
 

 

 

Improved Technique and Function of 

Agricultural Soil Mapping Using Visible and 

Near Infrared Real-time Soil Sensor 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 2015.3 

 

Agricultural and Environmental Engineering 

United Graduate School of Agricultural Science 

Tokyo University of Agriculture and Technology 

  

SITI NOOR ALIAH BINTI BAHAROM 

 



i 
 

 

学 位 論 文 要 旨  

 

 

I m p r o v e d  T e c h n i q u e  a n d  Fu n c t i o n  o f  A g r i c u l t u r a l  S o i l  M a p p i n g  

U s i n g  V i s i b l e  a n d  N e a r  I n f r a r e d  R e a l - t i m e  S o i l  S e n s o r  

可視・近赤外光リアルタイム土壌センサーを用いた農地土壌のマッピング手法改善  

 

農業環境工学専攻   農業環境工学大講座  

S I T I  N O O R  A L I A H  B IN T I  B A H A R O M  

 

 

 

 

 

 

 

 

 

T h e  v i s i b l e  a n d  n e a r  i n f r a r e d  ( V i s - N I R )  b a s e d  r e a l - t i m e  s o i l  s e n s o r  ( R T S S )  i s  f o u n d  

t o  b e  a  g r e a t  t o o l  f o r  d e t e r m i n i n g  d i s t r i b u t i o n  o f  v a r i o u s  s o i l  p r o p e r t i e s  a n d  

v i s u a l i z e d  i t  o n  d i g i t a l  s o i l  m a p s .  H o w e v e r  t h e r e  a r e  s t i l l  m a n y  a s p e c t s  t h a t  n e e d  t o  

b e  i m p r o v e d  a s  t o  o p t i m i z e  t h e  u s e d  o f  V i s - N I R  s o i l  s e n s o r  f o r  b e t t e r  a g r i c u l t u r e  

m a n a g e m e n t  e i t h e r  f o r  p r e c i s i o n  a g r i c u l t u r e  o r  p r e c i s i o n  c a r b o n  f a r m i n g  p u r p o s e s .  

T h i s  s t u d y  d e s c r i b e s  o n  i m p r o v e d  t e c h n i q u e  a n d  f u n c t i o n  o f  a g r i c u l t u r e  s o i l  

m a p p i n g  u s i n g  V i s - N I R  r e a l - t i m e  s o i l  s e n s o r  a s  t o  o p t i m i z e  t h e  u s e d  o f  t h i s  s t a t e -

o f - t h e - a r t  t e c h n o l o g y .  T h r e e  a s p e c t s  h a v e  b e e n  i n v e s t i g a t e d .  T h e  f i r s t  a s p e c t  i s  t o  

i n v e s t i g a t e  t h e  p o t e n t i a l  o f  a  V i s - N I R  r e a l - t i m e  s o i l  s e n s o r  f o r  m a p p i n g  o f  p a d d y  

s o i l  p r o p e r t i e s  a t  m u l t i p l e  s o i l  d e p t h s .  T h e  s e c o n d  a s p e c t  i s  t o  d e m o n s t r a t e  t h e  

p o t e n t i a l  o f  V i s - N I R  r e a l - t i m e  s o i l  s e n s o r  f o r  h i g h - r e s o l u t i o n  m a p p i n g  o f  u p  t o  2 4  

p a d d y  s o i l  p r o p e r t i e s  a n d  t h e  t h i r d  a s p e c t  i s  t o  i n t r o d u c e  i n t e g r a t e d  c a l i b r a t i o n  

m o d e l  a p p r o a c h  a n d  c o m p a r e  i t s  p e r f o r m a n c e  w i t h  l o c a l  m o d e l  f o r  m a p p i n g  o f  s o i l  

p r o p e r t i e s .  R e s u l t s  f r o m  t h i s  s t u d y  s h o w e d  t h a t  t h e  a c c u r a c y  o f  t h e  c a l i b r a t i o n  

m o d e l s  o f  t h e  R T S S  i m p r o v e d  w h e n  t h e  d a t a s e t s  f r o m  t h r e e  s o i l  d e p t h s  u s e d  t o  

d e v e l o p  t h e  m o d e l .  T h e  t h r e e  d e p t h s  m a p s  g e n e r a t e d  f r o m  t h e  p r e d i c t i o n  v a l u e  

w h i c h  w e r e  p r e d i c t e d  u s i n g  t h e  t h r e e  d e p t h  m o d e l s  e x h i b i t e d  t h a t  t h e  s o i l  p r o p e r t i e s  

w e r e  n o t  o n l y  v a r i e d  h o r i z o n t a l l y  b u t  a l s o  a t  d i f f e r e n t  d e p t h s .  Fu r t h e r m o r e ,  t h e  

i n c o r p o r a t i o n  o f  m u l t i p l e  s o i l  d e p t h s  m a p s  p r o v i d e d  c o m p r e h e n s i v e  i n f o r m a t i o n  o n  

s o i l  v a r i a b i l i t y  f o r  m a k i n g  p r e c i s i o n s  a g r o n o m i c  d e c i s i o n s .  H e n c e ,  t h e  V i s - N I R  

r e a l - t i m e  s o i l  s e n s o r  h a s  g r e a t  p o t e n t i a l  f o r  d e t e r m i n i n g  t h e  s o i l  p r o p e r t i e s  a t  



ii 
 

m u l t i p l e  s o i l  d e p t h .  T h e  u s e d  o f  t h e  V i s - N IR  r e a l - t i m e  s o i l  s e n s o r  f o r  m a p p i n g  o f  

