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Abstract 

This dissertation was written as a part of the MSc in Energy Systems at the Interna-

tional Hellenic University. Its scope is to review researching efforts in the field of Con-

centrating Solar Power Plants (CSPP) modeling and to apply appropriately well-

established related modeling principles into a 20 MW hybrid parabolic trough CSPP.  

For this reason the introductory section documents the importance of appropriate 

modeling of CSPP by examining the ground of RES promotion, distinguishing the pro-

spects of CSPPs and illustrating the parties that would be interested in such a research. 

This document goes on with the review of 3 major dilemmas faced by someone who 

aims at estimating the production of a CSPP: a) acknowledgment of uncertainty inher-

ent in these systems, b) building a custom-made model to evaluate the appropriateness 

of available modeling tools and c) using commercial integrated CSPP modeling soft-

ware. Information provided in that section is being matched with illustrated needs, re-

strictions and specificities related to input data required in the modeling process of a 

hybrid parabolic trough CSPP with thermal storage. This correlation made the use of 

System Advisor Model seem as the most appropriate tool in order that a 20 MW plant to 

be modeled. Parametric, statistical and financial analysis is also performed supporting 

the exportation of useful conclusions.  

Although simulating the operation of a CSPP is a highly demanding process requir-

ing extensive knowledge of several scientific fields (physics, mathematics, electrical 

and mechanical engineering, informatics), sincere support and scientific guidance pro-

vided by Dr. George Giannakides have been proven to be enough for the successful 

completion of this study. Acknowledging his contribution and deeply thanking him for 

this is the least that I could do.      

 

Constantinos Sioumis 

February 15th, 2013 
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1 Introduction 

The scope of this introductory section is to ratify the importance of accurate fore-

casting of the electricity produced by hybrid concentrating solar power (CSP) plants and 

to present briefly the upcoming sections and their between cohesion. 

1.1 The need for low CO2 emissions 

The weather in 2011 caused no major surprise to climate researchers. Although the 

Global Land-Ocean Temperature Index presented a slight decrease compared to 2010, 

its powerful uptrend (see Figure 1.1), which started in the late 19th century, remained 

totally in force [1].  

 

Figure 1.1: Global surface air temperature anomalies relative to 1951-1980 base period for an-

nual and 5-year running means. Green vertical bars are 2σ error estimates. 
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Global warming is still here. This makes someone believe that observations noted 

in 2007 in the Fourth Assessment Report of the United Nations’ Intergovernmental 

Panel on Climate Change (IPCC) are still valid; the atmosphere keeps getting full of 

harmful gases, warmth supplants coldness, snow level decreases, sea level rises, hurri-

canes strengthened [2]. Can we really do anything in order to deter these continuously 

growing threats? 

In the early 20th century, Milutin Milanković argued that Earth’s climate variations, 

insolation and temperature included, are not just reasonable but predictable too, as it 

spins around its axis and orbits around the Sun [3]. This theory has repeatedly been test-

ed and confirmed as a) the project CLIMAP (Climate: Long Range Investigation, Map-

ping and Production) was fully in line with it [4], b) the project COHMAP (Cooperative 

Holocene Mapping Project) correlated global climate change with several astronomical 

factors [5] and c) the project SPECMAP (Spectral Mapping Project), proved that the 

climate responds to changes in solar radiation of different astronomical cycles [6]. 

On the other hand, over time Milanković’s theory has faced massive dispute, main-

ly caused in the 1970s by the publication of marine sediment records knocking 

Milanković’s estimations on ice-age cycles [7]. Indeed, in 1999 disputers of Milanković 

managed to correlate Earth’s temperature with levels of carbon dioxide (CO2), levels of 

methane (CH4) and insolation (see Figure 1.2) [8]. 

  
Figure 1.2: 420.000 years of ice core data from Vostok, Antarctica research station. 
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Although the abovementioned juxtaposition was partially mitigated in 2006, when 

W.F. Ruddiman introduced his carbon dioxide feedback hypothesis, combining Sun’s 

and CO2’s effect on Earth’s climate [9], we won’t argue on this topic any more. Besides 

it seems that humanity has reached a decision; CO2 emissions have to be reduced. 

Obviously this comes from the environmentally-friendly, low-CO2-emission energy 

policies promoted through the United Nations Framework Convention on Climate 

Change (UNFCCC or FCCC) since its initial establishment in 1992 and especially since 

1997 when the Kyoto Protocol was signed [10]. However, trying to preserve a rather 

dispassionate view of the situation, we should not neglect to underline the serious chal-

lenges faced by the Treaty in 2009 in Copenhagen [11] and the limited progress suc-

ceeded afterwards in Cancún and Durban summits. Canada’s withdrawal in 2011 and 

USA having never ratified the Treaty [12] reinforce our skepticism on governments’ 

unity and commitment on CO2 emissions reduction, although in 2009 these two coun-

tries produced only 5.715,77 Mt of CO2 or 19,7% of the global CO2 emissions [13]. 

 

Figure 1.3: Kyoto Protocol participation map as of February, 2012.  

Green = Ratified the treaty. Brown = No intention to ratify. Red = Withdrawn from the Proto-

col. Grey = No position taken or position unknown. 

 

Concluding, although an extended debate is still taking place on whether CO2 emis-

sions are harmful and should be avoided, the majority of the world (see Figure 1.3) is 

committed to their reduction. Some pieces of related evidence are the 3 European 

Commission’s Directives on RES promotion (2001/77, 2003/30 and 2009/28) and, 

Greek Government’s Law 3468/2006 and its amendments thereafter. 
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1.2 The role of CSP in less CO2 

As it is clearly shown in Figure 1.4, electricity and heat cause more than 40% of 

global CO2 emissions [14], making this sector an ideal candidate for emission reduction 

measures that will lead to a cleaner environment. 

 

Figure 1.4: World CO2 emissions by sector in 2009.  

* Other includes commercial/public services, agriculture/forestry, fishing, energy industries 

other than electricity and heat generation, and other emissions not specified elsewhere. 

 

Working on this purpose, the National Renewable Energy Laboratory of the USA 

edited data referring to lifecycle greenhouse gas (GHG) estimates for various electricity 

generation technologies.  As-published data (Figure 1.5) [15] [16] compared to harmo-

nized data (Figure 1.6) [17] exclude the impact of the land use change as well as oil and 

natural gas technologies. A quick look at these figures makes it more than clear that 

electricity generation technologies based on renewable sources produce significantly 

less CO2 during their lifecycle, than those using fossil fuels; nuclear technologies are not 

taken into account due to their controversial categorization and overall attractiveness.  

Furthermore the level of as-published CO2 emissions produced by CSP technolo-

gies is noticeably lower than these of biopower and photovoltaics, while corresponding 

harmonized data prove that exploitation of CSP and wind power produces by far the 

least CO2 among all power technologies. 
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Figure 1.5: Comparison of as-published lifecycle GHG emission estimates for electricity gener-

ation technologies. The impacts of the land use change are excluded from this analysis.  

 

 

Figure 1.6: Comparison of as-published and harmonized lifecycle GHG emission estimates for 

electricity generation technologies.  
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1.3 CSP as a means of saving costs 

Figures 1.5 and 1.6 presented in the previous section show that fossil fuels are the 

largest CO2 emitters among all available electricity generation technologies. But, is it  

this fact that keeps forcing United States of America in replacing these primary energy 

sources with renewable ones [18]?  

 

 

 

 

 

 

 

 

 

Fig-

ure 1.7: Composition of U.S. energy use. Electricity refers to power from primary sources only: 

nuclear, hydropower, solar, wind and geothermal.   

 

Since USA even today is not committed in reducing CO2 emissions, obviously past 

environmental concerns are not enough to explain Figure 1.7. Globally and focused on 

the electricity sector this trend is even more clear as coal, natural gas and oil covered 

75,1% of the world electricity needs in 1973 but only 67,1% in 2009 [13].   

 

 

Figure 1.8: 1973 and 2009 world fuel shares of electricity generation. ** Other includes geo-

thermal, solar, wind, biofuels and waste and heat. 
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Maybe it’s the threat that fuels, i.e. oil reserves, are heading to depletion. However Fig-

ure 1.9 shows that a lucky guess and a proper drilling can save the day [19]. 

Figure 1.9: Oil reserves-to-production (R/P) ratios. 

 

Last but not least is the possibility that the major decline in oil and natural gas share 

in total primary energy sources, observed since the early 1980’s, is caused by Adam 

Smith’s invisible hand of the market [20].    

Figure 1.10: Crude oil prices 1861-2011. US dollars per barrel. World events. 
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Indeed, the chart above (Figure 1.10) [19] could support such a hypothesis as it 

shows that deflated price of crude oil started surging in the early 1970’s until the peak 

of 1980, plunged forming a local bottom in 1998 and recently has exceeded previous 

high reaching the historical peak observed in the mid of 1860’s. On the other hand, con-

sidering gold as the unique constant value in the global economy, one could counter this 

assumption simply by presenting the chart shown in Figure 1.11 [21] which proves that 

currently oil compared to gold is neither cheap nor expensive, historically speaking. 

 

 

Figure 1.11: Gold to Oil Ratio (barrels/ounce). Smoothed prices using 1-year moving average. 

 

Nevertheless, as the efficiency of fossil fuel technologies, used to generate electrici-

ty, tends to reach its upper limit soon (see Figure 1.12) [22], increased fuel prices defi-

nitely result in increased electricity cost.  

 

 

Figure 1.12: Progress of energy efficiency for heat engines and luminous devices 



  -9- 

This would motivate somebody to search for an alternative. Europe is not excluded 

as the corresponding data (Figures 1.13 and 1.14) does not really differ [23] [24]. 

 

 

Figure 1.13: Fossil Fuel Prices (constant 

USD prices of 2008 per BOE). 

Figure 1.14: Electricity Share in the EU Energy 

Mix (values shown as final consumption). 

 

However, choosing an electricity generation technology, even if the only factor that 

had to be optimized was “cost per kWh produced”, is not an easy task. Variations in a) 

daily prices of raw materials and fuels, b) companies engaged in the production of relat-

ed equipment, c) climate and non-climate data (i.e. grid availability and tax incentives) 

among different locations and d) assumptions concerning other kinds of needed data 

(i.e. discount rate), cause extreme variations among estimations of the Levelized Cost of 

Electricity (LCOE) [25]. Figure 1.15 definitely supports this claim [26]. 

 

 

Figure 1.15: Regional ranges of LCOE for nuclear, coal, gas and onshore wind power plants. 
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In addition, if someone takes into account other external costs related to each tech-

nology, widely known as externalities, things become even more complex [27]. 

 

 

Figure 1.16: LCOE ranges for 14 technologies. 

 

According to Figure 1.16, discarding externalities, electricity generation technolo-

gies using fossil fuels can be hardly compared, economically speaking, to these using 

RES other than wind. This fact changes dramatically when costs related to i.e. social 

health and environmental downgrade are counted in, since under certain conditions hy-

brid CSP plants seem to become attractive. This view is further strengthened by the 

findings of a GTM Research’s recent study shown in Figures 1.17 and 1.18 [28], ac-

cording to which the LCOE of CSP plants in the USA vary from 0,168 to 0,117 $/kWh 

and, estimations concerning the near future make CSP plants look cost-effective.  

 

 

Figure 1.17: LCOE for a plant in US Southwest by technology. 
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Figure 1.18: LCOE Forecast by technology, 2010-2020. 

1.4 CSP plants: Under research and development 

"Within 6 hours deserts receive more energy from the sun than humankind con-

sumes within a year". This calculation made by Dr. G. Knies [33], combined with evi-

dence that a) CSP technologies cause relatively few CO2 emissions during their life-

cycle and b) the corresponding LCOE is currently, under certain conditions, acceptable 

and will soon become attractive, probably are the main drivers that motivated plenty of 

industrially developed countries to pay attention to this technology. As a consequence 

USA and EU have diachronically invested important amounts of time and money in 

CSP research [29] [30], while installed capacity surges (see Figure 1.19) [31]. 

 

 

Figure 1.19: CSP global cumulative installed capacity and annual electricity production. 
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This trend seems really powerful as a large number of projects are still under de-

velopment (Figure 1.20) [28] while 7 related studies shown in Figure 1.21 outline a ra-

ther brilliant future for CSP [32]. 

 

 

Figure 1.20: CSP project pipeline atlas. 

 

 

Figure 1.21: Expected installed capacity of solar-thermal power plants in GW. 

 

Furthermore, somebody should not neglect the dominant position in this emerging 

sector held by the projects of DESERTEC Foundation (see Figure 1.22) [33]. The fact 

that these projects include Greece too strengthens the choice made by investors who ap-

plied for the licensing of 1.084,42 MW of CSP in the country [34]. 
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Figure 1.22: EU-MENA project of the DESERTEC Foundation. 

1.5 Estimating electricity generation: A key factor 

In the very beginning of this Chapter the commitment of the majority of the world 

in promoting RES was clearly presented. However, reaching ambitious targets, like the-

se of the Figure 1.23 [35], prerequisites the establishment of numerous measures. 

 

 

Figure 1.23: EU Renewable Shares of Final Energy, 2005 and 2009, with Targets for 2020. 
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As Figure 1.24 shows [35], these measures aim at overcoming both technical and 

financial constraints faced in the promotion of RES. Focusing on the fiscal part the most 

common incentives are feed-in-tariff (f-i-t), capital subsidy and tax credits/reductions.  

On what level should these fiscal incentives be granted though? A quick view, i.e. 

in the f-i-t measure and the way it is applied i.e. in Greece, makes clear that each tech-

nology is subsidized on a different level [36]. Apparently this has to do with the ensur-

ing of the investment feasibility, since according to data given in section 1.3 the LCOE 

of fossil fuels is much lower than this of RES. Expected income is one of the most im-

portant factors that determine the feasibility of an investment and in the case of RES 

plants their sole income is highly correlated to their production amount (the other major 

factor is the selling price). As such, a reliable annual estimation of their electricity gen-

eration becomes highly important for governments willing to promote RES.   

 

 

Figure 1.24: Renewable Energy Support Policies. 
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Similar needs exist in the case of parties interested in investing in electricity gen-

eration, and RES in particular, as they would definitely desire high quality estimations 

on the revenues that such an investment would generate. 

On the other hand, annual production forecasts are by no means enough in the case 

of national grid operators in order to secure electricity supply. For example the Greek 

Operator of Electricity Market (OEM) is running the domestic electricity market ac-

cording to the pool model, implementing the Day-Ahead-System (DAS) and dividing 

the day into 24 hourly periods [37]. This practically means that OEM needs, except 

from an availability statement of the plant’s administrator [37], accurate estimations on 

the expected production on an hourly basis.  

1.6 The Thesis in a Nutshell 

Having previously set the ground of RES development importance, CSPPs potential 

role and the need for their precise modeling, this study goes on with the review of relat-

ed models building process. For this purpose significant effort is made in determining 

pros and cons of adopting either a deterministic or a probabilistic approach, while the 

ability of probabilistic modeling, which is concluded to be the most appropriate for 

CSPPs, constitutes a typical comparison measure of all modeling tools (programming 

languages and software) and integrated CSPP models presented afterwards.  

