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Abstract 
In this thesis our goal was to develop a methodology in order to cluster a set of tweets 
based on their semantic context. We have used probabilistic topic modeling techniques 
such as Latent Dirichlet allocation in order to extract topics from our dataset and then we 
applied several natural language methods in order to automatically generate semantically 
meaningful and grammatically correct phrases, as candidate labels for our extracted topics, 
aiming at creating an objective method for topic labeling. Developing a scoring function in 
order to assign the most semantically similar labels to our extracted topics was an essential 
part to our research that has helped us to assign the most relevant labels to each topic. 
Then we have generated the Twitter graph and used community detection algorithms in 
order to analyze each community topic of interest. This way we have been able to record 
the propagation of certain topics in our graph and we have been able analyze the topics of 
interest in each community in our graph. Using visualization layout algorithms was also 
essential in order to provide meaningful visualizations of our networks. We have created 
datasets that was populated using Twitter’s API and we have used open source tools in 
order to develop the software implementation of this method and a fully working 
prototype has been developed. Our research can be used as a valuable asset for modern 
market analysis from companies. 
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1. Introduction 

With the explosion of social media in the last decades and the rapid growth of micro-

blogging services, an inexhaustible stream of data is produced every day. Billions of 

individuals all over the world interact with each other and generate mountains of data on 

various subjects. More than 30 billion tweets by year are produced on Twitter, allowing us to 

explore this ocean of data in order to understand and predict rare sociological events, reveal 

hidden patterns, detect trends or events and analyze them, perform sentiment analysis, observe 

how communities are formed, classify and uncover latent topics of discussion in communities 

and serve the needs of society. Twitter and similar micro-blogging services has drawn the 

attention of researchers all over the world the last few years to study, experiment and develop 

new techniques under the purview of data mining. The need for new and suitable text mining 

algorithms has emerged as scientists from different disciplines are trying to extract knowledge 

from large-scale social media data. Using Data mining, we can use techniques that can analyze 

massive unprocessed sources of data and extract information. For example, for a car sales 

company, interesting extracted information from social media data would be how likely is for 

an individual to purchase a certain car brand based on his personal data.  

In our project, Twitter search API is going to be used which will allow us to retrieve tweets in 

JSON format using multiple parameters that include certain keywords, hashtags, locations and 

time boundaries. One of the biggest challenges is the nature of Twitter data, which is noisy and 

unstructured. A lot of pre-processing and data cleansing for noise reduction needs to be 

performed which involves utilizing natural language processing techniques, stopword removal, 

missing values handling, duplicate data removal, non-alpharethmetic characters removal, skip 

posts from accounts that are not in English in most cases and many more.  In order to 

understand better our text collections we will need to utilize generative probabilistic topic 

models for our text corpora. Using Latent Dirichlet Allocation we will be able to generate a set 

of topics modeled as a mixture of words probabilities providing a suitable representation of our 
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text collection. Although the discovered topics are often meaningful, a major challenge by all 

topic models is to accurately interpret the meaning of each topic. It is very difficult for a single 

individual to understand a topic in a “bag of words” with a distribution over these words, 

especially if the related topic is specialized in certain field. This is why we will implement a 

method of representing these topics in a concise enough manner that captures the meaning of 

the topic and allows for a human to understand it. In order to be able to label subjectively these 

extracted topics we will need to develop a technique that can automatically generate 

semantically meaningful phrases as labels for our topics using natural language techniques 

such as chunking/shallow parsing. The development of a scoring mechanism for the phrases as 

topic labels need also to be implemented in order to choose the most semantically meaningful 

phrases for our topics with the best possible accuracy.  

The fact that social networks are gaining momentum exponentially makes social network 

analysis a field of study that has a lot to offer. Despite that analyzing data arising from social 

network platforms such as Twitter is a computationally intensive affair we can adapt 

techniques from graph theory and embed them into our methodology, suited for our data. 

Representing our collected data using graphs as networks is essential for us in order to discover 

interesting patterns, or relations between certain nodes (users). Making sense of individuals in 

our extracted network will involve the representation of a user as a node and an interaction as 

an edge. In social theory it is widely approved that the friendship of an individual affects how 

influential that individual is. However we will have to make different assumptions and explore 

different territories in order to reveal useful information among individuals. In order to extract 

community structure in our large networks we will use community detection methods that are 

based on modularity optimization. The fact that the typical size of large networks such as 

social networks includes millions or billions nodes interacting with each other makes the 

community detection in these networks a challenging task. On the other hand, social networks 

have a lot of natural structural properties, which can be leveraged for designing more effective 

algorithms. After setting the scope of social network analysis, we establish some general 

principles for social network visualization. Extracting the general topic of discussion for each 

community will help us to understand and identify the interests of each community. By 

assigning this label then in the most influential nodes in each community we will be able to 

visualize the topics of discussion in our network. 
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2. Literature Review 

2.1 Introduction 

Social networks have gained extraordinary attention in the last years and have become the 

universal communication mean that has thrived in making the world a global village. 

Accessing social network data such as tweets through Web 2.0 technologies has become easier 

and more accessible to researchers and individuals. Researchers had started to realize the 

importance of social network data as industries and companies had started to rely on social 

networks for knowledge extraction in order to discover the opinion of individuals or 

communities, trends, topics of interest and how and why communities are formed and under 

what circumstances. The interpretation of social network data is requiring us to develop 

methods for handling massive data, which are considerably noisy and dynamic. These issues 

can make social networks analysis a hard task. Researchers from the fields of data mining and 

machine learning have been developing techniques and methods in order to overcome these 

challenging tasks.  

2.2 Sentiment analysis 

A lot of methodologies and computer systems that can interpret Twitter data has already been 

implemented by researchers successfully that can help new researchers significantly to 

contribute on this ongoing field. A very interesting aspect of social media mining is sentiment 

analysis. Sentiment analysis is utilizing Natural Language Processing and Text Mining 

techniques to determine the attitude of a speaker or to classify the polarity of a given text in a 

document. Sentiment Analysis can be useful in many ways. It can be helpful for businesses and 

companies to be able to evaluate which of their products are popular and detect which of them 

are disliked from their costumers. This way companies can keep track of the sentiment changes 
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of its costumers over time and take the appropriate actions in order to maximize their costumer 

satisfaction or needs and therefore maximize their profit as well. Having said that, sentiment 

analysis is not only used by companies for profit. In fact it has also been used to fight 

sociological problems such as suicide with the use of gender classification of Twitter users 

since Twitter does not obtain gender information from them. Due to the lack of gender 

information, most researchers do not consider the difference between men and women when 

performing sentiment analysis but it is known that risk factors for suicidal thoughts vary with 

gender and age. Machine learning techniques has been used in the past by some researchers to 

perform gender classification using Support Vector Machines algorithm which managed to 

achieve 70% of accuracy. Hyun Woo Kim (2010) in his thesis, analyses the use of four 

supervised learning algorithms as gender classifiers. Support Vector Machine, Naïve Bayes, 

Bayesian Logic Regression and Random Forest with the best accuracy offered by Random 

Forest with InfoGain classification algorithm. Under his experiments Random Forest managed 

to classify correctly 94% of the instances. Subsequently, after gender recognition is performed, 

Hyun Woo Kim is presenting ideas and concepts on how to create a suicide prevention system, 

capable of tracking suicidal thoughts and words from personal micro-blogs. This could be 

achieved by building a statistical suicide model that defines two sets of words, positive and 

negative. Using this modified sentiment analysis method on users by assigning relevant words 

of suicide to negative sentiment with weights between 0 and 1 and vice versa we can finally 

measure how likely is a person to approach the serious phenomenon and most probably to 

successfully prevent suicide. 

2.3 Automatic Topic Labeling 

Despite that natural language processing is used frequently to perform sentiment analysis it 

can also be used for other reasons. In our thesis we are going to use natural language 

processing techniques such as chunking or parsing in order to identify short phrases (chunks) 

in tweets. Using Natural Language Tool Kit Python’s library, we are going to analyze every 

tweet in speech tags and then use these tags to make decisions of chunking according to a 

grammar that suites our needs. The reason behind the use of this technique is to generate 

phrases with grammatically correct meaningful phrases, in order to automatically label 
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extracted latent topics from a Twitter dataset using Latent Dirichlet Allocation algorithm. 

Qiaozhu Mei, Xuehua Shen and Chengxiang Zhai (2007) are exploring a similar idea in their 

paper “Automatic Labeling of Multinomial Topic Models” by exploring the field of 

probabilistic topic modeling using multinomial distribution over words in text collections. 

Their differentiation between previous works in the field that has been conducted in the past 

has been addressed by the use of probabilistic approaches that can automatically label 

multinomial topic models in an objective way and not in a subjective way generated manually 

by humans. A major challenge in their approach was to accurately interpret the meaning of 

each topic and generate labels that are understandable. The authors’ proposition towards this 

hurdle is the use of a probabilistic approach that automatically can label topics with 

meaningful phrases, since phrases are coherent and concise enough for users to understand, as 

opposed to sentences or single terms. By measuring then the “semantic distance” between a 

phrase and an extracted topic, the candidate labels from the extracted phrases can be assigned 

to the topics. The phrase generation as we explained can be approached using Chunking or 

Parsing but also with Ngram Testing, which it does not require training data but sometimes it 

does not produce linguistically meaningful phrases as Chunking/Parsing. In order to generate 

understandable semantic labels for each extracted latent topic from a given set, a semantic 

relevance scoring function is going to be utilized to rank labels by their semantic similarity to a 

topic model. This way the labels that are generated are understandable, semantically relevant, 

and discriminative across topics and of high coverage inside topics. 

2.4 Trend detection 

Societies, companies or individuals, always were interested in predicting the future in order 

to organize a strategy to benefit from it. A big interest in event and trend detection has come to 

light, as Twitter has become a rich source of information for detecting, monitoring and 

analyzing new stories and special events. Scientist in a worldwide scale has already conducted 

research within this field and numerous computer systems were implemented that can 

successfully perform trend detection. TwitterMonitor is a computer system developed by M. 

Mathioudakis and N. Koudas (2010) that can be used as an exploration tool for streaming 

information, analyzing or detecting emerging topics and trends in real time. A system like this 

could be very significant to news reporters, marketing professionals and opinion tracking 
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companies in order to detect trend points that capture public’s attention. As the authors are 

describing the methodology behind the system in their paper, TwitterMonitor identifies 

keywords that appear in high rate and cluster these keywords into trends based on co-

occurrences. After a trend is identified, TwitterMonitor attempts to compose a more accurate 

description of the topic by employing context extraction algorithms such as PCA (principal 

component analysis) and SVD (singular value decomposition) and also by taking account of 

geographical origins of tweets. Finally, a chart is produced for each trend that depicts the 

evolution of its popularity over time and gets updated as long as the trend remains popular. 

They are also analyzing the architecture of TwitterMonitor, describing that the system consists 

of a back end which is connected with the Twitter API and receives a sample of the Twitter 

Stream with the 1/5 of the total tweets that are generated worldwide per day, and a front end 

that uses a webpage as a user interface that reports recent trends in real time. In our project, a 

fully working prototype is going to be developed were the topic extraction is going to be 

performed using LDA (Latent Dirichlet Allocation) algorithm which is a generative 

probabilistic model that allows sets of observations to be explained by unobserved groups that 

explain why some parts of the data are similar. This way we will be able to automatically 

discover topics in a text collection. In our case our observations are words in a tweet and each 

tweet can be represented as a mixture of words. Based on these extracted topics, a set of tweets 

are going to be clustered based on their semantic context and then the goal will be to record the 

propagation of trending topics through the Twitter graph. Clustering of tweets using topic 

models can help to categorize them based on their properties. Analyzing then which of the 

topics are more trending and the way that they spread in the Twitter graphs can give us hints 

and reveal hidden information about upcoming events. 

2.5 Knowledge Based Topic Labeling 

A lot of researchers have proposed ways in order to enhance topic labeling using domain 

specific knowledge. In most cases, humans are not able to categorize or label topics that are 

related to a specific domain. For example for a set of tweets that are related to molecular 

biology only an expert in the specific domain would be capable of detecting the different topics 

among those tweets. With the rise of Wikipedia there is a corpus of data available that can aid 

us to better classify tweets or articles into a topic or a mixture of topics. In their paper, Ivan 
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Marcin and Sam Shiu (2012) are proposing the use of Wikipedia as a collection of human 

knowledge in order to interpret the content of articles and text from human conversation. With 

the use of massive Wikipedia and Twitter datasets the authors aim towards discovering useful 

information and relationships in them by classifying a test or articles in the dataset into a 

mixture of topics, associating them with the words that are distributed in Wikipedia topics. 

Their theory suggests that the events and the topics that are connected with these events are not 

isolated. These connections between topics change over time, which makes necessary the need 

for a machine generated way to identify these connections and link topics together. The authors 

propose a method to mine topics by extracting topics from Wikipedia with human assistance 

and then perform semantic analysis over both topics content and the Twitter data to generate a 

graph based on the correlation between topics and their related conversations on Twitter and 

cluster topics graphs to group topics related by their usage. The accuracy of this method 

matches the trend lines generated from Twitter interests and Google trends, which indicates its 

significant performance. This method has been evaluated through Google’s search volume 

trend data by searching in Google for topics and then keeping track of the top topics for a 

given day by plotting both the trends generated by training data and Google trend data over 

time. 

2.6 Entity Based Topic Discovery 

Even though there have been a lot of successful methodologies for topic discovery, 

researchers has explored many different ways in the field due to the obstacles they often come 

across such as the nature of micro blogging data or handling real time data. In their paper, M. 

Michelson and S. A. Macskassy (2010) are introducing an entity based topic discovery method 

for Twitter tweets. Their research is focusing on topic discovery of particular Twitter users. 

The main idea is to conduct automatic generation of “topic profiles” for each Twitter user by 

finding the entities for the tweets of a user and then determine a set of categories that covers 

these entities. Taking account of the noisy nature of the micro blogging data is also very 

important task and makes the entity detection a tough assignment. As this paper confirms, 

these challenges are going to be addressed using Wikipedia as an entity knowledge base and 

the overall approach as a computer system implementation is going to be called Twopics, 

which is going to be used as a category discovery mechanism at first and then as an entity 
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analysis tool in a user set of tweets trying to match the set of categories that defines the user’s 

topic profile. A query on Wikipedia then is going to be performed in order to return a set of 

entity candidates. The goal is to choose the Wikipedia entity from a set of entity candidates 

that maximizes the overlap between contexts to accurately “guess” the category of a tweet. The 

experimental work of Twopics shows great performance and accuracy especially as the authors 

proposed with the use of a supervised Support Vector Machines (SVM) approach, despite the 

difficulty of use because of the training data as a supervised learning method. 

