
	
 I	

	

Content-based Tweets
Semantic Clustering and
Propagation

Marios Aristotelis Michalakos
SID:	
 3301130014	

	

	

SCHOOL	
 OF	
 SCIENCE	
 &	
 TECHNOLOGY	

A	
 thesis	
 submitted	
 for	
 the	
 degree	
 of	
 	

Master	
 of	
 Science	
 (MSc)	
 in	
 Information	
 and	
 Communication	
 Systems	

	

	

	

NOVEMBER	
 2014	

THESSALONIKI – GREECE

	
 II	

Content-based Tweets
Semantic Clustering and
Propagation

Marios Aristotelis Michalakos
SID:	
 3301130014	

	

Supervisors:	
 Christos	
 Berberidis	

Nick	
 Bassiliades	

	

Supervising	
 Committee	
 Members:	

	

Assoc.	
 Prof.	
 Name	
 Surname	

Assist.	
 Prof.	
 Name	
 Surname	

	

	

SCHOOL	
 OF	
 SCIENCE	
 &	
 TECHNOLOGY	

A	
 thesis	
 submitted	
 for	
 the	
 degree	
 of	
 	

Master	
 of	
 Science	
 (MSc)	
 in	
 Information	
 and	
 Communication	
 Systems	

	

NOVEMBER	
 2014	

THESSALONIKI – GREECE

	
 III	

	

	

	

Abstract
In this thesis our goal was to develop a methodology in order to cluster a set of tweets
based on their semantic context. We have used probabilistic topic modeling techniques
such as Latent Dirichlet allocation in order to extract topics from our dataset and then we
applied several natural language methods in order to automatically generate semantically
meaningful and grammatically correct phrases, as candidate labels for our extracted topics,
aiming at creating an objective method for topic labeling. Developing a scoring function in
order to assign the most semantically similar labels to our extracted topics was an essential
part to our research that has helped us to assign the most relevant labels to each topic.
Then we have generated the Twitter graph and used community detection algorithms in
order to analyze each community topic of interest. This way we have been able to record
the propagation of certain topics in our graph and we have been able analyze the topics of
interest in each community in our graph. Using visualization layout algorithms was also
essential in order to provide meaningful visualizations of our networks. We have created
datasets that was populated using Twitter’s API and we have used open source tools in
order to develop the software implementation of this method and a fully working
prototype has been developed. Our research can be used as a valuable asset for modern
market analysis from companies.

	

	

	

	

	
 IV	

	

Acknowledgements
I would like to thank my supervisor, Christos Berberidis who patiently guided me during the
process of my thesis and helped me to accomplish my research goals by giving me valuable
advices.

I am dedicating this thesis to my brother Christos for his genuine support and to my parents.

	

	

	

	

	

	
 V	

	

	

Contents

1.	
 INTRODUCTION	
 ...	
 1	

2.	
 LITERATURE	
 REVIEW	
 ..	
 3	

2.1	
 INTRODUCTION	
 ...	
 3	

2.2	
 SENTIMENT	
 ANALYSIS	
 ...	
 3	

2.3	
 AUTOMATIC	
 TOPIC	
 LABELING	
 ..	
 4	

2.4	
 TREND	
 DETECTION	
 ..	
 5	

2.5	
 KNOWLEDGE	
 BASED	
 TOPIC	
 LABELING	
 ...	
 6	

2.6	
 ENTITY	
 BASED	
 TOPIC	
 DISCOVERY	
 ...	
 7	

2.7	
 AUTOMATIC	
 TOPIC	
 LABELING	
 ..	
 8	

2.8	
 COMMUNITY	
 DETECTION	
 IN	
 SOCIAL	
 NETWORKS	
 ..	
 9	

3.	
 PROBLEM	
 DEFINITION	
 ...	
 11	

3.1	
 DATA	
 GATHERING	
 AND	
 PREPARATION	
 ...	
 12	

3.2	
 TOPIC	
 MODELING	
 ...	
 13	

3.2.1	
 Topic	
 Extraction	
 ..	
 13	

3.2.2	
 Topic	
 Labeling	
 ..	
 14	

3.3	
 KNOWLEDGE	
 DISCOVERY	
 ..	
 15	

3.3.1	
 Network	
 Analysis	
 ...	
 15	

3.3.2	
 Community	
 Detection	
 ..	
 16	

3.3.3	
 Community	
 Analysis	
 ...	
 17	

3.3.4	
 Visualization	
 ..	
 18	

4.	
 METHODOLOGY	
 ..	
 20	

4.1	
 NATURAL	
 LANGUAGE	
 PROCESSING	
 AND	
 UNDERSTANDING	
 ...	
 20	

4.1.1	
 Data	
 Transformation	
 ...	
 21	

4.1.2	
 Part-­‐of-­‐speech	
 Tagging	
 (POS)	
 ...	
 23	

4.1.3	
 Chunking/Shallow	
 Parsing	
 ...	
 24	

4.2	
 TEXT	
 AND	
 DATA	
 MINING	
 ..	
 28	

4.2.1	
 Topic	
 Modeling	
 ...	
 28	

4.2.2	
 Generative	
 Processes	
 ...	
 29	

4.2.3	
 Latent	
 Dirichlet	
 Allocation	
 (LDA)	
 ..	
 30	

4.2.4	
 Topic	
 Discovery	
 and	
 Classification	
 ..	
 31	

4.2.5	
 Probabilistic	
 Topic	
 Labeling	
 ...	
 33	

4.3	
 SOCIAL	
 NETWORK	
 ANALYSIS	
 ...	
 35	

4.3.1	
 Graph	
 Generation	
 ..	
 35	

	
 VI	

4.3.2	
 Community	
 Discovery	
 ..	
 38	

4.3.3	
 Community	
 Labeling	
 ..	
 39	

	
 	
 	
 	
 	
 	
 	
 	
 	
 4.3.3.1	
 Degree	
 ...	
 39	

	
 	
 	
 	
 	
 	
 	
 	
 	
 4.3.3.2	
 Influence	
 ..	
 40	

4.3.4	
 Community	
 Analysis	
 ...	
 40	

4.3.5	
 Network	
 Visualization	
 ..	
 43	

5.	
 EXPERIMENTS	
 AND	
 RESULTS	
 ...	
 45	

5.1	
 PHRASE	
 GENERATION	
 ...	
 46	

5.2	
 TOPIC	
 EXTRACTION	
 USING	
 LDA	
 ..	
 48	

5.3	
 TOPIC	
 LABELING	
 USING	
 ZERO-­‐ORDER	
 SCORING	
 FUNCTION	
 	
 ..	
 51	

5.4	
 UNFOLDING	
 COMMUNITIES	
 ..	
 52	

5.	
 CONCLUSION	
 AND	
 FUTURE	
 WORK	
 ...	
 59	

BIBLIOGRAPHY	
 ..	
 61	

APPENDIX	
 ..	
 64	

APPENDIX	
 A’	
 PYTHON	
 SCRIPTS	
 ...	
 64	

A.1	
 ConnectTweepyMongo.py	
 ...	
 64	

A.2	
 ConnectTweepyCSV.py	
 ..	
 65	

A.3	
 ChunkerPhraseGeneration.py	
 ...	
 66	

A.4	
 TopicExtractionLDAphraseRanking.py	
 ..	
 68	

A.5	
 GraphGenerationWithLabels.py	
 ...	
 72	

APPENDIX	
 B’	
 ..	
 77	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 VII	

	

	

	

	

	

	

	

	

	
 1	

1. Introduction

With the explosion of social media in the last decades and the rapid growth of micro-

blogging services, an inexhaustible stream of data is produced every day. Billions of

individuals all over the world interact with each other and generate mountains of data on

various subjects. More than 30 billion tweets by year are produced on Twitter, allowing us to

explore this ocean of data in order to understand and predict rare sociological events, reveal

hidden patterns, detect trends or events and analyze them, perform sentiment analysis, observe

how communities are formed, classify and uncover latent topics of discussion in communities

and serve the needs of society. Twitter and similar micro-blogging services has drawn the

attention of researchers all over the world the last few years to study, experiment and develop

new techniques under the purview of data mining. The need for new and suitable text mining

algorithms has emerged as scientists from different disciplines are trying to extract knowledge

from large-scale social media data. Using Data mining, we can use techniques that can analyze

massive unprocessed sources of data and extract information. For example, for a car sales

company, interesting extracted information from social media data would be how likely is for

an individual to purchase a certain car brand based on his personal data.

In our project, Twitter search API is going to be used which will allow us to retrieve tweets in

JSON format using multiple parameters that include certain keywords, hashtags, locations and

time boundaries. One of the biggest challenges is the nature of Twitter data, which is noisy and

unstructured. A lot of pre-processing and data cleansing for noise reduction needs to be

performed which involves utilizing natural language processing techniques, stopword removal,

missing values handling, duplicate data removal, non-alpharethmetic characters removal, skip

posts from accounts that are not in English in most cases and many more. In order to

understand better our text collections we will need to utilize generative probabilistic topic

models for our text corpora. Using Latent Dirichlet Allocation we will be able to generate a set

of topics modeled as a mixture of words probabilities providing a suitable representation of our

	
 2	

text collection. Although the discovered topics are often meaningful, a major challenge by all

topic models is to accurately interpret the meaning of each topic. It is very difficult for a single

individual to understand a topic in a “bag of words” with a distribution over these words,

especially if the related topic is specialized in certain field. This is why we will implement a

method of representing these topics in a concise enough manner that captures the meaning of

the topic and allows for a human to understand it. In order to be able to label subjectively these

extracted topics we will need to develop a technique that can automatically generate

semantically meaningful phrases as labels for our topics using natural language techniques

such as chunking/shallow parsing. The development of a scoring mechanism for the phrases as

topic labels need also to be implemented in order to choose the most semantically meaningful

phrases for our topics with the best possible accuracy.

The fact that social networks are gaining momentum exponentially makes social network

analysis a field of study that has a lot to offer. Despite that analyzing data arising from social

network platforms such as Twitter is a computationally intensive affair we can adapt

techniques from graph theory and embed them into our methodology, suited for our data.

Representing our collected data using graphs as networks is essential for us in order to discover

interesting patterns, or relations between certain nodes (users). Making sense of individuals in

our extracted network will involve the representation of a user as a node and an interaction as

an edge. In social theory it is widely approved that the friendship of an individual affects how

influential that individual is. However we will have to make different assumptions and explore

different territories in order to reveal useful information among individuals. In order to extract

community structure in our large networks we will use community detection methods that are

based on modularity optimization. The fact that the typical size of large networks such as

social networks includes millions or billions nodes interacting with each other makes the

community detection in these networks a challenging task. On the other hand, social networks

have a lot of natural structural properties, which can be leveraged for designing more effective

algorithms. After setting the scope of social network analysis, we establish some general

principles for social network visualization. Extracting the general topic of discussion for each

community will help us to understand and identify the interests of each community. By

assigning this label then in the most influential nodes in each community we will be able to

visualize the topics of discussion in our network.

	
 3	

2. Literature Review

2.1 Introduction

Social networks have gained extraordinary attention in the last years and have become the

universal communication mean that has thrived in making the world a global village.

Accessing social network data such as tweets through Web 2.0 technologies has become easier

and more accessible to researchers and individuals. Researchers had started to realize the

importance of social network data as industries and companies had started to rely on social

networks for knowledge extraction in order to discover the opinion of individuals or

communities, trends, topics of interest and how and why communities are formed and under

what circumstances. The interpretation of social network data is requiring us to develop

methods for handling massive data, which are considerably noisy and dynamic. These issues

can make social networks analysis a hard task. Researchers from the fields of data mining and

machine learning have been developing techniques and methods in order to overcome these

challenging tasks.

2.2 Sentiment analysis

A lot of methodologies and computer systems that can interpret Twitter data has already been

implemented by researchers successfully that can help new researchers significantly to

contribute on this ongoing field. A very interesting aspect of social media mining is sentiment

analysis. Sentiment analysis is utilizing Natural Language Processing and Text Mining

techniques to determine the attitude of a speaker or to classify the polarity of a given text in a

document. Sentiment Analysis can be useful in many ways. It can be helpful for businesses and

companies to be able to evaluate which of their products are popular and detect which of them

are disliked from their costumers. This way companies can keep track of the sentiment changes

	
 4	

of its costumers over time and take the appropriate actions in order to maximize their costumer

satisfaction or needs and therefore maximize their profit as well. Having said that, sentiment

analysis is not only used by companies for profit. In fact it has also been used to fight

sociological problems such as suicide with the use of gender classification of Twitter users

since Twitter does not obtain gender information from them. Due to the lack of gender

information, most researchers do not consider the difference between men and women when

performing sentiment analysis but it is known that risk factors for suicidal thoughts vary with

gender and age. Machine learning techniques has been used in the past by some researchers to

perform gender classification using Support Vector Machines algorithm which managed to

achieve 70% of accuracy. Hyun Woo Kim (2010) in his thesis, analyses the use of four

supervised learning algorithms as gender classifiers. Support Vector Machine, Naïve Bayes,

Bayesian Logic Regression and Random Forest with the best accuracy offered by Random

Forest with InfoGain classification algorithm. Under his experiments Random Forest managed

to classify correctly 94% of the instances. Subsequently, after gender recognition is performed,

Hyun Woo Kim is presenting ideas and concepts on how to create a suicide prevention system,

capable of tracking suicidal thoughts and words from personal micro-blogs. This could be

achieved by building a statistical suicide model that defines two sets of words, positive and

negative. Using this modified sentiment analysis method on users by assigning relevant words

of suicide to negative sentiment with weights between 0 and 1 and vice versa we can finally

measure how likely is a person to approach the serious phenomenon and most probably to

successfully prevent suicide.

2.3 Automatic Topic Labeling

Despite that natural language processing is used frequently to perform sentiment analysis it

can also be used for other reasons. In our thesis we are going to use natural language

processing techniques such as chunking or parsing in order to identify short phrases (chunks)

in tweets. Using Natural Language Tool Kit Python’s library, we are going to analyze every

tweet in speech tags and then use these tags to make decisions of chunking according to a

grammar that suites our needs. The reason behind the use of this technique is to generate

phrases with grammatically correct meaningful phrases, in order to automatically label

	
 5	

extracted latent topics from a Twitter dataset using Latent Dirichlet Allocation algorithm.

Qiaozhu Mei, Xuehua Shen and Chengxiang Zhai (2007) are exploring a similar idea in their

paper “Automatic Labeling of Multinomial Topic Models” by exploring the field of

probabilistic topic modeling using multinomial distribution over words in text collections.

