances (e.g. in

Figure 2.3 : refrigerators, washing machines etc.) and portable devices (PDA, GPS navi-

gators etc.). These advances in technology in combination with the high user accep-

tance and experience, in these smart devices, have given a significant advantage in the

development of AmI.

The basic idea behind Ambient Intelligence is that by enriching an environment

with technology (e.g. sensors and devices interconnected through a network),

a system can be built to act as an “electronic butler”, which senses features of

 -5-

the users and their environment, then reasons about the accumulated data,

and finally selects an action to take that will benefit the users in the environ-

ment (Cook, Augusto, & Jakkula, 2007, p. 3).

 AmI Systems must be sensitive, responsive and adaptive (Cook, Augusto, &

Jakkula, 2007, p. 3) and have a determinative relationship with many areas in comput-

er science. Cook et al in 2007 organized the contributing technologies in five areas, as

shown in Figure 2.4. These contributing technologies will be presented in the next sub

sections.

2.1.1 Sensing

Sensing the environment include the existence of sensors in order to perceive the

physical environment. Many sensors have been designed to determine light (lumin-

ance), temperature, pressure, radiation, position, velocity, acceleration etc. These

sensors usually have small dimensions and can be easily integrated in any AmI system.

Wireless sensor networks have become very popular recently. A detailed presentation

about sensors and sensor networks will be provided in section 2.2. Additionally RF-ID

technology is used in order to spot objects (e.g. label the wallet or keys to be able to

find them) (Cook, Augusto, & Jakkula, 2007, p. 18) or even control lights and tempera-

ture (Jabjone, Chatchaiyadej, & Chantavichean, 2009) . In Figure 2.5 an RFID bracelet is

shown. This bracelet could be used by the system to detect an individual’s location.

AmI

Reason

Secure HCI

Act Sense

Figure 2.4: Relationship between AmI and contributing technologies

-6-

Figure 2.5: RFID Bracelet

2.1.2 Reasoning

In between sensing and acting the need of intelligent algorithms is crucial. To

make these algorithms adaptive and responsive the reasoning process must include

modeling, activity prediction and recognition, decision making and spatial-temporal

reasoning. Modeling consist the ability to model the user’s behavior. Since this model

can be build the AmI software could provide customized services to the user. If the

model is accurate anomalies could be detected and changes performed in the user’s

patterns. In model building the data source, that is often used, is low level sensor in-

formation. Data mining techniques are used in order to spot patterns in these data and

build a model corresponding to the user’s behavior (Cook, Augusto, & Jakkula, 2007, p.

7). Prediction algorithms have been developed in order to predict the user’s position

or even actions. This allows the AmI system to predict the user’s needs and alert or

even perform the action itself (Helal, et al., 2003). Research has been focused in the

decision making process in AmI systems (e.g. Argumentation-Based decision making

(Neves, Santos, & Machado, 2007)). Another important reasoning type is spatial and

temporal reasoning. An interesting example is provided, in a smart home environment,

where the doorbell rang and the resident does not respond within 5 minutes. The AmI

systems detects that the resident is at home and, based on rules, decides to alert the

resident visually or by telephone (Cook, Augusto, & Jakkula, 2007, p. 10).

 -7-

Figure 2.6: The study of PEIS-Ecologies lays at the intersection of several different fields

2.1.3 Acting

Sensing the physical environment and reasoning using intelligent devices which

are a mechanism by which AmI systems can execute actions and affect the system us-

ers. Another mechanism is through robots (Cook, Augusto, & Jakkula, 2007, p. 11).

Research in robotics has evolved and provides a wide range of assistive tasks and sup-

port to AmI. An interesting approach which ties AmI and Autonomous Robotics is Phys-

ically Embedded Intelligent Systems (PEIS). An illustration of the fields included in this

approach is presented in Figure 2.6 (Saffiotti & Broxvall, 2005, p. 2).

Figure 2.7: Philips iCat

Robots provide self-mobility and human-likeness to AmI systems. In recent years

robots detect face expressions or even generate emotions or expressions. An example

-8-

is PHILIPS iCat as shown in Figure 2.7. iCat is a 38cm tall robot containing 13 servos

which control different parts of the face (eyebrows, eyes, eyelids, mouth and head po-

sition). As a result iCat can generate different expressions (happy, surprise, angry, sad).

These expressions are needed to create social human-robot interaction dialogues

(PHILIPS, 2005).

Another interesting example is the Dustbot system which consist a network of au-

tonomous robots. These robots are part of an AmI system, are found in pedestrian

areas in city centre and are designed to execute the following tasks: street cleaning;

household garbage collection; air quality monitoring (Dario, Mazzolai, & Laschi, 2011).

A robot of the Dustbot system is shown in Figure 2.8.

Figure 2.8: Autonomous Robot in Dustbot

2.1.4 Human-Computer Interaction

In regards to the Human-Computer interaction AmI should be easy to live with.

Therefore the computer interfaces should be human-centric. These interfaces should

be context aware and natural.

Context-aware systems are able to adapt their operations to the current

context without explicit user intervention and thus aim at increasing usabil-

ity and effectiveness by taking environmental context into account. Particu-

larly when it comes to using mobile devices, it is desirable that programs

 -9-

and services react specifically to their current location, time and other envi-

ronment attributes and adapt their behavior according to the changing cir-

cumstances as context data may change rapidly. (Baldauf, Dustdar, &

Rosenberg, 2007, p. 263)

The other aspect of HCI deals with natural interfaces. The system should use its in-

telligence to analyze the situations and the user needs from previous activities and

help when needed. There is a significant progress in AmI systems over the last few

years. Even so a part of this progress will remain unused if the technologies are not

natural and difficult to use by users (Cook, Augusto, & Jakkula, 2007, p. 12;13).

2.1.5 Privacy and Security

Since AmI systems, in most cases, share, process and store personal data regard-

ing their users, privacy and security concerns are raised. At the sensor level, the sensor

reliability, handling errors and installation errors can create security risks. To ensure

security in AmI systems the designer should consider the combination of these risks

with the sensor network communication channel reliability and security. In regards the

privacy it differs regarding different users. In some cases privacy is more important

than the benefits of the system. Therefore privacy preferences should be available to

the user (Cook, Augusto, & Jakkula, 2007, p. 15).

2.1.6 AMI Applications

AmI systems, as shown in Figure 2.9, involve different devices of every-day use. As

mentioned previously, these devices could be considered as “Smart Devices” since

computing abilities have been added to them. A network interconnects these devices

while processing can be done in a centralized or distributed way. There are many AmI

applications in different fields. AmI systems are implemented in: Smart Homes; Hos-

pitals; Transportations; Workplaces; Education etc.

-10-

Figure 2.9: AmI Devices and users

 Smart Homes

Smart Homes are usually equipped with sensors, actuators and processing devices.

Mainly the sensors and the actuators are implemented into electro domestics (e.g.

oven, refrigerator etc.), household items (e.g. beds, taps etc.) and temperature han-

dling devices (e.g. radiators and air conditioners). These sensors collect data from the

resident’s activities, these data are mined and patterns are identified. Afterward, with

the use of actuators, the system decides to act in order to facilitate the residents and

benefit them in many ways. The benefits can be in: comfort (e.g. adjusting the tem-

perature automatically), economy (e.g. reduce power consumption by controlling the

lights or other unused devices), safety (e.g. after observing the lifestyle of the resi-

dents, the systems could detect possible harmful situations) (Cook, Augusto, & Jakkula,

2007, p. 16).

A remarkable example of a smart home is The Gator Tech Smart House, shown in

Figure 2.10 . This project was developed by the University of Florida in the Mobile and

Pervasive Computing Research directed by Dr. Sumi Helal.

 -11-

Figure 2.10: THE Gator Tech Smart House

 This house contains many interesting features. Some of these are:

 Smart Mailbox: The mailbox senses the arrival and alerts the resident

 Smart Front Door: A Front door that facilitate keyless entry using RFID

technology. The front door is also equipped with a microphone, a Camera,

an LCD display and an automatic door opener.

 Smart Floor: The floor senses the position of each habitant. The developers

are also developing a feature to be able to detect if a habitant falls and re-

port it to the emergency services.

 Smart Plugs: As shown in Figure 2.11 the system detects if a specific plug, of

an electrical appliance, is connected in the power network using RFID

technology.

A more detailed presentation of Gator Tech Smart House is provided by Helal et al

(Helal, Mann, El-Zabadani, King, Kaddoura, & Jansen, 2005). Regarding the Smart

Home there are also other examples available like: MavHome1, iDorm2, Aware Home3,

Domus Lab, etc.

1
 MavHome: http://ailab.wsu.edu/mavhome/

2
 iDorm: http://cswww.essex.ac.uk/iieg/idorm.htm

3
Aware Home: http://awarehome.imtc.gatech.edu/

http://ailab.wsu.edu/mavhome/
http://cswww.essex.ac.uk/iieg/idorm.htm
http://awarehome.imtc.gatech.edu/

-12-

Figure 2.11: Smart Plugs

Transportations

Since a significant part of people’s lives is spent traveling, AmI research is focused

both in transportation’s infrastructure management and in improving the user’s expe-

rience. Train stations, airports, busses, cars could be equipped with sensors and pro-

vide information about how the system operates and how it is performing. These data

could be processed in order to apply preventive actions regarding security and in-

crease the experience of people using the system more effectively (Cook, Augusto, &

Jakkula, 2007, p. 21). These AmI systems could use data from surveillance cameras or

GPS systems and exploit the spatial information in order to assist the user and increase

security. Intelligence systems can be also implemented in buses, cars, etc. to improve

the user experience or even to increase safety.

An early example of an automatic system is the Electronic Stability Program (ESP).

This system is already implemented in modern cars in order to assist the driver in diffi-

cult situations (e.g. executing tricky maneuvers).

 -13-

Figure 2.12: ESP Sensors

As shown in Figure 2.12 the electronic stability control systems monitors each

wheel’s speed, the angle of the steering wheel, and the spatial acceleration using an

accelerometer. The data provided by these sensors are processed and the system acts

by braking separately the required wheel. In details the steering angle sensor provides

information about the intentions of the driver and the desired direction. Afterwards

the accelerometer in combination with the wheel speed sensors provides information

about where the car is actually going. If the car is not responding to the driver’s inten-

tions then the system brakes separately the required wheel in order to bring the car in

the desired trajectory.

A more advanced and intelligent system should be able to process more parame-

ters like the driver’s health information, the car’s condition, location (e.g. GPS) and the

environmental conditions. A research of such a system that deals with the previously

mentioned parameters is In-Vehicle Ambient Intelligent Transport System (I-VAITs)

(Rakotonirainy & Tay, 2004). Research of an AmI system, in order to support in the

management in the transport infrastructure is presented by De Amicis et al (De Amicis,

Conti, Piffer, & Prandi, 2011). The architecture of such a system is shown in Figure

2.13. Another similar system is also implemented by the Organization of Urban Trans-

portation of Thessaloniki. This system implements GPS technology in buses and their

position, in combination with other data, is collected (using GPRS) and processed. The

data retrieved are used to assist in the management of the system and also to facilitate

-14-

individuals using the urban transport (e.g. showing the estimated time for the bus ar-

rival).

Figure 2.13: Architecture of an AmI system which supports management in transportation
infrastructure

Education

AmI systems can improve the learning experience of students. Such systems in-

clude interactive computer interfaces which adapt according to the students and the

studying material and additionally providing optic – acoustic material (i.e. video

sound). Figure 2.14 indicates an interactive board. Many research projects have fo-

cused in this direction like: the Georgia Tech Classroom 2000, the intelligent classroom

at Northwestern University etc. (Cook, Augusto, & Jakkula, 2007, p. 22).

 -15-

Figure 2.14: Interactive board

2.2 Wireless Sensor Networks

The use of sensors in environments, structures, industry etc. provides useful in-

formation. These sensors provide data about physical quantities. In most of the cases

these data need to be transferred in a safe and cost efficient way. Wired networks (i.e.

cable or fiber optics) provide this type of connection but there are many disadvantages

in using them. The main disadvantages are high installation and long term mainten-

ance cost, breakage and connector failures. The installation cost could limit the num-

ber of sensors placed and reduce the quantity of information retrieved. Wireless sen-

sor networks can eliminate these costs providing easier installation. Usually sensor

networks are scalable; have low energy consumption; provide fast data acquisition; are

reliable and accurate; and have low cost both for acquisition, installation and mainten-

ance (Wilson, 2005, p. 439).

A generic view of many sensor networks interconnected with other networks is

shown in Figure 2.15, (Wilson, 2005). Most of the existing applications include inter-

connection with other networks (e.g. internet) since the information, provided by sen-

sor networks is needed to be accessed from different locations.

-16-

Figure 2.15: Sensor Networks Interconnected

Figure 2.16 indicates an example of a single sensor network. Often there are also

actuators involved in sensor networks to be able to control devices included in the

network.

Figure 2.16: Example of a Sensor and Actuator Network

 -17-

2.2.1 Wireless Sensor Nodes

Figure 2.17 indicates the block diagram of a wireless sensor node. An actual pic-

ture of a Zigbee wireless sensor node is shown in Figure 2.18.

Figure 2.18: ZigBee Sensor node

The signal conditioning block contains electronic circuits which are responsible for

transforming the output of the sensor (i.e. resistance, capacitance, voltage, current

etc.) into an analog signal that meets the requirements of the next stage circuits. The

sensor signal conditioning block can be programmed or replaced according to the sen-

sor used. In case there are multiple sensors the analog signals retrieved are multip-

lexed. Afterward the cumulative analog signal is converted into a digital signal, using

an analog to digital converter, and it is then processed by the microprocessor or even

stored. The microprocessor is responsible for: managing the data collection from the

sensors (e.g. transmit or store the data), performing power management functions,

Sensor Inputs

Sensor Signal
Conditioning

Multiplexer,
Amplifier

Power (Battery)

8-bit low power
microcontroller

A/D converter

Radio Frequency
(RF) transceiver

Memory for
sensor logging

Antenna

Figure 2.17: Sensor Node Block diagram

-18-

interfacing the sensor data to the physical radio layer, and managing the radio network

protocol (Wilson, 2005, p. 440).

2.2.2 Sensors

Electronic sensors are devices which convert physical quantities into electrical sig-

nals (voltage or current). There are different kinds of sensors which sense tempera-

ture, humidity, pressure, light, radiation, smoke, movement etc. A brief description

about sensors and their outputs is shown in Table 2.1 provided by (Weber, Vickery, &

OECD, 2009, p. 8) .

Table 2.1: TYPES of Sensors and their outputs

Physical Property Sensor Output

Temperature Thermocouple Voltage

 Silicon Voltage/Current

 Resistance temperature detector
(RTD)

Resistance

 Thermistor Resistance

Force/Pressure Strain Gauge Resistance

 Piezoelectric Voltage

Acceleration Accelerometer Capacitance

Flow Transducer Voltage

 Transmitter Voltage/Current

Position Linear Variable Differential Transfor-
mers (LVDT)

AC Voltage

Light Intensity Photodiode Current

2.2.3 Network Topologies

Networks are installed in different environments, with different economic consid-

erations and Quality of Service (QoS). Due to this diversity several basic network to-

pologies have been developed. These basic topologies are shown in Figure 2.19 (LEWIS

& Grant, 2004, p. 2).

 -19-

Figure 2.19: Basic Network Topologies

There are also hybrid combinations of these basic topologies. Sensor networks use

these topologies depending on the IEEE standard used. In general networks are de-

fined according to their coverage. Therefore the most commonly known are Personal

Area Networks (PAN), Local Area Networks (LAN) and Wide Area Networks (WAN).

2.2.4 OSI Model

The simplified Open Systems Interconnection (OSI) model consists of five layers,

the application, transport, network, data link, and physical layer. Figure 2.20 indicates

the hierarchy of these layers with the application layer on top and the physical layer in

the bottom. In this section the protocols used in these five layers will be briefly de-

scribed in regards to wireless sensor networks.

Transport Layer

Application Layer

 Network Layer

Data Link Layer

Physical Layer

Figure 2.20: Simplified OSI model

-20-

Application Layer

Even though many there are many applications proposed and defined, application

layer protocols remain largely unexplored. Three possible protocols are: Sensor Man-

agement Protocol (SMP), Task Assignment and Data Advertisement Protocol (TADAP),

and Sensor Query and Data Dissemination Protocol (SQDDP) (Raghavendra, Sivalingam,

& Znati, 2006, p. 25).

Sensor Management Protocol (SMP). SMP is used by system administrators in order

to interact with sensor networks. Usually the nodes included in sensor networks do

not have global identification. For this reason, SMP access the nodes using attribute-

based naming (e.g. “the areas where the temperature is higher than 30oC” is a more

common query than “the temperature read by a certain node”) and location-based

addressing (e.g. “the temperature in the basement” rather than “the temperature in a

certain node”).

SMP is used to perform the following tasks (Raghavendra, Sivalingam, & Znati,

2006, p. 26):

 Defines the rules for data aggregation, attribute-based naming

and clustering to the sensor nodes,

 Exchanging data related to the location finding algorithms,

 Time synchronization of the sensor nodes,

 Turning Sensor nodes on and off,

 Querying the sensor network configuration and the status of

the nodes, and re-configuring the nodes

 Authentication, key distribution and security in data communi-

cations.

 Task Assignment and Data Advertisement Protocol: The users send their interest

about a certain attribute, a phenomenon or an event to a sensor node, a subset of

nodes or to the entire sensor network. This protocol is used by the nodes in order to

advertise their available data to the users and the users query the data they are inter-

ested in (Raghavendra, Sivalingam, & Znati, 2006, p. 26).

Sensor Query and Data Dissemination Protocol: This protocol provides to the user

the interfaces to perform queries respond to queries and collect the incoming data

(Raghavendra, Sivalingam, & Znati, 2006, p. 26).

 -21-

Transport Layer

The main objectives of the transport layer are: to bridge application and network

layers by application multiplexing and demultiplexing; to provide data delivery be-

tween the source and the sink providing error control proportional to the require-

ments of the application layer; and regulate the ingress traffic on the network by im-

plementing flow and congestion control mechanisms (Raghavendra, Sivalingam, &

Znati, 2006, p. 27). These mechanisms must be modified in order to cover the unique

characteristics of the WSN. Since there are hardware and power constrains it is difficult

to use the same flow and congestion control mechanisms used by other protocols (e.g.

TCP). The development of a transport protocol for WSN is also influenced by the fact

that WSN are deployed in specific sensing applications, sensors and controlling actua-

tors, in many sectors like health, environment, military etc. Depending on the applica-

tion the congestion control and the security mechanism may differ (Raghavendra,

Sivalingam, & Znati, 2006, p. 27;28).

To fulfill the main objectives, a transport control protocol for WSN must provide

(Raghavendra, Sivalingam, & Znati, 2006, p. 28):

 Reliable Transport: Assuring the proper function of the sensor network,

 Congestion Control: This is related to reliable transport since packet loss can

affect the efficiency of the network and the available resources (e.g. power)

 Self Configuration: These protocols must be adaptive to dynamic topologies

caused by node failure, temporary power down, mobility, etc.

 Energy awareness: The main objectives (e.g. congestion control) of the proto-

col must be achieved by consuming the minimum possible energy.

 Biased Implementation: The algorithms must run on the sink with minimum

functionality to the sensor node since there are more available resources (i.e.

power, processing power) to the sink in comparison to the sensor node.

 Constrained Addressing/Routing: It is preferable to have attribute-based nam-

ing and data-centric routing.

In order to have data integrity and retrieve reliable information from the sensors

there is the need for a reliable connection between the sink and the physical event (i.e.

the sensor). Therefore there is the need for retransmissions and acknowledgment me-

chanisms. Since the sensors operate on batteries, negative acknowledgements would

be preferable because the energy consumed would be minimal. The transport protocol

should be energy aware.

-22-

There are many transport control protocols developed for sensor networks. Some

of them are: Congestion Detection and Avoidance (CODA), Event-to-Sink Reliable

Transport (ESRT), Reliable Multi-Segment Transport (RMST), Pump Slowly Fetch Quick-

ly (PSFQ), GARUDA, Tiny TCP/IP, Sensor TCP(STCP), SenTCP, Trickle, FUSION, Asymme-

tric and Reliable Transport (ART), Congestion Control and Fairness (CCF), Priority-based

Congestion Control Protocol (PCCP), etc. A classification and description of these pro-

tocols is provided by Rahman et al. (Rahman, El Saddik, & Gueaieb, 2008).

Network Layer

In general, the network layer is mainly responsible for routing the packets choos-

ing the route based on the routing algorithms. In sensor networks the routing protocol

should be data-centric, this requires attribute-based naming. In the attribute based

naming the user requests an attribute of a phenomenon, rather than querying and in-

dividual node. In a data-centric protocol data aggregation is important. Data aggrega-

tion could solve the overlap problems. An example of data aggregation is shown in Fig-

ure 2.21. In this example sensor node E aggregates the data from sensor node A, B and

sensor node F from sensor node C, D. Afterwards the sensor node G aggregate the da-

ta aggregation of sensor node E and F. Last the data aggregation is sent to the sink. Da-

ta aggregation should be performed carefully because of the specifics of the data (e.g.

the location of the sensor node or the type of data sent) (Raghavendra, Sivalingam, &

Znati, 2006, p. 33). The network layer should also provide interconnection with other

networks (e.g. internet). The sinks could be used as gateways for the sensor nodes.

B

C

D F

E

G

Sink

A

Figure 2.21: Example of Data Aggregation

 -23-

Some of the principles when developing a routing protocol in wireless sensor net-

works are: power efficiency, data aggregation, data-centric networks, and interconnec-

tion with other networks. An example, shown in Figure 2.22, was provided by Ragha-

vendra et al 2006 p,35 , this example helps describing the different approaches in or-

der to choose a route in case there are more than one. The possible routes are shown

in Table 2.2.

Table 2.2 Possible routes between the sink and a node T

Possible Routes Description

 Route1 Sink-A-B-T, total PA=4, total a=3

 Route2 Sink-A-B-C-T, total PA=6, total a=6

 Route3 Sink-D-T, total PA=3, total a=4

 Route4 Sink-E-F-T, total PA=5, total a=6

PA is the available power, ai is the energy consumed to transmit a data packet in link i

Figure 2.22: Route Selection example

Some approaches when choosing a route are (Raghavendra, Sivalingam, & Znati,

2006, p. 35) :

 Maximum available power (PA) route: The preferable route is the one with

the maximum power available. The total PA is provided by the sum of the PA

of each node. In the previous example Route2 has the higher PA, but since in-

cludes all the nodes in Route1 plus node C, this is not the more power effi-

cient route because in C PA=2. Therefore Route2 is eliminated. The chosen

route is Route4 from the remaining 3 routes.