Our next concern has been the nature of the input data needed so that a respective 

model is built, the review of which strengthens our notion of probabilistic modeling ap-

propriateness. The installation site, the equipment and materials used and the plant’s 

set-up and operation objectives are the four main categories in which these data sets 

could be distinguished. 

 On the other hand, increased reliability sought in the output of such a model con-

stitutes the development of a new one a rather complex and time-consuming process 

and certainly far beyond the scope of this study. For these reasons this study utilizes the 

System Advisor Model, possibly the most highly performing, widely available, CSPP 

model, by the use of which a hybrid parabolic tough CSPP with thermal storage located 

in Greece is simulated. Further analysis is executed with respect to the way that installa-

tion site, equipment, system’s uncertainty and cost affect that plant’s performance. 

This study ends with the summary of major conclusions and the provision of rec-

ommendations to researchers interested in this field.   
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2 Modeling CSP Plants  

In this section we present the three major and consecutive dilemmas faced by 

someone who aims at estimating the production of a CSP plant, as well as a short re-

view of each one of these options.  

2.1 Introduction 

Estimating the production of a hybrid CSP plant can be achieved by either spending 

some extra time and developing a new model from scratch or quitting from tailor-made 

claims and using an existing one. With regard to the latter option someone can choose 

between using already available total system models and establishing an improvised 

model using common programming codes, either exploiting existing component/process 

sub-models or not; pros and cons do not really change compared to the first dilemma.  

Notwithstanding the first and probably the most crucial decision, that has to be 

reached, concerns the level of uncertainty that someone would like that model to incor-

porate. Faith to robust variable states leads to adoption of deterministic models while an 

“everything flows” approach is better supported by probabilistic ones. 

2.2 Certainty vs Probability 

A mathematical model describes a system by the use of mathematical concepts and 

language, supporting efforts made for a) system’s logical explanation, b) analysis of its 

components’ effect and c) estimations on system’s behaviour under different conditions 

[38]. With regard to the latter, mathematical models are classified, in terms of their 

variable states, in either deterministic or probabilistic.  

The following two subparagraphs provide comprehensive data regarding CSP  plant 

models, classified on the basis on whether they acknowledge or not the inherent 

uncertainty of the related systems.  
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2.2.1 Deterministic Models 

Deterministic models are distinguished for their consistency as the same determin-

istic model produces always the same output unless initial conditions (input) change. 

This derives from the major principle underlying deterministic models according to 

which each one the variable states they include are described by unique (central) values 

based on model’s parameters and previous states of these variables.  

According to Gelman et al. (2009) [39], models of this class require less effort to be 

built and are easier to fit and understand. Probably benefits mentioned above have been 

the main reasons for which until today deterministic models constitute the majority of 

available modeling tools for CSP plants.  

On the other hand, although sensitivity analyses are not excluded in the case of de-

terministic models, this process is proved to be laborious in the case of large number of 

parameters, while sensitivities examined may mislead due to interactions among mutu-

ally depended parameters [40].   

2.2.2 Probabilistic Models 

On the opposite side stand probabilistic models, that is to say models which identi-

fy and quantify, by the use of probability distributions, uncertainties inherent in a sys-

tem, and determine their impact in system’s performance. This kind of models estimates 

the confidence and reliability of their results while they perform solid sensitivity anal-

yses identifying the most crucial parameters and processes [40].  

This modeling approach requires the completion of three major phases: a) the 

building of a probability distribution for each uncertain (stochastic) parameter and sam-

pling the corresponding distribution(s), b) running the system model and c) evaluation 

of the distribution(s) results [41]. 

a) Stochastic Parameters: Distributions and Sampling 

Uncertain parameters are considered to be these for which specific data is not avail-

able or variability is expected while the choice of the distribution type that is to be used 

for each of these parameters is based on actual data, bibliography or personal judgment. 

Figure 2.1 indicatively presents probabilistic charts and functions of two distributions 

stratified into 5 equally probable parts. 
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Figure 2.1: Histograms (left) and cumulative distribution functions (right) of parameters with 

normal (top) and uniform distribution (bottom) [41]. 

 

The most common sampling methods for the selected distributions are Monte Carlo 

and Latin Hypercube Sampling (LHS). Nowadays both these two methods are widely 

used in sampling, although LHS’s superiority has been pointed out quite many years 

ago [42]. Please note that the sampling process could also include the pairing of sto-

chastic parameters so that potential correlations among them to be taken into account 

[43]. 

As far as the needed number of the samplings per variable is concerned, except 

from the rule of thumb according to which “the more the better”, there are plenty of re-

lated techniques available, depending on each case’s special features [44].  

b) Probabilistic System Modeling 

Sampled distributions built in the previous phase constitute the input, or a part of it, 

of a probabilistic model which is run so many times as the distributions are sampled. 

Although the abovementioned imply more effort during the model building and 

running processes, this has to be compared to the added value of model’s results. Not-

withstanding, only one out of the five below presented CSP plant models was primarily 

developed adopting the probabilistic approach. 

c) Evaluation of Results 

As implied above, probabilistic models return highly valuable results as a) through 

a cumulative distribution function they indicate the probability that a system achieves a 
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specific metric and b) by the use of regression, linear or not, the researcher becomes 

able to rank the impact caused by stochastic parameters to the model outcome. 

2.3 Modeling tools 

After a decision is reached, on whether counting in uncertainty and evaluating its 

possible impact on a CSPP performance is important or not, interested researchers may 

choose among a variety of programming languages and computing environment in order 

to build a custom-made CSPP model. Below, their major alternatives are reviewed in 

brief.  

2.3.1 Fortran 

Fortran is one of the most popular programming languages being mainly applied to 

numeric computations and scientific computing. Since the 1950’s, when IBM developed 

it, it has repeatedly been evolved – from the structured programming of Fortran 77 to 

concurrent programming of Fortran 2008, dominating this area [45]. Furthermore 

Fortran, along with C and C++, seems to constitute maybe the most preferable alterna-

tive for scientific codes building thanks to its extended calculating abilities, while it is 

widely used by engineers seeking for efficiency and high execution speed [46].  

Undoubtedly, Fortran is not an ideal programming language suitable for all models 

as it lacks a user-friendly interactive interface and carries strict and time-consuming 

processes – calling libraries, declaring dimensions and intrinsic type of variables etc 

[47].  Still its wide applicability, and specifically in CSPP modeling, can be assessed by 

the number of codes written in Fortran, such as a) DELSOL – mostly an optical design 

and performance of heliostat fields code suitable only for tower power systems [48], b) 

CIRCE – an optics modeling code suitable for both troughs and dishes [49], c) 

SOLERGY – a total performance CSPP model suitable of tower power systems [50], 

and d) TRNSYS – an integrated computing package mainly used in the renewable ener-

gy and buildings engineering (see 2.4.2).   

Fortran can also successfully support probabilistic modeling, a conclusion deriving 

from the numerous of related models found [51] [52]. Particularly in CSPP modeling, in 

2010 Ho et al. [41] presented the SOLERGY Batch Mode. The latter is a program al-

lowing SOLERGY, an initially deterministic model, to run in a probabilistic mode by 
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introducing an input file containing stochastic parameters and delivering multiply simu-

lated output values – i.e. energy output, LCOE etc.  

2.3.2 Mathematica 

Moving from single programming languages to integrated computational software 

programs, Mathematica holds an exceptional position among the latter. Initially devel-

oped in 1988 by Wolfram Research, Mathematica is widely used in several areas of 

technical computing, such as engineering and mathematics. The program is written in 

Mathematica and C languages and since its first version (ver. 1.0) it has repeatedly been 

modified being evolved into a powerful computing and analyzing tool with a rich math-

ematical function library, high compatibility with other programs and languages, ad-

vanced visualization abilities and a smart two-part interface (ver. 8.0.4) [53]. 

Probably these features have been some of the major reasons for which 

Mathematica is widely used in modeling [54] [55] and particularly in CSPPs. Some of 

the models developed in Mathematica in the latter field are: a) a thermal energy storage-

system model aiming at the facilitation of heat transfer [56], b) a mathematical model 

arguing that the decarbonation of the energy infrastructure is technically plausible [57], 

c) a statistical model of hybrid solar power cycles evaluating the capacity and analyzing 

the performance of thermal storage [58], d) a simulation model estimating the perfor-

mance of CSPPs with thermal storage [59] and e) a numerical model simulating the 

base load electricity demand in order a suitable thermal storage system to be sized [60] 

Last but not least stands the SimulCET, an integrated CSPP performance model (see 

2.4.4). 

Although none of the models above, except from the SimulCET, counts in uncer-

tainty of the treated variables, Mathematica is capable of supporting a great range of 

probabilistic modeling [61] [62]. 

2.3.3 MATLAB 

MATLAB is also distinguished for its dual nature as it constitutes both a high-level 

programming language and an interactive environment, written in C and Java lan-

guages, suitable for visualization and complex computations [63]. It was released in 

1984 (MATLAB 1.0) by MathWorks and since then it has been updated several times 

reaching its current form (MATLAB 8). MATLAB has an extended range of applica-

tions among of which stand function and data plotting, matrix manipulations and model-
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ing, while it can easily interface with other programming languages such as C, Fortran 

and Java. Furthermore, by the use of MuPAD symbolic engine and Simulink, MATLAB 

users are allowed to perform symbolic computations, and graphical simulations and 

model-based designing respectively [64]. It is also notable that a MATLAB code is of-

ten significantly shorter than this that a compiled language would generate [65], while it 

is interpreted when the program is executed, decreasing the execution speed but, freeing 

the researcher from memory management and allowing dynamic typing and interactive 

sessions [46].  

MATLAB’s advantageous features, among which stands its user friendliness with 

regard to displaying results both graphically and in tabular mode [66], made it highly 

attractive for both academic and industrial researchers while it is widely applied in solar 

energy field too [67] [68] [69]. As far as CSPP modeling is concerned, MATLAB is one 

of researchers’ top choices. Pieces of related evidence are: a) a model evaluating the 

coupling of desalination units to parabolic-trough solar power plants [70], b) a total per-

formance model of a parabolic-trough solar power plant [71], c) a model determining 

the solar field size of CSPP coupled to a desalination unit [72], d) a model analyzing the 

levelized energy cost of various CSPPs and locations [73], e) calculation of the solar 

flux concentration through a solar tower system [74], and f) a model calculating the 

output of hybrid systems of solar towers with gas turbine [75]. 

  For once more, models and codes referred above do not take into account systems’ 

inherent uncertainties. Nevertheless, MATLAB is definitely suitable for probabilistic 

modeling [76] [77] [78]. 

2.3.4 Spreadsheets 

Spreadsheets are computer software used in data management and analysis. Their 

computational attributes combined with their user-friendliness have made them highly 

popular among computational/modeling tools. Currently plenty of related applications 

are commercially available although Microsoft Excel, using Visual Basic for Applica-

tions as its programming language, has clearly dominated the corresponding market 

[79]. Probably this has been the reason for which numerous of add-in packages have 

been developed for this particular application, extending basic version’s computational 

abilities.  
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Diachronically engineering has been one of the most important boosters of spread-

sheets development and blooming due to its advanced computational needs. Indicatively 

we mention that even the very first spreadsheet application, VisiCalc, was developed for 

engineering purposes [80]. Some of the CSPP models developed in spreadsheets are: a) 

EXCELERGY – an integrated model built, by the National Renewable Energy Laborato-

ry (NREL) to simulate solar thermal trough power plants, which is not maintained any more 

but it has been partially transferred to probably the most popular CSPP integrated model, 

System Advisor Model (see 2.4.3) [81], b) RETScreen – a performance model used in vari-

ous renewable technologies (see 2.4.1), c) Dish Field Systems Model – a model estimating 

the dish/engine systems’ energy performance [82], d) an economics model comparing dif-

ferent reflecting materials in a CSP plant [83], and e) a cost model used to compare concen-

trated solar-based combined heat and power to alternate technologies [84] . 

Finally we underline discretion, provided to researchers building spreadsheet-based 

models, in selecting between a deterministic or probabilistic mode. Although System Advi-

sor Model is the only spreadsheet-based CSPP model providing such an option, other codes 

developed in this modeling tool prove its ability to support probabilistic modeling [85] [86] 

[87] [88]. Particularly in the case of Microsoft Excel, due to limited abilities of its basic 

version, enhanced management of systems’ uncertainty is achieved by the use of various 

risk analysis add-in packages [89].  

2.3.5 Other Modeling Tools 

A. JavaScript: JavaScript is a scripting-language, using syntax similar to this of C 

language. It was developed by Brendan Eich and its major use is limited in Web brows-

ers, creating advanced interfaces and dynamic websites, although it also used in non-

Web applications such as PDF documents [90]. Since JavaScript has only first-class 

functions, and consequently limited computational abilities, it is not used widely in en-

gineering and the only CSPP model written in this language is SIMPLESYS (see 2.4.1). 

Despite JavaScript’s ability to incorporate uncertainty into generated models, only one 

model found to have taken advantage of this attribute [91]. This supports our notion that 

this programming language is rather not preferable in building demanding computation-

al models. 

B. C++: It is a compiled, intermediate-level programming language developed by 

B. Stroustrup in 1979 at Bell Labs [92]. Being one of the most popular programming 

languages [93], it is applied on a large number of fields [94], engineering included [95]. 
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Nevertheless, despite its ability to support probabilistic modeling too [96], it seems that 

it is not really attractive for CSPP modeling as the only model found being written in 

C++ is the integrated CSPP model “DinaCET” (see 2.4.4). 

C. Eclipse: Eclipse IDE (Integrated Development  Environment) is open source soft-

ware supporting multiple programming languages. Initially developed by IBM VisualAge, 

it is written in Java as it is addressed mainly to Java developers [97]. Eclipse IDE is found 

to be applied in engineering [98] and limitedly in CSPP modeling too as it was used for the 

building of “Tonatiuh”– a software package using Monte Carlo ray tracer for the optical 

simulation of CSPPs [99]. Probabilistic modeling is also included in this software’s fea-

tures [100]. 

2.4 Integrated CSP Plant Models 

Integrated CSPP models stand at the top of the total-system modeling pyramid, 

proposed by C. K. Ho and G. J. Kolb [40], as they execute calculations with regard to 

the overall system performance, while usually they are capable of economics modeling 

too (Figure 2.2).   

 

Figure 2.2: The total-system modeling pyramid. 

 

Taking this opportunity it would be meaningful to mention that this approach, par-

tially modified, is also adopted in this study (Figure 2.3): a) in 2.2 we examined the dif-

ferences between models incorporating uncertainty or not, b) in 2.3 we reviewed some 

of the major modeling tools available for building, component by component, a total-

system model, and c) in this paragraph the most popular ready-to-use integrated CSP 

models are presented, regardless of their deterministic or probabilistic approach. 
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Figure 2.3: A new total-system modeling scheme. 

 

Please note that challenges emerging by the nature of a model’s input are consid-

ered to be so highly important, that applicability of information provided in this section 

becomes meaningful only after thorough examination of variables that are to be counted 

in by the model (see section 3). 