2 4  s o i l  p r o p e r t i e s  i s  a n o t h e r  p a c e  t h a t  h a s  b e e n  i n t r o d u c e d  i n  t h i s  s t u d y  f o r  

o p t i m i z i n g  t h e  u s e  o f  t h i s  s e n s o r  f o r  p r e c i s i o n  a g r i c u l t u r e  p r a c t i c e .  T h e  

i n v e s t i g a t e d  2 4  s o i l  p r o p e r t i e s  w e r e  m o i s t u r e  c o n t e n t  ( M C ) ,  s o i l  o r g a n i c  m a t t e r  

( S O M ) ,  p H ,  e l e c t r i c a l  c o n d u c t i v i t y  ( E C ) ,  c a t i o n  e x c h a n g e  c a p a c i t y  ( C E C ) ,  t o t a l  

c a r b o n  ( C - t ) ,  t o t a l  n i t r o g e n  ( N - t ) ,  a m m o n i u m  n i t r o g e n  ( N - a ) ,  h o t  w a t e r  e x t r a c t a b l e  

n i t r o g e n  ( N - h ) ,  n i t r a t e  n i t r o g e n  ( N - n ) ,  a v a i l a b l e  p h o s p h o r u s  ( P - a ) ,  e x c h a n g e a b l e  

c a l c i u m  ( C a ) ,  e x c h a n g e a b l e  p o t a s s i u m  ( K ) ,  e x c h a n g e a b l e  m a g n e s i u m  ( M g ) ,  h o t  

w a t e r  s o l u b l e  s o i l  b o r o n  ( B ) ,  s o l u b l e  c o p p e r  ( C u ) ,  e a s i l y  r e d u c i b l e  m a n g a n e s e  ( M n ) ,  

s o l u b l e  z i n c  ( Z n ) ,  p h o s p h a t e  a b s o r p t i o n  c o e f f i c i e n t  ( P A C ) ,  c a l c i u m  s a t u r a t i o n  

p e r c e n t a g e  ( C S P ) ,  b a s e  s a t u r a t i o n  p e r c e n t a g e  ( B S P ) ,  b u l k  d e n s i t y  ( B D ) ,  r a t i o  o f  

m a g n e s i u m  t o  p o t a s s i u m  ( M g / K )  a n d  r a t i o  o f  c a l c i u m  t o  m a g n e s i u m  ( C a / M g ) .  T h e  

r e s u l t s  i n d i c a t e d  t h a t  2 2  o u t  o f  2 4  s o i l  p r o p e r t i e s  c a n  b e  p r e d i c t e d  b y  j u s t  a  s i n g l e  

s c a n  o f  V i s - N I R  u s i n g  a  s i n g l e  a c t i o n  o f  s o i l  s e n s i n g  i n  r e a l - t i m e  w i t h  d i f f e r e n t  

l e v e l s  o f  m o d e l  a c c u r a c y .  T h e  c o e f f i c i e n t  o f  d e t e r m i n a t i o n  ( R
2

v a l )  r a n g e d  f r o m  0 . 4 3  

t o  0 . 9 0 .  O f  t h e s e  2 4  s o i l  p r o p e r t i e s ,  8  s o i l  p r o p e r t i e s ’  m o d e l s  w e r e  c a t e g o r i z e d  a s  

e x c e l l e n t ,  1 4  a s  g o o d  a n d  2  a s  u n r e l i a b l e  b a s e d  o n  t h e i r  r e s i d u a l  p r e d i c t i o n  

d e v i a t i o n  ( R P D )  v a l u e s .  R e a s o n a b l e  s p a t i a l  s i m i l a r i t y  e x h i b i t e d  b e t w e e n  t h e  

m e a s u r e d  a n d  p r e d i c t e d  m a p s  i s  s u f f i c i e n t  t o  d e c l a r e  t h a t  t h e  V i s - N I R  r e a l - t i m e  s o i l  

s e n s o r  m e a s u r e m e n t  s y s t e m  h a s  p o t e n t i a l  t o  b e  u s e d  f o r  t h e  r e a l - t i m e  m e a s u r e m e n t  

o f  n u m e r o u s  s o i l  p r o p e r t i e s .  A n o t h e r  a p p r o a c h  t o  i m p r o v e  t h e  u s e  o f  R T S S  f o r  s o i l  