In our project we are going to experiment with named entity recognition in text sentences 

using the corpus of Natural Language Tool Kit library in Python. The goal will be to track 

important words such as brand names, organizations, geo-locations and important persons in 

order to track important words in a tweet and build our chunker around these words to generate 

semantically meaningful and representative phrases for each tweet. As we explained earlier, 

these phrases then are going to be used as candidate labels for our extracted topics 

2.7 Social Network Analysis 

Graph theory has been widely used by researchers for social network analysis even on the 

early days of social network concepts. The approach of previous researchers in the field of 

social network analysis was to determine important nodes (users) and edges (interactions) in 

the network, for example how influential is a certain user. Influencers on social networks are 

considered the nodes (users) that have impact on the opinion of other nodes (users) and on 

their decision making on the network. Researchers had tackled these problems by 

implementing graph theory techniques and reducing the problem of large-scale datasets (such 

as social network data) by using data matrices as data representation of networks. The author 

Burt R. S. (2005) has used centrality measure as a mean to calculate the influence that forms 

clusters on social networks. 

 Moreover, Ghosh R and Lerman (2011) have used parameterized centrality metric approach 

to study the structure of social networks and to rank the connectivity of nodes. Their work has 

helped for the extension of α-centrality approach, which measures the number of alleviated 

paths that exist among nodes. . In our research we are going to develop a different method for 



	
   9	
  

measuring influence, which involves the ad-hoc community networks that are involved in 

topics of discussions that are not based on friendships or followers of a node (user). 

 

2.8 Community Detection in Social Networks 

It is really essential for social network analysis to develop techniques in order enable 

community discovery in large networks such as social networks. A community is generally 

considered to be a sub network in a larger network. 

 

Figure 0: Social Network Community Structure example 

The formation of communities under the scope of discussion over topics of interests is 

considered to be very important for knowledge discovery in social networks. Nodes (users) 

with similar interests will form communities with certain characteristics and patterns will start 

to emerge. The nature of communities in social networks is very complex and difficult to study 

and understand. The need for developing the appropriate tools in order to detect the behavior 

of network communities is crucial in order to study them and to extract useful information 

from them. In his research on social networks, M. Newmann (2010) has developed several 

clustering techniques to detect communities on social networks using hierarchical clustering. 

Using this technique he was able to cluster nodes in groups in a network and measured the 

strength of certain groups, which was used later to distribute the network into communities. 

Vertex clustering belongs to hierarchical clustering methods; graph vertices can be resolved by 

adding it in a vector space so that pairwise length between vertices can be measured. [22]  
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Structural equivalence measures of hierarchical clustering use a number of common network 

connections that is shared by two nodes. Two nodes on a social network with common friends 

(or followers) are more likely to be closer than two other nodes with less common friends (or 

followers). 

It has been shown by Vincent D. Blondel, Jean-Loup, Renaud Lambiotte and Etienne 

Lefebvre (2010) in their work that the extraction of community structure of large networks is 

possible by using the proper methodology. Using their heuristic method, which is based on 

modularity optimization a large topology of interconnected nodes, can be analyzed into 

different communities. The problem of community detection requires partition of the network 

into communities of densely connected nodes. Modularity has been used to compare the 

quality of the partitions obtained. The proposed algorithm for modularity optimization can 

allow us to study networks of unprecedented size, which is very important for the dynamic 

nature of social networks. The proposed algorithm unfolds a complete hierarchical community 

structure for the network and each level of the hierarchy being given by the intermediate 

partitions found at each pass. The quality of the communities detected in their experiments is 

very good as measured by modularity. In our research we are going to implement this 

algorithm in order to discover communities in our extracted social networks. This will help us 

because of the size of our network, which is large, but also for the quality of the communities 

that we can extract. 
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3. Problem Definition 

 

Mining the Social Media is an emerging field, which implements interdisciplinary concepts 

and theories, fundamental principles and state of the art algorithms. In order to develop sound 

data mining techniques for Twitter network analysis and to cluster our dataset based on the 

content of our data we need to define the problems we are going to face and to plan ahead in 

order to produce quality results and reach our research goals. The fact that our research is 

mainly addressed as a data mining problem we are going to adopt the general problem 

definition of data mining tasks and fit it in our research needs. 

 

Figure 1: Problem Definition Diagram 
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3.1 Data-Gathering and Preparation 

Data pre-processing is a crucial step in data mining and machine learning projects. A huge 

amount of irrelevant, noisy and unreliable data especially in micro-blogging platforms such as 

Twitter exists, which makes knowledge discovery a considerably challenging task and can 

easily lead to misleading results. This is why we need to address the main problems we are 

going to face which are going to require data preparation and a lot of filtering steps.  

 

Figure 2: Data Gathering and Preparation  

 

Obtain Necessary and Sufficient Data. The common method in order to obtain data 

from Twitter is to use application programming interfaces (APIs) specially designed for 

Twitter. Twitter allows a limited amount of data to be obtained daily from a developer account. 

This is why we need to make sure that our data is a reliable representation of the full available 

data in order to accomplish our research goals. We also need to consider the data format of 

tweets (JSON) and collect only necessary fields on a tweet that can only benefit our research 

without exhausting our dataset with useless information. 

Data Management. We need to collect information using Twitter APIs and store them in a 

Database in order to proceed in data management methods and enable knowledge discovery in 

our database. Using our database management system we want to allow massive write 

performance, big amount of data storage, fast key-value data access, flexible schema and 

flexible datatype, document orientation, graphs, advanced data structures and ease of use. 

Twitter produces tweets that are in a JSON format. This is forcing us to use a NoSQL type of 

database system like MongoDB, which is an open-source document database system that can 
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help us to interpret and control directly our streaming data without transforming it to suitable 

data types for an SQL like database management systems. 

Noise Reduction. Noise reduction is an essential pre-processing step in the field of data 

mining and knowledge discovery in databases especially in unstructured data such as micro-

blogging. Due to the nature of micro blogging data in social networking platforms such as 

Twitter, a precise noise reduction method need to be implemented in tweets in order to remove 

non valuable information without eliminating important data. Having said that noise reduction 

is a relative matter and a lot of experimentation needs to be done using pre processed corpus, 

stopwords removal, and natural language processing techniques to develop a satisfactory noise 

removal method for our datasets. 

 

3.2 Topic Modeling 

3.2.1 Topic Extraction 

After the data collection and the data preparation we aim at discovering what topics these 

tweets are representing in our collection and how they are differentiate from each other. In 

order to do that we need to implement and develop topic modeling algorithms to help us 

understand, summarize and search these large electronic archives. Uncovering these latent 

topics in large collections is a challenging task, which involves probabilistic topic modeling 

techniques. Furthermore it can enable us to assign to each tweet the most relevant topic and 

organize them based on their topic. Various topic modeling approaches has been proposed by 

researchers such as Probabilistic Latent Semantic Analysis (PLSA), Hidden Topic Markov 

Models (HMM), Latent Dirichlet Allocation (LDA) and many more. In our thesis we are going 

to implement the most popular approach to topic modeling, which is Latent Dirichlet 

Allocation (LDA). This method treats the collections of documents (tweets in our case) as “bag 

of words” and assumes that the order of words can be ignored and that the text corpora can be 

represented by a co-occurrence matrix of words and documents. However this method hides 

pitfalls if we proceed to topic labeling manually and this is why we need to develop a wiser 

strategy for topic labeling. The fact that the user determines the number of topics raises the 
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problem of finding an optimum number of topics for a given dataset. Unfortunately there is no 

“correct” number of topics to be extracted and there is not any sound solution to this problem 

except of using Hierarchical Dirichlet Processes (HDP-LDA) to model the Dirichlet admixture.  

 

3.2.2 Topic Labeling 

A major challenge in applying topic models in text collections is to label multinomial topics 

in an accurately way and to capture the essence of the topic in a few words. Delivering a more 

accurate and subjective way of automatic topic modeling could lead to richer and more 

profitable results. However finding a way to accurately label our extracted multinomial topics 

raises new problems and forces us to utilize natural language processing and understanding 

techniques in order to deal with them. What we want to achieve using these techniques is to 

produce a topic label l, for a topic model θ, that is a sequence of words, which is semantically 

meaningful and covers the latent meaning of θ. Under this definition a suitable type of a label l 

could be a sentence or a phrase. Based on the fact that our topic model is build upon tweet 

collections a more constistant and compaqt type of label such as phrases would be more 

suitable. Despite the fact that we may be able to extract phrases from our corpus we will also 

need to find a relieable way of assigning these labels to our extracted topics. The best way to 

achieve this would be by measuring the semantic similarity between the label and the topic 

model. For example given two labels l1 , l2 that are both meaningful candidate labels, l1 is a 

better label for a topic !  if s(l1,! )  >  s(l2,! )  where s is the relevance scoring function we need 

to develop in order to measure the semantic similarity between the label and the topic ! . With 

these definitions, the problem of topic model labeling can be defined as follows: 

Given a topic model !  extracted from our dataset, the problem of single topic model labeling 

is (1) to identify a set of candidate labels L = {l1,..,lm} , and (2) to design a relevance scoring 

function s(li ,! ) . With L and s, we can then select a subset of n labels with the hisghest 

relevance scores L! = {l!1,...,l!n}  for ! . [2]  
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3.3 Knowledge Discovery 

To progress in our research after using various techniques to structure our data as we 

proposed previously we need to proceed to network measurements in order to represent, 

analyze and extract actionable patterns from our social media data. The fact that the world 

around us can be represented as a social network can reveal that trying to model such dynamic 

in nature systems can lead to many problems. Despite the complexity of this task by modeling 

such systems we can still gain useful information that can help us to understand how 

information is distributed in social networks and reveal hidden patterns regarding the 

information flow among users. Implementing mathematical structures such as graphs from 

graph theory is necessary in order to model relations in our data. We need to proceed into a 

second layer of processing our data using graphs and there are a lot of challenges in the nature 

of graphs that need to be addressed and overcome. As the data stored in our database grows 

and changes periodically we need to provide data summarization though visualization 

techniques, to identify important patterns and trends and act upon the findings. Insight derived 

from data mining can provide tremendous value to our goals and in the strategy we are going 

to follow. 

 

Figure 3: Knowledge Discovery 

3.3.1 Network Analysis 

Considering that Twitter can represent real life interactions and relationships as a platform, 

that can change dynamically through time, we need to make sure that in order to extract useful 
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information from our network analysis we need to find a way to keep our dataset not exhausted 

from information that is not needed and that can mislead our network analysis. This is why we 

need to use our Twitter API wrapper wisely by filtering unnecessary data that can distort the 

uniformity of our network. Tracking abstract subjects that have a general meaning will lead to 

the disuse of the methods that we have developed. Depending on a certain amount of 

processing power, we need to track subjects and create samples that can represent valid real 

life interactions and allow patterns in our network to emerge. To generate a network from our 

data requires a definition for the interactions between the nodes (users). Creating edges 

between nodes based on the following of each node would not lead us anywhere. The 

connections (followers) of a node (user) is not required to follow the same interests of his 

followers or of the users he follows. This is why we need to examine the structure of a tweet 

format and find the best possible definition for an interaction in order to gain insights for 

certain topics of interests. We also need to answer questions like: 

• Who are the most important people in a social network? 

• Why do people interact with a certain amount of users in our network? 

• How can we find interesting patterns in the content of our users? 

• How can we identify communities in a social network? 

• How we can measure the influence of individuals in a social network? 

To answer questions like this we need to utilize graph theory techniques and represent users 

as nodes, interactions between them as edges and community formations as entities. 

Analyzing how communities are formed, how they evolve and how the qualities of detected 

communities are evaluated is also a crucial task. We also need to define who is an influential 

individual specifically for the needs of our network and how this influence can be reflected to 

other individuals. 

3.3.2 Community Detection 

We need to develop and implement a simple method in order to extract the community 

structure of our social network without loosing the quality of the communities that are 

detected. A lot of research in the field has been conducted and the problem has been leveraged 

to a modularity optimization problem and it is approached by Louvain method. Unfortunately 
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modularity optimization is a problem that is computationally hard and so approximation 

algorithms are necessary when dealing with large networks. This is why we need to implement 

a fast approximation algorithm for optimizing modularity in a large network like the one in our 

dataset.  

Furthermore the problem of community detection requires the partition of networks into 

communities of densely connected individuals (users), with the individuals belonging to 

different communities being only sparsely connected. Precise formulations of this optimization 

problem are known to be computationally intractable. [7]  Several algorithms have therefore 

been proposed to find reasonable good partitions in a reasonably fast way. This search for fast 

algorithms has attracted much interest in recent years due to the increasing availability of large 

network data sets such as social networks and the impact of networks on everyday life. 

 Validation of the community would be necessary in our thesis in order reassure the 

effectiveness of the methods that we have developed. This could suggest as to create datasets 

that their community structure can be predetermined like for example political parties however 

we will still need to experiment due to the dynamic and complex nature of social network data. 

3.3.3 Community Analysis 

Community detection is not enough in order for us to extract semantic conclusions about our 

network. Identifying the community’s topics of interest manually is not an option since it could 

be impossible for a human to accurately estimate them based on the community’s nodes’ data 

(tweets). In order for us to acquire useful information about these extracted communities that 

we have been able to detect, we will need to re-use the topic modeling methods that we have 

developed and proceed with the development of an automatic method for community labeling. 

Re-transforming and ordering our data based on the communities that have been detected could 

help us determine the thematic topics of interest in a distribution of words in our network. 

 Developing a scoring function to be applied in each of our extracted communities would be 

essential and challenging, however we could re-use the scoring function that we have 

developed for our topic labeling method with some modifications in order to be adjusted in the 

problem of community labeling. Assigning phrases as labels in the communities instead of 
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topic’s bag of words models could also provide a better representation. We also have to be able 

to minimize the amount of unimportant communities in our network. For example by keeping 

communities that are isolated from the others could distort our results. Finding a method for 

measuring the importance of a network is a challenging task what we would have to overcome 

by implementing graph theory techniques. 

