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Abstract 
This dissertation was written as a part of the MSc in Energy Systems at the International 

Hellenic University. Its purpose is to evaluate via Life Cycle Analysis the environmen-

tal footprint of ‘carbonate looping’ post-combustion CO2 capture technology in electric-

ity production compared to the more mature post-combustion CO2 capture technology 

of ‘amine scrubbing’. Carbonate looping is an ex-situ, post-combustion CO2 capture 

technology in which carbon dioxide from the flue gases is captured by a CaO-based 

sorbent. CaO carbonation is a highly exothermic process and with proper heat integra-

tion of the process, this heat can be employed for the endothermic regeneration process 

rendering the whole technique nearly autothermal in contrast to the amine scrubbing 

technology where a significant amount of energy is required to regenerate the saturated 

amine solution. 

The environmental performance of a Greek lignite-fired power plant retrofitted with the 

two post-combustion CO2 capture technologies and the reference scenario with no cap-

ture, are examined via life cycle analysis (LCA). The investigated technology of ‘car-

bonate looping’ is compared with the case of electricity production at a power plant 

without capture technology and with the case of electricity production with amine 

scrubbing. 

The software program of SimaPro was chosen in order to evaluate the footprint of the 

entire scenarios as well as the extent of the contribution of each life cycle step to the 

different environmental impact categories and especially the impact category of global 

warming and reach some conclusions in terms of possible improvements. 
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1. Introduction 
1.1 The greenhouse effect  
 

The greenhouse effect which is well-known, especially the last years, is related to the 

climate change problem. By greenhouse effect, we call the phenomenon of the reten-

tion of the heat that is reflected from the earth’s surface inside the atmosphere. This 

heat is derived from the visible light coming from the sun to the earth. The so-called 

greenhouse gases (GHGs) act in the same way as a glass greenhouse operates, form-

ing a layer around the earth which “traps” the reflected heat as Figure 1 shows. 

 

 

Figure 1: The Greenhouse Effect [1] 

 

The main greenhouse gases are water vapor, carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O) and ozone (O3), hydrofluorocarbons (HFCs), perfluorocarbons 

(PFCs), and sulfur hexafluoride (SF6). [2]  

A certain amount of GHGs is necessary for the conservation of life on earth, because 

without those gases there would be very low temperatures, under the freezing tem-

perature of water, causing the extinction of life on earth. However, the concentration 

of some GHGs, especially CO2, CH4 and N2O, has increased dramatically in the last 
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years due to human activities. These activities include the combustion of fossil fuels 

and deforestation with the simultaneous release of the organic soil carbon, as CO2, in 

the atmosphere. The increase of their concentration in the atmosphere above certain 

level causes negative effects to the environment. A negative effect is the increase of 

the earth’s temperature which has as a result the climate change [3]. Even though 

CH4, N2O and (CFCs) per molecule, contribute to a higher degree to the greenhouse 

effect, their percentage is lower than the percentage of CO2, which makes CO2 the 

main contributor to global warming. [3] 

Besides the GHGs mentioned above, there are other gases that do not affect directly 

global warming but can indirectly affect terrestrial absorption of solar radiation, in a 

way that influences the formation of the greenhouse gasses, as well as the tropo-

spheric and stratospheric ozone layer. These gases are carbon monoxide (CO), non-

CH4 volatile organic compounds (NMVOCs), nitrogen oxides (NOx) and aerosols 

which are produced by sulfur dioxide (SO2) and elemental carbon emissions.  

There has been a lot of progress so as to understand what climate change is and with 

which other phenomena is associated with. Studies have shown that the Earth is 

warming up. There is an increase in global temperature over the last century of 1.4 0F 

and is anticipated to rise more up to 2.0 to 11.5 0F (1.1 to 6.4 0C). The global warm-

ing affects mainly the land areas and the areas at higher latitudes and has also some 

other impacts to climate change in general. Some areas especially those which al-

ready experience lack of water, will face worse droughts, while in other regions the 

rainfall periods will increase and will be more intense. The coastal areas will face the 

danger of flooding due to the decrease of snow cover and the melted ice in the sea at 

the poles. Moreover, there will be often heatwaves which will last for longer periods, 

leading to destructive fires or heavy snowfalls, appearing more frequently, with very 

low temperatures. Last but not least, the ocean acidification and eutrophication will 

influence the sea life and especially the coral reefs. Even thought, it is not clear how 

and to what extent such changes will occur and how they will interact with the eco-

system and its biodiversity, research shows that the impacts of climate change will be 

more severe to the poorest countries. [4]  
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1.2 Evolution of CO 2 emissions and origin by sector 
 

Until the industrial revolution in the 19th century, the level of carbon dioxide in the 

atmosphere was somehow stable at 280 parts per million (ppm), for a time period of 

some thousands of years. From the beginning of 19th century, this standard has 

changed. From that time on, the atmospheric CO2 levels have been increasing, initial-

ly with a slow rate, due to coal burning. From the Second World War and then, there 

is a rapid acceleration of the use of different kind of fossil fuels leading to high con-

centration levels of CO2 in the atmosphere As we can in Figure 2, in 1990 the CO2 

concentration in the atmosphere reached 355 ppm, while in May 2013 reached a level 

more than 400 ppm [5], which is above the cap of 380 ppm, set by Kyoto protocol in 

1996 [6], with the provision to avoid climate change. 

 

 

Figure 2: Monthly average carbon dioxide concentration, 2013 [7] 

The global CO2 emissions in 2011 were 31.3 billion tons CO2 while in 2012 reached 

34.5 billion tons CO2. Although, according to some indications there is a decline in 

the CO2 emissions from the OECD countries, there is a high increase of CO2 emis-

sions in the non-OECD countries which leads to an overall increase of 1 % [4]. 

Moreover, the World Energy Outlook (WEO 2013) [8], in its New Policies Scenario, 
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projects that there will be an increase of global CO2 emissions up to 37.2 GtCO2 by 

2035 due to fuel combustion which leads to a higher increase of temperature, 3.60C 

rather than the 20C. 

A major amount of greenhouse gasses is produced by the anthropogenic activities, 

which contribute to the further increase of CO2 emissions in the atmosphere, with the 

sector of the energy production having the largest share, as it is shown in Figure 3 

[9]. 

 

Figure 3: Share of different sectors to the anthropogenic GHG emissions in Annex I countries*, 

2011, [10] 

A more detailed distribution is shown in Figure 4. It can be seen that electricity and 

heat generation are the two sectors which dispose a large amount of CO2 emissions in 

the atmosphere, nearly the two-thirds, and contribute the most, followed by the 

transport sector. 

 

Figure 4: Contribution of different sectors to world CO2 emissions in 2011 [10] 

*Annex I Parties includes Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Croatia, the Czech Republic39, Denmark, 

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Liechtenstein (not available in this 

publication), Lithuania, Luxembourg, Malta, Monaco (included with France), the Netherlands, New Zealand, Norway, Poland, 

Portugal, Romania, Russian Federation, the Slovak Republic39, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, the 

United Kingdom and the United States 
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The global energy consumption in recent years is about 15 TW. From this amount, 

only the 20% is derived from renewable sources such as wind, biomass, solar, tidal, 

wave, geothermal and hydroelectric energy source. The rest of the amount for the 

production of energy comes from fossil fuels, which provide about 12.5 TW [11]. 

Even though the use of renewable energy becomes more popular, still a large per-

centage of the increasing energy demand, which by 2050 is expected to be doubled 

[10] , comes from fossil fuels, which are dominant in the power sector, although their 

share of generation is expected to decline from 68% in 2011 to 57% in 2035 [12]. 

Still, fossil fuels with a capacity of 25TW of energy from already known reserves 

[13], will probably continue to be used, up to 2050, while they are going to cover our 

energy demands, up to 60%, as shown in Figure 5, where energy is in exajoules, EJ 

=1018joules. 

 

 

Figure 5 : Typical future energy projection by source [12] 

 

The basic fuel for the generation of electricity and heat is coal. Coal combustion pro-

duces about 75% more CO2 than natural gas. Generally, the combustion of coal is 

highly responsible for the increase of the CO2 emissions and has a higher percentage 

by its use. Figure 6 shows the increase of CO2 emissions the last twenty years, reach-

ing the amount of 13 Gt of CO2 emissions in 2011, only by electricity and heat pro-

duction. 



- 6 - 
 

 

Figure 6 : CO2 emissions from electricity and heat generation [10] 

 

In global primary energy consumption, coal’s share is about 30.1%. In 2013 the coal 

consumption grew by 3%. Figure 7 illustrates the consumption of coal provided by 

region showing that the percentage of coal’s consumption in non-OECD countries 

increases constantly, with the region of Asia having the largest one [11]. 

 

 

Figure 7 : Coal consuption by region [13] 
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1.3 Electricity generation and its contribution to 
GHG emissions in Greece 
 

Fossil fuels, like coal are still the major source for the production of electricity all over 

the world. As Figure 8 presents, in 2011 the percentage for the generation of electricity 

from coal and peat was 41% and from natural gas was 22%.  Only 16% was from re-

newable sources like hydropower and 12% for electricity generation by nuclear energy. 

 

 

Figure 8 : World electricity generation by fuel, 2011 [14] 

 

 

Likewise with the world situation, as Figure 9 shows, in European Union, coal together 

with nuclear energy are the major fuel sources for the generation of electricity reaching 

the amount of 1000 TWh each. 
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Figure 9 : Electricity generation by fuel, European Union- 28 [15] 

 

In Greece, the main energy source for electricity generation is coal. Figure 10 shows 

the generation mix for producing electricity in Greece in 2010. It can be seen than 

more than 50% of electricity generation comes from coal.   

 

Figure 10 : Electricity generation mix in Greece, 2010 [16] 

 

National coal resources are in the form of lignite. The remaining exploitable depos-

its’ of lignite in 2008 were 3020 million tones [17]. Coal is extracted by the mining 

division of the Public Power Corporation (PPC – DEI in Greek). Greece has no hard 

coal reserves and it relies only on the lignite reserves, which is the most important 

and dominant energy source. In the European Union, Greece is the second country in 
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lignite production and sixth in the world. The total proved amount of coal in place is 

5800 million tons, the total coal production is 65.7 million tons per year and in 2011, 

only 7.32 million tons oil equivalent of coal were consumed [17]. 

Table 1 shows the thermal power stations in Greece and the fuel they use. There are 

eight main power stations with a generating capacity of 5288 MW, which produce 

the largest amount of electricity in Greece. The lignite power plants are located main-

ly in Ptolemais- Amynteo (LCPA) in Western Macedonia and in Megalopolis (LCM) 

in Peloponnese, close to the lignite resources. 

 

 

Table 1 : Greek electricity generation system, thermal power stations (in operation end 2002) 

[18] 

 

 

 

The total lignite’s generating capacity in 2010 was 9396 MW, having a large portion 

of the total net generating capacity, as is shown in Figure 11. 
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Figure 11 : Net generating capacity (MW),2010 [16] 

 

Producing electricity at lignite fired power plants implies some negative aspects. The 

use of big amounts of water, the occupation of large area of resources, the disposal of 

hot water and the production of harmful air emissions and solid wastes are many of 

those negative aspects [19]. Concerning the production of air emissions, 1 ton of CO2 

is emitted for the production of 1 MWhe from lignite combustion [20]. Figure 12 pre-

sents the contribution of lignite combustion in the national carbon dioxide emissions. 

In 2003, almost 34.5% of the national CO2 emissions production originates from en-

ergy generation, with the CO2 emissions coming from lignite’s combustion having 

the largest share. With these values and the continuing use of lignite resources, there 

is a big concern whether the national Kyoto commitment is going to be fulfilled. 

 

 

Figure 12 : Lignite Electricity Sector CO2 Emissions Vs National CO2 Generation (1990-2003) 

[20] 

 



- 11 - 
 

In addition to CO2 emissions from lignite combustion, there are also a large amount 

of SO2 emissions due to the lignite’s synthesis, originated mainly from the area near-

by the power plant, with a high amount of sulphur content [21]. Figure 13 shows the 

annual production of SO2 released in the atmosphere caused by electricity generation, 

with the lignite-fired stations producing the higher amount of SO2 emissions. 

 

 

Figure 13 : Annual production of SO2 due to Greek electricity generation [21] 

 

In order to see whether it is beneficial or not, to keep using lignite as a power source for 

the generation of electricity in one country, from the economic side of view, along with 

the certain environmental impacts, a research is required. The emission trading system 

regulates each country’s CO2 emissions by allowing to have a certain cap and to trade 

the emission allowances within the cap. At this scheme, companies which exceed their 

cap could either buy an allowance for excess ton or pay a specific penalty which was for 

the time period 2005-2007, 40 €/tCO2 and for 2008-2012, 100 €/tCO2. Similarly, com-

panies which are in the limit or below could sell the surplus allowances [22]. The al-

lowances prices of CO2 emissions vary yearly and have now dropped from 30€/tCO2 to 

6.15€/tCO2 [23]. Many suggest that by altering the conventional power plants with 

combined cycle units with natural gas could succeed to reduce the price for avoiding 

CO2 emissions. Another solution is the upgrading of conventional power plants by the 

implementation of Carbon Capture and Storage (CCS) technologies (see Section 1.4 be-

low) which capture CO2 from the combustion flue gases, but with a cost of 25–40 €/t of 

CO2 avoided. In addition to those alternations, investment to renewable energy technol-

ogies is necessary, although their cost is still high. It was estimated that until 2010, a 
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cost of 2–2.5 billion € was required for investments in cogeneration, renewable energy 

systems and in efficiency technologies for energy saving [24].  

From the macroeconomic perspective, the use of local lignite resources contributes to 

the national economy and energy independence. For example by substituting half of 

electricity generation, which is about 17TWh, from lignite to imported oil of 5.5-6 

Mtons per year, would cause a national debt of 2.2 billion € per year. The only cost 

beneficial alternative would be the exploitation of the renewable energy sources. 

Figure 14 and Figure 15 show the avoided oil and the avoided natural gas imports of 

the last 25 years due to the utilization of local lignite. 

 

 

Figure 14 : Avoided oil imports (1980-2005) due to utilization of local lignite [25] 

 

 

Figure 15 : Avoided nat. gas imports (1980-2005) due to utilization of local lignite [25] 
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Moreover, the raw material of fly ash could be utilized in other industrial sectors, like 

cement industry. By this extra utilization, the cost for the disposal of fly ash is elimi-

nated by providing new profits from the sales of the waste fly ash, with a value of 

$80 per ton, depending on the current price of cement [26]. 

Finally, there could be one more gain from the construction and operation of a new 

lignite power plant and its exploitation from the areas nearby the plant. The local so-

cieties could take advantage of this installation as it is going to create new job oppor-

tunities and help the employment of the overall area. For instance, the prefecture of 

Drama has a major problem of unemployment. As there are a lot of lignite resources 

in the area, with the installation of a new 300MW power plant, it is estimated that 

1800 people from this area are going to be employed while the investments are going 

to reach the amount of 2 billion € [27]. 

 

1.4 Carbon Capture and Storage (CCS) for CO 2 miti-
gation  

1.4.1 General 
 

The exploitation of fossil fuels and their combustion has the negative effect of produc-

ing greenhouse gases and especially CO2 emissions which are linked to climate change. 

Even though CO2 does not have the same impact as other gases, having the lowest 

Global Warming Potential (GWP), still it contributes up to 80% to the total GHG gases, 

compared to methane and nitrous oxide. Moreover, fossil fuels play and will continue to 

play the dominant role at the energy sector. For this reason, measures have been taken 

to reduce high CO2 emissions, like the Kyoto Protocol which is an international com-

mitment of many industrialized countries and countries of the European Community, 

aiming to reduce the greenhouse gases emissions in the atmosphere which contribute to 

global warming, by 20% compared to 1990, until 2020. Other measures are the fiscal 

and financial incentives for using renewable resources, which are expected to reduce 

CO2 emissions by 30%, the improvement of the efficiency of the already used systems 

or the use of more efficient new systems. Moreover, the shift to lower carbon intensity 

fuels, such as natural gas, will cause the reduction of CO2 emissions by 50%. The other 

20%, could be achieved with the CO2 trading scheme and Carbon Capture and Storage 
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(CCS) technologies. Although a capture and storage capacity of 10Gt CO2 per year is 

required, still in that way it will be possible to continue the utilization of fossil fuels to 

cover the growing energy demand. 

Capture Carbon and Storage (CCS) technology is the process at which the CO2 from the 

combustion of fossil fuels is: 

 

� at first captured with different technologies 

� subsequently  transported by pipelines, vehicles or ships to suitable places 

� finally is stored in deep depths.  

 

Figure 16 presents the overall CCS process. CCS is not a new technology as it has al-

ready been used in industry for processing gas, so as to separate CO2 from natural gas. 

Moreover, the transportation and the injection of the sequestrated CO2 in the ground are 

also used by the oil recovery industry. Installing a CCS system at a power plant will 

conduce to the use of extra fuel resources and an excess energy of 10-40% is going to 

be required, compared to power plants without CCS. Such installations also increase 

the constructional and operational cost and reduce the overall efficiency of the power 

plant.  

 

 

Figure 16 : The overall Carbon Capture and Storage process [28] 
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Nevertheless, CCS captures by 85-95% the CO2 emissions of the power plant leading to 

a net reduction in the atmosphere by 80-90% for secure storage, compared to a power 

plant without CCS, as it is demonstrated in Figure 17 [29], in which the increased value 

of CO2 is due to the efficiency loss of the power plant by the additional higher energy 

use from the CCS technology. According to the International Energy Agency (IEA), the 

growing energy demand is going to double the CO2 emissions deriving from energy, to 

57 GtCO2 in 2050 [30]. Whereas, for the 2 degree scenario, a reduction of 43 GtCO2 is 

needed to be implemented and CCS could decrease CO2 emissions by 21%. To achieve 

this, a large number of coal-fired power plants should be equipped with CCS by 2050 

[31]. 

 

Figure 17 : CO2 capture and storage from power plants [29] 

 

In CCS, the CO2 capture technologies can be divided in three major categories, depend-

ing from the composition of the gas stream and the CO2 partial pressure, the basic prin-

ciples of which are illustrated in Figure 18. The three CO2 capture categories are: 

 

� Pre-combustion CO2 capture: the process in which the removal of gaseous CO2 

is performed before combustion. In this process, the fossil fuel, e.g. coal, is first 

reformed to synthesis gas via gasification (reaction 1) and then via the water gas 

reaction (reaction 2), is shifted to produce a fuel gas rich in hydrogen and CO2. 