Finally, we justify the number and features of the integrated CSPP models present-

ed below reminding that scope of this study is to model the performance of a hybrid 

parabolic trough power plant. On this basis, corresponding models applied only to other 

CSP technologies were neglected. 

2.4.1 RETScreen 

RETScreen – Clean Energy Project Analysis Software, is a decision support tool 

calculating energy production and savings, and performing economics and risk analysis 

with regard to a variety of renewable-energy and energy-efficient technologies, solar 

thermal power included. This Excel-based software is developed and maintained by the 

CanmetENERGY research centre and its extended popularity lead to the release of the 

most recent 4th version [101]. 

With regard to CSPP modeling, RETScreen provides a single model for all CSP 

technologies, while there is no provision for a potential coupled storage system. Never-

theless on its start-up sheet (Figure 2.4), the user is able to choose between a single- and 

a multiple-sources power station, either connected to the grid – with internal load or not, 

or isolated. The last major user-defined parameter of this sheet is the “heating value ref-
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erence” which is related to the cycle of the fuel combustion and particularly to whether 

the combustion product is condensed or not. 

 

 Figure 2.4: The RETScreen start-up sheet. 

 

Climatic data used for the simulation of CSPPs come via the NASA Prediction of 

Worldwide Energy Resource (POWER) project, developed by NASA's Langley Re-

search Center and CanmetENERGY (Figure 2.5). 

 

Figure 2.5: The RETScreen standard input climate data. 
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 Nevertheless, users are allowed to enter their own climatic data too (Figure 

2.6). Particularly regarding solar radiation, corresponding values refer to solar energy 

received on average during one day on a horizontal surface for each month. 

 

Figure 2.6: The RETScreen manual input climate data. 

 

After declaring the above, the user enters values regarding the estimated “internal 

load” of the CSPP per month, while the last sheet contains the “energy model” (Figure 

2.7).  The latter requires the completion of a data set regarding a) the base load power 

system, b) the intermediate load power system, c) the base peak power system and d) 

the back-up power system. On the same sheet estimated energy delivered to the internal 

load and to the grid is presented. 

Focusing on the modeling of the CSPP we underline that the plant’s estimated out-

put is calculated on the basis of installed power (power capacity) and the capacity fac-

tor. Since the latter refers to the ratio of the average power produced by the power plant 

over a year to its rated power capacity, the software does not handle directly the interac-

tion between the climate data of a specific location and a CSPP’s output while help pro-

vided to the user is limited to the provision of a typical capacity factor rate of 20 to 

70%. The same applies to other aspects of potential differentiations among CSPPs (see 

Section 3). 

Moreover, although the provision that a power plant uses multiple technologies im-

ply the existence of several interactions among them, surprisingly enough the software 

adopts a rather simplified approach on this alternative (Figure 2.8) neglecting the auxil-

iary alternative. 
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Figure 2.7: The RETScreen energy model sheet. 

 

Figure 2.8: The RETScreen Power System Load Definition – Base, Intermediate & Peak. 



  -29- 

Finally, it might be helpful to notice that all RETScreen energy models are deter-

ministic despite that feasibility analysis performed includes an important level of risk 

analysis too. Probably weaknesses mentioned above are the main reasons for which 

RETScreen does not seem to stand among the top choices for CSPP modeling.  

2.4.2 TRNSYS 

TRNSYS is a software platform enabling users, through a modular structure, to 

simulate the performance of transient systems and particularly solar energy systems 

[102]. Its engine, the typical component library, is written in Fortan while users may 

add their custom-made components developed also in Fortran, C, C++ or any other lan-

guage creating a DLL [103].  TRANSYS was developed at the University of Wisconsin 

[104], became commercially available in 1975 and today is maintained by the collabora-

tion of four entities based in US, France and Germany [105]. In the rest of this para-

graph we will provide short information on the process followed in order a CSPP model 

is built in TRNSYS 17. 

So, after the design of the system to be modeled is completed, the user needs to de-

cide the components that will be used in the simulation, to add them in the TRNSYS 

Simulation Studio and to configure them. Simulation Studio is one of the core modules 

of TRNSYS including numerous tools such as simulation engine and graphical connec-

tion programs as well as plotting and spreadsheet software. 

 

Figure 2.9: The TRNSYS Simulation Studio start-up sheet. 
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As Figure 2.9 presents, creating a new model on this module starts from a blank 

sheet on which users are enabled to drug and drop ready to use but also further configu-

rable components, either included in the default TRNSYS library or custom-made by 

the users. 

In the case i.e. of a simplified1 parabolic trough CSPP with thermal storage, the first 

component comes from the category “Weather Data Reading and Processing”. 

TRNSYS library contains more than 1.000 related files concerning more than 150 coun-

tries, containing almost 60 kinds of related output data – temperature, wind, solar radia-

tion etc (Figure 2.10), although users can create their own files too. Moreover this kind 

of components count in adjustable parameters such as the CSPP tracking mode, the 

ground reflectance etc (Figure 2.10).    

  

Figure 2.10: a) Left – Adjustable parameters, b) Right – Component output data categories. 

 

Secondly we add the component handling the solar collectors. In this case among 

the 13 related parameters stand the number of series, the collector area and the fluid 

specific heat while component’s output is limited to outlet temperature and flow rate 

and useful energy gain. This time users are enabled to interfere with a set of 12 kinds of 

input data processed by this component too, as another one stands right before this – the 

“Weather Data Reading and Processing” component. The same rational applies to the 

rest two components – “Thermal Storage” and “Heat Exchanger”, which also enable 

users to choose among and adjust plenty of parameters and input and output data. 

After the insertion of one component into the project sheet, the user takes care of 

linking it with other already added components. Figure 2.11 indicatively shows a related 

                                                

1 Due to the fact that the TRNSYS version used is a demo-version, the presented project could not include 

more than five components. Due to this fact analysis ends at the exit of the heat exchanger. 
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screen and particularly some of the connections between the output of the “Weather Da-

ta Reading and Processing” component and the input of the “Solar Collector” compo-

nent. Obviously these linkages are essential for the establishment of data flow and the 

execution of the respective calculations. After all appropriate links have been set, mod-

el’s operation can be simulated and the results are shown online and/or printed in a file 

(Figure 2.12). 

 

Figure 2.11: The TRNSYS screen for the linkage of two components. 

 

Figure 2.12: The TRNSYS online result plotter. 
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Summarizing the impression left by this short review of TRNSYS, we underline a) 

the user-friendliness, b) its extended capabilities – particularly regarding the way it han-

dles step-like time functions despite the fact that example above did not demonstrate 

them, c) its wide adjustability to a wide range of needs and d) interactivity with plenty 

of other programs and programming languages. On the other hand we cannot neglect 

that TRNSYS requires highly detailed input data in order that expected plant perfor-

mance is reliably calculated and that it does not support probabilistic modeling. In any 

case, the large number of CSPP models built in TRNSYS is considered to be a well-

established proof of its value [74] [81] [106] [107] [108] [109] [110].  

2.4.3 System Advisor Model 

System Advisor Model (SAM), originally called the “Solar Advisor Model”, is one 

of the most recognizable integrated CSPP models. Although SAM is an Excel-based 

software, we should not neglect that it keeps wrapping around TRNSYS for the CSPPs 

energy performance simulation. Having been developed by the National Renewable En-

ergy Laboratory in cooperation with Sandia National Laboratories in 2005, the model is 

regularly maintained and updated reaching its current form (Version 2012.5.11) [111]. 

Starting a new simulation of a parabolic trough CSPP in SAM, users are enabled to 

choose between two kinds of models - a physical and an empirical one. The former es-

timates the plant’s performance counting in first principles of engineering and thermo-

dynamics while the latter uses a set of equations formed trough the exploitation of data 

gathered from the SEGS projects in the USA.  

After the desired model is initialized, the first sheet that is to be completed concern 

climate data. Please note that respective data is not entered as stand-alone values but as 

a file (TM2, TM3 or EPW), coming from either SAM library or a user-defined location. 

Direct normal radiation, dry-bulb temperature, atmospheric pressure and wind speed are 

some of the data elements that such a file includes while all of the respective values re-

fer to hourly time-spaces. Summary of the data contained in input files can be displayed 

by the use of SAM’s Weather Data Viewer, a module enabling the generation of several 

types of graphs such as time series, heat map, monthly profile and duration curve.   

The next sheet, called “Annual Performance”, requires the completion of two cells: 

a) the estimated system degradation caused by system aging and b) the availability ex-

pected counting in regular and contingent outages. 
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Having completed the above, let’s say preliminary, sheets, users start configuring 

the vital parts of a parabolic trough CSP starting with the solar field. Values needed in 

this particular sheet are distinguished in several categories such as the solar field param-

eters, the heat transfer fluid and the design point (Figure 2.13). What is important to 

mention is that users are enabled either to enter a solar multiple looking for the total re-

quired aperture and number of loops or vice versa. 

 

 

Figure 2.13: SAM Solar Field Sheet. 

 

The following two sheets particularize variables related to the solar collectors and 

receivers enabling users to incorporate sufficient details in their models, while next 
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comes the configuration of the power cycle which may also be coupled with a fossil 

backup boiler (Figure 2.14) 

 

 

Figure 2.14: SAM Power Cycle sheet. 



  -35- 

Close to the end stands the completion of the “Thermal Storage” sheet, in which 

users also define whether the fossil backup system a) aims at a minimum backup level 

or b) operates supplementary. In most cases the second option fits better in grid con-

nected CSPPs with a PPA (Figure 2.15). 

 

Figure 2.15: SAM Thermal Storage sheet. 

 

Having completed the last sheet, referring to internal loads, too, users are enabled 

to choose among a large set of simulation options such as parametric and sensitivity 

analysis, optimization etc. Probabilistic modeling is also supported as SAM may gener-

ate histograms showing the frequency distribution of selected output values counting in 

as input the distribution followed by one or more variables (Figure 2.16). 

 

Figure 2.16: The insertion module of a variable containing uncertainty. 
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Obviously this software’s holistic approach on parabolic trough CSP plant model-

ing has been the ground on which several researchers were based in order to develop 

their custom-made SAM models [112] [113] [114] [115] [116] [117]. 

2.4.4 Other Integrated CSPP Models 

A. SIMPLESYSY: SIMPLESYS is an oversimplified Web-based model and not 

surprisingly the programming language used is JavaScript. It utilizes an instantaneous 

energy balance and a constant-temperature control system providing estimations on the 

thermal output of a CSP system with storage, regardless of the CPS technology used 

[118]. In order that a CSP plant operation is simulated, the user fills in estimated values 

with regard to the features shown in Figure 2.17. 

 

Figure 2.17: The SIMPLESYS energy model. 

 

Although the model is useful for preliminary calculations and may be further refined in 

order to take also into account more variables and to estimate the electrical output, it 

definitely falls short compared to analysis quality provided by other CSPP modeling 

software. 

B. SimulCET: SimulCET is a Mathematica-based software package developed by 

the National Renewable Energy Centre of Spain (CENER) exclusively for the assess-

ment of parabolic trough CSPPs’ performance. In the above framework this modeling 

program, based on both empirically and physically derived correlations, analyzes the 

impact of different operational strategies on the expected outcome as well as the way 

that gas utilization and thermal storage affect a CSPP’s energy performance [119]. Alt-

hough SimulCET is not widely commercially available, it seems that except from 

CENER, privately held companies also take advantage of its limitedly promoted fea-
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tures [120], among of which probabilistic modeling stands prominently [121]. As we 

did not have the chance to be directly engaged with this software package, this review is 

limited in the provision of a few program’s screenshots found in other sources Figures 

2.18 & 2.19). 

 

Figure 2.18: The “Climate” data input tabs [122]. 

 

 Figure 2.19: The “Solar field” data input tab and the “Time Graphics” results tab [123]. 
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C. DinaCET: DinaCET is a computer tool enabling users to develop stand-alone 

dynamic programs simulating the performance of parabolic troughs CSPPs. Written in 

C++, it produces codes in the same language, each of which can simulate only a specific 

plant. Despite this rigidity, generated models still look attractive as they enable users to 

model a large set of variables and operational transient alternatives for each specific 

plant. Last but not least we notice user-friendliness provided by the 3D Graphic User 

Interface [123]. Having already been validated trough its comparison to data gathered 

from Nevada solar one power plant [124], it is not used exclusively by CENER [120]. 

Nevertheless, the fact that DinaCET is not publicly available, this short review ends 

with the following screenshots found in other secondary sources (Figures 2.20 & 2.21). 

 

 Figure 2.20: DinaCET’s solar field simulation sheet [122]. 

 

 Figure 2.21: DinaCET’s simulation of a cloudy day operation [122].
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3 Challenges on Modeling a 
Parabolic Trough CSP Plant 

The scope of this section is to illustrate the needs, restrictions and specificities that 

derive from the input required in the modeling of a parabolic trough CSPP (Figure 2.3). 

After a clear view on the above is formed, researchers are enabled to choose among 

modeling tools presented in Chapter 2.  

3.1 Introduction 

The operation principle of a parabolic trough CSP plant may vary depending on 

four major factors: a) the coupling of a thermal energy storage system or not, b) the us-

age of a fossil fuel-fired boiler or not, c) the choice between an intermediate heat trans-

fer fluid (HTF) and the direct production of steam2 and d) the objectives of its operation 

(i.e. performance optimization, LCOE minimization, energy safety etc).  

 

 Figure 3.1: Diagram of a hybrid parabolic trough with thermal storage [126]. 

                                                

2 Due to the current lack of commercial maturity of the direct steam generation technology [125], dataset 

determined in this section takes into account only CSPP using an intermediate heat transfer fluid. 
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 As the latter do not necessarily affect a CSPP’s components but rather their fea-

tures and positioning in the respective flow chart, Figure 3.1 shows a typical diagram of 

probably the most complex combination of these factors, that is a hybrid parabolic 

trough CSPP with thermal storage and a HTF. 

Transforming the above schematic diagram into an power balance flow chart we 

conclude in Figure 3.2, which in brief determines that a) solar power is reaching the so-

lar field (CSP system) (QR); b) this power is partially rejected (QRj) and partially further 

exploited (Q0); c) Q0 reaches, reduced due to transfer loses, the power block (Q1) and/or 

the energy storage system (Q2) according to current needs d) power delivered to power 

block (QL), directly from the solar field (Q1) and/or the energy storage system (Q3) 

and/or a fossil fuel supplement (QF), is transformed to electric power. 

 

 Figure 3.2: Power flow chart of a hybrid parabolic trough with thermal storage [60]. 

 

Taking as granted that a CSPP model’s objective is to perform calculations based 

on the power flows and components shown above, we adopt an approach, similar to that 

proposed by Garcia et al [59], according to which five main categories of data are need-

ed for this process to be executed: a) the geography of the installation site, b) climatic 

data of the site, c) data and characteristics of the solar field, d) operation principle and 

features of the thermal energy storage system and e) characteristics of the power cycle 

and auxiliary equipment. As a result, in the following pages we try to address the most 

important issues related to the gathering and process of the data mentioned above, par-

tially based on two highly recognized bibliographic works [127] [128]. It should be not-

ed that the following dataset is indicative as it is strongly related to the sophistication 

level of the model to be built.  
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3.2 Installation Site  

Starting with the calculation of the power reaching the solar field, three main sets of 

values should be taken into account: a) the relative position of the sun, b) the 

atmospheric attenuation and c) external shading. 