3.3.4 Visualization 

Data visualization is a modern equivalent of visual communication and it is viewed as 

modern branch of descriptive statistics but also as a grounded theory development tool. It 

involves the creation and study of the visual representation of data, meaning information that 

has been abstracted in some schematics form, including attributes or variables for the units of 

information. The primary goal of data visualization in our thesis would be the efficient 

extraction of knowledge. Effective visualization can help us to analyze and make better sense 

of the processed data in our database. It can also make our data more accessible, 

understandable and usable by reducing their complexity. The fact that data visualization is not 

only science but also art, suggests us that there is not any objective way or method of 

producing efficient methods for data visualization and creates a lot of opportunities for 

visualization and algorithm design.  

The obvious way to proceed in our research is to visualize our generated network using graph 

drawing, which will create a pictorial representation of the vertices and edges of a graph. The 

main problem by simply drawing our network is that the final graphic representation would be 

completely useless as the position of each node and community will not correspond to a 

semantically meaningful visualization. Applying different layout algorithms to our graph could 

lead to better output providing aesthetically improved visualizations. Layout of social networks 

is contingent on many factors. There are many different graph layout strategies available but it 

is widely suggested to proceed with force-based layout systems are most commonly used for 

social networks. This is likely because of their generality, simplicity, adaptability, and above 

all their availability. While force-directed methods generally perform well in separating 

clusters in graphs with varying local density, these methods are particularly troubled by small 

distances and skewed degree distributions. Forced based layout systems allow the graphs to be 

modified by continuously moving the vertices according to a system of forces based on 
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physical metaphors related to systems of springs or molecular mechanics. Typically, these 

systems combine attractive forces between adjacent vertices with repulsive forces between all 

pairs of vertices, in order to seek a layout in which edge lengths are small while vertices are 

well separated. These systems may perform gradient descent based minimization of an energy 

function, or they may translate the forces directly into velocities or acceleration for the moving 

vertices. [17]  
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4. Methodology 
4.1. Natural Language Processing and Understanding 

Natural language processing (NLP) is a field of information science, artificial intelligence 

and linguistics that deals with the interaction between human languages and computers.  

Statistical natural language processing uses stochastic, probabilistic and statistical methods, 

especially to resolve difficulties that arise because longer sentences are highly ambiguous wen 

processed with realistic grammars, yielding thousands or millions of possible analyses. 

Methods for disambiguation often involve the use of large corpora and Markov models. 

Probabilistic model consists of a non-probabilistic model plus some numerical quantities 

improving significantly the developing of natural language processing systems. Challenges in 

natural language processing involve natural language understanding that can enable computers 

to derive meaning from human or natural language input. The natural language generation 

systems convert information from computer databases to human readable language. In artificial 

intelligence natural language understanding is a subtopic of natural language processing that 

deals with machine reading comprehension. The main goal of Natural language understanding 

systems is to convert samples of human language into formal forms as trees (parse trees) of 

first order logic that is easier for computer programs to handle. A computer must be able to 

model structure of words (syntax) in order to understand a sentence, and a model of syntax is 

necessary to produce grammatically correct sentences. [12] The process of disassembling and 

parsing input is more complex than the reverse process of assembling output in natural 

language generation because of the occurrence of unknown and unexpected features in the 

input and the need to determine the appropriate syntactic and semantic schemes to apply to it, 

factors which are pre-determined when outputting language.  

In theory natural language processing is a very attractive method of human computer 

interaction. Old systems like SHRDLU [23] (developed by Terry Winograd), which operate in 
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restricted “block worlds” with restricted vocabularies performed extremely well, leading 

researchers to excessive optimism, which was quickly lost when systems had to deal with the 

ambiguity and complexity of real world problems. In most languages one word can relate with 

many different things and this is why we must be able to choose what is the real meaning of a 

word, depending on the context that it appears. The grammar is usually not unambiguous with 

respect to e.g. parse trees that can be extracted from a sentence. The fittest word is going to be 

used based on the semantics of a collection of text. Various attempts at processing natural 

language from English corpus have been conducted through the years. Some attempts have not 

resulted in systems with deep understanding, but have improved the overall system usability. 

Despite that natural language processing faces a lot of challenges and the progress in these 

topics are getting slower such as text summarization (take input as a text document and try to 

condense them into a summary) or machine dialog system (understanding user inputs and 

respond accordingly), other topics are gaining momentum such as part of speech tagging, 

named entity recognition, sentiment analysis, conference resolution, word sense 

disambiguation, parsing and machine translation. Natural Language Toolkit (NLTK) for 

Python can provide us easy-to-use interfaces and a suite of text processing libraries for 

classification, tokenization, stemming, tagging, parsing and many more. 

4.1.1 Data Transformation 

In order to allow our data to be processed through our Part-Of-Speech Tagger (POST) we 

need to make sure that our data does not contain any unnecessary information that can mislead 

our results. This kind of information is stopwords, HTTP links and non-English text. Utilizing 

natural language processing and understanding techniques in order can help us to overcome 

these problems. 

Tokenization: Tokenization is the process of breaking a stream of text up into words, 

phrases, symbols, or other meaningful elements called tokens. The list of tokens can become 

input for further processing such as parsing or text mining. To control the consistency of every 

word in a tweet we will utilize a tokenizer from Natural Language Tool Kit in Python’s library 

(NLTK) and transpose a tweet into an array of tokens. For example using a part from our 

tokenizer in our code in Python we get: 
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with	
  open('tweets.csv','rU')	
  as	
  csvfile:	
  	
   	
  
tweetreader	
  =	
  csv.reader(csvfile,	
  delimiter='	
  ',	
  quotechar='|')	
  	
  
	
   for	
  row	
  in	
  tweetreader:	
  	
  	
   	
  	
   	
   	
  
	
   	
   x='	
  '.join(row)	
  	
  	
   	
  
	
   	
   tokens	
  =	
  nltk.word_tokenize(x)	
  	
  	
  	
  
	
   	
  
	
   	
   print	
  (tokens)	
  	
  	
  
	
   	
   	
  
	
   	
   y='	
  '.join(tokens)	
  	
   	
   	
  
	
   	
   tweetList.append(y)	
  

 

For example having a tweet in our dataset like this example:  

tweet=’@user did you see the dog’s face?  #dogs’ 

After the tokenization procedure the result would result to an array like this: 

tokens=[(’@’),(‘user’),(‘did’),(‘you’),(‘see’),(‘the’),(‘dog’),(‘s’),(‘face),(‘?’)(‘#”)(‘dogs’)] 

It is easier now for our token array to be analyzed for stop word removal, HTTP cleansing, or 

English dictionary checking. 

Stopwords removal and dictionary checking: Stopwords are words, which are filtered out 

of a dataset before or after the processing of natural language data (tweets). There is not one 

definite list of stop words which all tools use and such filter is not always used and this is why 

we need to determine the most common stop words for a tweet. Using a set of stop words that 

appear frequently in an English document with words such as: the, a, in, to, some, that, is, are 

etc. and also stop words especially for tweets such as: lmao, wow, bb, gd, lol etc.  we can 

proceed to stopwords removal phrase. In the following code we read our stop words in a list 

variable and then removing all stop words detected in a tweet. We are also removing any word 

that appears more than once and then proceed to an English dictionary checking creating this 

way an ideal corpus for applying data mining or natural language processing techniques. 

output	
  =	
  open('Stopwords_for_Tweets.txt',	
  'r')	
  	
  
stoplist=set(output.read().split())	
  	
  
texts	
  =	
  [[word	
  for	
  word	
  in	
  tweet.lower().split()	
  if	
  word	
  not	
  in	
  stoplist]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
for	
  tweet	
  in	
  tweetList]	
  	
  	
  
#remove	
  words	
  that	
  appear	
  only	
  once	
  	
  
all_tokens	
  =	
  sum(texts,	
  [])	
  tokens_once	
  =	
  set(word	
  for	
  word	
  in	
  
set(all_tokens)	
  if	
  all_tokens.count(word)	
  ==	
  1)	
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texts	
  =	
  [[word	
  for	
  word	
  in	
  text	
  if	
  word	
  not	
  in	
  tokens_once]	
  
	
   	
   	
   	
   for	
  text	
  in	
  texts]	
  	
  	
  
dictionary	
  =	
  corpora.Dictionary(texts)	
  	
  
corpus	
  =	
  [dictionary.doc2bow(text)	
  for	
  text	
  in	
  texts]	
  

 

Link removal: Removing links from tweets is also essential to clean our data from useless 

information that can distort our outcome. By assigning the string ‘http’ to a variable named 

urlone we can use the following code, which can process every tweet as a string and remove 

any http link by checking if this variable exists in a string. 

urlone='http:'	
  	
  
	
  with	
  open(tweets.csv','rU')	
  as	
  csvfile:	
  	
   	
  
	
   tweetreader	
  =	
  csv.reader(csvfile,	
  delimiter='	
  ',	
  quotechar='|')	
  	
  
	
   for	
  row	
  in	
  tweetreader:	
  	
  	
   	
   	
  
	
   #Removing	
  all	
  links-­‐URLs	
  from	
  Tweets	
  	
   	
   	
  
	
   	
   for	
  word	
  in	
  row:	
  	
   	
   	
   	
  
	
   	
   	
   if	
  urlone	
  in	
  word:	
  
	
   	
   	
   	
   row.remove(word)	
  

 

4.1.2 Part-of-speech tagging (POST) 

Part-of-speech tagging (POST) is the process of marking up a word in a text corpus as 

corresponding to a particular part of speech, based on both its definition, as well as its context. 

It involves the identification of words as nouns, verbs, adjectives, adverbs, etc. The fact that 

some words can represent more than one part of speech at different times makes it difficult for 

us to simply apply a part-of-speech algorithm in our corpus. [12]  A sentence illustrating this 

problem would be: “I can can a can”. Most part-of-speech taggers are trained using a treebank 

which is parsed text corpus that annotates the semantic structure of a sentence and in most 

cases uses newswire domain, such as the Wall Street Journal corpus of the Penn Treebank. 

Tagging performance degrades on out-of-domain data, and Twitter data poses additional 

challenges due to the conversational nature of the text, the lack of conventional orthography, 

and 140-character limit of each message (“tweet”). However using regular expressions and a 

tokenizer to trim our data can help us to improve the performance of the part-of-speech tagger 

algorithms dramatically. Classifying our text collection into word classes such as nouns, verbs, 

adjectives etc. is useful for the development of many natural language processing methods that 
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we are going to tackle in this thesis such as chunking or shallow parsing. Using Natural 

Language toolkit (NLTK) we can use our already trimmed tweets as an input and proceed to a 

part-of-speech tagging of each word in every tweet and name these words accordingly 

depending on their word classes. By simply running this code below we can output the speech 

tag attached to each word like this for example: 

 

for	
  tweet	
  in	
  texts:	
  	
  	
   	
   	
   	
  
	
   tagged	
  =	
  nltk.pos_tag(tweet)	
  

 

Input: tweet=‘use the select function on the sockets’ 

Output: (‘use’, ’VB’), (‘the’, ‘DT’)(‘Select’, ’VB’), (‘functions’,’NN’), (‘on’, ‘IN’), (‘the’, 

‘DT’), (‘sockets, ’NNS’) 

Transforming tweets using part-of-speech taggers can enable us to use our data in order to 

develop a chunker as an information extraction mechanism in order to extract the needed 

chunks from a tweet that can be used later as candidate labels for our topics. 

4.1.3 Chunking/Shallow Parsing 

As we explained in the problem definition section of our thesis, the extraction of phrases 

using our dataset is important in our research in order to develop an automatic way of creating 

labels for our extracted topics. To generate labels that are understandable, semantically 

relevant, discriminative across topics and of high coverage of each topic, we first extract a set 

of understandable candidate labels in a preprocessing step and then design a relevance scoring 

function to measure the semantic similarity between a label and a topic. Next we will be able 

to propose label selection methods to address the inter-topic discrimination and intra-topic 

coverage problems. Chunking (Shallow Parsing) is a common technique in NLP, which aims at 

identifying short phrases, or “chunks” in text. A chunker often operates on text with part-of-

speech tags, and uses tags to make decisions to of chunking according to some grammar, or 

through learning from labeled training sets. We aim at extracting chunks as phrases that appear 

frequently in our dataset of tweets according to some grammar that we have to define. The 
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advantage of using a NLP chunker is that the phrases that we can extract will be grammatical 

and meaningful. The accuracy of the chunker is highly affected by the domain of the text 

collection. [2]  In our case, a corpus of tweets could result to a lot of “bad” chunks because of 

the dynamic nature of tweets and the lack of supervision in terms of orthography or syntactic 

completeness, however by cleaning our data from unwanted information our chunker will 

generate more meaningful phrases and overcome the noisy nature of micro-blogging data. In 

order to allow our chunker to track grammatical patterns in our dataset we will need to utilize 

the functionality of Regular Expressions. A Regular Expression (Regex) is a sequence of 

characters that forms a search pattern, mainly for use in pattern matching with strings, or string 

matching. Each character in a regular expression is either understood to be a metacharacter 

with its special meaning, or a regular character with its literal meaning. They can be used to 

identify textual material of a given pattern. The pattern sequence itself is an expression that is a 

statement in a language designed specifically to represent prescribed targets in the most 

concise and flexible way to direct the automation of text processing of text files. The fact that 

we want to use the extracted chunk/phrase as a label for our topics suggests us that it is wise to 

use a grammar that produces small and concise types of chunks. Defining the grammar of our 

chunker using regular expressions can help us to experiment with the results using tree 

drawings from Python. The best grammar patterns that we have been able to define for our 

dataset are: 

• Phrase_Pattern_A:	
  {<RB.?>*<VB.?>+<NNP>}	
  Using this grammar pattern we will 

be able to identify patterns in our dataset that have zero or more adverbs (and any kind of 

adverb like comparetive or superlative) followed by zero or more verbs (and any kind of 

verb like past tense, gerund, past participle, present, third person etc.) followed by 

exacctly one proper noun. Using this kind of grammar pattern we are trying to detect the 

what words are modifying a proper noun in a tweet. 

• Phrase_Pattern_B:	
  {<JJ.?>*<NNP>}	
  Using this type of grammar pattern we can 

easily extract chunks that consists of zero or more adjectives (including all type of 

adjectives like comparetive or superlative) and one proper noun. Despite that this method 

looks simple can produce consice phrases. 