CO2 is captured by physical absorption while H2 is used either as an energy 

source, in fertilizer manufacturing, to power fuel cells or to generate electricity 

in gas turbines. Even though the pre-combustion process is costly, the separa-

tion is easier due to the higher concentrations of CO2 in the gas stream and the 

higher pressure. The produced CO2 is sent to the compression unit in order to be 
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compressed and then stored, while hydrogen is used as input to a combine cycle 

so as to produce electricity. 

 

C (g) +H2O (g) ↔ CO (g) +H2 (g)   (1) 

CO (g) +H2O (g) ↔ CO2 (g) +H2 (g)   (2) 

 

� Oxyfuel combustion: In Oxyfuel combustion the fossil is combusted with high 

purity oxygen. The produced flue gas consists mainly of CO2 and water vapor. 

This flue gas can be compressed and give a CO2 stream with high concentration 

which can be transported for storage. Although the gas separation is not expen-

sive, high energy costs arise due to oxygen separation from air. 

 

� Post-combustion CO2 capture: The process in which CO2 produced from the 

combustion of the carbonaceous fuel with excess air is removed from the flue 

gases of the combustion. The capture of CO2 from the post combustion flue 

gases can be performed by different processes, such as physical adsorption, 

chemical absorption, separation with membranes, cryogenic separation etc. The 

most commercial technique today is the capture of CO2 from an aqueous amine 

solution using chemical absorption. In the last years, the use of a solid sorbent 

instead of a liquid has been investigated as a promising alternative. Since this 

thesis is focused on the post-combustion CO2 capture, the next sections analyze 

in more details the classical amine-based CO2 capture and the emerging calcium 

looping solid technology. 

 

Figure 18 : The main categories of CO2 capture from a power plants [13] 
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1.4.2 Post-combustion CO 2 capture with amines 
 

Processes for capturing CO2 from gas streams in petroleum and gas industry were de-

veloped from the beginning of 20th century [32]. From all carbon capture technologies, 

the most mature and advanced post-combustion capture technology is CO2 absorption 

using solvents based on amines, like monoethanolamine (MEA), other amines and 

chilled ammonia. Chemical absorption is considered to be a baseline technology, widely 

used for gas purification and CO2 removal from great volumes of low pressure gas 

achieving high efficiencies, in the range of 90-95%, with a conservative value of 85% 

[33] , [34].  

The CO2 capture by amine scrubbing is basically a chemical reaction with an amine 

compound, like MEA. The CO2 capture is performed in a vessel, which is called ab-

sorber, where the generated flue gas is ‘scrubbed’ with an amine solution. The amine 

solution captures by 85% to 90% the CO2 from the flue gas and then enters to the re-

generation vessel, which is called stripper. There, the rich-CO2 sorbent is heated in or-

der to release the CO2. The degraded amine sorbent is then sent back to the absorber, 

while the generated CO2 stream first is being compressed and then through pipeline 

transportation is stored to a specific storage site [35]. 

 While there are many types of solvents, MEA, due to its good characteristics, such as 

the high reactivity and stability as well as its low price, is nowadays one of the most 

widely used solvents from alkanolamines, suitable for the capture of CO2 from low 

pressure gas streams with amine scrubbing process.  

The last 25 years, this technology has also been applied for capturing CO2 from flue 

gases. Nevertheless, the flue gases generated from fossil fuel power plants are not the 

same with the gas streams produced at petroleum and gas industry, in which chemical 

absorption used to be performed. Yet, the low pressure of CO2, makes amine scrubbing 

suitable for power industry too. However, the use of amine scrubbing may generate 

some problems, like the high oxygen content of flue gases which can create corrosion or 

oxidize amines to carboxylic acids. In addition, the degradation of amine is higher and 

the CO2 capture efficiency is reduced. Due to the fact that flue gases, from coal power 

plants, contain high levels of sulphur dioxide (SO2), sulphur trioxide (SO3), fly ash and 

hydrogen chloride (HCl), most amines like MEA, react with irreversible way, producing 

stable salts causing corrosion to the parts of the power plant while there are amines 

losses too [32]. 
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From economic perspective, the power plants with amine scrubbing CO2 capture have 

higher capital and operating costs. The requirement of high amount of heat necessary 

for the amine reaction, the sensible heat and the heat of water and amine vaporization in 

the stripper, is responsible for this high use of energy, causing high operating cost. 

There are many suppliers which offer commercial amine-based processes, such as the 

Mitsubishi Heavy Industries KM-CDR process, the Lummus Kerr-McGee process, the 

Aker Clean Carbon Just Catch process, the Cansolv CO2 capture system, and the HTC 

Purenergy Process, with the most establishing process, being the Fluor Daniel Econa-

mine FG Plus process. Table 2 shows the power plants which utilize the post-

combustion capture process of amine-scrubbing, where a certain portion of the flue gas 

stream is sent to the capture unit, while Table 3 shows the scheduled projects with CO2 

capture implementation, mostly to existing power plants, at which the capture process is 

going to be performed to the whole flue gas stream [35]. 

Table 2 : Commercial post-combustion capture processes at power plants and selected industrial 

facilities [35] 

 

Sources: DOE, “NETL Carbon”; IEAGHG, “CO2 Capture”; MIT, “Carbon Capture”; GCCSI, “Strategic 

Analysis.” 
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Table 3 : Planned demonstration projects at power plants with full-scale post-combustion 

capture [35] 

 

 

1.4.3 Post-combustion CO 2 capture based on solid CaO-based 
sorbents 
 

The ‘Calcium Looping Cycle’ or ‘Ca-looping’ (CaL) is a process in which calcium-

based sorbents are used in sorption/desorption cycles in order to capture CO2 [36]. The 

CaL process is not a new technology, hence it was used in industry for syngas CO2 re-

moval since 1960s [37] while in 1994, Heesink and Temmink [38] proposed calcium 

looping to be also one of the zero emission coal technologies.  

In ‘Calcium Looping Cycle’ the CaO–based sorbents, usually derived from limestone, 

undergo a reversible reaction: the exothermic gas-solid reaction which is called car-

bonation (reaction 3) and the endothermic decomposition reaction which is called calci-

nation (reaction 4) in a dual fluidized bed system. 
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CaO(s) +CO2 (g) ↔CaCO3(s)  (3) 

CaCO3(s) ↔ CaO(s) +CO2 (g)  (4) 

 

CO2 in the flue gases stream reacts with CaO in a carbonator, forming CaCO3, which is 

then decomposed into CaO and CO2 in a calciner. A simplified process scheme is pre-

sented in Figure 19. The temperature for the CO2-capture in the carbonator is around 

650oC, while the temperature in the calciner is about 900oC. The calcination reaction is 

an endothermic one and requires heat input, which can be obtained from oxy-

combustion of coal or natural gas [39]. The heat generated from the exothermic reaction 

of carbonation can be utilized to generate steam for extra power generation.  

 

Figure 19 : Simplified process scheme for Calcium looping cycle (CaL) CO2-capture [40] 

 

Calcium looping process, until now, is provided only in pilot scale as it is tested in pilot 

plant test facilities. During the last years, results of some experiment tests have been 

published in small fluidized bed pilot plants with different configurations [41]. Aba-

nades et al [42] indicated the CO2 capture from flue gases with the proper quality of ac-

tive CaO in a fluidized bed reactor. Charitos et al [43], after having experimented in a 

dual 10kWth pilot plant, with a FB carbonator and a CFB calciner, displayed a report 

providing the proper operation variables of the carbonator in order to obtain, to some 

extent, the expected operation conditions in the CFB reactors. In addition, Alonso et al 

[39], performed tests in a 30kWth pilot plant constituted of a CFB carbonator and a 

CFB calciner.  They reported capture CO2 efficiencies about 70%-97%, while the CFB 

carbonator was working with realistic operation conditions. Lu eta al [44], experimented 

in a semi-continuous 75 kW pilot plant, with a bubbling fluidized carbonator and an 
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oxy-fired CFB calciner, showing that the regeneration of CaO in the calciner does not 

influence the activity of the sorbent. After many tests in pilot plant facilities, results 

show that Calcium looping technology has a low energy penalty compared with other 

CO2 capture technologies [45], [40]. 

Among the pilot-test facilities, at the scale of 75 kW, are one at the Instituto Nacional 

del Carbón (INCAR) in Spain [46], at University of Stuttgart in Germany [47], [48] and 

at Cranfield University in UK [49]. 

Lots of programs are running, aiming calcium looping process testing. Foster Wheeler, 

Fundación Ciudad de la Energía (CIUDEN) and ENDESA, with the support of the Eu-

ropean Energy Program for Recovery (EEPR), are collaborating to a program with 

R&D tests at 0.8 MWth oxyfuel CFB pilot plant of CANMET Energy and at 30 MWth 

Oxy-CFB boiler of CIUDEN [44], which is under design and construction mode, in El 

Bierzo in Spain. The results of these tests, if are the appropriate, are going to be utilized 

in 300 MWe commercial plant  in ENDESA´s Compostilla power plant, which is 

planned to begin at the end of 2015. 

Calcium looping in order to be used in industrial scale needs to be tested not only in pi-

lot small scale but also in large scale, before 2020. In this prospect, ENDESA a Europe-

an utility, Foster Wheeler a world manufacturer of fluidized bed combustion technolo-

gy, HUNOSA the biggest coal mining company and CSIC, which is the Spanish Re-

search Council, signed in 2009 the project ‘CaOling’, which is a development of post-

combustion CO2 capture with CaO in a large testing facility [50]. The main goal of this 

project is the design and the construction of a pilot plant of 1,7MWth which is going to 

perform tests of calcium looping technology at large scale, operating in realistic condi-

tions for solid materials, temperature, superficial gas velocities, solid circulation rates, 

real flue gases and oxy-combustion conditions in the calciner in a continuous mode. The 

pilot plant will be built and integrated with ‘La Pereda’ power plant. 

Likewise the ‘CaOling’ project a test pilot plant of 1MWth in TU Darmstadt in Germa-

ny [40], was funded by German industries and German government for the same pur-

pose. Also, demonstration of calcium looping process at industrial scale was performed 

by Ohio State University but the outcome of the project is not available yet [51]. 

Furthermore, the tests on carbonate looping technology are also performed in cement 

industry as well. Cemex, one of the largest cement manufacturers in the world, owns a 

pilot plant in Monterray in Mexico. Carbonate looping can be utilized in cement indus-

try, as the exhausted sorbent of CaO can be used as feedstock in cement industry instead 
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using fresh limestone. In that way the direct generated CO2 emissions could be reduced, 

until 50% [52]. 

 

 

1.5 Life Cycle Assessment (LCA) 

1.5.1 General 
 

Life Cycle Assessment (LCA) is a tool, as defined in ISO 14040 series, which evaluates 

the possible environmental impacts of a process or a product, including all phases dur-

ing its lifetime from “cradle to grave”. The life cycle stages include the extraction of the 

raw material and its processing to the transportation and its use and maintenance and 

finally, at the end of its life, its disposal or potential recycling and reuse. Throughout 

these stages, the material and energy input and the generated emissions to soil, water 

and air are quantified in order to estimate environmental impacts and assess possible 

mitigations of the problem or evaluate technological systems. LCA is defined in envi-

ronmental management international standards like ISO 14040 series. In 

ISO14040:2006 and ISO 14044:2006 the framework of the life cycle principle and all 

the environmental guidelines or requirements [53] are specified. 

Life Cycle Assessment (LCA), which Figure 20 illustrates, can be divided in four basic 

stages: 

 

 

� Goal and Scope Definition 

� Inventory Analysis 

� Impact Assessment 

� Interpretation 

 



- 23 - 
 

 

Figure 20 : LCA Framework [53] 

 

Goal and Scope definition 

At this stage the aim and the method of the LCA is defined. Moreover, the boundaries 

of the system and the functional unit, according to which all the comparisons are per-

formed, are determined, as well as the procedure that will be followed. The level of life 

cycle analysis is also determined, whether it is going to be a full or partial analysis.  

 

Life Cycle Inventory  

The aim of life cycle inventory (LCI) is to collect and analyze the input data, such as the 

energy or the material use and the output data, like emissions of the system so as to 

build the model and quantify the input/output data relationship to the chosen functional 

unit. 

 

Life Cycle Impact Assessment 

At the stage of impact assessment (LCIA), the LCI data are converted into the environ-

mental impacts via characterization. Here, the important of the data is being evaluated, 

via the use of different characterization factors for each material/emission. The ecologi-

cal and human health effects are defined in impact categories such as global warming 

potential, acidification, human toxicity, land use etc. and are based on the specified 

functional unit. 
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Interpretation 

The last phase of the LCA is the interpretation of the life cycle impact assessment 

(LCIA) results derived from the life cycle inventory (LCI). This analysis should be in 

accordance with the goal and scope definition so as to give recommendations wherever 

is needed. 

 

1.5.2 LCA studies for CO2 capture 
 

CO2 capture and storage (CCS) is considered to be an efficient technology for the re-

duction of global greenhouse gas emissions. Studies on LCA of CCS have shown that 

the CCS technologies can be applied to power plants with net power output from 115 

MW to 832 MW. In addition the CO2 capture efficiencies are in the range of 78% to 

95%, while the most of them have capture efficiency about 90% [54]. There are differ-

ent kinds of technologies for the CO2 separation from flue gases which are based either 

on absorption and adsorption process or membranes or having other separation method. 

Among the different post-combustion capture technologies the baseline and the most 

applicable capture technology is chemical absorption process, using as a sorbent, MEA 

or other amines or chilled ammonia. 

There is a range of studies dealing on MEA absorption process [55] [56] [57] which 

most of them conclude to the fact that MEA process has high thermal energy require-

ment, increasing the overall process cost. According to Chapel et al. [56], the major 

amount of energy need, this of 4.2 GJ/ton CO2, covers the 36% of the operation costs 

for the overall process. In addition Singh et al. [55], after having modelled the MEA 

process for a coal-fired power plant with a capacity of 400 MWe, found that MEA pro-

cess is an energy-intensive process as it has an energy requirement of 3.8GJ/ton CO2. 

There are a lot of papers dealing with the life cycle assessment of coal-fired power plant 

with post-combustion CO2 capture like Koornneef et al. [58] in which the reduction of 

CO2 emissions at a subcritical and supercritical coal-fired electricity generation power 

plant using post-combustion CO2 capture with monoethanolamine is shown. 

As described in the previous sections, an alternative post-combustion chemical absorp-

tion capture technology is calcium looping or calcium looping (CaL), (CaO/CaCO3 cy-

cle) which can be also integrated in power plants. Shimizu et al. [59] were the first to 

introduce calcium looping cycle and its integration with a coal-fired power plant with a 
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CO2 capture rate of 90.4%, showing that the two processes responsible for the increased 

energy consumption are firstly, the O2 stream, produced by the Air Separation Unit with 

100% purity, used for the coal oxy-combustion in the calciner and secondly the CO2 

stream compression after the calciner. However, despite these energy-intensity process-

es the net efficiency when using CaL process is higher compared to other capture tech-

nologies like oxy-fuel combustion. Abanades et al. [60] studied five different types of 

fuels such as coal, biomass and pet coke in claciners with different operation tempera-

tures range such as 850, 950 and 1080oC and different pressures. They found that the 

net power efficiency, on the basis of low heating value (LHV) was ranging from 37.7% 

to 40.0% with capture carbon rate of 90%. Many other studies are dealing with the inte-

gration of CaL with existing coal-fired power plants showing that CaL process is mar-

ginally well-performed compared to oxy-fuel and amine scrubbing, having higher net 

efficiency. Nevertheless, Romeo et al. [61] at their study emphasize the importance of 

heat integration with the secondary steam cycle and the optimum make-up flow rate of 

fresh limestone in CO2 capture systems [62]. Most of the studies in literature discuss 

about coal-fired power plants. Romeo et al. [45] studied a lignite-fired power plant but 

the calciner is fed with coal and not lignite. Vorrias et al. [63] investigate the implemen-

tation of CaL technology in an existing lignite-fired power plant, victualing the calciner 

also with lignite. 

 

 

1.6 Objectives and structure of thesis 

 

This dissertation aims to examine via life cycle analysis (LCA) the post-combustion 

CO2 capture from a Greek lignite power plant with the technology of CaO/CaCO3 loop-

ing (CaL). The chosen technology of CaL is going to be compared, first with a baseline 

case of a power plant without CCS and then with a scenario of chemical absorption CO2 

capture using monoethanolamine (MEA). The environmental impacts of the two scenar-

ios with CO2 capture are going to be compared with the power plant reference case. 

This LCA is undertaken in order to evaluate the extent of the contribution of each sce-

nario to the different environmental impact categories and reach some conclusions in 

terms of possible improvements that can be made. 
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Chapter 1, which has already been presented, gives an overview of the current situation 

in energy and related environmental issues, emphasizing on the global and regional CO2 

emissions in the atmosphere. In this chapter, the CCS technologies are also presented, 

with a main focus on the CaL capture technology. 

In Chapter 2, the goal and scope of the LCA is provided. A brief description of the three 

investigated scenarios is also given, presenting first each stage of the power plant with-

out the capture technology and then the power plant with the two post-combustion car-

bon capture technologies. In addition, a general presentation of the methodology that 

was followed for conducting the study is given. 

The input and output data for the three cases is presented in Chapter 3 and a full de-

scription of the two alternative carbon capture technologies, the carbonate looping and 

the amine process, is provided.  

Chapter 4 contains the impact of the lignite-fired power plant to the different impact 

categories. These results are then compared with the results from the additional process-

es of the capture technologies, calcium looping (CaL) and amine capture by monoeth-

anolamine (MEA). 

Chapter 5 provides an interpretation of the results derived from the Life Cycle Impact 

Assessment stage. The results are analyzed and an interpretation is attempted, with the 

general conclusions derived from the LCA results for the three different cases.  
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2. Goal and Scope Definition 
2.1 Goal  

 

The purpose of this thesis is to compare via the LCA method the environmental impacts 

of three scenarios for electricity production from a lignite-fired power plant, with and 

without post-combustion CO2 capture. The lignite- fired power plant without CO2 cap-

ture technology is used as reference case, in order to assess the additional impacts asso-

ciated with the use of the CO2 capture technology. Through this study, it is possible to 

create and estimate a greenhouse gas profile for the three scenarios and determine the 

environmental advantages or the possible negative implications of using CO2 capture 

technologies. In that way, the energy use and GHG emissions over the whole life cycle 

can be defined and conclusions for the environmental impacts can be reached, in order 

for the power generation with CO2 capture technology to have the most effective appli-

cation. 

