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Abstract

The Copula GARCH model for time varying
betas in the banking sector.

Dimitris Nikolaidis

2010

Copula functions have become an increasingly popular tool in finance when the

distribution of asset returns is of extreme importance. The main features of copulas

are that they seperate a multivariate distribution into the dependence structure

and the margins, thus allowing two step estimation procedures for the distributional

parameters that minimize the computational burden and also add flexibility to the

distribution since the dependence governed by the copula and the margins do not have

to belong to the same parametric family, unlike standard multivariate distributions.

The aim of this study is twofold. In the first part, the statistical attributes of

copulas are discussed in full detail while in the second part an empirical investigation

of the evolution of stock betas during the modern global financial crisis period is

conducted. In the empirical part, it is evident that copula models clearly outperform

other, traditional models, in terms of both statistical validity and accuracy in risk

calculations



Part I

The First Part - Statistical

analysis of copulas
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Chapter 1

Introduction to Copulas

The aim of this chapter is to provide to the reader a rigorous introduction to copulas.

It contains the intuition behind copulas, the main theorems and definitions of the

copula theory, discusses copula inference and presents an overview of the applications

of copulas in finance. For more information, the interested reader is referred to the

books of Joe (1996), Nelsen (2006) or Cherubinni et al. (2004).

1.1 Intuition behind copulas. Measures of depen-

dence

In financial applications the usual measure of dependence is Pearson’s linear corre-

lation. For two random variables X and Y Pearson’s correlation %, is defined as:

% (X, Y ) =
cov(X, Y )

σXσY
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However % measures only linear dependence. It is the correct measure of depen-

dence only in the Gaussian world, that is only if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2).

Linear correlation does not only incorporate information about the dependence of X

and Y but also about their marginal behavior, that is why it is not invariant under

strictly increasing transformations of the data. In other words the linear correlation

of X and Y is different of that of f(X) and g(Y ) for arbitrary strictly increasing

functions f and g. To make this more clear consider the case of two independent

standard normal variables X, Y and the transformation f(x) = exp(x). Figure 1.1

contains the Scatterplots of 100 realizations of (X, Y ) (left panel) and (f(X), f(Y ))

(right panel). The distortion of the dependence structure caused by the nonlinear

transformation is clear.
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Figure 1.1 : Scatterplot of 100 realizations of two independent standard normal variables (left

panel) and of their transformation, created by f(x) = exp(x)

Therefore a measure of dependence more appropriate that the linear correlation

should not depend on X and Y and thus preserve the dependence for both pairs

(X, Y ) and (f(X), g(Y )). The remedy to this invariance problem is to use not the
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data sample but the ranks associated with the sample. Let sXi and sY i denote the

ranks of observations Xi and Yi (Note: The rank of the observation Xi is the position

of Xi if the sample was set in increasing order, that is the smallest value of Xi would

have rank 1, the second smallest value of Xi would have rank 2, the biggest value of

Xi, in a sample of size n, would have rank n and so on). But since the ranks depend

on the sample size, instead of them the standardized ranks, SXi, SY i are used

SXi =
sXi
n+ 1

, SY i =
sY i
n+ 1

Obviously SXi and SY i belong in (0, 1) where n is the sample size. The pairs (SXi,

SY i) retain the greatest amount of information for the dependence of X and Y . This

is illustrated in figure (1.2), where the scatterplots of the ranks of 100 realizations

from X and Y (left panel) and f(X) and f(Y ) (right panel) are drawn. We ob-

serve from figure two that the two scatterplots are identical, therefore both pairs of

variables have exactly the same dependence structure.
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Figure 1.2 : Scatterplots of ranks of 100 realizations of two standard normal variables (left

panel) and of the ranks of the transformation of the variables based on f(x) = exp(x)
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Nevertheless, the dependence structure of two variables is fully characterized by

the joint distribution F , of the two variables and obviously the distribution function

of the pair (X, Y ) is not the same as the pair (SX , SY ). Hence a question arises:

Is it possible to find (if it exists) a joint distribution, say H, so as to F (X, Y ) =

H (SX , SY )? If such a function exists, it would describe the dependence structure of

X and Y in full, since both SX and SY do not depend on the marginal behavior of

X and Y. The answer to that question was provided by Sklar’s theorem (it will be

presented in the next section). According to it, if X and Y are continuous, such a

function always exists and it is unique. This function is called the copula of X and

Y , which is a Latin word that means link, because it couples the variables to define

their dependence structure.

1.1.1 Rank based measures of dependence

There are many rank based measures of dependence proposed in the statistical lit-

erature. However in this study we will deal only with Srearman’s rho and Kendall’s

tau because they are highly intuitive and they are directly connected to copulas, as

it will become clear in later sections. For more information about other dependence

measures the interested reader is referred to Genest and Verret (2005).

Spearman’s rho

Spearman’s rho is nothing more than Pearson’s linear correlation calculated for

the ranks of the data (Note: To what follows the word ranks will stand for standard-
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ized ranks, unless otherwise noted)

rn =

n∑
i=1

(SXi − S̄X)(SY i − S̄Y )√
n∑
i=1

(SXi − S̄X)2
n∑
i=1

(SY i − S̄Y )2

where S̄X = n+1
n

n∑
i=1

SXi = 1
2

= n+1
n

n∑
i=1

SY i = S̄Y .Spearman’s rho has another, more

convenient form

rn =
12

n

n∑
i=1

SXi · SY i − 3
n+ 1

n− 1

Spearman’s rho is theoretically superior than Pearson’s correlation for the follow-

ing reasons

1. It holds that E(rn) = 1 if Y = f(X) for any increasing function f, as opposed

to the linear correlation where E(%n) = 1 if Y = f(X) and f is an increasing

linear function. Analogously E(rn) = −1 if Y = f(X) for any decreasing

function f, as opposed to the linear correlation where E(%n) = −1 if Y = f(X)

and f is an decreasing linear function.

2. Spearman’s rho always exists unlike linear correlation. For example if X or Y

follow student’s t distribution with degree of freedom parameter less than two,

the corresponding variance and therefore the linear correlation does not exist.

3. It is invariant under strictly monotonic transformations; that is rn(X, Y ) =

rn(g(X), g(Y )) unlike linear correlation where %(X, Y ) 6= %(g(X), g(Y )), for

any strictly increasing function g.
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Kendall’s tau

Kendall’s tau is based on the notion of concordance: Two pairs (Xi, Yi) and

(Xj, Yj) will be called concordant when (Xi, Yi) (Xj, Yj) > 0.If the two pairs are not

concordant they will be called discordant. The sample estimator of Kendall’s tau is

τn =
Pn −Qn(

n
2

) =
4

n (n− 1)
Pn − 1

where Pn and Qn are the number of concordant and discordant pairs.τn is a rank

based measure since (Xi, Yi) (Xj, Yj) > 0 if and only if (SXi − SXj)(SY i − SY j) >

0. Kendall’s tau shares all three characteristics of Spearman’s rho, that make it a

superior dependence measure when compared to the linear correlation and further

it is directly linked to a class of copulas named Archimedean copulas, as I will

demonstrate to the next section.

1.2 Definitions and fundamental properties

Definition 1 A copula is a multivariate distribution with uniform margins.

An equivalent, more mathematical definition is the following:

Definition 2 A Copula is a function C : [0, 1]d −→ [0, 1] , that satisfies the following

conditions:

1. For all (u1, u2, ..., ud) in [0, 1]d , if at least one component ui is zero then C(u1, u2, ..., ud) =

0
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2. For every ui ∈ [0, 1], C (1, ..., 1, ui, ...1) = ui, for i = 1, 2, ..., d

3. For all [u11, u12]×[u21, u22]×...×[ud1, ud2] d - dimensional rectangles in [0, 1]d ,it

holds that ∑
...
∑

(−1)i1+...+id C (u1i1 , u2i2 , ..., udid) > 0

Copulas allow as to separate the marginal behavior of a multivariate distribution,

from the dependence structure as it was proven by Sklar (1959).

Theorem 3 (Sklar’s theorem) Let F be a d−dimensional distribution function with

univariate margins F1, ..., Fd with domains D1, ..., Dd respectively. Then there exists

a unique function H , defined on D1 ×D2 × ...×Dd, such that:

F (x1, ..., xd) = H (F1 (x1) , ..., Fd (xd)) .

The extension of H to [0, 1]d is a copula C. For such a function C we have:

F (x1, ..., xd) = C (F1 (x1) , ..., Fd (xd)) . (1.1)

If the marginal distributions Fi, i = 1, 2, ..., d are continuous, the function H co-

incides with the copula C, which is then unique. Conversely, for given univariate

distributions functions F1, ..., Fd and a d− dimensional copula C, the function defined

by:

F (x1, ..., xd) = C (F1 (x1) , ..., Fd (xd))

is a d− dimensional distribution function with univariate margins F1, ..., Fd.
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Remark 4 To everything that follows, distributions will be denoted with capital let-

ters whereas densities will be denoted with small letters. Multivariate functions will

be denoted will bold letters. Further, all marginal distributions are considered con-

tinuous and strictly increasing, unless otherwise mentioned. Finally, the letter u will

be strictly used for uniform variables.

From Sklar’s Theorem we see that a joint distribution is a function of the marginal

distributions and the copula. Since the copula does not depend on the margins

we can say that it represents the dependence between the variables, that is why

a copula is referred to as the dependence structure in the international literature.

Sklar’s theorem provides the tools to construct a joint distribution from its marginal

distributions and a copula but it doesn’t say anything on how the copula distribution

can be constructed, from the corresponding joint distribution. Before doing so we

need the definition of the probability integral transformation.

Let X1, ..., Xd be random variables with distributions F1, ..., Fd, respectively. The

probability integral transformation is a function T : Rd −→ [0, 1]d, such that: (x1, ..., xd)
T−→

(F1 (x1) , ..., Fd (xd)) . The inverse of the probability integral transformation T−1 :

[0, 1]d −→ Rd is called the quantile transformation and it is defined as: (u1, ..., ud)
T−1−→(

F−1
1 (u1) , ..., F−1

d (ud)
)
. Obviously the probability integral transformation of a ran-

dom variable is a uniform variable, as depicted in figure 1.3, where a histogram of

1000 simulated values from the t5 distribution is plotted (left panel) and its corre-

sponding probability integral transformation.
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Figure 1.3 : The probability integral transform of a random variable is a uniform variable

By applying the probability integral transform to Sklar’s theorem the expression

for the copula distribution function is derived:

Theorem 5 (Inverse Sklar’s theorem) Let F−1
1 ,...,F−1

d denote the (quasi) inverse of

the marginal distributions F1, ..., Fd. Then for any u ∈ [0, 1]d , it holds

C (u1, ..., ud) = F
(
F−1

1 (u1) , ..., F−1
d (ud)

)
(1.2)

where ui = Fi(xi)⇔ xi = F−1
i (ui), i = 1, 2, ..., d

A very important attribute of copulas is that they remain invariant under strictly

monotonic transformations of data.