-24-

 Minimum energy (ME) route: The route with minimum energy consumption is

preferred. In Figure 2.22, Route1 is the route with minimum energy consumed

(i.e. the total a=3). In case there are two routes with the same minimal energy

consumption, the route with minimum number of hops will be chosen.

 Minimum Hop (MH) route. The route will the minimum number of hops is pre-

ferred. In the example Route3 will be selected.

There are many routing protocols in WSNs but most of them were not imple-

mented and a part of them are in the developing stage. These protocols could be clas-

sified based on many parameters (e.g. Network Structure, Protocol Operation, Packet

Destination etc.) (Dwivedi & Vyas, 2010, p. 31).

Network Structure

Regarding to the network structure the WSN protocols can be further classified in

(Dwivedi & Vyas, 2010, p. 31):

 Flat-based or Data Centric routing. Some examples in this category are: Di-

rected Diffusion, Minimum Cost Forwarding Algorithm, Coherent/No coherent

Processing, Sensor Protocols for Information via Negotiation (SPIN), Rumor

Routing, Stream Enable Routing etc.

 Hierarchical-based or Cluster based routing. Some examples are: Simple Hierar-

chical Routing Protocol, Low energy Adaptive Cluster Hierarchy, Power Efficient

Gathering in Sensor Information System, Self-Organizing Protocol, Geographic

Adaptive Fidelity etc.

 Location-based routing. Some examples are: Minimum Energy Communication

Network, Geographic Adaptive Fidelity, Geographic and Energy Aware Routing

etc.

Protocol Operation

Based on the protocol operation the following classification can be done (Dwivedi

& Vyas, 2010, p. 32): Multipath-based routing, Query-based routing, Negotiation-

based routing, QoS-based routing, Non-coherent & Coherent data-processing based

routing etc..

Packet Destination

In regards to the packet destination the routing protocols can be classified as fol-

lows (Dwivedi & Vyas, 2010, p. 32): Gossiping and agent-based unicast forwarding,

Energy-efficient unicast, Broadcast and multicast, Geographic routing, Mobile nodes.

 -25-

Data Link Layer

The Data Link Layer receives a data stream from the network layer and is respon-

sible for transmitting these data to the next hop. In this layer the data is divided into

frames and a checksum is computed. The checksum is also computed by the receiver

and if it does not correspond to the previous an error has occurred and the receiver

sends an error report.

The Medium Access Control (MAC) layer is a sub layer of the Data Link Layer (DLL).

Problems in medium access are influenced by attributes like Energy efficiency, Collision

Avoidance, Scalability, Channel Utilization, Latency, Throughput and Fairness (Roy &

Sarma, 2010, p. 2). A MAC protocol for WSNs must be able to manage power conserva-

tion, mobility and failure recovery strategies. Since most of the nodes operate on bat-

teries, energy efficiency is a crucial factor in WSNs. MAC protocols must minimize the

energy consumption due to radio operations (i.e. send receive and sense the channel)

to the sensor nodes. Another fundamental task of a MAC protocol is to avoid collisions

between interfering nodes transmitting in the same time. Therefore multiple access

techniques are used. Some examples of these techniques are Time Division Multiple

Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple

Access (CDMA), Carrier Sense Multiple Access (CSMA), Multiple Access with Collision

Avoidance (MACA), etc. An interesting classification, shown in Figure 2.23, was pro-

vided by CONET in 2009 in their report about WSN standards.

-26-

Figure 2.23: MAC Classification

A qualitative overview of MAC protocols is shown in Table 2.3 (Raghavendra,

Sivalingam, & Znati, 2006, p. 38)

Table 2.3: Qualitative overview of MAC protocols

MAC Protocol Channel Access Features and Advantages

SMACS Fixed allocation of duplex
time slots at fixed fre-
quency

 Exploit large available
bandwidth compared to sensor
data rates.

 Random wake up during
setup and turning radio off
while idle.

Hybrid TDMA/FDMA Centralized frequency and
time division

 Optimum number of chan-
nels for minimum system ener-
gy.
 Hardware based approach
for system energy minimization.

CSMA based Contention based random
access

 Application phase shift and
pre-transmit delay.
 Constant listening time for
energy efficiency.

Physical Layer

The physical layer consist the basic transmission technologies of the network. The

data or the packets are sent in the physical medium (i.e. air). In this layer many para-

 -27-

meters are defined (e.g. frequency selection, modulation/demodulation schemes,). In

regards to the frequency selection, in the frequency spectrum, different frequency

bands are allocated to different users (e.g. cellular phone communications, TV broad-

casting, military communications etc.) according to their license. Bands which could be

used without a license are the ISM (Industrial, Scientific, and Medicine) bands. The ISM

frequency bands defined by the FCC and the transmission power limits are shown in

Table 2.4.

Table 2.4: ISM Bands and transmission power limits

ISM Bands Examples Power Limit (Watts)

902 - 928 MHz Cordless Phones 1W

 Microwave Ovens 750W

 Industrial Heaters 100W

 Military Radar 1000kW

2.4 - 2.4835 GHz Bluetooth 100mW

 Wi-Fi 802.11b/g 1W

 Microwave Ovens 900W

5 GHz Wi-Fi 802.11a/n

5.15 - 5.25 GHz 200mW

5.25 - 5.35 GHz 1W

5.47 - 5.725 GHz 1W

5.725 - 5.825 GHz 4W

60GHz 57 - 64 GHz

The modulation transforms the given signal, which transfers the data, in a high

frequency signal using a carrier frequency. There are many available modulation tech-

niques. Some digital modulation techniques are: Frequency Shift Keying (FSK), Ampli-

tude Shift Keying (ASK) and Phase Shift Keying (PSK).

There are many difficulties related to the radio link characteristics (e.g. Link

asymmetry, non-isotropic connectivity etc.), and to propagation phenomena (e.g. ref-

lection, diffraction, scattering), etc.

-28-

2.2.5 Standards

Wireless Local Area Networks (WLAN) and Wireless Personal Area Networks

(WPAN) are respectively based on the IEEE 802.11 and IEEE 802.15 standard families.

The 802.11 based standards offer high data rates in the order of tens/hundreds Mbps

and ranges in the order of tens/hundreds of meters. On the other hand the 802.15

based standards provide data rates in the order of hundreds Kbps up to several Mbps

with ranges from few meters up to hundreds of meters. In order to provide high data

rates and range the 802.11 based standards have higher energy consumption (Christin,

Mogre, & Hollick, 2010, p. 98). Figure 2.24 indicates the 802 protocols in comparison

to their range and data rate. In wireless sensor networks the sensor nodes are either

powered by cables or batteries. In case the sensor nodes are powered with cables the

802.11 based standards could be exploited providing the previously mentioned advan-

tages. In case the nodes are powered by batteries the energy must be used conserva-

tively in order to avoid the frequent battery replacement/recharging. Therefore in

these cases the use of the 802.15 based standards is more preferable, and specifically

the 802.15.1-2 and 802.15.4 standard.

Figure 2.24: 802 Protocols Range and Data Rate

 -29-

IEEE 802.15.1 Based Standards

The IEEE 802.15.1 standard also known as Bluetooth v1.0 could be classified in be-

tween the 802.11 and 802.15.4 regarding the energy consumption and data rates.

Therefore this standard is partially suited for applications which require high data rates

and strong real time requirements (e.g. factory automations) (Christin, Mogre, &

Hollick, 2010, p. 99). The operation frequencies and the RF Channels in each re-

gion/country are shown in Table 2.5.

Table 2.5: Bluetooth, OPERATING frequency bands

Geography Regulatory Range RF Channels

USA 2.400-2.4835 GHz f=2402+k MHz, k=0,…,78

Europe (except Spain and France) 2.400-2.4835 GHz f=2402+k MHz, k=0,…,78

Spain 2.445-2.475 GHz f=2449+k MHz, k=0,…,22

France 2.4465-2.4835 GHz f=2454+k MHz, k=0,…,22

Japan 2.471-2.497 GHz f=2473+k MHz, k=0,…22

Bluetooth v1.0 uses Gaussian Frequency-Shift Keying (GFSK) modulation and uses

a radio technology called Frequency-Hopping Spread Spectrum. In USA and Europe

(except France and Spain) Bluetooth uses 79 bands of 1MHz each from 2.400 to 2.4835

GHz (Bluetooth Specification Version 1.0A, Part A : Radio Specification, 1999). Blu-

etooth is packet based, has a star topology and supports up to seven nodes communi-

cation with a single base station. Even though some companies have implemented

Bluetooth in some wireless sensor applications, they have not met with wide accep-

tance due to limitations. Some limitations of Bluetooth are (Wilson, 2005, p. 443):

 Relatively high power for a short transmission range

 Nodes take long time to synchronize to network when returning from sleep

mode. This increases the average system power.

 Low number of nodes per network (<=7)

 Medium access control (MAC) layer is overly complex when compared to

that required for wireless sensor applications.

IEEE 802.15.4 Based Standards

The 802.15.4 based standards have a lower data rates and energy consumption in

comparison to Bluetooth. This standard is suitable for applications which have infre-

quent exchanges of small packets and energy consumption is an important issue

(Christin, Mogre, & Hollick, 2010, p. 100). The physical layer in this standard operates

-30-

in the 2.4 GHz frequency band as well as in the 868 MHz (Europe) and 915 MHz (North

America) bands. The 2.4 GHz band is divided in 16 channels with a 250kbps maximum

data rate and a 5 MHz gasp between the channels. In the 915 MHz band there are 10

channels with a 40 Kbps each with 2 MHz gasp between the channels. In the 868 MHZ

band there is a single channel with a 20 Kbps data rate (Christin, Mogre, & Hollick,

2010, p. 100). The previously mentioned parameters are shown in Figure 2.25.

 Figure 2.25: IEEE 802.15.4 channel Structure

The 802.15.4 standard specifies the following four physical layers (IEEE Computer

Society, 2006) :

 868/915 MHz direct sequence spread spectrum (DSSS) PHY employing binary
phase-shift keying (BPSK) modulation

 868/915 MHz DSSS PHY employing offset quadrature phase-shift keying (O-
QPSK) modulation

 868/915 MHz parallel sequence spread spectrum (PSSS) PHY employing BPSK
and amplitude shift keying (ASK) modulation

 2450 MHz DSSS PHY employing offset quadrature phase shift keying (O-QPSK)
modulation

Table 2.6: 802.15.4 PHY Data and Spreading Parameters

 Frequency
Band

Data Parameters Spreading Parameters

 Bit Rate
(Kbps)

Symbol Rate
(Ksymbols/s)

Symbols Chip Rate
(Mchips/s)

Modulation

868 MHz 868.0-868.6
MHz

20 20 binary 0.3 BPSK

915 MHz 902.0 – 928.0
MHz

40 40 binary 0.6 BPSK

2.4 GHz 2.4 – 2.4835
GHz

250 62.5 16-ary
ortho-
gonal

2.0 O-QPSK

 -31-

Table 2.6 provides a more detailed description of this standard. Some examples of
IEEE 802.15.4 based standards are: ZigBee, ZigBee Pro, 802.15.4e, WirelessHART,
ISA100.11a etc.

ZigBee

ZigBee was developed by the ZigBee Alliance and was originally designed for home

automation. ZigBee Pro was released in 2007 in order to cover the industrial automa-

tion’s requirements. ZigBee Pro provides frequency agility in order to scan the availa-

ble channels and choose the channel with less interference (Christin, Mogre, & Hollick,

2010, p. 105). The following paragraphs will describe the common parameters of Zig-

Bee and ZigBee Pro. ZigBee can be used in large deployments since it can support

hundreds of devices. The topologies used are star, tree and mesh. This standard is

based in two device classes including Full-Function Device (FFD) and Reduced-Function

Device (RFD). This standard proposes three different types of devices: ZigBee coordina-

tor, ZigBee router and ZigBee end devices shown in Figure 2.26 (Christin, Mogre, &

Hollick, 2010, p. 106).

 Figure 2.26: ZigBee network elements

As shown in Figure 2.26 the end devices can be FFD or RFD. FFD with routing ele-

ments are responsible for linking group of devices and supporting multi hop communi-

cation. A single FFD manages the network by supervising its formation, storing infor-

mation and bridging it with other ZigBee networks (Christin, Mogre, & Hollick, 2010, p.

105). The ZigBee stack is based on the physical, DLL and MAC layer of the IEEE 802.15.4

standard, shown in Figure 2.27 (Wilson, 2005, p. 444). The Network and Application

layers are specified by the ZigBee Alliance. Initially a common frequency for all the de-

-32-

vices is selected, after this data transfers between the ZigBee devices are possible. Zig-

Bee networks provide two types of data transmission mechanisms, with or without

beacon.

 Figure 2.27: ZigBee Stack

With beacon: In this mode the FFD manages the communication from the end de-

vices to the FFD by sending a first beacon to synchronize the sleeping phases of all the

RFDs and announcing the superframe structure. The first part of the superframe is

slotted and slotted CSMA/CA is used to access the channel, the second part is com-

posed of slots which are reserved by the network coordinator for specific nodes. In-

itially the FFD announces the data transfer in the beacon to transfer data from FFD to

RFD. Afterwards the RFD that has data to transmit sends a request to the FFD to begin

transmission. In case the communication is between two FFD the mechanism is similar

since one FFD acts as RFD (Christin, Mogre, & Hollick, 2010, p. 106).

Without beacon: In this mode there is no beacon and superframe transmitted. The

channel is accessed using unslotted CSMA/CA. Every FFD is always active to receive

data from the end devices. The RFD sends a request to the FFD to receive data from

the FFD. Additionally the MAC layer partially supports the admission process of new

devices. This process starts with the scan procedure. During this procedure the RFDs

listen for beacon requests send by the FFD. To complete the admission process, re-

quest and acceptance notifications are exchanged at the MAC layer. The acceptance

 -33-

depends on the security mechanisms supported by upper layers. In case of acceptance

the new device receives a 16bit address (Christin, Mogre, & Hollick, 2010, p. 107).

The network layer is responsible for network formation, address assignment and

routing in the ZigBee network. This layer initiates the network discovery mechanism to

detect other ZigBee networks. The application layer select the network, the network

layer select a parent to attach the joining device and assigns to the MAC layer to begin

the association. The network layer provides a 16bit address and employs the Ad hoc

On Demand Distance Vector (AODV) routing algorithm. This algorithm is used in route

discovery in mesh networks (Christin, Mogre, & Hollick, 2010, p. 107).

The application layer is composed of 240 Application Objects (APO). The APOs are

software units controlling dedicated device hardware and are distributed over the

network devices. Each APO consist a set of variables and provides the ability to set,

read, or report changes in these values. An APO local number exceeds to the device

address and it is used to access these functions. There are also applications profiles

which define formats and protocols which provide intra APO communication (Christin,

Mogre, & Hollick, 2010, p. 107).

2.2.6 Wireless Sensor Network Applications

There are many WSN applications in different sectors like industrial automations,

automotive, home applications, agriculture, military, health, etc. Figure 2.28 indicates

and example where sensor nodes could be deployed in a field where corps (e.g.

grapes) are developing. These sensor nodes could sense temperature, humidity,

ground humidity etc. and form a wireless sensor network in a mesh topology. After-

wards the data is aggregated and send to the manager using a satellite link or a

GPRS/3G connection. The previous scenario could assist in the agriculture increasing

the production effectiveness.

Another scenario is shown in Figure 2.29 where a sensor network is deployed in a

forest in order to be able to detect fire in specific areas and prevent major forest de-

structions.

-34-

Figure 2.28: WSN in agriculture

Figure 2.29: WSN in a forest

 -35-

Figure 2.30: WSAN in a smart home application

Wireless Sensor and Actuator Networks (WSAN) can be deployed in smart home

applications, shown in Figure 2.30. In home applications WSAN can monitor the energy

consumption, temperature, motion etc. Additionally the actuators can provide to the

manager/user the remote control (e.g. ON-OFF) off different devices.

2.3 Service Oriented Architecture

Service Oriented Architecture is closely related to AmI systems since it contributes

in the reuse of available functions and the remote control between Enterprises. SOA is

implemented by web services. In this section Web Services and the related protocols

will be presented.

2.3.1 Overview

A service oriented architecture is an information technology which the applica-

tions use the services available in the network (e.g. some applications use the World

Wide Web service). The implementation of a service-oriented architecture includes

developing applications which rely on services and make the available applications ser-

vices, to be used by other applications (Ort, 2005, p. 3). A service provides a function,

in most cases a business function. SOA is an approach that connects applications and

-36-

provides intercommunication between them. The service oriented architectures have

been used for years. SOA differs from other architectures because of the loose rela-

tionship between the service and the client. This loose relationship means that the

client is independent of the service. The client communicates with the service using a

well defined interface and the service performs the processing. In case the service im-

plementation changes, the client will communicate with it in the same way as before.

This relationship makes services document-oriented.

 A document-oriented service accepts a document as input, as opposed
to something more granular like a numeric value or Java object. The client
does not know or care what business function in the service will process the
document. It's up to the service to determine what business function (or
functions) to apply based on the content of the document

(Ort, 2005)

The main reasons for using SOA based approaches are (Ort, 2005, p. 4;5;6):

 Reusability: SOA allows the reuse of existing assets in this way new services
can be created by existing applications.

 Interoperability: In SOA users and services can interact between them even
though they may run on different platforms.

 Scalability: These services are more scalable since the user and the service are
loosely coupled.

 Flexibility: SOA applications are flexible and easy to evolve with changing re-
quirements.

 Cost Efficiency.

SOA uses the find-bind-execute paradigm shown in Figure 2.31. In this paradigm the
Service Providers register their services in the registry. The Service Consumer searches
the registry to find services that match specific criteria. If the registry has such a ser-
vice, it provides to the consumer a contact and an endpoint address for that specific

Service Consumer

Service Provider

Registry

Contact

Bind and Invoke

Bind Register

Figure 2.31: SOA find-bind-execute paradigm

 -37-

service (Mahmoud, 2005)4. Afterwards the consumer can bind and invoke the service
from the provider.

2.3.2 Web Services

A Web Service is a software system which facilitates the connection between two

electronic devices over a network. This software system provides the means for inte-

roperability between different application software.

 A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described

in a machine-processable format (specifically WSDL). Other systems interact

with the Web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML serialization in con-

junction with other Web-related standards

W3C WORKING GROUP NOTE 11 FEBRUARY 2004

Web services and SOA are two different things, but web services are the standards-

based way to realize SOA (Mahmoud, 2005).

Figure 2.32: Web Services Architecture (by H. Voormann)

In comparison to the example in Figure 2.31, Figure 2.32 provides an example of

the architecture of a web service. In this example the service provider publish a service

using an XML document, called WSDL. This is a machine-processable document which

contains a description of the web service’s interface. The service requester typically

4 http://www.oracle.com/technetwork/articles/javase/soa-142870.html

http://www.oracle.com/technetwork/articles/javase/soa-142870.html

-38-

searches for the WSDL document of a service in a UDDI registry or ebXML regi-

stry/repository.

2.3.3 Related Protocols

As mentioned in the previous sections the main protocols used: to discover a ser-

vice is UDDI; to describe a service WSDL; for XML messaging SOAP, XML and XML-RPC;

to transport services the HTTP, FTP, SMTP, BEEP.

Figure 2.33 indicates the protocol stack in web services and the functionality and hie-

rarchy of each protocol. These protocols will be described in the following paragraphs.

eXtensible Markup Language (XML)

eXtensible Markup Language (XML) is a markup language which is widely used to

describe data being exchanged on the web. XML uses tags to describe the content of a

document. The XML tags identify the information in a document and also the structure

of the information. An example is shown in Figure 2.34 where the information “Bibli-

ography” is identified by XML. Additionally the structure of Bibliography is de-

scribed. The Bibliography contains one subordinate item described as book. The

book has four subordinate items identified as title, author, year and isbn.

<Bibliography>

<book>

<title>Understanding Digital Signal Processing</title>

<author>Richard G. Lyons</author>

<year>2010</year>

<isbn>0137027419</isbn>

</book>

</Bibliography>

 Figure 2.34: XML Example

Service Discovery Protocol UDDI

Service Description Protocol WSDL

XML Messaging Protocol SOAP, XML, XML-RPC

Service Transport Protocol HTTP, FTP, SMTP, BEEP

Figure 2.33: Web Services protocol Stack

 -39-

The information inside the tags has a meaning only if people associate a particular

meaning with a particular tag. When people agree on a meaning of a tag (e.g. <book>

is used to identify a book and <title> <author> <year> and <isbn> are used to identify

the title, author, year and ISBN respectively) and use those tags consistently, this pro-

vides a way to exchange data. An XML document is typically associated with a schema

which specifies which tags are allowed in the document, the structure of those tags,

and the rules about the tags (e.g. what type of data is expected in a tag). Valid XML

documents are well formed and conform to the associated schema. This makes it rela-

tively easy to process XML documents. Therefore XML has been generally used as a

data language in web services (Ort, 2005, p. 6;7).

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is an XML based protocol used to exchange

information in a distributed environment. SOAP provides a common format for mes-

sages when exchanging information. It defines the structure of the message and this

facilitates the applications to be able to interpret or send the data. As shown in Figure

2.35, a SOAP message is formed by a SOAP Envelope which is mandatory; a SOAP

Header which is optional; and a SOAP Body which is also mandatory. The SOAP

Envelope is used to specify an XML namespace and an encoding style. The former spe-

cifies the names that can be used in the SOAP message and the later identifies the data

types recognized by the SOAP message.

SOAP Envelope

SOAP Header

(Optional)

SOAP Body

(Required)

Data for request/response,
or SOAP Fault if an error
occurred.

Figure 2.35: Conceptual SOAP message structure

-40-

In most of the cases a SOAP message passes through intermediate nodes when travel-

ing from a client to a service. The intermediate nodes are applications which receive

and forward SOAP messages. These intermediate nodes can provide additional servic-

es (e.g. perform security operations or transform the data in the message.).