The three cases that are going to be addressed in this thesis are: 

 

�  Case 1: The reference case which is an average sub-critical lignite-fired power 

plant operating in the area of Northern Greece in the year of 2014 without CO2 

capture technology. 

� Case 2: The lignite-fired power plant of the reference case, equipped with chem-

ical absorption with monoethanolamine (MEA).  

� Case 3: The same lignite-fired power plant of the reference case, equipped with 

calcium looping (CaO/CaCO3 cycle).  

 

2.2 Geographical framework 

 

The reference power plant is assumed to be located in Greece. Therefore, the life cycle 

inventory data are for the area of Greece and are derived from literature and the Eco-

invent v2.0 (2007) database [64]. For the data which are not possible to find, average 

data for Europe or global average data are used. Also, data for supercritical lignite-fired 
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power plant were taken from literature [58], [63]. Moreover, it was assumed that the 

power plant is built at a distance of 16.5 km from a lignite mine, which is called “Notio 

Pedio”. The lignite is excavated from the nearby open-pit mine and then is transported 

via conveyors to the power plant for the electricity production. 

 

2.3 Functional Unit 

 

The functional unit which is used as reference unit to compare the three cases is defined 

as the production of 1 kWh of net electricity delivered to the grid. This means that all 

results of the study are expressed per kWh. 

 

2.4 Software  

 

The three LCA models were built with the LCA software program of SimaPro 7.3.3 

Multiuser [65], which contains European and U.S. databases and impact assessment 

methodologies such as the CML 2 baseline 2000 v 2.05 [66]. SimaPro 7 is a well-

known Life Cycle Assessment (LCA) software, which covers a variety of business and 

educational needs as is used by industry, consultancies and institutes for research in 

many countries around the world. SimaPro is a useful and professional tool in order to 

collect, analyze and model products or systems from the sustainable and life-cycle point 

of view. Also, complex life cycles can be analyzed in a transparent way so as to give the 

environmental impact of the product or system in all life cycle stages, from the time that 

the raw material is first extracted, then is manufactured and distributed or used to its fi-

nal disposal [67]. 

SimaPro is used at many kinds of LCA applications and contains a variety of databases, 

like Eco-invent database and many impact assessment methods while users can also 

built complex models using the Monte Carlo analysis.  
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2.5. System boundaries 

 

The system boundaries show the life steps that are taken into account for the analysis of 

each of the investigated scenario. As an example, Figure 21 shows in a conceptual 

drawing the boundaries for the reference scenario. For the power plant operation, the 

necessary energy and materials for fuel combustion and power plant infrastructure are 

included, thus creating an electricity generation chain from fossil fuel extraction to final 

electricity generation as is going to be described later on in detail. The environmental 

results of those operations are also included to determine the total environmental im-

pact. 

 

Figure 21 : Conceptual Drawing: Coal LCA System [68] 

 

Concerning the two cases with CO2 capture, not only fuel extraction and transport but 

also materials and energy consumption for the two different CO2 capture processes are 

included to the life cycle and are considered in order to calculate the reduction in the net 

power plant output and also the power plant efficiency. The detailed system boundaries 

for each of the investigated scenarios are presented in detail in the following para-

graphs.  

 

2.5.1 Case 1: Power plant without CO 2 capture technology – refer-
ence scenario 
The system boundaries for the reference power plant include all necessary processes for 

the production of electricity of 1 kWh. 
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Figure 22 : System boundary of the reference power plant 

 

 

As shown in Figure 22, the process of producing electricity from lignite combustion can 

be divided into three major subsystems which are: 

 

 

• lignite mining 

• lignite transportation 

• electricity generation 

 

 

Each subsystem includes all the used materials and the energy which are needed. 

Throughout the process, from lignite mining to electricity generation, the resources, the 

energy use and the generated emissions are quantified. The materials of the equipments 

manufacturing are not included to the above categories. All the data are provided from 

the Eco-invent database or reliable literature data.  

The impacts of lignite mining include the affected area and occupation during the opera-

tion and restoration of the mine, the natural resources necessary for its construction, as 

well as the materials and fuels like consumed diesel and electricity as shown at Table 4. 

The generated emissions to air, water are also included. 

 

 

 

 

 

 

 

Material-
Fossil fuel 

production

Fossil fuel 
transport

Power plant 
operation

1 kWh 
electricity 
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Table 4 :  Inputs from nature (resources) and technosphere (materials/fuels) for mining subsys-

tem 

Transformation from mineral extraction site 

Occupation, mineral extraction site 

Transformation to mineral extraction site 

Transformation to arable 

Water, well in ground 

Coal, brown, in ground 

Diesel, burned in building machine 

Electricity, high voltage, production UCTE, at grid 

 

 

 

The input data for the transportation are the fuel for lignite transportation and the gener-

ated emissions from the transportation of lignite by conveyors and rails, from the min-

ing area to the power plant area. The use of trucks is only for the disposal of the waste 

products, so it was not taken into account. As mentioned, the distance between the mine 

and the power plant was assumed to be very small (16.5 km), so only the conveyor us-

age was taken into account. 

For the generation of electricity at the power plant the necessary fuel, the required heat 

and raw materials used for the operation of the machinery and the overall combustion 

cycle of lignite are included to the input data inventory. Moreover, the generated emis-

sions from the operation of the power plant and the burning of lignite are also included 

in the data inventory. 

Table 5 presents the raw materials, fuels and processes which are participating at elec-

tricity generation subsystem.  
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Table 5 : Inputs from nature (resources) and technosphere (materials/fuels) for the electricity 

generation subsystem 

 

 

 

 

 

 

 

 

 

The general procedure for producing electricity from the combustion of lignite includes 

as Figure 23 displays, the following steps: 

� At first, lignite is pulverized into a lignite pulverizing system and then is ready 

to be fed into the furnace boiler. In the boiler the lignite is burnt at high tempera-

ture. From the combustion of lignite flue gasses of high CO2 concentration and 

heat are produced.  

� The next step is to utilize the produced heat, so as to heat the water, which is 

flowing in tubes lining the boiler, and produce steam at high pressure and tem-

perature. Afterwards, the steam is fed into a turbine which consists of many sets 

of blades where it expands, causing the rotation of the turbine at high speed. 

�  Finally, the turbine is mounted with a generator. From the rotation of the tur-

bine the generator rotor starts rotating, causing the electricity production based 

on Faraday’s Principle. 

The low pressure steam after the expansion is going to the condenser, to be con-

densed and return back to the boiler to restart the cycle. 

 

Lignite, at mine 

Water, cooling, unspecified natural origin 

Chlorine, liquid, production mix, at plant 

Water, completely softened, at plant 

Water, decarbonized, at plant 

SOx retained, in lignite flue gas desulphurization 

Transport, freight, rail 
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Figure 23 : Coal fired power plant [69] 

 

2.5.2 Case 2: Power plant with chemical absorption CO2 capture 
technology 

 

Chemical absorption by monoethanolamine (MEA) or amine scrubbing is used com-

mercially for CO2 separation from flue gasses. Having already been applied in the past 

for CO2 scrubbing at chemical process plants, this technology can also be used in the 

power sector. It is the most mature post-combustion capture technology [70]. The sol-

vent of MEA is a chemical compound which belongs to amines and absorbs low con-

centration CO2 (15-20%) from flue gas.  

The system boundary for the overall process to produce 1 kWh of electricity at the base 

case power plant retrofitted with the amine CO2 capture technology is shown in Figure 

24. The major processes, which can be considered as subsystems, are still lignite min-

ing, lignite transportation and electricity production. In addition, one more process is 

added, the process of post-capturing CO2 with chemical absorption using amine-based 

solvents. 

The overall process of producing electricity can be divided now into the following four 

subsystems: 
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• lignite mining 

• lignite transportation 

• chemical absorption 

• electricity generation 

 

 

 

Figure 24 : System boundary of the reference power plant with CO2 capture by MEA 

 

For the scenario of the post-combustion CO2 capture with amine scrubbing, the energy 

and materials for the subsystem of lignite mining and the generated emissions by this 

subsystem are the same as the base case. The same applies for the subsystem of trans-

portation. The raw materials, the energy and heat use for the transportation section are 

also the same. In addition, the generated emissions to air and water and the used energy 

and heat for the power plant operation are also included before the final generation of 

electricity. Finally, for the new subsystem, this of the CO2 capture, as Table 6 shows, 

the raw materials and chemicals used for the production of monoethanolamine and for 

its transportation to manufacturing plant, as well as energy use and emissions for oper-

ating the amine chemical absorption unit are taken into account.  

Table 6 : Extra inputs from nature (resources) and technosphere (materials/fuels) for CO2 cap-

ture by MEA capture unit 

Monoethanolamine 

Sodium hydroxide (concentrated)  

Ammonia  

Limestone 

Electricity, medium voltage 

Heat from lignite  

Material-
Fossil fuel 

production

Fossil 
fuel 

transport

Power 
plant 

operation

1 kWh 
electricity 

CO2  cap-
ture by 
MEA 
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2.5.3 Case 3: Power plant with carbonate looping CO 2 capture 

 

The system boundaries of power generation with CO2 capture by carbonate looping is 

presented in Figure 25. Similarly to the system boundary for CO2 capture by MEA, the 

system boundary for the alternative capture technology of carbonate looping consists of 

the same four subsystems with the only difference, that of the capture subsystem.  

 

 

Figure 25 : System boundary of the reference power plant with CO2 capture by calcium looping (CaL) 

 

For the subsystem of CO2 capture, the energy and the necessary heat, as well as the spe-

cific materials such as the limestone for the CO2 capture from the flue gases are also 

included. At Table 7, the input data for the proper operation of calcium looping capture 

unit are presented. 

 

Table 7 : Extra inputs from nature (resources) and technosphere (materials/fuels) for CO2 cap-

ture by CaL capture unit 

Limestone, milled ,loose, at pant 

Electricity, medium voltage for auxiliaries 

Heat from lignite 

 

2.6 Data collection 
 

Data for main impact categories were mainly obtained from Eco-invent database [64]. 

SimaPro LCA software program come with the Eco-invent database which was devel-

oped by the Swiss Centre for Life Cycle Inventories. The Eco-invent database covers 

Material-
Fossil fuel 

production

Fossil fuel 
transport

Power 
plant 

operation

1 kWh 
electricity 

CO2 cap-
ture by 

Calcium 
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about 4000 datasets for processes, services and products which are used in LCA studies 

[71]. Eco-invent is the product of well-known older LCI databases and is considered to 

be a well updated database having for its contents information about a lot of production 

processes, waste treatment scenarios and environmental assessment methods. Most of 

Eco-invent datasets can give background data to some LCA studies. The LCI data 

which contains are from the area of energy with a variety of fuels like natural gas, oil, 

hard coal and lignite, renewable energy sources, electricity mixes and biofuels, electrici-

ty and heat production, transports, chemicals, metals, electronics, plastics, paper, 

woods, agricultural products, building materials and from the area of mechanical engi-

neering and more.  

 

2.7 Impact assessment methodology 

 

In order to evaluate the environmental impacts of the investigated systems, the LCI re-

sults have to be classified to relevant impact categories. Each impact category has its 

own characterization factor in order to classify and characterize the different emissions 

which contribute to the same impact effect. 

It is possible that the same pollutant is classified to only one or many different impact 

categories as it can cause different environmental impacts. For example, the main con-

tributor for global warming is CO2. NOx emissions however have a share to many im-

pact categories such as acidification, eutrophication, human toxicity and photochemical 

oxidation. The impact of each pollutant can be classified by two possible ways. Either 

by recording the direct and indirect environmental impacts or by using specific charac-

terization factors so as to have more clear results for each category. 

After the classification of each pollutant to the specific impact category, there is the 

characterization part. At this step the pollutant which has be classified in one or more 

impact categories is now characterized with specific characterization factors using a 

common unit for each impact category. This way the LCI results can be compared for 

each impact category by their degree of contribution. For instance, the emissions related 

to the acidification impact category are multiplied by the specific factor, which is not 

the same for each pollutant. In this way, it is easy to understand the degree of contribu-

tion of each pollutant to the impact category and at the same time the different inventory 

inputs are converted into impact indicators able to be compared. This can be done if the 
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inventory data is multiplied with the characterization factor, using the following equa-

tion: 

 

� Inventory data x Characterization factor = Impact indicator 

 

 For the needs of the present LCA, the CML baseline 2000 Method was used as an envi-

ronmental impact assessment method. CLM is a method developed by the Centre for 

Environmental Studies (CML) of the University of Leiden in Netherlands in 1992 [66]. 

This method has a midpoint approach and is a problem orientated method before the 

final potential environmental damage to resources, ecosystems and human health show-

ing the importance of the over-consumption of one resource or the generated emission 

to the ecosystem.  

The impact categories that were considered in the current LCA were the following: 

� Abiotic depletion 
The abiotic depletion category refers to the extraction of raw materials and minerals 

such as iron and copper and extraction of fossil fuels. It is expressed in a ratio of kg 

equivalents of each extraction of minerals and fossil fuel used to kg of resource left in 

the reservoir, for example kg antimony equivalents/kg extraction and is performed at a 

global, regional and local scale.  

� Acidification 
This impact category is related to the potential impacts on groundwater, soil, surface 

water, biologic organisms, ecosystems and materials used for building. The accumula-

tion of large amounts of sulfates and nitrates in the water cause phenomena like acid 

rain, which affect the acidity of wetlands and cause the degradation of forests. All the 

ecosystems do not have the same ability to absorb the same deposition that is why the 

affecting amount may be different for each country. Acidification potential is expressed 

as kg SO2 equivalent and is implemented at a regional and global scale. 

� Eutrophication 
The impact category of eutrophication refers to the excessively large levels of macronu-

trients from nutrients emitted to air, water and soil in the environment. Also, the use of 

fertilizers in agriculture affects the quality of the groundwater. The macronutrients can 

result to the alteration of the number of species and their composition, while can in-

crease biomass production in terrestrial and aquatic ecosystems such as aquatic photo-
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synthetic plants which cause further oxygen consumption in the water. In addition, the 

presence of plants like reeds and algae in the water surface, result in limiting the solar 

radiation to the lower levels of the water affecting the photosynthesis and the production 

of oxygen.  It is expressed as kg PO4 equivalents and has local and regional geograph-

ical scale. 

� Global Warming (GWP 100) 
The impact category of global warming is associated with the harmful effects of GHG 

emissions to human health and the ecosystem caused by anthropogenic activities. The 

generated GHG emissions in the atmosphere cause the increase of temperature, which 

results to global warming and finally climate change. Global warming with a time hori-

zon of 100 years (GWP 100) was considered. Global warming is expressed in kg carbon 

dioxide equivalents in a global geographical scale. 

� Ozone layer depletion 
The ozone layer depletion refers to the environmental impacts due to the thinner ozone 

layer. The anthropogenic emissions cause the decrease of the ozone layer which in turn 

results to pass a larger fraction, than it is supposed to, of UV-B radiation and reach the 

earth’s surface. Eventually, this UV-B radiation has adverse effects on human and ani-

mal health, on aquatic and terrestrial ecosystems and on biochemical cycles and materi-

als. The main contributor of about 80% for the depletion of ozone in the stratosphere is 

chlorofluorocarbons (CFC). It is expressed in kg CFC-11 equivalent for the ozone de-

pletion potential of different gasses in a global scale. 

� Human toxicity 
This impact category refers to the effects of toxic substances released to air, water and 

soil on human health. The unit for expressing the human toxicity potential factors is kg 

1,4-dichlorobenzene equivalents and has a regional, local and global scale. 

� Fresh water aquatic eco-toxicity 
The impact category of fresh water aquatic eco-toxicity refers to the impact of the dis-

posal of toxic substances on aquatic, sediment and terrestrial ecosystems. Eco-toxicity 

potential is expressed as kg 1,4-dichlorobenzene equivalents and the geographical scope 

is at local scale. 
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� Marine aquatic eco-toxicity 
The impact category of marine aquatic eco-toxicity refers to the impact of toxic sub-

stances and their emissions on marine ecosystems. It is also expressed as kg 1,4-

dichlorobenzene equivalents and the geographical scope is at local scale. 

� Terrestrial eco-toxicity 
The impact category of terrestrial eco-toxicity refers to the impact of toxic substances 

and their emissions on terrestrial ecosystems. Its impact factor is expressed as kg 1,4-

dichlorobenzene equivalents and the geographical scope is at local scale. 

� Photochemical oxidation 
Photochemical oxidation refers to the adverse effects on human health and ecosystems 

by the formation of reactive chemical substances, like ozone, caused by the sunlight im-

pact on specific air pollutants. It depends on climate conditions such as average irradia-

tion, temperature and humidity and temperature inversion in addition to the co- presence 

of nitrogen oxides in the troposphere. The photochemical ozone creation potential fac-

tors are expressed in kg ethylene equivalents, with time span of 5 days and in local 

scale. 

The characterization factors for the most important pollutants and the units for each im-

pact category, used in CML 2000 baseline, are presented analytically in Table 8.  

In addition to characterization, the normalization of the impact categories can be ob-

tained, when dividing the scores from a specific impact category with the corresponding 

category of a reference region like Netherlands, West Europe or World in a specific 

time region, such as 1990, 1995 and 1997. 
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Table 8 : Environmental impact categories [72] 

Environmental 

impact catego-

ry 

Scale Relevant emissions and resources 
Characterization 

factor 

Abiotic deple-

tion 

Global, 

regional 

,local 

Quantities of minerals and fossil fuels used 

Converts LCI data to 

a ratio of resource 

used to resource left. 