Theorem 6 (Copula Invariance) Let X1, ..., Xd be continuous random variables with

copulaC and let g1, ..., gn be strictly increasing functions. Then the variables g(X1), ..., g (Xd)

have exactly the same copula C.
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From equations (1.1) and (1.2) the expression of the corresponding densities can

be derived. By taking derivatives to equation (1.1) we have:

f (x1, ..., xd) =
∂dF (x1, ..., xd)

∂x1 · ... · ∂xd
=
∂dC (F1 (x1) , ..., Fd (xd))

∂x1 · ... · ∂xd
=

=
∂dC (F1 (x1) , ..., Fd (xd))

∂F1 (x1) · ... · ∂Fd (xd)

d∏
i=1

dFi (xi)

dxi
=

= c (F1 (x1) , ..., Fd (xd)) ·
d∏
i=1

fi (xi) (1.3)

and, analogously, equation (1.2) becomes:

c (u1, ..., ud) =
f
(
F−1

1 (u1) , ..., F−1
d (ud)

)
d∏
i=1

fi (F−1(ui))

(1.4)

Equations (1.2) and (1.4) are of extreme importance because they provide a tool

to create the copula density (and therefore the log - likelihood) that describes the

dependence structure of some common multivariate densities.

Example 7 (The Gaussian Copula) The Gaussian Copula describes the dependence

structure of the multivariate Gaussian distribution. Let X be a d−dimensional ran-

dom vector that follows the Gaussian distribution with zero mean and correlation

matrix Σ. Then the random vector U = (Φ (x1) , ...,Φ (xd)) follows the Gaussian

Copula, with distribution and density defined as:

CG (u1, ..., ud) = ΦΣ

(
Φ−1 (u1) , ...,Φ−1 (ud)

)
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and

cG (u1, ..., ud) =
φΣ (Φ−1 (u1) , ...,Φ−1 (ud))

d∏
i=1

φi (Φ
−1(ui))

(1.5)

Example 8 (The t - copula) The copula that corresponds to the multivariate t dis-

tribution with correlation matrix Σ, and degree of freedom parameter v is called the

t - copula . Let X be a d−dimensional random vector that follows the t distribu-

tion with v degrees of freedom and correlation matrix Σ. Then the random vector

U = (tv (x1) , ..., tv (xd)) follows the t copula and its distribution and density are:

Ct (u1, ..., ud) = TΣ,v

(
t−1
v (u1) , ..., t−1

v (ud)
)

and

ct (u1, ..., ud) =
t (t−1

v (u1) , ..., t−1
v (ud))

d∏
i=1

tv (t−1
v (ui))

, (1.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scatterplot of simulated values from a Gaussian Copula with rho = .75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scatterplot of simulated values from a t copula with rho = .75 and v = 3

Figure 1.4 : Scatterplots of 5000 simulated bivariate vectors from the Gaussian (left panel)

and t copula with equal correlations
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The Gaussian and t copula are constructed by applying Sklar’s theorem to the

multivariate Gaussian and multivariate t distribution, respectively. Another way of

constructing copulas is by the use of a copula generator function ψ. The copulas

constructed this way are called Archimedean copulas

Definition 9 (Archimedean Copulas) An Archimedean copula is a function C from

[0, 1]d −→ [0, 1] given by:

C (u1, ..., ud) = ψ[−1]

(
d∑
i=1

ψ (ui)

)
(1.7)

where ψ (the generator function of C) is a continuous, strictly decreasing convex

function from [0, 1] to [0,+∞) such that ψ(1) = 0 and where ψ[−1] denotes the pseudo

- inverse function of ψ :

ψ[−1] (t) =

{
ψ−1 (t) for 0 6 t < ψ(0)

0 for t > ψ(0)

When ψ (0) = ∞, ψ and C are said to be strict (and ψ[−1] (t) = ψ−1 (t)); when

ψ (0) < ∞ ψ and C are non - strict. Furthermore, C (u1, ..., ud) > 0 on (0, 1]d if

and only if C is strict.

The term Archimedean copulas first appeared in Genest and Mackay (1995). It

arises from the fact that the copulas constructed by the equation (1.7) follow the

Archimedean property (Genest and Favre, 2007), which states that if u and v are

real numbers in (0, 1) there exists an integer n such that un < v. Given a copula

C, the "C − multiplication" ◦ is defined by u ◦ v = C (u, v) .Then un is defined

13



recursively by u2 = u ◦ u and un = un−1 ◦ u [Note: Non Archimedean copulas also

have this property, as long as C(u, u) < u for u in (0, 1).]

Example 10 (Clayton Copula) If the generator function is ψ(t) = 1
α

(t−a − 1) with

a ∈ (0,+∞) the corresponding copula is called the Clayton copula with distribution

CCl (u1, ..., ud) = max

(
d∑
i=1

u−ai + 1, 0

)

Example 11 (Gumbel Copula) If the generator function is ψ(t) = (− ln t)a with

a ∈ (0,+∞) the corresponding copula is called the Gumbel copula with distribution

CGu (u1, ..., ud) = exp

−( d∑
i=1

(− lnui)
a

)1/a
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Figure 1.5 : Scatterplots of 5000 simulated bivariate vectors from the Clayton (left panel) and

Gumbel copula with equal association parameter

The parameter a, of the two aforementioned Archimedean copulas is called the
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association parameter. For a bivariate random variable there is one to one corre-

spondence between the copula and Kendall’s tau τ .

τ = 4

1∫
0

1∫
0

C (u, v) dC(u, v)− 1 = 1− 4

1∫
0

1∫
0

∂C (u, v)

∂u

∂C(u, v)

∂v
dudv

or

τ = 1 + 4

1∫
0

ψ′ (t)

ψ (t)
dt

Further, the association parameter is directly linked to Kendall’s tau. For the Clayton

copula it holds that τ = α
α+2

whereas for the Gumbel copula it holds that τ = a−1
a
.

Since in both cases we observe that τ > 0 these two copulas are suitable only for cases

where there is positive dependence between the random variables. For the Gaussian

and t− copula there is one to one correspondence between Kendall’s tau and linear

correlation. If the bivariate vector (U, V ) follows the Gaussian or t− copula then:

τ(U, V ) =
2

π
arcsin (%(U, V )) (1.8)

Equation (1.8) also holds in larger dimensions however there is no guaranty that

the matrix T = (τ ij)16i,j6d whose elements are obtained by Eq (1.8), is positive semi-

definite. Archimedean copulas can describe many types of dependence nevertheless

all of them are one or two parameter families, independent of the size of the random

vector of interest. That is why in dimensions greater than two the association para-

meter has an unclear financial meaning and thus Archimedean copulas are used in
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financial applications strictly for bivariate problems. Therefore in what follows we

will consider only bivariate Archimedean copulas.

1.3 Tail dependence

In applications related to risk management, the tails of the returns distribution

are of extreme importance, since the risk metric proposed by the Bassel accord for

financial institutions (Value at Risk) is related to the quantile function of the returns.

Analogously, in the multivariate setting, the accurate calculation of the probability

of a joint extreme event (stock market crush or simultaneous default of the majority

of loans, in a loan portfolio) is essential. A measure of this probability is the tail

dependence. Let X and Y be two random variables with distributions FX and FY .

The limit (if it exists) of the conditional probability that Y is greater than the 100th

- percentile of FY , given that X is greater than the 100th percentile of FX is called

upper tail dependence and is denoted as λU

λU = lim
u−→1−

Pr
[
Y > F−1

Y (u)|X > F−1
X (u)

]
Similarly the limit of the conditional probability that Y is less than or equal to the

100th - percentile of FY , given that X is less than or equal to the 100th percentile

of FX is called lower tail dependence and is denoted as λ
L

λL = lim
u−→0+

Pr
[
Y 6 F−1

Y (u)|X 6 F−1
X (u)

]

16



Theorem 12 The upper and lower tail dependence coeffi cients depend only on the

copula C, of X and Y and not on the marginal distributions of X and Y . Further,

it holds that:

λL = lim
u−→0+

C(u, u)

u
, λU = 2− lim

u−→1−

1−C(u, u)

1− u

proof : (see Nelsen, 1999).

model λU λL

Gaussian Copula 0 0

t Copula 2t̄v+1

(√
(v + 1) (1− %) / (1 + %)

)
λU

Clayton Copula 0 2−1/a

Gumbel Copula 2-21/a 0

Table 1.1 : Tail dependence coeffi cients for bivariate copula models

Table 1.1 summarizes the tail dependence coeffi cients of the copulas described in

examples 7,8,10 and 11. For the Gaussian copula the correct expression for the tail

dependence is: λU = λL = lim
x−→+∞

2Φ̄
(
x
√

1− %/
√

1 + %
)
which equals zero for values

of % < 1.(Φ̄ ≡ 1−Φ, is the tail function of the standard normal distribution.) there-

fore the Gaussian copula (and the Gaussian distribution) assign zero probability to

the occurrence of an extreme event. For the t copula the tail dependence coeffi cients

are equal and depend on both the degree of freedom parameter v and the correlation

coeffi cient %. Table two contains values of the tail dependence coeffi cient for various

values of v and %. For the two Archimedean copulas, we observe that they are asym-

metrical tail dependent (λU 6= λL) as opposed to the Gaussian and t copula that are

symmetrically tail dependent. The Clayton copula exhibits only lower tail depen-
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dence whereas the Gumbel copula exhibits only upper tail dependence. Figure four

contains the plot of the tail dependence coeffi cient with respect to the association

parameter, for the Clayton and the Gumbel copula.

v\% -0.75 -0.25 0 0.3 0.8 1

2 0.020 0.111 0.182 0.293 0.604 1

4 0.002 0.034 0.076 0.162 0.490 1

9 0 0.002 0.010 0.043 0.317 1

20 0 0 0 0.003 0.141 1

50 0 0 0 0 0.021 1

200 0 0 0 0 0 1
Table 1.2 : Tail dependence coeffi cient of the t copula for various values of v and %
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Figure 1.6 : Tail dependence coeffi cient for the Clayton copula (left panel) and Gumbel copula

(right panel) as a function of the association parameter, a.