<SOAP-ENV: Envelope SOAP Envelope
xmlns:SOAP-ENV=

"http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:

encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>

<t:Transaction xmlns:t="some-URI">

SOAP-ENV:mustUnderstand="1">

</t:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetBookPrice xmlns:m="some-URI">

<title>My Life and Times</title>

<author>Felix Harrison</author>

</m: GetBookPrice>

</SOAP-ENV:Body>

</SOAP-Envelope>

Figure 2.36: An actual example of a SOAP message

The SOAP Header can be used to indicate additional processing in the intermediate

nodes, independent of the processing done at the final destination. Typically the

header contains information processed by infrastructure within a Web Server (e.g. a

SOAP header can be used to provide routing information for the SOAP message). Last

the SOAP Body contains the information (i.e. “payload”) intended for the final reci-

pient of the SOAP message. In case there is a problem the SOAP Body will contain error

information in the form of a SOAP Fault. A SOAP Fault is an XML structure which de-

scribes the error. An actual example of a SOAP Message is shown in Figure 2.36. This

example was provided by Ort in 2005 (Ort, 2005, p. 8) and is a SOAP message used to

retrieve the price of a book. The elements <SOAP-ENV: Envelope>, <SOAP-ENV: Head-

er> and <SOAP-ENV: Body> are used to markup the Envelope, Header and Body of the

message.

SOAP messages can be transported using communications protocols like HTTP or

SMTP. These messages are independent of the operating system or the platform. The

SOAP Body

SOAP Header

 -41-

main specifications of the World Wide Web Consortium (W3C) are SOAP 1.1 in May

2000 and SOAP 1.2 in April 2007. There are some differences between SOAP 1.1 and

1.2 and it is possible that a server that understands SOAP 1.1 may not be able to ac-

cept SOAP 1.2 messages.

Web Service Description Language (WSDL)

WSDL is a specification used to describe web services.

WSDL describes four critical pieces of data:

 Interface information describing all publicly available functions

 Data type information for all message requests and message responses

 Binding information about the transport protocol to be used

 Address information for locating the specified service

(Cerami, 2002, p. 103)

Conceptually, WSDL files represent a contract between the service requestor and the

service provider. WSDL is independent of the platform and programming language. By

using WSDL a client can locate a web service and invoke its available functions. WSDL is

a common language for describing web services and can provide a platform for the au-

tomatic integration of web services (Cerami, 2002, p. 103).

The WSDL is an XML-based language which consists of six major elements, shown in

Figure 2.37 (Cerami, 2002, p. 104): definitions, types, message, portType, binding and

service.

Figure 2.37: WSDL major elements

<definitions>: Root WSDL Element

 <types>: What data types will be transmitted?

<message>: What messages will be transmitted?

<portType>: What operations (functions) will be supported?

<binding>: How will the messages be transmitted on the wire?

 What SOAP specific details are there?

<service>: Where is the service located?

-42-

The <definitions> is the root element and contains the name of the web service, dec-

lares multiple namespaces, and contains all the service elements described. The

<types> element describes the data types used between the client and the server.

WSDL does not use only one specific typing system but by default the W3C XML Sche-

ma is used. The <message> element describes a single message, a request or a re-

sponse. It contains the message’s name and zero or more <part> elements which refer

on the message’s parameters or return values. The <portType> element combines

more than one message to form a complete operation (e.g. combines a request and a

response in a single request/response function. The <binding> element contains SOAP

specific information. Last the <service> element contains the address for invoking the

web service, usually a URL. Additionally there are also two utility elements the docu-

mentation and the import element. The former is use to provide human readable do-

cumentation and the later to import other WSDL documents or XML Schemas (Cerami,

2002, p. 104;105).

Even though, WSDL is a fundamental requirement for the implementation of web
services, there are some disadvantages. WSDL does not provide some information
such as:

 The provider of the service.
 The type of business that provides the service.
 Other Services available from the same provider.
 The quality of service that the provider offers.
 The cost for using the service (e.g. free or fee based)

The standard that provides this kind of information is UDDI (Endrei, et al., 2004, p.

125).Upon now the W2C has released three specifications of WSDL, the WSDL 1.1 in

March 2001, the WSDL 1.2 in June 2003, and WSDL 2.0 which was published as a W3C

recommendation in June 2007. The WSDL 1.1 and WSDL 2.0 have some significant dif-

ferences between them.

WSDL 2.0 has three specifications:

 Core, which explains the abstract interfaces independent of protocol and

encoding;

 Message Exchange Patterns (MEP) with predefined types of interactions;

and

 Bindings pertaining to SOAP and HTTP.

(Padmanabhuni, Chaudhari, Bharti, & Kumar, 2007)

 -43-

Universal Description Discovery and Integration (UDDI)

UDDI is an XML based mechanism used to list and locate web services. It is consi-

dered as a directory for storing information about web services. A UDDI registry man-

ages information about the service provider, service implementation, and service me-

tadata. Service providers can use UDDI to advertise the services they offer and service

consumers use UDDI to find the services that fulfill their requirements and retrieve the

services metadata in order to consume the service (OASIS). The interfaces of these

web services are described by WSDL. UDDI communicates using SOAP and uses proto-

cols like HTTP, DNS and XML. The UDDI specifications define a UDDI Schema and a UD-

DI API. The UDDI schema identifies the types of XML data structures of a service in the

registry. The API describes the SOAP messages used to publish or discover an entry in

the registry. A UDDI registry provides information such as the name of the service, a

brief description about what the service does, an address where the service can be ac-

cessed, and a description of the interface to access the service (Ort, 2005, p. 10).

A business can register three type of information in a UDDI registry (Chappell &

Jewell, 2002, p. 96;97):

 Contact information and identifiers about the company (e.g. business

name, address, unique identifiers like tax IDs). This can facilitate the service

consumers finding the registered web service based on the business identi-

fication.

 Information that describes the web service based on different taxonomies.

Allowing service consumers to find the web services based on categoriza-

tions (e.g. manufacturing business).

 Technical information which describes the supported functions and the be-

havior of the web service. This information provides also the location of the

web service.

2.3.4 Web Services in Java

Web services are designed to be language and platform neutral. To develop a web

service or an application that uses web services, platforms and programming languag-

es are needed. Java is a language that can be used in developing such services and ap-

-44-

plications. In present, the commonly used Java platforms in the development of web

services are: the Java 2 Enterprise Edition 1.4 (J2EE), the Java Enterprise Edition 5 (Java

EE 5), and the Java Enterprise Edition 6 (Java EE 6). These platforms consist of Java

technologies which are designed for use with XML, and conform to web services stan-

dards like SOAP, WSDL and UDDI.

The J2EE 1.4 was developed under the Java Specifications Request (JSR) 151 and

the final release was in November 2003. The Java EE 5, which is an evolution of J2EE

1.4, was developed under the JSR 244 with the final release in May 2006. Last the Java

EE 6 under the JSR 316 with the final release in December 2009. The specifications of

each platform are provided in the Java Community Process web site5.

Figure 2.38: Architecture and APIs of the J2EE 1.4

Figure 2.38, provided in the J2EE 1.4 Tutorial in 2007 by Armstrong et al p.60 Figure

1-7, indicates the architecture of the J2EE 1.4 platform. The new added APIs and speci-

fications, in comparison to the version 1.3, are illustrated in red.

5
 http://jcp.org/en/home/index

http://jcp.org/en/home/index

 -45-

Figure 2.39: Java EE 5 architecture diagram

Figure 2.39, provided by Sun Microsystems in the Java EE 5 specification in 2006 p.6

Figure EE.2-1, demonstrate the architecture of the Java platform EE 5. Again the new

added APIs and specifications are marked in dark grey in comparison to the others.

Respectively, Figure 2.40, provided by Sun Microsystems in the Java EE 6 specification

in 2009 p.22 Figure EE.2-1, illustrates the architecture of Java EE 6 and the APIs. As in

Figure 2.39, the new specifications are also marked in dark grey.

More detailed specifications about these platforms are provided by the Java Com-

munity Process web site (jcp.org) in the JSR 151, 244 and 316. In each platform specifi-

cation, detailed information and descriptions about each API or technology can be

found.

-46-

Figure 2.40: Java EE 6 architecture diagram

 -47-

3 Problem Definition

Initially, in this chapter, the Smart IHU project will be investigated and the existing

devices and applications will be presented and described. Even though the existing

project includes many pioneer ideas and innovative functionalities, there are still some

parts that need to be improved and problems to be solved. The next step is to detect,

these problems and requirements, and afterwards to address them in order to be able

to provide possible improvements and solutions. Last, there will be a presentation

about available hardware and software tools, that may solve these problems or im-

prove the existing system.

3.1 The Smart IHU Project

The Smart International Hellenic University (i.e. Smart IHU) is a research project in

the field of Information and Communications Technologies for sustainable growth and

energy efficiency. This project is based on the cooperation of the ICT and Energy de-

partments of the School of Science and Technologies of the International Hellenic Uni-

versity (IHU). The main objective of this research project is to transform IHU into a

“Smart” University with automated processes, enabling Smart Building Smart Grid

technologies, remote monitoring and management, energy efficiency, and providing

support for educational activities (IHU School of Science and Technology, 2010).

-48-

Figure 3.1: Smart IHU research directions

Figure 3.1, retrieved from the Research and Development web page of School of

Science and Technology regarding Smart IHU6, indicates the research directions of this

project. The main research directions include:

 The design and deployment of WSNs in order to monitor energy consump-

tion of the building.

 Integrating the wireless platforms using Semantic Web Services (WS).

 Designing energy aware algorithms to reduce energy consumption in WSNs.

 Developing algorithms to control, schedule and optimize power tasks of

smart appliances.

 Optimizing and evaluating the placement and range of RFID tags and read-

ers in the IHU library.

6
 http://rad.ihu.edu.gr/index.php?id=si

http://rad.ihu.edu.gr/index.php?id=si

 -49-

3.1.1 System Architecture

The Smart IHU is a complex system which incorporates various WSN technologies

and integration platforms.

Figure 3.2: Smart IHU System

Figure 3.2, provided in the Smart IHU presentation web page (IHU School of Science

and Technology, 2010), indicate the Smart IHU system. The main elements involved in

this system are: WiFi Network; ZigBee Sensors and Network; RFID tags and readers; PC

agent; Semantic Web Services Middleware for system integration; Smart Meters; Serv-

er; User Interface and PDA data presentation; Data Center for Green IT computations;

Gateways; Renewable Energy Sources (RES), mainly solar (IHU School of Science and

Technology, 2010).

The operational layers of the system are shown in Figure 3.3. Additionally this Fig-

ure indicates the technologies, the devices, and the operations, found in each layer.

-50-

Figure 3.3: Smart IHU operational layers, technologies and devices.

Figure 3.3 is found in the Smart IHU presentation web page (IHU School of Science

and Technology, 2010).

3.1.2 Devices

The scope of this sub section is to describe the devices used in the Smart IHU

project to monitor the energy consumption and environmental parameters. There are

different devices of different manufacturers. Specifically the manufacturers are: Plug-

wise, Prisma Electronics SA, OWL and CurrentCost.

Plugwise

Plugwise is a Dutch company which has developed and produced wireless systems

for energy management and appliance control since 2006. The company provides a

wide range of wireless devices but the main devices used in the Smart IHU project are:

the smart plugs, Circle and Circle+; and the Stick. The software that is used to receive

power measurement data and manage these data is called Source.

 -51-

Figure 3.4: Plugwise – power management components

The components of the power monitoring and management system developed and

produced by Plugwise are shown in Figure 3.4, provided by Plugwise7.

Circle and Circle+

The smart plugs, called Circle and Circle+, are the sensor nodes which measure

energy and switch appliances wirelessly. The relay, shown in Figure 3.5 provided by

Plugwise, facilitates the power control of the appliance connected in the Circle (i.e. the

appliance can be switched on or off using a computer). Circle is equipped with a stand-

by killer which powers off the device when it enters in standby mode. The user can res-

tart the device by unplugging and plugging back Circle.

Circle is equipped with a power supply unit which converts the Alternative Current

(AC), provided by the power grid, to Direct Current. DC is used to power the various

electronic circuits of Circle. Therefore the sensor nodes in a Plugwise WSN are po-

wered directly from the power grid. Circle+ is equipped with a real time clock and a

battery, shown in Figure 3.5, and periodically synchronizes time with other Circles.

When the network is formed the Circle+ can act as a regular Circle. Additionally a flash

memory is implemented with a storage capacity of 512Kbyte.

7
 http://www.plugwise.com

http://www.plugwise.com/

-52-

Relay

Power Supply
Unit

Battery

Clock

Energy Meter

Figure 3.5: Circle+ Electronic Components and Circuits

Zigbee Chip and Controller

Flash memory

Figure 3.6: Circle+ Zigbee circuit and Flash memory

In regards the wireless communication of these devices, both Circle and Circle+

have an integrated Zigbee Chip and Controller, shown in Figure 3.6. The standard used

is Zigbee Pro with a manufacturing specific profile but accessible with key to other non

Plugwise systems. Plugwise’s profile has a highly secure authentication using a 128 bit

AES encryption. Each device has its own unique MAC address and can be individually

identified. The transmission frequency varies from 2.4 to 2.4835GHz in 16 channels

with a nominal receiving sensitivity of -97dbm and a nominal transmission power of

3dbm. As shown in Figure 3.7 provided by Plugwise, the smart plugs can support a full

 -53-

dynamic MESH network where each module can act as a router. This network can easi-

ly be extended adding more smart plugs or other devices like Stealth8 etc.

Figure 3.7: Plugwise Mesh network

Both these devices operate in a supply voltage from 83V to 253Volts AC with a

50/60Hz frequency. The power dissipation of each device varies from 0.3 to 1.1Watts

(nominal 0.55Watt) under the following conditions: Input Voltage 230V AC; frequency

50Hz; ambient temperature 25oC. The maximum output current is 16Ampere when

cosphi=1. This means that the maximum output power of Circle and Circle+, when cos-

phi=1 and Vin=Vout=230V AC, is P=Voutmax * Ioutmax * cosphi = 230V*16A =

3680Watts. Therefore these devices cannot be used in high power devices like ovens

and boilers. The power measurement accuracy of Circle and Circle+ is 5% (when 230V,

50Hz, 23oC, output range: 1035-3680Watts) and 1% in a one hour cumulative data. In

regards the environmental conditions these devices can operate in a maximum tem-

perature of 60oC with a 95% RH maximum humidity.

Stick

The stick is a USB (A) stick which uses the same wireless standard with Circle. Stick

is a link between the Source (Plugwise Software) and the smart plugs (Circle). It is po-

8
 http://www.plugwise.com/idplugtype-f/stealth

http://www.plugwise.com/idplugtype-f/stealth

-54-

wered by the USB host (5V dc) and the nominal power consumption is 0.375Watt. Stick

is also has a unique MAC address.

Source

Source is the software used in the Plugwise system. This is software which facili-

tates the management and aggregation of the energy consumption data. Additionally

this software is capable to send On Off commands to the smart plugs and also able to

schedule this switching procedure. Each smart plug is initially paired, using its unique

MAC address, and afterwards named according to the device attached (e.g. Computer,

TV, etc.). Additionally, as shown in Figure 3.8, the devices can be accessed according

to their group, appliance, or the room placed.

Figure 3.8: Source user interface

The user interface indicates the current output power and provides a graphical re-

presentation (graph or bar chart) of the energy consumed in KWh. The results can be

filtered in certain time periods. By setting the cost for KWh Source can calculate also

the overall cost and additionally, according to the KWh consumed, Source can calcu-

late the corresponding CO2 emissions. All these data are stored in a database and can

be exported as CSV files for further processing.

 -55-

PrismaSense

PrismaSense is a developing platform of wireless intelligent sensors delivered by a

Greek electronic manufacturer named Prisma Electronics SA.

The main components of PrismaSense are shown in Figure 3.9 provided by Prisma9.

The hardware devices are the Quaxes and the Gateway. In the PrismaSense platform, a

server side software (open API) is included. This software is based on the windows

Communication Foundation Services Technology and is easy and flexible for applica-

tion development.

Quax MS

Quax MS, shown in Figure 3.10 provided by Prisma, is an intelligent multi-sensor

device and various sensors (e.g. thermometer, accelerometer etc.) and circuits can be

connected to it. Quax is based on a RISC microprocessor, with a very low power con-

sumption, digital inputs/outputs (which can be used for digital sensors), three serial

ports, and an Analog to Digital or D/A Converter (which can be used to handle analog

signals). This device has a wireless Zigbee transmitter implemented and mesh net-

works can be created between these modules.

9
 http://www.prismaelectronics.eu

Figure 3.9: PrismaSense components

http://www.prismaelectronics.eu/

-56-

Figure 3.10: Quax MS PRO

The main characteristics of Quax MS PRO are:

 Great power autonomy provided by two AA batteries,
 Up to 10mW Zigbee transmitter,
 PrismaWave (dynamic choice of the communications’ channel)
 Power awareness
 Real time clock synchronization
 Adjustment of the transmission power for range greater than 1Km

As an intelligent sensor node Quax MS Pro has an Operating System named ISOS

(Intelligent Sensors’ Operating System) developed by Prisma Electronics SA. Some fea-

tures of ISOS are:

 Task Scheduler
 Event Handler
 Frequency Agility
 Packaging Buffer
 Real Time Clock and Synchronization
 Measurement Simulation
 Safe Power Down Modes

The power supply module is software managed and can provide to the user the ability

for developing his own power management strategy.

These Quaxes offer a high transmission range, indoor up to 300meters and outdoor up

to 1.6Km. With an operating frequency in the 2.4GHz band using 12 Direct Sequence

Channels, the interface data rate can reach up to 115Kbps. The receiver sensitivity is -

100dBm and a 128bit AES encryption is used to provide secure communication.

Gateway

Prisma SA has developed different types of gateways. The main feature of these

gateways is the existence of two connection interfaces. The first is a Zigbee based

wireless interface which is used to connect the Gateway with the rest of the Zigbee

network created by the Quax nodes. The second can be a WiFi, Ethernet, GPRS, RS232,

 -57-

RS485, or Bluetooth interface. A Zigbee to WiFi gateway is shown in Figure 3.11

(Source: Prisma SA).

Figure 3.11: Zigbee to WiFi gateway

The gateway is the sink of the WSN and the data is aggregated through the first in-

terface. The second interface facilitates the transport of the aggregated data to the

various devices (e.g. PC, PDA etc.) where further processing will be performed.

Figure 3.12: PrismaSense System Example

An example of the PrismaSense System is shown in Figure 3.12, where the Quaxes

are the sensor nodes deployed in the physical environment creating a Zigbee network.

Afterwards the data will be aggregated to the gateway which is connected to various

devices (PCs, PDAs) providing this data to different users. Additionally the users can

send data to the Quaxes. Since there are digital outputs and Digital to Analog conver-

ters in the nodes, analog or digital signals can be generated in order to send data or to

control different actuators by using proper electronic circuits.

-58-

In a Zigbee to WiFi gateway, 802.11 b/g standards are implemented, in the WiFi in-

terface, providing the range and the data rate that are described in those standards.

The Zigbee interface has similar characteristics with the Quaxes, regarding the range,

operating frequency, authentication etc. This Gateway has an internal web server and

a storage capacity of 1.2 MB. A more detailed description is provided in the manual

provided by Prisma Electronics SA.

OWL

OWL is a company which provides power monitoring systems. The Plugwise sys-

tem can provide data about separate devices in an environment. Additionally there is a

maximum power limitation of the Circle device (maximum load 3680 Watts or 16 A).

Therefore these devices are not suitable for high load devices like electrical ovens, high

power air conditioners (in some cases even low power air conditioners can instantly

reach a peak of 16 A or more at the moment they start). The OWL power monitoring

platform provides data about the total power consumption of a building facilitating

large scale power monitoring.

Figure 3.13: OWL power monitoring system

Figure 3.13, provided by the OWL10 web site, indicates the basic components of the

OWL power monitoring system. The sensor is a current clamp which measures the

power. It is connected to the Sender Box which wirelessly, in the 433MHz band, sends

the data to the Remote monitor display in a 30 meter range. Additionally the data can

be forwarded wirelessly into a computer using a USB device, shown in Figure 3.14 pro-

10
 http://www.theowl.com/

http://www.theowl.com/

 -59-

vided by OWL’s web site. A software platform is provided in order to manage the pow-

er measurement data, energy consumption, cost, estimated CO2 emission, etc.

 Figure 3.14: OWL USB Connect

The installation of such a system is simple. A typical installation is shown in Figure

3.15, provided by the Smart IHU team.

Figure 3.15: OWL installed

The transmitter and the power monitoring display are battery powered. Both these

devices have low energy consumption and the battery lifetime can reach up to 2 years.

An important disadvantage, when using the USB receiver, is that the data transmitted

by the sender will be lost, at the time that the computer is powered off.

CurrentCost

CurrentCost is another company which provides power monitoring systems similar

to the OWL systems. These system is also used for large scale energy monitoring.

-60-

 Figure 3.16: CurrentCost System

Figure 3.16 indicates the basic components of the CurrentCost system, on the left side

the power monitoring receiver and display, and on the right the sensor (current clamp)

and transmitter.

The main difference with the OWL system is that this system is offered at a lower

price in comparison to OWL. The way the data is imported to the middleware used in

the Smart IHU project, is similar to the OWL system.

3.1.3 aWESoME Middleware

As presented in the previous section the in the Smart IHU project there are differ-

ent devices which are managed by different application platforms. These distributed

systems need to be managed by using the Service Oriented Architecture implementing

Web Services to facilitate the AmI implementation. Therefore the existence of a mid-

dleware to link these heterogeneous devices, which are mostly distributed, in a single

software application and providing operations as web services, is crucial.

In the Smart IHU project the middleware developed in 2010 by the Smart IHU

Team, is named aWESoME (a WEb Service MiddlewarE). This middleware was created

using the NetBeans IDE 6.9.1, based on the Java EE 5 platform and contain JAX-WS

based web services. As shown in Figure 3.17, provided by the Smart IHU team, aWE-

SoME integrates the application platforms of three different systems (Plugwise, Pris-

maSense and OWL). The aWESoME application is deployed in the Agent which is a web

server and web services are provided for each system. Therefore aWESoME provides

 -61-

three different web services: Plugwise Over the Web (POW) which facilitates acquiring

data about the power consumption and switching On or Off devices using the Plugwise

system; Prisma Web, where the PrismaSense system is provided as a Web Service re-

trieving data from the Quaxes; and Web OWL which also provides the functions and

operations of the OWL system as web services. To consume these web services, JAX-

WS web service clients are required. In present, such software applications, regarding

the Smart IHU project, are under development. Additionally user friendly GUIs can be

used to consume these web services. An example is iDEALISM, a GUI developed by the

smart IHU team. In order to develop such client applications the aWESoME application

must be deployed in an agent (web server) and afterwards the location (i.e. the path)

of the WSDL of each web service must be specified.