Their differentiation between previous works in the field that has been conducted in the past

has been addressed by the use of probabilistic approaches that can automatically label

multinomial topic models in an objective way and not in a subjective way generated manually

by humans. A major challenge in their approach was to accurately interpret the meaning of

each topic and generate labels that are understandable. The authors’ proposition towards this

hurdle is the use of a probabilistic approach that automatically can label topics with

meaningful phrases, since phrases are coherent and concise enough for users to understand, as

opposed to sentences or single terms. By measuring then the “semantic distance” between a

phrase and an extracted topic, the candidate labels from the extracted phrases can be assigned

to the topics. The phrase generation as we explained can be approached using Chunking or

Parsing but also with Ngram Testing, which it does not require training data but sometimes it

does not produce linguistically meaningful phrases as Chunking/Parsing. In order to generate

understandable semantic labels for each extracted latent topic from a given set, a semantic

relevance scoring function is going to be utilized to rank labels by their semantic similarity to a

topic model. This way the labels that are generated are understandable, semantically relevant,

and discriminative across topics and of high coverage inside topics.

2.4 Trend detection

Societies, companies or individuals, always were interested in predicting the future in order

to organize a strategy to benefit from it. A big interest in event and trend detection has come to

light, as Twitter has become a rich source of information for detecting, monitoring and

analyzing new stories and special events. Scientist in a worldwide scale has already conducted

research within this field and numerous computer systems were implemented that can

successfully perform trend detection. TwitterMonitor is a computer system developed by M.

Mathioudakis and N. Koudas (2010) that can be used as an exploration tool for streaming

information, analyzing or detecting emerging topics and trends in real time. A system like this

could be very significant to news reporters, marketing professionals and opinion tracking

	
 6	

companies in order to detect trend points that capture public’s attention. As the authors are

describing the methodology behind the system in their paper, TwitterMonitor identifies

keywords that appear in high rate and cluster these keywords into trends based on co-

occurrences. After a trend is identified, TwitterMonitor attempts to compose a more accurate

description of the topic by employing context extraction algorithms such as PCA (principal

component analysis) and SVD (singular value decomposition) and also by taking account of

geographical origins of tweets. Finally, a chart is produced for each trend that depicts the

evolution of its popularity over time and gets updated as long as the trend remains popular.

They are also analyzing the architecture of TwitterMonitor, describing that the system consists

of a back end which is connected with the Twitter API and receives a sample of the Twitter

Stream with the 1/5 of the total tweets that are generated worldwide per day, and a front end

that uses a webpage as a user interface that reports recent trends in real time. In our project, a

fully working prototype is going to be developed were the topic extraction is going to be

performed using LDA (Latent Dirichlet Allocation) algorithm which is a generative

probabilistic model that allows sets of observations to be explained by unobserved groups that

explain why some parts of the data are similar. This way we will be able to automatically

discover topics in a text collection. In our case our observations are words in a tweet and each

tweet can be represented as a mixture of words. Based on these extracted topics, a set of tweets

are going to be clustered based on their semantic context and then the goal will be to record the

propagation of trending topics through the Twitter graph. Clustering of tweets using topic

models can help to categorize them based on their properties. Analyzing then which of the

topics are more trending and the way that they spread in the Twitter graphs can give us hints

and reveal hidden information about upcoming events.

2.5 Knowledge Based Topic Labeling

A lot of researchers have proposed ways in order to enhance topic labeling using domain

specific knowledge. In most cases, humans are not able to categorize or label topics that are

related to a specific domain. For example for a set of tweets that are related to molecular

biology only an expert in the specific domain would be capable of detecting the different topics

among those tweets. With the rise of Wikipedia there is a corpus of data available that can aid

us to better classify tweets or articles into a topic or a mixture of topics. In their paper, Ivan

	
 7	

Marcin and Sam Shiu (2012) are proposing the use of Wikipedia as a collection of human

knowledge in order to interpret the content of articles and text from human conversation. With

the use of massive Wikipedia and Twitter datasets the authors aim towards discovering useful

information and relationships in them by classifying a test or articles in the dataset into a

mixture of topics, associating them with the words that are distributed in Wikipedia topics.

Their theory suggests that the events and the topics that are connected with these events are not

isolated. These connections between topics change over time, which makes necessary the need

for a machine generated way to identify these connections and link topics together. The authors

propose a method to mine topics by extracting topics from Wikipedia with human assistance

and then perform semantic analysis over both topics content and the Twitter data to generate a

graph based on the correlation between topics and their related conversations on Twitter and

cluster topics graphs to group topics related by their usage. The accuracy of this method

matches the trend lines generated from Twitter interests and Google trends, which indicates its

significant performance. This method has been evaluated through Google’s search volume

trend data by searching in Google for topics and then keeping track of the top topics for a

given day by plotting both the trends generated by training data and Google trend data over

time.

2.6 Entity Based Topic Discovery

Even though there have been a lot of successful methodologies for topic discovery,

researchers has explored many different ways in the field due to the obstacles they often come

across such as the nature of micro blogging data or handling real time data. In their paper, M.

Michelson and S. A. Macskassy (2010) are introducing an entity based topic discovery method

for Twitter tweets. Their research is focusing on topic discovery of particular Twitter users.

The main idea is to conduct automatic generation of “topic profiles” for each Twitter user by

finding the entities for the tweets of a user and then determine a set of categories that covers

these entities. Taking account of the noisy nature of the micro blogging data is also very

important task and makes the entity detection a tough assignment. As this paper confirms,

these challenges are going to be addressed using Wikipedia as an entity knowledge base and

the overall approach as a computer system implementation is going to be called Twopics,

which is going to be used as a category discovery mechanism at first and then as an entity

	
 8	

analysis tool in a user set of tweets trying to match the set of categories that defines the user’s

topic profile. A query on Wikipedia then is going to be performed in order to return a set of

entity candidates. The goal is to choose the Wikipedia entity from a set of entity candidates

that maximizes the overlap between contexts to accurately “guess” the category of a tweet. The

experimental work of Twopics shows great performance and accuracy especially as the authors

proposed with the use of a supervised Support Vector Machines (SVM) approach, despite the

difficulty of use because of the training data as a supervised learning method.

In our project we are going to experiment with named entity recognition in text sentences

using the corpus of Natural Language Tool Kit library in Python. The goal will be to track

important words such as brand names, organizations, geo-locations and important persons in

order to track important words in a tweet and build our chunker around these words to generate

semantically meaningful and representative phrases for each tweet. As we explained earlier,

these phrases then are going to be used as candidate labels for our extracted topics

2.7 Social Network Analysis

Graph theory has been widely used by researchers for social network analysis even on the

early days of social network concepts. The approach of previous researchers in the field of

social network analysis was to determine important nodes (users) and edges (interactions) in

the network, for example how influential is a certain user. Influencers on social networks are

considered the nodes (users) that have impact on the opinion of other nodes (users) and on

their decision making on the network. Researchers had tackled these problems by

implementing graph theory techniques and reducing the problem of large-scale datasets (such

as social network data) by using data matrices as data representation of networks. The author

Burt R. S. (2005) has used centrality measure as a mean to calculate the influence that forms

clusters on social networks.

 Moreover, Ghosh R and Lerman (2011) have used parameterized centrality metric approach

to study the structure of social networks and to rank the connectivity of nodes. Their work has

helped for the extension of α-centrality approach, which measures the number of alleviated

paths that exist among nodes. . In our research we are going to develop a different method for

	
 9	

measuring influence, which involves the ad-hoc community networks that are involved in

topics of discussions that are not based on friendships or followers of a node (user).

2.8 Community Detection in Social Networks

It is really essential for social network analysis to develop techniques in order enable

community discovery in large networks such as social networks. A community is generally

considered to be a sub network in a larger network.

Figure 0: Social Network Community Structure example

The formation of communities under the scope of discussion over topics of interests is

considered to be very important for knowledge discovery in social networks. Nodes (users)

with similar interests will form communities with certain characteristics and patterns will start

to emerge. The nature of communities in social networks is very complex and difficult to study

and understand. The need for developing the appropriate tools in order to detect the behavior

of network communities is crucial in order to study them and to extract useful information

from them. In his research on social networks, M. Newmann (2010) has developed several

clustering techniques to detect communities on social networks using hierarchical clustering.

Using this technique he was able to cluster nodes in groups in a network and measured the

strength of certain groups, which was used later to distribute the network into communities.

Vertex clustering belongs to hierarchical clustering methods; graph vertices can be resolved by

adding it in a vector space so that pairwise length between vertices can be measured. [22]

	
 10	

Structural equivalence measures of hierarchical clustering use a number of common network

connections that is shared by two nodes. Two nodes on a social network with common friends

(or followers) are more likely to be closer than two other nodes with less common friends (or

followers).

It has been shown by Vincent D. Blondel, Jean-Loup, Renaud Lambiotte and Etienne

Lefebvre (2010) in their work that the extraction of community structure of large networks is

possible by using the proper methodology. Using their heuristic method, which is based on

modularity optimization a large topology of interconnected nodes, can be analyzed into

different communities. The problem of community detection requires partition of the network

into communities of densely connected nodes. Modularity has been used to compare the

quality of the partitions obtained. The proposed algorithm for modularity optimization can

allow us to study networks of unprecedented size, which is very important for the dynamic

nature of social networks. The proposed algorithm unfolds a complete hierarchical community

structure for the network and each level of the hierarchy being given by the intermediate

partitions found at each pass. The quality of the communities detected in their experiments is

very good as measured by modularity. In our research we are going to implement this

algorithm in order to discover communities in our extracted social networks. This will help us

because of the size of our network, which is large, but also for the quality of the communities

that we can extract.

	
 11	

3. Problem Definition

Mining the Social Media is an emerging field, which implements interdisciplinary concepts

and theories, fundamental principles and state of the art algorithms. In order to develop sound

data mining techniques for Twitter network analysis and to cluster our dataset based on the

content of our data we need to define the problems we are going to face and to plan ahead in

order to produce quality results and reach our research goals. The fact that our research is

mainly addressed as a data mining problem we are going to adopt the general problem

definition of data mining tasks and fit it in our research needs.

Figure 1: Problem Definition Diagram

	
 12	

3.1 Data-Gathering and Preparation

Data pre-processing is a crucial step in data mining and machine learning projects. A huge

amount of irrelevant, noisy and unreliable data especially in micro-blogging platforms such as

Twitter exists, which makes knowledge discovery a considerably challenging task and can

easily lead to misleading results. This is why we need to address the main problems we are

going to face which are going to require data preparation and a lot of filtering steps.

Figure 2: Data Gathering and Preparation

Obtain Necessary and Sufficient Data. The common method in order to obtain data

from Twitter is to use application programming interfaces (APIs) specially designed for

Twitter. Twitter allows a limited amount of data to be obtained daily from a developer account.

This is why we need to make sure that our data is a reliable representation of the full available

data in order to accomplish our research goals. We also need to consider the data format of

tweets (JSON) and collect only necessary fields on a tweet that can only benefit our research

without exhausting our dataset with useless information.

Data Management. We need to collect information using Twitter APIs and store them in a

Database in order to proceed in data management methods and enable knowledge discovery in

our database. Using our database management system we want to allow massive write

performance, big amount of data storage, fast key-value data access, flexible schema and

flexible datatype, document orientation, graphs, advanced data structures and ease of use.

Twitter produces tweets that are in a JSON format. This is forcing us to use a NoSQL type of

database system like MongoDB, which is an open-source document database system that can

	
 13	

help us to interpret and control directly our streaming data without transforming it to suitable

data types for an SQL like database management systems.

Noise Reduction. Noise reduction is an essential pre-processing step in the field of data

mining and knowledge discovery in databases especially in unstructured data such as micro-

blogging. Due to the nature of micro blogging data in social networking platforms such as

Twitter, a precise noise reduction method need to be implemented in tweets in order to remove

non valuable information without eliminating important data. Having said that noise reduction

is a relative matter and a lot of experimentation needs to be done using pre processed corpus,

stopwords removal, and natural language processing techniques to develop a satisfactory noise

removal method for our datasets.

3.2 Topic Modeling

3.2.1 Topic Extraction

After the data collection and the data preparation we aim at discovering what topics these

tweets are representing in our collection and how they are differentiate from each other. In

order to do that we need to implement and develop topic modeling algorithms to help us

understand, summarize and search these large electronic archives. Uncovering these latent

topics in large collections is a challenging task, which involves probabilistic topic modeling

techniques. Furthermore it can enable us to assign to each tweet the most relevant topic and

organize them based on their topic. Various topic modeling approaches has been proposed by

researchers such as Probabilistic Latent Semantic Analysis (PLSA), Hidden Topic Markov

Models (HMM), Latent Dirichlet Allocation (LDA) and many more. In our thesis we are going

to implement the most popular approach to topic modeling, which is Latent Dirichlet

Allocation (LDA). This method treats the collections of documents (tweets in our case) as “bag

of words” and assumes that the order of words can be ignored and that the text corpora can be

represented by a co-occurrence matrix of words and documents. However this method hides

pitfalls if we proceed to topic labeling manually and this is why we need to develop a wiser

strategy for topic labeling. The fact that the user determines the number of topics raises the

	
 14	

problem of finding an optimum number of topics for a given dataset. Unfortunately there is no

“correct” number of topics to be extracted and there is not any sound solution to this problem

except of using Hierarchical Dirichlet Processes (HDP-LDA) to model the Dirichlet admixture.

3.2.2 Topic Labeling

A major challenge in applying topic models in text collections is to label multinomial topics

in an accurately way and to capture the essence of the topic in a few words. Delivering a more

accurate and subjective way of automatic topic modeling could lead to richer and more

profitable results. However finding a way to accurately label our extracted multinomial topics

raises new problems and forces us to utilize natural language processing and understanding

techniques in order to deal with them. What we want to achieve using these techniques is to

produce a topic label l, for a topic model θ, that is a sequence of words, which is semantically

meaningful and covers the latent meaning of θ. Under this definition a suitable type of a label l

could be a sentence or a phrase. Based on the fact that our topic model is build upon tweet

collections a more constistant and compaqt type of label such as phrases would be more

suitable. Despite the fact that we may be able to extract phrases from our corpus we will also

need to find a relieable way of assigning these labels to our extracted topics. The best way to

achieve this would be by measuring the semantic similarity between the label and the topic

model. For example given two labels l1 , l2 that are both meaningful candidate labels, l1 is a

better label for a topic ! if s(l1,!) > s(l2,!) where s is the relevance scoring function we need

to develop in order to measure the semantic similarity between the label and the topic ! . With

these definitions, the problem of topic model labeling can be defined as follows:

Given a topic model ! extracted from our dataset, the problem of single topic model labeling

is (1) to identify a set of candidate labels L = {l1,..,lm} , and (2) to design a relevance scoring

function s(li ,!) . With L and s, we can then select a subset of n labels with the hisghest

relevance scores L! = {l!1,...,l!n} for ! . [2]

	
 15	

3.3 Knowledge Discovery

To progress in our research after using various techniques to structure our data as we

proposed previously we need to proceed to network measurements in order to represent,

analyze and extract actionable patterns from our social media data. The fact that the world

around us can be represented as a social network can reveal that trying to model such dynamic

in nature systems can lead to many problems. Despite the complexity of this task by modeling

such systems we can still gain useful information that can help us to understand how

information is distributed in social networks and reveal hidden patterns regarding the

information flow among users. Implementing mathematical structures such as graphs from

graph theory is necessary in order to model relations in our data. We need to proceed into a

second layer of processing our data using graphs and there are a lot of challenges in the nature

of graphs that need to be addressed and overcome. As the data stored in our database grows

and changes periodically we need to provide data summarization though visualization

techniques, to identify important patterns and trends and act upon the findings. Insight derived

from data mining can provide tremendous value to our goals and in the strategy we are going

to follow.