m a p p i n g  i s  b y  i n t r o d u c i n g  a n  i n t e g r a t e d  c a l i b r a t i o n  m o d e l  t h a t  w a s  d e v e l o p e d  u s i n g  

t h e  d a t a s e t  f r o m  t h r e e  d i f f e r e n t  f i e l d s  a t  t h r e e  d i f f e r e n t  r e g i o n s  o f  J a p a n  w i t h  

d i f f e r e n t  s o i l  n u t r i e n t  m a n a g e m e n t .  T h e  i n t e g r a t e d  c a l i b r a t i o n  m o d e l  h a s  i m p r o v e d  

t h e  p r e d i c t i o n  a c c u r a c y  o f  t h e  l o c a l  c a l i b r a t i o n  m o d e l .  T h e  c o m p a r i s o n  b e t w e e n  

m e a s u r e d  a n d  m a p s  g e n e r a t e d  t h r o u g h  p r e d i c t i o n  o n  t h e  i n d e p e n d e n t  v a l i d a t i o n  s e t  

u s i n g  t h e  i n t e g r a t e d  m o d e l  s h o w e d  s p a t i a l  s i m i l a r i t y  f o r  m o i s t u r e  c o n t e n t  ( M C ) ,  

s o i l  o r g a n i c  m a t t e r  ( S O M ) ,  t o t a l  c a r b o n  ( C - t )  a n d  t o t a l  n i t r o g e n  ( N - t ) .  T h i s  s h o w e d  

t h a t  t h e  i n t e g r a t e d  c a l i b r a t i o n  m o d e l  a p p r o a c h  h a s  g o o d  p o t e n t i a l  f o r  m i n i m i z i n g  

t h e  r e p e t i t i v e n e s s  o f  d e v e l o p i n g  c a l i b r a t i o n  m o d e l  f o r  R T S S  e v e r y  t i m e  f o r  e v e r y  

d i f f e r e n t  f i e l d .  T h i s  r e s u l t  c o u l d  b e  u s e d  a s  a  s t e p  t o w a r d s  e s t a b l i s h m e n t  a  r o b u s t  

c a l i b r a t i o n  m o d e l  f o r  a g r i c u l t u r e  s o i l  i n  J a p a n .  T h e  t e c h n i q u e  d e v e l o p e d  i n  t h i s  

r e s e a r c h  w o u l d  c a p a b l e  i n  r e d u c i n g  t h e  c o s t  a n d  t i m e  i n  a n a l y s i s  o f  s o i l  s p a t i a l  

v a r i a b i l i t y  f o r  t h e  p r e c i s i o n  a g r i c u l t u r e  a n d  p r e c i s i o n  c a r b o n  f a r m i n g  p r a c t i c e s .  

Fu r t h e r m o r e ,  t h e  a p p r o a c h e s  a n d  r e c o m m e n d a t i o n s  o n  t h e  t e c h n i q u e s  o f  s o i l  

p r o p e r t i e s  m e a s u r e m e n t  a n d  m a p p i n g  i n  t h i s  s t u d y  c o u l d  i m p r o v e  a n d  o p t i m i z e  t h e  

u t i l i z a t i o n  o f  V i s - N I R  r e a l - t i m e  s o i l  s e n s o r  t o w a r d s  b e t t e r  a g r i c u l t u r e  p r o d u c t i o n  

s u c h  a s  o p t i m i z e  p r o d u c t i o n  e f f i c i e n c y ;  o p t i m i z e  q u a l i t y ;  m i n i m i z e  e n v i r o n m e n t a l  

i m p a c t ;  m i n i m i z e  r i s k  a t  t h e  s i t e - s p e c i f i c  l e v e l  m a n a g e m e n t  p r a c t i c e  i n  p r e c i s i o n  

a g r i c u l t u r e  a n d  c a r b o n  s e q u e s t r a t i o n  p r a c t i c e s .   
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Chapter 1 

Introduction 

 

1.1 Background 

Information on spatial and temporal soil variability is essential in order to assist 

farmers in making agronomic decision for farm management and for environmental 

concern. This information is to ensure high crop yield and low cost production with 

minimal unintended environmental effects. Practical assessment of soil properties 

variability and soil nutrient availability, however, remains a challenging task because it 

requires the integrated consideration of multiple soil properties involved in soil 

functioning and their variation in space and time. Moreover, reports have shown that 

there is large variability in soil, crop, diseases, weed and/or yield, not only in large-size 

but also in small-size fields (Mouazen et al. 2003). In conventional method of soil 

properties quantification, the soil cores are collected at limited number of samples and 

analyze them intensively in laboratory. This practice is not only laborious but also high 

cost and time consuming. It is also impractical when the quantification of the soil 

properties involves mapping of large field areas for precision agriculture purposes. The 
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laboratory analysis of soil properties in the conventional method are usually measured 

using standardized analytical procedures, which are costly, time consuming and need a 

skilled operator. Therefore, these procedures are based on a limited number of mixed 

soil samples representative of a large area up to 2 ha of land (Vanden Auweele et al., 

2000). This type of limited sampling strategy makes it impossible to generate 

high-resolution map for establishment of management zones. Therefore, alternative 

measurement methods are needed to replace the conventional method for providing 

intensive information about soils at low cost, acceptable level of reliability and in a 

timely manner.  