Example 13 (Joe Clayton and Symmetrized Joe Clayton Copulas) All copulas pre-

sented so far exhibit tail dependence symmetry or they exhibit tail independence in
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the upper or (and) the lower tail. A copula that is tail dependent in both upper and

lower tail with λU 6= λL is the symmetrized Joe Clayton Copula with distribution

CSGC (u, v) =
1

2

(
CJC

(
u, v;λU , λL

)
+CJC

(
1− u, 1− v;λL, λU

)
+ u+ v − 1

)
where CJC is the distribution of the Joe Clayton copula defined as

CJC(u, v) = 1−

1− 1(
1

(1−(1−u)k)
γ + 1

(1−(1−v)k)
γ − 1

)1/γ


1/k

where the parameters k and γ are related to λU and λL according to the following

equations

k =
1

log2

(
2− λU

) and γ = − 1

log2 λ
L

1.4 Inference on copulas

Let X = (X1, ..., Xd) be the multivariate random vector of interest and xt =

{(x1,t, ..., xd,t)}nt=1 be a sample of n iid realizations of X. The logarithm of equa-

tion (1.3)

LLt(αi,ϑ;xt) = log c (F1 (x1,t;a1) , ..., Fd (xd,t;ad) ;ϑ) +

d∑
i=1

log (fi (xi,t;ai))

LLt(αi,ϑ;xt) = Lc,t (αi,ϑ;xt) + Lm,t (αi,xt) (1.9)
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is the log - likelihood function for the t − th observation of a copula based model,

where αi is the vector of parameters of the i − th margin and ϑ is the vector of

copula parameters. To estimate the parameters vector φ = (a′1, ...,a
′
d,ϑ

′)
′ three

methods have been proposed in the statistical literature, maximum likelihood (MLE),

Inference function for margins (IFM) and the pseudo likelihood method (PML).

1.4.1 Maximum likelihood method

According to the maximum likelihood method the vector φ is estimated by the

function

LL(αi,ϑ;xt) =
n∑
t=1

LLt(αi,ϑ;xt) (1.10)

=
n∑
t=1

d∑
i=1

log (fi (xi,t;ai)) +
n∑
t=1

log c (F1 (x1,t;a1) , ..., Fd (xd,t;ad) ;ϑ)

=
d∑
i=1

LLi (αi;xt,i) + LLc(αi,ϑ;xt)

φ̂ML = arg max
φ∈Φ

LL(φ;xt)

where fi denotes the probability density function of the i−margin and c is the copula

density. Under the usual regularity conditions of the asymptotic maximum likelihood

theory, φ̂ML is normally distributed and

√
n
(
φ̂ML − φ

)
−→ N

(
0, I−1

)
(1.11)
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where φ is the true parameters vector and I denotes the Fisher’s information matrix,

which is the negative Hessian matrix of the function LL. From equation (1.10)

standard errors of the estimates can be constructed. If the size of the column vector

φ is k×1, the standard error of the j−th element of φ̂ML, based on the finite sample

of size n, is the j−th element on the main diagonal of the Fisher’s information matrix,

divided by
√
n

st.Error(φ̂ML (j)) =
1√
n
I−1 (j, j)

Let si be the size of the marginal parameters vector αi and sϑ be the size of the

copula parameters vector [Note: All parameter vectors in this study are assumed to

be column vectors therefore si and sϑ are actually the number of rows of the vectors

αi and ϑ, respectively]. To estimate the vector φ we need to solve the systems of

equations of the log likelihood score vectors

∂LL
∂φ

= 0 or vec

(
∂LL1

∂a1

,
∂LL2

∂a2

, ...,
∂LLc
∂φ

)
= 0 (1.12)

where

∂LLi (αi;xt,i)
∂ai

=

(
∂LLi
∂a1i

,
∂LLi
∂a2i

, ...,
∂LLi
∂asii

)′
(1.13)

∂LLc(αi,ϑ;xt)

∂φ
=

(
∂LLc
∂a11

, ...,
∂LLc
∂asdd

,
∂LLc
∂ϑ1

, ...,
∂LLc
∂ϑsϑ

)′
(1.14)

and vec is the operator that transforms a matrix to a column vector, for example

if A =

1 2

3 4

 then vecA = [1 3 2 4

]′
. Therefore there are 2 (s1 + s2 + sd) + sϑ
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equations based on the first derivatives of the log likelihood function that need to

be solved. It is obvious that the number of equations grows with d, making very

diffi cult to estimate such models in large dimensions. Further, the calculations of the

analytical scores of the log likelihood can be very tedious, that is why solving the

equations defined in (1.12) is a method to estimate φ that is never used in practice.

Instead numerical methods are usually employed. The term "numerical methods"

covers all methods where the optimum vector is not obtained by solving systems of

equations but by an iterative process based on numerical approximations of the log

likelihood gradient vector and Hessian matrix. A hybrid method of the two main-

tains the iterative scheme of the numerical methods but uses analytical expressions

for the gradient vector and/or the Hessian matrix of the log likelihood. The analyt-

ical derivatives based method is more effi cient when compared to numerically based

derivatives method, in both accuracy and speed of convergence, as it was advocated

in Hafner and Herwartz (2007) or in Diamantopoulos and Vrontos (2010), in a simi-

lar context. In what follows, when we refer to numerical optimization we mean the

iterative process that uses numerical approximations of the gradient and Hessian,

as opposed to the analytical optimization method where again an iterative process

is employed but with analytical expressions for the log likelihood gradient and the

Hessian. The iterative process that is usually employed is the so called BFGS al-

gorithm (Goldfarb (1970) and Shanno (1970)), according to which the parameters

vector φ̂
p
obtained after p− iterations of the algorithm, equals

φ̂
p

= φ̂
p−1 − λH−1∂LL

∂φ
(1.15)
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where λ is a scalar that controls the step size, H is some approximation of the

Hessian, computed at φ̂
p−1
and defines the direction of the search. In case where

the actual Hessian (numerical or analytical) is used, the BFGS method is known as

Newton - Raphson (NR) method, while if H is approximated by the outer product

of gradients

H =

(
∂LL
∂φ

)′
∂LL
∂φ

the method is known as BHHH method, from Berndt, Hall, Hall and Hausman

(1970). For more information on optimization methods the interested reader is re-

ferred to Fletcher and Roger (1987) or Avriel and Mordecai (2003). Nevertheless,

numerical methods (we are not aware of any attempt to estimate copulas with ana-

lytical methods, except of Liu and Luger (2009) who used analytical derivatives to

test a novel estimation method called maximization by parts. However they used

the analytical method to the simplest case possible, Gaussian copula with Gaussian

margins.) speed and accuracy depend heavily on the size of the parameters vector.

Therefore in empirical applications the maximum likelihood method is rarely used.

Instead, two step methods, like the IFM or the PML methods are employed.

1.4.2 Inference functions for margins (IFM)

The IFM method was proposed by Joe (1996) and is a fully parametric method

that consists of two steps. Its basic idea is instead of optimizing the log likelihood

function (LL, in equation (1.10)), to optimize LLi, i = 1, 2, ..d independently from

each other, in order to obtain estimates for the marginal parameters vectors α̃i at
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the first step and at the second step the function LLc is optimized, conditioned upon

the results from the first step. Therefore the score vector of the first step for the i−

margin is

∂LLi (αi;xt,i)
∂ai

=

(
∂LLi
∂a1i

,
∂LLi
∂a2i

, ...,
∂LLi
∂asii

)′
i = 1, 2, ..., d.

Note that the above expression is identical to equation(1.13) thus the marginal esti-

mates of both methods are identical. At the second step the conditional score vector

equations obtained by the copula log likelihood, are used to estimate the copula

parameters
∂LLc(ϑ;αi,xt)

∂ϑ
=

(
∂LLc
∂ϑ1

, ...,
∂LLc
∂ϑsϑ

)′
(1.16)

In other words, IFM method assumes working independence between the marginal

parameters and the copula log - likelihood. The procedure that is used to estimate

the parameters, with the IFM, is similar to that of the MLE method. One can

solve the systems of equations defined by the log likelihood scores or use an iterative

algorithm, as it is always done in practice. Let gk,n be the score vectors defined in

(1.13) and (1.16)

gk,n = vec

(
∂LLi (αi;xt,i)

∂ai
,
∂LLc(ϑ;αi,xt)

∂ϑ

)

Joe proved that the variance - covariance matrix Ṽn, of the parameters vector φ̃,

based on the finite sample of size n, is given by the Godambe Information matrix,
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defined as

Ṽn = H−1
n JnH

−1
n

whereHn =
∂gk,n
∂φ′ =

 ∂2LLi
∂ai∂a′j

0

0 ∂2LLc
∂ϑ∂ϑ′

 and Jn = gk,n ·g′k,n.Van der Vaart (1998) argued

that instead of the Godambe information matrix , the variance covariance matrix

of the parameters can be obtained by applying one step of the Newton - Raphson

algorithm to the full likelihood, using the IFM estimators. An alternative method to

calculate the variance covariance matrix under the IFM framework is the jackknife

method (Dias, 2004).

Proposition 14 (Joe, 1996, page 302) Let φ̃
(−t)

, t = 1, 2, ..., n be the IFM estimate

of φ obtained from the observed sample, with the t - th observation excluded. The

jackknife estimate of Ṽn is

Ṽn = n
n∑
t=1

(
φ̃

(−t) − φ̃
)(
φ̃

(−t) − φ̃
)′

Further, if h is a real valued function, the standard errors of h
(
φ̃
)
are given by

(
n∑
t=1

(
h
(
φ̃

(−t))− h(φ̃)))1/2

.

1.4.3 The pseudo likelihood method

As it was pointed out in subsection 1.1 the copula of a d− dimensional random vector

X is the joint distribution of the ranks associated with X. In both MLE and IFM
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methods the ranks of X are obtained for the probability integral transformation of

X, that is by assuming a marginal distribution Fi for Xi and calculating the ranks

of Xi, for a sample of size n by Fi (xi,t) , i = 1, .., d t = 1, ..., n. Therefore the correct

choice of the marginal distribution Fi is crucial for the accuracy of the method, as

noted for example in Kim et al. (2007). To avoid this potential pitfall, Genest and

Rivest (1995) proposed to calculate the ranks of the data not with the parametric

probability integral transformation but with the non - parametric empirical CDF

function

Fn (x) =
1

n+ 1

n∑
j=1

I{y∈R,y6x} (xij)

Thus, according to the pseudo likelihood method, the n observed d− dimensional

vectors xi = (x1i, ..., xdi)
n
i=1 are transformed to ranks

(Fn (x1i) , ..., Fn (xdi))

and the copula parameters are estimated by optimizing the corresponding copula log

likelihood

LLc(ϑ;xt) =
n∑
t=1

log c (Fn (x1,t) , ..., Fd (xd,t) ;ϑ) (1.17)

Genest and Rivest proved the asymptotic normality of the parameters vector ϑ̄PL

obtained by optimizing Eq (1.17).