3.2.1 Sun Relative Position 

Functions applied in estimating the position of the sun in relation to the installation 

site require a large set of data, only three pieces of which differ from site to site when 

both are located on Earth: a) latitude, b) longitude and c) time zone. Obviously values 

given to the latter cannot be disputed due to its standardization [129], while errors pos-

sibly incorporated in the chosen geographical coordinates may easily considered to be 

trivial in the case of CSPP modeling [130]. 

3.2.2 Atmospheric Attenuation 

Solar power reaching the earth’s surface is partially reduced compared to this enter-

ing the atmosphere because some components of the latter tend to scatter, reflect and/or 

absorb it. These solar power losses depend on a) the ozone layer thickness, b) the dis-

tance traveled through the atmosphere before reaching that site, c) the amount of air 

haze and d) the extend of the cloud cover. As all of these factors could be considered as 

a function of the site’s elevation, we determine the latter as another needed input data 

of a CSPP model. This assumption is partially validated by a research concluding in cer-

tainly non-negligible correlations between the annual average direct normal irradiance 

(DNI) and the aerosol optical depth (AOD) as well as between the latter and the eleva-

tion (see Figures 3.3 and 3.4) [131]. It should be noted that uncertainly included in ele-

vation measurements could be treated similarly to that of geographical coordination.  

  

Figure 3.3: DNI as a function of AOD [131]. Figure 3.4: AOD as a function of elevation [131]. 
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3.2.3 External Shading 

This term is used to describe shading caused to a site by factors other than CSPP’s 

components, such as trees, mountains, buildings etc. Additional data needed, in order to 

count in solar power losses caused in these cases, include obstacles’ a) height and b) 

positioning compared to the site, c) length (its projection to the east-west axis), d) azi-

muth and e) distance from the site. Once more, respective values’ uncertainly may 

considered to be trivial (par. 3.2.1). 

3.3 Climate  

Another large set of input data required for the modeling of a CSPP concerns 

weather conditions of the installation site. This data set, usually provided as a Typical 

Meteorological Year (TMY) [132], enables users to complete the estimation of solar 

power reaching the solar field while they initiate calculations related to other CSPP 

power flows. We distinguish related input in a) solar and b) non-solar weather infor-

mation and, despite the lack of respective bibliographic validation, we feel safe to as-

sume that the former contributes significantly more than the latter in the modeling of a 

CSPP. This assumption could definitely help researchers in climatic data gathering, as-

sessment and processing as we should not neglect that weather estimations depend on 

past, either short- or long-term, observations which is likely not to be validated in the 

years to come due to measurement uncertainties and/or lack of representativeness. The 

fact that measurement uncertainty analysis has been highly formalized is provided as a 

piece of related documentation [133]. 

 

Figure 3.5: An example in which neither the final nor the average of initial and final tempera-

ture provides a reliable representation of the temperature over the time step [135]. 

 

Furthermore, researchers aiming at accurate CSPP modeling should take into ac-

count that a CSPP operates transiently. This makes the temporally stepwise modeling 
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necessary, while the time step needed is inversely related to accuracy sought (Figure 

3.5) [134] [135]. Nowadays climatic data with a temporal resolution of one minute can 

be found [136], the use of which could enhance results accuracy compared to, the most 

commonly used, hourly data sets. 

3.3.1 Solar Data 

The carrier of solar power reaching a CSPP’s solar field is the solar radiation 

which, with regard to solar energy conversion technologies, is distinguished in three 

fundamental components: a) the direct normal irradiance (DNI) being available di-

rectly from the solar disc, b) the diffuse horizontal irradiance (DHI) deriving from scat-

tered radiation in the sky dome, DNI excluded, c) the albedo irradiance deriving from 

ground effects and d) the global horizontal irradiance (GHI) representing the geometric 

sum (counts in the solar azimuth angle) of the above two components. 

CSPPs exploit only DNI which can also be calculated in the case that values of 

DHI, GHI and albedo ratio are available. 

3.3.2 Non-solar Data 

Dry-bulb temperature contributes in the calculation of the power losses incurred 

in the HTF piping system and the thermal energy storage system, and the heat power 

rejected in a condenser performing either wet or dry cooling. On the other hand wet-

bulb temperature is used only in the case of wet cooling.  Alternatively, wet-bulb tem-

perature can be calculated by psychrometric charts combining dry-bulb temperature, 

dew-point temperature and relative humidity [137].  

Atmospheric pressure is also used in calculations performed in order to calculate 

power losses incurred in the HTF piping system and power rejected in a wet or dry 

cooling condenser.  

Finally, the contribution of wind velocity and direction is limited in supporting the 

more accurate estimations regarding power losses incurred in the HTF piping system. 

3.4 Solar Field 

Estimating the power output of the solar field requires input of several datasets re-

lated to a) its layout, b) the solar collector assemblies (SCAs), c) the heat collection el-

ement (HCE) and d) the heat transfer fluid. 
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3.4.1 Lay-out 

A typical solar field is consisted of a, divisible by 2, number of subfields connected 

in parallel while the latter are formed by a certain number of SCAs loops connected also 

in parallel. A SCAs loop is derived from SCAs connected in series and SCAs are made 

from modules also connected in series. As a result, related input data needed is the 

number of subfields, the number of SCAs loops of each subfield, the number of 

SCAs for each loop and the number of solar collector elements (SCEs) in each SCA 

(Figure 3.6) [138]. The need of more than one subfield formation is grounded on the 

objective of minimizing pumping pressure losses [135]. Finally, in order to calculate 

shading from one row of SCAs to another, the distance between them is needed to be 

determined. Obviously we consider all of the above input data as free of uncertainties. 

 

Figure 3.6: Three indicative solar field lay-outs [138].  

3.4.2 Solar Collector Assemblies  

Solar collector assemblies (Figure 3.7), probably the “heart” of a parabolic trough 

CSPP are consisted of 3 major components: a) the reflective surface, b) the absorber or 

receiver or heat collection element (see 3.4.3) and c) the tracking mechanism. 

 

Figure 3.7: Three indicative solar field lay-outs [139]  
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Starting with their positioning, someone needs to determine their inclination orien-

tation and particularly collector tilt and azimuth, though they mostly align in either the 

N-S or the E-W direction exploiting a single-axis tracking mechanism. The latter orien-

tation does not require a tilt, causes almost zero shadowing effects between the rows, 

and provides a more seamless seasonal production level [140], while the former per-

forms significantly better on an annual basis, especially in its polar mode – SCAs are 

titled equally to the site’s latitude. Uncertainty inherent in this data is almost zero. 

On the other hand, major geometrical input variables required in order to simulate 

related power flows in a single SCA are its reflective aperture area which can roughly 

be calculated as the product of its length and width (not accounting for spaces, gaps and 

structural area) and the average surface-to-focus path length being calculated know-

ing the focal length and aperture width. Please note that the total reflective aperture area 

is estimated taking into account the irradiation at design and the desired solar multi-

ple, higher values of which typically result in higher investment costs, higher produc-

tion and higher probability for solar energy losses (Figure 3.8) [141]. Once more data 

uncertainty is considered as trivial. 

 

Figure 3.8: Comparison of thermal power production of 2 solar field multiples [141].  

 

As far as their optical performance is concerned, related calculations require the de-

termination of the clean area reflectance typically provided by the SCA manufacturer, 

the 3 incidence angle modifier coefficients which are rather empirically determined 

[142] [143] and the reduction of clean area reflectance due to potential geometry de-

fects, dirt or other reasons. The whole dataset includes uncertainty the characteristics 
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of which can roughly be standardized apart from related works published on clean area 

reflectance [144] and dirt effect [128].  

Finally, with regard to the tracking mechanism we underline the need to define its 

ability to defocus, if needed, partially or completely the reflectance area, tracking er-

rors possibly reducing the optical efficiency. Moreover, the related internal load can be 

calculated taking into account the tracking power per SCA needed and, stow and de-

ploy angles. Except from the tracking error which is handled similarly to optical errors 

mentioned above, the remaining of the dataset could be regarded as uncertainty-free.  

Please note that the needed SCA input variables presented in this paragraph can 

easily derive even if only the respective SCE data is available. 

3.4.3 Heat Collection Element  

Data required for the modeling of a heat collection element (HCE) is mainly related 

to its individual parts (Figure 3.9). 

 

Figure 3.9: A typical HCE for parabolic troughs [145].  

 

Starting with geometrical data, researchers need to determine the absorber tube’s 

inner and outer diameter, the corresponding dimensions of glass tube as well as the 

bracket perimeter, diameter and cross sectional area. This dataset also includes in-

formation on whether the absorber includes a plug running it axially and concentri-

cally and the plug’s diameter. Moreover, the presence of a plug should modify the ab-

sorber flow pattern from tube flow to annular flow [146]. All of this data may safely 

be represented by single values, although uncertainty of dimensional calibration might 

not be neglected [147]. 

In terms of materials, someone should define the nature of the absorber, the an-

nulus gas and the bracket. Choice of the former requires the handling of several com-

plex trade-offs, such as (i.e. high solar absorption and low emittance may be mutually 
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exclusive) [148] while alternatives regarding annulus gas include air, argon and hydro-

gen among which argon outperforms and hydrogen is the less appropriate choice (Fig-

ure 3.10) [149].  

 

Figure 3.10: Efficiency chart of different annulus gases [149].  

 

Defining the materials/elements used supports the counting in of their major physi-

cal properties such as the absorber absorptance and emittance, envelope (which is 

typically made of glass) absorptance, emittance and transmittance and bracket con-

duction coefficient and base temperature, the majority of which are typically provid-

ed by the manufacturer without lacking uncertainty though [150]. 

Other related data needed is the annulus pressure and quantification of optical 

losses possibly caused by bellows shading and dirt. Unless there is a breach on the en-

velope annulus pressure uncertainty is in line with that of other previously mentioned 

thermodynamic properties, while optical losses carry inherent uncertainty also similar to 

these reviewed previously. 

3.4.4 Heat Transfer Fluid 

Calculating power flows related to the heat transfer fluid (HTF) used in the solar 

field requires the definition of a dataset regarding its major properties such as its mini-

mum and maximum operation temperature, freeze point and, with regard to a spe-

cific temperature, its specific heat, density, viscosity and conductivity. So far syn-
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thetic oil is the HTF typically used in parabolic trough CSPPs although researchers 

strive to propose new alternatives taking into account HTF’s efficiency and other opera-

tional aspects, availability and storage safety and, of course, cost [151]. Reliability of 

this data though stands far from being considered as ideal [152].  

3.5 Power Cycle  

Next task is to model power flows related to the power cycle. Nowadays the most 

common power cycle used in parabolic trough CSPPs is the steam Rankine cycle [153] 

although the organic Rankine cycle emerges as a reasonable alternative especially for 

small-scale CSPPs [154] [155]. Furthermore someone may choose between the above 

stand-alone cycles and combined cycles exploiting exhaust gases of fossil fuel-fired 

power stations [156] [157] or, hybridized cycles being supported by either a fossil fuel-

fired boiler [59] [158] or another renewable energy source [159]. Nevertheless, as it was 

mentioned in the beginning of this section, this study focuses on the mostly used in 

CSPPs steam Rankine cycle with an auxiliary fossil fuel-fired boiler. In such a power 

cycle we distinguish a) the fossil fuel-fired boiler, b) the steam generator, c) the set of 

turbines, d) the electricity generator, e) the condenser, f) the set of feedwater heaters and 

g) the control systems (Figure 3.11) [160]. 

 

Figure 3.11: An indicative Rankine cycle configuration [160].  
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Please note that given the complexity related to a power cycle’s modeling, required 

data mentioned below imply a rather simplified approach of its operation simulation. In 

any case, the overall power cycle efficiency under design3, despite its inherent uncer-

tainty [161], constitutes the corner-stone of further calculations. 

3.5.1 Fossil Fuel-fired Boiler 

Initially one needs to define the operational objective of a fossil-fuel fired boiler 

which may refer to the supplement of solar power so that a) the power cycle does not 

stop and/or b) the power cycle maintains its highest possible output even for a shorter 

time-period (Figure 3.12) [162]. Furthermore, this or another back-up boiler could be 

used simply in the maintaining of the HTF temperature above its freeze point (minimum 

HTF operating temperature). Other related input variables are the heater’s outlet set 

temperature which should not exceed the power block’s inlet temperature, its tank ca-

pacity and efficiency, as well as its lower heating value efficiency. Cost and availabil-

ity are probably the two main criteria regarding the choice of fuel, while uncertainty ex-

pected in this dataset is limited in the two efficiency factors [150]. 

 

Figure 3.12: Two alternatives of Solar-Fossil Fuel Hybrids [162].  

                                                

3 In order that a power cycle is analyzed, all related values should refer in a specific condition-point of the 

cycle. For simplicity reasons we define this status as “the design-point” or “under design”, implying that 

on that point the power cycle efficiency is optimized. Obviously by this we also take for granted that the 

power cycle has been previously simulated separately and independently from the fuel used in order for 

thermal power to be produced. This assumption is made as this study emphasizes in data related to com-

ponents mostly used in CSPPs, despite that we acknowledge the impact of the power cycle’s configura-

tion on the overall CSPP sizing and performance.   
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3.5.2 Steam Generator – Feedwater Heaters 

Steam generation equipment should definitely include a boiler and optionally a set 

of pre-heater and/or super-heater With regard to these components, modelers need to 

define several data at the design-point such as the HTF inlet and outlet temperature, 

the boiler steam temperature and operating pressure and the preheater, boiler and 

superheater size. On the other hand, necessary input describing the operation of the 

feedwater heaters are their outlet set temperature, water’s mass flow rate and inlet 

and outlet temperature. Once more uncertainty of this dataset is not negligible [150].  

3.5.3 Steam Turbines - Electricity Generator 

Major input variables concerning the steam turbines are their upper and lower op-

eration limit (in terms of inserted thermal power), their isentropic efficiency, their 

mechanical power, the steam inlet temperature and, the steam extraction fraction 

and pressure at high and low pressure. Modelers should also estimate the amount of 

steam that is extracted and replaced by fresh water and to define whether turbine 

inlet pressure is considered to be constant or varies according to the HTF inlet tem-

perature. In addition to the above implementing a turbine operation strategy requires the 

control of variables such as the standby period, if any, and the thermal power needed 

for this operation mode, and the time, the thermal power and the minimum temper-

ature it needs to start its operation. Regarding the electricity generator, data needed is 

its gross power output which equals to the nameplate capacity of the CSPP and pro-

vided by the manufacturer, and the gross to net power conversion factor – a measure 

of related parasitic loads applied in the whole power cycle (i.e. pumps and feedwater 

heaters consumption) as well as between the generator and the grid (i.e. transformers 

and cables losses etc). All of this dataset also includes uncertainty [150] [161]. 