Figure 3: Knowledge Discovery

3.3.1 Network Analysis

Considering that Twitter can represent real life interactions and relationships as a platform,

that can change dynamically through time, we need to make sure that in order to extract useful

	
 16	

information from our network analysis we need to find a way to keep our dataset not exhausted

from information that is not needed and that can mislead our network analysis. This is why we

need to use our Twitter API wrapper wisely by filtering unnecessary data that can distort the

uniformity of our network. Tracking abstract subjects that have a general meaning will lead to

the disuse of the methods that we have developed. Depending on a certain amount of

processing power, we need to track subjects and create samples that can represent valid real

life interactions and allow patterns in our network to emerge. To generate a network from our

data requires a definition for the interactions between the nodes (users). Creating edges

between nodes based on the following of each node would not lead us anywhere. The

connections (followers) of a node (user) is not required to follow the same interests of his

followers or of the users he follows. This is why we need to examine the structure of a tweet

format and find the best possible definition for an interaction in order to gain insights for

certain topics of interests. We also need to answer questions like:

• Who are the most important people in a social network?

• Why do people interact with a certain amount of users in our network?

• How can we find interesting patterns in the content of our users?

• How can we identify communities in a social network?

• How we can measure the influence of individuals in a social network?

To answer questions like this we need to utilize graph theory techniques and represent users

as nodes, interactions between them as edges and community formations as entities.

Analyzing how communities are formed, how they evolve and how the qualities of detected

communities are evaluated is also a crucial task. We also need to define who is an influential

individual specifically for the needs of our network and how this influence can be reflected to

other individuals.

3.3.2 Community Detection

We need to develop and implement a simple method in order to extract the community

structure of our social network without loosing the quality of the communities that are

detected. A lot of research in the field has been conducted and the problem has been leveraged

to a modularity optimization problem and it is approached by Louvain method. Unfortunately

	
 17	

modularity optimization is a problem that is computationally hard and so approximation

algorithms are necessary when dealing with large networks. This is why we need to implement

a fast approximation algorithm for optimizing modularity in a large network like the one in our

dataset.

Furthermore the problem of community detection requires the partition of networks into

communities of densely connected individuals (users), with the individuals belonging to

different communities being only sparsely connected. Precise formulations of this optimization

problem are known to be computationally intractable. [7] Several algorithms have therefore

been proposed to find reasonable good partitions in a reasonably fast way. This search for fast

algorithms has attracted much interest in recent years due to the increasing availability of large

network data sets such as social networks and the impact of networks on everyday life.

 Validation of the community would be necessary in our thesis in order reassure the

effectiveness of the methods that we have developed. This could suggest as to create datasets

that their community structure can be predetermined like for example political parties however

we will still need to experiment due to the dynamic and complex nature of social network data.

3.3.3 Community Analysis

Community detection is not enough in order for us to extract semantic conclusions about our

network. Identifying the community’s topics of interest manually is not an option since it could

be impossible for a human to accurately estimate them based on the community’s nodes’ data

(tweets). In order for us to acquire useful information about these extracted communities that

we have been able to detect, we will need to re-use the topic modeling methods that we have

developed and proceed with the development of an automatic method for community labeling.

Re-transforming and ordering our data based on the communities that have been detected could

help us determine the thematic topics of interest in a distribution of words in our network.

 Developing a scoring function to be applied in each of our extracted communities would be

essential and challenging, however we could re-use the scoring function that we have

developed for our topic labeling method with some modifications in order to be adjusted in the

problem of community labeling. Assigning phrases as labels in the communities instead of

	
 18	

topic’s bag of words models could also provide a better representation. We also have to be able

to minimize the amount of unimportant communities in our network. For example by keeping

communities that are isolated from the others could distort our results. Finding a method for

measuring the importance of a network is a challenging task what we would have to overcome

by implementing graph theory techniques.

3.3.4 Visualization

Data visualization is a modern equivalent of visual communication and it is viewed as

modern branch of descriptive statistics but also as a grounded theory development tool. It

involves the creation and study of the visual representation of data, meaning information that

has been abstracted in some schematics form, including attributes or variables for the units of

information. The primary goal of data visualization in our thesis would be the efficient

extraction of knowledge. Effective visualization can help us to analyze and make better sense

of the processed data in our database. It can also make our data more accessible,

understandable and usable by reducing their complexity. The fact that data visualization is not

only science but also art, suggests us that there is not any objective way or method of

producing efficient methods for data visualization and creates a lot of opportunities for

visualization and algorithm design.

The obvious way to proceed in our research is to visualize our generated network using graph

drawing, which will create a pictorial representation of the vertices and edges of a graph. The

main problem by simply drawing our network is that the final graphic representation would be

completely useless as the position of each node and community will not correspond to a

semantically meaningful visualization. Applying different layout algorithms to our graph could

lead to better output providing aesthetically improved visualizations. Layout of social networks

is contingent on many factors. There are many different graph layout strategies available but it

is widely suggested to proceed with force-based layout systems are most commonly used for

social networks. This is likely because of their generality, simplicity, adaptability, and above

all their availability. While force-directed methods generally perform well in separating

clusters in graphs with varying local density, these methods are particularly troubled by small

distances and skewed degree distributions. Forced based layout systems allow the graphs to be

modified by continuously moving the vertices according to a system of forces based on

	
 19	

physical metaphors related to systems of springs or molecular mechanics. Typically, these

systems combine attractive forces between adjacent vertices with repulsive forces between all

pairs of vertices, in order to seek a layout in which edge lengths are small while vertices are

well separated. These systems may perform gradient descent based minimization of an energy

function, or they may translate the forces directly into velocities or acceleration for the moving

vertices. [17]

	
 20	

4. Methodology
4.1. Natural Language Processing and Understanding

Natural language processing (NLP) is a field of information science, artificial intelligence

and linguistics that deals with the interaction between human languages and computers.

Statistical natural language processing uses stochastic, probabilistic and statistical methods,

especially to resolve difficulties that arise because longer sentences are highly ambiguous wen

processed with realistic grammars, yielding thousands or millions of possible analyses.

Methods for disambiguation often involve the use of large corpora and Markov models.

Probabilistic model consists of a non-probabilistic model plus some numerical quantities

improving significantly the developing of natural language processing systems. Challenges in

natural language processing involve natural language understanding that can enable computers

to derive meaning from human or natural language input. The natural language generation

systems convert information from computer databases to human readable language. In artificial

intelligence natural language understanding is a subtopic of natural language processing that

deals with machine reading comprehension. The main goal of Natural language understanding

systems is to convert samples of human language into formal forms as trees (parse trees) of

first order logic that is easier for computer programs to handle. A computer must be able to

model structure of words (syntax) in order to understand a sentence, and a model of syntax is

necessary to produce grammatically correct sentences. [12] The process of disassembling and

parsing input is more complex than the reverse process of assembling output in natural

language generation because of the occurrence of unknown and unexpected features in the

input and the need to determine the appropriate syntactic and semantic schemes to apply to it,

factors which are pre-determined when outputting language.

In theory natural language processing is a very attractive method of human computer

interaction. Old systems like SHRDLU [23] (developed by Terry Winograd), which operate in

	
 21	

restricted “block worlds” with restricted vocabularies performed extremely well, leading

researchers to excessive optimism, which was quickly lost when systems had to deal with the

ambiguity and complexity of real world problems. In most languages one word can relate with

many different things and this is why we must be able to choose what is the real meaning of a

word, depending on the context that it appears. The grammar is usually not unambiguous with

respect to e.g. parse trees that can be extracted from a sentence. The fittest word is going to be

used based on the semantics of a collection of text. Various attempts at processing natural

language from English corpus have been conducted through the years. Some attempts have not

resulted in systems with deep understanding, but have improved the overall system usability.

Despite that natural language processing faces a lot of challenges and the progress in these

topics are getting slower such as text summarization (take input as a text document and try to

condense them into a summary) or machine dialog system (understanding user inputs and

respond accordingly), other topics are gaining momentum such as part of speech tagging,

named entity recognition, sentiment analysis, conference resolution, word sense

disambiguation, parsing and machine translation. Natural Language Toolkit (NLTK) for

Python can provide us easy-to-use interfaces and a suite of text processing libraries for

classification, tokenization, stemming, tagging, parsing and many more.

4.1.1 Data Transformation

In order to allow our data to be processed through our Part-Of-Speech Tagger (POST) we

need to make sure that our data does not contain any unnecessary information that can mislead

our results. This kind of information is stopwords, HTTP links and non-English text. Utilizing

natural language processing and understanding techniques in order can help us to overcome

these problems.

Tokenization: Tokenization is the process of breaking a stream of text up into words,

phrases, symbols, or other meaningful elements called tokens. The list of tokens can become

input for further processing such as parsing or text mining. To control the consistency of every

word in a tweet we will utilize a tokenizer from Natural Language Tool Kit in Python’s library

(NLTK) and transpose a tweet into an array of tokens. For example using a part from our

tokenizer in our code in Python we get:

	
 22	

with	
 open('tweets.csv','rU')	
 as	
 csvfile:	
 	
 	

tweetreader	
 =	
 csv.reader(csvfile,	
 delimiter='	
 ',	
 quotechar='|')	
 	

	
 for	
 row	
 in	
 tweetreader:	
 	
 	
 	
 	
 	
 	

	
 	
 x='	
 '.join(row)	
 	
 	
 	

	
 	
 tokens	
 =	
 nltk.word_tokenize(x)	
 	
 	
 	

	
 	

	
 	
 print	
 (tokens)	
 	
 	

	
 	
 	

	
 	
 y='	
 '.join(tokens)	
 	
 	
 	

	
 	
 tweetList.append(y)	

For example having a tweet in our dataset like this example:

tweet=’@user did you see the dog’s face? #dogs’

After the tokenization procedure the result would result to an array like this:

tokens=[(’@’),(‘user’),(‘did’),(‘you’),(‘see’),(‘the’),(‘dog’),(‘s’),(‘face),(‘?’)(‘#”)(‘dogs’)]

It is easier now for our token array to be analyzed for stop word removal, HTTP cleansing, or

English dictionary checking.

Stopwords removal and dictionary checking: Stopwords are words, which are filtered out

of a dataset before or after the processing of natural language data (tweets). There is not one

definite list of stop words which all tools use and such filter is not always used and this is why

we need to determine the most common stop words for a tweet. Using a set of stop words that

appear frequently in an English document with words such as: the, a, in, to, some, that, is, are

etc. and also stop words especially for tweets such as: lmao, wow, bb, gd, lol etc. we can

proceed to stopwords removal phrase. In the following code we read our stop words in a list

variable and then removing all stop words detected in a tweet. We are also removing any word

that appears more than once and then proceed to an English dictionary checking creating this

way an ideal corpus for applying data mining or natural language processing techniques.

output	
 =	
 open('Stopwords_for_Tweets.txt',	
 'r')	
 	

stoplist=set(output.read().split())	
 	

texts	
 =	
 [[word	
 for	
 word	
 in	
 tweet.lower().split()	
 if	
 word	
 not	
 in	
 stoplist]	
 	
 	
 	
 	
 	
 	
 	
 	
 	

for	
 tweet	
 in	
 tweetList]	
 	
 	

#remove	
 words	
 that	
 appear	
 only	
 once	
 	

all_tokens	
 =	
 sum(texts,	
 [])	
 tokens_once	
 =	
 set(word	
 for	
 word	
 in	

set(all_tokens)	
 if	
 all_tokens.count(word)	
 ==	
 1)	

	
 23	

texts	
 =	
 [[word	
 for	
 word	
 in	
 text	
 if	
 word	
 not	
 in	
 tokens_once]	

	
 	
 	
 	
 for	
 text	
 in	
 texts]	
 	
 	

dictionary	
 =	
 corpora.Dictionary(texts)	
 	

corpus	
 =	
 [dictionary.doc2bow(text)	
 for	
 text	
 in	
 texts]	

Link removal: Removing links from tweets is also essential to clean our data from useless

information that can distort our outcome. By assigning the string ‘http’ to a variable named

urlone we can use the following code, which can process every tweet as a string and remove

any http link by checking if this variable exists in a string.

urlone='http:'	
 	

	
 with	
 open(tweets.csv','rU')	
 as	
 csvfile:	
 	
 	

	
 tweetreader	
 =	
 csv.reader(csvfile,	
 delimiter='	
 ',	
 quotechar='|')	
 	

	
 for	
 row	
 in	
 tweetreader:	
 	
 	
 	
 	

	
 #Removing	
 all	
 links-­‐URLs	
 from	
 Tweets	
 	
 	
 	

	
 	
 for	
 word	
 in	
 row:	
 	
 	
 	
 	

	
 	
 	
 if	
 urlone	
 in	
 word:	

	
 	
 	
 	
 row.remove(word)	

4.1.2 Part-of-speech tagging (POST)

Part-of-speech tagging (POST) is the process of marking up a word in a text corpus as

corresponding to a particular part of speech, based on both its definition, as well as its context.

It involves the identification of words as nouns, verbs, adjectives, adverbs, etc. The fact that

some words can represent more than one part of speech at different times makes it difficult for

us to simply apply a part-of-speech algorithm in our corpus. [12] A sentence illustrating this

problem would be: “I can can a can”. Most part-of-speech taggers are trained using a treebank

which is parsed text corpus that annotates the semantic structure of a sentence and in most

cases uses newswire domain, such as the Wall Street Journal corpus of the Penn Treebank.

Tagging performance degrades on out-of-domain data, and Twitter data poses additional

challenges due to the conversational nature of the text, the lack of conventional orthography,

and 140-character limit of each message (“tweet”). However using regular expressions and a

tokenizer to trim our data can help us to improve the performance of the part-of-speech tagger

algorithms dramatically. Classifying our text collection into word classes such as nouns, verbs,

adjectives etc. is useful for the development of many natural language processing methods that

	
 24	

we are going to tackle in this thesis such as chunking or shallow parsing. Using Natural

Language toolkit (NLTK) we can use our already trimmed tweets as an input and proceed to a

part-of-speech tagging of each word in every tweet and name these words accordingly

depending on their word classes. By simply running this code below we can output the speech

tag attached to each word like this for example:

for	
 tweet	
 in	
 texts:	
 	
 	
 	
 	
 	

	
 tagged	
 =	
 nltk.pos_tag(tweet)	

Input: tweet=‘use the select function on the sockets’

Output: (‘use’, ’VB’), (‘the’, ‘DT’)(‘Select’, ’VB’), (‘functions’,’NN’), (‘on’, ‘IN’), (‘the’,

‘DT’), (‘sockets, ’NNS’)

Transforming tweets using part-of-speech taggers can enable us to use our data in order to

develop a chunker as an information extraction mechanism in order to extract the needed

chunks from a tweet that can be used later as candidate labels for our topics.