ϑ̄PL ∼ N(ϑ,
v2

n
)
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A consistent estimator of the variance - covariance matrix of ϑ̄PL is

v̄2
n

n
=

σ̄2
n

nβ̄
2
n

where

σ̄2
n =

1

n

n∑
i=1

(
Mi − M̄

)2

and

β̄
2
n =

1

n

n∑
i=1

(
Ni − N̄

)2

are sample variances computed from two sets of pseudo - observations. These pseudo

observations are computed from a procedure described in Genest and Favre (2007)

for a bivariate data set, as follows:

• Step one: Relabel the original data (X1, Y1), ..., (Xn, Yn), so as to X1 < .... <

Xn

• Step two: Write LLc(ϑ;xt) as L (ϑ,u1, u2) and calculate the derivatives of

eq(1.17) with respect to ϑ, u1 = Fn (x1,t) and u2 = Fn (x2,t) , denoted as Lϑ,

Lu1 and Lu2 , respectively.

• Step three: For i ∈ {1, 2, ..., n}, set

Ni = Lϑ

(
ϑ̄PL;

i

n+ 1
, SY i

)
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• Step four: For i ∈ {1, 2, ..., n}, define

Mi = Ni −
1

n

n∑
j=1

Lϑ

(
ϑ̄PL;

j

n+ 1
, SY j

)
Lu1

(
ϑ̄PL;

j

n+ 1
, SY j

)
− 1

n

∑
SY j>SY i

Lϑ

(
ϑ̄PL;

j

n+ 1
, SY j

)
Lu1

(
ϑ̄PL;

j

n+ 1
, SY j

)

1.5 Goodness of fit tests for copulas

Let U = (U1, ..., Ud) be a random vector with uniform [0, 1] margins and suppose

we have fitted a copula Cϑn to U , based on a finite sample ut = {(u1,t, ..., ud,t)}nt=1

of U . A natural question that arises is how good is the fit of Cϑn to the data. To

answer this section we will describe three goodness of fit tests for copulas; a graphical

inspection method, applicable only in the bivariate case, a test for goodness of fit

for the Gaussian and t copula, based on the squared radius of the corresponding

joint distribution, that was developed by Kole et al. (2007) and a test suitable for

Archimedean copulas that is based on the bivariate probability integral transform of

the Archimedean copula, which was originally developed by Wang and Wells (2000)

and generalized by Genest et al. (2006). For a more comprehensive presentation

of goodness of fit tests for copula based models the interested reader is referred to

Genest et al. (2009) who provides a review and a comparison of the various test used

in the copula context.
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1.5.1 Graphical inspection method
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Figure 1.7 : (From upper left to bottom right) Scatterplots of A) 1000 simulated vectors from

a Gaussian distribution with zero mean and correlation % = 0.75 B) (upper right panel) the ranks

corresponding to the simulated data set C) 1000 simulated vectors from a Gaussian copula with

% = 0.75 D) 1000 simulated vectors from a t copula with % = 0.75 and v = 3 E) 1000 simulated
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vectors from a Clayton copula with a = 2.35 and F) 1000 simulated vectors from a Gumbel copula

with a = 2.17

Let xt = {(x1,t, x2,t)}nt=1 and ut = {(u1,t, u2,t)}nt=1 be a sample of the initial ran-

dom vector X and its corresponding ranks, calculated by the probability integral

transform or by the empirical CDF function. The graphical inspection method com-

pares the scatterplots of ut and ũt, where ũt is a sample of size n, simulated by the

copula model assumed for ut. The copula whose simulated values have scatterplot

that best resembles the scatterplot of ut is the copula with the best fit. In figure

(1.7) the graphical inspection method is illustrated. At the top left panel there is

the scatterplot of 1000 bivariate vectors drawn from a multivariate Gaussian distrib-

ution with correlation coeffi cient % = 0.75 and at the top right panel the scatterplot

of the ranks of the simulated data set is drawn. The other four scatterplots of fig-

ure seven are scatterplots from a) A Gaussian copula with % = 0.75, b) a t copula

with % = 0.75 and degree of freedom parameter v = 3, c) A Clayton copula with

association parameter a = 2.35 and d) A Gumbel copula with association parameter

a = 2.17 (Note: the values of α, for the Clayton and Gumbel copula were chosen to

resemble the case of % = 0.75). It is clear that the scatterplot that best resembles

the one of the ranks (upper right) is the middle left that correspond to the Gaussian

copula. The shortcomings of the graphical inspection are obvious; it can be used

only for bivariate data sets and it does not quantify the goodness of fit with a valid

statistical test but only visualizes the dependence. Further, since this method is

based on simulations from a given parametric copula, it depends on whether the
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inverse copula distribution exists in closed form

1.5.2 Squared radius method

This goodness of fit test can be seen as a variaton of the Kolmogorov - Smirnoff

and of the Anderson Darling test, specifically designed to examine the Gaussian and

t copula fit. Let ut be a sample of size n, drawn from a random vector U with

uniform margins. If we denote as CH the hypothesized copula and as CE,n the

empirical copula of U (Deheuvels, 1979)

CE,n (u1, ..., ud) =
1

n

n∑
t=1

I (SXi 6 u1, ..., SXd 6 ud)

where I is the indicator function defined as

I (expression) =

 1, if expression is true

0, otherwise

then the two tests take the form

DKS = max
t
|CE,n (ut)− CH (ut)|

DAD = max
t

|CE,n (ut)− CH (ut)|√
CH (ut) (1− CH (ut))

31



or, instead of these expressions that measure the largest distance (deviation) in the

sample, one can use their averages as well

Da
KS =

∫
u

|CE,n (ut)− CH (ut)| dCH (ut)

Da
AD =

∫
u

|CE,n (ut)− CH (ut)|√
CH (ut) (1− CH (ut))

dCH (ut)

The distributions of the two statistics for the copula based model, under the null

hypothesis that the specific copula accurately fits the corresponding observations,

is non - standard, therefore costly computational simulations are needed to derive

the critical values of the tests. Moreover as the dimension of the random vector

increases, the calculation of the corresponding probabilities is a computationally

demanding task. Instead, the authors suggest to transform the multivariate vectors

of observations to their univariate squared radii, and thus transform the multivariate

problem to an equivalent univariate one. The squared radii of the Gaussian and t

copula are defined as follows.

For the random vector U whose dependence structure is described by a Gaussian

Copula, with correlation matrix ΣΦ the squared radius is

ZΦ = Ũ ·Σ−1
Φ Ũ

′

where Ũ = (Φ−1 (U1) , ...,Φ−1 (Ud)) . The squared radius ZΦ is a sum of d squared

iid standard normal variables therefore follows the chi - square distribution with d−

degrees of freedom, ZΦ ∼ χ2
d. If the dependence structure of U is described by a t
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copula with correlation matrix Σt and degree of freedom parameter v, the squared

radius equals

Zst =
Ũ ·Σ−1

t Ũ
′

d

where Ũ = (t−1
v (U1) , ..., t−1

v (Ud)) . The variable Zst follows the F distribution with

d and v degrees of freedom. Thus in both cases the sample ut of U of size n× d is

transformed to a sample zt of squared radii, of size n× 1, with known hypothesized

univariate distributions. The distance measures now become

DKS = max
t

∣∣FE,n (zit)− FH (zit)∣∣ (1.18)

DAD = max
t

|FE,n (zit)− CH (zit)|√
FH (zit) (1− FH (zit))

(1.19)

Da
KS =

∫
z

∣∣FE,n (zit)− FH (zit)∣∣ dFH (zit) (1.20)

Da
AD =

∫
z

|FE,n (zit)− FH (zit)|√
FH (zit) (1− FH (zit))

dCH
(
zit
)

(1.21)

where i = Φ or St, FE,n is the univariate empirical cdf and FH is the chi square

distribution with d degrees of freedom if i = Φ or FH is the F distribution with d

and v degrees of freedom, for the case i = St. Nevertheless, as in the previous case,

the test statistics under the null do not follow a standard distribution therefore the

critical values of the test are derived via simulations. For example if one want’s to

derive the critical values for the Gaussian copula he has to simulate N samples of

size n×d with uniform margins and dependence structure described by the Gaussian
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copula, transform each of the N samples to their corresponding squared radii, and

calculate the distances defined in equations (1.18) to (1.21), N times. The critical

values of the test are the empirical quantiles of the N simulated values of the distance

measure of choice. For illustrative purposes the histograms of the distributions of

the four aforementioned test statics, for the Gaussian copula, derived by N = 500

replications are presented in figure 1.8. The 2.5% and 97.5% empirical quantiles of

these distributions are presented in table 1.3.

test\quantile 0.025 0.975

KS test 0.1727 0.2073

KSa test 0.1085 0.1541

AD test 0.4566 8.3222

ADa test 0,2831 0,4364
Table 1.3 : Empirical 2.5% and 97.5% quantiles of the distributions of the four test statistics,

for a bivariate Gaussian copula with correlation coeffi cient % = 0.75 and sample size n = 500.

Based on N = 500 replications
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Figure 1.8 : The empirical distribution of the Kolmogorov Smirnoff (upper left panel), average

Kolmogorov Smirnoff(upper right panel), Anderson Darling (lower left panel) and average Anderson

darling, for a bivariate Gaussian Copula with correlation coeffi cient % = 0.75 and sample size

n = 500. Based on N = 500 replications.
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1.5.3 Bivariate probability integral transform method

Let ut be a sample of size n, of the bivariate vector U = (U1, U2) and define the

variables

Wi =
1

n

n∑
j=1

Iij where Iij =

 1, if u1j < u1i, u2j < u2i

0, otherwise

and

W = Cϑn (U, V )

where Cϑn is a copula from the Archimedean family and the pair (U, V ) is drawn

from Cϑn .Further, define Kn as the empirical distribution of the variables Wi and

Kϑn as the theoretical distribution of W. Genest and Rivest called the function Kϑn

the bivariate probability integral transform and proved that Kϑn (w) = w − ψ(w)
ψ′(w)

where ψ is the generator function of the corresponding Archimedean copula. The

first derivative ofKϑn (w) with respect to w is denoted as kϑn (w) . Genest et al.(2006)

proposed two statistics Sn and Tnto test if Cϑn fits the data well, where

Sn =

1∫
0

n |Kn (w)−Kϑn (w)|2 kϑn (w) dw

and

Tn = sup
06w61

∣∣√n (Kn (w)−Kϑn (w))
∣∣
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or, the equivalent, simpler to calculate forms

Sn =
n

3
+ n

n−1∑
j=1

K2
n

(
j

n

)[
Kϑn

(
j + 1

n

)
−Kϑn

(
j

n

)]

−n
n−1∑
j=1

Kn

(
j

n

)[
K2
ϑn

(
j + 1

n

)
−K2

ϑn

(
j

n

)]
(1.22)

and

Tn =
√
n max

06j6n−1

{∣∣∣∣Kn

(
j

n

)
−Kϑn

(
j + 1

n

)∣∣∣∣ , ∣∣∣∣Kn

(
j

n

)
−Kϑn

(
j

n

)∣∣∣∣} (1.23)

In table 1.4, the expressions of the functions Kϑ and kϑ for the Clayton and Gumbel

copulas, are illustrated.

copula\function Kϑ (w) kϑ (w) = dKϑ (w) /dw

Clayton copula w +
w(1−wϑ)

ϑ
1 + 1−wϑ−wϑ+1 log ϑ

ϑ

Gumbel copula w − (1− ϑ)w logw 1-(1− ϑ) (1 + log ϑ)

Table 1.4: Expressions for the bivariate probability integral transform and its derivative for

the Clayton and Gumbel copulas.