3.5.4 Condenser 

Heat rejection is achieved by the use of a wet-cooling or a dry-cooling system or 

their combination (hybrid). The major trade-off observed between the first two alterna-

tives, being partially smoothed by the third one, is related to the higher performance 

achieved and the larger amount of water needed by a wet-cooling system [163]. Consid-

ering that sufficient water supply could be a major issue for many potential installation 

sites, we focus on the dry-cooling model the simulation of which requires the determi-

nation of the ambient temperature and the temperature difference between the 
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steam at the inlet and the ambient at design, the pressure-drop ratio in the conden-

ser, its minimum operation pressure, its fan isentropic and mechanical efficiency 

and the condenser ability to operate in part load levels if needed. Apart from the lat-

ter, the other data include uncertainty typically met in thermodynamic values and prop-

erties [150]. 

3.6 Thermal Energy Storage System 

Utilization of a thermal energy storage system (TESS) in a hybrid solar-fossil CSPP 

is a rather common and attractive alternative as the solar fraction may surge from 20% 

up to 70%, while it also improves CSPPs’ marketability and dispatchability [60]. The 

most common arrangement includes a two-tank system although thermocline single-

tank systems emerge as an alternative [164]. Focusing on the former arrangement mod-

elers need to determine the number of hours that a TESS can fully support a CSPP 

maximum output, the number of parallel tank pairs, the tank height and losses co-

efficient, as well as the minimum allowable height of fluid in the tank. As both the 

cold and the hot tank of a TESS shall maintain a minimum temperature level, an 

auxiliary heater with a specific capacity and efficiency is needed. As far as the heat-

ing transfer fluid used in a TESS, we meet a variety of options among of which molten 

salt seems to be the most appropriated one at least with regard to the Rankine cycle 

[165]. Related input variables needed are similar to these presented in 3.4.4, adding its 

temperature at the time point that the simulation starts. Obviously, in case that the 

TESS HTF is different than the solar field HTF, a heat exchanger is needed which’s 

both sides (cold and hot) temperature differences are required. Last but not least 

stands the TESS operation strategy which, similarly to the usage of the auxiliary fossil 

fuel-fired boiler, is strongly related to the CSPP operation objective. Once more ther-

modynamic values and properties should not be considered as certain [150]. 

3.7 Piping System 

Simulating the operation of the piping system probably constitutes the most chal-

lenging and painful part regarding the building process of an integrated parabolic trough 

CSPP model as it directly interacts with all of its major parts (solar field, fossil fuel-

fired boiler, storage system, power cycle) affecting the respective power flows shown in 

Figure 3.2 [166]. Simplifying this modeling process, since a detailed approach would 
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significantly exceed the scope of this study, we distinguish a piping system’s main 

components in two major categories: a) the tubular and b) the non-tubular ones. Below 

the most important related thermodynamic and dimensional properties and values are 

presented, pointing out their inherent uncertainty [147] [150]. 

3.7.1 Tubular Components 

This category includes equipment such as a) the runner pipes connecting the solar 

field, fossil fuel-fired boiler, the storage system and the power cycle, b) the cold and hot 

header pipes, c) the HCE pipes, d) the power cycle pipes used for the steam and/or wa-

ter transfer and e) the pipe expansions, contractions and elbows. With regard to the 

above components modelers need to determine their dimensions (length and diameter), 

roughness, thermal inertia and, depending on the insulation used, their heat loss coef-

ficient.    

3.7.2 Non-tubular Components 

Not-tubular components are ball joint assemblies and valves. Simulating the per-

formance of the former does not really differ from the process followed to the tubular 

components. On the other hand, modeling valves, used in each one of the numerous 

loops of a CSPP, requires two kinds of input data: the first one is related to their con-

trolling tasks while the second to the parasitic loads that they cause. Valves, as control-

lers of the piping system, manage the fluids (HTF and steam/water mix) mass flow rate 

and velocity in order that the latter comply with minimum and maximum per loop set 

values. In parallel, as fluids pass through the valves, determination of the latter’s isen-

tropic efficiency becomes meaningful. Moreover, as their operation requires a power 

supply, usually electricity, their efficiency and consumption should also constitute in-

put data.  

3.8 Comments 

Ending with this Section, it would be useful to express the notion that simulating 

the operation of a CSPP is a highly demanding and time-consuming process which 

makes the use of an already validated model really attractive compared to the alternative 

of building a new one. On the other hand, keeping in mind that handling so many uncer-

tain variables in a deterministic way could cause a major impact on a model’s perfor-

mance, probabilistic modeling seems to be undoubtedly the most appropriate approach.    
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4 A 20 MW CSPP Model 

In this final section the operation of a 20 MW hybrid parabolic trough CSPP with 

thermal storage is simulated with the use of the System Advisor Model. Simulation per-

formed includes 3 different locations in Greece while indicative parametric, statistic and 

financial analysis are also performed. 

4.1 Introduction 

Keeping in mind comments made in 3.8, we have been looking for a ready-to-use 

integrated software which a) is available to the public, b) utilizes numerous input data 

supporting complex calculations and high customization, c) performs probabilistic anal-

ysis and d) has already been validated with regard to its output. Being based on the re-

views provided in section 2, the only alternative found fulfilling at least the first 3 crite-

ria is the System Advisor Model (SAM). Extending our research and looking for evi-

dence for SAM’s validation it became more than clear that this software package 

emerges as a really attractive alternative (Figures 4.1 and 4.2) [81].  

  

Figure 4.1: Actual and modeled solar output.  Figure 4.2: Actual and modeled parasitic loads.  

 

As far as further alternatives provided by this software enabling users to choose 

among a physical and an empirical4 model, we have chosen flexibility and further per-

formance uncertainty provided by the former. 

                                                

4 It derived from regression analysis of data collected from the SEGS projects. 
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4.2 The Objectives 

As we had stated in section 3.1, one of the major decisions that has to be reached 

during a CSPP design process is related to the objectives of its operation. Keeping in 

mind that a) the LCOE of a CSPP is currently rather high in order to compete, in whole-

sale market terms, electricity generation using fossil fuels (Figure 1.16), b) RES promo-

tion is mainly accomplished by the establishment of investment-friendly legal frame-

works (see 1.1 and 1.5) and c) the CSPP to be modeled will be located in Greece, it be-

comes explicit that one should take into account the respective Greek legislation. Thor-

ough study of the latter, which consists of a general RES [36] and a specific CSPP legal 

framework [167], led us to conclude that the most appropriate objective of a CSPP in 

Greece is the minimization of its LCOE which is achieved by the optimization of the 

electricity delivered to the Grid5 and the minimization of the related investment and 

O&M costs6. The next section this chapter focuses on technical aspects, while cost ef-

fects are taken into account in section 4.6.  

4.3 Initial Setup 

In section 3.1 we had pointed out that designing a CSPP requires the reaching of 

three additional major decisions. The first one is related to the presence of a thermal 

storage system or not, but information provided in 3.6 explicitly indicates the attractive-

ness of the former. Secondly one needs to decide whether the plant will be hybridized. 

This dilemma is answered by the Greek legal framework [167] which clearly promotes 

hybrid CSPPs as it allows the utilization of thermal energy produced by auxiliary 

sources up to the 15% of this produced by the solar field. Finally, choosing between the 

use of an intermediate HTF and the direct production of steam, nowadays seems to be a 

rather easy process as direct steam production technology, despite its individual ad-

vantages, needs time in order to reach its maturity [168] [169]. As a result, we consider 

the hybrid parabolic trough CSPP with thermal storage as the most appropriate design 

among all other alternatives related to the respective technology. Right below a simpli-

fied schematic view of that plant is provided (Figure 4.3). Please note that since SAM 

has been chosen for the modeling of such a plant and complying with its simulation 

                                                

5 Electricity is sold to a public entity under a specific PPA lasting for 25 years. 

6 For simplicity reasons, potential capital and land constraints are discarded. 
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principles is a necessity, this figure as well as other individual schematic views present-

ed afterwards, come from the respective SAM’s technical manual [135]. 

The following subparagraphs particularize the modeling of the plant in the individ-

ual data sets as they were presented in section 3. Nevertheless, as SAM’s interface ar-

chitecture slightly differs from the structure presented in section 3, we decided to con-

form to the former possibly facilitating the reader’s understanding. 

 

Figure 4.3: Schematic view of a hybrid parabolic trough CSPP with thermal storage [135]. 

4.3.1 Climate 

The first data set that needs to be defined is included in the “climate” tab. With re-

gard to insertion of hourly climate data, the program enables users a) to choose an al-

ready existing file corresponding to a specific location (Figure 4.5) or b) to insert any 

other related file in a TMY2, TMY3 or EPW format found in other sources some of 

which are also suggested by SAM (Figure 4.6) or c) to build a TMY3 (Figure 4.7) or a 

SMW7 file. Although SAM’s weather library is ade-

quately rich regarding the USA, it does not contain any 

location in Greece. For this we had to look for in other 

related sources finding 3 EPW files concerning Thes-

saloniki, Athens and Andravida (Figure 4.4) [170]. 

Although we do not consider the installation of a CSPP 

next to the two cities as feasible, we keep utilizing data 

concerning Thessaloniki assuming that nearby loca-

tions’ climate does not significantly differ. 

                                                

7 It refers to Sam Weather File being used in the case of sub-hourly steps. 

 

Figure 4.4: The 3 locations. 
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 Figure 4.5: SAM weather file library. 

 
Figure 4.6: SAM suggested weather file web links. 

 
Figure 4.7: SAM TMY3 creator. 
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Based on data included in the weather file, SAM provides a short summary of it (Figure 

4.8) while it also allows its thorough examination (Figure 4.9).  

 

Figure 4.8: SAM weather and location data summary. 

  

Figure 4.9: Two indicative levels of weather data analysis. 

4.3.2 Annual Performance 

The second tab requires the provision of estimations regarding the CSPP’s annual 

degradation rate, mainly caused by systems aging, and availability. Although extensive 

research has taken place in the degradation rate of individual CSPP components [171], 

little literature was found with regard to overall system degradation [172]. Based on the 

latter though, we assume that this factor equals to 1%. On the other hand SAM propos-

es that a typical availability rate, mostly related to maintenance tasks, of a parabolic 

trough CSPP equals to 96%. As we lack confronting data, except from the 94% provid-

ed by the Greek Regulatory Authority of Energy (RAE) [167], we adopt SAM’s pro-

posal. 

Please note that SAM enables users to define the above factors either in an average 

annual form (Figure 4.10), or a variable one for each year (Figure 4.11).  
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Figure 4.10: The annual system performance tab in average form. 

4.3.3 Solar Field 

The solar field tab could easily be 

considered as the “heart” of the model. 

Initially needed input data concerns 

the collector orientation8. As it was 

explicitly mentioned in 3.4.2, the po-

lar N-S axis with W-E tracking ar-

rangement typically outperforms com-

pared to other arrangements using non-

adjustable tilt9. As such we adopt the 

former, assuming a careful installation 

so that azimuth remains equal to 0o 

and preserving our intention to per-

form parametric analysis with regard to the collector tilt which initially is considered to 

be equal to the latitude (its negative value = -40,52o) (Figure 4.12).  

 

Figure 4.12: The solar collector arrangement. 

 

Secondly users need to define the solar multiple (SM) which refers to the field ap-

erture area compared to that needed in order that the power cycle operates at its design 

                                                

8 SAM assumes that all collectors are moved by the use of a single-axis mechanism. 

9 We discard regularly adjusted tilts due to unknown effects on installation and operation costs. 

 

Figure 4.11: The module for the definition of var-

iable system performance factors for each year. 
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capacity. Obviously this figure should receive values larger than 1 (Figure 4.13). On the 

other hand, precise sizing of the field requires the simultaneous comparison of the solar 

thermal energy produced with the respective a) installation and operating costs and b) 

the utilization of an auxiliary fossil fuel-fired boiler and a thermal energy storage sys-

tem. In other words, the optimum solar field multiple derives from the minimization of 

the LCOE (Figure 4.14)10. Given that this optimization requires the completion of the 

CSPP modeling, in terms of initial setup, at this point we consider a SM equal to 2, rely-

ing on indicative values provided in SAM’s manual (Figure 4.14) and the full load 

hours (5) of thermal storage capacity defined hereinafter. By the time that this initial 

setup is finished, the “financing”, “tax credit incentives”, “payment incentives” and 

“trough system costs” tabs are also filled in so that the abovementioned optimization is 

executable.   

 

Figure 4.13: The probability of a CSPP with SM=1 to operate at its rated capacity [135]. 

 

Figure 4.14: An example of LCOE as a function of SM and full hours of thermal storage [135]. 

                                                

10 Once more land constraints are neglected. 
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Another highly important variable is the irradiation at design used in sizing of 

both the aperture area needed to drive the power cycle at its nominal capacity and the 

mass flow rate of the HTF for header pipes. In general its value should approximate the 

maximum actual DNI on the installation site [135]. Setting as an objective to maximize 

cosine-adjusted DNI and determining the capacity of the power cycle and the thermal 

storage, the CSPP is simulated resulting in a maximum DNI value of 873 W/m2 (Figure 

4.15). Cross-checking this estimation, we also count in dumped thermal energy which 

seem to vary in a rather acceptable level – approximately 34 MWh (Figure 4.16).  

 

Figure 4.15: The maximum DNI-cosine effect product. 

 
Figure 4.16: The monthly profile of the dumped thermal energy. 
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Row spacing is estimated by the use of a rule of thumb according to which main 

concern is to avoid shadowing caused by front rows to subsequent ones during the noon 

on the winter solstice. Taking into account a) that the installation site has no inclination, 

b) the location’s latitude and c) the row height11 and applying the appropriate equations 

[127] we conclude that row spacing should be equal to 11,79 m. 

With regard to the plant lay-out, we propose a two-subsection field (Figure 3.6), 

as the modeled CSPP is rather small and advantages deriving from the minimization of 

pumping pressure losses could easily be counter-balanced by the use of more and less 

effective pumps (see 3.4.1). As far as the number of SCAs per loop is concerned, we 

define it equal to 4 (Figure 4.17), mainly based in former practices [173]. In parallel we 

discard the ability provided by SAM for up to 4 different configurations of SCAs, HCE 

and defocus orders. Nevertheless the fact that we do not define different defocus orders 

implies that sequenced defocusing in not an option any more. On the other hand, as de-

focusing advantages are more than obvious, we define the ability of simultaneous de-

focusing meaning that all SCAs defocus at the same time by the same angle. 

 

Figure 4.17: The arrangement of SCA’s per loop.  

 

In any case, this CSPP layout combined to a non-solar field land area multiplier, 

which may be assumed to equal 1,4 – SAM’s default value, results in the need of 121 

acres (489.670 m2) of land (Figure 4.18).  

                                                

11 It is provided in the next tab. 
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Figure 4.18: Land requirements. 

 

Choosing stow and deploy angles is rather tough to be precisely determined at this 

stage. As such we adopt SAM’s defaults values, 170o and 10o respectively, and we con-

sider performing parametric analysis afterwards. Header and runner pipe roughness 

as well as pump efficiency also equal to SAM’s default values, 0,0000457 m and 0,85 

respectively, as we lack reliable data to document an alternative option. 

