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A
cute respiratory distress syndrome
(ARDS) has significant impact on the
morbidity and mortality in the intensive

care unit. It is estimated that there are
86.2 cases of ARDS per 100,000 people.
This disease has an average mortality rate
of approximately 38.5%1. Severe ARDS
has a 49% mortality rate, with mortality
increasing with age1. Currently, there are
no viable specific treatment options in the
intensive care unit for ARDS other than
non-specific supportive care. As such, the
purpose of this study was to use serum
metabolomics to further characterize the
mortality of patients with pneumonia-induced
ARDS in the intensive care units at the Peter
Lougheed Center, and the Foothills Medical
Centre in Calgary, Alberta, Canada. It was
hypothesized that using serum metabolomics
would more accurately predict outcome in
pneumonia-induced ARDS when compared
to current used predictive indexes such as
APACHE II or lung injury score.

The diagnostic criteria for ARDS include the acute
onset of non-cardiogenic pulmonary edema, hypoxia,
and presence of bilateral pulmonary infiltrates)2.
Moreover, the state of patient hypoxemia and the
fraction of inspired oxygen can be used to calculate
a ratio of partial pressure of arterial oxygen to the

fraction of inspired oxygen ratio (PaO2/FiO2 ratio).
The ratio varies decreasing from in the 500s to
less than 100, with a healthier lung having higher
PaO2/FiO2 ratio. The specific PaO2/FiO2 ratio were
used to clinically differentiate the severity of lung
injury. The Berlin definition of ARDS is used to
define the cohorts in this study3. Mild, moderate,
and severe ARDS are described with PaO2/FiO2

ratios of 201-300, 101-200, and ≤ 100, respectively.
Metabolomics analysis is a systems-biology

approach used to identify metabolites of organisms
such as humans and plants4. This can be done by
analyzing multiple biofluids (e.g. serum, plasma,
urine) and utilizes spectroscopic methods such as
proton nuclear magnetic resonance (1H-NMR), gas
chromatography mass spectrometry (GC-MS), and
liquid chromatography mass spectrometry (LC-MS)5.
In this study, we used 1H-NMR.

Metabolomic profiling was completed to see if
metabolomic fingerprints (biomarkers) can predict
ICU outcome (death) in pneumonia-induced acute
respiratory distress syndrome (ARDS).

Methods

Patient Selection

The selected population in the study consisted of
adults admitted to the intensive care units at the
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Figure 1:

PCA model of mild and severe pneumonia-induced ARDS. Model is based on 28 day mortality, and shows significant

clustering between alive and dead outcomes. (27 alive, 8 dead, R2Y=0.562, x-axis: prediction component). Green dots

(alive), black dots (dead) at 28 days.

Figure 2:

OPLS-DA plot of mild and severe pneumonia-induced ARDS. Model shows distinct separation between alive and dead

outcomes (27 alive, 8 dead, R2Y=0.61, Q2Y=0.458, p=0.004, x-axis: prediction component, y-axis: orthogonal

component). Green dots (alive), black dots (dead) at 28 days.

Foothills Medical Centre and Peter Lougheed Centre
in Calgary, Alberta, Canada with pneumonia-induced
direct lung injury between 2009 and 2014. Blood
was drawn from these patients on day 1 of ICU
stay. Of the 868 adult patients enrolled in the
Critical Care Epidemiologic and Biologic Tissue
Resource (CCEPTR) a total of 97 patients were
selected to be enrolled in the study. By applying
the specific inclusion and exclusion criteria, patients

were grouped into two groups based on severity of
ARDS and age- and sex-matched to minimize variable
confounders: Mild ARDS (n=18), Severe ARDS
(n=18) using the Berlin definition of ARDS.

REDCap Initialization and Data Entry

Upon selection of the 97 patients into their respective
cohorts a REDCap (Research Electronic Data
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Capture) epidemiologic relational database was used
to enter patient data.

Sample Preparation NMR Analysis

Each of the 54 serum samples (200 µl) were
defrosted from -80◦C to 4◦C. 3 kDa NanoSep
microcentrifuge filters were prewashed five times
with ddH2O, reducing preservative contamination.
Then, the samples were filtered via centrifugation at
11963 x g for 1 hour at 4◦C using the pre-washed
3 kDa filters. The filtrates were rinsed with
100 µl of D2O. The filtrates were collected into
clean 1.5 ml vials. The samples were adjusted
to 400 µl with 80 µl of phosphate buffer (0.5 M
NaH2PO4 buffer solution at pH 7.0) containing
2.5mM 2,2-dimethylsilapentane-5-sulfonate (DSS,
final concentration 0.5 mM) as an internal reference
compound, 10 l sodium azide (1M NaN3) to
prevent bacterial growth, and D2O. The pH of
the samples was adjusted to 7.0 ± 0.04 at room
temperature. 1H-NMR data for all the samples
were generated on a 600 MHz Bruker Ultrashield
Plus NMR spectrometer (Bruker BioSPin Ltd.,
Canada), without bias by the use of an automated
sample changer. Bruker 1D proton spectroscopy
pre-saturation pulse sequence (noesypr 1d) were used
to acquire one dimensional spectra, where an optimal
water suppression program and mixing time of 100
ms were used. 1H-NMR spectra were analyzed using
the ChenomX NMR Suite 7.1 software (Chenomx
Inc., Edmonton, Alberta, Canada) for metabolite
identification and quantification using the targeted
profiling approach in the profiler module.

Results

The unsupervised PCA model showed significant
clustering in the 3-dimensional model for alive-
and dead- outcomes for the patients in the study
(Figure 1). Eight patients with a dead outcome were
clustered together, and denoted by black squares
(Figure 1). The patients with an alive outcome
showed clustering in their respective coordinates,
and were represented by green squares (Figure 1).
2 and 3-dimensional OPLS-DA models were generate
and revealed statistically significant separation for
predicting the alive and dead outcomes for the patient
cohort on day one of OCU admission. As the

black squares (dead) and green squares (alive) are
positioned on separate portions of the orthogonal
component (x-axis), a separation is observed between
the two states (Figure 2).

Discussion and Conclusions

The purpose of this study was to determine if there
was a statistically significant metabolomics difference
in 28-day mortality for patients with ARDS. The
use of 1H-NMR to establish a metabolic distinction
in ICU outcome (dead or alive) for patients with
pneumonia-induced ARDS was needed ICU stay.
This study was successful in determining a model
to separate 28 day mortality in mild vs severe
pneumonia- induced ARDS patients from samples
taken on the first day of ICU admission.

An unsupervised PCA model of the 55 metabolites
detected by 1H-NMR dataset was based on 28
day mortality for patients with pneumonia-induced
ARDS. The PCA plot revealed statistically significant
data clustering between groups, demonstrating that
alive patient outcome can be separated from the
dead outcome (Figure 1). In the OPLS-DA model,
significant and predictive separations were observed
in the alive and dead outcomes (Figures 1, 2). R2Y
values measure the differences within the group, and
typically give the degree of variation explained by
the model. The R2Y value determined from the
OPLS-DA plot was 0.61, suggesting reliable statistical
variation in the data. The OPLS-DA model revealed
a Q2Y= 0.458 and p-value of 0.004. The Q2Y is
a measure of model predictability and this value
suggests good predictability of ICU outcome. An
excellent separation between the serum profile for
the alive and dead outcomes in pneumonia-induced
ARDS patients was observed.
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