To overcome the limitations in the conventional method of soil assessment, the 

spectroscopic technique was exploited in the region of visible (Vis), near-infrared (NIR), 

and mid-infrared (MIR) to determine the soil constituents (Sudduth et al. 1991; Morra et 

al. 1991; Shonk et al. 1991; Viscarra Rossel et al. 1998; Ehsani et al. 1999; Chang et al. 

2001; Hummel 2001; Slaughter et al. 2001; Martin et al. 2002; Cozzolino and Moron 

2006). The soil properties investigated in previous studies resulted in different levels of 

accuracy, using various types of spectroscopic instrument. The visible and infrared 

technique has gained huge interest among researchers because it is more straightforward 

than conventional soil analysis and most attractively, multiple soil properties can be 

derived from a single scan (Viscarra Rossel et al. 2006b). Once a soil is scanned, the 

same spectra can be used for estimation of various soil properties such as moisture and 

organic matter (Hummel et al.  2001), phosphorous (Maleki et al. 2006), pH, lime 

requirement, organic carbon, clay, silt, sand, cation exchange capacity, exchangeable 

calcium, exchangeable aluminum, nitrate–nitrogen, available phosphorus, exchangeable 

potassium and electrical conductivity (Viscarra Rossel et al. 2006a),  total organic 

carbon, total nitrogen, clay content and cation exchange capacity (Genot et al. 2011). 
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Those previous studies have proven that Vis-NIR is a promising technique to provide 

information on soil constitutions. 

The measurements of soil properties in those studies mentioned above were 

however not in real-time or on-the-go where the spectra scanning process for 

developing the calibration model and prediction was performed in the laboratory 

environment. The soil samples need to be crushed, sieved, dried and smoothed prior to 

the spectra scanning. Although this method may provide better accuracy due to the 

controlled condition in the laboratory, it is laborious when it involved such huge number 

of samples for generating high-resolution maps and it also cannot provide information 

of the field condition in real-time. For this reason, a Vis-NIR based real-time soil sensor 

(RTSS) was developed by Shibusawa (1999) and this RTSS has been used by Imade 

Anom et al. (2001) for the mapping of moisture content (MC), soil organic matter 

(SOM), NO3-N, pH and electric conductivity (EC). The successor model of this RTSS 

(SAS1000) was employed by Kodaira and Shibusawa (2013) to provide high-resolution 

maps of 12 soil properties for upland agriculture fields. Mouazen et al. (2005) has also 

developed a Vis-NIR based on-line sensor which then was evaluated for mapping MC, 

total carbon (C-t), pH and available phosphorous (P-a). Tekin et al. (2013) used this 

online sensor to develop a soil pH map for variable-rate lime recommendations. Another 

real-time sensor was introduced by Christy (2008) for the measurement of soil organic 

matter and was later adopted for the estimation of not only organic carbon, but also clay, 

Mg, and K (Bricklemyer et al. 2010; Debaene et al. 2010).  

Measurement of soil properties in real-time has raised several challenges and 

limitations in previous studies, particularly in the accuracy of the real-time 

measurement. The variation on the spectra sampling depth as the real-time sensor 

running across the field might also need to be taken into account for the reliability of the 
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real-time measurement. Moreover, the issues on the robustness of calibration model 

remain unresolved as the sensor system still need to be calibrated separately for every 

field. In addition, the Vis-NIR spectroscopy is not yet fully explored as to fully make 

use the advantage features of spectroscopy. These challenges need to be resolved as to 

improve and optimize the use of real-time soil sensor for measurement of soil properties 

towards sustainable agricultural practices. 

 

1.2 Literature Review 

1.2.1 Soil Properties  

Soils have many different properties, including MC, SOM, pH, EC, cation 

exchange capacity (CEC) and carbon (C). The sufficiency of these soil properties 

determines the efficiency of nutrient supply from soil for the plant growth as most 

plants grow by absorbing nutrients from the soil. In other words the amount of these soil 

properties determines the extent to which nutrients are available to plants. 

Soil nutrients are divided into two groups; macronutrient and micronutrients. 

Macronutrients can be broken into two more groups: primary and secondary nutrients. 

The primary nutrients are nitrogen (N), phosphorus (P), and potassium (K). These major 

nutrients usually are lacking from the soil first because plants use large amounts for 

their growth and survival.  

The secondary nutrients are calcium (Ca), magnesium (Mg), and sulfur (S). 