Another dataset required in this tab is related to the HTF. SAM enables users to se-

lect one among various fluids included in its library while it also allows them to define 

their own (Figure 4.19). Utilizing the first option and taking into account information 

provided in 3.4.4, the Therminol VP-1 is selected. As its minimum operation tempera-

ture is 50 oC, significantly higher than its freeze point – 12 oC, we define the freeze 

protection temperature also equal to 50 oC.  

 

Figure 4.19: Defining an alternative HTF. 
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Another task is the determination of the HTF temperature inlet and outlet under 

design conditions at 293 oC and 391 oC respectively. This choice is made due to the 

fact that these values equal to the power cycle outlet and inlet HTF temperature respec-

tively, and SAM power cycle model has been built based on these [135]. Besides they 

perfectly comply with the properties of VP-1 (50 oC < Top < 400 oC) and the selected 

collector (max outlet temperature = 400 oC) [174]. Finally users are called to determine 

the minimum and maximum allowable HTF mass flow rate through a single loop, as 

well as its min and max velocity through the header pipes. Lacking pieces of evi-

dence to counter SAM’s default values we adopt them – 1 kg/s, 12 kg/s, 2 m/s and 3 

m/s respectively. Besides 1-12 kg/s is considered as an adequately wide range while the 

second dataset is utilized exclusively in the sizing of header pipes. Figure 4.20 summa-

rizes input related to the solar field and the HTF. 

 

Figure 4.20: Summary of the solar field parameters and HTF properties. 

 
Finally users are enabled to specify the plant heat capacity by estimating values for 

the thermal inertia of hot, cold and field loop piping. As literature was found to be 

rather poor regarding these components, especially when it comes to their adjustment in 

CSPPs, once more we adopt SAM’s default values, that is 0,2 kWht/K-MWt, 0,2 

kWht/K-MWt and 4,5 Wht/K-m respectively (Figure 4.21). Moreover, since modelers 

aim also at the estimation of water needed so that the plant is washed, they may define 

the amount of water used per wash as well as the number of washes per year. For 

the purposes of this study we do not proceed in related estimations.   

 

   Figure 4.21: Water needs and plant heat capacity. 
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4.3.4 Collectors 

As it was mentioned in 4.3.3, in order 

that row spacing is calculated, a SCA type 

has to be selected first. Having decided to 

choose an option among these provided in 

the SAM’s library, we selected the 

EuroTrough ET 150 (Figure 4.22) to be 

the modeled parabolic trough collector, 

possibly expressing an emotionally de-

rived preference12 rather than reaching a firmly grounded decision. Nevertheless 

EuroTrough indeed seems to outperform in several aspects compared to at least LS-2 

and LS-3 [174] [175]. SAM’s library includes all related input variables that are its re-

flective aperture area, its length and width, the number of modules per assembly, 

the average surface-to-focus path length and the piping distance between assem-

blies. Additionally, SAM automatically fills EuroTrough optical parameters, such as the 

incidence angle modifier coefficients and several factors indicating optical losses 

(tracking error, geometry effects, mirror reflectance, dirt and general optical error) (Fig-

ure 4.23). 

 
   Figure 4.23: The SAM collectors tab. 

                                                

12 It is a European product partially developed in the Greek Center of Renewable Energy Sources. 

 
Figure 4.22: The EuroTrough collector [175]. 
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4.3.5 Receivers 

As a heat collector element the Schott PTR 70 2008 is selected. This choice is 

mostly based on the compatibility of this HCE with the EuroTrough [176] while there is 

evidence of its outperformance compared to other alternatives [177]. As NREL has al-

ready simulated the performance of this receiver, we gather required geometry varia-

bles from the respective study [178]. Given that no absorber flow plug is foreseen to 

be added, this variable equals to 0 and the flow follows the tube pattern. On the other 

hand the internal surface roughness of a HCE, made from 304L stainless steel [179] 

and with a 0,066 m inner diameter, is estimated to be 0,000045 m [135] (Figure 4.24). 

 
   Figure 4.24: The HCE geometrical parameters. 

 

Hereinafter, SAM enables users to specify up to 4 types of receiver conditions. The 

motive for providing such an option 

is probably related to several rea-

sons for which a receiver may un-

derperform [180]. However, as 

spotting a corresponding fault and 

repairing it is not that difficult and 

SAM does not enable the definition 

of the time for which the deficient 

receivers keep operating, we feel 

safe to discard this option and as-

sume that all receivers operate per-

fectly, considering that minor di-

vergences from the reality are in-

corporated in the total system avail-

ability factor (4.3.2). As such in this 

single condition type of HCE, we 

Figure 4.25: The module enabling the definition of 

emittance for different temperature values. 
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set the value 1 to the variant weighting factor and define argon as the annulus gas. 

The latter was selected as it constitutes the optimal solution as mentioned in 3.4.3. Other 

parameters presented in Figure 4.25, such as the absorber and envelope absorptance and 

emittance, are set by SAM’s library and correspond to the specific HCE. Please note 

that if users prefer to define a receiver other than these included in SAM’s library, they 

are enabled to modify these parameters while the absorber emittance may be defined 

either as a single value or a set of different values corresponding to different tempera-

tures (Figure 4.26). 

 
Figure 4.26: Various HCE parameters and variations. 

4.3.6 Power Cycle 

The next tab is used for the entering of data related to the simulation of the power 

cycle. Initially we set the plant gross output equal to 20 MWe, being partially motivat-

ed by a rule of thumb set by Abengoa Solar SA representatives stating the minimum 

capacity of a CSPP for which this company would be interested in negotiating an engi-

neering, procurement and construction (EPC) contract in Greece. Adopting the 90% 

gross-to-net conversion factor suggested by SAM, we estimate that net output capac-
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ity equals to 18MWe (Figure 4.27). Typical causes of gross-to-net losses are cables and 

transformers used.  

 
Figure 4.27: Estimating the plant capacity. 

 

Going on with the modeling of the power cycle we point out that the cycle type 

adopted is the Rankine cycle both because of information provided in 3.5 and mostly 

due the fact that this kind of power cycle is the only that SAM simulates [135]. Provid-

ing more details on the second condition, we report that developers of this program pre-

ferred not to add major complexity by incorporating a detailed power cycle model in 

SAM but to utilize the “design 

of experiments” statistical ap-

proach. According to the latter a 

10 MWe Ranking cycle (Figure 

3.11) was previously modeled 

under a certain dataset (Figure 

4.28) and a respective regression 

model was built so that the oper-

ation of the power cycle is simu-

lated taking into account varying 

impact coming only from HTF 

inlet temperature, condenser 

pressure, HTF mass flow rate 

and heat input. As a result the 

rated cycle conversion effi-

ciency and the boiler operating pressure equal to the default values, 0,3774 and 100 

bar respectively, while inlet and outlet temperature equal to the outlet and inlet tem-

perature of the solar field respectively (see 4.3.3).  An average value for steam cycle 

blowdown fraction for a typical dry-cooled condenser, like that defined afterwards, is 

 

Figure 4.28: Conditions at design point for the basis 

Rankine cycle. 
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0,016 [135], while users need to determine the fossil fuel-fired boiler13 LHV efficiency 

too. Counting in SAM’s suggestion and information gathered from other sources [181], 

the latter is estimated at 90% (Figure 4.29).   

 
Figure 4.29: Power block variables at the design point. 

 

With regard to the way that the power cycle is implemented, SAM considers up to 

3 different modes: the operation, the standby and the shutdown. Two further options 

regarding the former are defined in the next tab. On the other hand, at this point users 

are enabled to choose whether the CSPP will remain in a standby mode, when thermal 

energy available reaches low levels, or it passes directly in the shutdown mode. The 

tradeoff of this choice is related to the energy consumed in the standby mode and the 

longer time needed for the cold startup of the turbine.  

 

Figure 4.30: Plant control dataset. 

 

For simplicity reasons we initially consider that no standby mode is applied, alt-

hough this configuration will be parametrically analyzed afterwards. Other variables 

                                                

13 Detailed description of this auxiliary heater is provided in the thermal storage section. 
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regarding the plant control, such as the power block start time from shutdown mode, 

the fraction of thermal power and the minimum temperature needed for this pro-

cess and the minimum and maximum over design turbine operation, are considered 

equal to the values proposed by the model. Last variable of this data set it the type of 

turbine inlet pressure allowing either fixed or floating pressure. As the CSPP oper-

ates under a PPA with no load constraints and variations, we choose the first option 

(Figure 4.30). 

This tab ends with the definition of the cooling system. Discarding the higher effi-

ciency possible achieved by a wet-cooled or hybrid condenser, we secure our model 

from potential water shortage selecting a dry-cooled one (see 3.5.4). Similarly to these 

mentioned above, SAM has simulated the condenser under specific conditions, such as 

the ambient temperature, the initial temperature difference of the steam at the tur-

bine outlet and the ambient temperature, and the condenser pressure ratio, which we 

as set at design (Figure 4.31).  

 
Figure 4.31: Parameters and variables conceding the cooling system. 

  

In parallel the model assumes 4 more variables (Figure 4.32). Finally, users shall define 

the minimum condenser pressure, which’s fair value equals to 2 inches of mercury, 

and the number of levels on which heat may be rejected under part load conditions. 

The latter is initially assumed to be 2 indicating that the cooling system may perform 

either at 100% or 50% rejection, while a related parametric analysis follows hereinafter. 
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Figure 4.32: Input data to the SAM dry cooling model. 

4.3.7 Thermal Storage 

Setting data required in the thermal energy storage (TES) tab starts with the system 

capacity in terms of full load hours of TES. As it was mentioned in 4.3.3, we consider 

this value equal to 5 hours, counting in motives provided by the Greek government for 

a value equal to or greater than 2 [36] [167] and achieving an acceptable level of 

dumped thermal energy – 4h configuration results in 15 times more losses (472 MWh). 

In any case further calculations should be made, this time taking into account installa-

tion and O&M costs too. The number of used pair of tanks14 remains at its minimum 

value – 1, so that related thermal losses are also minimized. Other related input data is 

the tank height and thermal loss coefficient, the minimum height of the fluid inside 

the tank and the temperature of the TES fluid just before the simulation starts, for 

which values proposed by SAM are adopted – 20 m, 0,4, 1 m and 391 oC respectively.  

Another major choice to be made in the thermal storage tab is related to whether the 

HTF used in the solar field is used in the TES system too. As explicitly mentioned in 

3.6, currently solar salt is considered to be far the most appropriated alternative, espe-

cially regarding the Rankine cycle. Nevertheless SAM includes a ready-to-use library of 

various TES HTFs while it also enables users to define their own through a module sim-

ilar to this presented in Figure 4.19. What is important to know is that because of the 

                                                

14 SAM utilizes only paired-tank TES systems discarding the emerging technology of thermocline single-

tank ones (see 3.6). 
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utilization of a different HTF circuit than the solar field’s, a heat exchanger (HX) is 

added to the system for which users need to estimate the temperature derate that the HX 

causes by defining the temperature difference of its cold and hot side compared to 

the respective sides of the solar field. SAM proposed related values remain unchanged 

at 5 oC and 7 oC respectively. 

 Furthermore, since SAM considers the presence of an auxiliary electric heater, 

used exclusively for the supplementary heating of the storage tank, users need to size it 

in terms of cold and hot tank set point, its outlet temperature, its capacity and effi-

ciency. The former value is set at 260 oC taking into account solar salt’s minimum oper-

ating temperature while the second variable equals to SAM’s proposal – 365 oC.  Its 

outlet temperature cannot be different than the turbine inlet temperature - 391 oC, its 

capacity is considered to be 5 MW, reserving our intention to analyze further this as-

sumption afterwards, and its efficiency may safely to be assumed at 98% just like SAM 

proposes. A summary of the values mentioned above is provided in Figure 4.33. 

 

Figure 4.33: Input data to the SAM TES system. 

 

As mentioned before, in this tab the fossil fuel-fired boiler is being also defined. 

Typically SAM assumes that this auxiliary component operates combusting natural gas, 

although this does not really affect related calculations and lack of this fuel type could 

be easily countered by the use of a LPG or diesel boiler, with minor performance effect 

but potentially with major financial impact. At this point users need to decide between 

two fossil dispatch modes: a) the minimum backup level and b) the supplemental opera-

tion. Scope of the former mode is to define the power level below which the auxiliary 

boiler starts supplying energy to the HTF so that the power cycle runs at its design gross 

output. This mode represents the alternative shown at the right in Figure 3.12. On the 
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hand, the supplemental operation defines a maximum level of fossil energy added in the 

HTF as a fraction of power cycle running at its design gross output. This mode is shown 

at the left in the same Figure while it explicitly indicates the maximum capacity of the 

auxiliary boiler. Serving the scope of this initial setup we choose the latter mode. 

The last dataset needed to be defined in this tab is related to the thermal storage and 

fossil dispatch control. As shown in Figure 4.34, SAM allows the definition of up to 9 

different dispatching periods based on different fractions regarding a) the reservation of 

a minimum storage level when solar field keeps producing energy, b) the reservation of 

a minimum storage level when solar field does not produce energy, c) the energy re-

quired in the turbine inlet at the design point, d) the auxiliary boiler operation as it was 

described above and e) differentiation in the pricing of sold energy. At this point we 

have formed 2 scheduling periods. In both of them there is no need to reserve ther-

mal energy and we consider no pricing volatility, while, taking into account interme-

diate thermal losses, we define a fraction of 1.05 compared to the energy required in 

the turbine inlet so that the power cycle runs at its design output. The difference of 

these scheduling periods is the production of up to 5 MW of fossil power in the se-

cond one, being applied during the whole day-time solely in June and July. This choice 

was made aiming at both avoiding potential shutdowns during a crucial period in terms 

of production and providing the grid operator a solid base for the daily scheduling.   

 

Figure 4.34: The thermal storage and fossil energy dispatch schedule. 
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4.3.8 Parasitics 

The last dataset needed in order that this initial simulation is performed refers to the 

parasitic loads. These are a) the piping thermal loss coefficient, b) the power con-

sumed by the tracking mechanism, c) the cycle pumps and the d) storage pumps, e) 

a fixed load applied at all times as a fraction of rated gross power, and parastics applied 

f) to the overall plant operation as a function of thermal input to the power cycle 

and g) to the auxiliary heaters as a function of their thermal output. These variables 

are combined with data already inserted in the previous tabs or assumed by the model. 

I.e. with regard to the piping model, SAM makes assumptions shown in Figure 4.35. 

 

 

 

Figure 4.35: Assumed values for a) Pipe sizing schedules (up left), b) Piping lengths (up right), 

c) Various configurations regarding the piping equipment (down). 
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Due to the lack of solid data for the documentation of different values than these 

proposed by SAM, we adopt the latter (Figure 4.36). 

 

Figure 4.36: The assumed parasitic coefficients. 

4.4 Deterministic Modeling 

Having completed the initial setup of the model, in this paragraph a series of para-

metric analysis will take place, either in its typical form (a set of calculated values for a 

given range of input values) or in a direct optimization mode (minimization or maximi-

zation of a function for a given range of input values).   