4.1.3 Chunking/Shallow Parsing

As we explained in the problem definition section of our thesis, the extraction of phrases

using our dataset is important in our research in order to develop an automatic way of creating

labels for our extracted topics. To generate labels that are understandable, semantically

relevant, discriminative across topics and of high coverage of each topic, we first extract a set

of understandable candidate labels in a preprocessing step and then design a relevance scoring

function to measure the semantic similarity between a label and a topic. Next we will be able

to propose label selection methods to address the inter-topic discrimination and intra-topic

coverage problems. Chunking (Shallow Parsing) is a common technique in NLP, which aims at

identifying short phrases, or “chunks” in text. A chunker often operates on text with part-of-

speech tags, and uses tags to make decisions to of chunking according to some grammar, or

through learning from labeled training sets. We aim at extracting chunks as phrases that appear

frequently in our dataset of tweets according to some grammar that we have to define. The

	
 25	

advantage of using a NLP chunker is that the phrases that we can extract will be grammatical

and meaningful. The accuracy of the chunker is highly affected by the domain of the text

collection. [2] In our case, a corpus of tweets could result to a lot of “bad” chunks because of

the dynamic nature of tweets and the lack of supervision in terms of orthography or syntactic

completeness, however by cleaning our data from unwanted information our chunker will

generate more meaningful phrases and overcome the noisy nature of micro-blogging data. In

order to allow our chunker to track grammatical patterns in our dataset we will need to utilize

the functionality of Regular Expressions. A Regular Expression (Regex) is a sequence of

characters that forms a search pattern, mainly for use in pattern matching with strings, or string

matching. Each character in a regular expression is either understood to be a metacharacter

with its special meaning, or a regular character with its literal meaning. They can be used to

identify textual material of a given pattern. The pattern sequence itself is an expression that is a

statement in a language designed specifically to represent prescribed targets in the most

concise and flexible way to direct the automation of text processing of text files. The fact that

we want to use the extracted chunk/phrase as a label for our topics suggests us that it is wise to

use a grammar that produces small and concise types of chunks. Defining the grammar of our

chunker using regular expressions can help us to experiment with the results using tree

drawings from Python. The best grammar patterns that we have been able to define for our

dataset are:

• Phrase_Pattern_A:	
 {<RB.?>*<VB.?>+<NNP>}	
 Using this grammar pattern we will

be able to identify patterns in our dataset that have zero or more adverbs (and any kind of

adverb like comparetive or superlative) followed by zero or more verbs (and any kind of

verb like past tense, gerund, past participle, present, third person etc.) followed by

exacctly one proper noun. Using this kind of grammar pattern we are trying to detect the

what words are modifying a proper noun in a tweet.

• Phrase_Pattern_B:	
 {<JJ.?>*<NNP>}	
 Using this type of grammar pattern we can

easily extract chunks that consists of zero or more adjectives (including all type of

adjectives like comparetive or superlative) and one proper noun. Despite that this method

looks simple can produce consice phrases.

• Phrase_Pattern_C:	

{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}	

	
 26	

Using a more ambitious pattern like this we are aiming at discovering more accurate phrases for a

tweet, however statistically could lead to a worst grammar pattern overall. We are using one or

more nouns (and any kind of noun) followed by one or more determiner (any type of determiner) or

another proper noun (and any type of noun), followed by 1 or more adjective (and any type of

adjective) or any type of verb followed by one or more nouns (and any type of nouns) followed by

zero or more adjectives (any type of adjective) or any type of verb. Using Python’s NLTK library

we can create a function that could process our tweets using NLTK’s RegexpParser, Tokenizer,

pos_tagger and then draw a parse tree to represent our data.

def	
 processLanguage():	
 	
 	
 	
 	
 	

try:	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 for	
 item	
 in	
 tweetlist:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 tokenized	
 =	
 nltk.word_tokenize(word)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 tagged	
 =	
 nltk.pos_tag(tokenized)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 cGram	
 =	
 r"""PhraseA:	
 {<RB.?>*<VB.?>+<NNP>}"""	
 	

	
 #cGram	
 =	
 r"""PhraseB:	
 {<JJ.?>*<NNP>}"""	

	
 #cGram	
 =	
 r"""PhraseC:	

{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}	
 """	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 cParser	
 =	
 nltk.RegexpParser(cGram)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 chunked	
 =	
 chunkParser.parse(tagged)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 print	
 chunked	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 chunked.draw()	
 	
 	
 	
 	
 	
 	

except	
 Exception,	
 e:	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 print	
 str(e)	
 	
 	
 	
 	
 	
 	
 	
 	

	
 time.sleep(0.5)	

Using the function processLanguage() and specifically with PhraseC and PhraseB type of

grammar pattern in a small toy database that we have created tracking tweets about economy

we get some of the following examples. We are going to analyze the results in more depth in

the next chapter. For these tweets we have been able to extract the following chunks/phrases:

• Arab Monetary Fund ready to contribute to reform of Algerian financial
system #Economy. The Arab Moneta... http:\/\/t.co\/2ehne4GzU5

	
 27	

Figure 4: Phrase generation using PhraseC grammar

• @CoryBooker Women R used against the political economy of recession
& unemployment numbers; paying us less 4 our work help job nbrs
improve

Figure 5: Phrase generation using PhraseC grammar

• Probably so RT @Train5829: Are you really middle class?
http:\/\/t.co\/GPGBXHksKJ via @CNNMoney

Figure 6: Phrase generation using PhraseB grammar

Generating these phrases from our dataset will become useful when we extract topics. By

developing a scoring function for our phrase to be automatically be assigned to our extracted

topics will lead to a better understanding of the thematic subject of each topic. The fact that

the topic extraction and phrase generation will use the same dataset will result to better tuned

results.

	
 28	

4.2. Text and Data Mining

Text mining or text data mining is the process of deriving high quality information from text.

This high quality information is typically derived through the devising of patterns and trends

through means such as statistical pattern learning. Text mining usually involves the process of

structuring the input text, deriving patterns within the structure data and finally evaluation and

interpretation of the output. The high quality is data usually refers to how interesting or

relevant the results are. Typical text data mining includes text categorization, text clustering,

sentiment analysis, concept extraction, relation modeling and document summarization. Text

analysis involves information retrieval, word frequency distributions, pattern recognition, word

tagging, information extraction, visualization and predictive analytics. [13] The goal of text data

mining is to turn our text into data ready for analysis. Text mining is widely used for social

media monitoring and social media mining. Mining the social media has its potential to extract

actionable patterns that can be beneficial for users, businesses and costumers.

In order to do text mining we need to develop a method for the representation of our

documents. It is sufficient for our kind of data to classify and cluster our documents using

simple representation that loses all information about word order (bag of words). Given our

collection of documents, the first task is to identify the set of all words used in our documents.

Using our data trimming techniques that we developed will be useful for extracting categories

in our documents. We aim at representing our documents as a two-dimensional matrix where

each row describes a document and each column corresponds to a word.

4.2.1 Topic modeling

Once we have a representation of our documents we need to select a model for a set of

documents. The model will be an abstraction of a set of entities using probability distribution.

Given a training set of documents we will choose values for the parameters of a probabilistic

model that make the training documents have high probability. By throwing test documents to

our trained documents we will be able to evaluate its probability according to the model. The

	
 29	

higher the probability the more similar to the training set. The probability distribution is going

to be multinomial and can be represented in the following mathematical formula:

p(x;!) = n!

x j !
j=1

m

"

#

$

%
%
%
%

&

'

(
(
(
(

! j
x j

j=1

m"() .

Where x is a vector of non-negative integers and the parameters ! are a real-valued vector.

Both vectors have the same length m . ! j is the probability of word j while x j is the count of

word j . [15]

4.2.2 Generative processes

A common way to organize a collection of documents is to use unsupervised learning

techniques. The generative process is a specification of a parameterized family of distributions.

Learning is based on the principle of maximum likelihood or maximum probability. [16]

 A generative process for a simple document is as follows:

• Fix a multinomial distribution with parameter vector ! of length V (setting up the

probability distributions)

• For each word in a document: draw a word w according to !

For a collection of documents of multiple categories, a simple generative process is:

• Fix a multinomial ! over categories 1 to K. For category number 1 to category

number K: Fix a multinomial with parameter vector !k

• For a document number 1 to document number M: Draw a category z according to a

and for each word in the document: Draw a word w according to !z .

	
 30	

4.2.3 Latent Dirichlet allocation (LDA)

The specific topic model that we consider for our research is called Latent Dirichlet

Allocation (LDA). Latentt Dirichlet Allocation is arguable the most popular and simplest

topic model in application. It has also been widely used for topic modeling in micro-blogging

data providing accurate and meaningful results. Latent Dirichlet Allocation is a generative

model that allows sets of observations to be explained by unobserved groups that explain why

some parts of data are similar. In Latent Dirichlet Allocation each document may be viewed

as a mixture of various topics and topic distribution is assumed to have a Dirichlet prior.

Latent Dirichlet allocation is based on the intuition that each document contains words from

multiple topics where the proportion of each topic in each document is different, but the

topics themselves are the same for all documents. [16] The generative process assumed by the

Latent Dirichlet Allocation is as follows:

Figure 7: Latent Dirichlet allocation representation model

• a is the parameter of the Dirichlet prior on the per-document topic distributions

• ! is the parameter of the DIrichlet prior on the per-topic distribution

• !i is the topic distribution for the document i

• !k is the word distribution for topic k

• zij is the topic for the j th word in document i

• wij is the specific word

	
 31	

Latent Dirichlet Allocation uses Dirichlet distribution. Dirichlet distribution is a

probability density function over the set of all multinomial parameter vectors. This set is

all vectors ! of length m such that ! s " 0 for all s and ! s = 1
s=1

m

" . The Dirichlet

distribution itself has a parameter vector a of length m and the equation is:

p ! |"() = 1
D

! s
as#1

s=1

m$

Where the function D is a normalized constant.

4.2.4 Topic Discovery and Classification

Using Latent Dirichlet Allocation with our micro-blogging data may not conclude to quality

topic extraction due to the fact that tweets are short. It has been suggested by previous

researchers that by treating tweets as a document might result into better solutions however we

have been able to extract semantically meaningful topics in both ways. Python’s Gensim

library for topic modeling will provide us with the ability to apply Latent Dirichlet Allocation

algorithm for topic discovery in our dataset. Again using a small toy example dataset that we

have created by tracking economy related tweets using the following code can extract n-

number of topics.

stoplist=set(output.read().split())	
 	

texts	
 =	
 [[word	
 for	
 word	
 in	
 tweet.lower().split()	
 if	
 word	
 not	
 in	
 stoplist]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 for	
 tweet	
 in	
 tweetList]	
 	

	

#	
 #	
 remove	
 words	
 that	
 appear	
 only	
 once	
 	

all_tokens	
 =	
 sum(texts,	
 [])	
 	

tokens_once	
 =	
 set(word	
 for	
 word	
 in	
 set(all_tokens)	
 if	

all_tokens.count(word)==	
 1)	

	
 	

texts	
 =	
 [[word	
 for	
 word	
 in	
 text	
 if	
 word	
 not	
 in	
 tokens_once]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 for	
 text	
 in	
 texts]	
 	
 	

	

dictionary	
 =	
 corpora.Dictionary(texts)	
 	

corpus	
 =	
 [dictionary.doc2bow(text)	
 for	
 text	
 in	
 texts]	
 	
 	
 	

lda	
 =	
 ldamodel.LdaModel(corpus,	
 id2word=dictionary,	
 num_topics=6)	
 	

corpus_lda	
 =	
 lda[corpus]	
 	

	
 32	

for	
 l,t	
 in	
 izip(corpus_lda,corpus):	
 	
 	

	
 	
 print	
 l,"::",t	

	

for	
 i	
 in	
 range(0,lda.num_topics):	
 	
 	

	
 	
 print	
 lda.print_topic(i)	

	
 	
 topics.append(lda.print_topic(i))	

Using again stop words removal and link removal in our dataset we create then a dictionary

of our corpus and using this dictionary to generate the latent Dirichlet allocation model for our

dataset using 6 number of topics. The results can be represented below displaying 3 of the best

topics extracted as bags of words with a probability distribution for every word:

 Table 1: Topic 1 extracted Table 2: Topic 2 extracted

Table 3: Topic 5 extracted

	
 33	

We can easily see that the topics 1, 2, 5 extracted from our database can relate to real word

thematic categories regarding economy as a general subject. Topic 1 is related with tweets in

our dataset that talk about immigration and how affects the economy. Topic 2 is related with

the rights of women to be paid equally as the men in their workplace. Topic 5 is related with

Scotland dependency from United Kingdom and how it affects economy.

4.2.5 Probabilistic Topic Labeling

Deriving meaning of labeling a topic manually might not be so easy as it was from our

previous examples. Most of the times it would be impossible for a human to interpret the

information from extracted topic in order to label it correctly. To generate labels that are

understandable and semantically relevant across our topics as we explained in our problem

definition we need to generate automatically meaningful phrases as candidate labels. We

already described our methodology for phrase generation from our dataset using natural

language processing techniques such as chunking/shallow parsing. Having already generated a

big number of candidate labels for our topics (phrases) from our dataset we now need to

develop a scoring function in order to assign the highest scoring phrase to each topic.

The semantics of a latent topic ! is fully captured by the corresponding multinomial

distribution. Any reasonable measure of the semantic relevance of a label to a topic should

compare the label with this distribution in some way. [2]

We are going to define the semantic relevance score of a candidate phrase l = u0u1...um where

ui is a word as follows:

S = log p(l |!)
p(l)

= log p(ui |!)
p(ui)0"i"m

The basic idea behind this zero-order relevance scoring function is that a phrase that contains

more “important” words in the topic distribution is assumed to be a good label. p(ui) is to

correct the bias toward favoring short phrases and we are choosing to set it to uniform

distribution. Using this function now we can score every generated phrase from our chunker

	
 34	

and based on the highest scored phrase for each topic we can assign these labels (phrases) to

each topic ! . An illustration of zero-order relevance is demonstrated below. Larger circle

infers to a higher probability value.