There are usually enough of these nutrients in the soil so fertilization is not always 

needed (Troeh and Thompson, 2005). Also, large amounts of calcium and magnesium 

are added when lime is applied to acidic soils. Sulfur is usually found in sufficient 

amounts from the slow decomposition of soil organic matter. 
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Micronutrients are those elements essential for plant growth which are needed 

in only very small (micro) quantities. These elements are sometimes called minor 

elements or trace elements. The micronutrients are boron (B), copper (Cu), iron (Fe), 

chloride (Cl), manganese (Mn), molybdenum (Mo) and zinc (Zn). Recycling organic 

matter such as grass clippings and tree leaves is an excellent way of providing 

micronutrients (as well as macronutrients) to growing plants (Troeh and Thompson, 

2005).  

Since the soil provides most essential nutrients to the crops, it is important to 

know numerous soil properties and nutrient availability that associated to plant growth. 

In addition to the soil nutrients mentioned above, other main soil properties that crucial 

to be considered for sustainable agricultural production are phosphorous absorption 

coefficient (PAC), calcium saturation percentage (CSP), base saturation percentage 

(BSP), bulk density (BD) etc. 

 

1.2.2 Soil Variability 

Site-specific management has received considerable attention due to the 

three main potential benefits of increasing input efficiency, improving the 

economic margins of crop production, and reducing environmental risks (Fathi et 

al., 2014). Uniform management of crops grown under spatially variable 

conditions can result in less than optimum yields due to nutrient deficiencies as 

well as excessive fertilizer application that may potentially reduce environmental 

quality (Redulla et al., 1996). Site-specific management of nutrients gives the 

farmer the potential to apply the exact requirement of nutrients at each given 

location in a field. Spatial variability in soils occurs naturally from pedogenic 

factors. Natural variability of soil results from complex interactions between 
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geology, topography, climate as well as soil use (Quine and Zahng, 2002). In 

addition, variability can occur as a result of land use and management strategies. 

As a consequence, soils can exhibit marked spatial variability at the macro– and 

micro –scale (Vieira and Paz Gonzalez, 2003; Brejda et al., 2000). Demands for 

more accurate information on spatial distribution of soils have increased with the 

inclusion of the spatial dependence and scale in ecological models and 

environmental management systems. This is because the variation at some scales 

may be much greater than at others (Yemefack et al., 2005). Spatial dependence 

has been observed for a wide range of soil physical, chemical, and biological 

properties and processes (Lyons et al.,1998; Raun and et al,. 1998). Incorporation 

of functions that relate distance and variance among points into spatial analysis of 

soils data results in more accurate estimates of soil properties and processes than 

those that consider only spatial independence between points (Warrick and 

Nielsen, 1980).  

Soil nutrient variability mapping has been reported as an important 

component for establishing management zones (Castrignano et al., 2000), 

although there are reports on recommendations affected by time of sampling 

(Hoskinson et al., 1999) and by variability in laboratory result (Brenk et al., 1999). 

Cahn et al. (1994) showed the importance of spatial variation of soil fertility for 

site specific crop management. Haneklause et al. (1998) also suggested that 

correctly mapping soil fertility parameters is important for variable rate 

application. Therefore, spatial information of nutrient status should be 

characterized when making fertilizer recommendations.  
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1.2.3 Emerging Technologies in Agricultural Soil Sensing 

 

1.2.3.1 Precision Agriculture 

Precision agriculture has become a very important sector in agriculture 

during the last two decades, particularly in countries, whose lands are dominated 

by large-size fields. Reports have showed that there is a large variability in soil, 

crop, diseases, weed and/or yield, not only in large-size fields (McBratney and 

Pringle, 1997; Corwin et al., 2003; Godwin and Miller, 2003; Vrindts et al., 2005) 

but in small-size fields too (Mouazen et al., 2003). The concept of  management 

zones’ was evolved in response to this large variability, aiming at better land 

management and reduction of the amount of inputs applied into the environment 

(Franzluebbers and Hons, 1996; Malhi et al., 2001). Applying appropriate doses 

would result in reducing costs, reducing groundwater contamination by herbicides, 

pesticides and fertilizers and occasionally increasing yield. But, a proper 

establishment of management zones relies heavily on several factors regarding 

availability of information about soil, crop, diseases, weed and yield.  

In order to effectively implement the precision agriculture practice, 

detailed spatial information on soil properties is required to manage the crop 

production with increased farm profits and reduced environmental impacts. 

Detailed soil properties maps provide essential information for site-specific 

decision making in choosing appropriate management practices. For example, 

nitrogen concentrations in the soil surface or several centimeters below the soil 

surface are needed to determine site-specific application rates of some crop 

production inputs, including fertilizers and herbicides (Blackmer and White 1998)  
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The importance of describing the variability of soil properties at either 

small- or large-scale field size and present it on map has resulted in the 

exploitation of several new sensor technologies for soil properties measurement in 

the field. Sensor technologies is an important element in precision agriculture as 

to facilitate the generation of soil map of the spatial variation in several entities, 

namely crop yield, crop growth, soil characteristics, and others (Tekin et al., 2013). 

The output of these technologies is useful information for variable rate nutrient 

and pesticide application, irrigation control, tillage, etc. Therefore, precision 

agriculture makes extensive use of sensors in order to identify proper targets and 

needs of crops for applying locally varying doses of chemicals (Lee at al., 2010). 