Again, both tests do not follow any standard distribution and the critical values

associated with these tests are derived by a bootstrap procedure, described in the

following steps

• Step one: Estimate the parameter ϑn of the copula, based on the sample of

size n× 2
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• Step two: Simulate N random samples drawn from C, of size n × 2.For each

sample calculate the corresponding value of the test statistic of interest

• Place the N values of the test statistic, derived in step two in ascending order.

The value of the test statistic that is located at the position [(1− a)N ] is the

a% critical value.

1.6 Conditional Copulas

Until so far, the dependence parameter of the copula was assumed to remain the

same over the whole sample period. However it has become a stylized fact that

dependence (usually measured by Pearson’s correlation in the standard financial

setting) is known to change over time, since, in general, economic variables depend on

their past observations. The time varying nature of correlations was first documented

by Longin and Solnik (1995) where it was proved that correlation of the excess

returns of seven major markets are time varying and also that correlations tend to

increase in high volatility periods. This gave birth to a new class of multivariate

GARCH models, known as correlation models, where the correlations assumed to be

time varying, like the DCC model of Engle (2002) or the TVC model of Tse and

Tsui (2002). Initially, correlation models were estimated under the joint normality

assumption, that fails to account for some of the characteristics of the financial time

series, like tail dependence. Therefore these models were extended to copula based

models, where the dependency parameter is allowed to change over time, conditioned
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upon the set of past information. This extension is due to Patton (2006) who proved

that Sklar’s theorem, its inverse and the invariance property hold also in the case

that each margin is conditionally uniformly distributed

F t (x|Ft−1) = Ct (F1,t (x1|Ft−1) , ..., Fd,t (xd|Ft−1) |Ft−1) (1.24)

where Xi|Ft−1 ∼ Fi,t and Ct is the conditional copula of X t given Ft−1. Note that

in equation (1.24), which is the extension of Sklar’s theorem to conditional variables,

the information set Ft−1 is the same for the margins and the copula. Fermanian and

Wegkamp (2004) and Fermanian and Scaillet (2005) considered the implications of a

failure to use the same information set and concluded that in this case, the function

F t might not be a valid joint distribution. In financial applications however, it is

a common practice to assume an information subset Fi,t−1 such that Xi|Fi,t−1
D
=

Xi|Ft−1, and thus being able to use Fi,t−1 for the i−margin and Ft−1 for the copula.

Panchenko (2005) describes a method on how to reduce the size of the information

set and avoid this potential pitfall. The rest of this section aims to present the most

important specifications for the time varying dependency parameter, introduced in

the financial literature.

1.6.1 Specifications for the dependence parameters

When the time varying parameter is the correlation %t like in a bivariate (note:

Patton’s specification can be used only in the bivariate case) Gaussian, Clayton or t

copula, Patton (2006) proposed a specification that is a function of lagged data and
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autoregressive correlation terms

%t = Λ1

(
ω + α

1

m

m∑
i=1

Φ−1 (u1,t−1) · Φ−1 (u2,t−1) + βΛ−1
1

(
%t−1

))

where Λ1 (x) = 1−exp(−x)
1+exp(−x)

is an increasing function that holds %t in (−1, 1) , Φ−1

is the standard Gaussian quantile function and m is an arbitrary positive integer.

The rational of the model is that when the variables move together (positive depen-

dence) then the zi = Φ−1 (ui,t−1) have the same sign and if α > 0, the value of %t

increases. Therefore in the case of positive dependence α should be positive. In the

Archimedean copula case, when the association parameter is not linked to correla-

tions, Patton proposed a slightly different equation for the dependence parameter

ϑt

ϑt = Λ1

(
ω + α

1

m

m∑
i=1

|u1,t−1 − u2,t−1|+ βΛ−1
1

(
%t−1

))

where Λ2 (x) = (1 + exp(−x))−1 when ϑt is the tail dependence parameter, like in

the SJC copula, or Λ2 (x) = exp(x) for the Clayton copula parameter and Λ2 (x) =

(1 + exp(x)) for the Gumbel copula. In a similar context, Creal et al. (2008) proposed

a unifying framework for the evolution of the time varying parameter ϑt

ϑt = ω +

q∑
j=1

βjϑt−j +

p−1∑
i=0

αiḟt−i

where ḟt = St−1 · ∇ϑtLL is the scaled gradient (∇ϑtLL) of the corresponding log

likelihood with respect to its parameters, times a scaling matrix .St−1, which is ap-
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proximated by the Fisher’s information matrix. When compared to Patton’s specifi-

cations, the model proposed by Creal et al is more sensitive to extreme values, it can

be used in models with dimension d > 2 and the estimated parameters are closer to

the true parameter values but with higher variance. Other specifications for the time

varying correlations are based directly on the specifications used in the multivariate

GARCH framework. For example Jondeau and Rockinger (2006) proposed that the

time varying correlations of a Gaussian or a t - copula follow the TVC model of Tse

and Tsui (2002)

%t = (1− a− β) ρ+ aξt−1 + β%t−1

where ρ is the sample correlation and ξt is the sample correlation of a moving window

of arbitrary size m of the variables zi, defined as zi = Φ−1 (ui,t−1) for the gaussian

copula or zi = t−1
v (ui,t−1) for the t copula, with Φ−1 and t−1

v be the quantile functions

of the standard normal and student t distribution with v degrees of freedom, respec-

tively. In a similar context, Serban et al (2007) used the DCC equation proposed by

Engle (2002)

%t = diagQ
−1/2
t ·Qt · diagQ−1/2

t

Qt = Q(1− a− β) + azt−1 · z′t−1 + βQt−1

where zt−1 = (z1,t, ..., zd,t) defined earlier and Q is the sample covariance of zt. Both

specifications ensure the positive definiteness of the corresponding correlation matrix

and can be used in arbitrary dimensions. Other specifications include the stochastic
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autoregressive copulas, proposed by Hafner andManner (2008) where the dependence

parameter ϑt is a function of a latent stochastic process λt, similar to the spirit of

the stochastic volatility models

ϑt = g (λt)

λt = ω + βλt−1 + σηt, ηt
iid∼ N(0, 1)

where g is an appropriate function to keep the parameter ϑt in the desired domain.

Finally, some authors, instead of assuming that the copula parameter ϑt is time

varying they assumed that there are k states in the world and the dependence at

each stage is different, by assuming that the dependence parameter is constant within

states but changes from a state to another, as in Pelletier (2006) or by assuming a

copula mixture where the mixture parameter is state dependent, as in Rodriguez

(2007), or by assuming the functional form of the copula is state dependent and

therefore the dependence structure at each state, is describe by a different copula

as in Chollete et al (2008). All the aforementioned models assume that the latent

variable kt taking values 1, 2, .., k dependent on the current state, follows a Markov

chain of order one with πij,t the probability of moving to regime j in period t,

conditional on being in the i regime at t− 1.For the case when k = 2, the transition

matrix is

P =

 π11 1− π11

1− π22 π22
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now let ξ̂t|t be the vector of probabilities of being in each state in the t−th period,

given the information at time t. Then

ξ̂t|t =
ξ̂t|t−1 � ηt

1′ξ̂t|t−1 � ηt
ξ̂t+1|t = P ′ξ̂t|t

LLC =

n∑
t=1

log
(
1′ξ̂t|t−1 � ηt

)

where n is the sample size, 1′ is a vector of ones and ηt is the regime dependent quan-

tity of interest. The estimation procedure proposed for the above class of models is

called the expectation maximization (EM) algorithm and it is described in Hamilton

(1994). There are also other approaches proposed in the literature like ones that

assume structural breaks as in Dias and Embrechts (2004), the Local change point

method of Mercurrio and Spokoiny (2004) or the Adaptive estimation method of

Giacomini et al. For a review of these approaches the interested reader is referred to

Manner and Reznikova (2009).
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Part II

The second part - Empirical

application
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Chapter 2

Introduction

In this section I will try to quantify the dependence structure between some large

companys from the financial sector, listed in the S&P500 index and the index itself.

This is a fundamental problem in various areas of finance like risk management and

derivatives pricing since, both the risk (measured by the VaR of the CVaR of the

portfolio) and the price of a derivative written on a portfolio of assets, depend on the

distribution of the portfolio. Furthermore, my model can be seen as a time varying,

non normal version of the CAPM. The second part of the thesis is organized as

follows: Section (2.1) presents a literature review of the use of copulas and tries to

explain why copulas have become so popular in finance, section (2.2) describes the

proposed model in full detail and sections (2.3) to (2.5) compare the proposed with

other models and discuss the results and implications of the proposed model from

financial prespective. Section (2.6) concludes.

45



2.1 Literature review

In many financial applications, like portfolio selection, derivatives pricing and risk

management, the majority of the models used in practice, assume that the returns

distribution is multivariate normal and that the correlation among assets, which

is the measure of dependence in the multivariate normality framework, is constant

through time. For example, three of the most prominent financial applications,

Markowitz’s (1952) portfolio theory, portfolio Value at Risk (Morgan Stanley 1995)

and Black Merton and Scholes (1973) derivatives pricing theory, assume multivariate

normal returns and constant correlation. For more information the interested reader

is referred to Dowd (2001) or Jorion (1997).

However these two assumptions gained much criticism over the last years, since

they have failed to find any empirical support. Univariate financial time series share

some common characteristics, like heteroscedasticity, asymmetry and fat tails. The

univariate volatility structure is adequately described by the generalized autoregres-

sive conditional heteroscedasticity (GARCH) models of Bollerslev (1986) and its

extensions like the EGARCH model of Nelson (1991) and the asymmetric GARCH

model (GJR) of Glosten et al (1993), especially when these models are combined with

flexible distributions like the Skew-T distribution of Hansen (1994), as in Jondeau

and Rockinger (2006) or the SU-Normal distribution of Johnson’s (1949) system as

in Choi and Nam (2008). The interested reader in univariate GARCH models and

their extensions is referred to Terasvirta (2006) or Tsay (2002) and the references

therein. In the multivariate framework financial time series share some common
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characteristics, like the tail dependence. Two series X and Y with distributions FX

and FY , are said to be tail dependent if the probability of an extreme co movement is

greater than zero. The measure of tail dependence, is the tail dependnece coeffi cient

λL = lim
u−→0+

Pr
[
Y 6 F−1

Y (u)|X 6 F−1
X (u)

]
For the lower tail, or:

λU = lim
u−→1−

Pr
[
Y > F−1

Y (u)|X > F−1
X (u)

]
For the upper tail.