Figure 8: Zero-order relevance scoring function

The following Python script illustrates the implementation of the scoring function by storing

a scoring array with all the scores of each phrase for every topic separately:

for	
 topic	
 in	
 topics:	

	
 	
 	
 print	
 'New	
 Topic:-­‐'	
 	

	
 	
 with	
 open('phraseschunker.csv','rU')	
 as	
 csvfile:	

	
 	
 	
 phrases	
 =	
 csv.reader(csvfile,	
 delimiter='	
 ',quotechar='|')	
 	
 	
 	
 	

	

	
 for	
 phrase	
 in	
 phrases:	
 	
 	
 	
 	
 	

	
 	
 	
 joinphrase='	
 '.join(phrase)	
 	
 	
 	
 	
 	

	
 	
 	
 b=topic.split('+')	
 	
 	
 	
 	
 	

	
 	
 	
 for	
 item	
 in	
 b:	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 a=item.split('*')	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 for	
 p	
 in	
 joinphrase.split():	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 print	
 p,a[1]	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 if	
 str(p)	
 in	
 str(a[1]):	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 '_____________________'	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 print	
 print	
 'Probability:',a[0]	
 	

	

	
 	
 	
 	
 	
 	
 	
 print	
 	
 'Probability',	
 a[0]	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 print	
 'Phrase:',	
 phrase	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 'Topic:'	
 ,topic	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 score=float(math.log10(float(a[0])	
 +	
 float(1)))+score	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 score=float(math.log10(float(a[0])+float(1)))+score	
 	
 	
 	
 	
 	
 	

	
 	

	
 	
 	

	
 35	

	
 	
 scoretable[m].append(score)	

	
 scpre=0	

In the following Python script we find the maximum score in the scoretable array for each

topic and assign the phrase to the topic as a label:

for	
 i	
 in	
 range(len(topics)):	
 	

	
 	
 	

	
 maxphrase[i]	
 =	
 phrzs[scoretable[i].index(max(scoretable[i]))]	

	
 	

	
 print	
 max(scoretable[i]),scoretable[i].index(max(scoretable[i]))	
 	
 	

	
 	
 print	
 phrzs[scoretable[i].index(max(scoretable[i]))]	
 	
 	

	
 print	
 lda.print_topic(i)	

4.3 Social Network Analysis

In order to translate our extracted information into a social network with nodes and edges that

carries significant information and insights about the community structures, the most

influential nodes (users) in the network and the trends that dominate each community we need

to implement graph theory methods, apply community detection algorithms and provide a

suitable environment for visualization of this network and its information. This way we can

represent our network using graphs but we will need to develop a method in order to generate

our graph using our dataset. This task involves a precise definition of nodes, edges

(interactions) and communities (entities) in our dataset.

4.3.1 Graph Generation

Graphs contain both a set of objects, called nodes, and the connections between these nodes

called edges. Mathematically, a graph G is denoted as pair G(V ,E) , where V = {v1,v2,...,vn}

with nodes vi , for 1! i ! n and represents the set of nodes and E = {e1,e2,...em} represents the

set of edges with ei , for 1! i ! m being the edges for our nodes.

Nodes: it is obvious that the nodes in our graph are going to represent each Twitter user that

has tweeted and we had collected his tweet using our Twitter wrapper (tweepy).

Edges: As edges or interactions between our nodes (users) in our graph we could define them

by assigning them into followers/following interactions. Despite that this definition can create

	
 36	

interesting graphs of Ego-networks, it is not going to provide us with interesting patterns in

terms of trends or community discovery. Friendship-like connection does not necessarily mean

that these friendship communities have the same topic interests as individuals and this is why

we need to develop another strategy/method for creating interactions in our graph. We are

interested in “ad-hoc” connections between users generated by current trends or topic interests

in their community and how discussion development among them is sustained. By analyzing

the format of a tweet we conclude that “mentions” of a node (user) can represent the ideal

definition for an edge in our network. A mention is a mean of posting references or links to a

user’s profile. The following example will demonstrate the edge generation between three

nodes (users) posting three tweets:

Figure 9: Demonstration of edges in a small network

Using these definitions for nodes and edges in our network we can develop a method to

create a graph using NetworkX Python’s library which is widely used for graph related

problems and build our network based on the data we gathered using our Twitter wrapper and

stored to MongoDB. The data we are going to need from a tweet’s JSON data are going to be:

{	
 	
 	
 	
 	
 	

"user":	
 	

{	
 "screen_name":	
 {	
 "name	
 of	
 the	
 user"}}	
 	
 	
 	

"text":	
 "This	
 is	
 the	
 actual	
 tweet	
 of	
 the	
 user",	
 	
 	
 	

"entities":	
 {	
 	
 	
 	
 	
 	
 	

	
 "user_mentions":	
 	

	
 	
 [{	
 	
 	
 	
 	
 	
 	
 "screen_name":	
 "username	
 of	
 the	
 user	
 that	
 the	
 node	
 	

is	
 mentioning	
 in	
 his	
 tweet",	
 	
 	
 	
 	
 }]	
 	
 	
 }	
 	
 	

	
 37	

	
 "geo":	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "coordinates":	
 {	
 "x	
 y	
 z"	
 }	
 	
 	

	
 "created_at":	
 {	
 "to	
 get	
 the	
 information	
 about	
 the	
 time	
 that	
 the	
 tweet	
 has	

been	
 created"}	
 	
 	
 	

"source":{	
 "to	
 extract	
 the	
 information	
 about	
 the	
 hardware	
 or	
 software	
 that	

the	
 user	
 is	
 using"}	
 	

	
 }	

Using MongoDB as our database system we don’t need to use regular expression to modify

the information that Twitter API provides us because the data of a tweet is already formatted

in JSON format and MongoDB represents data in JSON format too. We have developed the

following script in Python in order to retrieve this data from our Twitter API and store it to a

MongoDB database in our system:

Class	
 StreamListener(tweepy.StreamListener):	
 	
 	
 	
 	
 	

	
 	
 	
 	
 def	
 __init__(self,	
 api):	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 self.api	
 =	
 api	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 super(tweepy.StreamListener,	
 self).__init__()	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 self.db	
 =	
 pymongo.MongoClient().inflationDB	
 	
 	

	
 	
 	
 	

	
 	
 	
 	
 def	
 on_status(self,	
 status):	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 print	
 status.text	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data	
 ={}	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data['user']=status.user.screen_name	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data['text']	
 =	
 status.text	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data['created_at']	
 =	
 status.created_at	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data['geo']	
 =	
 status.geo	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data['source']	
 =	
 status.source	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 data['entities']=status.entities	

	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 self.db.Tweets.insert(data)	

After the data gathering we can implement our Python script that utilizes NetworkX library in

order to generate our graph. We access every user and add each user name as a node and then

we scan the screen name of this user mentions in order to create our edges:

#connecting	
 with	
 our	
 database	
 	

c=Connection()	
 	

db=c.EbolaNet	
 	
 #my	
 database	
 #Another	
 DB:	
 EconomicsDB,newEbolaDB	
 	
 	

tweets=db.Tweets	
 	

	
 #creating	
 the	
 empty	
 graph	
 for	
 networkX	
 that	
 we	
 are	
 going	
 to	
 populate	

mynetwork=nx.Graph()	
 	
 	

mentions=db.Tweets.entities.user_mentions	
 tweets=tweets.find()	

test=tweets.entities.user_mentions.find()	
 	
 	

	
 38	

for	
 tweet	
 in	
 tweets:	
 	
 	

	
 	
 	
 	
 mynetwork.add_node(t['user'],tweet=t['text'])	

	

	
 	
 	
 	
 if	
 len(t['entities']['user_mentions'])!=0:	
 	
 	

	
 try:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 While(i<6):	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 mynetwork.add_edge(t['user'],t['entities']['user_mentions'	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
][i]['screen_name'])	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i=i+1	
 	
 	
 	

	
 except:	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pass	
 	

4.3.2 Community Discovery

A real-world community is a body of individuals with common interests. A virtual

community comes into existence when users with common interests start interacting with each

other. The problem of community detection has been tackled and discussed by many different

disciplines such as quantization in electrical engineering, discretization in statistics and

clustering in machine learning. We want to extract communities that share common thematic

interests. As we stated in our problem definition chapter, the most efficient way to implement

community detection in our network (graph) is by using Louvain method that is a modularity

optimization technique in order to detect communities in large networks. This community

detection algorithm is divided in two phases that are repeated iteratively. At first it assigns a

different community to each node of the network. This way in this initial partition there are as

many communities as there are nodes. Then, for each node i this algorithm is assigning the

neighbors j of i and evaluates the gain of modularity that would take place by removing i from

its community and by placing it in the community of j. The node i then placed in the

community for which this gain is maximum (only if the gain is positive). This process is

applied repeatedly for all the nodes in our network until no further improvements can be made.

A Python module that uses Louvain method in NetworkX’s framework is called. We are going

to implement this module into our graph in order to extract communities. This implementation

can be demonstrated in the code below continuing from the previous script as we have already

generated our graph and it creates a list of nodes for each community:

import	
 networkx	
 as	
 nx	
 	

import	
 community	

	
 39	

	
 	
 	

#first	
 compute	
 the	
 best	
 partition	
 	

partition	
 =	
 community.best_partition(mynetwork)	
 	

size	
 =	
 float(len(set(partition.values())))	
 	

pos	
 =	
 nx.spring_layout(mynetwork)	
 	

count	
 =	
 0	
 	

#	
 print	
 partition.values()	
 	

for	
 community	
 in	
 set(partition.values())	
 :	
 	
 	
 	
 	

	
 	
 	
 	
 count	
 =	
 count	
 +	
 1	
 	
 	
 	
 	
 	

	
 	
 	
 	
 list_nodes	
 =	
 [nodes	
 for	
 nodes	
 in	
 partition.keys()	
 if	
 partition[nodes]	
 ==	
 	

community]	
 	
 	
 	
 	
 	

	
 	
 	
 	
 #random	
 colors	
 in	
 every	
 loop	
 	

	
 	
 	
 	
 t='#'+str(hex(random.randint(0,16777216))[2:])	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 for	
 node	
 in	
 list_nodes:	
 	
 	
 	
 	
 	
 	

	
 	
 nodesnameslist.append(node)	

4.3.3 Community Labeling

Now that we have been able to detect communities in our graph we want to be able to

identify influential users (nodes) or the topic (or topics) of interest in each community. In order

to do that we need to define a method in order to calculate how influential a user is in a

community and also to be able to retrieve the information about all the nodes in each

community. In order to proceed we need to implement again some techniques from graph

theory.

4.3.3.1 Degree

In graph theory, the degree of a vertex of a graph is the number of edges incident to the

vertex. The degree of a vertex v is denoted deg(v) .

Figure 10: Node A with degree=5

In directed graphs like our network the set of nodes are connected by directional edges. When

a user mentions another user in his tweet, this interaction produces a directed edge from user

	
 40	

A to user B. Indegree is the number of directed edges (arcs) are incedent on a node and the

outdegree is how any directed edges (arcs) originate at a node.

 Figure 11: Node indegree Figure 12: Node outdegree

4.3.3.2 Influence

Centrality in graph theory is a term that defines how important a node is within a network. In

real-world interactions, we often consider people with many connections to be important.

Degree centrality transfers the same idea into a measure. The degree centrality measure ranks

nodes with more connections higher in terms of centrality. The degree centrality Cd for node

vi is: Cd (vi) = di , where di is the degree of node vi .
[17]

This way we can compute the degree of each node in every community in our graph using

netowrkX’s functionality and store it in a list.

4.3.4 Community Analysis

Now that we are able to access every node in each community we can retrieve each tweet

from our nodes and measure the most relevant topic of interest of each community by re-using

the zero-order relevance scoring function that we have developed as a phrase candidate

generation mechanism previously, modified for a tweet and a topic. Given two extracted topics

!1 , !2 and a tweet, t in a community, using our scoring function S(!i ,t) we could calculate

the relevance score of a topic !i for a tweet !i . Assuming that S(!1,t) > S(!2,t) suggests as that

topic !1 is most relevant to tweet t and therefore topic !1 is going to represent tweet t .

Following the same procedure for every tweet in a community for each community we can

result with a table of representative topics for each topic. Then we can calculate the percentage

of existence for each community. In our scoring function we are going to use again LDA’s

probability distribution as dependent probabilities in order to provide a more accurate

	
 41	

representation meaning that when we are applying the function each word in a tweet is going

to be compared with each word in the topic applying the coefficient of the probability for this

word to appear in the topic context. This procedure can be represented by the following figure:

Figure 13: Scoring process

This procedure is performed for each node in every community that we have been able to

detect. This way we can calculate the most relevant topic of interest in every community with a

percentage of relevance. This can be implemented in the code below (we have not included the

whole code).

if	
 (len(list_nodes)>5):	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 for	
 node	
 in	
 list_nodes:	
 	
 	
 	
 	
 	
 	

	
 nodesdegreelist.append(mynetwork.degree(node))	
 	
 	
 	
 	
 	

	
 nodesnameslist.append(node)	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 try:	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 d=mynetwork.node[node]['tweet']	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tokens=nltk.word_tokenize(d)	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 filteredtext	
 =	
 [t	
 for	
 t	
 in	
 tokens	
 if	
 t.lower()	
 not	
 in	
 stopList]	

	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tokenizedtweet='	
 '.join(filteredtext)	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 'TWEET-­‐',tokenizedtweet	

	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 st=[]	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 topic	
 in	
 topcs:	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 word	
 in	
 tokenizedtweet.split():	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 b=topic.split('+')	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 item	
 in	
 b:	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 a=item.split('*')	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 word	
 in	
 a[1]:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 score=float(math.log10(float(a[0])+float(1)))+score	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 42	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 st.append(score)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 score=0.0	
 	

	
 	
 	
 	
 	
 	
 	
 	
 except:	
 	

	
 	
 pass	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 if(max(st)>0):	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 st.index(max(st))	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 communitytopicscores.append(st.index(max(st)))	

	

	
 	
 	
 	
 if	
 (len(communitytopicscores)>0):	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 i	
 in	
 range(len(num_topics)):	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 print	
 communitytopicscores.count(i)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 topiccounts.append(communitytopicscores.count(i))	

	
 	
 	
 	
 	
 #computing	
 the	
 percentage	
 of	
 the	
 most	
 relevant	
 topic	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 perc=max(topiccounts)/len(communitytopicscores)	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 topicassignment='Topic:	
 	

'+str(topiccounts.index(max(topiccounts)))+'	
 	
 Percentage:	
 '+str(perc)	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 mynetwork.add_node(node,topic=topicassignment)	

	

	
 	
 	
 	
 communitytopicscores=[]	

	
 	
 	
 	
 topiccounts=[]	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 nodesdegreelist=[]	
 	
 	
 	
 	
 	

	
 	
 	
 	
 nodesnameslist=[]	
 	
 	
 	
 	
 	

Using this script we are calculating the scores of each topic for every tweet’s node separately

and we are keeping tha maximum topic score value and append these scores to a list st. After

the except function in our Python script, we append the maximum scored topic’s index

number to another list communitytopicscores with the communities topic scores. Next we

are computing the percentage of relevance between the community and the topic in a float

variable perc and we assign this variable’s value in the string variable topicassignment. We

are using NetworkX’s functionality to add the node with the max degree in our network with a

label that carries information about the community that this node represents. This information

is the most relevant topic to the community and the percentage of this relevance. Adding a

node in a network that already consists this node will just adjust any additional information

that this nodes carries. In our the node carries the label of topicassignment variable. Using

this method we can provide useful insights about the communities in our networks but we can

also help with the visualization by providing an improved aesthetically representation of our

network by not exhausting the image of our network with information in every node without