Various types of soil sensor technologies are used, but in many cases these are 

insufficient for the in situ monitoring of plant beds conditions, such as the nutrient 

concentration, soil compaction, and pH, because particle sizes and plant roots in 

the solution are non-uniform distributed spatially and with depth (Futagawa et al., 

2012) 

The development of sensors is expected to increase the effectiveness of 

precision agriculture. In particular, sensors developed for on-the-go measurement 

of soil properties have the potential to provide benefits from the increased density 

of measurements at a relatively low cost (Sonka et al., 1997). Several emerging 

technologies that have been exploited for measurement of soil properties are 

near-infrared spectroscopy (Sudduth and Hummel 1993; Shibusawa, 1999; 

Christy et al. 2003; Mouazen, 2005), electromagnetic induction (Sudduth et al., 

2003) ion-selective electrodes (Adamchuk et al., 2003; Viscarra Rossel and Walter, 

2004), and Landsat Enhanced Thematic mapper (ETM) (Huang et al., 2007)  
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1.2.3.2 Precision Carbon Farming 

More recently, global climate change studies have shown that increasing 

carbon storage by soils is a practical method to mitigate greenhouse gas emissions 

(Robertson et al., 2000; Lal, 2004). Conservation management practices that 

enhance soil carbon storage, e.g. no-till and cover cropping can stimulate carbon 

sequestration (Young, 2003; Lal et al., 2004). Growers may be able to benefit 

when switching their management practices to those that store more soil carbon 

by getting paid for stored carbon by private markets or government programs 

(Young, 2003). This agriculture approach is known as carbon farming. However, 

quick, reliable and cost-effective techniques are needed for ensuring soil carbon 

changes in response to changes in land management on an agricultural field.  

Conventional laboratory analysis involves a substantial amount of 

resources to make relatively few measurements of soil carbon. Development of 

methods for soil carbon analysis that address and minimize the uncertainties 

associated with conventional methodologies are important for improving 

estimates of terrestrial carbon inventories and fluxes (Gehl and Rice, 2007). 

Online methods for determination of soil carbon are important due to the 

comparatively rapid and potentially cost-effective benefits of these methods, and 

the reduction in sampling and laboratory errors (Gehl and Rice, 2007). The 

greatest benefit of field analysis of soil carbon may lie in the potential to minimize 

soil disturbance while increasing the ability to analyze large areas of soil (Gehl 

and Rice, 2007). Advanced field methods of carbon analysis should be capable of 

providing repetitive, sequential measurements for evaluation of spatial and 

temporal variation at a scale that was previously unfeasible. 
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The increased interest in assessing carbon inventories and dynamics has 

resulted in the advent of several new technologies for soil carbon measurement in 

the field. Visible and near infrared reflectance spectroscopy have each been 

assessed as a means to determine soil organic carbon (SOC) content (Dalal and 

Henry 1986; Ben-Dor and Banin 1995; Janik et al. 1998; Chang and Laird 2001; 

Reeves et al. 2001; McCarty et al. 2002). More research attempts to measure soil 

carbon in situ have included Laser Induced near-infrared spectroscopy (Sudduth 

and Hummel 1996; Christy et al. 2003), Breakdown Spectroscopy (LIBS, Ebinger 

et al. 2003; Bricklemeyer, et al., 2011), Inelastic Neutron Scattering (INS, 

Wielopolski et al. 2003) airborne imaging spectroscopy (Stevens, et al., 2006) and 

remote sensing imagery (Chen et al. 2000). 

 

1.2.4 Visible and Near Infrared (Vis-NIR) Spectroscopy 

Vis-NIR is a molecular technique where spectral signatures of materials are 

characterized by their reflectance, or absorbance, as a function of wavelength. It is 

highly sensitive to both organic and inorganic phases of the soil, making their use in 

the agricultural and environmental sciences particularly relevant (Viscarra Rossel et 

al., 2006b). Intense fundamental molecular frequencies related to soil components 

occur in the mid infrared (MIR) between wavelengths 2500 and 25 000 nm with 

overtones and combinations found in the near-infrared region (400 – 2500 nm) 

(Clark, 1999; Shepherd & Walsh, 2002). The visible and infrared portions of the 

electromagnetic spectrum are highlighted in Figure 1.1. Weak overtones and 

combinations of these fundamental vibrations due to the stretching and bending of 

NH, OH and CH groups dominate the NIR (700–2500nm) and electronic transitions 

the Vis (400–700 nm).  
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Several studies have shown Vis-NIR spectroscopy to be useful for rapidly 

characterizing soil (Baumgardner et al., 1985; Dalal & Henry, 1986; Ben-Dor & 

Banin, 1995; Reeves & McCarty, 2001; Adamchuk et al., 2004; Barthes et al., 2006; 

Brown et al., 2005; Viscarra Rossel et al., 2006b). Vis-NIR provides an established 

method for the quantitative and semi-quantitative determination of soil clay 

mineralogy, iron oxyhydroxides, clay-size particles, soil organic C, carbonates (soil 

inorganic C), and CEC in a laboratory setting (Shepherd & Walsh, 2002; Islam et al., 

2003; Barthes et al., 2006; Brown et al., 2006; Van Vuuren et al., 2006; Viscarra 

Rossel et al., 2006a; b; Wetterlind et al., 2008) for intact soil cores (Waiser et al., 

2007; Kusumo et al., 2008; Morgan et al., 2009), and “real-time” (Shonk et al., 1991; 

Shibusawa et al., 1999; Mouazen et al., 2005; Christy, 2008; Bricklemyer & Brown, 

2010). 