Figure 3.17: The existing topology of aWESoME

-62-

Plugwise Over Web

Plugwise Over the Web (POW) is a JAX-WS web service and contains various oper-

ations. These operations facilitate functions of a Plugwise system. To create these web

service, initially the Smart IHU team investigated the protocol used by Plugwise. The

operation of each function (e.g. Switch On/OFF, power measurement etc.) was investi-

gated and java software was developed in order to execute these operations. These

scripts were converted into operations of the web service and last packed in the aWE-

SoME project.

POW uses the USB device provided by Plugwise (Stick) and the data are trans-

ferred serially using the RxTxSerial library. Therefore the RxTxSerial.dll and

RxTxcomm.jar must be imported in the Agent’s (web server’s) JRE’s path when using a

Windows OS. The user must also define the Com port where the Stick is Located (e.g.

COM0, COM1 etc.). In case a Linux OS is used the RxTxSerial.so and RxTxcomm.jar

must be transferred in the JRE’s location and the port must be defined (e.g.

/dev/ttyUSB0)

PrismaWeb

PrismaWeb is web service which includes functions of the Prisma Sense system,

providing the ability to access data, initially collected by the Quaxes, from the Gate-

ways via WiFi. Initially the data were exported as Microsoft Excel documents. After-

wards the class ReadXL was developed in order to access the data in this Excel docu-

ment. The PrismaWeb web service was packed in the aWESoME platform.

WebOWL

The OWL platform is similar to the PrismaWeb platform since the data is accessed

by reading and registering data. In this case two open source programs, provided by

the OWL API, were used in order to retrieve the data and publish them as web servic-

es. The first was OWL Server, which is executed on the computer where the USB re-

ceiver is connected and connects the API with the transmitters and the sensors. The

second was ElectricOWL used to retrieve the data from OWL server using its URL and

presenting those data graphically (e.g. using Charts etc.).

 -63-

3.2 Power Consumption

The Smart IHU project consists of many devices installed inside the University.

Most of these devices are Plugwise Circle and Circle+ which monitor the energy con-

sumption of various devices (e.g. TV, Computers, etc.).

Future steps include the installation of additional sensors (e.g. motion, tempera-

ture, humidity etc.). In this way more data will be available making possible to the sys-

tem to act according to the required conditions.

Figure 3.18: Architecture of the Smart IHU System

Figure 3.18, provided by the IHU Labs, indicates the architecture of the Smart IHU

system. It is noticed that there are many hardware devices deployed in this environ-

ment. In combination these devices have certain energy consumption. The energy is

consumed in two sectors, first by the sensors (i.e. the combination of sensors and

transmitters) and second by the computers (i.e. gateways) where the data are col-

lected. In the OWL and CurrentCost power monitoring system and also the Prisma-

Sense, most of the devices are battery powered and as given by the manufacturers

these devices have a very low energy consumption (e.g. the battery lifetime of the

OWL devices may reach approximately 2 years). In the Plugwise system the power

-64-

needed by the devices could be considered low (e.g. the power dissipation for Circle

and Circle+ varies from 0.3 to 1.1 Watts, respectively for the Stick is 0.3 Watt). Even

though each device has a low energy consumption in the overall system the total

energy consumption of these devices could be considerable. Currently in the Interna-

tional Hellenic University there are research projects which focus into improving the

wireless sensor network protocols in order to achieve lower energy consumption, ex-

tending the battery lifetime in the battery powered devices and reducing the energy

consumed by these sensor nodes.

Additionally energy is consumed by the gateways which collect the data and offer

web services. In present, these gateways are normal computers which act as web serv-

ers and the aWESoME application is deployed in these devices collecting data from the

different sensor systems (e.g. Plugwise, OWL, and PrismaSense).

Table 3.1: Power dissipation in Watts, regarding different types of PCs (excluding displays),
in 2007

PC Type Maximum Idle11 Average

“High End” used for gaming
or CAD/CAM

380 320 350

Standard Desktop PC 130 70 100

Energy Efficient Desktop PC 60 40 50

Energy Saving Notebook 40 20 30

The aWESoME application does not require very high computing power and memory

resources, therefore an Energy efficient Desktop PC can be used, not necessarily with

high processing power. The typical power requirement of and energy efficient desktop

PC is approximately 40-50Watts, shown in Table 3.1 provided by Nordin H. (Nordin,

2008, p. 5). These power values are indicative because the power dissipation of a PC is

variable and depends on various factors like: the devices connected in it (e.g. an ex-

ternal hard drive will be powered by the PC’s power supply unit, the existence of many

internal hard drives requires more energy); the number of fans and ambient tempera-

ture (e.g. more fans will consume more energy additionally when the temperature is

high the speed of the fans will increase, consuming more energy); the percentage of

the CPU utilization etc. Since these gateways will operate providing web services, the

existence of a displaying monitor will not be required during its operation, but only

11
 Idle defined: the computed is operational but not active

 -65-

during configuration and maintenance. Therefore the energy consumption of the dis-

play will not be taken into consideration. Additionally this device will run in 24/7 base

since it is required by some systems (e.g. in contrast to the Plugwise devices which can

store data up to 10 days ,depending on the device’s usage, the OWL USB receiver will

lose data when the computer will be powered off). To conclude, the existence of many

gateways will result in a significant amount of energy consumed. Therefore it is

needed to adapt devices with lower energy consumption to act as gateways and run

the aWESoME application.

3.3 Remote Control and Monitoring

Facilities at a University include the existence of many computers. These desktop

PC are often distributed. Managing these devices may result increasing the overall effi-

ciency reducing the energy waste and operational costs. The management of these

computers requires three basic steps:

 Sensing: Remote monitoring of certain parameters (e.g. CPU utilization,

Memory available, network traffic etc.).

 Reasoning: Estimate if a specific device is utilized or Idle, based on the pre-

vious parameters.

 Acting: Remotely power on or off, sleep, hibernate or wake up computers

3.4 Software tools and hardware

Possible solutions to the previously mentioned problems can be given using soft-

ware tools and hardware devices. These tools will be presented in the following sub-

sections.

3.4.1 Hardware

In order to reduce the power consumption of the gateways deployed in the Smart

IHU project, these devices must be replaced with low energy consumption devices.

Such devices are single board computers (SBC). There are many available SBC’s in the

-66-

market like: FoxBoard G20 by ACME, TS-7800 by Technologic Systems Inc.12. Both

these devices are based on the 32-bit Advanced RISC Machine (ARM) microprocessors,

specifically ARM9. Additionally these devices are also Linux Embedded and can operate

on a Linux OS. There are also many other SBC’s with higher Memory and computing

power developed by VIA Technologies13. Such examples are the ITX series (e.g. mini

ITX, nano ITX, pico ITX etc.) and there are a lot of projects presented in the mini-ITX14

web site.

FoxBoard G20 Specifications

FoxBoard G20, shown in Figure 3.19, is a Linux Embedded single board computer

(SBC) developed my ACME Systems in Italy. The architecture of a typical SBC is shown

in Figure 3.20.

Figure 3.19: FOXBOARD G20

12
 http://www.embeddedarm.com

13
 http://www.via.com.tw

14
 http://www.mini-itx.com

Flash
Memory

Real-Time
Clock

RAM

RISC Processor

Serial
UART

USB
Controller

Ethernet
Controller

Serial
Port

USB
Port(s)

Ethernet
(LAN)

Figure 3.20: Single Board Computer Architecture

http://www.embeddedarm.com/
http://www.via.com.tw/
http://www.mini-itx.com/

 -67-

Usually SBC are based in Reduced Instruction Set Computing (RISC) with embed-

ded USB-Ethernet controller and Serial Ports. These microprocessors are designed with

a simplified instruction set to provide a better performance by executing the instruc-

tions faster. Some examples of instruction set architectures that are based on RISC ar-

chitecture are: ARM, ARC, Atmel AVR, AMD 29k, SPARC etc.

The main features of FoxBoard G20 are shown in Table 3.2, provided by (ACME

Systems) and the inputs and outputs of this device are shown in Figure 3.21, provided

by ACME.

Table 3.2: FoxBoard G20 technical specifications

Two 40 pin sockets pitch 2.54mm are available to plug the board on specific appli-
cation carriers or add-on boards. On these pins 3.3 Volt signals are available which can
be used to implement RS232/RS485/RS422, I2C, SPI, GPIO, A/D and PWM interfaces.

 Built on the Atmel ARM9 @ 400Mhz
CPU module Netus G20-L (included)

 64MB of RAM
 256KB of FLASH memory for the boot

loader
 Up to 16GB on bootable microSD (*)
 Two USB 2.0 host ports (12 Mbits)
 One Ethernet 10/100 port
 One USB device port (12 Mbits)
 One debug serial port (3.3v)
 Two serial ports (3.3v)
 One serial port for 4DSystems oLed dis-

plays
 5VDC power supply input (compatible

with PS5V1A)
 Real Time Clock with on-board back-

up battery (**)

 GPIO lines (3.3v)
 4 A/D converter lines
 I2C
 SPI
 Built-in quad power supply Netus

PS1 module
 Same footprint and pin-out of the

old FOX Board LX832
 Fully mechanical compatible with

TUXCASE and FOXCASE
 Temperature range: -15 to +70 Cel-

sius degree (°C)
 Average power consumption: 80 mA

@ 5V (0.4 Watt) without microSD,
Ethernet link, USB devices or other
peripherals.

(*) the microSD card memory is optional
(**) the lithium backup battery for RTC is optional

-68-

Figure 3.21: FoxBoard G20 -Input/outputs

FoxBoard G20 is a Linux embedded device which can operate on a Debian operat-

ing system. Two versions are available Debian Lenny and Debian Squeeze. The OS

boots from the microSD drive. Additionally many programming languages like C and

Python could be used to develop customized applications. The features that FoxBoard

provides can be exploited to implement this device in existing wireless sensor network

infrastructure. This device can be utilized as a web server (i.e. a gateway) where the

data could be aggregated and also the existence of A/D converters can be used to

gather data from analog sources (i.e. sensors etc.). FoxBoard costs approximately

€185.

 -69-

TS-7800

Technologic Systems has developed many SBCs. One of these is TS-7800 shown in

Figure 3.22, provided by Technologic Systems. This is also a Linux Embedded device,

similar to FoxBoard, based on an ARM9 processor. The technical specifications of this

device are shown in Table 3.3.

 Figure 3.22: TS-7800 a SBC developed by Technologic Systems

Table 3.3: TS-7800 Technical Specifications

 500MHz ARM9 CPU
 Internal PCI bus, PC/104 connector
 128MB DDR-RAM
 512MB NAND Flash (17MB/s)
 12,000 LUT programmable FPGA
 2 SD Card slots (1 micro-SD, 1 full-SD)
 2 SATA ports
 2 USB 2.0 480Mbit/s Host/Device
 Gigabit Ethernet, 10/100/1000 speeds
 5 10-bit ADC channels
 10 serial ports, 2 optional RS-485

 110 GPIO (86 as a PC/104 bus)
 Matrix Keypad and text LCD support
 Optional Temp Sensor, RTC, and WiFi
 Low-power (4W @ 5V)
 Sleep mode (uses 200 microamps)
 Watchdog Timer
 Fan less Operation from -20°C to

+70°C
 Boots Linux in 0.69s from Flash
 Kernel 2.6 and Debian Linux
 Eclipse IDE out-of-the-box

TS-7800 has a higher processor clock in comparison to FoxBoard and the instruc-

tions are executed faster therefore providing a slightly higher processing power. The

most noticeable feature is the DDR-RAM which is 128MB, the double size in compari-

son to FoxBoard. TS-7800 costs approximately €167.

http://www.embeddedarm.com/software/arm-eclipse.php

-70-

ITX Series

The ITX Series devices are embedded boards developed by VIA Technologies. The

size of the ITX series in comparison to other products developed by the same manufac-

turer (e.g. micro-ATX, Flex-ATX) is shown in Figure 3.23. In comparison to the two pre-

vious devices the ITX series provide a higher processing power and higher memory re-

sources. These more sophisticated boards have an implemented graphic card with a

VGA output which facilitates the use of display monitors.

Figure 3.23: ITX Series size

Additionally these devices can operate using an operating system like: Microsoft Win-

dows XP or Vista; or a Linux OS (e.g. Ubuntu, Debian etc.).

Figure 3.24: Mini, Nano and Pico ITX dimensions

The dimensions of Mini, Nano and Pico ITX are shown in Figure 3.24, provided by

windowsfordevices.com. The technical specifications of Pico-ITX, provided by VIA

Technologies, are shown in Table 3.4. In regards to the power dissipation of a Pico ITX,

 -71-

the required maximum (peak) power is 25 Watts, as shown by min-itx.com15, but the

system may consume less than 25Watts. The ITX series are significantly more powerful

than FoxBoard and TS-7800. The computing power is tripled and the memory in-

creased from 64MB (FoxBoard) and 128MB (TS-7800) up to 2GB. Even though there

are so many advantages there is a disadvantage. Pico ITX has higher power dissipation

in comparison to FoxBoard and TS-7800, since the power consumption in the later de-

vices is estimated less than 5Watts.

Table 3.4: Pico ITX technical specifications

 Model
Name

EPIA-P710-10L

Processor 1.0 GHz VIA C7®

Chipset VIA VX800 Unified Digital Media
IGP chipset

System
Memory

1 x DDR2 533/667 SODIMM
socket
Up to 2GB memory size

VGA Integrated VIA Chrome9
TM

HC3
DX9 3D/2D graphics with
MPEG-2 video decoding accele-
ration

Onboard
IDE

1 x UltraDMA 133/100 pin con-
nector with 2.0mm 44-pin

Onboard
Serial ATA

1 x SATA connector
1 x SATA power connector (5V)

Onboard
LAN

1 x VIA VT6122 Gigabit LAN
controller

Onboard
Audio

1 x VIA VT1708B High Definition
Audio Codec

Onboard
I/O Con-
nectors

2 x SUMIT QMS connectors (3
USB, LPC, 2 PCIe x1, PCIe x4, SM
Bus and SPI),1 x Giga LAN pin
header,1 x Audio pin connector
for Line-out, Line-in, Mic-in,1 x
Front panel pin header,1 x CRT
pin header,1 x Single-channel,
LVDS pin connector,(powered
with selectable 5V/3V),1 x CPU
fan connector, 1 x PS/2 KB/MS
pin header, 1 x +12V DC-in 2-pin
jack with lock

BIOS Award BIOS
4/8Mbit flash ROM

System Monitoring
& Management

Keyboard Power-on,
Timer Power-on
System power man-
agement, AC power
failure recovery
Wake-on LAN, Watch
Dog Timer

Operating System Windows XP, Win-
dows Embedded CE,
Windows Embedded
Standard, Linux

Operating Tempera-
ture

0°C ~ 50°C

Operating Humidity 0% ~ 95% (relative
humidity; Non-
condensing)

Form Factor Pico-ITXe (12-layer)
10 cm x 7.2 cm

The previous comparisons were made with Pico ITX the smaller device of the ITX

series. Nano ITX and Mini ITX offer higher computing power and with a raising power

consumption. Most of the ITX series are used in building low power PC (i.e. “green”

15
 http://www.mini-itx.com/86950182

http://www.mini-itx.com/86950182

-72-

PC’s). There are many projects available in the mini-ITX16 web site. The price of a Pico

ITX board is approximately €181 and the case, including the power supply unit (PSU),

costs about €105, in total €286.

3.4.2 Software

To solve the existing problems and improve the system, additional software tools

are needed: first a web server that could be used to run the aWESoME application in a

SBC; and second and integrated developing platform to develop JAX-WS web services

and applications.

Apache Tomcat 6.0

Apache Tomcat is an open source Servlet/JSP container. The 6.0 version imple-

ments specifications of the Java Community Process like Servlet 2.5 and Java Server

Pages 2.1. There are also other features included which make Tomcat 6.0 a useful plat-

form for developing and deploying web applications and web services.

Figure 3.25: Apache Tomcat 6.0 architecture

The architecture and the key elements of Tomcat 6.0 are shown in Figure 3.25,

provided by datadisk.co.uk17.

16
 http://www.mini-itx.com/projects.asp

17
 http://www.datadisk.co.uk/html_docs/java_app/tomcat6/tomcat6_architecture.htm

http://www.mini-itx.com/projects.asp
http://www.datadisk.co.uk/html_docs/java_app/tomcat6/tomcat6_architecture.htm

 -73-

Table 3.5: Tomcat 6.0 key elements

Server The server is Tomcat and represents the whole container

Service A service is an intermediate component which lives inside a Server and ties one
or more Connectors to exactly one Engine. The service is responsible for accept-
ing requests, routing them to the specified Web application and specific re-
sources and then returning the result of the processing of the request, they are
the middle man between the client’s web browser and the container.

Engine The engine represents request processing pipeline for a specific Service. As a Ser-
vice may have multiple Connectors, the Engine received and processes all re-
quests from these connectors, handing the response back to the appropriate
connector for transmission to the client.

Host A Host is an association of a network name, e.g. www.yourcompany.com, to the
Tomcat server. An Engine may contain multiple hosts, and the Host element also
supports network aliases such as yourcompany.com and abc.yourcompany.com

Connector A Connector handles communications with the client. There are multiple connec-
tors available with Tomcat. These include the HTTP connector which is used for
most HTTP traffic, especially when running Tomcat as a standalone server, and
the AJP connector which implements the AJP protocol used when connecting
Tomcat to a web server such as Apache HTTPD server

Context A Context represents a web application. A Host may contain multiple contexts,
each with a unique path

Table 3.5 describes the key elements of Tomcat 6.0, the data are provided by the

Apache Tomcat Web Site18 and datadisk.co.uk17 , in the later link there is also a de-

tailed description about the other elements (e.g. Logger, Valve, Realm etc.).

Tomcat 6.0 can be used to deploy the aWESoME application in a web server. There

are also other servers that can be used for the same purpose, one of them is an open

source application server named Glassfish. A comparison between the two servers is

shown in ninthavenue.com.au19. The general scope is to deploy the aWESoME applica-

tion in a low power device like FoxBoard or TS-7800. In this case Glassfish, which may

offer some functionalities that Tomcat does not, cannot be used since according to

ORACLE’s glassfish server system requirements, the minimum RAM available must be

100MB but FoxBoard has only 64MB of RAM available.

NetBeans IDE 7.0

There are different ways to develop web applications and web services. One of

them is using an integrated development environment (IDE) like NetBeans IDE. Net-

Beans is an open source Java IDE, initially developed by Sun Microsystems. It supports

several programming languages (e.g. PHP, JavaFX, C/C++, JavaScript, etc.) and frame-

18
 http://tomcat.apache.org/tomcat-6.0-doc/architecture/overview.html

19
 http://www.ninthavenue.com.au/blog/glassfish-vs-tomcat

http://tomcat.apache.org/tomcat-6.0-doc/config/host.html
http://tomcat.apache.org/tomcat-6.0-doc/config/http.html
http://tomcat.apache.org/tomcat-6.0-doc/config/ajp.html
http://tomcat.apache.org/tomcat-6.0-doc/config/context.html
http://www.ninthavenue.com.au/blog/glassfish-vs-tomcat
http://tomcat.apache.org/tomcat-6.0-doc/architecture/overview.html
http://www.ninthavenue.com.au/blog/glassfish-vs-tomcat

-74-

works. This IDE provides the tools to create professional desktop, enterprise, web and

mobile applications with the Java platform, C/C++, PHP, JavaScript and Groovy. The

Highlights of NetBeans are shown in Table 3.6, provided by the NetBeans community

(NetBeans Community, 2011).

Table 3.6: NetBeans Highlights
Java Desktop Applications

Create professional standards-based user interface
with the NetBeans Swing GUI Builder. Save years
of work by building Java Swing desktop applica-
tions with the NetBeans Platform framework.

Java Enterprise and Web Applications
Build web applications using CSS, JavaScript, and
JSP: Support for frameworks includes JSF (Face-
lets), Struts, Spring, Hibernate, and a full set of
tools for Java EE 6, CDI, GlassFish 3, EJB, and web
services development.

Dynamic Languages
Benefit from one combined tool that supports PHP
(Zend and Symfony), CSS, Groovy and Grails, and
JavaScript.

C and C++ Development
Edit, profile, and debug C/C++ applications, and
make the most of multiple project configurations,
remote development, and packaging.

Visual Mobile Development
Create, test and debug applications that run on mobile phones, set-top boxes, and PDAs using JavaFX
Mobile and the Java ME SDK 3.0 Platform.

Figure 3.26: NetBeans main categories

Figure 3.26 indicates the main categories of the applications that can be developed

using NetBeans IDE 7.0. The categories of interest in this work will be: the Java, for de-

veloping simple java applications; the Java Web and Java EE, used to develop stan-

dards-based web and enterprise applications which can be accessed from a wide range

http://netbeans.org/features/java/swing.html
http://netbeans.org/features/web/index.html
http://netbeans.org/features/scripting/index.html
http://netbeans.org/features/cpp/index.html
http://netbeans.org/features/javame/index.html
http://netbeans.org/features/web/index.html
http://netbeans.org/features/scripting/index.html
http://netbeans.org/features/cpp/index.html
http://netbeans.org/features/javame/index.html

 -75-

of clients such as web browsers, mobile devices and more. Additionally create Java EE

6 applications with support for all relevant Java EE 6 technologies.

As shown in Table 3.6, to test and deploy Java EE and Java Web applications, Net-

Beans 7.0 by default uses the GlassFish Server 3.1. It is possible to add also other serv-

ers installed like Tomcat. NetBeans may run/stop these servers and even deploy appli-

cations or web services in them, while testing/running/deploying web applications.

 -77-

4 Contribution

After investigating the theoretical concepts, infrastructure and the main problem

possible improvements were defined. The content of this chapter regards the imple-

mentation of the suggested solutions and improvements.

4.1 FoxBoard Gateway

FoxBoard was the device available to implement and deploy the aWESoME web

application. The OS used in FoxBoard was Debian Lenny. This OS is booted via MicroSD

card the detailed procedure to create such a card is described in Appendix B. After in-

serting the bootable MicroSD card and powering on the device, the OS will load in a

short and after approximately 30 seconds and FoxBoard will be reachable via LAN (i.e.

the default web server will be available and the user can access FoxBoard via a brows-

er). The successful boot of the OS is indicated by the blinking LED (red) (e.g. in a suc-

cessful OS load the led will blink SHORT ON - SHORT ON – PAUSE). By default the OS

was configured to receive automatically the IP address from a DHCP server available in

the network. The IP address that FoxBoard retrieved could be discovered by searching

the DHCP attributes or by using software which scan all the IP addresses of the subnet

and shows their computer names. Such software is Angry IP20 scanner. After accessing

the device the user can configure a static IP address to this device, the detailed proce-

dure is also shown in Appendix B.