	
 43	

allowing the patterns to be visible. Using this algorithm the output is looking like the figure

below for some communities:

Most	
 influential	
 (highest	
 degree)	
 node	
 in	
 the	
 community:	
 NBCNews	
 	
 	

	

Most	
 relevant	
 topic	
 in	
 his	
 community:	
 Topic	
 1	
 with	
 percentage	
 of	

0.916666666667	
 	
 	

	

-­‐	
 	
 	

	

Most	
 influential	
 (highest	
 degree)	
 node	
 in	
 the	
 community:	
 Earthjustice	

	

Most	
 relevant	
 topic	
 in	
 his	
 community:	
 Topic	
 0	
 with	
 percentage	
 of	

0.7247667422	
 	

	

-­‐	

4.3.5 Network Visualization

Regarding visualization aesthetics it could help us to adjust the size of each node in our

network depending on the degree. This way we can identify important and influential nodes

quickly in a large network. We also need to find a suitable layout algorithm for the

representation of our network because the layout presets of NetworkX are not scalable for

large networks and NetworkX does not allow quick adjustments in our graphs. We are going to

use Gephi, which is an interactive visualization and exploration platform for all kinds of

netowrks and complex systems. As we already suggested in the previous chapter, using a

force-directed layout algorithm for real world large-scale graphs is suggested. OpenOrd C++
[24] implementation is an algorithm based on Fritcherman-Reingold and works with a fixed

number of iterations. The algorithm is using simulated annealing and has five phases: liquid,

expansion, cool-down, crunch and simmer. We can also adjust the size of each node depending

on the degree using Gephi. Applying modularity classification to our already processed

network can also create different colors for every partition (community) and this way we can

filter out small communities that does not obey a centrality threshold. An example of a

network with 9699 nodes and 6535 edges that has been generated by tracking tweets about

Ebola virus can be shown below:

	
 44	

	
 45	

5. Experiments and Results
In this chapter we are going to examine our results analytically providing empirical

evaluation.

Datasets: We are going to use different datasets that we have created using Twitter’s API.

Our datasets are: an economy related dataset that includes 3161 tweets, another economy

dataset that includes 7135 tweets and a technology dataset that includes 10802 tweets.

Procedure: The procedure that we are going to follow using the software modules that take

advantage of the methodologies that we have developed can be shown in the diagram below.

Figure 14: Procedure diagram

	
 46	

5.1 Phrase Generation

In this section we are going to present the effectiveness of the chunking/shallow parsing

method that we have proposed in order to extract grammatically correct phrases from our text

corpus (tweets) using two different datasets and three different chunking methods.

The top extracted phrases using our datasets that we had created in MongoDB containing

tweets that are related with economy and technology are going to be presented below using the

three phrase patterns that we have developed in our methodology:

• Phrase Pattern A: {<RB.?>*<VB.?>+<NNP}

• Phrase Pattern B: {<JJ\w?|VG\w?|NN\w?|DT\w?>*<NNP>+}

• Phrase Pattern C:
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}

Some tweets in our economy dataset that our chunkers are going to use are:

Economy	
 Dataset	
 example	

OECD	
 sees	
 global	
 economy	
 held	
 back	
 by	
 slow	
 eurozone	
 http:\/\/t.co\/BHNzJOcGYH	

RT	
 @SCV_Network:	
 Lets	
 help	
 support	
 our	
 local	
 businesses	
 and	
 buy	
 local!	
 Buy	
 local,	
 impove	
 local	
 economy.	

RT	
 @shoplocally:	
 It's	
 not	
 hard	
 to	
 support	
 your	
 local	
 economy.	
 Just	
 shift	
 your	
 spending	
 to	
 local	
 	

independents.	
 Every	
 bit	
 counts.	
 #ShopLocal	

Growing	
 Our	
 Economy	
 and	
 Strengthening	
 Our	
 Financial	
 System	
 |	
 The	
 White	
 House	
 http:\/\/t.co\/guNt4fimpO

@Bruciebabe	
 Consumer	
 driven	
 Low	
 wage	
 economy	

RT	
 @FlipChartRick:	
 The	
 Scottish	
 economy	
 in	
 ten	
 essential	
 charts	
 |	
 via	
 @Telegraph	
 http:\/\/t.co\/Km2bzXos0s	

Table 4: Economy Dataset example

The extracted phrases using our three chunking methods after the noise reduction are:

	
 47	

 Table 5: Extracted phrases Table 6: Extracted phrases Table 7: Extracted phrases

The tweets in our technology dataset can be shown below:

Technology	
 Dataset	
 example	

#Apple	
 -­‐	
 Latest	
 rumors	
 before	
 Tuesday's	
 Apple	
 event:	
 #iPhone	
 \/	
 #iPhone6	
 -­‐	
 The	
 new	
 phone	

#Technology	
 -­‐	
 Cyborg	
 Unplug	
 scans	
 your	
 Wi-­‐Fi	
 network	
 for	
 potential	
 surveillance	
 devices:	
 	

#Wifi...	
 http:\/\/t.co\/9TuZRfCIb4	
 -­‐	
 #Tech	
 #Techno	

why	
 some	
 healthcare	
 technology	
 leaders	
 have	
 been	
 hesitant	
 to	
 embrace	
 cloud-­‐based	
 technology	
 	

writ	
 large\"	
 http:\/\/t.co\/oOI1bktqAs	

#Google	
 -­‐	
 Sony	
 Xperia	
 T3	
 review:	
 A	
 solid	
 mid-­‐range	
 large-­‐screen	
 phone:	
 #XperiaT3	
 -­‐	
 Sony's	

	
 ...	
 http:\/\/t.co\/msZiM5qyrq	
 -­‐	
 #Tech	
 #Technology	

How	
 Mobile	
 Technology	
 Can	
 Help	
 Grow	
 Your	
 Tutoring	
 Agency	
 via	
 @edukwest\n\nhttp:\/\/t.co\/Dh0ZkRL7e0	

The	
 Solar	
 Technology	
 Behind	
 Apple's	
 iPhone	
 6	
 http:\/\/t.co\/gFAfZjhx0c	

Table 8: Technology Dataset example

The extracted phrases from our technology dataset after the noise reduction using our three

chunking methods are:

	
 48	

 Table 9: Extracted phrases Table 10: Extracted phrases Table 11: Extracted phrases

As we can see, the phrases extracted with the chunking method,

Phrase Pattern C:
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}

most of the time this method for phrase generation provide meaningful phrases that can

capture more accurately the thematic domain of our dataset in contrast with Phrase Pattern A

and Phrase Pattern B which are producing mediocre results and their extracted phrases are

more abstract which can lead to misleading interpretation of a tweet or a topic. Therefore it is

more likely for Phrase Pattern C type of phrases to become candidates for topic labels.

5.2 Topic Extraction using LDA

As we already analyzed in chapter 4, we are going to use Python’s Gensim library to

implement Latent Dirichlet Allocation algorithm to our datasets to extract topics. Testing LDA

	
 49	

in a relatively small dataset (3161 tweets) related to economy we are going to use the

following initializations for our LDA algorithm:

lda	
 =	
 ldamodel.LdaModel(corpus,	
 id2word=dictionary,	
 num_topics=6)	

which uses the default presets of LDA model, where id2word is the mapping from words ids

(integers) to words (strings) and num_topics is the number of the requested topics. The results

are going to be presented in tables where Ti for i !1 and i ! num_ topics , and p will be the

probability of the word distributed in the document:

T1	
 p	
 T2	
 p	
 T3	
 p	
 T4	
 p	
 T5	
 p	
 T6	
 p	

trouble	
 0.030	
 add	
 0.026	
 economy	
 0.023	
 financial	
 0.028	
 w’minister	
 0.036	
 lead	
 0.021	

local	
 0.023	
 exec	
 0.026	
 pattymurray	
 0.023	
 people	
 0.021	
 now	
 0.031	
 financial	
 0.021	

jobs	
 0.022	
 immigration	
 0.026	
 equalpay	
 0.023	
 world	
 0.021	
 sharing	
 0.025	
 economy	
 0.014	

2014	
 0.022	
 cappimigration	
 0.025	
 women	
 0.023	
 reform	
 0.021	
 til	
 0.019	
 25	
 0.014	

deep	
 0.022	
 action	
 0.025	
 countries	
 0.023	
 undervalued	
 0.015	
 depends	
 0.019	
 us	
 0.014	

low	
 0.022	
 billions	
 0.025	
 fairness	
 0.022	
 cegx	
 0.015	
 souring	
 0.019	
 checked	
 0.014	

september	
 0.018	
 action	
 0.025	
 ik	
 0.022	
 cheap	
 0.015	
 things	
 0.019	
 improve	
 0.014	

food	
 	
 0.015	
 reform	
 0.020	
 paycheck	
 0.020	
 way	
 0.014	
 scotland	
 0.014	
 westjet	
 0.014	

economy	
 0.015	
 lead	
 0.020	
 voor	
 0.020	
 2014	
 0.014	
 wait	
 0.014	
 arab	
 0.013	

banks	
 0.014	
 tories	
 0.019	
 now	
 0.017	
 em	
 0.014	
 lead	
 0.013	
 system	
 0.012	

Table 12: Extracted topics from economy dataset

As we can see, using our economy dataset with default settings for our LDA model the six

extracted topics are formed into patterns that have a semantic meaning, with some minor

abstractions. Now we are going to experiment with the LDA model parameters in order to try

to export better results.

lda	
 =	
 LdaModel(corpus,	
 num_topics=6,	
 alpha='auto',	
 eval_every=5)	

Using these settings we are going to use eval_every	
 parameter, which slows down the

training of the model providing better accuracy but less performance (the default is 10).

	
 50	

Alpha parameter affects the sparsity of the document-topic (theta) and topic-word (lamda)

distributions. Setting alpha parameter to ‘auto’ our model is going to learn an asymmetric

prior directly from our data. The results can be shown in the table below:

T1	
 p	
 T2	
 p	
 T3	
 p	
 T4	
 p	
 T5	
 p	
 T6	
 p	

local	
 0.035	
 immigration	
 0.022	
 women	
 0.026	
 bjp	
 0.017	
 uk	
 0.027	
 us	
 0.034	

deep	
 0.020	
 pace	
 0.020	
 2014	
 0.026	
 inflation	
 0.017	
 scotland	
 0.027	
 economy	
 0.028	

trouble	
 0.020	
 2014	
 0.020	
 economy	
 0.018	
 3.74	
 0.017	
 think	
 0.020	
 vote	
 0.023	

support	
 0.015	
 w’minister	
 0.015	
 equalpay	
 0.018	
 silence	
 0.017	
 sharing	
 0.020	
 god	
 0.023	

shoplocal	
 0.015	
 action	
 0.015	
 fairness	
 0.018	
 low	
 0.016	
 lead	
 0.020	
 2014	
 0.023	

shift	
 0.015	
 reform	
 0.015	
 tax	
 0.018	
 deafening	
 0.016	
 depends	
 0.014	
 action	
 0.022	

spending	
 0.015	
 billions	
 0.014	
 paycheck	
 0.018	
 minhazmerchant	
 0.016	
 hugorifkind	
 0.014	
 crisis	
 0.022	

hard	
 	
 0.015	
 add	
 0.014	
 people	
 0.018	
 5-­‐year	
 0.015	
 now	
 0.013	
 now	
 0.012	

economy	
 0.014	
 fwd_us	
 0.013	
 firms	
 0.018	
 cong	
 0.015	
 w’minister	
 0.013	
 financial	
 0.012	

shoplocally 0.014 cappimigration 0.013 new 0.017 falls 0.015 wait 0.013 state 0.012

Table 13: Extracted topics from our economy dataset (new parameters)

As we can see, the results has not changed radically however now we can definitely

determine each inter-topic’s category manually.

• Topic 1: is related with local economy and issues related with not supporting local

shops.

• Topic 2: is related with immigration and how it affects economy

• Topic 3: is related with woman rights

• Topic 4: is related with inflation, and probably Bharatiya Janata Party is aiming to

defeat inflation

• Topic 5: is related with Scotland independence and how it will affect the economy

• Topic 6: is related with the economy of United States, elections and the financial

crisis

The next step will be to experiment with the results of topic labeling using phrases.

	
 51	

5.3 Topic Labeling using Zero-Order Scoring Function:

In this section we are going to present the results and the effectiveness of the proposed

method for automatically labeling topic models using our datasets.

T1	
 p	
 T2	
 p	
 T3	
 p	
 T4	
 p	
 T5	
 p	
 T6	
 p	

local	
 0.035	
 immigration	
 0.022	
 women	
 0.026	
 bjp	
 0.017	
 uk	
 0.027	
 us	
 0.034	

deep	
 0.020	
 pace	
 0.020	
 2014	
 0.026	
 inflation	
 0.017	
 scotland	
 0.027	
 economy	
 0.028	

trouble	
 0.020	
 2014	
 0.020	
 economy	
 0.018	
 3.74	
 0.017	
 think	
 0.020	
 vote	
 0.023	

support	
 0.015	
 w’minister	
 0.015	
 equalpay	
 0.018	
 silence	
 0.017	
 sharing	
 0.020	
 god	
 0.023	

shoplocal	
 0.015	
 action	
 0.015	
 fairness	
 0.018	
 low	
 0.016	
 lead	
 0.020	
 2014	
 0.023	

shift	
 0.015	
 reform	
 0.015	
 tax	
 0.018	
 deafening	
 0.016	
 depends	
 0.014	
 action	
 0.022	

spending	
 0.015	
 billions	
 0.014	
 paycheck	
 0.018	
 minhazmerchant	
 0.016	
 scottish	
 0.014	
 crisis	
 0.022	

hard	
 	
 0.015	
 add	
 0.014	
 people	
 0.018	
 5-­‐year	
 0.015	
 now	
 0.013	
 now	
 0.012	

economy	
 0.014	
 us	
 0.013	
 firms	
 0.018	
 poor	
 0.015	
 w’minister	
 0.013	
 financial	
 0.012	

shoplocally 0.014 cappimigration 0.013 new 0.017 falls 0.015 wait 0.013 state 0.012

Table 14: Extracted topics from our economy dataset for phrase ranking

The top labels for each topic are:

• labelT1 : local economy, score= 0.042055161736

• labelT 2 : us lowest pace, score=0.030886526429

• labelT 3 : paycheck fairness, score=0.030912453133

• labelT 4 : poor economy, score=0.018120597038

• labelT 5 : scottish economy, score=0.017492753773

• labelT 6 : economy financial crisis, score=0.055814264886

As we can see, our extracted phrases can capture the essence of every topic despite that the

lower scores below become abstract or a misleading in some cases. The zero-order function

generates quality labels for our topics. Now we are going to extract the labels for our topics

extracted from our technology dataset.