• Phrase_Pattern_C:	
  

{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}	
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Using a more ambitious pattern like this we are aiming at discovering more accurate phrases for a 

tweet, however statistically could lead to a worst grammar pattern overall. We are using one or 

more nouns (and any kind of noun) followed by one or more determiner (any type of determiner) or 

another proper noun (and any type of noun), followed by 1 or more adjective (and any type of 

adjective) or any type of verb followed by one or more nouns (and any type of nouns) followed by 

zero or more adjectives (any type of adjective) or any type of verb. Using Python’s NLTK library 

we can create a function that could process our tweets using NLTK’s RegexpParser, Tokenizer, 

pos_tagger and then draw a parse tree to represent our data. 
 

def	
  processLanguage():	
  	
  	
  	
  	
  	
  
try:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   for	
  item	
  in	
  tweetlist:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   tokenized	
  =	
  nltk.word_tokenize(word)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   tagged	
  =	
  nltk.pos_tag(tokenized)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   cGram	
  =	
  r"""PhraseA:	
  {<RB.?>*<VB.?>+<NNP>}"""	
  	
  
	
   #cGram	
  =	
  r"""PhraseB:	
  {<JJ.?>*<NNP>}"""	
  
	
   #cGram	
  =	
  r"""PhraseC:	
  
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}	
  """	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   cParser	
  =	
  nltk.RegexpParser(cGram)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   chunked	
  =	
  chunkParser.parse(tagged)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   print	
  chunked	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   chunked.draw()	
  	
  	
  	
  	
  	
  	
  
except	
  Exception,	
  e:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   print	
  str(e)	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   time.sleep(0.5)	
  

 

 

Using the function processLanguage() and specifically with PhraseC and PhraseB type of 

grammar pattern in a small toy database that we have created tracking tweets about economy 

we get some of the following examples. We are going to analyze the results in more depth in 

the next chapter. For these tweets we have been able to extract the following chunks/phrases:  

 

• Arab Monetary Fund ready to contribute to reform of Algerian financial 
system #Economy. The Arab Moneta... http:\/\/t.co\/2ehne4GzU5  
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Figure 4: Phrase generation using PhraseC grammar 

• @CoryBooker Women R used against the political economy of recession 
&amp; unemployment numbers; paying us less 4 our work help job nbrs 
improve 

 
Figure 5: Phrase generation using PhraseC grammar 

• Probably so RT @Train5829: Are you really middle class? 
http:\/\/t.co\/GPGBXHksKJ via @CNNMoney 
 

 
Figure 6: Phrase generation using PhraseB grammar 

Generating these phrases from our dataset will become useful when we extract topics. By 

developing a scoring function for our phrase to be automatically be assigned to our extracted 

topics will lead to a better understanding of the thematic subject of each topic. The fact that 

the topic extraction and phrase generation will use the same dataset will result to better tuned 

results. 
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4.2. Text and Data Mining 

Text mining or text data mining is the process of deriving high quality information from text. 

This high quality information is typically derived through the devising of patterns and trends 

through means such as statistical pattern learning. Text mining usually involves the process of 

structuring the input text, deriving patterns within the structure data and finally evaluation and 

interpretation of the output. The high quality is data usually refers to how interesting or 

relevant the results are. Typical text data mining includes text categorization, text clustering, 

sentiment analysis, concept extraction, relation modeling and document summarization. Text 

analysis involves information retrieval, word frequency distributions, pattern recognition, word 

tagging, information extraction, visualization and predictive analytics. [13]  The goal of text data 

mining is to turn our text into data ready for analysis. Text mining is widely used for social 

media monitoring and social media mining. Mining the social media has its potential to extract 

actionable patterns that can be beneficial for users, businesses and costumers. 

In order to do text mining we need to develop a method for the representation of our 

documents. It is sufficient for our kind of data to classify and cluster our documents using 

simple representation that loses all information about word order (bag of words). Given our 

collection of documents, the first task is to identify the set of all words used in our documents. 

Using our data trimming techniques that we developed will be useful for extracting categories 

in our documents. We aim at representing our documents as a two-dimensional matrix where 

each row describes a document and each column corresponds to a word.  

4.2.1 Topic modeling 

Once we have a representation of our documents we need to select a model for a set of 

documents. The model will be an abstraction of a set of entities using probability distribution. 

Given a training set of documents we will choose values for the parameters of a probabilistic 

model that make the training documents have high probability. By throwing test documents to 

our trained documents we will be able to evaluate its probability according to the model. The 
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higher the probability the more similar to the training set. The probability distribution is going 

to be multinomial and can be represented in the following mathematical formula: 

p(x;! ) = n!

x j !
j=1

m

"

#

$

%
%
%
%

&

'

(
(
(
(

! j
x j

j=1

m"( ) . 

Where x is a vector of non-negative integers and the parameters !  are a real-valued vector. 

Both vectors have the same length m . ! j  is the probability of word j  while x j  is the count of 

word j . [15]  

4.2.2 Generative processes 

A common way to organize a collection of documents is to use unsupervised learning 

techniques. The generative process is a specification of a parameterized family of distributions. 

Learning is based on the principle of maximum likelihood or maximum probability. [16]  

 A generative process for a simple document is as follows: 

• Fix a multinomial distribution with parameter vector !  of length V (setting up the 

probability distributions) 

• For each word in a document: draw a word w according to !  

For a collection of documents of multiple categories, a simple generative process is: 

• Fix a multinomial !  over categories 1 to K. For category number 1 to category 

number K: Fix a multinomial with parameter vector !k  

• For a document number 1 to document number M: Draw a category z  according to a  

and for each word in the document: Draw a word w  according to !z . 
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4.2.3 Latent Dirichlet allocation (LDA) 

The specific topic model that we consider for our research is called Latent Dirichlet 

Allocation (LDA). Latentt Dirichlet Allocation is arguable the most popular and simplest 

topic model in application. It has also been widely used for topic modeling in micro-blogging 

data providing accurate and meaningful results. Latent Dirichlet Allocation is a generative 

model that allows sets of observations to be explained by unobserved groups that explain why 

some parts of data are similar. In Latent Dirichlet Allocation each document may be viewed 

as a mixture of various topics and topic distribution is assumed to have a Dirichlet prior. 

Latent Dirichlet allocation is based on the intuition that each document contains words from 

multiple topics where the proportion of each topic in each document is different, but the 

topics themselves are the same for all documents. [16]  The generative process assumed by the 

Latent Dirichlet Allocation is as follows: 

 

Figure 7: Latent Dirichlet allocation representation model 

• a  is the parameter of the Dirichlet prior on the per-document topic distributions 

• !  is the parameter of the DIrichlet prior on the per-topic distribution 

• !i  is the topic distribution for the document i 

• !k  is the word distribution for topic k 

• zij   is the topic for the j th  word in document i 

• wij  is the specific word 
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Latent Dirichlet Allocation uses Dirichlet distribution. Dirichlet distribution is a 

probability density function over the set of all multinomial parameter vectors. This set is 

all vectors ! of length m such that ! s " 0  for all s and ! s = 1
s=1

m

" . The Dirichlet 

distribution itself has a parameter vector a  of length m and the equation is: 

p ! |"( ) = 1
D

! s
as#1

s=1

m$  

Where the function D is a normalized constant. 

 

4.2.4 Topic Discovery and Classification 

Using Latent Dirichlet Allocation with our micro-blogging data may not conclude to quality 

topic extraction due to the fact that tweets are short. It has been suggested by previous 

researchers that by treating tweets as a document might result into better solutions however we 

have been able to extract semantically meaningful topics in both ways. Python’s Gensim 

library for topic modeling will provide us with the ability to apply Latent Dirichlet Allocation 

algorithm for topic discovery in our dataset. Again using a small toy example dataset that we 

have created by tracking economy related tweets using the following code can extract n-

number of topics. 

stoplist=set(output.read().split())	
  	
  
texts	
  =	
  [[word	
  for	
  word	
  in	
  tweet.lower().split()	
  if	
  word	
  not	
  in	
  stoplist]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   for	
  tweet	
  in	
  tweetList]	
  	
  
	
  
#	
  #	
  remove	
  words	
  that	
  appear	
  only	
  once	
  	
  
all_tokens	
  =	
  sum(texts,	
  [])	
  	
  
tokens_once	
  =	
  set(word	
  for	
  word	
  in	
  set(all_tokens)	
  if	
  
all_tokens.count(word)==	
  1)	
  
	
  	
  
texts	
  =	
  [[word	
  for	
  word	
  in	
  text	
  if	
  word	
  not	
  in	
  tokens_once]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
   for	
  text	
  in	
  texts]	
  	
  	
  
	
  
dictionary	
  =	
  corpora.Dictionary(texts)	
  	
  
corpus	
  =	
  [dictionary.doc2bow(text)	
  for	
  text	
  in	
  texts]	
  	
  	
  	
  
lda	
  =	
  ldamodel.LdaModel(corpus,	
  id2word=dictionary,	
  num_topics=6)	
  	
  
corpus_lda	
  =	
  lda[corpus]	
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for	
  l,t	
  in	
  izip(corpus_lda,corpus):	
  	
  	
  
	
   	
  print	
  l,"::",t	
  
	
  
for	
  i	
  in	
  range(0,lda.num_topics):	
  	
  	
  
	
   	
  print	
  lda.print_topic(i)	
  
	
   	
  topics.append(lda.print_topic(i))	
  

 

Using again stop words removal and link removal in our dataset we create then a dictionary 

of our corpus and using this dictionary to generate the latent Dirichlet allocation model for our 

dataset using 6 number of topics. The results can be represented below displaying 3 of the best 

topics extracted as bags of words with a probability distribution for every word: 

                                      

           Table 1: Topic 1 extracted                                                              Table 2: Topic 2 extracted 

 

Table 3: Topic 5 extracted 
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We can easily see that the topics 1, 2, 5 extracted from our database can relate to real word 

thematic categories regarding economy as a general subject. Topic 1 is related with tweets in 

our dataset that talk about immigration and how affects the economy. Topic 2 is related with 

the rights of women to be paid equally as the men in their workplace. Topic 5 is related with 

Scotland dependency from United Kingdom and how it affects economy.  

 

4.2.5 Probabilistic Topic Labeling 

Deriving meaning of labeling a topic manually might not be so easy as it was from our 

previous examples. Most of the times it would be impossible for a human to interpret the 

information from extracted topic in order to label it correctly. To generate labels that are 

understandable and semantically relevant across our topics as we explained in our problem 

definition we need to generate automatically meaningful phrases as candidate labels. We 

already described our methodology for phrase generation from our dataset using natural 

language processing techniques such as chunking/shallow parsing. Having already generated a 

big number of candidate labels for our topics (phrases) from our dataset we now need to 

develop a scoring function in order to assign the highest scoring phrase to each topic.  

The semantics of a latent topic !  is fully captured by the corresponding multinomial 

distribution. Any reasonable measure of the semantic relevance of a label to a topic should 

compare the label with this distribution in some way. [2]  

We are going to define the semantic relevance score of a candidate phrase l = u0u1...um  where 

ui  is a word as follows: 

S = log p(l |! )
p(l)

= log p(ui |! )
p(ui )0"i"m

#  

The basic idea behind this zero-order relevance scoring function is that a phrase that contains 

more “important” words in the topic distribution is assumed to be a good label. p(ui )  is to 

correct the bias toward favoring short phrases and we are choosing to set it to uniform 

distribution. Using this function now we can score every generated phrase from our chunker 
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and based on the highest scored phrase for each topic we can assign these labels (phrases) to 

each topic ! . An illustration of zero-order relevance is demonstrated below. Larger circle 

infers to a higher probability value. 

 

Figure 8: Zero-order relevance scoring function 

The following Python script illustrates the implementation of the scoring function by storing 

a scoring array with all the scores of each phrase for every topic separately: 

for	
  topic	
  in	
  topics:	
  
	
  	
  	
   print	
  'New	
  Topic:-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐'	
  	
  
	
  	
   with	
  open('phraseschunker.csv','rU')	
  as	
  csvfile:	
  
	
  	
  	
   phrases	
  =	
  csv.reader(csvfile,	
  delimiter='	
  ',quotechar='|')	
  	
   	
   	
   	
  
	
  
	
   for	
  phrase	
  in	
  phrases:	
  	
  	
   	
   	
   	
  
	
   	
  	
  joinphrase='	
  '.join(phrase)	
  	
   	
   	
   	
   	
  
	
   	
  	
  b=topic.split('+')	
  	
   	
   	
   	
   	
  
	
   	
  	
  for	
  item	
  in	
  b:	
  	
   	
   	
   	
   	
   	
   	
  
	
   	
  	
  a=item.split('*')	
  	
   	
   	
   	
   	
   	
   	
  
	
   	
  	
  for	
  p	
  in	
  joinphrase.split():	
  	
  	
   	
   	
   	
   	
   	
   	
   	
  
	
   	
  	
  	
  	
  print	
  p,a[1]	
  	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
   	
  	
  	
  	
  if	
  str(p)	
  in	
  str(a[1]):	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   print	
  '_____________________'	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   print	
  print	
  print	
  'Probability:',a[0]	
  	
  
	
  
	
   	
  	
  	
  	
  	
  	
  print	
  	
  'Probability',	
  a[0]	
  	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
   	
  	
  	
  	
  	
  	
  print	
  'Phrase:',	
  phrase	
  	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  'Topic:'	
  ,topic	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  score=float(math.log10(float(a[0])	
  +	
  float(1)))+score	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   score=float(math.log10(float(a[0])+float(1)))+score	
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   scoretable[m].append(score)	
  
	
   scpre=0	
  

In the following Python script we find the maximum score in the scoretable array for each 

topic and assign the phrase to the topic as a label: 

for	
  i	
  in	
  range(len(topics)):	
  	
  
	
  	
   	
  
	
   maxphrase[i]	
  =	
  phrzs[scoretable[i].index(max(scoretable[i]))]	
  
	
   	
  
	
   print	
  max(scoretable[i]),scoretable[i].index(max(scoretable[i]))	
  	
   	
  

	
  	
  print	
  phrzs[scoretable[i].index(max(scoretable[i]))]	
  	
   	
  
	
   print	
  lda.print_topic(i)	
  

 

4.3 Social Network Analysis 

In order to translate our extracted information into a social network with nodes and edges that 

carries significant information and insights about the community structures, the most 

influential nodes (users) in the network and the trends that dominate each community we need 

to implement graph theory methods, apply community detection algorithms and provide a 

suitable environment for visualization of this network and its information. This way we can 

represent our network using graphs but we will need to develop a method in order to generate 

our graph using our dataset. This task involves a precise definition of nodes, edges 

(interactions) and communities (entities) in our dataset. 