 ( kg Sb eq) 

Acidification 
Regional, 

local 

Sulfur dioxide(SO2), Nitrogen oxides 

(NOx), Hydrochloric acid (HCl), Hydroflu-

oric acid (HF), Ammonia (NH3) 

kg SO2 equivalents 

Eutrophication 
Regional, 

local 

Phosphate (PO4), Nitrogen Oxide (NO) 

Nitrogen dioxide (NO2), Nitrates, Ammo-

nia (NH3) 

kg PO4 
-3 equivalents 

Global warm-

ing 
Global 

Carbon dioxide (CO2), Nitrogen dioxide 

(NO2), Methane (NH4), Chlorofluorocar-

bons(CFCs), Hydroclorofluorocar-

bons(HCFCs) 

kg CO2 equivalents 

Ozone layer 

depletion 
Global 

Clorofluorocarbons(CFCs), Hydrocloro-

fluorocarbons(HCFCs), Halons, 

Methylbromide (CH3Br) 

kg CFC -11 equiva-

lents 

Human toxicity 

Global, 

regional 

,local 

Arsenic, Chromium VI, Benzene, Hexa-

chlorobenzene 
kg 1,4-DB equivalents 

Fresh water 

aquatic eco-

toxicity 

Local Vanadium, Nickel, Beryllium kg 1,4-DB equivalents 

Marine aquatic 

eco-toxicity 
Local Nickel, Beryllium, Cobalt, Vanadium kg 1,4-DB equivalents 

Terrestrial eco-

toxicity 
Local 

Arsenium, Chromium VI, Vanadium, Mer-

cury 
kg 1,4-DB equivalents 

Photochemical 

oxidation 
Local 

Non-methane volatile organic compounds 

(NMVOC), Alkanes, Alkenes, Aromatic 

hydrocarbons 

kg C2H4  equivalents 
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3. Life Cycle Inventory (LCI) 
3.1 Case 1: Reference power plant  

3.1.1 Lignite mining 

 

For mining 1 kg of lignite, the necessary inputs and the generated emissions to air, wa-

ter and soil are shown in Table 9 and Table 10 respectively. The data was derived from 

the Eco-invent database in SimaPro software program, which quantifies the directly af-

fected area and occupation during operation and restoration of the mine. Electricity re-

quirements and some diesel for mining operation are included, as well as the groundwa-

ter pumped out of the mine. The re-cultivation to arable area is taken into account. In 

addition, electricity and diesel use are included. Electricity supply is modeled with the 

Union for the Co-ordination of Transmission of Electricity (UCTE) mix. 

Heat requirements are not accounted for because: heat use is only mentioned in a few 

cases; heat is also used for briquette production and its allocation to different uses is not 

given; heat is usually produced as co-product by mine-mouth cogenerating plants for 

which no module has been developed.  

Particle emissions are calculated on the basis of direct measurements of total particles 

made in Germany between mining areas and nearest populated areas. Radon emissions 

are extrapolated from data for hard coal mining. Methane emissions are directly taken 

from literature. Emissions to water are only roughly estimated on the basis of limited 

information from Germany and Spain and may not reflect specific conditions. They are 

assumed to be released to rivers. Possible emissions to groundwater have not been ac-

counted for. Solid wastes are deposited in the same open pit and therefore not taken into 

account in the module. The data are for average European conditions around the begin-

ning of the 1990s. 
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Table 9 : Inputs from nature (resources) and technosphere (materials/fuels) need, for mining 1kg 

of lignite 

Transformation from mineral extrac-

tion site 

0.000074  m2 

Occupation, mineral extraction site 0.00111 m2a 

Transformation to mineral extraction 

site 

0.000037 m2 

Transformation to arable 0.000037 m2 

Water, well in ground 0.0035 m3 

Coal, brown, in ground 1 kg 

Diesel, burned in building machine 0.015 MJ 

Electricity, high voltage 0.02 kWh 

 

Table 10 : Emissions to air, water and soil from the mining of 1kg of lignite 

 

 

 

 

 

 

Emissions to water 

Calcium, ion 36.0 g 

Chloride 4.99 g 

Heat, waste 14.4 kJ 

Hydrogen-3, Tritium 118.25 Bq 

Magnesium 19.8 g 

Phosphate 7.01 g 

Potassium, ion 11.31 g 

Silicon 15.8 g 

Sodium, ion 19.76 g 

Sulfate 164.62 g 

Emissions to air 

Carbon dioxide, 

fossil 

11.73 g 

Heat, waste 228.56 kJ 

Hydrogen-3, Triti-

um 

1.58 Bq 

Noble gases, ra-

dioactive, unspec-

ified 

2.65 kBq 

Radon-222 4.94 kBq 

Emissions to soil 

Heat, waste 56.97 J 

Oils 3.43 mg 
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However, for the generation 1 kWh by the lignite combustion at the power plant, the 

necessary amount of fossil fuel is 1.99 kg of lignite, as calculated by SimaPro program. 

Figure 26 shows a schematic representation of 1.99 kg lignite mining also by SimaPro 

program.  

 

Figure 26 : Schematic representation of mining for 1.99 kg lignite, by SimaPro program 

 

3.1.2 Lignite transportation 

 

For the purposes of this study, it was assumed that lignite is transported to the mine by 

rail with a capacity of 2.315E-5 ton, which is necessary for the generation of 1kWh of 

electricity. The distance between the mine and the power plant was assumed equal to 

16.5 km. Based on these assumptions, the transportation demands for lignite from the 

mine to the power plant were calculated equal to 0.000382 tkm. The input data used for 

transportation of 1 tkm and the final emissions in the environment are shown at the Ta-

ble 11 and Table 12. The data were obtained from the Eco-invent database by SimaPro 

software program. The module from the program calls the modules ‘operation of vehi-

cle’; ‘production, maintenance and disposal of vehicles’; ‘construction and maintenance 

and disposal of railway tracks’.  
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Inventory refers to the entire transport life cycle. For rail infrastructure, expenditures 

and environmental interventions due to construction, renewal and disposal of roads have 

been allocated based on the Gross tone kilometer performance. Expenditures due to op-

eration of the rail infrastructure, as well as land use have been allocated based on the 

yearly train kilometer performance. 

Data refers to average transport conditions in Europe (EU 15: Austria, Belgium, Den-

mark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Por-

tugal, Spain, Sweden and the UK). The data for rail infrastructure reflect Swiss condi-

tions. Data for vehicle manufacturing and maintenance represents generic European da-

ta. Data for the vehicle disposal reflect Swiss situation. 

For vehicle operation all technologies are included in the average data. Rail construction 

addresses conventional gravel track beddings. For the manufacturing of vehicles, the 

data reflects a current modern locomotive. 

Figure 27 shows a schematic representation of lignite transportation, necessary for the 

generation of 1 kWh of electricity, provided by SimaPro program. 

 

 

Figure 27 : Schematic representation of the construction and operation of transportation, by 

SimaPro program 
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For the transportation of 1tkm of lignite, the input data of the raw material used and the 

generated output emissions to air, water and soil, are shown at Table11 and Table 12 as 

calculated by SimaPro program. 

Table 11 : Inputs from nature (resources) and technosphere (materials/fuels) need, for 1tkm of 

lignite transportation 

 

 

 

 

 

 

 

 

 

Table 12 : Emissions to air, water and soil for 1tkm of lignite transportation 

 

 

 

 

Input raw material/fuels 

Coal, brown, in ground 8,32 g 

Coal, hard, in ground 6,38 g 

Energy 39 kJ 

Natural gas, in ground 2,60 l 

Gravel, in ground 66,05 g 

Oil, crude, in ground 4,28 g 

Water, turbine use 222 l 

Emissions to water 

Heat, waste 33,05 kJ 

Hydrogen-3, Tritium 279,47 Bq 

Radium-226 1,07 Bq 

Sulfate 1,85 g 

Chloride 258,17 mg 

Aluminium 42,72 mg 

Emissions to air 

Carbon dioxide, fossil 37,54 g 

Carbon monoxide, fossil 110,27 mg 

Dinitrogen monoxide 1,01 mg 

Heat, waste 680,61 kJ 

Methane, fossil 56,85 mg 

Nitrogen oxides 188,57 mg 

Noble gases, radioactive 6,26 kBq 

Particulates, < 2.5 um 12,67 mg 

Particulates, > 10 um 42,05 mg 

Particulates, >2.5um,and < 10um 16,08 mg 

Radon-222 12,09 kBq 

Sulfur dioxide 97,69 mg 

Hydrogen chloride 1,66 mg 

Hydrogen-3, Tritium 3,69 Bq 

Emissions to soil 

Chloride 2,19 mg 

Heat, waste 263,29 J 

Iron 60,79 mg 

Oils 18,67 mg 
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3.1.3 Electricity generation from lignite fired pow er plant  
 

The module in SimaPro software program uses the average net efficiency of Greek lig-

nite power plants (35.2%). The module describes the electricity production of an aver-

age plant for the country. The plant is used for middle load with 6,000 hours of opera-

tion at full capacity per year. The plant is assumed to operate 200,000 hours during its 

lifetime.  

The reference power plant is a typical lignite-fired power plant in Greece with a typical 

capacity of 300 MWe, located in Northern Greece [63]. As already mentioned, the fossil 

fuel which is mostly used for power generation in Greece is lignite. Lignite is a fuel 

with low heating value, about 5-6.3 MJ/kg. The raw lignite analysis is shown in Table 

13 and is in accordance with European Benchmark Task Force (EBTF) definitions [73].  

 

Table 13 : Raw lignite analysis 

C 

(w/w %) 

H 

(w/w %)  

S 

(w/w %) 

O 

(w/w %) 

N 

(w/w %) 

H2O 

(w/w%) 

Ash 

(w/w%) 

LHV 

(kJ/kg) 

22.58 2.07 0.94 9.88 0.37 36.8 27.36 7831 

 

 

Due to the fact that lignite is a high moisture fuel, a drying system is considered. The 

pre-drying system comprises a bubbling fluidized bed dryer at which the fluidized agent 

is part of the moisture removed from the lignite which is then mixed with the re-

circulating steam [74]. The necessary heat for the drying process is provided by the oth-

er part of the moisture which is condensed in an internal heat exchanger. For the com-

pression of the fluidized steam and the compression of the stream which is fed to the 

heat exchanger, two blowers are needed. The installation of the drying system contrib-

utes to increase of the power plant’s efficiency. 

A subcritical Sulzer-type boiler is installed in the plant. The combustion technology 

used for the generation of electricity is the “Pulverized Coal Combustion” (PPC) tech-

nology. PPC is a mature technology and can be applied to many kinds of coal, like lig-

nite. The efficiencies of the steam cycle and the boiler are those which mostly determine 

the efficiency of a PPC power plant. The reference power plant has an average efficien-
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cy of 35.2%. The sub-critical power plants usually operate at conditions with steam 

pressures below 220 bar and temperatures below 540oC [75]. The thermal power plants 

usually are constructed near the mining area of the fossil fuel. The thermal plants with 

high power generation consist of many power production units. Each unit has its own 

boiler, circulation piping system, electric pumps, generator, turbine and chimney, which 

may be shared with another unit. 

The steam cycle consists of, firstly the boiler, which produces high pressure steam at 

171.4 bar and 540oC. The boiler has an efficiency of 87%. 

The produced steam from the boiler is being superheated and then is expanded at the 

high pressure (HP) steam turbine. After being reheated, it enters the intermediate pres-

sure steam turbine (IP) then the low pressure (LP) steam turbine and finally goes to the 

condenser.  

At the end of the turbine, which turns with 3000 rounds per second, a generator is 

mounted which transforms kinetic energy to electric energy. The generator through a 

transformer raises the voltage from 21 kV to 400 kV and then the high voltage goes to 

the national high voltage grid. 

The extracted steam from the steam turbines goes to electrically driven feedwater 

pumps. The water coolant flow is cooled by a wet natural draught cooling tower so as 

the heat at the condenser to be dissipated. The pressure of the condenser is 0.05 bar and 

the inlet temperature of the cooling water is around 35oC. From the condenser the con-

densed steam goes through the circulator to the preheaters so as to raise the water tem-

perature from 35oC to 250oC. There are also preheaters at the end of the boiler.  

Based on the above, for the generation of 1 kWh of electricity, with an average efficien-

cy of the power plant at 35.2%, around 1.99 kg of lignite with 5.44 MJ/kg heating value 

and 2.5 lit of cooling water are needed. The technical characteristics of the plant are 

presented in Table 14. 

Table 14 : Main characteristics of the reference power plant 

Power output 

Electrical efficiency 

Coal consumption 

MWel 

% 

kg/kWh 

300 

35.2 

1.99 

Specific CO2 emissions kgCO2/kWhel 1.28 
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For the generation of 1kWh of electricity from lignite combustion, the necessary inputs 

of the raw material used and the generated emissions to air, water and soil are shown in 

Table 15 while Table 16 shows the generated emissions to air, water and soil. The data 

was derived from the Eco-invent database by SimaPro program. 

 

 

 

 

Table 15 : Inputs from nature (resources) and technosphere (materials/fuels) for the generation 

of 1kWh of electricity, by lignite combustion 

 

 

 

 

 

 

 

 

Lignite, at mine 1.99 kg 

Water, cooling, unspecified natural 

origin/m3 

0.035 m3 

Chlorine, liquid, production mix, at 

plant 

0.0001 kg 

Water, completely softened, at plant 0.062 kg 

Water, decarbonized, at plant 1.54 kg 

SOx retained, in lignite flue gas de-

sulphurization 

0.002 kg 

Transport, freight, rail 0.00038 tkm 
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Table 16 : Emissions to air, water and soil for the generation of 1 kWh of electricity by the lig-

nite combustion of 10.2 MJ, with 35.2% efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

Emissions to water 

Aluminium 6.01 g 

Calcium, ion 90.28 g 

Chloride 9.96 g 

Heat, waste 1.78 

MJ 

Hydrogen-3, Tritium 240.74 

Bq 

Iron, ion 11.81 g 

Magnesium 42.21 g 

Manganese 3.16 g 

Nitrate 4.17 g  

Phosphate 14.01 g 

Potassium, ion 23.08 g 

Silicon 63.82 g 

Sodium, ion 40.17 g 

Solids, inorganic 6.95 g 

Strontium 1.43 g 

Sulfate 352.72 

g 

Emissions to air 

Boron 85.06 mg 

Carbon dioxide, biogenic 711.03 

mg 

Carbon dioxide, fossil 1.28 kg 

Heat, waste 7.16 MJ 

Hydrogen-3, Tritium 3.21 Bq 

Nitrogen oxides 1.44 g 

NMVOC, non-methane volatile 

organic compounds 

9.18 mg 

Noble gases, radioactive 5.40 kBq 

Particulates, < 2.5 um 911.70 

mg 

Particulates, > 10 um 914.05 

mg 

Particulates, > 2.5 um, and < 

10um 

110.62 

mg  

Pentane 1.72 mg 

Radon-220 2.40 Bq 

Radon-222 10.07 kBq 

Sulfur dioxide 6.04 g  

Emissions to soil 

Heat, waste 133.653 J 

Oils 7.874 mg 
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Figure 28 shows a schematic representation of electricity production of 1 kWh with 

35.2% efficiency by SimaPro program. 

 

Figure 28 : Schematic representation of electricity generation of 1 kWh, with 35.2% efficiency 

 

Since the life stages up to the CO2 capture step are common for all three scenarios, only 

the CO2 capture technology will be discussed for each CO2 capture case in the follow-

ing paragraphs. 

 

 

3.2 Case 2: Power plant with CO 2 capture by mo-
noethanolamine (MEA)  

 

The technology which is commercially available for the post-combustion capture of 

CO2 is amine scrubbing, using an amine based liquid solvent, usually monoethanola-
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mine (MEA) [29]. At the absorption process the aqueous alkaline solvent of amine re-

acts reversibly with an acid or sour gas. The amine scrubbing process flow diagram is 

presented in Figure 29. 

 

Figure 29 : Flow diagram of amine scrubbing process [76] 

 

The flue gas from the lignite power plant enters the absorption column, called absorber, 

where it is cooled to a temperature of 40-60oC. From the top of the absorber a mixture 

comprised of water and MEA solution, usually 15-30% or 40%, enters the absorber. 

The mixture is brought into contact with the flue gas and from the reaction of MEA 

with CO2 a carbonate salt is formed. A blower increases the pressure drop to 1.124 bar. 

The flue gas, clean of CO2, exits the absorber from the top while the carbonate salt 

leaves the absorber from the bottom and is then pumped to the top of a stripper (regen-

eration vessel). In the stripper, the rich-CO2 sorbent is heated at temperatures of 100-

140oC in order to strip off the CO2. The generated amine is then transferred to the re-

boiler where is heated so as to be transferred back to the stripper. This extra heat re-

quirement for the maintenance of the regeneration conditions leads to a thermal energy 

penalty of 4 MJ/kg CO2. The CO2 stream before being compressed and transported to a 

storage site, it is cooled for any solvent droplets or solvent vapor. In addition to thermal 

energy, electrical energy is also required for the operation of the liquid pumps, used for 

pumping the amine solution and for the operation of the flue gas blowers used for the 

pressure drop [74].  

Finally, extra energy is used by the cooling pumps and a multistage compression unit 

for the CO2 compression at the necessary pressure of 110 bar as well as for its cooling at 
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the temperature of 20oC for the final transportation and storage. For a better understand-

ing of such installations, Figure 30 shows the embodiment of the post-combustion cap-

ture system by MEA in a power plant. 

 

Figure 30 : Schematic of a post-combustion CO2 capture system in a power plant [77] 

 

The input data and the generated emissions from amine scrubbing post- combustion 

CO2 capture process are shown in the Table 17. The data were obtained from Koornneef 

J. et al, 2008 [58]. The data were adjusted for the capture of 1 kg CO2 emission by lig-

nite combustion, at a Greek lignite-fired subcritical power plant. 

 

Table 17 : Inputs from nature (resources) and technosphere (materials/fuels) for capturing 1 kg 

CO2 by the amine scrubbing process 

Monoethanolamine 3.28 gr 

Sodium hydroxide (concentrated)  0.6 gr 

Ammonia  3.4 gr 

Limestone 12.1 gr 

Electricity, medium voltage 0.136 MJ 

Heat 6.4 MJ 

CO2 emission from electricity pro-

duction flue gases 

1 kg 
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The output emissions in air, water and soil for the capture of 1 kg CO2, are shown at 

Table 18. The data were calculated for all the resources, the raw materials and fuels 

which were used by MEA capture unit by SimaPro software program. 