	
 52	

T1	
 p	
 T2	
 p	
 T3	
 p	
 T4	
 p	
 T5	
 p	
 T6	
 p	

xperia	
 0.078	
 xbox	
 0.035	
 techno	
 0.056	
 new	
 0.028	
 apple	
 0.036	
 world	
 0.039	

tablet	
 0.065	
 tesco	
 0.032	
 network	
 0.050	
 samsung	
 0.021	
 iphone	
 0.031	
 event	
 0.016	

verizon	
 0.035	
 sony	
 0.032	
 devices	
 0.049	
 tech	
 0.021	
 world	
 0.025	
 peace	
 0.015	

technology	
 0.034	
 features	
 0.027	
 surveillance	
 0.049	
 launch	
 0.021	
 iphone6	
 0.019	
 science	
 0.013	

sony	
 0.033	
 apple	
 0.022	
 wifi	
 0.020	
 report	
 0.015	
 peace	
 0.019	
 best	
 0.013	

wi-­‐fi	
 0.033	
 friends	
 0.020	
 potential	
 0.019	
 sm-­‐a500	
 0.015	
 new	
 0.019	
 innovation	
 0.013	

google	
 0.027	
 mi	
 0.017	
 scans	
 0.018	
 smartphone	
 0.015	
 innovation	
 0.019	
 costumers	
 0.011	

major	
 	
 0.018	
 october	
 0.019	
 cyborg	
 0.018	
 old	
 0.014	
 review	
 0.014	
 future	
 0.011	

hell	
 0.017	
 6	
 0.019	
 unplug	
 0.018	
 series	
 0.014	
 samsung	
 0.014	
 conference	
 0.010	

network	
 0.017	
 new	
 0.019	
 wi-­‐fi	
 0.017	
 technews	
 0.014	
 know	
 0.013	
 wrangle	
 0.010	

Table 15: Extracted topics from technology dataset for phrase ranking

The top labels for each topic are:

• labelT1 : xperia sony technology, score=0.111354320918

• labelT 2 : new snap friends features, score=score=0.042114685245

• labelT 3 : potential surveillance devices, score=0.077669646858

• labelT 4 : new samsung galaxy smartphone,score=0.052947947959

• labelT 5 : apple new iphone, score=0.05294894779593

• labelT 6 : annual event innovation, score=0.0249383150644

As we can see again our zero-order function assigns semantically meaningful labels to our

topics and can provide better understanding of a topic without the need to manually label the

topics.

5.4 Unfolding communities

In this chapter we are going to analyze the results extracted by our community detection

algorithms. We have created a new dataset of 7135 tweets related with economy. Using our

Python NetworkX script in order to create the network graph we export a graph of 7135 nodes

(users) and 5165 edges (interactions). We can then compute the degree distribution in our large

	
 53	

graph and then apply our community detection algorithms using modularity classes to cluster

our graph into communities.

Results:

Average degree: 0.724

Average path length: 1.945

Clustering coefficient: 0.048

Number of Communities: 3007

Figure 15: Degree distribution

Figure 16: In-degree distribution

	
 54	

Figure 17: Out-degree distribution

The average degree is 0.724 which means that on average a Twitter user in our network has

less than one connection (interaction) with another Twitter user which us relatively low but

was expected due to the nature of social networking. Computing the average path length we

get 1.945, which is relatively short, meaning that the clusters are well connected. The

clustering coefficient is 0.048, which is relatively small and means that our network is not well

inter-connected that leads to the conclusion that propagation of information is difficult in this

network between the nodes. In order to provide better visualization we will need to apply

filtering in our network. The final step is to make the community more visible by calculating

modularity measure. Modularity will show the clusters of nodes that are more densely

connected together than the rest of the network. Using the modularity module we are going to

use 5.0 as a resolution (default is 1.0) in order to acquire better quality in our extracted

partitions with bigger communities.

	
 55	

Figure 18: Size distribution

Using our extracted modularity classes we can now display the graph by assigning a different

color to each class and we can use our degree distribution in order to assign different sizes to

nodes based on their degree. This way as we already proposed in our methodology, the higher

degree and larger nodes will indicate the most ‘important’ nodes in our communities.

Figure 19: Extracted network (all communities)

	
 56	

As our clustering coefficient, and the number of communities in our network already had

indicated, a large percentage of unimportant communities are included in our network. We can

see that the most important ones are clustered in the center and the most unimportant ones are

in the perimeter of our network. Now we will apply some filtering in order to remove these

unimportant networks and only visualize relatively large partitions. The threshold that we are

going to apply will be that we will only keep community partitions that are larger than 0.5% of

the total population in our networks. Applying this filtering we get a new graph with 1610

nodes and 2124 edges.

Figure 20: Extracted network (only interesting communities)

	
 57	

As we can see the communities are well ordered and they are relatively large meaning that

extracting information form these communities would be useful. As we already proposed in

our methodology, we have developed a way of assigning the topics of interest in each

community with a percentage of relevance. The extracted topics among with their highest

scored labels from our new economy dataset are:

T0	
 p	
 T1	
 p	
 T2	
 p	
 T3	
 p	
 T4	
 p	
 T5	
 p	

japanese	
 0.024	
 world	
 0.023	
 asia	
 0.056	
 world	
 0.031	
 omojuwa	
 0.031	
 eurozone	
 0.037	

growth	
 0.022	
 omojuwa	
 0.019	
 unemployment	
 0.050	
 adani	
 0.030	
 gas	
 0.025	
 fragile	
 0.025	

recession	
 0.021	
 nigerian	
 0.019	
 russian	
 0.049	
 uk	
 0.018	
 fly	
 0.025	
 europe	
 0.024	

resigned	
 0.016	
 global	
 0.018	
 longterm	
 0.049	
 billion	
 0.018	
 aero	
 0.024	
 crisis	
 0.019	

economy	
 0.015	
 need	
 0.017	
 people	
 0.020	
 cup	
 0.017	
 abuja	
 0.019	
 best	
 0.019	

money	
 0.013	
 economy	
 0.017	
 forbes	
 0.019	
 rugby	
 0.015	
 afford	
 0.018	
 poverty	
 0.018	

laundering	
 0.012	
 gratification	
 0.017	
 money	
 0.018	
 loan	
 0.015	
 moving	
 0.017	
 italy	
 0.017	

murders	
 	
 0.012	
 leveraging	
 0.016	
 fool	
 0.018	
 cameron	
 0.013	
 price	
 0.016	
 future	
 0.017	

ptiofficial	
 0.012	
 us	
 0.016	
 part	
 0.018	
 economy	
 0.013	
 advance	
 0.013	
 economy	
 0.016	

japan	
 0.012	
 business	
 0.015	
 economic	
 0.017	
 sense	
 0.013	
 global	
 0.013	
 investment	
 0.016	

Table 16: Extracted topics from our new economy dataset for phrase ranking

The label assignment in each topic is:

• labelT 0 : japanese economy, score=0.043996084379

• labelT1 : nigerian economy, score=0.022955712963

• labelT 2 : longterm unemployment spread, score=0.081185296665

• labelT 3 : rugby world cup, score=0.052455800831

• labelT 4 : lower gas price, score=0.018443751034

• labelT 5 : eurozone crisis, score=0.063691588198

As we can see out extracted topics are semantically meaningful and represent a category of

economy news. Some topics are abstract like topic 4, which is probably related with topic 2

and labelT 4 probably did not capture the semantic meaning of the topic accurately, however

all the other automated topic labels are representing their topics correctly. Now we can use

our network to visualize these topics and their distribution over our communities:

	
 58	

Figure 21: Final extracted network (only interesting communities with labels)

He have exported our graph using Python’s NetworkX library to GEPHI and used OpendOrd

module as a layout algorithm to provide enhanced visual results. Now we can see the

distribution of the topics among our communities. Regarding the actual users of the

communities whose names are not shown for privacy reasons, the nodes are interacting with

each other and discussing topics like Japanese economy or Eurozone crisis into their

communities. An interesting observation in this graph is that the community with red color is

discussing mostly about topic 1 and topic 4 and as we already had observed this topics are

relatively similar which indicates the effectiveness of our methods.

	
 59	

6. Conclusions and Future Work

In this thesis we have showed approaches for clustering content from Twitter using

probabilistic topic modeling methods such as Latent Dirichlet Allocation and then recorded

how these topics are distributed in communities in the Twitter graph. This way we have been

able to identify which topics and which users are more influential. Using automatic topic

labeling we have enhanced the semantics of our extracted multinomial topics providing a better

understanding of our topics. Utilizing natural language processing techniques such us

chunking/shallow parsing has helped us to generate grammatically correct phrases from our

dataset as candidate labels for our topics. Then we have developed a scoring function in order

to assign the most semantically similar labels to our topics. Using community detection

algorithms we have been able to identify which are the topics of interest for each community

and in what percentage, providing their visualization in the Twitter graph. We have collected

various datasets using Twitter’s API and used open source tools to reinforce our research.

For the requirements of our research goals and for the process of application development we

have used a plethora of tools, modules and libraries. MongoDB as a database management

system, Python 2.7.8 as the programming language to implemented our methods and our

ideas, tweepy as a Python’s library to interpret the Twitter API, scipy and numpy, which are

open-source libraries for mathematics, scikit-learn and gensim which are tools for data mining

and machine learning for the implementation of probabilistic topic models such as LDA,

regular expressions which is a Python’s native module (regex) and was used for pattern

matching, NLTK which is a Python’s library that helped us to implement natural language

techniques, NetworkX which is a Python’s software package for the manipulation of complex

networks help us to generate our graphs and to implement graph operations, communityAPI

	
 60	

which is a module for NetworkX helped us to apply community detection algorithms to our

graphs, Gephi which is an open-source network analysis and visualization software helped us

to analyze our graphs and use state of the art layout algorithms and to visualize our graphs.

Due to the limitations of Twitter’s API which only allows a small percent of the actual

streaming data in Twitter to be accessible for research or third party applications our data

collection process has been stalled without being able to access the total amount of Twitter

streaming data. Ideally we would collect continuously all the available data for a certain

domain of our interest (such as economy or technology using streamListener() in our

Twitter’s API) and we would remove the unnecessary data from our database in parallel with

data collection until a certain amount of data is reached. Another approached would be to use

an already “trimmed” large dataset however as the amount of tweets are rapidly increasing day

by day these datasets are becoming valuable assets for companies. Despite these limitations we

have been able to develop a fully working prototype that can extract valuable information from

Twitter data. An application like this could be a valuable asset to companies that want to

perform costumer analysis or to identify the interests of groups and communities in order to

perform market research or to analyze sociological events like political parties formation.

Using our zero-order relevance scoring function we have been able to assign semantically

meaningful labels to our topics however for future work we could leverage our zero-order to a

first-order relevance scoring function using the Kullback Leibler (KL) divergence to evaluate

the similarity of a generated label to a topic. Moreover for future work we can extend our

research and include sentiment analysis and named entity recognition methods to provide

another semantic layer in our extracted network that can identify name entities such as brand

names, geo-locations, people and display the these entities in our network providing a semantic

analysis from the nodes (users) in the community that this entity is found. Again this could be

a valuable asset to companies and businesses that want to discover how costumers or certain

communities are reacting to brand names or events. Previous researchers have used sentiment

analysis for suicide prevention and gender recognition, which indicates the variety and depth

that these fields of study can reach not only for the benefit of companies but also for the

improvement of society.

	
 61	

Bibliography
[1] Hyun-Woo Kim. (2010). Data Mining on Microblogged Information: Gender Recognition

and Suicide Prevention. Master Thesis. Pennsylvania State University

[2] Qiaozhu Mei, Xuehua Shen, Chengxiang Zhai. (2007). Automatic Labeling of

Multinomial Topic Models. University of Illinois. pages [2-4]

[3] Matthey Michelson, Sofus A. Macskassy (2010). . Discovering Users’ Topics of Interest

of Twitter: A First Look. Fetch Technologies

[4] Michael Mathioudakis, Nick Koudas. (2010). TwitterMonitor: Trend Detection over the

Twitter Stream. University of Toronto.

[5] Ivan Marcin, Sam Shiu. (2012). Extracting Topic Trends and Connections: Semantic

Analysis and Topic Linking in Twitter and Wikipedia Datasets. Stanford University.

[6] Reza Zafarani, Mohammad Ali Abbasi, Huan Liu. (2014). Social Media Mining. Arizona

State University.

[7] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, Etienne Lefebvre. (2008).

Fast Unfolding of Communities in Large Networks. Univeristy Pierre et Marie Curie.

pages 2-7

[8] R. Lambiotte, J. C. Delvenne, M. Barahona. (2009). Laplacian Dynamics and Multiscale

Modular Structure in Networks

[9] Santo Fortunato. (2010). Community Detection in Graphs. Complex Networks and

Systems Lagrange Laboratory, ISI Foundation. pages [4-7]

[10] Matthew A. Russel. (2013). Mining the Social Web. O’Reilly Media. pages [183-213],[

370-380]

	
 62	

[11] Matthew A. Russel. (2011). 21 Recipes for Mining Twitter. O’Reilly Media. pages [7-

15]

[12] Steven Bird, Ewan Klein, Edward Loper. (2009). Natural Language Processing with

Python. O’Reilly Media. pages [79-106], [273-285]

[13] Bretonnel K. Cohen, Lawrence Hunter. (2008). Getting Started in Text Mining. PLoS

Comput Biol 4(1):e20. doi:10.1371/journal.pcbi.0040020

[14] Hastie Trevor, Tibshirani Robwer, Friedman Jerome. (2009). The Elements of Statistical

Learning: Data Mining, Inference and Prediction.

[15] David M. Blei, John D. Lafferty. (2009). Topic Models. Princeton and Carnegie Mellon

University. pages [2-4]

[16] David M. Blei (2010). Introduction to Probabilistic Topic Models. Princeton University.

pages [6-8]

[17] Reza Zafarani, Mohammad Ali Abbasi, Huan Liu (2014). Social Media Mining.

Cambridge University Press. chapter 1: [1-5] , chapter 2: [29-36], chapter 3: [74-77]

[18] Di Battista,Peter Eades, Roberto Tamassia, Ioannis G. Tollis. (1999). Graph Drawing:

Algorithms for the visualization of Graphs. Prentice Hall, ISBN 978-0-13-301615-4

[19] Burt R. S. (2005). Brokerage and closure: An introduction to social capital. Oxford

University Press.

[20] Ghosh R.,Lerman K. (2011). Parameterized centrality metric for network analysis.

Physical Review E. 83(6), 0066118

[21] Newmann M. (2011). Networks: An introduction. Oxford University Press.

[22] Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic Stahl. (2014). A Survey of

Data Mining Techniques for Social Network Analysis. Robert Gordon University.

[23] Terry Winograd. (1971). Procedures as a representation for Data in a Computer Program

for Understanding Natural Language. MIT AI Technical Report 235.