Of course the definition of tail dependence can be extended to arbitrary dimen-

sions. In the same paper Embrechts, Mc Neil and Strautman prove that the multivari-

ate normal distribution does not exhibit any tail dependence, except of the extreme

case where % = 1. This means that under plausible conditions, the multivariate nor-

mal distribution assigns zero probability to extreme co movements therefore is not

able to describe financial returns. In a similar context, financial returns proved to

be not only tail dependent but asymmetric as well. By using extreme value theory

to model the tails of a multivariate distribution, Longin and Solnik (2001) showed

that correlations tend to increase in bear markets and decrease in bull markets, and

thus rejected the multivariate normality hypothesis. They proposed a measure of
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this asymmetry named exceedance correlation defined as

Ex_Corr (X, Y, ϑ, φ) =

 Corr(X, Y |X ≤ ϑ, Y ≤ φ) for ϑ, φ ≤ 0

Corr(X, Y |X ≥ ϑ, Y ≥ φ) for ϑ, φ ≥ 0

and they proved that, asymptotically, exceedance correlation is zero for large

positive returns and strictly positive for large negative returns. In a similar setting,

Ang and Chen (2002) showed that correlations between stocks are much greater in

downside moves than in upside moves. The existence of such stylized facts tends to

reject the normality hypothesis. Furthermore the constant correlations hypothesis

among financial returns failed to find empirical support, as in Engle and Sheppard

(2001) who proposed a test that failed to find support of constant correlation in

S&P500 portfolios. Constant correlation tests have also been proposed from Tse

(2000) and Berra and Kim (2001). Again, these test reviled that correlations among

assets tends to be time —varying.

To model this time varying dependence among financial returns, GARCH models

were extended to the multivariate setting. In the multivariate GARCH family belong

the vech model of Bollerslev, Engle and Wooldridge (1988), and its extension, the

diagonal vech however the vast number of estimated parameters and the complexity

of the conditions needed to ensure the positive —definiteness of the conditional co-

variance matrix make these models impractical, even for small dimensions. In order

to eliminate the problem of ensuring positive definiteness Engle and Kroner (1995)

proposed the BEKK model, which, in its general form, is also diffi cult to estimate,
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since the number of estimated parameters is O(k4), where k is the dimension. In

order to minimize the number of estimated parameters and therefore the compu-

tational burden, Alexander (2000) proposed the orthogonal GARCH model, which

gave birth to a whole new class of models named factor GARCH models. The model

proposed by Alexander is a linear combination of univariate GARCH models under a

factor analysis framework. This model suffers from two limitations. It does not work

well in cases where the series are not highly correlated and it is diffi cult to interpret

the factors from a financial point of view. The multivariate GARCH model that

gained most of the attention and is now considered as the benchmark model is the

dynamic conditional correlation (DCC) model of Engle and Sheppard (2001). The

main advantage of DCC is that allows a two step estimation of the parameters, since

it decomposes correlation to variances and covariances. At the first step, working

independence among margins is assumed and the conditional variances are estimated

by univariate GARCH models. At the second step, the dynamic correlation is esti-

mated, conditional on the results of the first step. Furthermore, DCC ensures that

the estimated correlation matrices are positive definite under very mild conditions

and the number of the estimated parameters of the second step can be reduced down

to two, independent to the dimension of the series, therefore it can be estimated in

problems of very large dimensions . Silvennoinen and Terasvirta (2008) or Bauwens

et al (2006) give a complete overview of multivariate GARCH models.

The main criticism on multivariate GARCHmodels is that they estimated assum-

ing multivariate normality, although Bollerslev and Wooldridge (1992) showed that

the maximum likelihood estimations, assuming normality, are consistent, given that
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both the conditional mean and conditional variance are specified correctly. Mul-

tivariate GARCH models that make non — normal distributional assumptions for

the residuals can be found in Pelagatti (2004) or Fiorentini et al (2003) where the

Student-T distribution is assumed or in Bauens and Laurent (2002) where the inno-

vations follow skew-T distribution. Nevertheless the use of any standard distribution

seldom fits the data well. If a returns process follows the Student —T distribution

with v degrees of freedom, each margin follows the Student-T distribution with v de-

grees of freedom and the joint distribution is also T with the same degrees of freedom,

an assumption that was found to be too restrictive in empirical applications.

The need for more flexible distributions that were able to better capture the char-

acteristics of financial distributions led the researchers to the use of copulas. Strictly

speaking a Copula is a d dimensional distribution function on [0, 1]d with standard

uniform margins. According to Sclar’s theorem (1959), if a multivariate distribution

has continuous margins there exists a unique copula that governs the dependence

structure, implied by the distribution. For example the t-copula represents the de-

pendence structure implied by the multivariate Student —T distribution. The main

advantage of copulas is that the joint distribution can be factored to the dependence

(the copula) and the margins. The marginal distributions are estimated separately

from the dependence, which is governed by the copula. Patton (2002) extended the

copula theory to cover the case of conditional multivariate distributions, allowing

the construction of flexible joint conditional distributions. The combination of the

conditional copulas and multivariate GARCH gave birth to a new class of models

named copula GARCH (CGARCH) models, which gained considerable popularity
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the past few years. For example Jondeau and Rockinger (2006) apply this method-

ology to investigate the dependence between daily stock index returns. Serban et

al (2006) investigate the performance of a copula DCC model (a model with de-

pendence implied by the T-Copula and correlation dynamics implied by the DCC)

and they find it to be more effi cient that multivariate GARCH models. In a similar

setting Fantazzini used copula GARCH models to estimate the value at risk (VaR)

of various index portfolios, Patton (2006) investigates the asymmetric dependence

between exchange rates, while Ausin and Lopes (2006) used this setting to estimate

time varying multivariate distributions in a Bayesian framework.

Copulas are now considered to be the "industry standard" tool to quantify de-

pendence and are used in many financial applications. In the risk management

framework, recent implementations of copula theory can be found at Wang et al

(2010) where the VaR and CVaR of exchange rate portfolios are calculated for a bas-

ket of four international currencies, namely EUR, USD, JPY and HKD, or in Barges

et al (2009)where the problem of capital allocation under tail value at risk (TVaR,

Artzner et al 1999) is addressed. In a similar setting Perignon and Smith (2010)

study whether the diversification effect is underestimated as a possible explanation

to abnormal high levels of risk reported by international banks and its implications

to reserve capital requirements of a banking institution Finally Huang et al (2009)

propose a novel method to calculate the VaR of a portfolio based on copula GARCH

models and showed that the t - copula based estimations outperform classical ap-

proach in terms of VaR violations in all confidence levels. Copulas are also used to

quantify other sources of risk than market risk, like credit risk, as in Cousin and
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Laurent (2008) or operational risk as in Chavez - Demoulin et al (2006).

In derivatives pricing Goorbergh et al (2005) is among the first who utilized copula

theory to price options written on S&P500 and Nazdaq indices. They conclude that

option prices implied by copula models differ significantly from those implied by the

standard Gaussian assumption. Similar results are obtained in Zhang and Guegan

(2008) where they conclude that prices obtained from a time varying t copula with

GARCH marginal processes are the optimum way to calculate prices for derivatives,

among their competing models. The pricing of derivatives issued on more than two

assets is the problem addressed in Bedento et al (2010) where options written on a

basket of five UK shares are studied. Their analysis reveals that results from copula

models differ significantly from the standard gaussian approaches only in volatile but

not in tranquil periods. Other authors, like Malo (2009) investigate the dependence

between spot and future electricity prices using Markov switching multifractal models

combined with copulas while Geman and Kharoubi (2009) study the assumption of

negatively correlated equity and commodity returns with copula models and find

that this assumption is mostly due to the Gaussian assumption previously used to

quantify dependencies. Finally Chen et al (2008) uses copula to study the dependence

structure between CDS’s (Credit Default Swap’s) and the kurtosis of equity returns

and observed that lower rating classes display positive and asymmetric dependence

structure unlike higher rating classes whose dependence structure seems to be almost

symmetric.

Another research area where copulas are extensively used in financial contagion

and the modern global financial crisis in general. The term financial contagion is used
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to describe the interdependence between financial market and how a crisis originated

in some market can spread out to affect other markets as well. One of the first

studies of financial contagion is in Rodriguez (2007) who used copula models in a

regime switching setup to study the changing dependence between financial market

in periods of turmoil. In the same setting Aloiu et al (2010) and Kenourgios etal

(2010) examine the effect of the US and UK markets to those of BRIC countries

(Brasil, Russia India China) markets and found strong evidence of contagion.

2.2 Data and methodology

Let Rt = (rm, rs) be a bivariate random vector of log - returns of a stock (rs) traded

in a market, and the returns of the market (rm). The measure of market risk that the

stock berries is known as beta of the the stock and can be referred to as a measure

of the sensitivity of the asset’s returns to market returns. Beta is estimated with the

market model

rs − rf = a+ b (rm − rf ) + ε (2.1)

where rf is the risk free rate. The expectations on the market model derive the

model known as CAPM (Jack Treynor (1961, 1962), William Sharpe (1964), John

Lintner (1965a,b) and Jan Mossin (1966))

E(rs) = rf + b · E(rm − rf )
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CAPM is one of the most extensively used models in finance. It holds that

b =
cov(rm, rs)

var(rm)
= corr(rm, rs) ·

√
var(rs)

var(rm)

(2.2)

therefore, in order to estimate betas of stock the correlation between the stock and

the market and the variance of the stock need to be estimated in the highest possible

accuracy. Stock betas can be obtained by estimating the regression implied in (2.1)

however this approach has two serious limitations

• It is based on the normality assumption.

• It provides static (not time varying) beta estimates

In section (2.1) we saw that both of these assumptions are too restrictive in

real life situations. Instead we propose a different model based on copula functions,

named t copula GARCH model (tCGARCH). My model assumptions are:

• The returns of both the stock and the market exhibit significant departures

from Normality. More precisely, we assume that each series follows Hansen’s

Skew t distribution (Hansen, 1994), which can accommodate asymmetry and

kurtosis in returns with time varying variances modelled with a GARCH type

process.

• The dependence structure between each stock and the index is time varying

and it is modeled with a t - copula with static degrees of freedom and time

varying correlations that follow a specification similar to the DCC model of

Engle.
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Our assumptions are similar to those in Jondeau and Rockinger (2006) with

only difference that time varying correlations are model with the TVC model in

Jondeau and Rockinger1 To estimate the betas of some major stock of the financial

sector during the modern crisis period, three models where estimated: A simple

market model implied by (2.1) a DCC GARCH model (that is a gaussian copula

with gaussian margins) and a tCGARCH model described earlier. The first model

provides static estimates for betas unlike the other two. The DCC model is used to

estimate time varying betas under the wrong assumption of normality. It is worth

noting that the tCGARCH model nest the DCC model, therefore both models can

be compared with standard likelihood tests or with an information criterion like BIC

or AIC. The aims of this empirical investigation are:

• To compare betas from the current period (2006 - 2010) to a less volatile

previous period (2002 - 2006) to see if the level or variablity of betas has

increased.