4.3.1 Graph Generation 

Graphs contain both a set of objects, called nodes, and the connections between these nodes 

called edges. Mathematically, a graph G  is denoted as pair G(V ,E) , where V = {v1,v2,...,vn}  

with nodes vi , for 1! i ! n  and represents the set of nodes and E = {e1,e2,...em}  represents the 

set of edges with ei , for 1! i ! m  being the edges for our nodes. 

Nodes: it is obvious that the nodes in our graph are going to represent each Twitter user that 

has tweeted and we had collected his tweet using our Twitter wrapper (tweepy). 

Edges: As edges or interactions between our nodes (users) in our graph we could define them 

by assigning them into followers/following interactions. Despite that this definition can create 
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interesting graphs of Ego-networks, it is not going to provide us with interesting patterns in 

terms of trends or community discovery. Friendship-like connection does not necessarily mean 

that these friendship communities have the same topic interests as individuals and this is why 

we need to develop another strategy/method for creating interactions in our graph. We are 

interested in “ad-hoc” connections between users generated by current trends or topic interests 

in their community and how discussion development among them is sustained. By analyzing 

the format of a tweet we conclude that “mentions” of a node (user) can represent the ideal 

definition for an edge in our network. A mention is a mean of posting references or links to a 

user’s profile. The following example will demonstrate the edge generation between three 

nodes (users) posting three tweets: 

 

Figure 9: Demonstration of edges in a small network 

Using these definitions for nodes and edges in our network we can develop a method to 

create a graph using NetworkX Python’s library which is widely used for graph related 

problems and build our network based on the data we gathered using our Twitter wrapper and 

stored to MongoDB. The data we are going to need from a tweet’s JSON data are going to be: 

{	
  	
  	
  	
  	
  	
  
"user":	
  	
  
{	
  "screen_name":	
  {	
  "name	
  of	
  the	
  user"}}	
  	
  	
  	
  
"text":	
  "This	
  is	
  the	
  actual	
  tweet	
  of	
  the	
  user",	
  	
  	
  	
  
"entities":	
  {	
  	
  	
  	
  	
  	
  	
  
	
   "user_mentions":	
  	
  
	
   	
   [{	
  	
  	
  	
  	
  	
  	
  "screen_name":	
  "username	
  of	
  the	
  user	
  that	
  the	
  node	
  	
  

is	
  mentioning	
  in	
  his	
  tweet",	
  	
  	
  	
  	
  }]	
  	
  	
  }	
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  "geo":	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  "coordinates":	
  {	
  "x	
  y	
  z"	
  }	
  	
  	
  
	
  "created_at":	
  {	
  "to	
  get	
  the	
  information	
  about	
  the	
  time	
  that	
  the	
  tweet	
  has	
  
been	
  created"}	
  	
  	
  	
  
"source":{	
  "to	
  extract	
  the	
  information	
  about	
  the	
  hardware	
  or	
  software	
  that	
  
the	
  user	
  is	
  using"}	
  	
  
	
  }	
  

 

Using MongoDB as our database system we don’t need to use regular expression to modify 

the information that Twitter API provides us because the data of a tweet is already formatted 

in JSON format and MongoDB represents data in JSON format too. We have developed the 

following script in Python in order to retrieve this data from our Twitter API and store it to a 

MongoDB database in our system: 

Class	
  StreamListener(tweepy.StreamListener):	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  def	
  __init__(self,	
  api):	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  self.api	
  =	
  api	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  super(tweepy.StreamListener,	
  self).__init__()	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  self.db	
  =	
  pymongo.MongoClient().inflationDB	
  	
  	
  
	
  	
  	
  	
  
	
  	
  	
  	
  def	
  on_status(self,	
  status):	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  print	
  status.text	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data	
  ={}	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data['user']=status.user.screen_name	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data['text']	
  =	
  status.text	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data['created_at']	
  =	
  status.created_at	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data['geo']	
  =	
  status.geo	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data['source']	
  =	
  status.source	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  data['entities']=status.entities	
  
	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  self.db.Tweets.insert(data)	
  

 

After the data gathering we can implement our Python script that utilizes NetworkX library in 

order to generate our graph. We access every user and add each user name as a node and then 

we scan the screen name of this user mentions in order to create our edges: 

#connecting	
  with	
  our	
  database	
  	
  
c=Connection()	
  	
  
db=c.EbolaNet	
  	
  #my	
  database	
  #Another	
  DB:	
  EconomicsDB,newEbolaDB	
  	
  	
  
tweets=db.Tweets	
  	
  
	
  #creating	
  the	
  empty	
  graph	
  for	
  networkX	
  that	
  we	
  are	
  going	
  to	
  populate	
  
mynetwork=nx.Graph()	
  	
  	
  
mentions=db.Tweets.entities.user_mentions	
  tweets=tweets.find()	
  
test=tweets.entities.user_mentions.find()	
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for	
  tweet	
  in	
  tweets:	
  	
   	
  
	
  	
  	
  	
  mynetwork.add_node(t['user'],tweet=t['text'])	
  
	
  
	
  	
  	
  	
  if	
  len(t['entities']['user_mentions'])!=0:	
  	
  	
  
	
   try:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  While(i<6):	
  	
  	
   	
   	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  mynetwork.add_edge(t['user'],t['entities']['user_mentions'	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ][i]['screen_name'])	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  i=i+1	
   	
  	
   	
  
	
   except:	
  	
  	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  pass	
  	
  

 

4.3.2 Community Discovery 

A real-world community is a body of individuals with common interests. A virtual 

community comes into existence when users with common interests start interacting with each 

other. The problem of community detection has been tackled and discussed by many different 

disciplines such as quantization in electrical engineering, discretization in statistics and 

clustering in machine learning. We want to extract communities that share common thematic 

interests.  As we stated in our problem definition chapter, the most efficient way to implement 

community detection in our network (graph) is by using Louvain method that is a modularity 

optimization technique in order to detect communities in large networks. This community 

detection algorithm is divided in two phases that are repeated iteratively. At first it assigns a 

different community to each node of the network. This way in this initial partition there are as 

many communities as there are nodes. Then, for each node i this algorithm is assigning the 

neighbors j of i and evaluates the gain of modularity that would take place by removing i from 

its community and by placing it in the community of j. The node i then placed in the 

community for which this gain is maximum (only if the gain is positive). This process is 

applied repeatedly for all the nodes in our network until no further improvements can be made. 

A Python module that uses Louvain method in NetworkX’s framework is called. We are going 

to implement this module into our graph in order to extract communities. This implementation 

can be demonstrated in the code below continuing from the previous script as we have already 

generated our graph and it creates a list of nodes for each community: 

import	
  networkx	
  as	
  nx	
  	
  
import	
  community	
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#first	
  compute	
  the	
  best	
  partition	
  	
  
partition	
  =	
  community.best_partition(mynetwork)	
  	
  
size	
  =	
  float(len(set(partition.values())))	
  	
  
pos	
  =	
  nx.spring_layout(mynetwork)	
  	
  
count	
  =	
  0	
  	
  
#	
  print	
  partition.values()	
  	
  
for	
  community	
  in	
  set(partition.values())	
  :	
  	
  	
  	
  	
  
	
  	
  	
  	
  count	
  =	
  count	
  +	
  1	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  list_nodes	
  =	
  [nodes	
  for	
  nodes	
  in	
  partition.keys()	
  if	
  partition[nodes]	
  ==	
  	
  
community]	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  #random	
  colors	
  in	
  every	
  loop	
  	
  
	
  	
  	
  	
  t='#'+str(hex(random.randint(0,16777216))[2:])	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  for	
  node	
  in	
  list_nodes:	
  	
  	
   	
  	
  	
  	
  
	
  	
   nodesnameslist.append(node)	
  

 

4.3.3 Community Labeling 

Now that we have been able to detect communities in our graph we want to be able to 

identify influential users (nodes) or the topic (or topics) of interest in each community. In order 

to do that we need to define a method in order to calculate how influential a user is in a 

community and also to be able to retrieve the information about all the nodes in each 

community. In order to proceed we need to implement again some techniques from graph 

theory. 

4.3.3.1 Degree 

In graph theory, the degree of a vertex of a graph is the number of edges incident to the 

vertex. The degree of a vertex v  is denoted deg(v) . 

 

Figure 10: Node A with degree=5 

In directed graphs like our network the set of nodes are connected by directional edges. When 

a user mentions another user in his tweet, this interaction produces a directed edge from user 
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A to user B. Indegree is the number of directed edges (arcs) are incedent on a node and the 

outdegree is how any directed edges (arcs) originate at a node. 

                     

                         Figure 11: Node indegree                                                         Figure 12: Node outdegree                                                          

4.3.3.2 Influence  

Centrality in graph theory is a term that defines how important a node is within a network. In 

real-world interactions, we often consider people with many connections to be important. 

Degree centrality transfers the same idea into a measure. The degree centrality measure ranks 

nodes with more connections higher in terms of centrality. The degree centrality Cd  for node 

vi  is: Cd (vi ) = di , where di  is the degree of node vi . 
[17]  

This way we can compute the degree of each node in every community in our graph using 

netowrkX’s functionality and store it in a list. 

4.3.4 Community Analysis 

Now that we are able to access every node in each community we can retrieve each tweet 

from our nodes and measure the most relevant topic of interest of each community by re-using 

the zero-order relevance scoring function that we have developed as a phrase candidate 

generation mechanism previously, modified for a tweet and a topic. Given two extracted topics 

!1 , !2  and a tweet, t  in a community, using our scoring function S(!i ,t)  we could calculate 

the relevance score of a topic !i  for a tweet !i . Assuming that S(!1,t) > S(!2,t)  suggests as that 

topic !1  is most relevant to tweet t and therefore topic !1  is going to represent tweet t . 

Following the same procedure for every tweet in a community for each community we can 

result with a table of representative topics for each topic. Then we can calculate the percentage 

of existence for each community. In our scoring function we are going to use again LDA’s 

probability distribution as dependent probabilities in order to provide a more accurate 
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representation meaning that when we are applying the function each word in a tweet is going 

to be compared with each word in the topic applying the coefficient of the probability for this 

word to appear in the topic context. This procedure can be represented by the following figure:

 

Figure 13: Scoring process 

This procedure is performed for each node in every community that we have been able to 

detect. This way we can calculate the most relevant topic of interest in every community with a 

percentage of relevance. This can be implemented in the code below (we have not included the 

whole code). 

if	
  (len(list_nodes)>5):	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  for	
  node	
  in	
  list_nodes:	
  	
  	
   	
  	
  	
  	
  
	
   nodesdegreelist.append(mynetwork.degree(node))	
  	
  	
  	
  	
  	
  
	
   nodesnameslist.append(node)	
  	
  	
   	
  	
  	
  	
  	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  try:	
  	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  d=mynetwork.node[node]['tweet']	
  	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tokens=nltk.word_tokenize(d)	
  	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  filteredtext	
  =	
  [t	
  for	
  t	
  in	
  tokens	
  if	
  t.lower()	
  not	
  in	
  stopList]	
  
	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tokenizedtweet='	
  '.join(filteredtext)	
  	
  	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  'TWEET-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐',tokenizedtweet	
  
	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  st=[]	
  	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  topic	
  in	
  topcs:	
  	
   	
   	
   	
   	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  word	
  in	
  tokenizedtweet.split():	
  	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  b=topic.split('+')	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  item	
  in	
  b:	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  a=item.split('*')	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  word	
  in	
  a[1]:	
  	
  
	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  score=float(math.log10(float(a[0])+float(1)))+score	
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  st.append(score)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  score=0.0	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  except:	
  	
  
	
   	
   pass	
   	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  if(max(st)>0):	
  	
  	
   	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  st.index(max(st))	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  communitytopicscores.append(st.index(max(st)))	
  
	
  
	
  	
  	
  	
  if	
  (len(communitytopicscores)>0):	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  for	
  i	
  in	
  range(len(num_topics)):	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  print	
  communitytopicscores.count(i)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  topiccounts.append(communitytopicscores.count(i))	
  
	
   	
  	
  	
  	
  #computing	
  the	
  percentage	
  of	
  the	
  most	
  relevant	
  topic	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  perc=max(topiccounts)/len(communitytopicscores)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  topicassignment='Topic:	
  	
  
'+str(topiccounts.index(max(topiccounts)))+'	
  	
  Percentage:	
  '+str(perc)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  mynetwork.add_node(node,topic=topicassignment)	
  
	
  
	
  	
  	
  	
  communitytopicscores=[]	
  
	
  	
  	
  	
  topiccounts=[]	
  	
   	
  	
  	
  	
  	
  
	
  	
  	
  	
  nodesdegreelist=[]	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  nodesnameslist=[]	
   	
   	
   	
   	
   	
  

 

Using this script we are calculating the scores of each topic for every tweet’s node separately 

and we are keeping tha maximum topic score value and append these scores to a list st. After 

the except function in our Python script, we append the maximum scored topic’s index 

number to another list communitytopicscores with the communities topic scores. Next we 

are computing the percentage of relevance between the community and the topic in a float 

variable perc and we assign this variable’s value in the string variable topicassignment. We 

are using NetworkX’s functionality to add the node with the max degree in our network with a 

label that carries information about the community that this node represents. This information 

is the most relevant topic to the community and the percentage of this relevance. Adding a 

node in a network that already consists this node will just adjust any additional information 

that this nodes carries. In our the node carries the label of  topicassignment variable. Using 

this method we can provide useful insights about the communities in our networks but we can 

also help with the visualization by providing an improved aesthetically representation of our 

network by not exhausting the image of our network with information in every node without 
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allowing the patterns to be visible. Using this algorithm the output is looking like the figure 

below for some communities: 

Most	
  influential	
  (highest	
  degree)	
  node	
  in	
  the	
  community:	
  NBCNews	
  	
  	
  
	
  
Most	
  relevant	
  topic	
  in	
  his	
  community:	
  Topic	
  1	
  with	
  percentage	
  of	
  
0.916666666667	
  	
  	
  
	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  	
  	
  
	
  
Most	
  influential	
  (highest	
  degree)	
  node	
  in	
  the	
  community:	
  Earthjustice	
  
	
  
Most	
  relevant	
  topic	
  in	
  his	
  community:	
  Topic	
  0	
  with	
  percentage	
  of	
  
0.7247667422	
  	
  
	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

 

4.3.5 Network Visualization 

Regarding visualization aesthetics it could help us to adjust the size of each node in our 

network depending on the degree. This way we can identify important and influential nodes 

quickly in a large network. We also need to find a suitable layout algorithm for the 

representation of our network because the layout presets of NetworkX are not scalable for 

large networks and NetworkX does not allow quick adjustments in our graphs. We are going to 

use Gephi, which is an interactive visualization and exploration platform for all kinds of 

netowrks and complex systems. As we already suggested in the previous chapter, using a 

force-directed layout algorithm for real world large-scale graphs is suggested. OpenOrd C++ 
[24]  implementation is an algorithm based on Fritcherman-Reingold and works with a fixed 

number of iterations. The algorithm is using simulated annealing and has five phases: liquid, 

expansion, cool-down, crunch and simmer. We can also adjust the size of each node depending 

on the degree using Gephi. Applying modularity classification to our already processed 

network can also create different colors for every partition (community) and this way we can 

filter out small communities that does not obey a centrality threshold. An example of a 

network with 9699 nodes and 6535 edges that has been generated by tracking tweets about 

Ebola virus can be shown below: 
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5. Experiments and Results 
In this chapter we are going to examine our results analytically providing empirical 

evaluation. 