	
 63	

[24] S. Martin, W. M. Brown, R. Klavans, and K. Boyack. (2011). OpenOrd: An Open-

Source Toolbox for Large Graph Layout.	
 SPIE Conference on Visualization and Data

Analysis (VDA).

	
 64	

Appendix
Appendix A’ Python Scripts:

The most important Python scripts are going to be presented in this section.

A.1 File: connectTweepyMongo.py

import tweepy
import sys
import pymongo

consumer_key="*****"
consumer_secret="*****"

access_token="******"
access_token_secret="*****"

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

class CustomStreamListener(tweepy.StreamListener):
 def __init__(self, api):
 self.api = api
 super(tweepy.StreamListener, self).__init__()

 self.db = pymongo.MongoClient().economyLAST

 def on_status(self, status):
 print status.text

 data ={}
 data['user']=status.user.screen_name
 data['text'] = status.text
 data['created_at'] = status.created_at
 data['geo'] = status.geo
 data['source'] = status.source
 data['entities']=status.entities

 self.db.Tweets.insert(data)

	
 65	

 def on_error(self, status_code):
 print >> sys.stderr, 'Encountered error with status code:', status_code
 return True # Don't kill the stream

 def on_timeout(self):
 print >> sys.stderr, 'Timeout...'
 return True # Don't kill the stream

sapi = tweepy.streaming.Stream(auth, CustomStreamListener(api))
sapi.filter(track=['economy'])

A.2 connecttweepycsv.py:

from tweepy import Stream
from tweepy import OAuthHandler
from tweepy.streaming import StreamListener
import time

ckey = ***
csecret = ***
atoken = ***
asecret = ***

class listener(StreamListener):

 def on_data(self, data):
 try:
 #print data

 #trimmed to getr only the tweet
 tweet = data.split(',"text":"')[1].split('","source')[0]
 print tweet

 # saveThis=str(time.time())+'::'+tweet
 #testing without time at first
 saveThis=tweet
 saveFile=open('economyLAST.csv','a')
 saveFile.write(saveThis)
 saveFile.write('\n')
 saveFile.close()
 return True

 #if internet drops for example

	
 66	

 except BaseException, e:
 print 'failed ondata,',str(e)
 #wait for reconnection
 time.sleep(1)

 def on_error(self, status):
 print status

auth = OAuthHandler(ckey, csecret)
auth.set_access_token(atoken, asecret)
twitterStream = Stream(auth,listener())
twitterStream.filter(track=['economy'])

A.3 chunkerPhraseGeneration.py

import nltk
import re
import time
import csv

#Regular Expressions:
#? = 0 or 1 rep
#* = 0 or more rep
#+ = 1 or more rep

tweetList = []
Phrase = []
phrases = []
phr=''
urlone='http:'
urltwo='\\'

output = open('Stopwords_for_Tweets.txt', 'r')
#read from saved tweets CSV
with open('economyLAST.csv','rU') as csvfile:
 tweetreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
 for row in tweetreader:

 #Removing all links-URLs from Tweets
 for word in row:
 if urlone in word or urltwo in word:

	
 67	

 row.remove(word)

 x=' '.join(row)
 tokens = nltk.word_tokenize(x)

print (tokens)

 y=' '.join(tokens)

 tweetList.append(y)

time.sleep(0.1)

stoplist=set(output.read().split())
texts = [[word for word in tweet.lower().split() if word not in stoplist]
 for tweet in tweetList]

all_tokens = sum(texts, [])
tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
texts = [[word for word in text if word not in tokens_once]
 for text in texts]

for tweet in texts:

 # tokenized = nltk.word_tokenize(tweet)

 tagged = nltk.pos_tag(tweet)

 #find what adjective modifies a proper noun

 grammar = r"""Phrase:
{<NN\w?>*<DT\w?|NN\w?>*<JJ\w?|VG\w?>+<NN\w?>+<JJ\w?|VG\w?>*}"""
 # grammar = r"""Phrase:
{<JJ\w?|VG\w?|NN\w?|DT\w?>+<NNP>+}"""
 # grammar = r"""Phrase: {<RB.?>*<VB.?>+<NNP>}"""

 chunkParser = nltk.RegexpParser(grammar)
 chunked = chunkParser.parse(tagged)

 print '-------------------'

	
 68	

 for i in chunked.subtrees(filter=lambda x: x.node=='Phrase'):
 a=i.leaves()
 # print a
 for j in a:
 # print j
 for k in j:
 print k

 phrases.append(k)
 break
 phrases.append(',')

 print '********************'

for ph in phrases:
 print ph
 text=open('phraseseconomyLast.txt','a')
 text.write(ph + ' ')
 text.close
 # chunked.draw()

textz=open('phraseseconomyLast.txt','r')
phrzs=textz.read().split(',')

for p in phrzs:
 print p

 saveFile=open('phraseseconomyLast.csv','a')
 saveFile.write(p)
 saveFile.write('\n')
 saveFile.close()

A.4 topicExtractionLDAphraseRanking.py

from gensim import corpora, models, similarities
from gensim.models import hdpmodel, ldamodel
from itertools import izip
import csv
import re
import nltk
import math
from operator import itemgetter
import unicodedata
import time

	
 69	

tweetList = []
urlone='http:'
urltwo='\\'
topics=[]
score=0.0
s= 0.0
m=0
scoretable=[[],[],[],[],[],[],[],[],[],[],[]]
phrzs=[]
finalist=[]

#read from saved tweets CSV
with open('economyLAST.csv','rU') as csvfile:
 tweetreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
 for row in tweetreader:

 #Removing all links-URLs from Tweets (3 times)
 for word in row:
 if urlone in word or urltwo in word:
 row.remove(word)
 # print ("----------Word REMOVED------------")
 # print word

 x=' '.join(row)
 # print (x)
 tokens = nltk.word_tokenize(x)
 # print (tokens)

 y=' '.join(tokens)

 #creating the tweet list
 tweetList.append(y)
 # print(tweetList)

remove common words and tokenize
output = open('Stopwords_for_Tweets.txt', 'r')
stopwordz=output.read().split(' ')

stopwordz=output
stoplist = output
stoplist = set('for a of the and to in technology - '.split())
stoplist=set(output.read().split())
texts = [[word for word in tweet.lower().split() if word not in stoplist]
 for tweet in tweetList]

	
 70	

remove words that appear only once
all_tokens = sum(texts, [])
tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
texts = [[word for word in text if word not in tokens_once]
 for text in texts]

dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]

lda = ldamodel.LdaModel(corpus, id2word=dictionary, num_topics=7)
corpus_lda = lda[corpus]

for l,t in izip(corpus_lda,corpus):
print l,"::",t
#print topics
for i in range(0, lda.num_topics):

 print lda.print_topic(i)

 topics.append(lda.print_topic(i))

time.sleep(7)
for t in topics:
 # print ph
 txt=open('economyLASTtopics.txt','a')
 txt.write(t + '\n')
 txt.close

for topic in topics:

 print 'New Topic:------------------------------'

 with open('phraseseconomyLast.csv','rU') as csvfile:

 phrases = csv.reader(csvfile, delimiter=' ', quotechar='|')
 for phrase in phrases:
 joinphrase=' '.join(phrase)

 # print 'Phrase',phrase,'for Topic',topic,'SCORE:',score
 # score=0.0
 b=topic.split('+')

 # phrzs.append(joinphrase)

	
 71	

 for item in b:

 a=item.split('*')
 for p in joinphrase.split():

 print p,a[1]
 # time.sleep(0.02)
 if str(p) in str(a[1]):
 print 'Probability:',a[0]
 print 'Phrase:', phrase
 print 'Topic:' ,topic

 score=float(math.log10(float(a[0])+float(1)))+score

 # time.sleep(2)

 print 'Phrase',phrase,'for Topic',topic,'SCORE:',score

 scoretable[m].append(score)

 score=0.0

 # time.sleep(1)
 m=m+1

with open('phraseseconomyLast.csv','rU') as csvfile:

 phrases = csv.reader(csvfile, delimiter=' ', quotechar='|')
 for phrase in phrases:
 joinphrase=' '.join(phrase)
 phrzs.append(joinphrase)

print phrzs
print scoretable

#range = num of topics
for i in range(len(num_topics)):
 try:

 max(scoretable[i])

 print max(scoretable[i]),scoretable[i].index(max(scoretable[i]))
 print phrzs[scoretable[i].index(max(scoretable[i]))]
 finalist.append(phrzs[scoretable[i].index(max(scoretable[i]))])
 print lda.print_topic(i)

	
 72	

 except:
 pass

A.5 graphgenerationwithlabels.py

from __future__ import division
from pymongo import Connection
import pymongo
from pymongo import MongoClient
import time
import json
import networkx as nx
import matplotlib.pyplot as plt
import community
import random
import csv
import nltk
import math

scoretable=[[],[],[],[],[],[],[],[],[],[],[]]
communitytopicscores=[]
st=[0]
score=0.0
a={}
d=['']
i=0
tweet={}
stopList = open('Stopwords_for_Tweets.txt', 'r').read().split()
tweetList=[]
m=0
i=0
perc=0.0
topic1=0
topic2=0
topic3=0
topic4=0
topicstats=[]
topiccounts=[]
nodesdegreelist=[]
nodesnameslist=[]

textz=open('economyLASTtopics.txt','r')
topcs=textz.read().split('\n')

	
 73	

c=Connection()
db=c.economyLAST #my database #Another DB: EbolaTest,newEbolaDB,economyLAST
tweets=db.Tweets

#creating the empty graph for networkX
mynetwork=nx.Graph()
mentions=db.Tweets.entities.user_mentions
a=tweets.find()
test=tweets.entities.user_mentions.find()

for t in a:

 mynetwork.add_node(t['user'],tweet=t['text'])

 if len(t['entities']['user_mentions'])!=0:
 try:

 for i in range (0, 10):

 mynetwork.add_edge(t['user'],
t['entities']['user_mentions'][i]['screen_name'])

 except:
 pass

#first compute the best partition
partition = community.best_partition(mynetwork)
#drawing
size = float(len(set(partition.values())))
pos = nx.spring_layout(mynetwork)
count = 0
print partition.values()
for com in set(partition.values()) :
 count = count + 1
 list_nodes = [nodes for nodes in partition.keys()
 if partition[nodes] == com]

 #random colors in every loop
 t='#'+str(hex(random.randint(0,16777216))[2:])

 # print len(list_nodes)
 if (len(list_nodes)>5):
 for node in list_nodes:

	
 74	

 nodesdegreelist.append(mynetwork.degree(node))
 nodesnameslist.append(node)

 try:
p
 d=mynetwork.node[node]['tweet']

 tokens=nltk.word_tokenize(d)
 filteredtext = [t for t in tokens if t.lower() not in stopList]
 tokenizedtweet=' '.join(filteredtext)
 print 'TWEET',tokenizedtweet

 st=[]

 for topic in topcs:

 for word in tokenizedtweet.split():

 b=topic.split('+')
 for item in b:

 a=item.split('*')

 if word in a[1]:

 print
 print 'Probability:',a[0]
 print 'Tweet:',
tokenizedtweet.split()
 print 'Topic:' ,topic
 print

 score=float(math.log10(float(a[0])+float(1)))+score

 st.append(score)
 score=0.0

 except:
 pass

 if(max(st)>0):

	
 75	

 print 'topic number:',st.index(max(st)),'for tweet in
community'
 print max(st)
 print st.index(max(st))
 communitytopicscores.append(st.index(max(st)))

 print 'Community Topic Scoring Results:'
 for topic in communitytopicscores:

 if (len(communitytopicscores)>2):

 for i in range (0, len(num_topics))
 topiccounts.append(communitytopicscores.count(i))
 i=i+1

 perc=max(topiccounts)/len(communitytopicscores)

 print 'MAX: ',max(topiccounts),'TOPIC:
',topiccounts.index(max(topiccounts)), 'PERCENTAGE: ',perc

 print 'NODES DEGREES'
 for nodedegree in nodesdegreelist:
 print nodedegree

 maxdegree=max(nodesdegreelist)
 # print maxdegree
 print 'POSITION'
 print nodesdegreelist.index(max(nodesdegreelist))

 print 'NODES NAMES'
 for nodename in nodesnameslist:
 print nodename

 print 'HIGHEST NODE DEGREE NAME (MOST INFUENCIAL IN
COMMUNITY):'
 print nodesnameslist[nodesdegreelist.index(max(nodesdegreelist))]
 print 'MOST RELEVANT TOPIC ON HIS COMMUNITY:'
 print topiccounts.index(max(topiccounts)), 'WITH
PERCENTAGE:',perc

 topicassignment='Topic: '+str(topiccounts.index(max(topiccounts)))+'
Percentage: '+str(perc)
 print topicassignment
 mynetwork.add_node(node,topic=topicassignment)

	
 76	

 communitytopicscores=[]
 topiccounts=[]
 nodesdegreelist=[]
 nodesnameslist=[]
 print 'NEW COMMUNITY'

nx.write_gml(mynetwork,"NEWresults.gml")

	
 77	

Appendix B’ Figures and Tables:

Number Index Figure/Table Page
Figure 0 Social network community structure example 9
Figure 1 Problem definition diagram 11
Figure 2 Data gathering and preparation 12
Figure 3 Knowledge Discovery 15
Figure 4 Phrase generation using Phrase C grammar 27
Figure 5 Phrase generation using Phrase C grammar 27
Figure 6 Phrase generation using Phrase C grammar 27
Figure 7 Latent Dirichlet allocation representation model 30
Table 1 Topic 1 extracted 32
Table 2 Topic 2 extracted 32
Table 3 Topic 3 extracted 32
Figure 8 Zero-order relevance scoring function 34
Figure 9 Demonstration of edges in a small network 36

Figure 10 Node A with degree=5 39
Figure 11 Node indegree 40
Figure 12 Node outdegree 40
Figure 13 Scoring process 41
Figure 14 Procedure diagram 45
Table 4 Economy dataset example 46
Table 5 Extracted phrases 47
Table 6 Extracted phrases 47
Table 7 Extracted phrases 47
Table 8 Technology dataset example 47
Table 9 Extracted phrases 48

Table 10 Extracted phrases 48
Table 11 Extracted phrases 48
Table 12 Extracted topics from economy dataset 49
Table 13 Extracted topics from economy dataset (new parameters) 50
Table 14 Extracted topics from economy dataset for phrase ranking 51
Table 15 Extracted topics from technology dataset for phrase ranking 52
Figure 15 Degree distribution 53
Figure 16 In-degree distribution 53
Figure 17 Out-degree distribution 54
Figure 18 Size distribution 55
Figure 19 Extracted network (all communities) 55
Figure 20 Extracted network (only interesting communities) 56
Table 16 Extracted topics from new ecnonmy dataset for phrase ranking 57
Figure 21 Final extracted network (interesting communities with labels) 58

	
 78	