In the provided Linux version, by ACME Systems, Lighttpd21 is the default web serv-

er. This server runs in port 80 and by accessing FoxBoard via a browser using its IP ad-

dress the user can have access in the default web page shown in Figure 4.1. This page

provides links to the FoxBoard G20 wiki, to the web page of Debian Lenny and a link

20
 http://www.angryip.org/w/Download

21
 http://www.lighttpd.net/

http://www.angryip.org/w/Download
http://www.lighttpd.net/

-78-

named “see phpinfo” which provide information about the system (e.g. the OS version,

build date, etc.) and documentation about the PHP configuration.

Figure 4.1: FoxBoard’s default web page

4.1.1 Installation and Configuration

FoxBoard does not include a display and there are two ways to access it. First using

the Debug Port Interface (DPI) and second via the LAN, using a Secure Shell (SSH) con-

nection. The DPI can also be used to install ad hoc applications developed in various

programming languages (e.g. python, C etc.). In both cases the manufacturer company

suggests the use of the putty.exe22 which is a freeware utility that runs on windows

and can emulate a serial terminal or manage an SSH session. To transfer files the man-

ufacturer suggests WinSCP23 which is free Windows SCP client. SCP is the protocol used

to browse remotely the file system on a Linux system and transfer files over the net-

work. Alternatively, a computer which runs on a Linux version can be used to facilitate

both SSH and SCP via the terminal. This was the preferred method selected in this

22
 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

23
 http://www.winscp.net

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.winscp.net/

 -79-

work. Therefore a Linux Ubuntu 10.10 was used installed in a USB flash drive (i.e. simi-

lar to a Live CD) to be able to run it in different computers.

After discovering the IP address of FoxBoard, the user can access it typing:

hostname:/ssh root@FOX_IP_Address

An Example:

 smartihu:/ssh root@192.168.2.30

Afterwards the root password will be required, which by default is netusg20. Once the

correct password is entered the user has access to the terminal of FoxBoard’s Debian

Lenny OS. An example of a SSH connection is shown in Figure 4.2, where the user has

accessed to the contents of the root folder. It can be noticed that the hostname of

Ubuntu is ubuntu@ubuntu and the hostname of FoxBoard is smartihu.

Figure 4.2: Example of a SSH connection

Basic setting and configurations of FoxBoard (e.g. setup date and time, change

hostname etc.) are shown in Appendix B. Additionally there are also many examples

provided by the manufacturer’s web site (ACME Systems).

To transfer files remotely via the network, the SCP protocol was used. Examples

are provided bellow for different scenarios where the remote host’s IP address is

192.168.2.30.

To transfer a file named file.txt from a remote machine to my machine:

scp root@192.168.2.30:/home/smartihu/Desktop/file.txt home/me/Desktop/file.txt

To transfer a file, named sample.war, from my machine to a remote machine:

scp sample.war root@192.168.2.30:/usr/local/tomcat/webapps/

mailto:root@192.168.2.30

-80-

In addition the remove file (rm) and remove directory (rmdir) commands were be
used to remove files and directories.

 As presented in previous chapters the middleware used I the Smart IHU project is

aWESoME which is a web application based Java EE 5 platform and provides JAX-WS

web services. In order to deploy such an application, a web server which implements

the Java Servlet and provides Java HTTP web server environment for java code to run,

is needed. Lighttpd, the default web server, does not provide these features, in con-

trast with Apache Tomcat. Both these servers are frequently used together running in

different ports and often linked between them (e.g Lighttpd proxy to Tomcat).

Apache Tomcat 6.0

Before installing Apache Tomcat, it is required to install the default jdk or jre. Once

FoxBoard has access on the internet, to perform this installation the following com-

mand must be executed:

apt-get install openjdk-6-jdk

After the successful installation of the JDK, the next step is to install Apache Tomcat.

The selected version was 6.0.32, this version is available in many locations. Two of

them are suggested bellow

 wget http://apache.hoxt.com/tomcat/tomcat-6/v6.0.32/bin/apache-tomcat-
6.0.32.tar.gz. tar xvzf apache-tomcat-6.0.32.tar.gz

or

wget http://www.ecoficial.com/apachemirror/tomcat/tomcat-6/v6.0.32/bin/apache-
tomcat-6.0.32.tar.gz

The next step is to extract the tape archive (tar) using the following command.

tar -xzvf apache-tomcat-6.0.32.tar.gz

Afterwards move the extracted folder in a different location /usr/local/tomcat typing:

mv apache-tomcat-6.0.32 /usr/local/tomcat

By executing the files startup.sh and shutdown.sh, Tomcat can start and stop respec-

tively. These files are found in the location: /usr/local/tomcat/bin. An example, which

starts and stops Tomcat, is shown below:

sh /usr/local/tomcat/bin/startup.sh

sh /usr/local/tomcat/bin/shutdown.sh

http://apache.hoxt.com/tomcat/tomcat-6/v6.0.32/bin/apache-tomcat-6.0.32.tar.gz.%20tar%20xvzf apache-tomcat-6.0.32.tar.gz
http://apache.hoxt.com/tomcat/tomcat-6/v6.0.32/bin/apache-tomcat-6.0.32.tar.gz.%20tar%20xvzf apache-tomcat-6.0.32.tar.gz

 -81-

The previous manual procedure can be done automatically, creating an executable

script and placing it the /etc/init.d directory, which contains scripts that start/stop var-

ious applications of the system. There are many websites which provide such examples

one of them is howtogeek.com24. The steps are shown below.

First the creation of a file named tomcat in the /etc/init.d/ location. The content of the

file is:

description: Auto-starts tomcat
processname: tomcat
pidfile: /var/run/tomcat.pid

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk

case $1 in
start)
 sh /usr/local/tomcat/bin/startup.sh
 ;;
stop)
 sh /usr/local/tomcat/bin/shutdown.sh
 ;;
restart)
 sh /usr/local/tomcat/bin/shutdown.sh
 sh /usr/local/tomcat/bin/startup.sh
 ;;
esac
exit 0

Initially this script will define the JAVA_HOME location.

The next step is to make this file executable by running:

chmod +x /etc/init.d/tomcat

Finally, symbolic links must be created with the startup folders. The following com-

mands were used:

ln -s /etc/init.d/tomcat /etc/rc1.d/K99tomcat

ln -s /etc/init.d/tomcat /etc/rc2.d/S99tomcat

Now Tomcat should be able to start automatically on system startup. In case it is

needed to start/stop/restart tomcat the following commands can be used:

/etc/init.d/tomcat start

/etc/init.d/tomcat stop

24
 http://www.howtogeek.com/howto/linux/installing-tomcat-6-on-ubuntu/

-82-

/etc/init.d/tomcat restart

After the previous steps, it is possible to test if tomcat is running using a browser. By

default tomcat runs in port 8080, the port number can be changed by the user. An ex-

ample of accessing tomcat via a browser is shown in Figure 4.3.

Figure 4.3: Testing Tomcat 6.0.32

Apache Tomcat Management

Tomcat can be managed using the Tomcat Manager which is a user friendly graphic

interface. To gain access to this interface it is required to import a user account. Most

of the setting of tomcat can be made by modifying XML files. In the previous case the

file that must be modified is found in the usr/local/tomcat/conf# location. The modifi-

cation of this file can be made using nano and running the following command:

 smartihu:/usr/local/tomcat/conf# nano tomcat-users.xml

An example of this xml file is shown in Figure 4.4. This file provides the ability to select

different roles, which provide different type of access to each user. In the example bel-

low a user named smartihu was entered with a manger role and 1234 as password.

Once this file is saved in the same location, the user can log in the tomcat manager

found in the initial page shown in Figure 4.3.

 -83-

Figure 4.4: Tomcat-users xml file

Once the user has logged in successfully he has access to the manager’s interface,

shown in Figure 4.5. In this interface a list of the Applications is shown to the manag-

er where it is possible to control these applications (e.g. Start, Stop, Reload, Undeploy,

Deploy), documentation regarding to the manager (e.g. Manager Help), and the Server

Status which provides information about the Server’s complete status (e.g. the OS ver-

sion, the processor’s architecture and additional parameters like the free memory,

bytes sent/received, Max processing time, errors etc.).

 Figure 4.5: Tomcat Manager’s interface

-84-

Deploying the web application

Once the application was developed, NetBeans was configured to create a .war

package when building the application. This is actually a Web Application ARchive

(WAR), a format developed by Sun Microsystems, which may contain the components

of a web application or web service. These components are: Java Server Pages (JSP),

Java Servlets, Java Classes, XML files, tag libraries and static HML pages. There are two

ways to deploy WAR files in Tomcat. The first is simply to copy the war file in the

$CATALINA_BASE/webapps25 , under the condition that the attribute liveDeploy (or

autoDeploy in other versions) is activated, the application will be deployed automati-

cally. In case liveDeploy is deactivated, after copying the WAR file in the webapps, it is

required to restart Tomcat. The attribute liveDeploy (or autoDeploy) is found in the lo-

cation $CATALINA_BASE/conf/server.xml. In the same xml file it is possible to setup the

port where the server runs.

Figure 4.6: Deploying of WAR archives using Tomcat Manager

Another way to deploy a WAR archive is by using Tomcat Manager. Once the man-

ager has logged in, on the List Applications, by scrolling down, two ways are provided

to deploy a WAR file, shown in Figure 4.6. One way the WAR file can be deployed

choosing a file from the computer where Manager is accessed and pushing Deploy.

25
 The Catalina base is the main location of Tomcat in the FoxBoard’s example is /etc/local/tomcat

 -85-

The other way a directory or war file located on a server can be deployed defining the

path or the URL.

Troubleshooting

The main significant problems encountered when deploying applications was not

being able to access the WSDL files after a successful deployment and the hardware

failure of FoxBoard when deploying aWESoME.

Initially to test Tomcat 6.0.32, WAR files developed by various systems with differ-

ent parameters were deployed. Even though, these files were deployed successfully

and the home JSP page was accessed, it was not possible to open the WSDL files of

each web service. This meant that only the JSP page was running and the web services

were unavailable. To address this problem a simple web application, named Calcula-

torWS, was developed under the directions of a tutorial from netbeans.org26 . The web

application (i.e. web service) was created based on the Glassfish server, including a

client application. Afterwards was deployed locally using NetBeans Glassfish server,

following the instructions given in the tutorial, it was observed that it worked perfect-

ly. Once the WAR file was deployed on Tomcat, the application did not run. The prob-

lem was that the web application was developed based on the Glassfish Server. When

the web application was developed defining Tomcat 6.0 as a Server it was noticed that

additional libraries were added by net beans (e.g. Metro 2.0, Tomcat 6.0 including

many jar files etc.). Afterwards the web application was tested remotely (i.e. the appli-

cation was deployed in a PC and the client in a different PC) operating as desired . As a

result of adding these libraries the size of the file increased significantly, approximately

about 6MB more in comparison to the .war based on Glassfish. In case of the aWE-

SoME web application, the size of the WAR file was approximately 10MB when devel-

oped using Glassfish and when developed using Tomcat 6.0 the size of the WAR file

rose up to 16MB.

FoxBoard is a device with insufficient resources (i.e. low memory resources and an

ARM9 processor with a 400MHz clock) therefore a second problem occurred. This

problem was faced when deploying the 16 MB aWESoME web application. It was con-

26
 http://netbeans.org/kb/docs/websvc/jax-ws.html

http://netbeans.org/kb/docs/websvc/jax-ws.html

-86-

sidered more serious since the FoxBoard project was in jeopardy. During this deploy-

ment, after approximately two to three minutes, FoxBoard stopped responding on the

SSH connection and the operation led (i.e. red led which indicate if the OS has booted

and is running propriety) was blinking in an unusual manner. To address this problem

the top command was used. This command is used in Linux to display the top CPU

processes that are running. During the monitoring of the processes it was noticed that

when the deployment began, in Tomcat, the Java Process was using the 90 to 99.3 % of

the CPU, as time passed the memory percentage allocated by Java rose gradually and

after approximately 2-3 minutes the memory percentage reached 76% the system was

starting to stop responding. These observations provided the conclusion that after a

certain time FoxBoard suffered of memory starvation. The RAM memory is 64MB and

there is no extension slot available. A solution, provided by FoxBoard’s community27,

came on using a Swap file. The objective was to create a 100MB file and use swap on

to activate it.

Initially create the file:

hostname:/dd if=/dev/zero of=/myswapfile bs=1024 count=102400

 After this, it is required to setup the swap space:

hostname:/mkswap /myswapfile

Immediately turn it on:

hostname:/swapon /myswapfile

Afterwards the swap file is on and can be used as RAM. If the system is rebooted

this memory cannot be used. To make this memory available after a system reboot,

the following command must be executed:

hostname:/ nano /etc/fstab

and inside the fstab file insert the following line:

/myswapfile swap swap defaults 0 0

Even though the memory rose from 64MB to 164MB there is a very important

drawback. The Computer writes and reads very often in the RAM. RAM memory has a

27
 http://www.asksander.com/?p=126

http://www.asksander.com/?p=126

 -87-

lower access time and is faster in comparison to Flash memory. If a swap file is created

in the microSD card, which is a flash memory, it means that this solution could reduce

the operation speed and is not suitable for time sensitive applications.

Figure 4.7: Sample while Monitoring running processes

Once the memory was increased there was another attempt to deploy the 16MB

aWESoME application. Again, while deploying the application on Tomcat, the top

command was executed in order to monitor the running processes. In this procedure

twenty samples were taken. The first sample is shown in Figure 4.7, and shows the

CPU and Memory allocation by the java process after twenty seconds. In addition oth-

er parameters were available (e.g. Memory and Swap total size, used and free).

Chart 4.1: CPU and Memory percentage used

0

20

40

60

80

100

120

P
e

rc
e

n
ta

ge

Time

CPU

Memory

-88-

 The percentage of CPU and Memory used by the java process, during the deploy-

ment of aWESoME, is shown in Chart 4.1. After approximately four minutes the web

application was deployed successfully and was running on Tomcat. This can be con-

firmed in Tomcat Manager, shown in Figure 4.8.

 Figure 4.8: aWESoME deployed

Consuming Web Services

The aWESoME web application provides mainly three web services: PrismaWeb,

Plugwise Over the Web and PrismaWeb. Once the web application is deployed the web

services are available. To consume the web services a client application must be devel-

oped using the WSDL files which describe each web service. The available web services

and the WSDL URL’s are shown in Figure 4.9.

 Figure 4.9: Available Web Services and WSDL URL’s

In this work, a client was created to consume the Plugwise Over the Web service.

This web service is also shown in Figure 4.9, and is named PlugwiseActionsService. Af-

 -89-

ter defining the WSDL of this service (e.g. http://192.168.2.30:8080/awesometest/

PlugwiseActions?wsdl) in the client project, web service references were available. In

the PlugwiseActionsService eight functions were defined by the developers of aWE-

SoME. These functions are shown in Figure 4.10. Each function represents an action

and requires one or more arguments. At least one argument, the MAC address of the

smart plug, can be used to define a specific plug.

Figure 4.10: Plugwise Available actions

For example the function WFSwitchOn takes two arguments, the MAC address of a

plug and another which is the port where Stick is located. In this WS this argument can

be blank because the port was previously defined. This function switches on that spe-

cific plug (e.g. the command syntax is: wfSwitchOff("000D6F000076D557", "");) and

does not return anything. Another example is the function WFReadrPower, which read

the pulses of a specific plug and calculates the power measured. In order to use these

functions, the developer must insert (e.g. a function can be inserted by dragging and

dropping it) the needed function in the main project.

The code of the first client, named Client1, developed is shown below:

import java.util.logging.Level;
import java.util.logging.Logger;
import poweb11.IOException_Exception;
import poweb11.InterruptedException_Exception;
import poweb11.UnsupportedCommOperationException_Exception;

http://192.168.2.30:8080/awesometest/

-90-

import java.text.DateFormat;
import java.util.Calendar;
public class Main {
 public static void main(String[] args) throws InterruptedException_Exception{
 try {
 // Retreive the current Date/time and print it
 Calendar cal = Calendar.getInstance();
 DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL,
 DateFormat.MEDIUM);
 // Define a table and and the integer used in the while loop
 long[][] resptimes= new long[6][21];
 int i;
 i=1;
 //Loop
 while(i<=20) {
 // Define the starting point
 long start = System.currentTimeMillis();
 // Execute 1st command and switch off the 76D557 plug
 wfSwitchOff("000D6F000076D557", "");
 // Calculate the time difference in seconds
 resptimes[0][i]=(System.currentTimeMillis()- start)/1000;
 System.out.println(df.format(cal.getTime())+"1st command: "+resptimes[0][i]+" sec , round: "+i);
 // Execute 2nd command and switch off the 76CDF4 plug
 wfSwitchOff("000D6F000076CDF4", "");
 // Calculate the time difference in seconds
 resptimes[1][i]=(System.currentTimeMillis()- start)/1000;
 System.out.println(df.format(cal.getTime())+"2nd command: "+resptimes[1][i]+" sec , round: "+i);
 // Execute 3rd command and switch off the 76CDF4 plug
 wfSwitchOff("000D6F000043B4CA", "");
 // Calculate the time difference in seconds
 resptimes[2][i]=(System.currentTimeMillis()- start)/1000;
 System.out.println(df.format(cal.getTime())+"3rd command: "+resptimes[2][i]+" sec , round: "+i);
 // Execute 4th command and switch off the 76D557 plug
 wfSwitchOn("000D6F000076D557", "");
 // Calculate the time difference in seconds
 resptimes[3][i]=(System.currentTimeMillis()- start)/1000;
 System.out.println(df.format(cal.getTime())+"4th command: "+resptimes[3][i]+" sec , round: "+i);
 // Execute 5th command and switch off the 76CDF4 plug
 wfSwitchOn("000D6F000076CDF4", "");
 // Calculate the time difference in seconds
 resptimes[4][i]=(System.currentTimeMillis()- start)/1000;
 System.out.println(df.format(cal.getTime())+"5th command: "+resptimes[4][i]+" sec , round: "+i);
 // Execute 6th command and switch off the 76CDF4 plug
 wfSwitchOn("000D6F000043B4CA", "");
 // Calculate the time difference in seconds
 resptimes[5][i]=(System.currentTimeMillis()- start)/1000;
 System.out.println(df.format(cal.getTime())+"6th command: "+resptimes[5][i]+" sec , round: "+i);
i++;
 }
//Exceptions in case something goes wrong
} catch (IOException_Exception ex) {
 Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex);
 } catch (UnsupportedCommOperationException_Exception ex) {
 Logger.getLogger(Main.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
// The Functions Imported

 -91-

private static void wfSwitchOff(java.lang.String arg0, java.lang.String arg1) throws IOException_Exception,
UnsupportedCommOperationException_Exception {
 poweb11.PlugwiseActionsService service = new poweb11.PlugwiseActionsService();
 poweb11.PlugwiseActions port = service.getPlugwiseActionsPort();
 port.wfSwitchOff(arg0, arg1);
 }
private static void wfSwitchOn(java.lang.String arg0, java.lang.String arg1) throws UnsupportedCommOpe-
rationException_Exception, IOException_Exception {
 poweb11.PlugwiseActionsService service = new poweb11.PlugwiseActionsService();
 poweb11.PlugwiseActions port = service.getPlugwiseActionsPort();
 port.wfSwitchOn(arg0, arg1);
 }
}

The function of the previous code is to execute sequentially six commands. The

first three commands switches off three smart plugs and the next three switches on

the same plugs. Initially the current time is calculated and after each command the

time elapsed is calculated and printed. In order to receive more samples the whole

previous procedure is repeated twenty times. In one command a function takes place

where the user enters an argument, the MAC address to specify the smart plug. This

function is retrieved from the server where the web application and the web service

were previously deployed. Detailed descriptions, for each part of the code, are given

using comments in grey.

A second client, named Client2, was developed. This client is similar to the previous

with a difference in the order the commands are executed. In this client the devices

were switched on and off, one by one. Again the response time was calculated.

4.1.2 Experiments Results and Comparisons

The main purpose of this section is to run experiments regarding power dissipa-

tion, CPU utilization, memory usage and the response time of each command. The im-

plementation includes the deployment of the aWESoME middleware, which contains

the web services, in different servers. Afterwards to consume a web service using a

client while monitoring and taking samples regarding the response time and the power

dissipation of the server.

-92-

The tools used in these experiments are hardware and software. Initially the soft-

ware used are shown and described in Table 4.1. The hardware used is shown and de-

scribed in Table 4.2.

Table 4.1: Description of Software used in the experiments

Software Info

Apache Tomcat 6.0 Used as a server for the deployment of web applications.

NetBeans 7.0 Used to develop and run the Client applications.

PwScript A Java application developed by the Smart IHU team to measure power
using a Plugwise smart plug and a Stick.

Client1 and Client2 JAX-WS web service clients, developed in this work assisted by the
Smart IHU team, used to consume a web service

aWESoME A middleware containing JAX-WS developed by the Smart IHU team.

Table 4.2: Description of hardware used in the experiments

Device QTY Specification Usage

Stick 2 USB device used in the Plugwise
system.

Collect data from the sen-
sor nodes in a PC.

Smart Plug 4 Plugwise’s Smart Plugs. Measure power and
switch on/off devices.

PC1 1 Processor: AMD Phenom™ 9600
Quad Core 2.31GHz, RAM: 3GB,
2X500hdd,
1X160hdd,Motherboard: ASUS
M3A32-MVP Deluxe, Nvidia Ge-
Force 8600 GT, OS: Windows 7.
PSU: 600W max

Measure Power and take
samples using a Stick, a
Smart Plug and PwScript.

PC2 1 Model: Dell Optiplex GX260, Pro-
cessor: Intel P4 1.8Ghz, RAM:
512MB, 40GB hdd. OS: Linux Ubun-
tu 10.10 PSU: 80W without the PSU
losses.

Used as a server while
running Apache Tomcat
6.0. or to run client appli-
cations

Mini 1 Model: Toshiba NB250, Processor:
Intel Atom ™ N455 2X1.66GHz,
RAM: 1GB DDR3, Intel Graphics
Media Accelerator 3150, Display:
10.1” TFT Toshiba TruBrite, OS: Li-
nux Ubuntu 10.10, PSU: 30W with-
out loses.