Datasets: We are going to use different datasets that we have created using Twitter’s API.  

Our datasets are: an economy related dataset that includes 3161 tweets, another economy 

dataset that includes 7135 tweets and a technology dataset that includes 10802 tweets. 

Procedure: The procedure that we are going to follow using the software modules that take 

advantage of the methodologies that we have developed can be shown in the diagram below.  

 

 

 

Figure 14: Procedure diagram 
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5.1 Phrase Generation 

In this section we are going to present the effectiveness of the chunking/shallow parsing 

method that we have proposed in order to extract grammatically correct phrases from our text 

corpus (tweets) using two different datasets and three different chunking methods. 

The top extracted phrases using our datasets that we had created in MongoDB containing 

tweets that are related with economy and technology are going to be presented below using the 

three phrase patterns that we have developed in our methodology: 

• Phrase Pattern A: {<RB.?>*<VB.?>+<NNP} 

• Phrase Pattern B: {<JJ\w?|VG\w?|NN\w?|DT\w?>*<NNP>+} 

• Phrase Pattern C:  
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*} 

Some tweets in our economy dataset that our chunkers are going to use are: 

Economy	
  Dataset	
  example	
  

OECD	
  sees	
  global	
  economy	
  held	
  back	
  by	
  slow	
  eurozone	
  http:\/\/t.co\/BHNzJOcGYH	
  

RT	
  @SCV_Network:	
  Lets	
  help	
  support	
  our	
  local	
  businesses	
  and	
  buy	
  local!	
  Buy	
  local,	
  impove	
  local	
  economy.	
  

RT	
  @shoplocally:	
  It's	
  not	
  hard	
  to	
  support	
  your	
  local	
  economy.	
  Just	
  shift	
  your	
  spending	
  to	
  local	
  	
  

independents.	
  Every	
  bit	
  counts.	
  #ShopLocal	
  

Growing	
  Our	
  Economy	
  and	
  Strengthening	
  Our	
  Financial	
  System	
  |	
  The	
  White	
  House	
  http:\/\/t.co\/guNt4fimpO 

@Bruciebabe	
  Consumer	
  driven	
  Low	
  wage	
  economy	
  

RT	
  @FlipChartRick:	
  The	
  Scottish	
  economy	
  in	
  ten	
  essential	
  charts	
  |	
  via	
  @Telegraph	
  http:\/\/t.co\/Km2bzXos0s	
  

Table 4: Economy Dataset example 

 

The extracted phrases using our three chunking methods after the noise reduction are: 
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         Table 5: Extracted phrases                 Table 6: Extracted phrases           Table 7: Extracted phrases 

The tweets in our technology dataset can be shown below: 

Technology	
  Dataset	
  example	
  

#Apple	
  -­‐	
  Latest	
  rumors	
  before	
  Tuesday's	
  Apple	
  event:	
  #iPhone	
  \/	
  #iPhone6	
  -­‐	
  The	
  new	
  phone	
  

#Technology	
  -­‐	
  Cyborg	
  Unplug	
  scans	
  your	
  Wi-­‐Fi	
  network	
  for	
  potential	
  surveillance	
  devices:	
  	
  

#Wifi...	
  http:\/\/t.co\/9TuZRfCIb4	
  -­‐	
  #Tech	
  #Techno	
  

why	
  some	
  healthcare	
  technology	
  leaders	
  have	
  been	
  hesitant	
  to	
  embrace	
  cloud-­‐based	
  technology	
  	
  

writ	
  large\"	
  http:\/\/t.co\/oOI1bktqAs	
  

#Google	
  -­‐	
  Sony	
  Xperia	
  T3	
  review:	
  A	
  solid	
  mid-­‐range	
  large-­‐screen	
  phone:	
  #XperiaT3	
  -­‐	
  Sony's	
  

	
  ...	
  http:\/\/t.co\/msZiM5qyrq	
  -­‐	
  #Tech	
  #Technology	
  

How	
  Mobile	
  Technology	
  Can	
  Help	
  Grow	
  Your	
  Tutoring	
  Agency	
  via	
  @edukwest\n\nhttp:\/\/t.co\/Dh0ZkRL7e0	
  

The	
  Solar	
  Technology	
  Behind	
  Apple's	
  iPhone	
  6	
  http:\/\/t.co\/gFAfZjhx0c	
  

Table 8: Technology Dataset example 

The extracted phrases from our technology dataset after the noise reduction using our three 

chunking methods are: 
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          Table 9: Extracted phrases           Table 10: Extracted phrases                Table 11: Extracted phrases 

 

As we can see, the phrases extracted with the chunking method,  

Phrase Pattern C: 
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*} 

most of the time this method for phrase generation provide meaningful phrases that can 

capture more accurately the thematic domain of our dataset in contrast with Phrase Pattern A 

and Phrase Pattern B which are producing mediocre results and their extracted phrases are 

more abstract which can lead to misleading interpretation of  a tweet or a topic. Therefore it is 

more likely for Phrase Pattern C type of phrases to become candidates for topic labels. 

5.2 Topic Extraction using LDA 

As we already analyzed in chapter 4, we are going to use Python’s Gensim library to 

implement Latent Dirichlet Allocation algorithm to our datasets to extract topics. Testing LDA  
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in a relatively small dataset (3161 tweets) related to economy we are going to use the 

following initializations for our LDA algorithm: 

 

lda	
  =	
  ldamodel.LdaModel(corpus,	
  id2word=dictionary,	
  num_topics=6)	
  

 

which uses the default presets of LDA model, where id2word is the mapping from words ids 

(integers) to words (strings) and num_topics is the number of the requested topics. The results 

are going to be presented in tables where Ti  for i !1  and i ! num_ topics , and p will be the 

probability of the word distributed in the document: 

T1	
   p	
   T2	
   p	
   T3	
   p	
   T4	
   p	
   T5	
   p	
   T6	
   p	
  

trouble	
   0.030	
   add	
   0.026	
   economy	
   0.023	
   financial	
   0.028	
   w’minister	
   0.036	
   lead	
   0.021	
  

local	
   0.023	
   exec	
   0.026	
   pattymurray	
   0.023	
   people	
   0.021	
   now	
   0.031	
   financial	
   0.021	
  

jobs	
   0.022	
   immigration	
   0.026	
   equalpay	
   0.023	
   world	
   0.021	
   sharing	
   0.025	
   economy	
   0.014	
  

2014	
   0.022	
   cappimigration	
   0.025	
   women	
   0.023	
   reform	
   0.021	
   til	
   0.019	
   25	
   0.014	
  

deep	
   0.022	
   action	
   0.025	
   countries	
   0.023	
   undervalued	
   0.015	
   depends	
   0.019	
   us	
   0.014	
  

low	
   0.022	
   billions	
   0.025	
   fairness	
   0.022	
   cegx	
   0.015	
   souring	
   0.019	
   checked	
   0.014	
  

september	
   0.018	
   action	
   0.025	
   ik	
   0.022	
   cheap	
   0.015	
   things	
   0.019	
   improve	
   0.014	
  

food	
  	
   0.015	
   reform	
   0.020	
   paycheck	
   0.020	
   way	
   0.014	
   scotland	
   0.014	
   westjet	
   0.014	
  

economy	
   0.015	
   lead	
   0.020	
   voor	
   0.020	
   2014	
   0.014	
   wait	
   0.014	
   arab	
   0.013	
  

banks	
   0.014	
   tories	
   0.019	
   now	
   0.017	
   em	
   0.014	
   lead	
   0.013	
   system	
   0.012	
  

Table 12: Extracted topics from economy dataset 

As we can see, using our economy dataset with default settings for our LDA model the six 

extracted topics are formed into patterns that have a semantic meaning, with some minor 

abstractions. Now we are going to experiment with the LDA model parameters in order to try 

to export better results. 

lda	
  =	
  LdaModel(corpus,	
  num_topics=6,	
  alpha='auto',	
  eval_every=5)	
  

 

Using these settings we are going to use eval_every	
   parameter, which slows down the 

training of the model providing better accuracy but less performance (the default is 10). 
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Alpha parameter affects the sparsity of the document-topic (theta) and topic-word (lamda) 

distributions. Setting alpha parameter to ‘auto’ our model is going to learn an asymmetric 

prior directly from our data. The results can be shown in the table below: 

 

T1	
   p	
   T2	
   p	
   T3	
   p	
   T4	
   p	
   T5	
   p	
   T6	
   p	
  

local	
   0.035	
   immigration	
   0.022	
   women	
   0.026	
   bjp	
   0.017	
   uk	
   0.027	
   us	
   0.034	
  

deep	
   0.020	
   pace	
   0.020	
   2014	
   0.026	
   inflation	
   0.017	
   scotland	
   0.027	
   economy	
   0.028	
  

trouble	
   0.020	
   2014	
   0.020	
   economy	
   0.018	
   3.74	
   0.017	
   think	
   0.020	
   vote	
   0.023	
  

support	
   0.015	
   w’minister	
   0.015	
   equalpay	
   0.018	
   silence	
   0.017	
   sharing	
   0.020	
   god	
   0.023	
  

shoplocal	
   0.015	
   action	
   0.015	
   fairness	
   0.018	
   low	
   0.016	
   lead	
   0.020	
   2014	
   0.023	
  

shift	
   0.015	
   reform	
   0.015	
   tax	
   0.018	
   deafening	
   0.016	
   depends	
   0.014	
   action	
   0.022	
  

spending	
   0.015	
   billions	
   0.014	
   paycheck	
   0.018	
   minhazmerchant	
   0.016	
   hugorifkind	
   0.014	
   crisis	
   0.022	
  

hard	
  	
   0.015	
   add	
   0.014	
   people	
   0.018	
   5-­‐year	
   0.015	
   now	
   0.013	
   now	
   0.012	
  

economy	
   0.014	
   fwd_us	
   0.013	
   firms	
   0.018	
   cong	
   0.015	
   w’minister	
   0.013	
   financial	
   0.012	
  

shoplocally 0.014 cappimigration 0.013 new 0.017 falls 0.015 wait 0.013 state 0.012 

Table 13: Extracted topics from our economy dataset (new parameters) 

 

As we can see, the results has not changed radically however now we can definitely 

determine each inter-topic’s category manually. 

• Topic 1: is related with local economy and issues related with not supporting local 

shops. 

• Topic 2: is related with immigration and how it affects economy 

• Topic 3: is related with woman rights 

• Topic 4: is related with inflation, and probably Bharatiya Janata Party is aiming to 

defeat inflation 

• Topic 5: is related with Scotland independence and how it will affect the economy 

• Topic 6: is related with the economy of United States, elections and the financial 

crisis 

The next step will be to experiment with the results of topic labeling using phrases. 
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5.3 Topic Labeling using Zero-Order Scoring Function: 

In this section we are going to present the results and the effectiveness of the proposed 

method for automatically labeling topic models using our datasets. 