4.4.1 Alternative Locations 

Our initial concern has been the selection of the most appropriate installation loca-

tion. As mentioned in 4.3.1, hourly climate data were found for the regions of Thessalo-

niki, Andravida and Athens. Preserving most of the initial model setup unchanged, we 

simulated its performance modifying solely the weather file, the collectors tilt, the solar 

irradiation at design and the row spacing (Table 4.37). Setting the annually produced 

thermal energy by the solar field as the solely criteria of determining the most suitable 

location, Athens emerges as the undoubted best choice. This also confirms the relation-

ship between the annual DNI and the solar field production while it prevents modelers 

from assuming that lower latitude always results in higher DNI (Figure 4.38).  

Location 
DNI 

(kWh/m
2
) 

Tilt (o) 
Row Spacing 

(m) 

Solar Irradiation at 

Design (W/m
2
) 

Annual Solar Field 

Energy  (MWh) 

Thessaloniki 1.372,70 -37,92 10,55 864 102,283.00 

Andravida 1.151,70 -40,52 11,79 873 130,205.00 

Athens 1.519,80 -37,9 10,55 860 138,131.00 

Figure 4.37: The assumed parasitic coefficients. 
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Figure 4.38: The correlation of annual solar field energy and, the DNI and collectors tilt. 

4.4.2 Output of the Initial Setup 

Having determined the most appropriate location for the installation of the CSPP, 

this study goes on with the review of the output calculated based on the initial setup of 

that CSPP located in Athens. Starting with the gross and net electricity output we realize 

that the CSPP remains net producer of electric energy during the whole year, outweigh-

ing fully parasitic loads deducted from the gross electric output (Figure 4.39). Estimated 

annual values are 50.691.000 kWh and 44.971.173 kWh respectively. 

 
Figure 4.39: The monthly distribution of gross and net electric output. 

  

Looking for major sources causing this energy reduction, we notice a remarkable 

compliance among the net electric output and the tank freeze protection energy. The lat-

ter indicates the energy consumed so that the TES HTF does not freeze (Figure 4.40). 
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Figure 4.40: Net electric power output and freeze protection energy. 

 

Additionally, having set the goal of utilizing thermal energy produced by auxiliary 

sources up to 15% of this produced by the solar field, we calculate the respective frac-

tion at 7,65%. This was derived by the sum of energy produced by the fossil fuel-fired 

boiler and the electrical heaters used to protect the HTFs from being frozen and its divi-

sion to the solar field thermal output (Figure 4.41). Please note that this auxiliary energy 

comes at 0,024%, 2,41% and 97,567% from the solar field HTF freeze protection, TES 

HTF freeze protection and fossil fuel-fired boiler operation respectively. 

 
Figure 4.41: Solar thermal output and thermal energy produced by the auxiliary heaters. 
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Finally we point out that changing the location of the CSPP caused variations in 

two more output values. The first one is the land required as the same CSPP needed ap-

proximately 121 acres of land in Thessaloniki but only 108 (437.060 m2) in Athens. The 

second change does not really delights like the former, as dumped thermal energy 

surged at 548,7 MWh (Figure 4.42) 

.   

Figure 4.42: The monthly profile of the dumped thermal energy. 

4.4.3 Parametric Analysis 

After this short but critical review of the initial set up we utilize SAM’s ability to 

perform parametric analysis of data inserted into the model, starting with the solar field 

and specifically with probably the only two variables that do not affect the installation 

and O&M costs: the tilt and azimuth angle15. Figure 4.43 shows the first step of para-

metric analysis performed regarding the collectors tilt. After this, several levels of anal-

ysis took place, finally defining a value range between -31o and -30.5o and the incre-

ment at 0,1o. This simulation set indicates a rather clear system outperformance, in 

terms of net annual energy, when the tilt equals to -30,5o. The reduction of the tilt, com-

                                                

15 Parametric analysis requires the definition of a starting and ending value, as well as the increment size. 

This means that large value range and small increments increases significantly the simulation time. For 

this reason all parametric analysis presented hereinafter were performed in multiple steps, utilizing initial-

ly large value ranges and increments which shrink when the value range containing the optimal option 

becomes clear. 
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pared to the initial polar arrangement, is obviously caused by the system performance 

profile shown in Figure 4.39 which indicates the need of a lower tilt between May and 

September harvesting larger amounts of DNI. This change rises the gross and net elec-

tric output from 50.605.900 kWh and 44.884.621 kWh to 52.419.700 kWh and 

46.509.054 kWh respectively. Similarly working for the azimuth angle, it is proven that 

the initial configuration (0o) is the optimal one. 

 
 Figure 4.43: The SAM parametric analysis module. 

 

On the other hand, looking for the optimal stow and deploy angle, we utilize 

SAM’s optimization module. The range of values, within simulation is performed, is 

also defined but this time no increment determination is needed. Instead users are ena-

bled to fill in a series of values setting their controlling preferences on the optimization 

process. Initially set values are found to be optimal again (Figure 4.44). The same con-

clusion is reached in the case of the number of subfields and the number of SCA assem-

blies per loop. 

Ending with the optimization of the solar field, we distinguish the used HTF 

(Therminol VP-1) performance as its temperature operation range allows it to fully car-
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ry out the assigned task while its relatively low minimum operation temperature result 

in trivial needs in auxiliary heating. Under the latest configuration this amount of ener-

gy equals to 4,35 MWh. As a result, searching for an alternative does not seem to be 

highly important. 

 
Figure 4.44: The optimal stow and deploy angles. 

 

At this point we remind that the optimal solar multiple is estimated in paragraph 

4.6.4, having completed before finance-related datasets included in the respective tabs. 

Moreover SAM allows a similar optimization of the row spacing too, the rise of which 

simultaneously increases the collected solar energy, the required land and the installa-

tion and O&M costs related to the piping and HTF. However further analysis on the lat-

ter is not performed, considering the related bibliography used reliable enough. 

Moving to the collectors and receivers tabs, the only variable that could be para-

metrically analyzed is the type of the annular gas. Once more initial choice seems to be 

the most suitable (Figure 4.45). 

 
Figure 4.45: The optimal annular gas type used in the receivers. 
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Similarly in the power cycle tab, having settled on the CSPP’s gross output and 

type of cooling system (see 4.3.6), parametric analysis is considered meaningless for 

other parameters than the low resource standby period. Nevertheless, Figure 4.46 proves 

the appropriateness of the initial choice not to foresee such an operating mode.  

 
Figure 4.46: No low resource standby period is proposed. 

 

In the thermal storage tab though, plenty of work has to be done. Starting with the 

full hours of TES someone is tempted to increase the TES system capacity, as the modi-

fication of the collectors tilt led the annually dumped thermal energy increase at 974 

MWh. Nevertheless, watching the mitigation of the energy saved by the storage capaci-

ty increase (Figure 4.47) and counting in the rise of the installation and O&M costs that 

it causes, we prefer to preserve this figure unmodified (5h). Besides, this measure is be-

ing further optimized, taking into account cost effects too, in paragraph 4.6.4. 

 

 Figure 4.47: Mitigation of benefits leads to the preservation of the current TES capacity. 

 

With regard to the number of parallel tank pairs it is found that current configura-

tion outperforms compared to alternatives, while the tank heater capacity, after a multi-

level parametric analysis is found to be optimized at the value of 1.9 MW. A change is 

proposed in the case of the HTF used in the TES system, as utilizing the same HTF with 

this used in the solar field (Therminol VP-1) seems as the most appropriate alternative. 
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Since SAM does not allow the simultaneous optimization taking into account various 

HTFs and the tank heater capacity, the latter is parametrically analyzed again. Indeed, 

this time the optimal tank heater capacity is reduced at 1 MW while dumped thermal 

energy also drops at 675 MWh.  

Finally, remaining focused on the objective for full coverage of the allowable 15% 

of auxiliary thermal energy, compared to this produced by the solar field, as well as on 

the operation strategy set and documented in 4.3.7, we recalculate the current fraction at 

approximately 7% (detailed description of this calculation is provided in 4.4.2) and par-

tially add the second scheduling period in a radical way (see 4.3.7). By the time that this 

configuration is applied to all of the days, both weekdays and weekends, of May and 

August, the fossil fraction equals to 15,11%. For nonce this fraction is considered to be 

acceptable, while the advanced reliability achieved between May and August is clearly 

illustrated in Figure 4.48. Under the optimal configuration, net electricity output raises 

at 51.082.341 kWh, while dumped energy falls at 666 MWh. 

 

Figure 4.48: The monthly profile of the net electric output corresponding to the optimal setup. 

 

Reaching the last tab of the SAM model - parasitics, we consider parametric analy-

sis as meaningless because the variance of these figures does not necessarily correspond 

to different configurations.  
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4.5 Probabilistic Modeling 

Ending paragraph 4.4.3, parametric analysis of parasitic loads was discarded. How-

ever, since variations in their values may significantly affect the CSPP performance, 

users should further analyze them. Performing sensitivity analysis, of crucial output var-

iables based on the potential volatility of certain input data, allows modelers to deter-

mine the level on which the latter affect the former. This supports decision-making re-

garding the impactful selection of input variables that will be further analyzed in terms 

of probabilistic modeling. Utilizing results shown in Figure 4.49 we consider that the 

top 14 of them and the piping thermal loss coefficient should be used in a probabilistic 

modeling approach. Please note that this result counters our initial hypothesis that any 

of the parasitic loads significantly affects the energy produced, while it makes clear that 

estimating accurately performance coefficients of several components emerges as a high 

priority. 

 
Figure 4.49: Sensitivity analysis of net electric output to selected parasitic loads. 

 

Having selected the input data distinguished for its inherent uncertainty and major 

impact on net electric output, SAM enables users to perform probabilistic modeling by 

defining to each one of them a specific probability distribution and its characteristic 

values. Since the two distributions mainly assumed for related values are the uniform 

and the normal one, these characteristic values are the range of values, and the mean 

value and the deviation respectively (Figure 4.50). Furthermore users are enabled to in-

dicate any potential correlations among the variables that are to be probabilistically 

modeled as well as the number of sampled values per variable. 
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 Figure 4.50: Defining whether an input variable follows a uniform or a normal distribution. 

 

The major challenge faced at this stage by the modelers is making a choice among 

known distributions and determining their characteristic values. This comes from the 

lack of related data accompanying technical properties of installed equipment. This has 

been the reason for which related researching efforts were based on either, hypothetical 

distributions and characteristic values, or limited past experience which could definitely 

not document a well-grounded related setting [40]. Since this study has not been able to 

override these challenges, probabilistic modeling performed obtains a rather exhibition 

rather than a substantial meaning. As such, with regard to the 15 variables selected 

above, we assume that they follow a normal distribution with a mean value equal to this 

defined in the deterministic modeling process and a deviation equal to the 15% of the 

mean value. The number of sampled values per variable was set at 50 which clearly 

meets the request for at least 4k/316 sampled values (=20). Indeed, random cross-

checking of the distribution followed by the general optical error proves the appropri-

ateness of the variable sampling (Figure 4.51). 

 
Figure 4.51: The histogram/cumulative distribution function of the general optical error. 

                                                

16 k corresponds to the number of variables. 
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The diagram, corresponding to the annual net electric output, is shown in Figure 

4.52 indicating a probability of 50% so that the CSPP produces annual net electric out-

put equal to or more than 50.550.099 kWh. 

 
Figure 4.52: The histogram/cumulative distribution function of the net annual energy. 

 

Finally, since during the probabilistic modeling process SAM performs a step-wise 

regression analysis too, below we present the estimated correlation factors. Figure 4.53 

definitely imposes a different impact ranking of each variable compared to this estimat-

ed in the sensitivity analysis in the beginning of this paragraph. Nevertheless this should 

not cause any confusion as it relies on the limited explanatory variables used in the 

probabilistic approach and the size of each one of them. 

 
 Figure 4.53: Estimated δR2s of the uncertain variables. 
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4.6 Financial Modeling 

When related costs are included in the analysis, the optimal design of a CSP plant 

may change significantly. Therefore, in this section the previously modeled 20 MW 

CSPP is being redesigned aiming this time at the optimal LCOE for each one of the 

three locations. The parameters that are not altered are a) the plant capacity, b) its hy-

bridization, c) its ability to store energy capable of preserving the plant operation at its 

nominal capacity for at least 2 hours and d) the absence of land and capital constraints. 

This section ends with a short review of the feasibility of such an investment in the 3 

locations through the parametric analysis of the respective internal rates of return (IRR). 

4.6.1 Trough System Costs 

Starting with the investment and O&M cost, assumptions shown in Figure 4.54 rely 

strongly on a previous study highly adjusted to the SAM configuration [182]. Moreover 

we assumed that17 a) the cost of the fossil backup system, regardless of the fuel burned 

(natural gas, LPG or diesel), equals to 130$/kWe, based on information gathered direct-

ly from the market, b) the balance of the plant does not really require the provision 

of additional costs, c) no contingency costs should be counted in as parametric anal-

ysis is performed afterwards, d) the land is being bought for 5.260 $/acre, e) no sales 

tax (value added tax) is applied on the investment costs as they are fully deducted 

from the sales tax collected by the company in the future, a condition that SAM cannot 

model, f) no fixed annual cost is considered to be applied as we estimate a fixed cost 

by capacity, g) no variable cost by generation is applied considering that only the fuel 

cost really varies with the generation, h) the cost of natural gas, LPG and diesel are 24 

[183], 42 [184]18 and 57 [184] $/MMBTU19 respectively – or 0,08, 0,14 and 0,19 $/kWh 

and i) the escalation rate above inflation is 0% considering the successful estimation 

of such a figure rather utopic. Finally due to the extensive uncertainty of this dataset, 

exploiting SAM’s ability to count in an annual schedule regarding the individual O&M 

costs was considered to be rather meaningless.   

                                                

17 The Euro/US-dollar exchange rate was taken equal to 1,33. 

18 Due to the lack of official LPG prices this value was estimated by taking into account Slovakia’s prices 

which are similar to these of Greece. 

19 This measure is the only one for which SAM utilizes the imperial and not the metric system. 
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Figure 4.54: Trough system costs. 

4.6.2 Financing 

With regard to the financing scheme (Figure 4.55), we consider that the analysis 

period extends up to 25 years based on the duration of the Power Purchase Agreement 

(PPA). The inflation rate is estimated at 2% while the real discount rate is considered 

to be 10%20. The federal tax – corresponds to the Greek profit tax, is assumed to be 

25% mostly based on the historical trend rather than adopting the current legislation, 

                                                

20 This estimation mostly relies on a rather arbitrary assumption according to which investors would de-

mand a return rate greater by 100 base points compared to this of loans provided by domestic banks. The 

alternative of using a related model in order to calculate the real discount rate has been neglected as the 

notion of the, widely used in the past, risk-free investment has recently collapsed.  
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while the sales tax is set at 0% as it deducts fully from the sales tax collected by the 

company. Insurance will annually cost approximately 0,4% of the installed cost, while 

the net salvage value is set at 0,4% of the initial investment so that we count in the 

value of the land and discard any equipment salvage value potentially countered by 

dismantling and recycling costs. Finally no property tax is applied. 

 

 

Figure 4.55: The financing dataset of the investment. 

 

As far as the used capital mix is concerned, we assume that the investment will be 

funded by equity and loan at 30% and 70% respectively. Equity will be used during 
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the construction period, which will last approximately 12 months, while the loan will 

repay the rest of the investment cost by the time the CSPP is completed. The loan 

term is set at 15 years and its annual interest rate at 9%. 