 

Table 18 : Emissions to air, water and soil for capturing 1 kg CO2 by the amine scrubbing pro-

cess 

 

 

Emissions to air 

Carbon-14 1.31 

Bq 

Carbon dioxide 8.22 g 

Carbon dioxide, fossil 355.97 

g 

Carbon monoxide, fos-

sil 

1.09 g 

Heat, waste 15.24 

MJ 

Hydrogen-3, Tritium 7.58 

Bq 

Methane, fossil 2.68 g  

Nitrogen oxides 3.14 g 

Noble gases, radioac-

tive,  

12.765 

k Bq 

Particulates, < 2.5 um 0.91 g 

Particulates, > 10 um 1.55 g 

Polonium-210 1.12 

Bq 

Radon-220 1.98 

Bq 

Radon-222 23.86 

kBq 

Sulfur dioxide 9.21 g 

Xenon-133 1.46 

Bq 

Emissions to water 

Aluminium 5.61  g 

Calcium, ion 77.28 g 

Chloride 12.71 g 

Heat, waste 1.5 MJ 

Hydrogen-3 568.5 Bq 

Iron, ion 10.07 g 

Magnesium 36.54 g 

Manganese 2.74 g 

Nitrate 3.64 g 

Phosphate 12.13 g 

Potassium, ion 20.40 g 

Radioactive spe-

cies, Nuclides 

1.28 Bq 

Radium-226 2.11 Bq 

Silicon 56.14 g 

Sodium, ion 35.28 g 

Solids, inorganic 5.64 g 

Strontium 1.25 g 

Strontium-90 1.84 Bq 

Sulfate 304.07 g 

Emissions to soil 

 

Calcium 1.72 mg  

Carbon 1.02 mg  

Chloride 2.36 mg  

Heat, waste 2.04 kJ  

Iron 8.72 mg  

Oils 41.64 mg  
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Figure 31 shows a schematic representation of the input data in MEA capture unit by 

SimaPro program for the CO2 capture from 1 kWh of electricity. 

 

 

Figure 31 : Schematic representation of MEA capture unit by SimaPro program 

 

 

3.3 Case 3: Power plant with CO 2 capture by Car-
bonate looping (CaL) 
 

An alternative technology for post-combustion CO2 capture is the process called “Cal-

cium Looping”. Calcium looping is a promising technology for CO2 capture from power 

plants and it was firstly proposed by Heesink and Temmink, in 1994 [38]. Its difference 

to conventional amine scrubbing is that it utilizes a solid sorbent material like CaO in a 

system comprised of two fluidized bed reactors. The separation of CO2 from the flue 

gas stream is performed through a reversible reaction, the exothermic reaction of CaO 

and CO2 in the carbonator to form calcium carbonate and the endothermic reaction of 

CaCO3 in the calciner, so as to regenerate the sorbent as Figure 32 presents and it was 

initially proposed by Shimizu et al. [59]. 

The flue gas stream that exits the boiler of the power plant is transferred to the carbona-

tor. There, at temperature around 650oC the CO2 from the flue gas is absorbed by CaO 

and from the exothermic reaction, CaCO3 is formed. The solids exiting the carbonator 

are sent to the calciner, where through the endothermic reaction at around 900oC, Ca-

CO3 produced by the carbonation reaction, is decomposed back to CaO while at the 

same time, a CO2 stream is released. 

 



- 55 - 
 

 

Figure 32 : Capture cycle general layout [40] 

 

The CO2 stream is then led for possible compression and for final storage, while CaO is 

recycled back to the carbonator for a continuous operation of the cycle. The extra heat 

requirement for the calcination is obtained by the combustion of the extra fuel fired with 

oxygen-rich stream in order to produce a CO2 stream with high purity. Nevertheless, the 

gas streams exiting the two reactors generate additional heat which can be utilized by 

the power plant for power generation. After a number of carbonation and calcination 

cycles the concentration of CaO in the calciner is getting lower and this affects the CO2 

absorptivity. To make up this CaO loss, fresh CaCO3 is supplied in the calciner. In addi-

tion, even though the coal burned has low sulfur content, as there is a desulfurization 

unit at the power plant, still a small amount of SO2 reacts with the CaO and forms 

CaSO4 (gypsum) contributing to this extra demand of CaCO3.  

However, despite the fact that there is an energy loss due to the oxygen supply in the 

calciner, the overall energy penalty using the ‘Calcium Looping’ process is less than 

using the alternative post- combustion technology of CO2 capture by ‘amine scrubbing’. 

According to I. Vorrias et al. [63] for a supercritical power plant with net power output 

of 304.15 MWel and net efficiency of 39.05%, the energy penalty for the ‘Calcium 

Looping’ process is 4.95% while for the process using ‘amine scrubbing’ is 7.8%. 
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3.3.1 Air Separation Unit (ASU) 

 

The Air Separation Unit (ASU), as Figure 33 shows, is where a large amount of pure 

oxygen is produced with the cryogenic method. In this unit the stream of air is separated 

into two streams, the one which is pure in oxygen and the one which is pure in nitrogen. 

This separation occurred due to the different dew point of oxygen and nitrogen in condi-

tions with high pressure. The general process starts with the entrance of the air stream 

into the inter-cooled compressor so as to be compressed after passing its four stages. 

Then, in order for the moisture to be removed, the air is cooled to 12oC and this can be 

obtained at the two-staged Direct Contact Air Cooler (DCAC). For further cooling at 

9oC, the air enters in the evaporative coolers. There, the air is cooled down due to the 

presence of a nitrogen stream. 

Moreover, the air stream passes through the molecular siever absorbers so as to be 

cleaned from water or impurities, before entering the main heat exchanger. Afterwards, 

the separation of air is performed, firstly by being cooled to dew point and then by en-

tering in two distillation columns, which have different operating pressures. The 34% of 

the separation is occurred in the column with the high pressure conditions. The final 

separation of O2 concludes, when the streams after exiting the high pressure column 

(HP) and passing through the throttle valves, enter in the low pressure column (LP).  

 

 

Figure 33 : Typical flow diagram of the Air Separation Unit (ASU) [63] 
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There is no use of any external heat or cooling because for the condensation in the high 

pressure column the necessary cooling load is obtained from the generated heat from the 

evaporation in the re-boiler in the low pressure column. For the overall process to be 

concluded, the streams after exiting the low pressure column are then heated in the main 

heat exchanger to a temperature of 15oC as the air comes from the molecular sieves. 

Table 19 presents the process parameters according to EBTF in order to be produced 

95% pure oxygen stream [73]. Finally, the temperatures of the streams from the reboiler 

and the condenser are the one which specify the pressures in the two columns, the LP 

and HP column. 

 

Table 19 : Process parameters of the ASU modeling 

HPC and LPC pressure 5.50/1.92 bar 

Oxygen pressure outlet 1.35 bar 

Air compressor isentropic efficiency 86.5 % 

O2 recovery efficiency 99.1 % 

N2 recovery efficiency 99.7 % 

Oxygen purity 95.0 % v/v 

Nitrogen purity 99.6 % v/v 

Specific O2 production 222.36 kWh/ tnO2 

 

 

3.3.2 Heat Exchanger  

 

Chemical absorption systems are characterized by the fact that the absorption reactor 

has lower temperature than the higher temperature of the generation reactor. For the 

elimination of the energy penalty between the main two streams, a heat exchanger is 

added. In carbonate looping, there is a major temperature difference between the car-

bonator and the calciner and by exchanging the heat between the solid streams, with the 

use of a heat exchanger, has an advantageous impact on the total efficiency [62]. A unit 

of a heat exchanger as Figure 34 shows could be the one of two concentric L-valves.  
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Figure 34 : Concentric L-valves for heat exchange [63] 

 

The L-valves of the two fluidized bed reactors are placed concentrically and act as heat 

exchanger while the two solid streams pass through them, having as a result the same 

output temperature.  The heat exchange increases when the vertical parts of the L-valves 

are fixed beds, while the dimension of the unit is reduced. Even though there are many 

uncertainties about the coupled operation, still the concentric L-valves operation con-

duces to a heat exchange between the solid streams to a great extent. 

 

 

3.3.3 Secondary steam cycle - Heat utilization 

 

Calcium looping capture process, is a process which operates in high temperatures and 

generates a great amount of heat energy. This heat energy, with a superheated steam at 

650oC, can be recovered in order to generate additional power in a secondary steam 

cycle, increasing in that way the electrical power production of the power plant. The 

produced electrical power can be utilized in driving the CO2 compression unit and 

especially the air separation unit, which consumes a high amount of energy. In that case, 

the energy penalty, caused by the capture process can be reduced while the overall 

efficiency of the power plant is increased [62], [63], [78]. 

The secondary steam cycle as Figure 35 shows, includes high , medium and low 

pressure turbines, heat recovery, steam generator, economizer, superheater, reheater, 

high and low pressure feedwater reheaters and deaerator. 
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Figure 35 : Integration of heat from calcium looping to a steam cycle    [62] 

 

The energy sources for possible integration are: 

� The recovered heat from calciner, as the concentrated CO2 stream exits the 

calciner with a temperature of 900oC, which first it can be cooled down to 150oC 

and then can be splitted. 

� The recovery heat from carbonator’s flue gases, produced by the reaction of CO2 

with CaO at 650oC. 

� The flue gas stream with low CO2 emissions that exits the carbonator at 650oC, 

which can  be cooled down to 100-120oC before being stacked. 

� The CO2 stream which is going to be purified and then compressed, before its 

condensation can be cooled down to 80oC. 

� The heated solid purge at 900oC, leaving the calciner, before being disposed or 

sent to a cement plant, can be cooled down while the recovered heat can be 

utilized. 

In addition, the cooling water leaving the heat exchangers can be used for district 

heating, as it has high mass flow rate and a temperature of 88oC. This utilization can 

increase further the efficiency of the power plant.  

Finally, an efficiency increase can be obtained, when the recovered heat from the purge 

stream cooling is used for preheating the oxygen and the CO2 stream in the fluidized 

calciner. 
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3.3.4. Advantages  

 

In general, calcium looping technology offers potential benefits which make it an 

alternative capture process with good operating characteristics, such as [79], [50], [80], 

[81] [82] [83]: 

i. Lower energy penalties for CO2 capture. The energy penalties for calcium 

looping are 6-8% points while the energy penalties of amine scrubbing post-

combustion process are 10-12% points [28]. 

ii.  With the intergration of calcium looping with chemical looping, which is still in 

research condition, the high energy requirement for the CO2 capture it is 

possible to be reduced. At this process composite CaO/CuO-based materials are 

used, with the CuO having the role of oxygen carrier providing the necessary 

amount of oxygen for the regeneration of the sorbent in CaL. In that way the 

ASU consumes less power and the overall energy penalty of post-combustion 

CO2 capture is reduced further more. 

iii.  Providing an additional steam cycle. The energy penalty caused by the air 

separation can be reduced by the utilization of heat from the hot sorbent material 

and the hot CO2 stream to generate additional steam.  

iv. In calcium  looping, the technical scale-up risks are reduced due to the use of 

mature large-scale equipment, like the circulating fluidized bed (CFB) boiler. 

v. The use of natural limestone as a sorbent in calcium looping, is a low cost raw 

material. Despite the fact that after multiple cycles of CO2 capture the sorbent is 

losing its capacity and high amount of fresh limestone needs to be supplement, 

so as the CO2 capture efficiency to be kept to a proper level, due to its low price 

is not a drawback for the integration of calcium looping to power industry. 

vi. Provides the possibility of collaboration for power and cement industry, as both 

are heavy-emitting industries, when the exhausted sorbent of CaO (lime), after 

having used by power industry is used by cement industry as feedstock. 

vii.  The high energy consumption of Air Separation Unit (ASU) in oxy-combustion, 

is reduced in calcium looping combustion, as the consumed power is reduced to 

1/3. 
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3.3.5 Inventory data for “Carbonate looping” 

 

For the Calcium Looping (CaL) process, the inventory input and output data were ob-

tained by Vorrias I. et al, 2013 [63].Table 20 presents the main characteristics for the 

calcium looping process. 

 

Table 20 : The input data of the main characteristics for the CaL process 

IN 

CO2 from the main boiler 49.83 kg/s 

Electricity for air separation 0.78 MJ/kgCO2 capt. 

Heat for combustion 3.65 MJ/kgCO2 capt. 

Fresh limestone 17.7 kg/s 

 

 

Table 21 shows the input CO2 emissions in kgCO2/s from the different sources which 

entering the carbon capture system and the CO2 emissions in kgCO2/s which are cap-

tured, as well as the emitted CO2 emissions in kgCO2/s. 

Table 21 : CO2 balance at the carbon capture system 

IN (kg CO2/s) OUT (kg CO2/s) 

From the main 

boiler flue 

gases  

49.83 Captured 80.48 

From lignite 

combustion at 

the calciner 

30.87 Emitted 5.20 

From make-up 

limestone deg-

radation 

4.98   

Total 85.68   
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The input data with the amount of the make-up limestone (CaCO3), the electricity and 

the heat used, for capturing 1 kg CO2 by calcium looping CO2 capture process are 

shown in Table 22. 

 

Table 22 : Inputs from nature (resources) and technosphere (materials/fuels) for capturing 1 kg 

CO2 via carbonate looping 

Limestone, milled ,loose, at pant 0.25 kg 

Electricity, medium voltage for 

auxiliaries 

0.89 MJ 

Heat 4.2 MJ 

CO2 emission from electricity 

production flue gases 

1 kg 

 

 

Figure 36, displays a schematic representation of the input data in CaL capture unit, by 

SimaPro program, for capturing the CO2 emissions by generating 1 kWh of electricity. 

 

Figure 36 : Schematic representation of CaL capture unit, by SimaPro 

 

The output emissions in air, water and soil, for capturing 1 kg CO2, are calculated for all 

the resources, the raw materials and fuels entering the capture unit, by SimaPro software 

program as Table 23 shows. 
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Table 23 : Emissions to air, water and soil for capturing 1 kg CO2 by carbonate looping process 

 

 

 

 

 

  

Emissions to air 

Carbon-14 1.17 Bq 

Carbon diox-

ide, fossil 

328.05 g 

Carbon 

monoxide, 

fossil 

0.85 g 

Heat, waste 13.36 MJ 

Hydrogen-3 6.57 Bq  

Methane, 

fossil 

1.95 g  

Nitrogen ox-

ides 

2.7 g 

Noble gases, 

radioactive 

11.13 kBq 

Particulates, 

< 2.5 um 

0.97 g 

Particulates, 

> 10 um 

1.43 g 

Polonium-

210 

0.96 Bq 

Radon-220 2.28 Bq 

Radon-222 21.25 kBq 

Sulfur diox-

ide 

8.71 g 

Xenon-133 1.89 Bq 

Emissions to water 

Aluminium 6.12 g 

Calcium, ion 87.45 g 

Chloride 12.65 g 

Heat, waste 1.78 MJ 

Hydrogen-3, Tritium 496 Bq 

Iron, ion 11.41 g 

Magnesium 41.1 g 

Manganese 3.08 g 

Nitrate 4.07 g 

Phosphate 13.65 g 

Potassium, ion 22.78 g 

Radioactive species, 

Nuclides. 

1.12 Bq 

Radium-226 1.92 Bq 

Silicon 62.78 g 

Sodium, ion 39.64 g 

Solids, inorganic 6.53 g 

Strontium 1.39 g 

Strontium-90 1.53 Bq 

Sulfate 343.04 

g 

Emissions to soil 

 

Calcium 

 

2.47 mg 

Carbon 1.64 mg 

Chloride 2.67 mg 

Heat, waste 6.83 kJ 

Iron 8.04 mg 

Oils 6.28 mg 

Sodium 1.02 mg 
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 4. Life Cycle Impact Assess-
ment (LCIA) 

 

At this chapter, the performance of the three following scenarios is analyzed: Case 1 

‘Electricity production’ without having any capture technology, Case 2, ‘Electricity 

production with MEA’ which is ‘Electricity production’ case, with CO2 capture tech-

nology with MEA and Case 3, ‘Electricity production with Calcium looping’ which is 

‘Electricity production’ case, with CO2 capture technology with Calcium looping. 

At first, the efficiency and the CO2 capture rate for the three cases are going to be pre-

sented. Afterwards, the environmental impact categories of this LCA, are going to be 

analyzed with tables and figures, showing the processes and the raw materials which 

participate in the operation of the three cases, for electricity production of 1 kWh, with 

or without capture technology, as well as with tables and figures, which present the pol-

lutant substances which are responsible for the increase of each environmental impact 

category. For each of the ten different environmental impact categories, one table with 

one figure are presented, in order to illustrate the processes or the raw materials which 

contribute the most and calculate the value of characterization factor of each impact cat-

egory. One table with one figure, are also presented, with the pollutants which are emit-

ted from the processes for each case and are responsible for the increase of the value of 

characterization factor, of the corresponding environmental impact category. 

 

4.1 Efficiency 
 

Case 1, ‘Electricity production’, is a subcritical lignite-fired power plant with an aver-

age efficiency of 35.2%. Case 2, ‘Electricity production with MEA’, has an efficiency 

of 19.38% (energy penalty of 15.8%) and Case 3, ‘Electricity production with Calcium 

looping’, has an efficiency of 21.5% with an energy penalty of 13.7% as Table 24 pre-

sents. The requirement of high amount of heat for the two CO2 capture systems makes 

them to be energy-intensive processes and is responsible for the high energy penalty. In 

addition, the fact that the power plant of Case 1, is a subcritical and not a supercritical 

power plant, also contribute to the high energy penalty score as the two capture process-
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es have better performance at supercritical power plants. Moreover, the energy penalty 

for a lignite-fired power plant with capture technology is higher compared to a coal-

fired power plant, also with capture technology, due to the fact that lignite has lower 

calorific value and higher moisture than coal [84].  As we can see Case 2, ‘Electricity 

production with MEA’, has higher energy penalty than Case 3, ‘Electricity production 

with Calcium looping’. The fact that the efficiency of Case 3 is higher than Case 2, 

apart from its better CO2 capture performance, is also because ‘Electricity production 

with Calcium looping utilizes the 40% of the heat generated by the capture process to a 

secondary steam cycle and produces extra electricity. 