Used as a server while
running Apache Tomcat
6.0. or to run client appli-
cations

FoxBoard 1 Model: FoxBoard G20, Processor:
Atmel ARM9 400MHz, RAM: 64MB,
OS: Linux Debian Lenny, PSU: 5W
max without losses of the PSU.

Used as a server running
Apache Tomcat 6.0.

Lamps 3 IKEA: 230V AC, 20Watts Lamps. Plugged as loads in the
Smart Plugs

 -93-

Experiment 1

The scope of this experiment was to measure the power dissipation of different

machines, which will be used as servers, under different scenarios and mainly while

being idle. Three different machines were used, FoxBoard, Mini Note Book and PC2.

Fifteen to twenty samples were taken for each scenario and the average Power dissi-

pation for each device in each scenario is shown in Table 4.3.

The scenarios are:

 Scenario1: Tomcat was running, the aWESoME (i.e. Web Application, WA) was dep-

loyed, Stick was plugged in but the server was Idle (i.e. there are no clients consuming

web services).

 Scenario2: Same as Scenario 1 but the Stick was Plugged Off.

 Scenario3: Stick was plugged off and Tomcat was stopped.

 Scenario4: Same as Scenario 3 but the Ethernet cable was disconnected.

Table 4.3: Scenarios and Power Dissipation averages

Scenario FoxBoard Mini Note Book PC2

1 2.1324 W 13.5703 W 48.3361 W

2 2.1325 W 13.3764 W 48.4783 W

3 2.1325 W 13.3764 W 48.3361 W

4 2.1325 W 13.3764 W 47.9096 W

FoxBoard was not affected in these scenarios since the power dissipation did not

change. The Mini Note Book again was not affected in these scenarios but the viewing

the dataset in each scenario the measured values were fluctuating in an almost period-

ic manner taking two values, 12.79Watts and 14.92Watts. In regards to PC2 again this

computer was fluctuating taking two values, 46.91Watts and 49.04Watts. In all the de-

vices while changing scenarios there was no difference in power dissipation. In addi-

tion there were no patterns noticed.

Conclusions

There were two conclusion retrieved in this experiment:

 Some devices (e.g. Stick, Ethernet) and applications (e.g. WA, Tomcat) does not

affect and are not correlated to the power dissipation when the server is idle

 Second that FoxBoard needs 15.9% of the power that the Mini Note Book needs;

4.4% of the power that PC2 uses; and the Mini needs 27.7% of the power that PC2

needs. In addition the Mini has a 10.1” display and more computing power and

memory and still is more power efficient in comparison to an old Pentium 4 mod-

el.

-94-

Experiment 2

This experiment was performed to measure the power dissipation and the re-

sponse time to execute a command in the client software. In general in this application

all the devices shown in Table 4.2 and all the software applications were used, except

of Client2. There were three setups where in each case the server was running Apache

Tomcat 6.0 and aWESoME. In each setup a different device was acting as a server. PC1

in all setups was used to measure and take samples regarding the power dissipation of

the server. In addition, in each setup, there were two different wireless sensor and ac-

tuator networks: WSAN1 using a Stick plugged in PC1 connected to a smart plug

where the server was powered, measuring the power dissipation of the server used in

each case; and WSAN2 where a Stick plugged in the Server, the stick was connected to

three smart plugs powering three lamps. The server - client connection is granted by a

local area network. This could also be a Wide Area Network (WAN). A conceptual con-

nection, of the one used in Experiment 2 is shown in Figure 4.11.

In general the Server runs a Web application containing web services and the

client, via a LAN or a WAN, is connected to the server. By running a web service client

application, the client may consume the available web services. Since the web services

are related with WSAN 2, the client has remotely access to WSAN 2 via the Server (e.g.

Figure 4.11: Experiment 1: Conceptual connection, devices and applica-
tions

Server
Applications:
Tomcat 6.0
aWESoME

Hardware:
Setup1 = FoxBoard
Setup2= Mini
Setup3= PC2

Client
Applications:
Client1

Hardware:
Setup1 = Mini
Setup 2= PC2
Setup 3= Mini

Power
Measurement
Applications:
PwScript

Hardware:
PC1

LAN

WSAN 1

ZigBee

ZigBee WSAN 2
Smart Plug

 -95-

when the server is connected to the Plugwise System, the client can receive power

measurements from each of the three smart plugs or switch on/off each plug, remote-

ly).

In this Experiment the servers were running a Linux Operating System (e.g. Fox-

board running Debian Lenny and the other two Linux Ubuntu 10.10). Therefore the

middleware (i.e. aWESoME) was customized to be able to run in Linux Environments.

After monitoring the servers, it was noticed that the port where Stick was found was

/dev/ttyUSB0. In addition some security features in aWESoME (e.g. registering the

hostname and IP address of the client who requested the operation) were disabled

due to incompatibility with the Linux OS.

Setup1: FoxBoard as a Server

In this setup the FoxBoard runs aWESoME using Tomcat 6.0 as a server. The client

application, named Client1 ran on the Mini Note Book. The Client1 application uses the

wfSwithcOff function, and initially switches off the three devices connected in the

smart plugs (e.g. three 20W laps), one by one, and the wfSwitchOn function switches

on them. The procedure was repeated twenty times. Meanwhile the power dissipation

and the response time of the server were monitored. In addition some samples of the

CPU utilization and memory allocation were taken. The samples of the power dissipa-

tion were taken before the client started consuming the WS and during the WS con-

sumption. The CPU utilization and memory samples were taken during the WS con-

sumption and also the response time after each command (e.g. switch on/off).

One repetition executed six commands. The loop ran 20 times and there were 120

commands executed collecting 120 samples of the response time. The average total

time to execute the client application was 5 minutes and 58 seconds (358s). The client

ran two times. The samples are show in Table 4.4.

Table 4.4: Response time samples of FoxBoard

Value
(Seconds)

1st Execution 2nd Execution Total

 # Samples % # Samples % # Samples %

2 4 3.333 9 7.5 13 5.417

3 110 91.667 108 90 218 90.833

4 6 5 2 1.667 8 3.333

5 0 0 1 0.833 1 0.417

Total 120 100 120 100 240 100

-96-

The distribution of the response time is graphically presented in Chart 4.2, where

also as shown in Table 4.4 in the 90.8% of the cases the response time is three

seconds, respectively in 5.4% of the cases two second, in the 3.3% is four and in 0.4% is

five. Te values were not integer multiples of a second, and were divided in bins to be

easily represented.

Chart 4.2: Response time Distribution of FoxBoard

 Chart 4.3: Power dissipation of FoxBoard while active

The power dissipation of the server during the time period while the PlugwiseAc-

tions web service was consumed is shown in Chart 4.3.

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5

P
e

rc
e

n
ta

ge
 o

f
Sa

m
p

le
s

Time (Seconds)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0
0

:0
0

:0
0

0
0

:0
0

:1
7

0
0

:0
0

:3
4

0
0

:0
0

:5
1

0
0

:0
1

:0
8

0
0

:0
1

:2
6

0
0

:0
1

:4
3

0
0

:0
2

:0
0

0
0

:0
2

:1
7

0
0

:0
2

:3
4

0
0

:0
2

:5
1

0
0

:0
3

:0
8

0
0

:0
3

:2
5

0
0

:0
3

:4
3

0
0

:0
4

:0
0

0
0

:0
4

:1
7

0
0

:0
4

:3
4

0
0

:0
4

:5
1

0
0

:0
5

:0
8

0
0

:0
5

:2
5

0
0

:0
5

:4
2

0
0

:0
5

:5
9

0
0

:0
6

:1
7

P
o

w
e

r
(w

at
ts

)

Time (minutes: seconds)

 -97-

In addition few samples were taken, in the same time period, regarding the CPU

utilization and memory usage by the Java process. The results are illustrated in Chart

4.4.

Chart 4.4: Memory Usage (%) and CPU(%) utilization in FoxBoard

Setup 2: Mini Note Book as a Server

The differences of this setup with the previous are that the fact that the Mini Note

Book is the server and PC2 is the client. After running the Client1 application, results

were retrieved regarding the power dissipation, response time, CPU utilization and

memory usage of the Mini Note Book. Table 4.5 indicates the distribution of the re-

sponse time samples. The total time to execute 120 commands was 2 minutes and 22

seconds (142 seconds). A graphic presentation of the distribution is shown in Chart

4.5. In regards to the power dissipation the results are shown in Chart 4.6.

 Table 4.5: Response Time Samples of the Mini Note Book

Value
(Seconds)

1st Execution 2nd Execution Total

 # Samples % # Samples % # Samples %

1 99 82.5 98 81.667 197 82.1

2 21 17.5 22 18.333 43 17.9

Total 120 100 120 100 240 100

70

75

80

85

90

95

00:00:00 00:01:01 00:02:44 00:05:33

P
e

rc
e

n
ta

ge

Time (Min:Sec)

CPU(%)

Memory(%)

-98-

 Chart 4.5: Response time Distribution of the Mini Note Book

Chart 4.6: Power dissipation of Mini while active (W)

Last the memory usage and CPU utilization by the java process, during this time pe-

riod is shown in Chart 4.7. There was a value that exceeds 100% and instantly reach-

es 115%, shown in the top processes of Ubuntu. This happens because the processor is

a dual core and in that time instance it was utilizing both processor’s cores.

 Chart 4.7: Memory Usage (%) and CPU(%) utilization in Mini

0

20

40

60

80

100

1 2

P
e

rc
e

n
ta

ge
 o

f
Sa

m
p

le
s

Time Bins (Sec)

0
2
4
6
8

10
12
14
16
18

0
0

:0
0

:0
0

0
0

:0
0

:0
7

0
0

:0
0

:1
5

0
0

:0
0

:2
2

0
0

:0
0

:3
0

0
0

:0
0

:3
8

0
0

:0
0

:4
5

0
0

:0
0

:5
3

0
0

:0
1

:0
0

0
0

:0
1

:0
8

0
0

:0
1

:1
5

0
0

:0
1

:2
3

0
0

:0
1

:3
1

0
0

:0
1

:3
8

0
0

:0
1

:4
6

0
0

:0
1

:5
3

0
0

:0
2

:0
1

0
0

:0
2

:0
9

0
0

:0
2

:1
6

P
o

w
e

r
(W

at
ts

)

Time (min:sec)

0

20

40

60

80

100

120

140

00:00:00 00:00:48 00:01:12 00:01:39 00:02:11

P
e

rc
e

n
ta

ge

Time (min:sec)

CPU (%)

Memory (%)

 -99-

Setup3: Mini Note Book as a Server, display excluded

In this setup the PC2 was used as a Server and the Mini Note Book was the client

the rest of the equipment remained as was. Again the same parameters were moni-

tored. The distribution results of the samples regarding the response time of the server

are shown in Table 4.6

Table 4.6 Response Time Samples of the Mini Note Book

Value
(Seconds)

1st Execution 2nd Execution Total

 # Samples % # Samples % # Samples %

1 100 83.333 98 81.667 198 82.5

2 20 16.667 22 18.333 42 17.5

Total 120 100 120 100 240 100

A graphic representation is provided in Chart 4.8. The total time to execute 120

commands was approximately 2 minutes and 22 Seconds (average 142 seconds). Next

the power dissipation is shown in Chart 4.9. It was notices that the power exceeds

the maximum output power given by the manufacturer (i.e. 80W). The values above

80W are the losses of the PSU. The maximum values reach almost 10Watts (i.e.

12.5%).

0

10

20

30

40

50

60

70

80

90

1 2

P
e

rc
e

n
ta

ge
 o

f
Sa

m
p

le
s

Time bins (seconds)

Distribution

Chart 4.8: Response time Distribution of the PC2

-100-

 Chart 4.9: Power dissipation of Mini while active (W)

Finally, the CPU utilization and memory usage are shown in Chart 4.10.

 Chart 4.10: Memory Usage (%) and CPU (%) utilization in PC2

Comparisons

The possible comparisons involve the response time and the power dissipation.

First the power dissipation in multiple samples in each setup was compared graphically

in Chart 4.11.

0

10

20

30

40

50

60

70

80

90

100

0
0

:0
0

:0
0

0
0

:0
0

:0
7

0
0

:0
0

:1
5

0
0

:0
0

:2
3

0
0

:0
0

:3
0

0
0

:0
0

:3
8

0
0

:0
0

:4
5

0
0

:0
0

:5
3

0
0

:0
1

:0
1

0
0

:0
1

:0
8

0
0

:0
1

:1
6

0
0

:0
1

:2
3

0
0

:0
1

:3
1

0
0

:0
1

:3
9

0
0

:0
1

:4
6

0
0

:0
1

:5
4

0
0

:0
2

:0
2

0
0

:0
2

:0
9

0
0

:0
2

:1
7

0
0

:0
2

:2
4

0
0

:0
2

:3
2

P
o

w
e

r
(W

at
ts

)

Time (min:sec)

0

10

20

30

40

50

60

70

80

00:00:00 00:00:19 00:00:48 00:01:49 00:02:21

P
e

rc
e

n
ta

ge

Time (min:sec)

CPU(%)

Memory(%)

 -101-

Chart 4.11: Server power dissipation comparison

Another comparison is shown in Table 4.7, related to the average power dissipa-

tion when active and idle.

Table 4.7: Average power dissipation when idle and active

FoxBoard Mini Note Book PC2

AVG
Power
Idle
(W)

AVG
Power
Active
(W)

Difference
(W)

AVG
Power
Idle
(W)
ON

AVG
Power
Active
(W)
ON

Difference
(W)

AVG
Power
Idle
(W)

AVG
Power
Active
(W)

Difference
(W)

2.133 2.337 0.204 13.376 15.220 1.844 48.265 81.998 33.742

In regards to the response time the total percentage are shown in Table 4.8 an illu-

strated graphically in Chart 4.12.

Table 4.8: Response time overall distribution

Value
(Seconds)

FoxBoard
(Percentage)

Mini
(%)

PC2
(%)

1 82.1 82.5

2 5.417 17.9 17.5

3 90.833

4 3.333

5 0.417

Total 100 100 100

0

10

20

30

40

50

60

70

80

90

100

0
0

:0
0

:0
0

0
0

:0
0

:1
9

0
0

:0
0

:3
8

0
0

:0
0

:5
7

0
0

:0
1

:1
6

0
0

:0
1

:3
5

0
0

:0
1

:5
4

0
0

:0
2

:1
3

0
0

:0
2

:3
2

0
0

:0
2

:5
1

0
0

:0
3

:1
0

0
0

:0
3

:2
9

0
0

:0
3

:4
8

0
0

:0
4

:0
7

0
0

:0
4

:2
6

0
0

:0
4

:4
5

0
0

:0
5

:0
4

0
0

:0
5

:2
3

0
0

:0
5

:4
2

0
0

:0
6

:0
1

0
0

:0
6

:2
0

P
o

w
e

r
(W

)

Time (min:sec)

FoxBoard(W)

Mini ON(W)

PC2 (W)

-102-

 Chart 4.12: Overall Distribution.

The average time periods needed to execute the 120 commands is shown in Table

4.9.

Table 4.9: Average time elapsed to execute Client1

FoxBoard (Sec) Mini (Sec) PC2 (Sec)

358 142 142

Conclusions

As shown in Chart 4.11, there is a significant difference between the three devices.

Since the three devices are running exactly the same application, PC2 is the most pow-

er inefficient. In addition, in PC2, the power dissipation rose by almost 70% from idle

to active, in contrast to FoxBoard and Mini Note Book where the increase was 9.59%

and 13.79% respectively. Comparisons could be made, between the two devices re-

maining (FoxBoard and Mini) regarding the resources they provide.

In all three settings a pattern was noticed and is shown in Chart 4.3, Chart 4.6 and

Chart 4.9. It is noticed that when the server is active there is an increase in power dis-

sipation. There is the need to investigate the factors responsible for this increase.

The distribution of the response time of Mini and PC3 are similar, reverse exponen-

tial and in FoxBoard’s is a normal distribution. As shown in Table 4.9 the average time

to execute Client1 is the same in Mini and PC2 in contrast to FoxBoard where it is 2.5

times more. Both Mini and PC2 are faster and the probabilities for the response time

are closely the same.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

P
e

rc
e

n
ta

ge
 o

f
Sa

m
p

le
s

Time Bins (seconds)

FoxBoard

Mini

PC3

 -103-

PC3 can be excluded, because is the most power inefficient. In a system where

there are many gateways operating 24/7 the energy consumption will reach significant

levels. The selection must be done between FoxBoard and Mini. A quantitative com-

parison is provided in Table 4.10.

Table 4.10: Comparison between Foxboard and Mini Notebook

Parameter Mini Notebook FoxBoard Difference

Processor’s Clock 2X1.6GHz 400MHz 8 times more

RAM 1GB 64MB 16 times more

AVG Power Dissipation
when active

15.220 2.337 6 times higher

Total Response Time 142 358 2.5 times faster

 To conclude FoxBoard is really energy efficient but it has reached its limits (e.g. the

ram was not enough and was extended using a swap file) and the hardware is not flex-

ible (e.g. the ram is difficult to be extended). Though, its CPU Clock and RAM are 8 and

16 times less than Mini, the average response time while executing a command in 90%

percent of the cases is 3 seconds. FoxBoard could be suggested in applications with a

low number of users and les time sensitive applications. A possible intermediate sys-

tem between FoxBoard and Mini would be one of the Pico-ITX devices.

Experiment 3

In the previous experiment it was noticed that the power dissipation is correlated

with the activity of the server. The response time was measured in regards of two op-

erations, wfSwitchOff and wfSwitchOn. In this experiment the response time of the

other operations was investigated and measured while FoxBoard and Toshiba NB250

were acting as servers in each case. The main remaining operations are: fReadStatus

which reads the status of a specific Circle and wfReadPower reading the power of a

Circle.

fReadStatus

To utilize the fReadStatus operation a client was created based on the PlugwiseAc-

tionsCOM?wsdl (e.g. http://192.168.2.30:8080/awesometest/PlugwiseActionsCOM?wsdl). The

client was named ClientReadStatus and the source code is shown in Figure 4.12. This

http://192.168.2.30:8080/awesometest/PlugwiseActionsCOM?wsdl

-104-

client reads the status of three Circle Smart Plugs sequentially. The MAC addresses of

these plugs are: 43B4CA; 76CDF4; and 76D557. The returned value of fReadStatus can

be: 0 when the device is OFF; 1 when the device is ON; and -1 when an error occurs.

Again the version of aWESoME used was a customized version named awesometest,

disabling some security features and defining the appropriate port for Linux (e.g.

/dev/ttyUSB0), once the server was running on a Linux based OS.

Figure 4.12: ClientReadStatus client Software

 -105-

The resulted response time distribution, in seconds, for the two devices, in 150

samples, is illustrated in Chart 4.13. The total time to complete for FoxBoard was 8

minutes and 46 seconds and for Toshiba NB250 was one minute and 44 seconds. The

actual values of the response time were divided in seven bins (e.g. 0.6, 1, 2...7

seconds).

Chart 4.13: ReadStatus Response Time Distributions in seconds

wfReadPower

wfReadPower was tested creating a client, named ClientReadPower, similar to the

ClientReadStatus client. The main difference is in Main, where for each device the fol-

lowing code were added replacing the fReadStatus operation.

Additionally the appropriate operation was added.

0

10

20

30

40

50

60

70

0.6 1 2 3 4 5 6

P
e

rc
e

n
ta

ge
 o

f
Sa

m
p

le
s

Time Bins (Seconds)

FoxBoard

Toshiba

-106-

The results in both cases are shown in Chart 4.14. Again there were three Circle

smart plugs and the power was retrieved 50 times from each, there were 150 samples

available.

Chart 4.14: ReadPower Response time distributions in seconds

The total time for FoxBoard to serve these requests was 8 minutes and 53 seconds

and for Toshiba NB 250 was one minute and 40 seconds.

Conclusions

Both in ReadPower and ReadStatus, it was noticed that FoxBoard’s response time

is significantly higher which varies from three to four seconds in contrast to 0.6 and

one second in Toshiba NB250. In regards to the total time in each of the previous

clients, it was noticed that FoxBoard was approximately five times slower than the To-

shiba NB250.

0

10

20

30

40

50

60

70

0.6 1 2 3 4 5 6 7

P
e

rc
e

n
ta

ge
 o

f
Sa

m
p

le
s

Time Bins (Seconds)

FoxBoard

Toshiba

 -107-

4.2 Web Services

As mentioned in the beginning of this chapter the need of remote control and

monitoring system, in environments with distributed computers, is obvious. I this sec-

tion the following techniques will be investigated: Wake On LAN (WOL), LAN Shutdown

and system parameter monitoring. Afterwards java applications were developed and

each technique was deployed as a function in a web service in a web application. Last

the entire web application will be tested using NetBeans but without creating a client

application.

4.2.1 Wake On LAN (WOL)

As a standard supported by many OS and network interface manufacturers, the

wake on LAN technology is generally used in order to remotely “wake up” computers,

while being in sleep/hibernate/shutdown. This can be easily implemented inside a

LAN, by creating an application which generates magic packets with the parameters of

the computer needed to wake up. WOL packet cannot be routed but WOL can also be

implemented on a WAN (Wake ON WAN or WOW), by the use of Subnet Directed

Broadcasts (SDB).

The magic packet is a UDP datagram which is sent on the link layer of the OSI mod-

el and it is broadcasted to all the interfaces of the network using the broadcast ad-

dress, containing the MAC address of the destination computer. Once WOL is enabled

in the listing computer, it waits for a magic packet containing its address and wakes

the system, when receives it.

A Magic Packet is a UDP broadcast message containing the MAC address of the

destination computer. This datagram contains a six bytes of synchronization stream of

FFs (i.e. Hex: FF FF FF FF FF FF) and 16 times the repetition of the MAC address. An ac-

tual example is shown in Figure 4.13 provided by profshutdown.com28

28
 http://www.profshutdown.com/wakeonlan_troubleshoot.aspx

http://www.profshutdown.com/wakeonlan_troubleshoot.aspx

-108-

Figure 4.13: Magic Packet Example

When WOL is enabled in a NIC it requires some parts of the hardware to stay this re-

sults into increasing slightly the energy consumption when is sleep/hibernate/power

off29 . Therefore disabling WOL may conclude in reducing, slightly, the total energy

consumption. Additionally WOL also depend on hardware, since must be supported by

the NIC’s hardware. Since the magic packet uses UDP, there is a probability that the

sent can be lost. Therefore supplement operations (e.g. the use of ping) can be utilized

to check if the destination PC “woke up”.