T1	
   p	
   T2	
   p	
   T3	
   p	
   T4	
   p	
   T5	
   p	
   T6	
   p	
  

local	
   0.035	
   immigration	
   0.022	
   women	
   0.026	
   bjp	
   0.017	
   uk	
   0.027	
   us	
   0.034	
  

deep	
   0.020	
   pace	
   0.020	
   2014	
   0.026	
   inflation	
   0.017	
   scotland	
   0.027	
   economy	
   0.028	
  

trouble	
   0.020	
   2014	
   0.020	
   economy	
   0.018	
   3.74	
   0.017	
   think	
   0.020	
   vote	
   0.023	
  

support	
   0.015	
   w’minister	
   0.015	
   equalpay	
   0.018	
   silence	
   0.017	
   sharing	
   0.020	
   god	
   0.023	
  

shoplocal	
   0.015	
   action	
   0.015	
   fairness	
   0.018	
   low	
   0.016	
   lead	
   0.020	
   2014	
   0.023	
  

shift	
   0.015	
   reform	
   0.015	
   tax	
   0.018	
   deafening	
   0.016	
   depends	
   0.014	
   action	
   0.022	
  

spending	
   0.015	
   billions	
   0.014	
   paycheck	
   0.018	
   minhazmerchant	
   0.016	
   scottish	
   0.014	
   crisis	
   0.022	
  

hard	
  	
   0.015	
   add	
   0.014	
   people	
   0.018	
   5-­‐year	
   0.015	
   now	
   0.013	
   now	
   0.012	
  

economy	
   0.014	
   us	
   0.013	
   firms	
   0.018	
   poor	
   0.015	
   w’minister	
   0.013	
   financial	
   0.012	
  

shoplocally 0.014 cappimigration 0.013 new 0.017 falls 0.015 wait 0.013 state 0.012 

Table 14: Extracted topics from our economy dataset for phrase ranking 

The top labels for each topic are: 

•   labelT1 : local economy, score= 0.042055161736 

•   labelT 2  : us lowest pace, score=0.030886526429 

•   labelT 3  : paycheck fairness, score=0.030912453133 

•   labelT 4 : poor economy, score=0.018120597038 

•  labelT 5  : scottish economy, score=0.017492753773 

•  labelT 6  : economy financial crisis, score=0.055814264886 

As we can see, our extracted phrases can capture the essence of every topic despite that the 

lower scores below become abstract or a misleading in some cases. The zero-order function 

generates quality labels for our topics. Now we are going to extract the labels for our topics 

extracted from our technology dataset. 
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T1	
   p	
   T2	
   p	
   T3	
   p	
   T4	
   p	
   T5	
   p	
   T6	
   p	
  

xperia	
   0.078	
   xbox	
   0.035	
   techno	
   0.056	
   new	
   0.028	
   apple	
   0.036	
   world	
   0.039	
  

tablet	
   0.065	
   tesco	
   0.032	
   network	
   0.050	
   samsung	
   0.021	
   iphone	
   0.031	
   event	
   0.016	
  

verizon	
   0.035	
   sony	
   0.032	
   devices	
   0.049	
   tech	
   0.021	
   world	
   0.025	
   peace	
   0.015	
  

technology	
   0.034	
   features	
   0.027	
   surveillance	
   0.049	
   launch	
   0.021	
   iphone6	
   0.019	
   science	
   0.013	
  

sony	
   0.033	
   apple	
   0.022	
   wifi	
   0.020	
   report	
   0.015	
   peace	
   0.019	
   best	
   0.013	
  

wi-­‐fi	
   0.033	
   friends	
   0.020	
   potential	
   0.019	
   sm-­‐a500	
   0.015	
   new	
   0.019	
   innovation	
   0.013	
  

google	
   0.027	
   mi	
   0.017	
   scans	
   0.018	
   smartphone	
   0.015	
   innovation	
   0.019	
   costumers	
   0.011	
  

major	
  	
   0.018	
   october	
   0.019	
   cyborg	
   0.018	
   old	
   0.014	
   review	
   0.014	
   future	
   0.011	
  

hell	
   0.017	
   6	
   0.019	
   unplug	
   0.018	
   series	
   0.014	
   samsung	
   0.014	
   conference	
   0.010	
  

network	
   0.017	
   new	
   0.019	
   wi-­‐fi	
   0.017	
   technews	
   0.014	
   know	
   0.013	
   wrangle	
   0.010	
  

Table 15: Extracted topics from technology dataset for phrase ranking 

 

The top labels for each topic are: 

• labelT1 : xperia sony technology, score=0.111354320918 

• labelT 2 : new snap friends features, score=score=0.042114685245 

• labelT 3 : potential surveillance devices, score=0.077669646858 

• labelT 4 : new samsung galaxy smartphone,score=0.052947947959 

• labelT 5 :  apple new iphone, score=0.05294894779593 

• labelT 6 :  annual event innovation, score=0.0249383150644 

As we can see again our zero-order function assigns semantically meaningful labels to our 

topics and can provide better understanding of a topic without the need to manually label the 

topics. 

5.4 Unfolding communities 

In this chapter we are going to analyze the results extracted by our community detection 

algorithms. We have created a new dataset of 7135 tweets related with economy. Using our 

Python NetworkX script in order to create the network graph we export a graph of 7135 nodes 

(users) and 5165 edges (interactions). We can then compute the degree distribution in our large 
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graph and then apply our community detection algorithms using modularity classes to cluster 

our graph into communities.  

Results:  

Average degree: 0.724 

Average path length: 1.945 

Clustering coefficient: 0.048 

Number of Communities: 3007 

 

Figure 15: Degree distribution 

 

Figure 16: In-degree distribution 
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Figure 17: Out-degree distribution 

The average degree is 0.724 which means that on average a Twitter user in our network has 

less than one connection (interaction) with another Twitter user which us relatively low but 

was expected due to the nature of social networking. Computing the average path length we 

get 1.945, which is relatively short, meaning that the clusters are well connected. The 

clustering coefficient is 0.048, which is relatively small and means that our network is not well 

inter-connected that leads to the conclusion that propagation of information is difficult in this 

network between the nodes. In order to provide better visualization we will need to apply 

filtering in our network. The final step is to make the community more visible by calculating 

modularity measure. Modularity will show the clusters of nodes that are more densely 

connected together than the rest of the network. Using the modularity module we are going to 

use 5.0 as a resolution (default is 1.0) in order to acquire better quality in our extracted 

partitions with bigger communities. 
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Figure 18: Size distribution 

Using our extracted modularity classes we can now display the graph by assigning a different 

color to each class and we can use our degree distribution in order to assign different sizes to 

nodes based on their degree. This way as we already proposed in our methodology, the higher 

degree and larger nodes will indicate the most ‘important’ nodes in our communities. 

 

Figure 19: Extracted network (all communities) 
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As our clustering coefficient, and the number of communities in our network already had 

indicated, a large percentage of unimportant communities are included in our network. We can 

see that the most important ones are clustered in the center and the most unimportant ones are 

in the perimeter of our network. Now we will apply some filtering in order to remove these 

unimportant networks and only visualize relatively large partitions. The threshold that we are 

going to apply will be that we will only keep community partitions that are larger than 0.5% of 

the total population in our networks. Applying this filtering we get a new graph with 1610 

nodes and 2124 edges. 

 

Figure 20: Extracted network (only interesting communities) 
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As we can see the communities are well ordered and they are relatively large meaning that 

extracting information form these communities would be useful. As we already proposed in 

our methodology, we have developed a way of assigning the topics of interest in each 

community with a percentage of relevance. The extracted topics among with their highest 

scored labels from our new economy dataset are: 

T0	
   p	
   T1	
   p	
   T2	
   p	
   T3	
   p	
   T4	
   p	
   T5	
   p	
  

japanese	
   0.024	
   world	
   0.023	
   asia	
   0.056	
   world	
   0.031	
   omojuwa	
   0.031	
   eurozone	
   0.037	
  

growth	
   0.022	
   omojuwa	
   0.019	
   unemployment	
  0.050	
   adani	
   0.030	
   gas	
   0.025	
   fragile	
   0.025	
  

recession	
   0.021	
   nigerian	
   0.019	
   russian	
   0.049	
   uk	
   0.018	
   fly	
   0.025	
   europe	
   0.024	
  

resigned	
   0.016	
   global	
   0.018	
   longterm	
   0.049	
   billion	
   0.018	
   aero	
   0.024	
   crisis	
   0.019	
  

economy	
   0.015	
   need	
   0.017	
   people	
   0.020	
   cup	
   0.017	
   abuja	
   0.019	
   best	
   0.019	
  

money	
   0.013	
   economy	
   0.017	
   forbes	
   0.019	
   rugby	
   0.015	
   afford	
   0.018	
   poverty	
   0.018	
  

laundering	
   0.012	
   gratification	
   0.017	
   money	
   0.018	
   loan	
   0.015	
   moving	
   0.017	
   italy	
   0.017	
  

murders	
  	
   0.012	
   leveraging	
   0.016	
   fool	
   0.018	
   cameron	
   0.013	
   price	
   0.016	
   future	
   0.017	
  

ptiofficial	
   0.012	
   us	
   0.016	
   part	
   0.018	
   economy	
   0.013	
   advance	
   0.013	
   economy	
   0.016	
  

japan	
   0.012	
   business	
   0.015	
   economic	
   0.017	
   sense	
   0.013	
   global	
   0.013	
   investment	
   0.016	
  

Table 16: Extracted topics from our new economy dataset for phrase ranking 

The label assignment in each topic is: 

• labelT 0 : japanese economy, score=0.043996084379 

• labelT1 : nigerian economy, score=0.022955712963 

• labelT 2 : longterm unemployment spread, score=0.081185296665 

• labelT 3 : rugby world cup, score=0.052455800831 

• labelT 4 : lower gas price, score=0.018443751034 

• labelT 5 : eurozone crisis, score=0.063691588198 

As we can see out extracted topics are semantically meaningful and represent a category of 

economy news. Some topics are abstract like topic 4, which is probably related with topic 2 

and labelT 4 probably did not capture the semantic meaning of the topic accurately, however 

all the other automated topic labels are representing their topics correctly. Now we can use 

our network to visualize these topics and their distribution over our communities: 



	
   58	
  

 

Figure 21: Final extracted network (only interesting communities with labels) 

He have exported our graph using Python’s NetworkX library to GEPHI and used OpendOrd 

module as a layout algorithm to provide enhanced visual results. Now we can see the 

distribution of the topics among our communities. Regarding the actual users of the 

communities whose names are not shown for privacy reasons, the nodes are interacting with 

each other and discussing topics like Japanese economy or Eurozone crisis into their 

communities. An interesting observation in this graph is that the community with red color is 

discussing mostly about topic 1 and topic 4 and as we already had observed this topics are 

relatively similar which indicates the effectiveness of our methods. 
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6. Conclusions and Future Work 

 
In this thesis we have showed approaches for clustering content from Twitter using 

probabilistic topic modeling methods such as Latent Dirichlet Allocation and then recorded 

how these topics are distributed in communities in the Twitter graph. This way we have been 

able to identify which topics and which users are more influential. Using automatic topic 

labeling we have enhanced the semantics of our extracted multinomial topics providing a better 

understanding of our topics. Utilizing natural language processing techniques such us 

chunking/shallow parsing has helped us to generate grammatically correct phrases from our 

dataset as candidate labels for our topics. Then we have developed a scoring function in order 

to assign the most semantically similar labels to our topics. Using community detection 

algorithms we have been able to identify which are the topics of interest for each community 

and in what percentage, providing their visualization in the Twitter graph. We have collected 

various datasets using Twitter’s API and used open source tools to reinforce our research.  

For the requirements of our research goals and for the process of application development we 

have used a plethora of tools, modules and libraries. MongoDB as a database management 

system, Python 2.7.8 as the programming language to implemented our methods and our 

ideas, tweepy as a Python’s library to interpret the Twitter API, scipy and numpy, which are 

open-source libraries for mathematics, scikit-learn and gensim which are tools for data mining 

and machine learning for the implementation of probabilistic topic models such as LDA, 

regular expressions which is a Python’s native module (regex) and was used for pattern 

matching, NLTK which is a Python’s library that helped us to implement natural language 

techniques, NetworkX which is a Python’s software package for the manipulation of complex 

networks help us to generate our graphs and to implement graph operations, communityAPI  
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which is a module for NetworkX helped us to apply community detection algorithms to our 

graphs, Gephi which is an open-source network analysis and visualization software helped us 

to analyze our graphs and use state of the art layout algorithms and to visualize our graphs. 

Due to the limitations of Twitter’s API which only allows a small percent of the actual 

streaming data in Twitter to be accessible for research or third party applications our data 

collection process has been stalled without being able to access the total amount of Twitter 

streaming data. Ideally we would collect continuously all the available data for a certain 

domain of our interest (such as economy or technology using streamListener() in our 

Twitter’s API) and we would remove the unnecessary data from our database in parallel with 

data collection until a certain amount of data is reached. Another approached would be to use 

an already “trimmed” large dataset however as the amount of tweets are rapidly increasing day 

by day these datasets are becoming valuable assets for companies. Despite these limitations we 

have been able to develop a fully working prototype that can extract valuable information from 

Twitter data. An application like this could be a valuable asset to companies that want to 

perform costumer analysis or to identify the interests of groups and communities in order to 

perform market research or to analyze sociological events like political parties formation. 

Using our zero-order relevance scoring function we have been able to assign semantically 

meaningful labels to our topics however for future work we could leverage our zero-order to a 

first-order relevance scoring function using the Kullback Leibler (KL) divergence to evaluate 

the similarity of a generated label to a topic. Moreover for future work we can extend our 

research and include sentiment analysis and named entity recognition methods to provide 

another semantic layer in our extracted network that can identify name entities such as brand 

names, geo-locations, people and display the these entities in our network providing a semantic 

analysis from the nodes (users) in the community that this entity is found. Again this could be 

a valuable asset to companies and businesses that want to discover how costumers or certain 

communities are reacting to brand names or events. Previous researchers have used sentiment 

analysis for suicide prevention and gender recognition, which indicates the variety and depth 

that these fields of study can reach not only for the benefit of companies but also for the 

improvement of society. 
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Appendix 
Appendix A’ Python Scripts: 

The most important Python scripts are going to be presented in this section.  