Visible and infrared reflectance spectroscopy has advantages over some of 

the conventional techniques of soil analysis such as they are rapid, timely and less 

expensive, hence are more efficient when a large number of analyses and samples are 

required. This technique does not require expensive and time-consuming sample 

pre-processing or the use of (environmentally harmful) chemical extractants. 

Furthermore, and in particular with infrared spectroscopy, a single spectrum allows 

for simultaneous characterization of various soil constituents because one spectrum 

holds information about various soil constituents. Hence, several soil properties can 

be measured from a single scan (Viscarra Rossel et al., 2006b). Visible and infrared 

spectroscopy may, on instances, be more straightforward than conventional soil 

analysis and on occasions also more accurate. For example, McCauley et al. (1993) 

suggested that Vis spectroscopy may be more accurate than dichromate digestions for 

analysis of soil organic carbon. One other advantage is the potential adaptability of 
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the techniques for real-time field use (Viscarra Rossel and McBratney, 1998). These 

are particularly important advantages now that there is an increasing global need for 

larger amounts of good quality inexpensive spatial soil data to be used in precision 

agriculture and environmental monitoring and modelling.  

Fig. 1.1 The electromagnetic (EM) spectrum highlighting the visible and infrared 

portions (McBratney et al., 2003, Viscarra Rossel et. al, 2006b). 

 

1.2.5 Use of the Vis-NIR Techniques for real-time Measurement of Soil Properties 

and its Limitations 

Very few studies are available on using the Vis–NIR spectroscopy to 

perform real-time measurement of soil properties. This is attributed to the difficulties 

in building a real-time measurement system. Inserting the illumination and detection 

units within the soil leads to delicate and fragile instrumentation, particularly when 

measurement is to be done in fields with gravels and stones (Mouazen at al., 2007). 

Shonk et al. (1991) reported that MC and surface preparation significantly affected 

the online sensor output. Sudduth and Hummel (1993b) found a 40% standard error 
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of prediction under laboratory measurement conditions that increased under on-line 

measurement in the field due to the movement of soil past the sensor during data 

acquisition. The online soil sensing units developed by Sudduth and Hummel 

(1993b) and Shibusawa et al. (2003) suffered from inaccuracies in spectroscopic 

measurements due to problems associated with the variation of soil-to-sensor 

distance. In another study on the online measurement of soil MC using Vis–NIR 

spectroscopy based sensor, Mouazen et al. (2005) claimed that they minimized the 

soil-to-sensor optical unit distance variation. They proved their claim by introducing 

reasonably similar maps of MC developed by on-line sensor and oven drying 

method.  

Real-time Vis-NIR measurements also have unique concerns related to 

continuously collecting data while moving across the field. Soil passing the sensor 

during scanning could cause different wavelengths to be captured at different 

physical locations (Christy, 2008; Sudduth and Hummel, 1993b). This problem could 

be overcome by employing an array spectrometer that capture the entire spectrum 

simultaneously by using a grating to separate the reflected light according to 

wavelength, and then projected the light onto an InGaAs detector. Scanning type 

spectrometers, such as the lab-based instrument used in many laboratory basis of 

spectra scanning measure one wavelength at a time (Bricklemeyer and Brown, 2010). 

A scanning type spectrometer used on-the-go could degrade accuracy by measuring 

soil reflectance across different soil scenes as it collects data through the spectrum 

(Bricklemeyer and Brown, 2010). The scanning nature of the lab-based instrument 

was a non-issue because soil samples were stationary when interrogated in the 

laboratory (Bricklemeyer and Brown, 2010). 
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Real-time Vis-NIR measurement has also introduced additional unique 

challenges for accurate determination of soil properties compared to the controlled 

conditions in the laboratory. Natural soil heterogeneity, macro-aggregation, and field 

moisture content have also been identified as variables that can reduce the predictive 

accuracy of Vis-NIR methods (Sudduth & Hummel, 1993b; Waiser et al., 2007; 

Christy, 2008; Morgan et al., 2009). Sensors moving through the soil can also cause 

inconsistent soil presentation, smearing, and spectral data that are averaged over 

some distance traveled, dependent on acquisition time and velocity, all of which can 

degrade accurate Vis-NIR predictions (Morgan et al., 2009; Sudduth and Hummel, 

1993b; Waiser et al., 2007). 