 

Table 24 : Efficiencies for the three investigated scenarios 

 Electricity pro-

duction 

(Case 1) 

Electricity 

production 

with MEA 

(Case 2) 

Electricity pro-

duction with 

Calcium looping 

(Case 3) 

 

Efficiency 

 

35.2% 

 

19.38% 

 

21.5% 

 

4.2 CO2 capture rate 
 

The CO2 emissions for Case1, ‘Electricity production’ are 1.28 kg CO2 per kWh while 

the CO2 emissions for Case 2, ‘Electricity production with MEA’,  are 0.39kg CO2 per 

kWh electricity generation with MEA process and is thus capable of capturing 90.73% 

of the generated CO2 emissions from lignite combustion. The total CO2 emissions for 

‘Electricity production with MEA’, containing the CO2 emissions from all processes, 

from lignite mining to electricity generation, as well as the CO2 equiv. emissions from 

the other substances which are also emitted during the operational phase of the power 

plant, like methane, nitrous monoxide and carbon monoxide are 0.55 kg CO2 equiv. 

emissions. The overall amount of CO2 avoided in ‘Electricity production with MEA’, is 

calculated to be 87.1%. For Case 3, ‘Electricity production with Calcium looping’ to-

gether with 40% utilization of heat from this process, the generated CO2 equiv. emis-
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sions from lignite combustion are 0.095 kg CO2 per kWh electricity generation, with 

carbonate looping technology being capable of capturing 97.3% of the generated CO2 

equiv. emissions. However, the total CO2 equiv. emissions for ‘Electricity production 

with Calcium looping’, containing the CO2 equiv. emissions from all processes, from 

lignite mining to electricity generation, and the other substances which are also emitted 

during the operational phase of the power plant, like methane, nitrous monoxide and 

carbon monoxide are 0.49 kg CO2 emissions. So, the overall amount of CO2 avoided in 

‘Electricity production with Calcium looping’ is calculated to be 86.5%. 

Table 25 presents the CO2 capture rates for the two capture processes, with ‘Electricity 

production with Calcium looping’ process having the higher score for capturing the 

generated CO2 equiv. emissions from lignite combustion, while the score of the avoided 

CO2 equiv. emissions from overall power plant being almost the same for the two cap-

ture processes. The LCA for electricity production with the two capture processes sug-

gest almost equivalent lifecycle performance. However, for ‘Electricity production with 

Calcium looping’ by improving the operating conditions, such as, the maximum power 

output, the maximum efficiency and the minimum fresh sorbent input, will contribute to 

a revenue increase, whereas for ‘Electricity production with MEA’, the only possibility 

for the increase the power output and the efficiency of the system, would be to use more 

power from the power plant performing the capture process, which have as a result the 

reduction of capture efficiency and simultaneous  increase of the life cycle emissions. 

 

Table 25 : CO2 capture rates for the 2 Cases with CO2 capture technology 

 Electricity production 

with MEA (Case 2) 

Electricity produc-

tion with Calcium 

looping (Case 3) 

 

% CO2 captured from lignite 

combustion 

 

90.73% 

 

97.3% 

 

% CO2 captured from overall 

power plant 

 

87.1% 

 

86.5% 
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4.3 Global warming potential (GWP 100) 
 

As we can see from the results for the impact category of global warming, there is a 

great reduction of CO2 equiv. in the two cases with the post-combustion CO2 capture 

technology compared to ‘Electricity production’ with no CO2 capture technology. The 

emissions produced by the lignite combustion at the power plant for electricity genera-

tion, cover the major percent of the direct CO2 emissions. Table 26, presents the overall 

processes and raw materials, which participate in the operation of the three Cases, from 

‘cradle to grave’ and produce the higher amounts of CO2 equiv. emissions, when com-

paring ‘Electricity production’ and ‘Electricity production with Calcium looping’, with 

Electricity production with MEA. For all cases the main source of CO2 equiv. emissions 

is the lignite supply chain and especially the lignite combustion. The generated emis-

sions by the mining and transport chain as well as by the MEA and limestone produc-

tion chain are lower in relation to lignite chain and lignite combustion.  

As we can see at Table 26, for ‘Electricity production’ case, the generated emissions 

only by lignite combustion process, for electricity generation, are 1.26 kg CO2 equiv. 

For the two cases with the capture technology, the amount of kg CO2 equiv. generated 

by lignite combustion, are referred to the extra electricity used, by lignite combustion, 

for the operation of the capture processes. The emitted kg CO2 equiv., after the flue gas-

es have passed through the capture units, are also shown for each of the two capture 

technologies, which are 0.39 kg CO2 equiv. for ‘Electricity production with MEA’ and 

0.095 kg CO2 equiv. for ‘Electricity production with Calcium looping’.  For that reason 

by increasing the CO2 separation rates at the power plant, we can achieve a further re-

duction of CO2 emissions in the atmosphere.  

If we want to calculate the amount of kg CO2 avoided from lignite combustion, we have 

to subtract the direct emissions from the power plant with the capture unit from the 

power plant without the capture unit and calculate the avoidance efficiency. As we have 

already calculated above, the avoidance efficiency of Case 2, ‘Electricity production 

with MEA’ process is 90.73% and for Case 3, ‘Electricity production with Calcium 

looping’, is 97.3%. 

However for both cases with capture technology, we assumed that there is no leakage of 

CO2 from the reservoir. Whether there is a CO2 leakage, the avoidance efficiency would 

be reduced. Still, in that case the CO2 emissions in the atmosphere would occur with a 

low rate and in a long-term time horizon. As a result, the CO2 concentration in the at-
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mosphere would be performed in slower rates, giving to the animals and plants the op-

portunity to be adjusted, so the overall damage would be less. Moreover, even though in 

absolute levels may create the same environmental damage by delaying the CO2 emis-

sions in the atmosphere, they are also offering some economic benefits. First of all, by 

postponing the climate change, for a positive discount rate when CO2 is sequestered, the 

net present value of damage costs is reduced. Additionally, the net present value of 

damage costs is also reduced in case that the discount rate increases faster than the 

abatement cost. Also, by postponing the climate change, it offers the necessary time for 

the development of new mitigation process for the CO2 emissions.  

 

Table 26 : Global warming potential pollutant processes per kWh electricity, for the whole 

power plant 

Process/Raw material Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity 

production 

with Calcium 

looping 

Sodium hydroxide kg CO2 eq 0.00E+00 1.11E-03 0.00E+00 

Natural gas, burned in 

power plant kg CO2 eq 1.99E-04 4.06E-03 2.66E-02 

CO2 emissions after 

MEA capture unit kg CO2 eq 0.00E+00 3.94E-01 0.00E+00 

Lignite combustion kg CO2 eq 1.26E+00 5.12E-02 2.60E-01 

CO2 emissions after 

CaL capture unit  kg CO2 eq 0.00E+00 0.00E+00 9.50E-02 

Heat, lignite, extra for 

capture process kg CO2 eq 0.00E+00 7.14E-02 4.69E-02 

Ethylene kg CO2 eq 7.65E-07 3.49E-03 2.21E-06 

Ammonia  kg CO2 eq 3.05E-05 1.65E-02 6.42E-05 

Heavy fuel oil, burned 

in power plant  kg CO2 eq 1.00E-04 5.47E-03 3.60E-02 

Remaining processes kg CO2 eq 3.75E-02 7.99E-03 2.40E-02 
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For the three cases, the values of the total kg CO2 equiv. produced by the emitting pro-

cesses are shown at Figure 37. As we can see, ‘Electricity production’ without capture 

unit generates the higher amount of kg CO2 equiv. in the atmosphere, followed by ‘Elec-

tricity production with MEA’ and finally ‘Electricity production with Calcium looping’, 

generates the lower amount of kg CO2 equiv. 

 

 

 

Figure 37 : Global warming potential pollutant processes per kWh electricity, for the whole 

power plant 

 

In Table 27 and Figure 38, we can see that besides carbon dioxide, there are also other 

substances like methane, carbon monoxide and dinitrogen monoxide, with global warm-

ing potential, which also produce some kg CO2 equiv. emissions during the operation of 

the power plant. For the two capture processes, the score for the substance of methane is 

higher due to the fact that for the operation of these capture processes extra electricity is 

required and this means extra lignite mining, which is responsible for methane emis-
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sions. Other contributors to the increase of methane are also the MEA production chain 

and the disposal chain of reclaimer bottoms. 

 

Table 27 : Global Warming Potential impact category inventory characterization per kWh elec-

tricity, for the whole power plant 

Pollutant 

substance Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity production 

with Calcium looping 

Carbon 

dioxide, fossil kg CO2 eq 1.28E+00 4.56E-01 4.20E-01 

Methane, 

fossil kg CO2 eq 1.17E-02 8.01E-02 5.94E-02 

Dinitrogen 

monoxide kg CO2 eq 1.74E-03 5.97E-03 6.63E-03 

Carbon 

monoxide, 

fossil kg CO2 eq 3.81E-04 2.21E-03 1.72E-03 

Total kg CO2 eq 1.30E+00 5.44E-01 4.88E-01 

 

 

Figure 38 : Global warming potential impact category inventory characterization per kWh elec-

tricity, for the whole power plant 
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For the following environmental impact categories, at the tables and figures correspond-

ing to the participating processes or raw materials for the three Cases, the process ‘heat, 

lignite, extra for capture system’ is referring to the extra heat used by Case 2 and Case 

3, which utilize the capture technology, while the process ‘electricity production’ is 

Case 1 with its whole life cycle for electricity production of 1 kWh, by lignite combus-

tion, which is also utilized in Case 2 and Case 3. 

4.4 Abiotic depletion 
 

The extraction of fossil resources is expressed via the abiotic depletion category. At Ta-

ble 28, derived from SimaPro software program, we can see all the processes and the 

raw materials which contribute to the increase of abiotic depletion impact category. Es-

pecially, there is an increase of this category for the two capture processes due to the 

fact that, for the operation of the capture units more materials are required. The use of 

extra amount of raw materials like, lignite, natural gas and limestone for the generation 

of the specific amount of electricity or heat used for the operation of the capture units, 

have as a result the production of more fly ash, bottom ash and solid wastes which also 

result to the overall increase of this impact category. 

As we can see at Table 28, the high amount of electricity and heat used by ‘Electricity 

production with MEA’ capture system and the use of high amount of electricity, heat 

and lignite by ‘Electricity production with Calcium looping’, are responsible for the 

high value of abiotic depletion for both capture technologies. 

Table 28 : Abiotic depletion pollutant processes per kWh electricity 

Process/Raw material Unit 

Electricity 

production  

Electricity 

production 

with MEA 

Electricity 

production 

with Calcium 

looping 

Crude oil kg Sb eq 3.38E-05 5.97E-05 2.53E-04 

Natural Gas kg Sb eq 3.10E-05 7.48E-05 2.35E-04 

Lignite, at mine kg Sb eq 1.33E-02 4.02E-04 2.62E-03 

Heat, lignite, extra for capture 

process kg Sb eq 0.00E+00 7.06E-03 4.63E-03 

Electricity production kg Sb eq 0.00E+00 1.35E-02 1.35E-02 

Remaining processes kg Sb eq 7.66E-05 2.04E-04 9.05E-05 
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Figure 39, shows the overall value of the abiotic depletion impact category for the three 

cases. For ‘Electricity production’ case, the value of abiotic depletion is lower than the 

value of ‘Electricity production with MEA’ and ‘Electricity production with Calcium 

looping’. 

 

 

 

Figure 39 : Abiotic depletion impact category process contribution per kWh electricity 

 

 

Table 29 and Figure 40 present the substances which contribute to the increase of abiot-

ic depletion impact category. The increase of natural resources use, like natural gas, 

crude oil and especially lignite, for the two capture processes, which are necessary for 

the proper operation and construction of those capture units are responsible for the in-

crease of abiotic depletion category. 
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Table 29 : Abiotic depletion impact category inventory characterization per kWh electricity 

Pollutant 

substance Unit 

Electricity produc-

tion 

Electricity 

production 

with MEA 

Electricity pro-

duction with 

Calcium looping 

Lignite kg Sb eq 1.34E-02 2.06E-02 2.04E-02 

Natural gas kg Sb eq 4.04E-05 4.11E-04 4.42E-04 

Oil, crude kg Sb eq 3.53E-05 2.87E-04 3.92E-04 

Remaining 

substances kg Sb eq 5.10E-08 1.04E-05 1.70E-07 

Total kg Sb eq 1.35E-02 2.13E-02 2.12E-02 

 

 

 

Figure 40 : Abiotic depletion impact category inventory characterization per kWh electricity 
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chain and from the production process of MEA. However, it is possible to get a further 

reduction of the NH3 emissions, by installing a water wash section at the top of the ab-

sorber of the ‘Electricity production with MEA’ unit.  

At ‘Electricity production with Calcium looping’ the high value of consumption of elec-

tricity for the air separation unit, as well as the extra use of heat, for the operation of the 

process, are responsible for the high value of acidification impact category. 

Table 30 presents with more details the processes or the raw materials which contribute 

to the increase of the value of acidification impact category for the three cases, showing 

the higher value for ‘Electricity production with MEA’, due to the higher consumption 

of heat and electricity. 

 

 

Table 30 : Acidification impact category pollutant processes per kWh electricity 

Process/Raw ma-

terial Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity produc-

tion with Calcium 

looping 

Electricity produc-

tion kg SO2 eq 0.00E+00 7.97E-03 7.97E-03 

Heat, lignite, extra 

for capture process kg SO2 eq 0.00E+00 7.87E-03 5.16E-03 

Heavy fuel oil, 

burned in power 

plant kg SO2 eq 9.37E-07 5.10E-05 3.36E-04 

Lignite, burned in 

power plant kg SO2 eq 7.84E-03 2.33E-04 1.54E-03 

Natural gas kg SO2 eq 4.38E-06 7.86E-06 3.29E-05 

Remaining 

processes kg SO2 eq 1.25E-04 8.70E-05 1.13E-04 

 

 

Figure 41 shows the acidification values for the three cases, showing that ‘Electricity 

production with MEA’ has the higher value. 
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Figure 41 : Acidification impact category pollutant processes per kWh electricity 

 

As Table 31 and Figure 42 presents the production of sulfur dioxide and nitrogen oxides 

emissions from the extra use of electricity and heat at the two capture systems, influence 

the values of acidification. In addition due to the energy penalty, more fuel will be 

needed, increasing in that way the amount of nitrogen oxides produced. 

 

Table 31 : Acidification impact category inventory characterization per kWh electricity 

Pollutant 

substance  Unit 

Electricity 

production 

Electricity produc-

tion with MEA 

Electricity produc-

tion with Calcium 

looping 

Sulfur 

dioxide kg SO2 eq 7.26E-03 1.42E-02 1.34E-02 

Nitrogen 

oxides 

kg SO2 eq 

7.17E-04 2.01E-03 1.73E-03 

Ammonia kg SO2 eq 8.44E-07 4.50E-05 2.56E-05 

Total kg SO2 eq 7.97E-03 1.62E-02 1.52E-02 
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Figure 42 : Acidification impact category inventory characterization per kWh electricity 

 

 

4.6 Eutrophication 
 

Likewise to the acidification impact category, the NH3 emissions are responsible for the 

higher values of eutrophication impact category for the cases with capture units, com-

pared to those of Case1, ‘Electricity production’. Again, for ‘Electricity production with 

MEA’, the extra NH3 emissions are caused by MEA production and its degradation as 

well as by the reduction of the net efficiency of the power plant, having as a result the 

extra usage of fossil fuel. This increase of eutrophication is caused firstly by the higher 

NH3 emissions from MEA production and its degradation and secondly by the NOx 

emissions generated from the operation of the power plant. For ‘Electricity production 

with Calcium looping’, as Figure 43 shows, the higher values of eutrophication is main-

ly due to the higher electricity consumption used at capture process and the disposal of 

lignite from mining subsystem. 

 

Table 32 presents the three cases, showing the origin of eutrophication values for each 

process, while Figure 43 shows the total values for eutrophication impact category, with 

the value of ‘Electricity production with Calcium looping’ being the higher one of the 

three cases.  
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Table 32 : Eutrophication impact category pollutant processes per kWh electricity 

Process/Raw ma-

terial Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity pro-

duction with Cal-

cium looping 

Disposal, spoil from 

lignite mining kg PO4--- eq 1.4E-02 4.3E-04 2.8E-03 

Electricity produc-

tion kg PO4--- eq 0.0E+00 1.5E-02 1.5E-02 

Heat, lignite, extra 

for capture process kg PO4--- eq 0.0E+00 1.5E-03 9.6E-04 

Lignite, burned in 

power plant kg PO4--- eq 1.8E-04 5.2E-06 3.5E-05 

Remaining 

processes kg PO4--- eq 9.1E-05 2.7E-05 4.5E-05 

 

 

 

Figure 43 : Eutrophication impact category pollutant processes per kWh electricity 

 

The production of high amount of phosphate emissions from the above processes and 

the used raw materials is the major contributor for eutrophication impact category. As 
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Table 33 : Eutrophication impact category inventory characterization per kWh electricity 

Pollutant 

substance 

Unit  Electricity  pro-

duction 

Electricity pro-

duction with 

MEA 

Electricity 

production 

with Calcium 

looping 

Phosphate kg PO4--- eq 1.40E-02 1.55E-02 1.75E-02 

Nitrogen 

oxides 

kg PO4--- eq 1.86E-04 5.23E-04 4.51E-04 

Nitrate kg PO4--- eq 4.18E-04 4.66E-04 5.21E-04 

Total kg PO4--- eq 1.46E-02 1.65E-02 1.85E-02 

 

 

 

 

Figure 44 : Eutrophication impact category inventory characterization per kWh electricity 
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portation. The additional processes for the construction and operation of the two capture 

systems increase the amount of lignite and fuels, having as a result a further production 

of harmful emissions. For ‘Electricity production with Calcium looping’ as Figure 45 

shows, the major process contributor for the high values of ozone layer depletion cate-

gory is the use of crude oil. 

 

Table 34 and Figure 45 show analytically the sources of the emissions for this impact 

category, which the major percent is from fossil fuels used for the generation of heat 

and electricity, while other processes which generate emissions are the transportation 

and the use of the raw materials of chlorine and crude oil, with crude oil having the 

highest share. 

 

Table 34 : Ozone layer depletion impact category pollutant processes per kWh electricity 

Process/Raw mate-

rial Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity 

production 

with Calcium 

looping 

Chlorine kg CFC-11 eq 2.86E-10 1.36E-11 6.75E-11 

Crude oil kg CFC-11 eq 7.30E-10 1.27E-09 5.46E-09 

Electricity production kg CFC-11 eq 0.00E+00 1.75E-09 1.75E-09 

Heat, lignite, extra 

for capture process kg CFC-11 eq 0.00E+00 4.34E-09 2.85E-09 

Transport, natural 

gas kg CFC-11 eq 5.28E-10 1.28E-09 4.02E-09 

Remaining 

processes kg CFC-11 eq 1.43E-11 4.82E-11 6.10E-11 
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Figure 45 : Ozone layer depletion impact category pollutant processes per kWh electricity 

 

For ‘Electricity production with Calcium looping’ as Figure 46 and Table 35 show, the 

major contributors for the high values of ozone layer depletion category are methane, 

ethane and halon emissions which result for ‘Electricity production with Calcium loop-

ing’ Case, to have the highest value of the three. 