With regard to the solution mode that SAM will adopt, we select the “Specify IRR 

target” as initially we need to size the solar field and the storage system for a certain 

value of IRR. The latter is considered to be equal to the nominal discount rate 

(=12,2%). According to the Greek legislation [36], this CSPP’s PPA price is currently 

set at 397,25 $/MWh, escalating annually by the 80% of the variation of the Consumer 

Price Index as it is published by the Bank of Greece. The latter condition results to an 

estimated price escalation rate of 1,6% (= estimated inflation rate x 80%) while the 

initial PPA price is reduced by 3%, being modified at 384,34 $/MWh, due to a special 

tax applied on the 3% of the gross sales of such a company [36]. 

Finally we set the financial model so that it counts in a straight line depreciation 

method for 20 years based on the related Greek legislation [185]. 

4.6.3 Tax Credit and Payment Incentives 

In order to eliminate uncertain factors that could significantly and incorrectly pretti-

fy the related outcomes, this financial analysis does not count in any potential tax credit 

and payment incentives that can be simulated by the model and Greek Government has 

occasionally provided to companies producing energy from RES. 

4.6.4 Sizing the Solar Field 

Based on the results provided in 4.4.3, concerning the technical optimization of the 

CSPP located in Athens for a solar multiple of 2, and the financial assumptions made in 

4.6.1, 4.6.2 and 4.6.3, the plant operation is simulated multiple times for each one of the 

three different locations, a storage capacity of 2-8 hours (by an 1-hour step) and a solar 

multiple of 1-3 (by a 0,25 step). Please note that, due to SAM’s inability to take into ac-

count the objective set in paragraph 4.3, according to which energy delivered by fossil 

fuels is approximately the 15% of the energy produced by the solar field, parametric 

analysis performed afterwards considers no fossil fuel-fired boiler, as the related calcu-

lations would be highly time-consuming. Τhis simplification does not really affect the 

purpose of this comparison since it discards minor reductions of the LCOE caused al-

most exclusively  by the increase of the solar multiple.   
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Figure 4.56 shows the outcome of the parametric analysis mentioned above regard-

ing Athens. Since graphically it is hard to say the conditions under which the LCOE is 

optimized, we examined the related values reaching the conclusion that the optimal 

LCOE (41.611 $/kWh) is achieved for a s.m. of 2.5 and a thermal capacity of 7 hours 

of full load. An alternative combination could be that of a s.m. of 1,75 and a thermal 

capacity of 2,5 hours of full load, resulting a LCOE of 41.6359 $/kWh. Given that we 

consider no land constraints and keeping in mind that the financial benefit of counting 

in energy produced by the auxiliary boiler is larger in the first option, we adopt the for-

mer configuration. 

 

Figure 4.56: The optimal solar multiple-storage capacity combination for Athens. 

 

Similarly working for Thessaloniki, we calculate the optimal LCOE at 45.0331 

$/kWh for a s.m. of 2,5 and a thermal capacity of 6,5 hours of full load (Figure 4.57). 

The respective values for Andravida are 58,2501 $/kWh, 2,5 and 5,5 hours (Figure 

4.58). 

 

Figure 4.57: The optimal solar multiple-storage capacity combination for Thessaloniki. 
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Figure 4.58: The optimal solar multiple-storage capacity combination for Andravida. 

4.6.5 Technical Optimization 

Due to the technical redesign imposed by the sizing of the solar field and the ad-

justment of the thermal storage capacity, the three CSPPs have to be technically opti-

mized again.   

In the case of Athens, initially we determine the period for which the fossil fuel-

fired boiler operates (see Figure 4.34). This time we assume that the respective period is 

April-August. Indeed, based on this assumption the estimated energy produced by fossil 

fuels constitutes the 13.5% of the energy delivered by the solar field. The only figure 

left to be further analyzed is the tank heater capacity. Figure 4.59 clearly shows that the 

optimal value is 0,6 MWt – values larger than 3 MW tend to reduce the energy pro-

duced annually. Furthermore, rechecking the ratio of fossil/solar energy, we realize that 

the limit of 15% is still not exceeded (13.8%). 

 

  Figure 4.59: The optimal tank heater capacity for Athens. 
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With regard to the city of Thessaloniki, technical optimization will start with the 

collectors tilt. Working in a similar way to this presented in paragraph 4.4.3, we find out 

that the optimal value is -31,7o. Afterwards we configure the period for which the fossil 

fuel-fired boiler operates. Setting values similar to these for the case of Athens, we no-

tice that the ratio of fossil/solar energy is 15,7%>15%. This forces us to limit the boiler 

operation by excluding its contribution during April’s weekends. The new scheduling 

results an acceptable ratio of fossil/solar energy equal to 14,5%. Finally, looking for the 

optimal tank heater capacity, we conclude that the value of 0,6 MWt constitutes the op-

timal one, just like in the case of Athens. The ratio of fossil/solar energy is not further 

analyzed since the calculation made above took into account a tank heater capacity of 

0,6 MWt. 

Finally, in the case of Andravida analysis performed does not really differ from this 

of Thessaloniki. The optimal collectors tilt is -36,9o while, for a schedule similar to this 

applied in the case of Thessaloniki, the ratio of fossil/solar energy is estimated at 20,1%, 

far beyond the limit of 15%. This condition is fulfilled21 when the fossil boiler operates 

only during the period May-August (15,08%), excluding May’s weekends. The optimal 

value of the tank heater capacity is 0,6 MWt for this case too. 

The final form of the three models may be found in the related SAM files accom-

panying this study. 

4.6.6 Feasibility Analysis 

In order that the feasibility of the three CSPPs is determined, the solution mode 

shown in Figure 4.55 (see paragraph 4.6.2) is changed into “Specify PPA Price”. By 

this adjustment SAM is being set to calculate the Net Present Value (NPV) and the IRR 

of the equity invested.  

a. Andravida 

Starting with Andravida, based on the initial financial assumptions (see paragraphs 

4.6.1 to 4.6.3) and the optimal technical configuration (see paragraphs 4.6.4 and 4.6.5), 

the estimated NPV and IRR are $-44.971.692,69 and 2.81% respectively. Obviously 

such results can by no means document a wise suggestion for the realization of the in-

vestment. Having performed sensitivity analysis on the direct and indirect costs of this 

                                                

21 For the scope of this study we consider 15,08% as an acceptable value.  
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investing plan (Figure 4.60), the former conclusion does not really change as even if the 

investment cost drops by 25% - a rather extreme divergence from the mean estimation, 

the NPV remains negative – or the IRR stands lower than the nominal discount rate. 

This conclusion remains unchanged even if the O&M cost is also reduced by 25%.  

 

  Figure 4.60: Sensitivity analysis between the NPV and the trough system costs (Andravida). 

 

NPV remains negative, even if solely loan is used, a rather unusual capital mix for 

large energy investments (Figure 4.61). 

 

  Figure 4.61: Parametric analysis concerning the investment capital mix (Andravida). 

 

On the other hand examining the impact of the loan and the real discount rate, un-

der the assumption that the latter will always be greater than the former by 1% (the 

blues line on Figure 4.62), a hope for the feasibility of that investment arises, since in a 
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euphoric financial environment, similar to that during 2003-2007 when the loan rate is 

limited to 3%, investing in the particular CSPP becomes meaningful.    

Financial analysis of Andravida CSPP ends with the quantification of the impact 

that the fuel usage causes. Based on data forming the lines of the Figure 4.63, the in-

crease of the fossil fuel cost per 1$/MMBTU reduced the NPV by approximately 

$500.000. This practically means that the results presented above could be considered 

as optimistic, given the absence of natural gas supply in the region and the much higher 

cost of the alternative fuels – LPG and diesel cost 18 and 33 $/MMBTU respectively 

more than the natural gas does (see paragraph 4.6.1). 

 

  Figure 4.62: Parametric analysis concerning the cost of capital (Andravida). 

 

  Figure 4.63: Parametric analysis concerning the fossil fuel cost (Andravida). 
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b. Thessaloniki 

Working in a similar way for the case of Thessaloniki, estimated NPV and IRR are 

$-20.185.877,15 and 8.09% respectively, proposing the rejection of the investment. In 

this case however, a drop of 10% in the sum of the direct and indirect investment costs 

or the reduction of just the solar field and the storage system costs by 25%, invert the 

initial assessment making the investment seem feasible (Figure 4.64). 

 

 Figure 4.64: Sensitivity analysis between the NPV and the trough system costs (Thessaloniki). 

 

Once more, the variation of the capital mix by itself cannot lead the NPV to a posi-

tive value (Figure 4.65). 

 
  Figure 4.65: Parametric analysis concerning the investment capital mix (Thessaloniki). 

 

Nevertheless, the improvement that might be observed in the next few years in the 

Greek economy, could definitely affect the feasibility of the investment in Thessaloniki 
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in a highly positive way. Figure 4.66 shows that a loan rate of 5% - and a corresponding 

real discount rate of 6%, is enough to result a positive NPV. The impact of fossil fuel 

cost is not analyzed as the usage of other fuel than the natural gas, which is currently 

provided in the region for industrial purposes too, seems meaningless. 

 

  Figure 4.66: Parametric analysis concerning the cost of capital (Thessaloniki). 

 

c. Athens 

Although for the region of Athens IRR and NPV are even better than these of Thes-

saloniki (9,77% and $-12.168.928,89), they still cannot financially document the im-

plementation of the investment. Nevertheless in this case the CSPP becomes feasible by 

the drop of solely the solar field cost by 20% or the reduction of the general investment 

cost by approx. 8% (Figure 4.67). 

 

Figure 4.67: Sensitivity analysis between the NPV and the trough system costs (Athens). 
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A CSPP in Athens becomes also feasible in the rather utopic scenario according to 

which 95% of the total investment cost is funded by loans (Figure 4.68). 

 

  Figure 4.68: Parametric analysis concerning the investment capital mix (Athens). 

 

Finally, once more the cost of capital seem to constitute a highly important factor 

regarding the feasibility of the CSPP as a drop of 1% of the loan and the real discount 

rates cause the increase of the NPV by more than $8.000.000. In the case of Athens this 

investment seems worthwhile when the loan rate is no larger than approximately 7% 

and the real discount rate 8% (Figure 4.69). 

 

  Figure 4.69: Parametric analysis concerning the cost of capital (Athens). 

 

The table shown below (Figure 4.70) summarizes the major calculations made 

above. 
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FIGURES VALUES 

Location Andravida Thessaloniki Athens 

Total Investment Cost ($) 170.203.553 175.583.580 180.050.568 

Base Case NPV ($) -44.971.693 -20.185.877 -12.168.929 

Base Case IRR (%) 2,81% 8,09% 9,77% 

Sensitivity to Inv. Cost ($/1%) -1.452.942 -1.297.084 -1.537.168 

Sensitivity to Fuel Cost [$/(1$/MMBTU)] -482.607 -591.500 -624.971 

Sensitivity to Debt Fraction ($/1%) 475.400 490.400 502.929 

Sensitivity to LoanRrate ($/100 base points) -5.430.607 -7.369.623 8.134.371 

  Figure 4.70: The values of the 3 locations’ major calculations. 
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5 Conclusions 

Observing the undoubted climate change taking place nowadays and accusing 

mostly CO2 emissions for this, many governments have focused on the reduction of the 

latter. Within this frame utilization of RES technologies has been promoted through the 

provision of several incentives. Electricity production exploiting concentrated solar 

power stands among these technologies, being especially distinguished for its low CO2 

emissions during its life-cycle and the on-going reduction observed in the respective 

LCOE. For this we assume that investments made in this field will preserve and even 

reinforce their upward momentum, making CSPP modeling appear as a highly im-

portant process. The latter is based on the meeting of demands set by the governments 

providing incentives, the grid operators scheduling the plants dispatchability and the 

investors looking to maximize their return on investment.  

 Starting the modeling process, researchers need to define whether they 

acknowledge or not uncertainty inherent to the input variables used in such a model. 

This choice will facilitate them reaching a decision on which ready-to-use simulating 

program will they use or which programming tools will they utilize in order that they 

build a new CSPP model. Nowadays, the System Advisor System seems to be the most 

comprehensive, widely available, integrated software capable of simulating the opera-

tion of CSPPs, having been successfully validated in terms of its related output.  

Therefore, this study utilized SAM so that a 20 MW hybrid parabolic trough with 

thermal storage to be modeled. This arrangement was chosen so that advantages, from 

the technological maturity of parabolic troughs and the performance improvements and 

financial incentives, being derived from the usage of thermal storage and a fossil fuel-

fired auxiliary boiler, to be taken.  The modeling process started with an initial setup 

concerning climate data of Thessaloniki, Greece. Estimated solar field thermal output 

was compared to this of two other Greek regions, Andravida and Athens, making the 

latter’s suitability explicit. Moreover the frequently assumed correlation between a 

CSPP’s performance and the location latitude has been strongly disputed. During this 

modeling process, the only variable that SAM did not allow us to utilize it the shading 
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caused to the collectors aperture by external factors (mountains, trees, buildings etc). 

The model, considering Athens as the installation site, has been further optimized utiliz-

ing SAM’s ability to perform parametric analysis and process optimization. The thermal 

storage was set at 5 MW, leading the estimated annual net electricity output and 

dumped energy at 51.082 MWh and 666 MWh respectively.  

Furthermore, lacking actual data concerning the distribution, and its characteristic 

values, that many of the uncertain input variables have, probabilistic modeling of the 

optimized CSPP was performed relying on hypothetical distributions and characteristic 

values. Unfortunately poor documentation of the assumptions mentioned above makes, 

further analysis of the results coming from the probabilistic modeling, seem meaning-

less. Nevertheless, during this process appeared a rather significant weakness of SAM, 

as it does not allow the probabilistic modeling of maybe the most uncertain variable, the 

DNI. In any case the reason of this shortage is fully anticipated as this process would 

require the modeling of 8.760 variables22 and the setting of at least 8.760 x 2 distribu-

tion characteristic values. Besides we are looking forward to reviewing SAM’s new fea-

tures since, by the time that this study was reaching to its end, NREL had already re-

leased a new version of this program. 

Finally, given that stand-alone technical values are definitely not enough the feasi-

bility of the CSPP to be determined, a comprehensive financing plan as well as estima-

tions on investment and O&M costs were made. For this process SAM performs in an 

adequately acceptable way, although it is reasonably inferior to custom-made financial 

models, i.e. discarding the working capital possibly needed and not being able to adjust 

the size – and thus the cost, of the auxiliary boiler to this specified in the respective 

schedule. Under this framework the three CSPPs were technically optimized once more, 

this time taking into account cost effects as well. Initial calculations set the appropriate-

ness of the three investments under doubt due to their negative NPV – or an IRR lower 

than the discount rate. This view is hardly inversed when the debt fraction is increased 

while related prospects really improve by the reduction of the investment and O&M 

costs. What we distinguish as the most important factor though is the cost of capital – 

equity and debt, since small variations of its value cause cause dramatic changes in the 

way that potential investors assess these investments.  

                                                

22 We assume an hourly step modeling process. 
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