Implementation

To implement Wake On LAN in a computer using the magic packet, initially the us-

er must enable WOL in the NIC’s settings (Windows: LocalAreaConnec-

tion>Properties>Configure> Advanced > Property: Wake-up Capabilities Value: Magic

Packet) in this case the computer will wake up only when the system is in sleep or hi-

bernate mode. In case it is needed to wake up the pc when in Shutdown mode then

the Remote wake up setting in the BIOS must be enabled.

A java application was created, in cooperation with the Smart IHU team, by using

parts of code, of the open source GUI Java WOL Project30 available in sourceforge.net.

29
 In shutdown mode it is supposed that the plug remains pugged-in and the PSU is powered.

30
 http://guijavawol.sourceforge.net/

http://guijavawol.sourceforge.net/

 -109-

Figure 4.14: Wake On LAN java application software.

As shown in Figure 4.14 the java files NetworkDeviceEntity.java, UtilisNetwork.java and

WakeUtil.java were taken by the GUI Java WOL Project. Afterwards the Main.java code

was developed by the Smart IHU team. The source code of Main.java is shown in Fig-

ure 4.15.

 Figure 4.15: Wake On LAN java application Main.java

In this package the main classes imported by other packages are: java.net.InetAddress,

java.net.UnknownHostException, java.util.logging.Level and java.util.logging.Logger.

This code actually sends a Magic packet in port 9 to the computer with the following

parameters; NIC’s MAC address: 00:08:74:AA:DC:03; IP address: 192.168.2.9; and

Network Mask: 255.255.255.0.

Monitoring

The following experiment was conducted using: the applications, wakeonlan java

project, NetBeans and Wireshark; and hardware PC1 and PC2, shown in Table 4.2, in-

terconnected via a LAN. The settings and parameters of both computers are shown in

Table 4.11.

-110-

Table 4.11: Parameters and Settings while using wake on LAN

Hostname IP Address NIC’s MAC ad-
dress

Network Ad-
dress

Role

PC1= Andrew-PC 192.168.2.13 00:1E:8C:02:BB:E3 255.255.255.0 Source

PC2= DellComp_aa 192.168.2.9 00:08:74:AA:DC:03 255.255.255.0 Destination

The NIC of PC1 was monitored using Wireshark and afterwards the wake on LAN

java application was executed in PC1, with the parameters and settings of PC2. The

magic packet captured by wire shark is shown in blue in Figure 4.16. It was noticed that

the source IP was 192.168.2.13 (i.e. the IP address of PC1) and the destination IP ad-

dress was 192.168.2.255 (i.e. the broadcast address of the subnet).

Figure 4.16: Magic Packet Captured by Wireshark

The exact bytes contained in this magic packet is shown in Figure 4.17, and some

details are given in Figure 4.18

 Figure 4.17: Bytes found in Magic Packet

Again in Figure 4.18 it can be noticed the destination broadcast MAC and the WOL

MAC. After performing several tests of this application it was noticed experimentally

that, if WOL was enabled only in the NIC’s parameters in the OS, the listening PC woke

up only when it was in sleep/hibernate mode and not when it was in shutdown mode.

When WOL was enabled in the NIC’s BIOS settings the listening PC woke even from

Shutdown Mode.

 -111-

Figure 4.18: Details of the Magic packet

4.2.2 LAN Shutdown

In this subsection the available methods to shutdown or remotely shutdown a PC

will be described. Afterwards the method were implemented in a Java application and

tested. This application was created in order to operate between Microsoft Windows

XP or latest OSs (i.e. both the source and destination PCs the OS must be Windows XP

or latest).

Method Description

The method used to remotely shutdown a pc, using Windows’s Command Prompt.

There is an available method provided by Microsoft using the shutdown command. The

use of this command is very simple and the specification31 of the shutdown command

is provided by Microsoft. The syntax of this command is:

shutdown [{-l|-s|-r|-a}] [-f] [-m [\\ComputerName]] [-t xx] [-c "message"] [-d[u][p]:xx:yy]

 Table 4.12 indicates the arguments that follow after this command and the de-

scription of each argument provided by Microsoft.

31
 http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-

us/shutdown.mspx?mfr=true

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/shutdown.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/shutdown.mspx?mfr=true

-112-

Table 4.12: The arguments of the shutdown command in Windows

Argument Description

-l Logs off the current user, this is also the defualt. -
m ComputerName takes precedence.

-s Shuts down the local computer.

-r Reboots after shutdown.

-a Aborts shutdown. Ignores other parameters, except -
l and ComputerName. You can only use -a during the time-out pe-
riod.

-f Forces running applications to close.

-m [\\ComputerName or IP] Specifies the computer that you want to shut down.

-t xx Sets the timer for system shutdown in xx seconds. The default is 20
seconds.

-c Specifies a message to be displayed in the Message area of the
System Shutdown window. You can use a maximum of 127 charac-
ters. You must enclose the message in quotation marks.

-d [u][p]:xx:yy Lists the reason code for the shutdown. The following table lists
the different values.

-i Opens the GUI.

An example which reboots \\MyServer after 60 seconds, forces all applications to

close, indicates that the shutdown is planned, logs major reason code 125, and logs

minor reason code 1, was provided by Microsoft32. The syntax is shown below:

shutdown -r -f -m \\MyServer -t 60 -d up:125:1

In regards to Linux based OSs, there are also similar commands (e.g. halt, reboot

and power off) which can be used to sleep, reboot and shutdown a pc. Again this could

be used locally or remotely between two or more Linux Based PCs. A challenging

project would be to develop an application which could perform shut-

down/hibernate/sleep/reboot between a Windows based and a Linux based PC. There

are available solutions32 that can implement such techniques (e.g. a Linux PC can be

shutdown using a Windows PC via a SSH connection. The challenge is to investigate

those methods and develop an application which implements those techniques.

Implementation

Before implementing this method as an application, the method was tested. Ex-

ample: In case it is needed to remotely shut down a PC with the following IP address:

192.168.1.2 the command that must be executed will be:

32
 http://lifehacker.com/5275652/shut-down-your-windows-pc-remotely-from-linux and

http://www.voipphreak.ca/2007/10/22/shutdown-linux-from-windows-remotely-using-ssh-host-keys/

file://MyServer
http://lifehacker.com/5275652/shut-down-your-windows-pc-remotely-from-linux
http://www.voipphreak.ca/2007/10/22/shutdown-linux-from-windows-remotely-using-ssh-host-keys/

 -113-

shutdown –m \\192.168.1.2 –s

To restart a PC the command has a parameter “-r” instead of an “-s”:

shutdown –m \\192.168.1.2 –r

The results of the tests were negative since the access was denied in the remote

PC. In most cases the default settings of the local security policy in the remote pc will

allow only specific users to remotely shut down a pc. The remote system will reply with

the following message “Access is Denied <5>” as shown is the example in Figure 4.19.

Figure 4.19: Access denied in a remote shutdown example

This could be allowed to every user by changing the local security policy to the re-

mote PC. To change this setting in the attribute “Force shutdown from a remote sys-

tem” found in the following location “Control Panel\System and Securi-

ty\Administrative Tools\Local Security Policy\Local Policies\ User Rights Assignments”

the user “EVERYONE” must be added as shown in Figure 4.20.

Figure 4.20: Setting up the local security policy

Afterwards a Java application was developed to exploit the shutdown command,

using Java’s runetime.exec command. This application was developed by the help of

file://192.168.1.2
file://192.168.1.2

-114-

available java applications33. A simple script that executes the previously mentioned

for a local PC (IP address 192.168.2.9) is shown in Figure 4.21.

package lanshutdownw;

import java.io.*;

public class LanShutDownW {

 public static void main(String arg[]) throws IOException{

 String ipaddr = "192.168.2.9";

 String operation = "-s";

 Runtime runtime = Runtime.getRuntime();

 Process proc = runtime.exec("shutdown -m \\\\"+ipaddr+" "+operation);

 System.exit(0);

}

}

Figure 4.21: Java code that remotely shuts down a PC

The previous example uses two arguments, ipaddr and operation, which represent

the IP address and the operation respectively. This application was tested and it

worked once the local policies of the remote pc were previously changed. By monitor-

ing the NIC while executing the application it was noticed that this method uses the

TCP protocol. Some of the actual packets are shown in Figure 4.22, where the source

is 192.168.2.13 initiating the TCP connection and the remote was 192.168.2.9. The en-

tire communication is shown in Figure 4.22.

Figure 4.22: Shutdown command monitored communication

33
 http://stackoverflow.com/questions/25637/shutting-down-a-computer-using-java and
http://www.velocityreviews.com/forums/t514659-remote-shutdown-using-java.html

http://stackoverflow.com/questions/25637/shutting-down-a-computer-using-java

 -115-

4.2.3 CPU utilization and other Information

It is very important to be able to monitor system’s parameters and be able to im-

plement those methods in applications. In this sub section such methods will be de-

scribed and implemented in Java applications. These methods include exporting data

regarding system’s parameters like, CPU utilization, network traffic, memory, etc.

Method Description

The method to retrieve system’s data in a Microsoft Windows OS is using the type-

perf command. This method is specified by Microsoft34 and operates in Windows XP or

newest Windows editions. The syntax of this command is shown bellow.

typeperf [Path [path ...]] [-cf FileName] [-f {csv|tsv|bin}] [-si interval] [-o FileName] [-
q [object]] [-qx [object]] [-sc samples] [-config FileName] [-s computer_name]

Table 4.13: The parameters of typeperf

Parameter Description
-c { Path [path ...] | -cf FileName } Specifies the performance counter path to log. To

list multiple counter paths, separate each com-
mand path by a space.

-cf FileName Specifies the file name of the file that contains the
counter paths that you want to monitor, one per
line.

-f { csv | tsv | bin } Specifies the output file format. File formats
are csv (comma-delimited), tsv (tab-delimited),
and bin (binary). Default format is csv.

-si interval [mm:] ss Specifies the time between samples, in the
[mm:] ss format. Default is one second.

-o FileName Specifies the pathname of the output file. Defaults
to stdout.

-q [object] Displays and queries available counters without
instances. To display counters for one object, in-
clude the object name.

-qx [object] Displays and queries all available counters with
instances. To display counters for one object, in-
clude the object name.

-sc samples Specifies the number of samples to collect. Default
is to sample until you press CTRL+C

-config FileName Specifies the pathname of the settings file that
contains command line parameters.

-s computer_name Specifies the system to monitor if no server is spe-
cified in the counter path.

/? Displays help at the command prompt.

The parameters and their descriptions of this command are described in Table 4.13

and the general format for counter paths is:

[\\Computer]\object[parent/instance#index]\counter]

34
 http://technet.microsoft.com/en-us/library/bb490960.aspx

http://technet.microsoft.com/en-us/library/bb490960.aspx

-116-

Some examples given by Microsoft34 are:

To display processor’s counters:

typeperf "\processor(_total)\% processor time"

To display memory’s counters

typeperf "\Memory\Available bytes"

Implementation

Before implementing this method in a Java application, it was tested in the win-

dows command prompt. An example used to monitor the CPU utilization and export

the data in a CSV file is shown below:

typeperf -cf cpumeasurement -f csv "\processor(_total)\% processor time"

This example can be implemented in a .bat file and will run by simply double click-

ing this file. The command inside the .bat file must be:

typeperf -cf cpumeasurement -f csv "\processor(_total)\%% processor time"

Afterwards the method was implemented in a Java Application. In general this ap-

plication consists of two functions the getCPU() which collects one sample and parses

the data retrieved to separate only the CPU (%) value; and the getCPUAvg() which col-

lects five samples, separates only the CPU (%) value and calculate the average of these

samples. These functions were developed with the help of the Smart IHU team. The

getCpu() function is shown in Figure 4.23.

 Figure 4.23: The getCPU() java code

The source code of the getCPUAvg is shown in Figure 4.24 respectively.

 -117-

 Figure 4.24: The getCPUAvg() java code

In both functions, comments were added in grey to explain the specific part of the

code. Afterwards each function can be called inside the main. An example using getC-

PUAvg() and printing the result is shown in Figure 4.25.

 Figure 4.25: Example of Calling the getCPUAvg() function

4.2.4 Web Application

Development

After developing the three previously mentioned Java applications the next objec-

tive was to implement these applications in a single web application where each java

application could be provided as an operation of a web service. The scope is to deploy

this web application in a server and to be able to wake, shutdown PC’s in the LAN and

-118-

additionally to be able to receive data about the CPU utilization of the server, both in-

stant samples and average values.

The application developed was named ManagementWS and contains a JAX-WS

web service based on the Java EE 6 platform.

 Figure 4.26: The structure of ManagementWS

As shown in Figure 4.26, ManagmentWS, consists of one web service, named Op-

erations which is formed of five basic operations, CPU, CPUAvg, Cpu5sAvg, Shutdown

and WOL. The operations are described in Table 4.14.

Table 4.14: Description of each operation of the WS

Operation Input
type

Input pa-
rameter

Output
type

Description

CPU - - float Takes an instant sample of CPU util.
(%) and returns the float value

CPUAvg int samples float Receives the number of samples,
calculate the average for that num-
ber of samples. Last returns the av-
erage as a float.

Cpu5sAvg - - float Takes 5 samples, calculates the av-
erage of 5 samples and returns the
average as a float

Shutdown String,

String

IP,

Command

String Receives two strings the Ip and the
command (e.g. –s, -r etc.) and ex-
ecute the command to remotely
shutdown the required IP. Last in
the end returns the message
“Command executed” as a string.

WOL String,

String

IP,

MAC

String Receives two strings the IP and MAC
and sends a magic packet to that
destination. Last it returns the mes-
sage “Magic Packet Sent” as a
string.

 -119-

These operations were inserted initially by adding operations to the web service as

shown in Figure 4.27

 Figure 4.27: Adding an operation

Afterwards it is required to define the Return type and the input parameter name

and type. Figure 4.28 indicates the example while adding the operation CPUAvg. In

the same way the other four operations were added with the parameters shown in Ta-

ble 4.14.

 Figure 4.28: Example of adding the CPUAvg operation

After inserting the operation in the operations.java file the code shown in Figure

4.29 was generated automatically.

-120-

 Figure 4.29: Operation’s initially generated code

The next step was to insert the code of the application developed in sub section

4.2.3 and adapting the inputs in that code. The final code is shown in Figure 4.30 and

the differences in comparison to the Java Application developed previously are marked

in red.

 CPUAvg Operation is similar to the getCpuAvg() function. The differences are that

the CPUAvg Operation is defined using @WebMethod(operationName= “CPUAvg) and

inside the public float the sample parameter is defined using

@WebParam(name=”samples”) int samples. The other differences are that instead of

using a static number of samples as previously (i.e. 5 samples) the client who will con-

sume this service can define the number of samples used. Therefore instead of five,

inside the “if” statement, the parameter “samples”, which is an integer, was placed.

The procedure of the previous paragraph was repeated for the remaining four op-

erations using the Java code developed in sub sections 4.2.1 and 4.2.2. And as a result

the Operations.java contained all five operations.

In the case of the WOL operation it was required to insert the classes NetworkDe-

viceEntity.java, UtilisNetwork.java and WakeUtil.java. The final structure of the Man-

agement web application is shown in Figure 4.31.

 -121-

Figure 4.30: The Java code of the CPUAvg operation

Figure 4.31: Final structure of ManagementWS

-122-

Testing Web Services

In order to test the web application’s web service, it is required initially to deploy it

using one of the servers provided by NetBeans (e.g. Glassfish) or in another server

available. Afterwards it can be consumed by developing a Client application using the

WSDL file location provided or by using the “Test Web Service” functionality provided

by NetBeans and Glassfish. In the second method the web service can be tested (i.e.

consumed) using a simple browser. In the case of ManagemetWS applications the dep-

loyment was done using Glassfish 3.1. After deploying it the operations were tested

one by one using the location of where the service was developed, in this case in

http://localhost:8080/ManagementWS/Operations?Tester. The tester is only available

in Glassfish, not in Tomcat. The web page displayed is shown in Figure 4.32. This page

can be accessed also in other PC’s inside the LAN using the IP address instead of local-

host (e.g. http://192.168.2.13:8080/ManagementWS/Operations?Tester) or even ac-

cessed by a WAN or the Internet. In case is needed to access this page over the Inter-

net it is required to have a public IP address on the deployed PC (i.e. server). Another

solution is using Network Address Translation (NAT) techniques to link the private IP

inside the LAN, with the Public IP provided by the Internet Provider in a specific port of

the public IP.

To test each operation, initially the user must enter the parameter/s, if needed,

next the operation can be executed (i.e. the java code will be executed) and last a val-

ue will be returned in another page.

Example 1: In the page shown in Figure 4.32 the IP and the MAC address of a com-

puter in the LAN was entered, in the WOL operation. The IP was 192.168.2.9 and the

MAC address was 00:08:74:AA:DC:03. After pressing the “wol” button the page shown

in Figure 4.33 was retrieved and in addition the computer in the LAN “woke up”. The

returned page indicates the parameters given as inputs and the outputs by the opera-

tion. Additionally the SOAP request and Response Messages were shown. In the re-

quest SOAP message the input elements, IP and MAC, and the payload of the SOAP

message were marked in red. Respectively in the response SOAP message the return

element and its payload was marked in red.

http://localhost:8080/ManagementWS/Operations?Tester
http://192.168.2.13:8080/ManagementWS/Operations?Tester

 -123-

Figure 4.32: Screenshot of the Web Service Tester

Example 2: In the test page the number 10 is entered in the box in the cpuAvg. Part

of the retrieved page containing the input given and the result returned is shown in

Figure 4.34. Additionally the SOAP Request/Response messages were displayed but

they are not displayed in that figure. In this example the average CPU utilization of the

server where the service was deployed, in 10 samples was 11.487%.

To conclude all the operations were tested and it was noticed that each one

worked perfectly by returning the expected values (e.g. float, string) while executing

the implemented java application and a result performing actions (e.g. measure CPU

utilization, send Magic Packet).

-124-

Figure 4.33: Results after invoking the wol method

Figure 4.34: Results after invoking CPUAvg

 -125-

4.3 Correlation between CPU and Power Consumption

The results of the experiments conducted in sub section 4.1.2 Experiments Results

and Comparisons have shown that that the power dissipation increased while the

server was active. Assumptions could be made regarding the reasons why this increase

was noticed.

Initially it can be assumed that, since Plugwise’s Stick was active and send-

ing/receiving, part of the increase can be connected with it. Indeed part of the increase

could be addressed with this device. Examining the values given it is shown that in the

case of FoxBoard, when active there are spikes increasing from 2.13W to approximate-

ly 4W, respectively for the Mini Note Book an increase from 15W to 17W and in PC2

there was an increase from 48W to 90W. The nominal power dissipation of Stick is

0.375W as given by the manufacturer. Therefore the increase can be correlated also

with other parameters regarding the PC operation (e.g. CPU utilization, network traffic,

graphics etc.). This is expected since when the PC is idle some of these circuits are not

used or are used less then when active. Therefore the power dissipation is lower. In

the opposite way, when the PC is active, some of these circuits are operating and re-

quiring additional power. Another factor that can influence the increase of the power

dissipation is temperature. If the temperature of these devices will increase which re-

sults in requiring more power to cool (e.g. the fans operate faster when temperature is

increased therefore requiring more power) in addition when the temperature of the of

a switching PSU increases the also the thermal loses.

In present there are many research projects which correlate the CPU utilization and

other parameters with the power dissipation (i.e. energy consumption). Therefore in

this section the CPU utilization and the power dissipation will be investigated in order

to detect patterns which correlate these two parameters.

Experiment

An experiment was conducted using applications and devices shown in Table 4.1 and

Table 4.2, in sub section 4.1.2. The applications used were PwScript to measure power

and a .bat file containing the typeperf command to export the percentage of the CPU

-126-

utilization in a CSV file. The devices used were one Stick, one Plugwise Smart Plugs and

PC1. PC1 was running both these applications while the Plugwise Stick was connected

in one of the USB ports and the smart plug was connected its plug to measure the

power dissipation. This experiment was conducted on 27th of August 2011 from 14:24

to 14:42. During this time the utilization was increased, running applications, and turn-

ing the PC idle for a while. This increase was caused eight times as shown in the peaks

of Chart 4.15. Additionally the power measured is illustrated in Chart 4.16.

Chart 4.15: CPU utilization in PC1

Chart 4.16: Power dissipation in PC1

Though the amount of the increase is not proportional, (i.e. the CPU fluctuates from

19% to 100 % and the power dissipation from 154W to 189W) by viewing these charts

in temporal association, it was clearly noticed that the power dissipation is correlated

to the CPU utilization, and therefore with the activity of the PC.

0

20

40

60

80

100

120

0
0

:0
0

:0
0

0
0

:0
0

:4
0

0
0

:0
1

:2
0

0
0

:0
2

:0
0

0
0

:0
2

:4
0

0
0

:0
3

:2
0

0
0

:0
4

:0
0

0
0

:0
4

:4
0

0
0

:0
5

:2
1

0
0

:0
6

:0
1

0
0

:0
6

:4
1

0
0

:0
7

:2
1

0
0

:0
8

:0
1

0
0

:0
8

:4
1

0
0

:0
9

:2
1

0
0

:1
0

:0
1

0
0

:1
0

:4
1

0
0

:1
1

:2
1

0
0

:1
2

:0
1

0
0

:1
2

:4
1

0
0

:1
3

:2
1

0
0

:1
4

:0
2

0
0

:1
4

:4
2

0
0

:1
5

:2
2

0
0

:1
6

:0
2

0
0

:1
6

:4
2

0
0

:1
7

:2
2

0
0

:1
8

:0
2

P
e

rc
e

n
ta

ge

Time (min:sec)

0

20

40

60

80

100

120

140

160

180

200

0
0

:0
0

:0
0

0
0

:0
0

:3
9

0
0

:0
1

:1
5

0
0

:0
1

:5
5

0
0

:0
2

:3
4

0
0

:0
3

:1
3

0
0

:0
3

:5
2

0
0

:0
4

:3
1

0
0

:0
5

:0
7

0
0

:0
5

:4
2

0
0

:0
6

:2
1

0
0

:0
7

:0
1

0
0

:0
7

:4
0

0
0

:0
8

:1
8

0
0

:0
8

:5
8

0
0

:0
9

:3
8

0
0

:1
0

:1
4

0
0

:1
0

:5
3

0
0

:1
1

:2
8

0
0

:1
2

:0
4

0
0

:1
2

:4
1

0
0

:1
3

:2
1

0
0

:1
4

:0
1

0
0

:1
4

:3
8

0
0

:1
5

:1
8

0
0

:1
5

:5
7

0
0

:1
6

:3
7

0
0

:1
7

:1
4

0
0

:1
7

:4
5

P
o

w
e

r
(W

)

Time (min:sec)

 -127-

In addition, the same experiment was conducted in another PC with different CPU

and memory resources. The second PC was a Dell Optiplex 330 and its parameters are:

Processor: Intel(R) Core(tm) 2 duo E440 @ 2.00GHz; RAM: 2GB; 2X250GB hdd; OS:

Windows 7; PSU: 305W max. The results of this experiment are shown in 4.17 and

4.18. Again the by observing these charts, the correlation between CPU utilization and

power dissipation it is clearly shown.