• To compare various models that are (or can be) used to calculate time varying

betas, in terms of their statistical accuracy

• To quantify the severity of model misspecification in risk management applica-

tions, by comparing the one step ahead VaR forecasts of the alternative models.

1I also estimated the model implied by Jondeau and Rockinger whoever log likelihood as well
as Akaike values are smaller in TVC than DCC in all cases that is why the DCC was my model of
choice.
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2.2.1 Data and descriptive statistics

My data set consists of the log returns six major financial institutions namely AXP,

BAC, C, GS JPM and MS2 , listed in the standard and poor 500 index and the log

return of the S&P 500 index, from 03/01/2006 (the first working day in 2006) till

25/08/2010, a period that nests the global financial crisis. The descriptive statistics

of the series are presented in table 2.1

AXP BAC C GS JPM MS S&P500

mean -0.0002 -0.0011 -0.0022 0.0001 -0.0001 -0.0007 -0.0002

median 0.0002 0.0000 -0.0012 -0.0001 -0.0004 0.0000 0.0008

IQR 0.0238 0.0223 0.0267 0.0265 0.0232 0.0276 0.0119

MAD 0.0121 0.0113 0.0135 0.0135 0.0117 0.0139 0.0060

st. dev 0.0330 0.0476 0.0517 0.0324 0.0359 0.0466 0.0162

Skewness 0.1236 -0.1873 -0.3117 0.3400 0.3575 1.5857 -0.2151

kurtosis 9.3831 16.3194 22.7704 13.6024 12.4702 39.5787 11.1869

JB test 0 0 0 0 0 0 0
Table 2.1: Descriptive statistics for the seven log returns series. MAD stands for mean absolute

deviation and IQR is the interquantile range. In JB test row, the p - values of the normality

hypothesis are presented.

From table 2.1 it is evident that the use of Hansen’s skew t distribution for our log

returns is justified since all series exhibit significant asymmetry and excess kurtosis.

Further the hypothesis H0: The series is normally distributed is rejected by the

2These are the tickers of the corresponding stocks. AXP is American express, BAC is the Bank
of America, C is Citycorp, GS is Goldman Sachs, JPM is J.P. Morgan and MS is Morgan Stanley
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Jarque Berra test in all confidence levels.

2.3 Empirical results

In order to estimate the parameters of our six bivariate copulas we resort to the two

- step estimation method of Joe and Xu (1996) presented thoroughly in subsection

1.4.2. Each of the seven univariate returns series ri,t is modeled with a GARCH type

process as follows:

ri,t = c0,i + c1,iri,t−1 + εi,t

εi,t = εi,t
√
hi,t

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 + γiε

2
i,t−1 · I (εi,t−1 < 0) (2.3)

εi,t ∼ iid ST (di, λi)

This is the GJR model of Glosten et al (1993) specifically designed to capture asym-

metric effects in conditional volatility process hi,t and ST (di, λi) is the univariate

skew t distribution of Hansen, with density:

fST (z; d, λ) =

{bc(1 + 1
d−2

(
bz+a
1−λ
)2
)−(d+1)/2

if z < −a/b

bc
(

1 + 1
d−2

(
bz+a
1+λ

)2
)−(d+1)/2

if z ≥ −a/b
(2.4)
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where d and λ are the degree of freedom and asymmetry parameter, respectively,

and

a ≡ 4λc
d− 2

d− 1
, b ≡ 1 + 3λ2 − a2, c ≡

Γ
(
d+1

2

)
Γ
(
d
2

)√
π (d− 2)

When λ = 0 Hansen’s Skew t distribution collapses to the central t - distribution

with d degrees of freedom. Further if both λ = 0 and d −→ ∞ the distribution

collapses the standard normal distribution, therefore this density nests the other two

densities that dominate the applications in GARCH processes. Having estimated

the marginal models independently, the standardized residuals are transformed to

uniform with the probability integral transformation

εi,t ∼ iid ST (di, λi) then ui,t = Fst (εi,t; di, λi) ∼ U(0, 1)

where Fst denotes the skew t cumulative distribution function. Having transformed

the standardized residuals to uniform, we create six bivariate data sets with uniform

margins, of the form {ui,t, um,t}Tt=1 with i = {AXP,BAC,C,GS, JPM,MS} . To

each of the six data sets a t− copula with time varying correlations %t and static
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degrees of freedom v is fitted

ct (ui,t, um,t; %t, v|It−1) = C (%t) ·Ω (v) · η (%t, v)

C (%t) =
1√

1− %2
t

Ω (v) =
Γ
(
v+2

2

)
Γ
(
v
2

)
Γ
(
v+1

2

)2

η (%t, v) =

2∏
i=1

(
1 +

z2i,t
v

) v+1
2

1 +
z21,t+z

2
2,t−2%tz1,tz2,t

(1−%2t)v

with z1,t = t−1
v (ui,t|Ft−1), z2,t = t−1

v (um,t|Ft−1) and zt = (z1,t, z2,t)
′ where t−1

v denotes

the inverse cdf of the univariate central t - distribution with v degrees of freedom and

Ft−1is the σ−field generated by all available information at time t− 1.The dynamics

for the time varying correlations follow the DCC type process of Engle (2002)

Rt =

 1 %t

%t 1


Rt = diagQ

−1/2
t ·Qt · diagQ−1/2

t

Qt = Q̄(1− a− b) + azt−1 · z′t−1 + βQt−1

where Q̄ is usually taken to be the sample covariance of the transformed standardized

residuals zt.Therefore in each bivariate model there at 19 parameters in total that

need to be estimated, 8 parameters for each of the two margins and 3 copula parame-

ters. The asymptotic standard errors of the parameters vector ϑ are calculated with
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the Godambe Information Matrix known as the sandwich estimator: Σ̂ = M̂−1V̂ M̂−1

where M̂ is the sum of the log likelihood Hessians and V̂ is the outer product of sums

of the log likelihood gradients, based on the estimate ϑ̂ of ϑ.The estimated marginal

parameters along with their corresponding standard errors are presented in table

2.3. All calculations were conducted with MATLAB 7.7 (R2008b) by employing the

fminunc solver, for nonlinear unconstrained optimization. The reason that fminunc

was chosen instead of fmincon (than can accept linear or / and nonlinear constraints)

is that fminunc provides more accurate approximations of the log likelihood Hessian

than fmincon, which results to more accurate standard errors. However since the

problem is constrained, I reparametrized the constrained parameters, to make the

unconstarined. The reparametrizations are illustrated in table 2.2

Marginal Parameter Parameter space Reparametrization

α (0, 1) α = 1
1+exp(−x)

β (0,1) β = 1
1+exp(−x)

d (2,+∞) d = 2 + exp(x)

λ (-1,1) λ = exp(x)−1
exp(x)+1

Copula Parameter

a (0, 1) a = 1
1+exp(−x)

b (0,1) b = 1
1+exp(−x)

v (2,+∞) v = 2 + exp(x)

Table 2.2: Reparametrizations of the model parameters. x is the corresponding unconstrained

parameter. Since α+ β < 1 (and a+ b < 1), whenever this constrained was violated α (a) was

taken α = 0.9999− β (a = 0.9999− b)
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AXP BAC C GS JPM MS S&P500

c0

0.0002

(0.0005)

-0.0002

(0.0004)

-0.0003

(0.0004)

0.0008

(0.0006)

0.0002

(0.0005)

<−10−6

(0.0006)

0.0002

(0.0003)

c1

-0.0994

(0.0287)

-0.0041

(0.0297)

0.0268

(0.0295)

-0.0554

(0.0294)

-0.0967

(0.0294)

0.0034

(0.0287)

-0.0811

(0.0282)

ω × 106
2.337

(1.358)

2.566

(1.242)

3.146

(1.450)

11.293

(3.802)

3.673

(1.634)

6.919

(2.806)

1.195

(0.456)

α
0.0527

(0.0227)

0.1009

(0.0308)

0.0990

(0.0288)

0.0184

(0.0167)

0.0450

(0.0203)

0.0319

(0.0220)

∼10−8

(∼ 10−5)

β
0.9060

(0.0158)

0.8616

(0.0195)

0.8494

(0.0190)

0.8987

(0.0191)

0.8822

(0.0191)

0.9004

(0.0168)

0.9121

(0.0124)

γ
0.1041

(0.0360)

0.1273

(0.0440)

0.1641

(0.0481)

0.1419

(0.0366)

0.1721

(0.0416)

0.1442

(0.0401)

0.1641

(0.0273)

d
5.0824

(0.8940)

4.3520

(0.6554)

4.4996

(0.7048)

5.2970

(0.8037)

5.2663

(0.8806)

4.5370

(0.7136)

6.3250

(1.3498)

λ
0.0102

(0.0382)

-0.0361

(0.0382)

0.0155

(0.0367)

-0.0027

(0.0411)

0.0229

(0.0387)

-0.0351

(0.0375)

-0.1644

(0.0376)

LogL 2794 2797.1 2639.8 2743 2812.1 2594.5 3600.1

Table 2.3: Parameter estimates for the marginal models and robust standard errors. Parameters

in italics are statistically significant in the 5% level.
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Figure 2.1: Autocorrelation function graphs for the standardized residuals of the seven series.
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Figure 2.2: Autocorrelation function graphs for the squared standardized residuals of the seven series.
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If the specifications of the marginal models are correct then the standardized

residuals and squared standardized residuals should not exhibit any residual auto-

correlations. The sample autocorrelations of the residuals and squared residuals are

depicted in figures 2.1 and 2.2 respectively, out of which is evident that the AR(1)

- GJR(1,1) model is adequate to solve both problems for all seven series.

2.3.1 Copula results and time varying parameters

Having estimated the marginal parameters, the standardized residuals were trans-

formed to uniform and the tCGARCH model was fitted to the six data sets. The

copula parameters are depicted in table 2.5.

AXP BAC C GS JPM MS

v
7.4350

(1.1678)

7.0483

(1.6175)

7.0594

(1.6139)

5.8901

(1.447)

5.4090

(0.9273)

2.1271

(0.1917)

a
0.0644

(0.0240)

0.0364

(0.0112)

0.0347

(0.0111)

0.032

(0.0122)

0.0465

(0.212)

0.009

(0.0037)

b
0.7847

(0.0897)

0.9383

(0.0238)

0.9443

(0.0211)

0.9285

(0.0293)

0.7836

(0.1132)

0.8408

(0.387)

LogL 554.5667 457.7818 412.8283 452.1737 566.2456 560.8979
Table 2.5: Copula parameters estimates and their corresponding robust standard errors. Parameters

in italics are statistically significant in 5% level

From the results in table 2.5 we observe that the choice of the t copula is clearly

justified from the small value of the degree of freedom parameter. The degree of

63



freedom parameter affects the tail dependence coeffi cient, the probability of o joint

extreme event to occur. The probability of a joint negative extreme event is called

lower tail dependence (λL) while the opposite is called upper tail dependence (λU).