A.1 File: connectTweepyMongo.py 

import tweepy 
import sys 
import pymongo 
 
consumer_key="*****" 
consumer_secret="*****" 
 
access_token="******" 
access_token_secret="*****" 
 
auth = tweepy.OAuthHandler(consumer_key, consumer_secret) 
auth.set_access_token(access_token, access_token_secret) 
api = tweepy.API(auth) 
 
class CustomStreamListener(tweepy.StreamListener): 
    def __init__(self, api): 
        self.api = api 
        super(tweepy.StreamListener, self).__init__() 
 
        self.db = pymongo.MongoClient().economyLAST 
 
    def on_status(self, status): 
        print status.text 
 
        data ={} 
        data['user']=status.user.screen_name 
        data['text'] = status.text 
        data['created_at'] = status.created_at 
        data['geo'] = status.geo 
        data['source'] = status.source 
        data['entities']=status.entities 
 
        self.db.Tweets.insert(data) 
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    def on_error(self, status_code): 
        print >> sys.stderr, 'Encountered error with status code:', status_code 
        return True # Don't kill the stream 
 
    def on_timeout(self): 
        print >> sys.stderr, 'Timeout...' 
        return True # Don't kill the stream 
 
sapi = tweepy.streaming.Stream(auth, CustomStreamListener(api)) 
sapi.filter(track=['economy']) 
 

A.2 connecttweepycsv.py: 

from tweepy import Stream 
from tweepy import OAuthHandler 
from tweepy.streaming import StreamListener 
import time 
 
ckey = *** 
csecret = *** 
atoken = *** 
asecret = *** 
 
class listener(StreamListener): 
 
 def on_data(self, data): 
  try: 
   #print data 
 
 
   #trimmed to getr only the tweet  
   tweet = data.split(',"text":"')[1].split('","source')[0] 
   print tweet 
 
   # saveThis=str(time.time())+'::'+tweet 
   #testing without time at first 
   saveThis=tweet 
   saveFile=open('economyLAST.csv','a') 
   saveFile.write(saveThis) 
   saveFile.write('\n') 
   saveFile.close() 
   return True 
 
  #if internet drops for example  
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  except BaseException, e: 
   print 'failed ondata,',str(e) 
   #wait for reconnection 
   time.sleep(1) 
 
 
 
 def on_error(self, status): 
  print status 
 
auth = OAuthHandler(ckey, csecret) 
auth.set_access_token(atoken, asecret) 
twitterStream = Stream(auth,listener()) 
twitterStream.filter(track=['economy']) 
 

A.3 chunkerPhraseGeneration.py 

import nltk 
import re 
import time 
import csv 
 
 
#Regular Expressions: 
#? = 0 or 1 rep 
#* = 0 or more rep 
#+ = 1 or more rep 
 
 
tweetList = [] 
Phrase = [] 
phrases = [] 
phr='' 
urlone='http:' 
urltwo='\\' 
 
output = open('Stopwords_for_Tweets.txt', 'r') 
#read from saved tweets CSV 
with open('economyLAST.csv','rU') as csvfile: 
 tweetreader = csv.reader(csvfile, delimiter=' ', quotechar='|') 
 for row in tweetreader: 
 
  #Removing all links-URLs from Tweets  
  for word in row: 
   if urlone in word or urltwo in word:  
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    row.remove(word) 
 
  x=' '.join(row) 
  tokens = nltk.word_tokenize(x) 
 
#   # print (tokens) 
 
  y=' '.join(tokens) 
 
  tweetList.append(y) 
   
#   # time.sleep(0.1) 
 
 
stoplist=set(output.read().split()) 
texts = [[word for word in tweet.lower().split() if word not in stoplist] 
         for tweet in tweetList] 
 
 
all_tokens = sum(texts, []) 
tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1) 
texts = [[word for word in text if word not in tokens_once] 
         for text in texts] 
 
 
for tweet in texts: 
 
   # tokenized = nltk.word_tokenize(tweet) 
 
 
   tagged = nltk.pos_tag(tweet) 
    
 
   #find what adjective modifies a proper noun 
 
   grammar = r"""Phrase: 
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}""" 
   # grammar = r"""Phrase: 
{<JJ\w?|VG\w?|NN\w?|DT\w?>+<NNP>+}""" 
   # grammar = r"""Phrase: {<RB.?>*<VB.?>+<NNP>}""" 
 
 
   chunkParser = nltk.RegexpParser(grammar) 
   chunked = chunkParser.parse(tagged) 
    
   print '-------------------' 
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   for i in chunked.subtrees(filter=lambda x: x.node=='Phrase'): 
    a=i.leaves() 
    # print a 
    for j in a: 
     # print j 
     for k in j: 
      print k 
 
      phrases.append(k) 
      break 
    phrases.append(',') 
 
    print '********************' 
 
 
for ph in phrases: 
 print ph 
 text=open('phraseseconomyLast.txt','a') 
 text.write(ph + ' ') 
 text.close 
 # chunked.draw() 
 
textz=open('phraseseconomyLast.txt','r') 
phrzs=textz.read().split(',') 
 
for p in phrzs: 
 print p 
 
 saveFile=open('phraseseconomyLast.csv','a') 
 saveFile.write(p) 
 saveFile.write('\n') 
 saveFile.close() 
 

A.4 topicExtractionLDAphraseRanking.py 

from gensim import corpora, models, similarities 
from gensim.models import hdpmodel, ldamodel 
from itertools import izip 
import csv 
import re 
import nltk 
import math 
from operator import itemgetter 
import unicodedata 
import time 
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tweetList = [] 
urlone='http:' 
urltwo='\\' 
topics=[] 
score=0.0 
s= 0.0 
m=0 
scoretable=[[],[],[],[],[],[],[],[],[],[],[]] 
phrzs=[] 
finalist=[] 
 
#read from saved tweets CSV 
with open('economyLAST.csv','rU') as csvfile: 
 tweetreader = csv.reader(csvfile, delimiter=' ', quotechar='|') 
 for row in tweetreader: 
 
 
  #Removing all links-URLs from Tweets (3 times) 
  for word in row: 
   if urlone in word or urltwo in word:  
    row.remove(word) 
    # print ("----------Word REMOVED------------") 
    # print word 
 
  x=' '.join(row) 
  # print (x) 
  tokens = nltk.word_tokenize(x) 
  # print (tokens) 
 
  y=' '.join(tokens) 
 
  #creating the tweet list 
  tweetList.append(y) 
  # print(tweetList) 
   
# remove common words and tokenize 
output = open('Stopwords_for_Tweets.txt', 'r') 
# stopwordz=output.read().split(' ') 
 
stopwordz=output 
stoplist = output 
# # stoplist = set('for a of the and to in technology - '.split()) 
stoplist=set(output.read().split()) 
texts = [[word for word in tweet.lower().split() if word not in stoplist] 
         for tweet in tweetList] 
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# # remove words that appear only once 
all_tokens = sum(texts, []) 
tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1) 
texts = [[word for word in text if word not in tokens_once] 
         for text in texts] 
 
dictionary = corpora.Dictionary(texts) 
corpus = [dictionary.doc2bow(text) for text in texts] 
 
lda = ldamodel.LdaModel(corpus, id2word=dictionary, num_topics=7) 
corpus_lda = lda[corpus] 
 
# for l,t in izip(corpus_lda,corpus): 
#   print l,"::",t 
#print topics 
for i in range(0, lda.num_topics): 
 
 
 print lda.print_topic(i) 
 
 topics.append(lda.print_topic(i)) 
  
time.sleep(7) 
for t in topics: 
 # print ph 
 txt=open('economyLASTtopics.txt','a') 
 txt.write(t + '\n') 
 txt.close 
 
for topic in topics: 
 
  print 'New Topic:------------------------------' 
 
  with open('phraseseconomyLast.csv','rU') as csvfile: 
 
   phrases = csv.reader(csvfile, delimiter=' ', quotechar='|') 
   for phrase in phrases: 
    joinphrase=' '.join(phrase) 
     
    # print 'Phrase',phrase,'for Topic',topic,'SCORE:',score 
    # score=0.0 
    b=topic.split('+') 
 
    # phrzs.append(joinphrase)  
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    for item in b: 
 
      a=item.split('*') 
      for p in joinphrase.split(): 
         
        print p,a[1] 
        # time.sleep(0.02) 
        if str(p) in str(a[1]): 
         print 'Probability:',a[0] 
         print 'Phrase:', phrase 
         print 'Topic:' ,topic 
        
 score=float(math.log10(float(a[0])+float(1)))+score 
 
         # time.sleep(2) 
     
    print 'Phrase',phrase,'for Topic',topic,'SCORE:',score 
 
    scoretable[m].append(score) 
 
    score=0.0 
 
    # time.sleep(1) 
  m=m+1 
 
with open('phraseseconomyLast.csv','rU') as csvfile: 
 
   phrases = csv.reader(csvfile, delimiter=' ', quotechar='|') 
   for phrase in phrases: 
    joinphrase=' '.join(phrase) 
    phrzs.append(joinphrase)  
 
 
print phrzs 
print scoretable 
 
#range = num of topics 
for i in range(len(num_topics)): 
 try: 
 
  max(scoretable[i]) 
 
  print max(scoretable[i]),scoretable[i].index(max(scoretable[i])) 
  print phrzs[scoretable[i].index(max(scoretable[i]))] 
  finalist.append(phrzs[scoretable[i].index(max(scoretable[i]))]) 
  print lda.print_topic(i) 
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 except: 
  pass 
 
   
A.5 graphgenerationwithlabels.py 

from __future__ import division 
from pymongo import Connection 
import pymongo 
from pymongo import MongoClient 
import time 
import json 
import networkx as nx 
import matplotlib.pyplot as plt 
import community 
import random 
import csv 
import nltk 
import math 
 
 
scoretable=[[],[],[],[],[],[],[],[],[],[],[]] 
communitytopicscores=[] 
st=[0] 
score=0.0 
a={} 
d=[''] 
i=0 
tweet={} 
stopList = open('Stopwords_for_Tweets.txt', 'r').read().split() 
tweetList=[] 
m=0 
i=0 
perc=0.0 
topic1=0 
topic2=0 
topic3=0 
topic4=0 
topicstats=[] 
topiccounts=[] 
nodesdegreelist=[] 
nodesnameslist=[] 
 
textz=open('economyLASTtopics.txt','r') 
topcs=textz.read().split('\n') 
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c=Connection() 
db=c.economyLAST  #my database #Another DB: EbolaTest,newEbolaDB,economyLAST 
tweets=db.Tweets 
 
#creating the empty graph for networkX 
mynetwork=nx.Graph() 
mentions=db.Tweets.entities.user_mentions 
a=tweets.find() 
test=tweets.entities.user_mentions.find() 
 
for t in a: 
 
 mynetwork.add_node(t['user'],tweet=t['text']) 
  
 if len(t['entities']['user_mentions'])!=0: 
  try: 
 
      for i in range (0, 10): 
 
   mynetwork.add_edge(t['user'], 
t['entities']['user_mentions'][i]['screen_name']) 
      
  except: 
   pass  
 
#first compute the best partition 
partition = community.best_partition(mynetwork) 
#drawing 
size = float(len(set(partition.values()))) 
# pos = nx.spring_layout(mynetwork) 
count = 0 
# print partition.values() 
for com in set(partition.values()) : 
    count = count + 1 
    list_nodes = [nodes for nodes in partition.keys() 
                                 if partition[nodes] == com] 
 
 
    #random colors in every loop 
    t='#'+str(hex(random.randint(0,16777216))[2:]) 
 
 
    # print len(list_nodes) 
    if (len(list_nodes)>5): 
     for node in list_nodes: 
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      nodesdegreelist.append(mynetwork.degree(node)) 
      nodesnameslist.append(node) 
 
      try: 
p 
    d=mynetwork.node[node]['tweet'] 
 
    tokens=nltk.word_tokenize(d) 
    filteredtext = [t for t in tokens if t.lower() not in stopList] 
    tokenizedtweet=' '.join(filteredtext) 
    print 'TWEET',tokenizedtweet 
 
 
    st=[] 
     
    for topic in topcs: 
 
     for word in tokenizedtweet.split(): 
 
       b=topic.split('+') 
       for item in b: 
 
        a=item.split('*') 
 
        if word in a[1]: 
 
          
 
         print  
         print 'Probability:',a[0] 
         print 'Tweet:', 
tokenizedtweet.split() 
         print 'Topic:' ,topic 
         print  
        
 score=float(math.log10(float(a[0])+float(1)))+score 
 
     st.append(score) 
     score=0.0 
 
      except: 
       pass 
 
 
      if(max(st)>0): 
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    print 'topic number:',st.index(max(st)),'for tweet in 
community' 
    print max(st) 
    print st.index(max(st)) 
    communitytopicscores.append(st.index(max(st))) 
 
     print 'Community Topic Scoring Results:' 
     for topic in communitytopicscores: 
  
     if (len(communitytopicscores)>2): 
 
      for i in range (0, len(num_topics)) 
          topiccounts.append(communitytopicscores.count(i)) 
                                i=i+1 
 
      perc=max(topiccounts)/len(communitytopicscores) 
 
      print 'MAX: ',max(topiccounts),'TOPIC: 
',topiccounts.index(max(topiccounts)), 'PERCENTAGE: ',perc 
 
 
      print 'NODES DEGREES' 
      for nodedegree in nodesdegreelist: 
       print nodedegree 
 
      maxdegree=max(nodesdegreelist) 
      # print maxdegree 
      print 'POSITION' 
      print nodesdegreelist.index(max(nodesdegreelist)) 
 
      print 'NODES NAMES' 
      for nodename in nodesnameslist: 
       print nodename 
 
      print 'HIGHEST NODE DEGREE NAME (MOST INFUENCIAL IN 
COMMUNITY):' 
      print nodesnameslist[nodesdegreelist.index(max(nodesdegreelist))] 
      print 'MOST RELEVANT TOPIC ON HIS COMMUNITY:' 
      print topiccounts.index(max(topiccounts)), 'WITH 
PERCENTAGE:',perc 
 
 
      topicassignment='Topic:  '+str(topiccounts.index(max(topiccounts)))+'  
Percentage: '+str(perc) 
      print topicassignment 
      mynetwork.add_node(node,topic=topicassignment) 
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     communitytopicscores=[] 
     topiccounts=[] 
     nodesdegreelist=[] 
     nodesnameslist=[] 
     print 'NEW COMMUNITY' 
 
nx.write_gml(mynetwork,"NEWresults.gml")  
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Appendix B’ Figures and Tables: 

Number Index Figure/Table Page 
Figure 0 Social network community structure example 9 
Figure 1 Problem definition diagram 11 
Figure 2 Data gathering and preparation 12 
Figure 3 Knowledge Discovery 15 
Figure 4 Phrase generation using Phrase C grammar 27 
Figure 5 Phrase generation using Phrase C grammar 27 
Figure 6 Phrase generation using Phrase C grammar 27 
Figure 7 Latent Dirichlet allocation representation model 30 
Table 1 Topic 1 extracted 32 
Table 2 Topic 2 extracted 32 
Table 3 Topic 3 extracted 32 
Figure 8 Zero-order relevance scoring function  34 
Figure 9 Demonstration of edges in a small network 36 

Figure 10 Node A with degree=5 39 
Figure 11 Node indegree 40 
Figure 12 Node outdegree 40 
Figure 13 Scoring process 41 
Figure 14 Procedure diagram 45 
Table 4 Economy dataset example 46 
Table 5 Extracted phrases 47 
Table 6 Extracted phrases 47 
Table 7 Extracted phrases 47 
Table 8 Technology dataset example 47 
Table 9 Extracted phrases 48 

Table 10 Extracted phrases 48 
Table 11 Extracted phrases 48 
Table 12 Extracted topics from economy dataset 49 
Table 13 Extracted topics from economy dataset (new parameters) 50 
Table 14 Extracted topics from economy dataset for phrase ranking 51 
Table 15 Extracted topics from technology dataset for phrase ranking 52 
Figure 15 Degree distribution 53 
Figure 16 In-degree distribution 53 
Figure 17 Out-degree distribution 54 
Figure 18 Size distribution 55 
Figure 19 Extracted network (all communities) 55 
Figure 20 Extracted network (only interesting communities) 56 
Table 16 Extracted topics from new ecnonmy dataset for phrase ranking 57 
Figure 21 Final extracted network (interesting communities with labels) 58 
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