Table 35 : Ozone layer depletion impact category inventory characterization per kWh electricity 

Pollutant 

substance 

Unit Electricity 

production 

Electricity 

production 

with MEA 

Electricity pro-

duction with 

Calcium looping 

Methane, 

bromotrifluoro-, 

Halon 1301 

kg CFC-11 eq 7.32E-10 5.00E-09 8.16E-09 

Methane, 

bromochlorodifluoro-

, Halon 1211 

kg CFC-11 eq 5.22E-10 2.74E-09 5.12E-09 

Ethane, 1,2-dichloro-

1,1,2,2-tetrafluoro-, 

CFC-114 

kg CFC-11 eq 1.90E-10 5.80E-10 5.29E-10 

Methane, 

tetrachloro-, CFC-10 

kg CFC-11 eq 2.87E-10 3.19E-10 3.67E-10 

Methane, 

chlorodifluoro-, 

HCFC-22 

kg CFC-11 eq 1.70E-11 7.81E-11 1.29E-10 

Total kg CFC-11 eq 1.75E-09 8.73E-09 1.43E-08 
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Figure 46 : Ozone layer depl. impact category inventory characterization per kWh electricity 

 

4.8 Human toxicity 
 

The high level of HF in the atmosphere causes the increase of the human toxicity poten-

tial category. The material production for the further infrastructure which emits heavy 

metals in the atmosphere is the main contributor for the increase of human toxicity. In 

the case of ‘Electricity production with MEA’ the emission of ethylene oxide in the air 

during MEA consumption and in the water during MEA production are also the main 

causes for human toxicity. In ‘Electricity production with Calcium looping’, the main 

source of human toxicity is the extra energy and the higher electricity usage for the cap-

ture system along with the lignite disposal from lignite combustion chain. Figure 47 

shows the major emissions for ‘Electricity production with Calcium looping’, such as 

Selenium, Molybdenum, Nickel, Barium and Cadmium. 

However, the capture process can reduce the fly ash contained in the flue gases by pass-

ing through the flue gas desulphurization (FGB) unit and this result to lower the emis-

sions at the power plant level. Nevertheless, in this LCI data it is not taken into account 

the removal efficiency of SOx and NOx from the capture systems. Also, some studies 

like IEA GHG (2006) [76] and Chapel et al. (1999) [85] use lower values for the MEA 

consumption and this may alter the total score of the human toxicity impact category. 

0,0E+00

2,0E-09

4,0E-09

6,0E-09

8,0E-09

1,0E-08

1,2E-08

1,4E-08

1,6E-08

Electricity MEA CaL

k
g

 C
F

C
-1

1
 e

q

Ozone layer depletion

Methane, chlorodifluoro-,
HCFC-22

Methane, tetrachloro-,
CFC-10

Ethane, 1,2-dichloro-
1,1,2,2-tetrafluoro-, CFC-
114

Methane,
bromochlorodifluoro-,
Halon 1211

Methane, bromotrifluoro-,
Halon 1301



- 82 - 
 

The processes which contribute the most to the generation of human toxically emissions 

as Table 36 shows, are the disposal of spoil from lignite mining and lignite ash, as well 

as the electricity and heat generation. The two capture processes have higher values due 

to the extra lignite consumption. 

Table 36 : Human toxicity impact category pollutant processes per kWh electricity 

Process/Raw ma-

terial Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity 

production 

with Calcium 

looping 

Copper kg 1,4-DB eq 1.53E-03 8.56E-04 2.07E-03 

Natural gas kg 1,4-DB eq 1.64E-05 3.34E-04 2.19E-03 

Well for exploration kg 1,4-DB eq 3.06E-04 6.77E-04 2.49E-03 

Lignite, burned in 

power plant kg 1,4-DB eq 9.31E-02 2.76E-03 1.82E-02 

Heavy fuel oil, 

burned in power 

plant kg 1,4-DB eq 6.49E-05 3.53E-03 2.33E-02 

Disposal, lignite ash kg 1,4-DB eq 2.86E-01 8.50E-03 5.60E-02 

Heat, lignite, extra for 

capture process kg 1,4-DB eq 0.00E+00 4.00E-01 2.63E-01 

Electricity production kg 1,4-DB eq 0.00E+00 1.47E+00 1.47E+00 

Remaining 

processes kg 1,4-DB eq 1.13E-02 1.75E-01 1.08E-02 

 

 

 

As Figure 47 presents the higher value of human toxicity has ‘Electricity production 

with MEA’, followed by ‘Electricity production with Calcium looping’ and finally 

Electricity production. 
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Figure 47 : Human toxicity impact category pollutant processes per kWh electricity 
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production with Calcium looping’ having almost the same value.  
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Table 37 : Human toxicity impact category inventory characterization per kWh electricity 

Pollutant substance Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity pro-

duction with 

Calcium loop-

ing 

Selenium kg 1,4-DB eq 7.19E-01 8.12E-01 9.07E-01 

Molybdenum kg 1,4-DB eq 1.22E-01 1.37E-01 1.54E-01 

Nickel, ion kg 1,4-DB eq 1.22E-01 1.36E-01 1.53E-01 

Arsenic kg 1,4-DB eq 3.61E-02 1.32E-01 1.09E-01 

Chromium VI kg 1,4-DB eq 1.68E-02 1.20E-01 8.86E-02 

Vanadium, ion kg 1,4-DB eq 9.76E-02 1.16E-01 1.27E-01 

Barium kg 1,4-DB eq 1.02E-01 1.13E-01 1.27E-01 

Ethylene oxide kg 1,4-DB eq 9.02E-08 9.74E-02 4.81E-07 

Beryllium kg 1,4-DB eq 8.10E-02 9.19E-02 1.02E-01 

Thallium kg 1,4-DB eq 6.76E-02 8.58E-02 9.21E-02 

Antimony kg 1,4-DB eq 2.53E-02 2.78E-02 3.14E-02 

PAH, polycyclic 

aromatic hydrocarbons kg 1,4-DB eq 8.52E-03 1.85E-02 1.97E-02 

Benzene kg 1,4-DB eq 4.40E-03 1.53E-02 1.24E-02 

Cobalt kg 1,4-DB eq 8.81E-03 9.72E-03 1.10E-02 

Hydrogen fluoride kg 1,4-DB eq 5.79E-03 7.73E-03 8.09E-03 

Cadmium kg 1,4-DB eq 1.93E-03 4.98E-03 4.81E-03 

Nitrogen oxides kg 1,4-DB eq 1.72E-03 4.83E-03 4.16E-03 

Total kg 1,4-DB eq 1.42E+00 1.93E+00 1.95E+00 
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Figure 48 : Human toxicity impact category inventory characterization per kWh electricity 
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4.9 Fresh water aquatic eco-toxicity 
 

The emissions of metals in the water and in the air, contribute to the high score of the 

impact category of fresh water aquatic eco-toxicity. The disposal wastes are not only 

from the power plant but are also from the capture unit. The land filled wastes occurred 

from the coal combustion, the flue gas desulphurization and from the production of steel 

which at first are disposed in the environment and later on are drained, producing the 

harmful emissions. In addition, from the production of steel, which is used for the 

transport infrastructure and during the transport of the fossil fuel, indirect and direct 

emissions are released in the atmosphere. 

The processes which contribute the most to the generation of human toxically emissions 

and affect the fresh water aquatic eco-toxicity impact category as Table 38 shows, are 

the disposal of spoil from lignite mining and lignite ash as well as the additional gener-

ated heat for the two capture systems.  

 

Table 38 : Fresh water aquatic eco-toxicity impact category pollutant processes 

Process/Raw 

material Unit 

Electricity 

production 

Electricity pro-

duction with 

MEA 

Electricity 

production 

with Calcium 

looping 

Disposal, lignite 

ash kg 1,4-DB eq 3.79E-01 1.13E-02 7.43E-02 

Heat, lignite, ex-

tra for capture 

process kg 1,4-DB eq 0.00E+00 2.40E-01 1.57E-01 

Disposal, spoil 

from lignite min-

ing kg 1,4-DB eq 2.12E+00 6.38E-02 4.15E-01 

Electricity pro-

duction kg 1,4-DB eq 0.00E+00 2.50E+00 2.50E+00 

Remaining 

processes kg 1,4-DB eq 6.04E-03 2.45E-03 6.23E-03 
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As Figure 49 illustrates that the higher value of fresh water aquatic eco-toxicity impact 

category has ‘Electricity production with Calcium looping’ as the spoil from lignite 

mining and its disposal to landfill increase the score of this impact category, followed 

by ‘Electricity production with MEA’ and finally with the lower value is ‘Electricity 

production’. 

 

 

 

 

Figure 49 : Fresh water aquatic eco-toxicity impact category pollutant processes 

 

For ‘Electricity production with MEA’, the direct emissions of MEA and formaldehyde 

contribute to the overall score of this impact category, as well as the emissions from 

ammonia and ethylene oxide production during the production of MEA. 
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Table 39 : Fresh water aquatic eco-toxicity impact category inventory characterization per kWh 

electricity 

Pollutant 

substance 

Unit Electricity produc-

tion 

Electricity 

production 

with MEA 

Electricity pro-

duction with 

Calcium looping 

Nickel, ion kg 1,4-DB eq 1.20E+00 1.34E+00 1.50E+00 

Beryllium kg 1,4-DB eq 5.28E-01 5.99E-01 6.68E-01 

Cobalt kg 1,4-DB eq 3.11E-01 3.43E-01 3.87E-01 

Vanadium, 

ion 

kg 1,4-DB eq 2.77E-01 3.28E-01 3.60E-01 

Copper, ion kg 1,4-DB eq 5.30E-02 6.03E-02 6.73E-02 

Selenium kg 1,4-DB eq 3.75E-02 4.23E-02 4.73E-02 

Barium kg 1,4-DB eq 3.67E-02 4.09E-02 4.60E-02 

Zinc, ion kg 1,4-DB eq 3.46E-02 3.93E-02 4.39E-02 

Molybdenum kg 1,4-DB eq 1.06E-02 1.18E-02 1.33E-02 

Cadmium, 

ion 

kg 1,4-DB eq 3.88E-03 4.43E-03 4.94E-03 

Arsenic, ion kg 1,4-DB eq 3.37E-03 4.06E-03 4.42E-03 

Thallium kg 1,4-DB eq 2.41E-03 3.05E-03 3.28E-03 

Total kg 1,4-DB eq 2.50E+00 2.82E+00 3.15E+00 

 

Figure 50 : Fresh water aquatic eco-toxicity impact category inventory characterization per kWh 

electricity 
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4.10 Marine aquatic eco-toxicity potential 
 

The impact category of marine aquatic eco-toxicity is dominated by the disposal of 

wastes from the power plant and from the capture units. For the power plant with the 

capture units, the main emissions are from the infrastructure. Furthermore, the ammonia 

and MEA production process results for the increase of the emissions for ‘Electricity 

production with MEA’. 

However, there is a discussion upon marine aquatic eco-toxicity impact category made 

in literature. There is a doubt for the characterization factors used for HF emissions in 

the CML impact assessment method, whether are far too high or not. Many authors 

suggest this fact and highlight that this leads for the environmental impact of HF emis-

sions to be estimated high enough, resulting in turn to a high score of marine aquatic 

eco-toxicity potential impact category. 

As Table 40 and Figure 51 present, the higher value of marine aquatic eco-toxicity im-

pact category has ‘Electricity production with Calcium looping’ as the spoil from lignite 

mining and the use of high amount of heat, increase the score of this impact category, 

followed by ‘Electricity production with MEA’ and finally with the lower value is 

‘Electricity production’. 

Table 40 : Marine aquatic eco-toxicity impact category pollutant processes per kWh electricity 

Process/Raw ma-

terial Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity 

production 

with Calcium 

looping 

Heavy fuel oil kg 1,4-DB eq 4.24E-02 2.31E+00 1.52E+01 

Disposal, lignite ash kg 1,4-DB eq 8.87E+02 2.63E+01 1.74E+02 

Heat, lignite, extra for 

capture process kg 1,4-DB eq 0.00E+00 5.37E+02 3.53E+02 

Disposal, spoil from 

lignite mining kg 1,4-DB eq 4.25E+03 1.28E+02 8.34E+02 

Electricity, lignite, 

from flue gases kg 1,4-DB eq 0.00E+00 5.18E+03 5.18E+03 

Remaining 

processes kg 1,4-DB eq 4.51E+01 7.18E+00 1.80E+01 
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Figure 51 : Marine aquatic eco-toxicity impact category pollutant processes per kWh electricity 

 

Likewise the fresh water aquatic eco-toxicity, also at marine aquatic eco-toxicity impact 

category, for all Cases the major pollutants are Nickel, Beryllium, Cobalt Selenium and 

Vanadium, as Table 41 and Figure 52 present, with ‘Electricity production with Calci-

um looping’ having the higher score. 

Table 41 : Marine aq. eco-tox. impact category inventory characterization per kWh electricity 
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Unit Electricity 

production 

Electricity 

production 

with MEA 

Electricity produc-
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looping 

Beryllium kg 1,4-DB eq 3.12E+03 3.54E+03 3.95E+03 

Nickel, ion kg 1,4-DB eq 8.33E+02 9.27E+02 1.04E+03 

Cobalt kg 1,4-DB eq 3.99E+02 4.40E+02 4.97E+02 

Selenium kg 1,4-DB eq 3.25E+02 3.67E+02 4.10E+02 

Vanadium, 

ion 

kg 1,4-DB eq 2.65E+02 3.14E+02 3.44E+02 

Barium kg 1,4-DB eq 1.34E+02 1.50E+02 1.69E+02 

Molybdenum kg 1,4-DB eq 4.64E+01 5.19E+01 5.82E+01 

Hydrogen 

fluoride 

kg 1,4-DB eq 2.32E+01 3.09E+01 3.24E+01 

Copper, ion kg 1,4-DB eq 1.07E+01 1.21E+01 1.35E+01 

Thallium kg 1,4-DB eq 8.00E+00 1.01E+01 1.09E+01 

Zinc, ion kg 1,4-DB eq 5.21E+00 5.95E+00 6.65E+00 

Total kg 1,4-DB eq 5.18E+03 5.88E+03 6.58E+03 
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Figure 52 : Marine aquatic eco-toxicity impact category inventory characterization per kWh 

electricity 
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Table 42 : Terrestr. eco-tox. potential impact category pollutant processes per kWh electricity 

Process/Raw 

material Unit 

Electricity 

production 

Electricity 

production 

with MEA 

Electricity pro-

duction with 

Calcium looping 

Copper kg 1,4-DB eq 6.32E-06 3.53E-06 8.51E-06 

Steel kg 1,4-DB eq 2.37E-05 3.59E-06 1.27E-05 

Disposal, spoil 

from lignite 

mining kg 1,4-DB eq 9.99E-04 3.01E-05 1.96E-04 

Transmission 

network, electr. 

med., volt. kg 1,4-DB eq 2.05E-06 6.21E-05 3.82E-04 

Lignite, burned 

in power plant kg 1,4-DB eq 2.75E-03 8.17E-05 5.39E-04 

Heavy fuel oil, 

burned in pow-

er plant kg 1,4-DB eq 2.20E-06 1.20E-04 7.90E-04 

Heat, lignite, 

extra for cap-

ture process kg 1,4-DB eq 0.00E+00 1.98E-03 1.30E-03 

Electricity pro-

duction kg 1,4-DB eq 0.00E+00 3.85E-03 3.85E-03 

Remaining 

process kg 1,4-DB eq 6.41E-05 9.62E-05 4.56E-05 
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Figure 53 : Terr. eco-tox. potential impact category pollutant processes per kWh electricity 

 

 

The pollutants which are dominant to terrestrial impact category are Mercury, Vanadi-
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ence with the Case of ‘Electricity production with MEA’. 
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Table 43 : Terrestrial eco-toxicity potential impact category inventory characterization per kWh 

electricity 

Pollutant 

substance 

Unit Electricity 

production 

Electricity 

production 

with MEA 

Electricity produc-

tion with Calcium 

looping 

Mercury kg 1,4-DB eq 2.46E-03 3.44E-03 3.55E-03 

Vanadium kg 1,4-DB eq 1.43E-04 6.36E-04 1.11E-03 

Arsenic kg 1,4-DB eq 1.67E-04 6.11E-04 5.04E-04 

Chromium VI kg 1,4-DB eq 2.94E-06 1.38E-04 4.35E-04 

Nickel kg 1,4-DB eq 1.82E-05 6.41E-05 8.27E-05 

Selenium kg 1,4-DB eq 1.77E-05 2.39E-05 2.52E-05 

Beryllium kg 1,4-DB eq 6.72E-08 2.32E-05 1.53E-05 

Lead kg 1,4-DB eq 1.60E-06 1.45E-05 1.10E-05 

Cobalt kg 1,4-DB eq 4.66E-06 9.64E-06 1.24E-05 

Zinc kg 1,4-DB eq 6.53E-06 7.86E-06 9.16E-06 

Barium kg 1,4-DB eq 1.35E-06 7.73E-06 5.78E-06 

Total kg 1,4-DB eq 3.85E-03 6.22E-03 7.12E-03 

 

 

 

Figure 54 : Terrestrial eco-toxicity potential impact category inventory characterization per 

kWh electricity 
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4.12 Photochemical oxidation 
 

The score of photochemical oxidation potential impact category depends on the amount 

of SO2, NOx and methane emissions in the atmosphere. The sources of those emissions 

are the plant facility and the fuel combustion which produce a high amount of NOx 

emissions. Furthermore, the infrastructure, the lignite transportation and the nature gas 

mining chain also produce methane and SO2 emissions which are added to the overall 

emissions.  

However, the score of photochemical oxidation potential alters between the different 

assessment methods. Specifically, Nie (2009) [86], using the CML baseline method re-

ports a negative characterization factor based on the LOTOS-Euros model [87]. In addi-

tion, the software program used for the LCA plays also an important role.  

As we can see at Table 44 and Figure 55 the higher value for the environmental impact 

category of photochemical oxidation is for ‘Electricity production with MEA’, due to 

the use of higher amount of heat. 