The Gaussian copula has tail dependence zero, while the tail dependence of the t

copula is symmetric
(
λ = λU = λL

)
and are given by:

λ = 2Tv+1

(
−
√
v + 1

√
1− %t
1 + %t

)

Since correlations are time varying so are the tail dependence coeffi cients whose

graphs are depicted in figure 2.3

AXP BAC C

0 200 400 600 800 1000 1200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 1200
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 1200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

GS JPM MS

0 200 400 600 800 1000 1200

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 200 400 600 800 1000 1200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 200 400 600 800 1000 1200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 2.3: Time plots of the tail dependence coeffi cient for the six estimated t - copulas
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Since the tail dependence of each of the six t - copulas is constantly away from

zeros we conclude that the use of the Gaussian copula would have clearly underes-

timated the probability of a joint extreme event a fact that would evidently have

significant impact in risk management decisions.

2.3.2 Model comparison and time varying betas

The main purpose of this thesis is to statistically evaluate the alternative models and

quantify their implications in terms of risk management decisions. The two models

considered are the tCGARCH model and a Gaussian DCC model. Since both models

are nested their comparison can be conducted with standard likelihood ratio tests

LR = −2 ln

(
LNDCC

LtCGARCH

)
= −2 (LLNDCC − LLtCGARCH) ∼ χ2 (3)

where LX and LLX denote the likelihood and log likelihood of model X, respec-

tively. Table 2.6 presents the total log likelihood of the two competing models, the

corresponding likelihood ratio tests.

AXP BAC C GS JPM MS

LLtCGARCH 6948.6 6855.0 6652.7 6795.3 6978.4 6755.4

LLNDCC 6857.3 6772.8 6552.5 6686.8 6863.4 6534.2

LR 182.6∗∗∗ 164.4∗∗∗ 200.4∗∗∗ 217∗∗∗ 230∗∗∗ 442.4∗∗∗

Table 2.6: Likelihood ratio test for the six bivariate data sets. The critical value of the test in

1% significance is 11.3449.

The likelihood ratio test reject the hypothesis of model equivalence in every confi-
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dence lever therefore we conclude that the proposed tCGARCH model is statistically

superior than the NDCC model. This is something we expected since the degree of

freedom parameter in both the copula and margins was very small in all cases which

is a clear indication of departure from normality. But what about betas? In figure

2.4 the time varying betas implied from the tCGARCH model, along with the static

beta estimates from the simple market model are plotted.
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Figure 2.4: Plot of the static beta estimates from the market model (regBeta) against the time varying

estimates from the tCGARCH model

From figure 2.4 we observe that stock betas vary significantly in our sample

period, therefore the use of the static beta estimates may have serious limitations
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in risk management decisions. To compare the betas from the two dynamic models

(tCGARCH and NDCC) I plotted their differences. These six plots are presented in

figure 2.5. In this case we observe that inspite the clear statistical superiority of the

tCGARCh model, the beta estimates from the two dynamic models are very close.

I believe that this fact is due to characteristics of correlation. Linear correlation

is a measure of dependnece in a Gaussian world, therefore the characteristics (like

tail dependence) that constitute the tCGARCH model statistically superior than the

NDCCmodel are not incorporated in the correlation estimates. For more information

on the pitfalls of using linear correlation as a measure of dependence, the interested

reader is referred to Embrechts et al (2001).
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Figure 2.5: Differences of betas betatCGARCH − betaNDCC for the six stocks

To quantify the effect of the misspecified model to risk management decisions we

calculated one step ahead forecasts of the Value at Risk, for each data set, assuming

equally weighted portfolios, for the last 169 days of the portfolio. The one step ahead

forecast, for day t+ 1, is calculated as follows:

• Use the copula parameters at time t+1 to simulate N correlated uniform values

{u1, u2} that follow the copula of choice.

• Transform these values from U(0, 1) to the marginal distributions of choice, us-

ing the inverse probability integral transformation. That is if Fi is the marginal

distribution, and φi is the vector of marginal parameters for the i− margin,

i = 1, 2 then

εi = F−1
i (ui;φi)

Each of the N values in ε is a path (a realization) of the simulated standardized

residuals for time t+ 1

• Transform ε to data by

yit+1 = εi

√
hit+1 + µit+1

• Create the portfolio

pt+1 =
2∑
i=1

wiyit+1

where the vector w contains values that sum to unity and calculate the one

step ahead a− V aR as the a− empirical quantile, of the values in pt+1
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Figure 2.6 contains these VaR forecast for the six data sets assuming the tC-

GARCH and the NDCC models.
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Figure 2.6: One day ahead forecast of 95% VaR’s assuming equally weighted portfolios

From figure 2.6 it is clear that the NDCC model underestimates the VaR in

all cases, therefore we conclude that although the two models provide similar beta

estimates, the statistically superior tCGARCH model clearly outperforms the NDCC

model in terms of VaR forecasts.
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2.4 Time evolution of betas

One of the main questions arising is if betas have increased during the modern global

financial crisis period. The beginning of this period has not been fully clarified yet

but most authors believe that the beginning of the period starts in the end of 2006

or in the early 2007. To observe the effect of the new crisis to the stock betas

I calculated time varying betas with the tCGARCH model for four years prior to

2006, from 03/01/2002 to 30/12/2005, total 1006 observations. The graphs of the

six stocks betas are depicted in figure 2.7
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Figure 2.7: Time varying betas for the six stocks, for the whole sample period (03/01/2002 - 25/08/2010).

The dashed blue line corresponds to 03/01/2006.

From figure 2.7 it is evident that both the average level of betas and variability of
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betas have increased since the beginning of 2006. To quantify this result I calculated

the mean, MAD and standard deviations of the betas for the two sub - periods, prior

to 03/01/06 and after 03/01/06. Table 2.7 illustrates these descriptive statistics

AXP BAC C GS JPM MS

mean
1.598

1.159

1.688

1.163

1.774

1.374

1.562

1.512

1.571

1.613

1.831

1.917

MAD
0.254

0.174

0.473

0.185

0.466

0.166

0.228

0.169

0.245

0.258

0.248

0.194

st. dev
0.455

0.319

0.982

0.341

0.882

0.266

0.420

0.252

0.477

0.332

0.509

0.343
Table 2.7: Descriptive statistics of betas for the two sub - samples. The upper value is for sub

- sample 2 (from 03/01/2006 to 25/08/2010).

From table 2.7 we observe that there was a significant increase in the mean level of

betas for half of the stocks (AXP, BAC and C) in the second period, while the mean

level of betas for the other three has remained unchanged. However the variability of

betas has significantly increased in alla cases, by 42% in the case of AXP to 330% in

the case of C. Therefore I argue that betas tend to behave like stock returns; it is not

clear that mean returns change significantly during crisis periods but their volatility

is significantly increased.
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2.5 Other copula models

Apart from the t and the Gaussian copulas, there are other copulas that are used in

financial applications. In shake of completeness I also estimated the following models

• A Clayton copula with time varying association parameter

• A Symmetrized Joe Clayton (SJC) copula with both static and time varying

copula parameters.

• A static t - copula

The first two copulas belong to the family of Archimedean copulas and they

are used in finance because, unlike the t and the Gaussian copula, they exhibit

asymmetric dependence. The Clayton copula is tail dependent only in the lower

tail (which has the most extreme implications in risk management) but can only

incorporate positive dependence, therefore it should be used only when all series are

positively correlated. On the other hand the SJC copula exhibits both lower and

upper tail dependence and thus it is the most flexible copula used in this study.

Table 2.7 contains the log likelihood values of the competing copula models3The

choice for the best fitting copula is being made with an information criterion like the

Akaike (AIC) or the Bayesian (BIC) information criterion. The AIC criterion does

not depend on the number of parameters unlike BIC which imposes a penalty for the

number of parameters. From table 2.8 the superiority of the t - copula is clear. It is

3In all cases the margins were modeled with an AR(1) - GJR(1,1) SkewT model, as in section
2.3
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the superior copula in all sets for both criteria. The tCGARCH model is found to

be the best model in three cases according to the BIC and in five cases according to

the AIC, while the static t - copula is the best fitting copula, when the tCGARCH

isn’t.

AXP BAC C GS JPM MS

SJC tv

6 parameters

543.296 449.795 403,706 451.810 554.872 558.758

Clayton tv

3 parameters

449.675 381.201 342.541 379.99 474.9 481.42

t static

1 parameter

551.735 443.222 395.803 444.5 563.766 562.031

SJC static

2 parameters

533.566 437.067 388.443 443.111 542.445 527.918

tCGARCH

3 parameters

554.5671 457.7821 412.8281 452.1741 566.2461 560.898

Table 2.8: Loglikelihood values of the five alternative copula models. Values in boldface letters denote

the best fitting copula, according to Bayesian information criterion while values with thesuperscript 1 are

the best fitting copula according to Akaike information criterion

2.6 Conclusion

The multivariate distribution of a portfolio plays a significant role in finance since a

number of theories are based upon the statistical characteristics of the returns series.
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In the univariate setting there are many distributions that seem to fit financial data

adequately however this is not the case when the problem in hand is multivariate. In

fact none of the existing multivariate distributions can accommodate all character-

istics of financial data. The remedy to this problem is to separate the multivariate

distribution to the marginal distributions and the dependence structure which is

described by a copula. This decomposition allows researcher to use different para-

metric models for the dependence and the margins that significantly adds flexibility

to the model. For example a multivariate t distribution enforces both the margins

and the dependence to have the same degree of freedom parameter which is rather

unrealistic. Instead one could use a t - copula with t - margins to allow all margins

and the copula to have their own degree of freedom parameter. This study aimed to

measure stock betas of some major financial institutions during the contemporary

period of global financial crisis by applying the results of copula theory, investigate

the implications of the proposed model in risk management applications and com-

pare the betas of the current regime to previous, less volatile periods.. The proposed

methodology, unlike traditional models, does not suffer from two serious limitations:

It does not assume normality and it can provide time varying beta calculations,

unlike the standard methodology used to calculate betas (the market model). I es-

tablished the statistical superiority of the proposed modeling scheme in comparison

with other sophisticated models used in finance and I concluded that, although the

proposed model provides similar results to other models that are based on the wrong

assumption of normality, it should be the model of choice when risk management

decisions are involved, since traditional models clearly underestimate the risk of the
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portfolio, in comparison with the tCGARCH model. Further I provided empirical

evidence that betas behave like stock returns in terms of behavior during periods of

crisis. Even though the mean level of betas does not change during turmoil periods,

the variability of betas (like stock volatility) is significantly increased.
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