4.17: CPU Utilization in Dell Optiplex 330

4.18: Power Dissipation in Dell Optiplex 330

0

20

40

60

80

100

120

0
0

:0
0

.0

0
0

:0
9

.1

0
0

:1
8

.3

0
0

:2
7

.5

0
0

:3
6

.8

0
0

:4
6

.4

0
0

:5
5

.6

0
1

:0
4

.8

0
1

:1
4

.0

0
1

:2
3

.4

0
1

:3
2

.9

0
1

:4
2

.1

0
1

:5
1

.2

0
2

:0
0

.4

0
2

:0
9

.7

0
2

:1
9

.2

0
2

:2
8

.4

0
2

:3
7

.5

0
2

:4
6

.7

0
2

:5
5

.9

0
3

:0
5

.9

0
3

:1
5

.1

0
3

:2
4

.5

0
3

:3
4

.6

0
3

:4
3

.7

0
3

:5
3

.4

0
4

:0
2

.6

C
P

U
 U

ti
liz

at
io

n
 P

e
rc

e
n

ta
ge

Time (min:sec)

0

10

20

30

40

50

60

70

80

0
0

:0
0

:0
0

0
0

:0
0

:0
8

0
0

:0
0

:1
9

0
0

:0
0

:3
2

0
0

:0
0

:4
0

0
0

:0
0

:4
7

0
0

:0
0

:5
5

0
0

:0
1

:0
7

0
0

:0
1

:1
8

0
0

:0
1

:2
7

0
0

:0
1

:3
5

0
0

:0
1

:4
3

0
0

:0
1

:5
4

0
0

:0
2

:0
4

0
0

:0
2

:1
4

0
0

:0
2

:2
3

0
0

:0
2

:3
2

0
0

:0
2

:4
4

0
0

:0
2

:5
4

0
0

:0
3

:0
2

0
0

:0
3

:1
1

0
0

:0
3

:2
4

0
0

:0
3

:3
4

0
0

:0
3

:4
2

0
0

:0
3

:5
0

0
0

:0
3

:5
9

0
0

:0
4

:0
6

P
o

w
e

r
(W

)

Time (min:sec)

 -129-

5 Conclusions

The rapid developments in computer science, computing devices and the internet-

working infrastructure have helped the implementation of concepts like Service

Oriented Architecture (SOA) and Ambient Intelligence (AmI).

A Significant increase in the processing power and memory resources has added in-

telligence to devices, enabling the execution of more sophisticated algorithms. This

evolution and development was also due to size reduction and energy efficiency, facili-

tating portability and extending the energy autonomy. In addition the reduced cost has

driven in the implementation of such features in everyday devices, introducing intelli-

gence to the surrounding environment. The lower cost of electronic devices and sen-

sors has facilitated their massive deployment in various environments.

This progress requires an interconnection infrastructure for devices which process

large amounts of data and have high bandwidth requirements, and devices with low

bandwidth requirements equally. The research and development of protocols have in-

creased the capacity and efficiency of the signal transport medium. Portability of de-

vices has leaded in many improvements in wireless networks. In addition the energy

autonomy is not only related to the hardware improvements but also with the devel-

opment and implementation of energy efficient wireless protocols. The existence of

distributed sensors in places where there is no power supply has leaded to the devel-

opment of energy aware protocols in wireless sensor networks (e.g. ZigBee) which ex-

tend the battery lifetime and therefore the energy autonomy of these devices.

The developments in the previous sectors are also related with progress in com-

puter science where complex and efficient algorithms are developed and implemented

in the existing systems. Another aspect is the evolution in the available application’s

architecture while implementing new technologies and concepts like SOA. Advances in

artificial intelligence in combination to machine to machine communication could re-

sult in the creation of devices which would operate independently providing services

to humans and existing systems.

-130-

Combining the previously mentioned advances could lead in the creation of “high

end systems” which could improve people’s quality of life and overall experience while

introducing interacting systems that adapt to the environment, noticing patterns and

acting upon user’s request or by making decisions based on their intelligence. In addi-

tion, such systems could also reduce the operational costs and the overall efficiency of

the system.

Many research projects have focused in implementing AmI in system which would

perceive, reason and act based on its intelligence. These projects involve the develop-

ment and implementation of both software and hardware components. Smart Homes

assist and alert the users in their everyday activities providing a better quality of life.

Applications in transportations, in energy monitoring, in enterprise operations could

create and intelligent environment.

Such a case of an AmI system is the Smart IHU research project which is based on

the previously mentioned concepts, technologies, applications and hardware in order

to monitor energy, and other parameters (e.g. movement, temperature etc.). The col-

lection of these data will not only display this information to the administrating per-

sonnel, but in combination with complex algorithms that make decisions and take ac-

tions in order to improve quality of life and reduce the operational costs while saving

energy and reducing CO2 emissions. The integration of the different wireless sensor

networks available, in a single application platform facilitated the aggregation of data

related by distributed nodes in a central point for further processing. Afterwards the

implementation of SOA using web services has enabled the use of functions and data

to be used by other systems and also manage the available hardware remotely.

After studying the available literature regarding the previously mentioned con-

cepts and available devices two main improvements were suggested in the Smart IHU

project. These two suggestions involved hardware, to directly reduce the energy con-

sumption of the network infrastructure, and software by developing applications in

order to monitor and manage the existing PCs in a LAN.

 -131-

Hardware

In regards to hardware three devices was investigated: an ARM9 based and Linux

embedded single board computer (SBC), named FoxBoard, a Toshiba NB250 Mini

notebook, and a Dell Pentium 4 PC. These devices were used as a gateway in scenarios

using the web application of the Smart IHU project. While performing experiments it

was noticed that the PC and Notebook was performing faster than the SBC. There was

a significant difference in power dissipation between these devices while executing the

exactly same procedure. The PC was the most energy inefficient. This can be related to

the old technology equipment which is less energy efficient than in recent devices. The

PC was excluded and cannot be used as a gateway due to the significantly high energy

consumption in comparison to the other two devices. Between the remaining two de-

vices the Mini Notebook consumes six times more energy than FoxBoard and is ap-

proximately from 2.5 to 5 times faster than FoxBoard, depending on the operation of

the Plugwise Web Service (e.g. switch on device or read power). The fact that Fox-

Board’s response time is high, therefore is slow, must be further investigated using an

SBC with more than 140MB of RAM, because FoxBoard had limited memory resources

and the Swap technique was used in it. Therefore the slower operation of FoxBoard

may be related to swap since flash memory, which is considered “slow”, was used as

RAM. In case a SBC with that amount of RAM could have the same response time with

the Notebook then the SBC could be considered as a perfect solution since the power

dissipation is significantly low (e.g. less than 5W in most cases of the ARM based SBC) .

Another factor would be the investigation of the aggregation of multiple clients and

devices. Experiments regarding the response time could be performed. Under the ex-

isting circumstances FoxBoard could be considered as a solution but it would be more

suitable applications which are not time sensitive and a low client aggregation. An in-

termediate system (e.g. pico-ITX) can be estimated to be placed in between FoxBoard

and Mini Notebook in regards to power dissipation. In general in order to decide the

appropriated device, estimations must be done about the aggregation of Clients.

Software Applications

The software developed in this work consisted of applications to perform the fol-

lowing remote operations to a PC in a LAN: wake up, shutdown/reboot/hibernate, re-

-132-

ceive CPU utilization. Even though these software utilities are very helpful in environ-

ments with distributed PCs there are two main problems that were noticed while using

them. First the interoperation between different OSs and second the acknowledge-

ment if the operation was successfully executed. In the former, Wake on LAN can be

excluded since depends on the NIC and also it was functional after testing it between

different OSs, but the CPU utilization and the remote shutdown can only be executed

in Windows OS in regards to the client. The solution to this could be the investigation

of SSH and other techniques in order to develop a more sophisticated application that

could at least operate from Windows to Linux OS and vice versa.

In regards to the second problem, the CPU utilization could be excluded since it re-

turns a float value and can be noticed if it was executed or no. The WOL and the Shut

down return only a message that the packet or the command was sent. There is still

feedback but it is between the client and the server, not between the client and the

listening PC. In the WOL operation it is possible that the UDP packet would not be re-

ceived by the listening PC. Therefore to notice that the PC woke up supplement tech-

niques (e.g. PING using ICMP messages) must be used and serve as positive acknowl-

edgements (ACKs). The shutdown command, as monitored by wire shark, uses TCP and

there is a response on the terminal but when sending a command to an IP which does

not correspond to a host, the system responds with and error after approximately

25seconds. This could cause a serious problem if this ACK would be used in the Web

Application, since it could bind the server for a reasonable time period where other

users wouldn’t be served.

The development of software that addresses, detects and solves the previously

mentioned issues, would result in a more efficient and scalable software application.

 -133-

Bibliography

Aarts, E. H., & Encarnacao, J. L. (2008). True Visions: The Emergence of Ambient

Intelligence (Second ed.). Berlin: Springer.

ACME Systems. (n.d.). FOX Board G20 - Linux Embedded SBC. Retrieved August 25,

2011, from http://www.acmesystems.it/?id=FOXG20

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware

systems. Int. J. Ad Hoc and Ubiquitous Computing (pp. 263-277). Inderscience

Enterprises Ltd.

(1999). Bluetooth Specification Version 1.0A, Part A : Radio Specification.

Cerami, E. (2002). Web Services Essentials. O'Reilly.

Chappell, D., & Jewell, T. (2002). Java Web Services. O'REILLY Media.

Christin, D., Mogre, P. S., & Hollick, M. (2010). Survey on Wireless Sensor Network

Technologies for Industrial Automation: The Security and Quality of Service

Perspectives. Future internet , 96-125.

Cook, D. J., Augusto, J. C., & Jakkula, V. R. (2007). Ambient

Intelligence:Technologies, Applications, and Opportunities. Elsevier B.V.

Dario, P., Mazzolai, B., & Laschi, C. (2011, May 13). P. Dario, B. Mazzolai and C.

Laschi – Dustbot. Retrieved August 9, 2011, from http://www.smart-urban-stage.com:

http://www.smart-urban-stage.com/rome/ideas/paolo-dario-barbara-mazzolai-and-

cecilia-laschi-dustbot/

De Amicis, R., Conti, G., Piffer, S., & Prandi, F. (2011). Service oriented computing

for Ambient Intelligence to support management of transport infrastructures. Springer.

Dwivedi, K. A., & Vyas, P. O. (2010). Network Layer Protocols for Wireless Sensor

Networks: Existing Classifications and Design Challenges. International Journal of

Computer Applications (0975 – 8887) , 30-34.

-134-

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., et al. (2004).

Patterns: Service-Oriented Architecture and Web Services. IBM International Technical

Support Organization.

Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005,

March). The Gator Tech Smart House:A Programmable Pervasive Space. IEEE Computer

Society , pp. 64-74.

Helal, S., Winkler, B., Lee, C., Kaddourah, Y., Ran, L., Giraldo, C., et al. (2003).

Enabling location-aware pervasive computing applications for the elderly. IEEE.

IEEE Computer Society. (2006). Part 15.4: Wireless Medium Access Control MAC)

and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks

(WPANs). New York: IEEE.

IHU School of Science and Technology. (2010, March). Projects: Smart International

Hellenic University Application of ICT Systems for Sustainable Growth, Energy Efficiency

and Better Quality of Life. Retrieved September 13, 2011, from IHU School of Science

and Technology: http://www.tech.ihu.edu.gr/index.php/projects/smart-international-

hellenic-university.html

Jabjone, S., Chatchaiyadej, S., & Chantavichean, T. (2009). SMART HOUSE

MANAGEMENT SYSTEM WITH RFID. International Conference on the Role of

Universities in Hands-On Education (pp. 793-799). Chiang-Mai: Rajamangala University

of Technology Lanna.

LEWIS, F. L., & Grant, A. R. (2004). Wireless Sensor Networks. New York.

Mahmoud, Q. H. (2005, April). Articles: Service-Oriented Architecture (SOA) and

Web Services: The Road to Enterprise Application Integration (EAI). Retrieved August

19, 2011, from Oracle Technology Network:

http://www.oracle.com/technetwork/articles/javase/soa-142870.html

NetBeans Community. (2011). NetBeans IDE - The Smarter Way to Code. Retrieved

September 21, 2011, from NetBeans IDE 7.0 Features:

http://netbeans.org/features/index.html

Neves, J., Santos, M. F., & Machado, J. M. (2007). Argumentation-Based Decision

Making in Ambient Intelligence Environments. Berlin: Springer.

 -135-

Nordin, H. (2008). Your Computer and the Climate: Make a change today – Save the

planet tomorrow. TCO Development.

OASIS. (n.d.). OASIS UDDI Specification TC. Retrieved September 8, 2011, from

OASIS Advancing open standards for the information society: http://www.oasis-

open.org/committees/uddi-spec/faq.php

Ort, E. (2005). Service-Oriented Architecture and Web Services: Concepts,

Technologies, and Tools. Sun Microsystems.

Padmanabhuni, S., Chaudhari, A. P., Bharti, S., & Kumar, S. (2007, June 7). WSDL

2.0: A Pragmatic Analysis and an Interoperation Framework. Retrieved September 9,

2011, from Web 2.0: Article: http://soa.sys-con.com/node/219029

PHILIPS. (2005). Philips Research - Technologies Robotics. Retrieved August 09,

2011, from www.research.philips.com:

http://www.research.philips.com/technologies/projects/robotics/index.html

Raghavendra, C. S., Sivalingam, K. M., & Znati, T. (2006). Wireless Sensor Networks.

Springer.

Rahman, A., El Saddik, A., & Gueaieb, W. (2008). Wireless Sensor Network

Transport Layer: State of the Art. Heidelberg: Springer.

Rakotonirainy, A., & Tay, R. (2004). In-Vehicle Ambient Intelligent Transport

Systems (I-VAITS): Towards an Integrated Research. Procedings of 7th international

IEEE conference on intelligent transportation systems (ITSC 2004), (pp. 648-651).

Washington DC.

Roy, A., & Sarma, N. (2010). Energy Saving in MAC Layer of Wireless Sensor

Networks: a Survey. National Workshop in Design and Analysis of Algorithm (NWDAA).

India: Tezpur University.

Saffiotti, A., & Broxvall, M. (2005). PEIS Ecologies: Ambient Intelligence meets

Autonomous Robotics. Proceedings of the sOc-EUSAI (Smart Objects and Ambient

Intelligence) conference, (pp. 275-280). Grenoble.

Weber, V., Vickery, G., & OECD. (2009). Smart Sensor Networks: Technologies and

Applications for Green Growth. ICTs, the environment and climate change. Helsingør:

OECD.

-136-

Wilson, J. (2005). Sensor Technology Handbook. Oxford: Elsevier.

 -137-

Appendix A: Terms

Acronym Definition

AC Alternative Current

AES Advanced Encryption Standard

AI Artificial Intelligence

AmI Ambient Intelligence

AODV Ad hoc On Demand Distance Vector

API Application Programming Interface

ARM Advanced RISC Machine

ASK Amplitude Shift Keying

BIOS Basic Input Output System

BPSK Binary Phase-Shift Keying

CAD Computed Aided Design

CAM Computer Aided Manufacturing

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access/ Collision Avoidance

CSV Comma-Separated Values

DC Direct Current

DDR Double Data Rate

DLL Data Link Layer

DNS Domain Name System

DPI Debug Port Interface

DSSS Direct Sequence Spread Spectrum

ebXML Electronic Business using XML

ESP Electronic Stability Program

-138-

FCC Federal Communications Commission

FDMA Frequency Division Multiple Access

FSK Frequency Shift Keying

FTP File Transport Protocol

GPRS General Packet Radio Service

GPS Global Positioning System

HCI Human-Computer Interaction

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IHU International Hellenic University

IP Internet Protocol

ISM Industrial Scientific Medical

ISOS Intelligent Sensors’ Operating System

J2EE Java 2 Enterprise Edition

JAX-WS Java API for XML Web Services

JDK Java Development Kit

JRE Java Runtime Environment

JSP Java Server Page

JVM Java Virtual Machine

LAN Local Area Network

LVDT Linear Variable Differential Transformer

MAC Medium Access Control

MACA Multiple Access with Collision Avoidance

NIC Network Interface Controller

O-QPSK Offset Quadrature Phase-Shift Keying

OASIS Organization for the Advancement of Structured Information Standards

 -139-

OSI Open Systems Interconnection

PAN Personal Area Network

PC Personal Computer

PDA Personal Data Access

PEIS Physically Embedded Intelligent Systems

POW Plugwise Over Web

PSK Phase Shift Keying

PSU Power Supplying Unit

QoS Quality of Service

QTY Quantity

RAM Random Access Memory

RFID Radio Frequency Identification

RISC Reduced Instruction Set Computing

RTD Resistance Temperature Detector

SMP Sensor Management Protocol

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPIN Sensor Protocols for Information via Negotiation

SQDDP Sensor Query and Data Dissemination Protocol

SSH Secure Shell

SDB Subnet Directed Broadcasts

TADAP Task Assignment and Data Advertisement Protocol

Tar tape archive

TDMA Time Division Multiple Access

VGA Video Graphic Array

W3C World Wide Web Consortium

WA Web Application

-140-

WAN Wide Area Network

WAR Web Application ARchive

WiFi Wireless Fidelity

WLAN Wireless Local Area Networks

WOL Wake On LAN

WOW Wake On WAN

WPAN Wireless Personal Area Networks

WSAN Wireless Sensor and Actuator Networks

WSDL Web Service Description Language

WSN Wireless Sensor Network

XML eXtensible Markup Language

UDDI Universal Description Discovery and Integration

USB Universal Serial Bus

 -141-

Appendix B: Configuring FoxBoard

Create A Bootable microSD with Debian Lenny

The procedure to create a bootable MicroSD card is described by ACME Systems35

In a new microSDs typically are formatted with a unique big FAT partition so the opera-
tions to do are :

 Delete the factory default big FAT partition
 Create the four partition requested by the FOX Board G20
 Copy the file inside the new partitions

Create a new partition using the command right click -> New with these parameters:

 New size: 32MB
 File system: fat16
 Label: kernel
 Leave all the other fields at default values

Create a new partition using the command right click -> New with these parameters:

35
 http://www.acmesystems.it/?id=foxg20_microsd_create

http://www.acmesystems.it/?id=foxg20_microsd_create

-142-

 New size: 800MB or more if you intend to install a lot of Linux packages
 File system: ext4
 Label: rootfs
 Leave all the other fields at default values

Create a new partition using the command right click -> New with these parameters:

 File system: ext4
 Free space following: 128MB
 Label: data
 Leave all the other fields at default values

Create a new partition using the command right click - New with these parameters:

 New size: 128MB
 File system: linux-swap
 Label: swap
 Leave all the other fields at default values

 -143-

 Click on the green sign to apply all the operations and exit from Gparted.

Remove the microSD, wait about 10 sec and insert again. Tree new partitions will be
mounted automatically on:

 /media/kernel
 /media/rootfs
 /media/data

Now proceed to fill these partitions with the contents required by the FOX Board G20.

Kernel uImage and rootfs contents

Download the last snapshot from the binary repository then:

Copy the Linux Kernel uImage and parameters files in /media/kernel.

$ cp uImage /media/kernel
$ cp machtype.txt /media/kernel
$ cp cmdline.txt /media/kernel

Un-tar and copy the rootfs contents in /media/rootfs:

$ sudo tar xvjpSf rootfs.tar.bz2 -C /media/rootfs

Synchronize the microSD contents:

$ sync

Unmount all the microSD partition from your PC:

-144-

$ sudo umount /media/kernel
$ sudo umount /media/rootfs
$ sudo umount /media/data

Remove the microSD, insert it in your FOX Board G20 and try to boot it.

How to set a static IP address

Provided by ACME Systems (http://www.acmesystems.it/?id=foxg20_set_static_ip)

By default the FOX Board G20 gets the IP address from the DHCP server on your LAN

this article explains how to set a static IP address

If you have a Linux PC simple insert the FOXG20 microSD card. If you are using Ubuntu

Linux it will mount the microSD file system on /media directory.

Edit the file /media/etc/network/interfaces placing # chars on these lines:

#auto eth0
#iface eth0 inet dhcp

Then uncomment the iface eth0 inet static line and tailor the details for your local se-
tup, for example:

auto eth0
iface eth0 inet static
 address 192.168.1.90
 netmask 255.255.255.0
 gateway 192.168.1.1

Setting the System Clock

The read the currently System Clock type:

smartihu:~# date
Fri Oct 8 17:44:42 CEST 2010

To set it type:

debarm:~# date -s "8 OCT 2010 18:45:00"
Fri Oct 8 18:45:00 CEST 2010

This time is valid until the board is on. When you turn-off it the system clock is lost.

http://www.acmesystems.it/?id=foxg20_set_static_ip

 -145-

Setting the Real Time Clock

The read the Hardware CLock type:

debarm:~# hwclock -r
Fri Oct 8 17:46:43 2010 -0.004115 seconds

This time is read at startup from the Linux Kernel and mantained with the on-board
RTC Lithium battery.

To set the Hardware Clock with the System Clock value type:

debarm:~# hwclock -w

Now check it typing:

debarm:~# date
Fri Oct 8 18:49:02 CEST 2010
debarm:~# hwclock -r
Fri Oct 8 18:49:10 2010 -0.004076 seconds
debarm:~#

Change the hostname on a running system

The hostname in saved in /etc/hostname.

Change it for example with myfox typing:

debarm:~# echo "myfox" > /etc/hostname
debarm:~# /etc/init.d/hostname.sh start

Then logout typing:

debarm:~# logout

Login again and your prompt will be:

myfox:~#