 

Table 44 : Photochemical oxidation impact category pollutant processes per kWh electricity 

Process/Raw 

material Unit 

Electricity 

production 

Electricity pr o-

duction with 

MEA 

Electricity produ c-

tion with Calcium 

looping 

Natural gas, 

burned in power 

plant 

kg C2H4 

6.33E-09 1.29E-07 8.46E-07 

Heavy fuel oil, at 

refinery 

kg C2H4 

5.60E-08 2.52E-07 1.02E-06 

Lignite, burned 

in power plant 

kg C2H4 

2.95E-04 8.75E-06 5.77E-05 

Heat, lignite, ex-

tra for capture 

process 

kg C2H4 

0.00E+00 3.56E-04 2.33E-04 

Electricity pro-

duction 

kg C2H4 

0.00E+00 3.03E-04 3.03E-04 

Remaining proc. kg C2H4 7.86E-06 4.53E-06 5.57E-06 
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Figure 55 : Photochemical oxidation impact category pollutant processes per kWh electricity 
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ide, ethane, methane etc. 
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Table 45 : Photochemical oxidation impact cat. inventory characterization per kWh electricity 

Pollutant 

substance 

Unit Electricity 

production 

Electricity 

production 

with MEA 

Electricity produc-

tion with Calcium 

looping 

Sulfur dioxide kg C2H4 2.90E-04 5.67E-04 5.36E-04 

Carbon 

monoxide, 

fossil 

kg C2H4 6.56E-06 3.80E-05 2.96E-05 

Ethene kg C2H4 2.16E-08 3.17E-05 2.03E-05 

Methane, 

fossil 

kg C2H4 3.04E-06 2.06E-05 1.55E-05 

Propene kg C2H4 1.93E-07 6.02E-06 4.08E-06 

Benzene kg C2H4 5.05E-07 1.75E-06 1.43E-06 

Toluene kg C2H4 7.30E-07 1.56E-06 1.45E-06 

Pentane kg C2H4 6.83E-07 1.14E-06 1.58E-06 

Formaldehyde kg C2H4 3.33E-07 8.46E-07 8.73E-07 

Total kg C2H4 3.03E-04 6.74E-04 6.16E-04 

 

 

Figure 56 : Photochemical oxidation impact cat. inventory characterization per kWh electricity 
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4.13 Overall results 

4.13.1 Case 1: Electricity production  

 

Table 46 summarizes the ten environmental impact categories for Case 1, which is 

‘Electricity production’ of 1 kWh, by lignite combustion with 35.2% average net effi-

ciency. At the table the total value of the corresponding characterization factor of each 

impact category is shown, including the emissions generated by the subsystems partici-

pating in ‘Electricity production’ case. 

 

Table 46 : Impact categories for Electricity production per kWh electricity 

Impact category  Unit  Electricity  production  

Abiotic depletion kg Sb eq 1.35E-02 

Acidification kg SO2 eq 7.97E-03 

Eutrophication kg PO4--- eq 1.46E-02 

Global warming (GWP100) kg CO2 eq 1.30E+00 

Ozone layer depletion (ODP) kg CFC-11 eq 1.75E-09 

Human toxicity kg 1,4-DB eq 1.47E+00 

Fresh water aquatic ecotox. kg 1,4-DB eq 2.50E+00 

Marine aquatic ecotoxicity kg 1,4-DB eq 5.18E+03 

Terrestrial ecotoxicity kg 1,4-DB eq 3.85E-03 

Photochemical oxidation kg C2H4 3.03E-04 

 

 

4.13.2 Case 2: Electricity production with MEA 
 

Table 47 summarizes the ten environmental impact categories for Case 2, ‘Electricity 

production with MEA’, which comprises ’Electricity production’ with CO2 capture unit 

with MEA. For each impact category the participating processes or raw materials for the 

operation of Case 2 and the total value of the corresponding characterization factor of 

each impact category are shown. As we can see, the extra processes at MEA capture 

unit, which result to the high value of ‘ global warming ‘ and ‘abiotic depletion’ impact 

categories, are the additional heat and the high amount of electricity used during the 

CO2 capture process.  
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Table 47 : Impact categories for ‘Electricity production with MEA’ per kWh electricity 

Impact catego-

ry Unit Total 

CO2 emis-

sions after 

MEA cap-

ture unit MEA 

Sodium 

hydroxide  Ammonia  Limestone 

Electricity, 

for auxilia-

ries 

Heat for 

capture 

unit 

Electricity 

production 

by lignite 

combustion 

Abiotic depl. kg Sb eq 2.13E-02 0.00E+00 1.64E-04 6.15E-06 8.97E-05 1.35E-06 4.79E-04 7.06E-03 1.35E-02 

Acidification kg SO2 eq 1.62E-02 0.00E+00 5.54E-05 5.83E-06 1.44E-05 1.02E-06 3.02E-04 7.87E-03 7.97E-03 

Eutrophication 

kg PO4--- 

eq 1.65E-02 0.00E+00 2.48E-05 3.21E-07 2.03E-06 2.91E-07 4.37E-04 1.47E-03 1.46E-02 

Global warming kg CO2 eq 5.55E-01 3.94E-01 1.44E-02 1.11E-03 1.05E-02 2.04E-04 4.97E-02 7.14E-02 1.38E-02 

Ozone layer 

depletion 

kg CFC-11 

eq 8.73E-09 0.00E+00 1.23E-09 0.00E+00 0.00E+00 2.74E-11 1.38E-09 4.34E-09 1.75E-09 

Human eco-

toxicity 

kg 1,4-DB 

eq 2.09E+00 0.00E+00 1.75E-01 7.47E-06 1.75E-05 1.07E-04 4.90E-02 4.00E-01 1.47E+00 

Fresh water 

eco-toxicity 

kg 1,4-DB 

eq 2.82E+00 0.00E+00 2.55E-03 4.49E-06 3.03E-06 3.51E-05 7.49E-02 2.40E-01 2.50E+00 

Marine eco-

toxicity 

kg 1,4-DB 

eq 5.88E+03 0.00E+00 6.57E+00 3.67E-03 4.15E-03 7.33E-02 1.57E+02 5.37E+02 5.18E+03 

Terrestrial eco-

toxicity 

kg 1,4-DB 

eq 6.22E-03 0.00E+00 9.60E-05 4.00E-06 1.37E-07 7.74E-07 2.96E-04 1.98E-03 3.85E-03 

Photochemical 

oxidation kg C2H4 6.74E-04 0.00E+00 3.03E-06 2.61E-07 7.03E-07 3.40E-08 1.20E-05 3.56E-04 3.03E-04 
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Figure 57 presents the contribution of each process and input raw material of electricity 

production with amine CO2 capture to each environmental impact category at a scale of 

100%. ’MEA capture system’ at ‘global warming’ impact category represents the per-

centage of greenhouse gases released in the atmosphere by the CO2 capture unit. ‘Am-

monia’, Monoethanolamine’, ’Sodium hydroxide’ and ‘Limestone’ are the raw materi-

als used in the CO2 capture unit. ’Heat’ and ‘Electricity, medium voltage’ are the extra 

heat and electricity use due to the capture process. Finally, ‘Electricity, lignite, at power 

plant’ is the flue gases from lignite combustion. 

As we can see apart from the lignite combustion, for generating the flue gases of 1 kWh 

electricity, the other pollutant processes, for the most of the impact categories, are the 

extra ‘heat and ‘electricity, medium voltage’, used by the capture unit, while monoeth-

anolamine and ammonia influence mostly the ozone depletion and human toxicity im-

pact category. 

 

 

 

Figure 57 : Impact categories for ‘Electricity production with MEA’ per kWh electricity, by 

SimaPro 
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4.13.3 Case 3: Electricity production with Calcium looping 
 

Table 48 summarizes the ten environmental impact categories for Case 3, which is 

‘Electricity production with Calcium looping’. The contribution of the participating 

processes and raw materials utilized in Case 3 is also presented. The processes which 

are responsible for the high value of ‘abiotic depletion’ impact category are ‘heat, for 

capture unit’ and ‘electricity for auxiliaries’, while ‘electricity for auxiliaries’ process is 

also the major contributor for the high value of ‘global warming’ impact category with 

the process of ‘heat for capture unit’ following. 

Table 48 : Impact categories for ‘Electricity production with Calcium looping’ per kWh elec-

tricity 

 

 

Impact 

category Unit Total 

CO2 

emissions 

after CaL 

capture 

unit Limestone 

Electricity, for 

auxiliaries(elect. 

medium volt) 

Heat for 

capture 

unit (at 

industrial 

furnace) 

Electricity 

production 

by lignite 

combustion 

Abiotic deple-

tion 

kg Sb 

eq 2.13E-02 0.00E+00 2.81E-05 3.17E-03 4.63E-03 1.35E-02 

Acidification 

kg SO2 

eq 1.52E-02 0.00E+00 2.12E-05 2.00E-03 5.16E-03 7.97E-03 

Eutrophication 

kg 

PO4--- 

eq 1.85E-02 0.00E+00 6.07E-06 2.89E-03 9.62E-04 1.46E-02 

Global 

warming 

(GWP100) 

kg 

CO2 

eq 4.89E-01 9.50E-02 4.26E-03 3.29E-01 4.69E-02 1.38E-02 

Ozone layer 

depletion 

(ODP) 

kg 

CFC-

11 eq 1.43E-08 0.00E+00 5.73E-10 9.14E-09 2.85E-09 1.75E-09 

Human toxicity 

kg 1,4-

DB eq 2.05E+00 0.00E+00 2.24E-03 3.24E-01 2.63E-01 1.47E+00 

Fresh water 

eco-toxicity 

kg 1,4-

DB eq 3.15E+00 0.00E+00 7.32E-04 4.95E-01 1.57E-01 2.50E+00 

Marine eco-

toxicity 

kg 1,4-

DB eq 6.58E+03 0.00E+00 1.53E+00 1.04E+03 3.53E+02 5.18E+03 

Terrestrial 

eco-toxicity 

kg 1,4-

DB eq 7.12E-03 0.00E+00 1.62E-05 1.96E-03 1.30E-03 3.85E-03 

Photochemical 

oxidation 

kg 

C2H4 6.16E-04 0.00E+00 7.11E-07 7.96E-05 2.33E-04 3.03E-04 
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Figure 58 presents the contribution of each process and input raw material, of electricity 

production with carbonate looping, in each environmental impact category at a scale of 

100%.’CaL capture system’ at ‘global warming’ impact category represents the green-

house gases released in the atmosphere by the CO2 capture unit. ‘Limestone’, is the raw 

material used in the CO2 capture unit. ’Heat’ and ‘Electricity, medium voltage’ are the 

extra heat and electricity use, due to the capture process. Likewise to ‘Electricity pro-

duction with MEA’, the most pollutant process for all the impact categories is mainly 

‘electricity, medium voltage’ and then ‘heat’ which both of them are used by the capture 

unit. The raw material of ‘limestone’ contributes to the ozone depletion impact catego-

ry. 

 

Figure 58 : Impact categories for ‘Electricity production with Calcium looping’ per kWh elec-

tricity, by SimaPro 

 

4.13.4 Overall comparison of the three investigated  scenarios 
 

The total values of each Case, for the ten environmental impact categories, are present-

ed in Table 49. Figure 59 presents the % contribution of each process and input raw ma-

terial, of each scenario in the different environmental impact categories. We can see that 

for the impact category of ‘global warming’ the Case with the lower value of kg CO2 

equiv. is ‘Electricity production with Calcium looping’ while for the impact category 



- 103 - 
 

‘abiotic depletion’, ‘Electricity production with Calcium looping’ and ‘Electricity pro-

duction with MEA’ have the same value.  

 

Table 49 : Environmental impact categories for the three Cases per kWh electricity 

Impact 
category Unit 

Electricity produc-
tion 

Electricity 
production 
with MEA 

Electricity produc-
tion with Calcium 

looping 

Abiotic 
depletion kg Sb eq 1.35E-02 2.13E-02 2.13E-02 

Acidification kg SO2 eq 7.97E-03 1.62E-02 1.52E-02 

Eutrophication kg PO4--- eq 1.46E-02 1.65E-02 1.85E-02 

Global 
warming 
(GWP100) kg CO2 eq 1.30E+00 5.55E-01 4.89E-01 

Ozone layer 
depletion 
(ODP) 

kg CFC-11 
eq 1.75E-09 8.73E-09 1.43E-08 

Human toxicity kg 1,4-DB eq 1.47E+00 2.09E+00 2.05E+00 

Fresh water 
aquatic 
ecotox. kg 1,4-DB eq 2.50E+00 2.82E+00 3.15E+00 

Marine aquatic 
ecotoxicity kg 1,4-DB eq 5.18E+03 5.88E+03 6.58E+03 

Terrestrial 
ecotoxicity kg 1,4-DB eq 3.85E-03 6.22E-03 7.12E-03 

Photochemical 
oxidation kg C2H4 3.03E-04 6.74E-04 6.16E-04 
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Figure 59 : Environmental impact categories for the three Cases per kWh electricity, by SimaPro 
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5. Interpretation- Conclusion 
 

The implementation of CO2 capturing processes evokes a lot of arguments and raises 

questions about the possibility of causing other collateral impacts to the environment 

even though it helps reducing the climate change by reducing the CO2 emissions in the 

atmosphere. The LCA method gives us a wider view about the CO2 capture processes 

with its reverberations to the environment and it was used to compare Case 1, ‘Electrici-

ty production’ of 1 kWh by lignite combustion, Case 2 ‘Electricity production with 

MEA’, which is ‘Electricity production’ of 1 kWh integrated with the post-combustion 

CO2 capture process of amine- scrubbing with monoethanolamine (MEA) and Case 3, 

‘Electricity production with Calcium looping’, which is ‘Electricity production’ of 1 

kWh integrated with the post-combustion CO2 capture process of Calcium looping 

(CaL).  

The inventory data for Case1, ‘Electricity production’ at lignite –fired power plant was 

obtained from the Ecoinvent v2.0 (2007) database. For the two post-combustion CO2 

capture technologies, Case 2, ‘Electricity production with MEA’ and Case 3 ‘Electricity 

production with Calcium looping’, the inventory data were derived from literature. All 

three scenarios were analyzed by SimaPro software program. The environmental impact 

assessment was performed with the CML baseline 2000 method. The ten environmental 

midpoint categories which were analyzed were the following: abiotic depletion, acidifi-

cation, eutrophication, global warming, ozone layer depletion, human toxicity, fresh wa-

ter aquatic eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity and photo-

chemical oxidation. 

Electricity production consists of three subsystems, those of lignite mining, lignite 

transportation and lignite combustion. The two CO2 capture technologies comprise of 

those three subsystems in addition to the capture unit which imposes additional fuel 

consumption and energy use for its operation.  

The different subsystems, lignite mining, transportation and lignite combustion firstly, 

and secondly the two different post-combustion CO2 capture technologies at the power 

plant do not have the same impact to each environmental category and contribute differ-

ently to the total score. The results of the present LCA show that the implementation of 

the CO2 capture technology on the one hand, has a major positive impact in reducing 
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the CO2 emissions in the atmosphere. However, on the other hand, other impact catego-

ries are burdened a lot in a different way for the two CO2 capture technologies. Both 

CO2 capture technologies decrease as expected the efficiency of the electricity genera-

tion. 

The efficiency drop for ‘Electricity production with Calcium looping’ is lower than the 

efficiency drop of ‘Electricity production with MEA’, with a difference of 2.12 % as 

‘Electricity production with Calcium looping’ provides higher electric production and 

higher efficiency for the retrofitted power plant. This is due to the fact that carbonate 

looping operates at higher temperatures than amine scrubbing and the fact that the car-

bonation reaction is exothermic. This heat can be exploited to produce additional elec-

tricity.  

Moreover, carbonate looping demonstrates a higher CO2 capture rate of 97.3%, com-

pared to 86.5% capture achieved with amine scrubbing. However, the CO2 capture rates 

for the overall power plant are almost the same for the two capture processes because 

carbonate looping technology acquires higher amount of electricity, for the air separa-

tion unit and higher amount of lignite, in order to have the proper conditions in the cal-

ciner, than amine scrubbing technology needs. 

Furthermore, as far as the environmental impact concerns, the two capture technologies 

have almost the same or different values for the different environmental impact catego-

ries, but definitely higher than the values of electricity production without having a cap-

ture technology. For the abiotic depletion impact category, amine scrubbing process has 

the same value as carbonate looping process. The value of abiotic depletion impact cat-

egory increases by the additional consumption of natural resources like natural gas, 

crude oil and especially lignite for the two capture processes, which are necessary for 

the proper operation and construction of those capture units. Amine scrubbing has also 

higher value for the acidification impact category, than carbonate looping process, as 

both capture processes produce high amounts of sulfur dioxide and nitrogen oxides 

emissions caused by the energy penalty of using extra amount of electricity, higher for 

carbonate looping, and heat, higher for amine scrubbing, at the capture systems. For the 

eutrophication and ozone depletion impact categories, from the two capture processes, 

carbonate looping has the higher value, due to the high amount of phosphate, nitrogen 

oxides and nitrate emissions produced by the high lignite consumption and the high 

amount of methane, ethane and halon emissions produced by the high electricity con-

sumption, for the proper capture operation conditions, respectively.  
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In addition, for the human toxicity impact category, the two capture technologies have 

also almost the same value, higher for carbonate looping process, as both processes pro-

duce high amounts of Selenium, Molybdenum, Nickel, Arsenic, Chromium, Vanadium 

and Barium emissions due to the extra use of heat and electricity at the capture process-

es. Carbonate looping, for the impact categories of fresh water aquatic eco-toxicity and 

marine aquatic eco-toxicity as having higher values for Nickel, Beryllium, Cobalt and 

Vanadium emissions and the terrestrial eco-toxicity, with higher values for Mercury, 

Vanadium, Arsenic, Chromium and etc., has higher environmental impact caused by the 

high amount of lignite consumption and its disposal spoil. Finally, for the photochemi-

cal oxidation impact category, amine scrubbing process has higher environmental im-

pact due to the increased amount of sulfur dioxide (SO2) emissions produced by the 

higher heat consumption. 

In general, even though calcium looping is still in research level and has mostly been 

studied in pilot-scale, it demonstrates many advantages compared to the mature amine 

scrubbing post-combustion CO2 capture technology. Calcium looping demonstrates 

lower energy penalties in comparison with amine scrubbing process. Moreover, it is 

possible for the generated heat produced by the capture process to be utilized in a sec-

ondary steam cycle, reducing in that way the energy penalty. In addition, CaO (lime) 

which is the by-product of calcium looping process can be used as a raw material in the 

cement industry as feedstock, reducing further CO2 emissions. Finally, a further reduc-

tion of the energy penalty is achieved when calcium looping is integrated with chemical 

looping process, making in this way, calcium looping process, one of the most competi-

tive post-combustion CO2 capture technology.  
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