The rational for the use of real-time soil sensing in agriculture is that 

although measurements maybe less accurate than those produced by lab-based 

instrument and measurement, real-time soil sensing facilitates the collection of larger 

amounts of spatial data using cheaper, simpler and less laborious techniques 

(Viscarra Rossel at al., 2009). Thus, real-time soil sensing improves the efficiency of 

soil data collection and provides more information on the patterns of soil variation 

than lab-based measurement where only few very accurate measurements are used 

(Viscarra Rossel and Walter, 2004). The large amount of information could be used 

to generate high-resolution soil properties map which the distribution of soil 

constituents can be visualized by farm manager for making more precise agronomic 

decisions. For instance, when a fine resolution of pH requirement is crucial for 

implementing variable rate liming, the off-line (laboratory basis of spectra scanning) 

is impractical to generate a high-resolution map for precise of variable rate lime 

application. This is where a real-time sensing technology plays an important role 

where the real-time measurement of soil pH could be performed at fine resolution 
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sampling rate (Tekin et al. 2010). The sampling density could be increased with less 

time-consuming. Furthermore, real-time measurements are made in situ, providing 

the information at field conditions and in a timely manner.   

Although some limitations particularly in accuracy of the real-time 

measurement were addressed in earlier studies, several more recent studies have 

revealed the accuracy improvement in the real-time measurement. Adamchuk et al., 

(2007) concluded that with certain field conditions, online soil mapping can 

significantly increase the accuracy of soil pH maps and therefore increase the 

potential profitability of variable rate liming. Another study by Viscarra Rossel et al. 

(2009) also reported that the prediction of clay content using the spectra collected in 

situ was slightly more accurate than those using the laboratory-collected spectra. The 

more recent studies have proven that the accuracy of real-time measurement of soil 

constituents cannot be underestimated and there is always a room for improvement. 

The reliability and robustness of the real-time measurement of soil properties could 

be further improved by taking into account several factors such as increases in 

number of samples for developing the model so that it covers as much of the soil 

variation as possible at wider geographical area and incorporate samples and spectra 

from several depth of the fields. 

 

1.2.6 Chemometrics for Data Analysis 

Soil Vis–NIR spectra are largely non-specific, quite weak and broad due to 

overlapping absorptions of soil constituents and their often small concentrations in 

soil. Therefore, the information need to be mathematically extracted from the spectra 

so that they may be correlated with soil properties. Hence, the analysis of soil 

reflectance or absorbance spectra requires the use of chemometric techniques and 
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multivariate calibration (Martens and Naes, 1989). In these cases, to be useful 

quantitatively, spectra must be related to a set of known reference samples through a 

calibration model.   

The spectra need to be pretreated prior to the multivariate calibration 

analysis because the spectral data contain a great deal of physical and chemical 

information which cannot be extracted straightforwardly for two reasons, one 

intrinsic and the other practical (Ozaki et al., 2007). The intrinsic reason is because 

Vis-NIR spectra consist of number of band arising from overtones and combination 

modes overlapping with each other causing multicollinearity (Ozaki et al., 2007).  

The practical reason is appears because Vis-NIR spectroscopy often involves 

“real-world” samples which may produce relatively poor signal-to-noise ratios, 

baseline fluctuations and severe overlapping band due to the various components 

present (Ozaki et al., 2007). To overcome those two difficulties, spectral pretreatment 

or preprocessing is needed. 

 

1.2.6.1 Spectra Pretreatment  

The spectral data should be pretreated before any statistical analysis is 

carried out. This is due to by the fact that pretreated spectral data may improve the 

Vis-NIR prediction accuracy (Barnes et al., 1989). Many available software 

packages for instance Unscrambler, MATLAB and SpectraPro can be used for 

spectral preprocessing and data reduction. Some of the common processes of 

spectral pretreated are waveband filtering, spectra smoothing, data reduction and 

derivative transformation  
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Noisy regions may occur at the edges of a spectrum even though the 

sensor is placed close to the object. Mouazen et al. (2005) removed edges of noisy 

regions so spectra data collected at 306.5-1710.9 nm were reduced to 401.4-1699 

nm. Kodaira and Shibusawa (2013) also removed the left and right ends of the 

spectra from the original spectra of 350-1700 nm and reduced to 500-1600 nm. 

The original Vis-NIR spectra are rich in information but highly repetitive 

or heavily over-sampled with a highly degree of correlation between many 

neighboring bands. This data redundancy can be reduced by data reduction. One 

of the simplest methods of data reduction is by averaging several adjacent spectral 

points. Chang and Laird (2002) collected spectral samples from 1100-1498 nm 

with 2-nm interval and reduced spectral data into 140 new data by averaging 5 

adjacent spectral points, so one data point represents a 10-nm interval. Kodaira 

and Shibusawa (2013) used the interpolation method to convert the absorbance 

spectra to 5-nm-interval and formed 220 new spectral data. 

After the noise removal at the edges of the spectra and the subsequent 

data reduction, the spectra need to be transformed in order to eliminate specific 

interferences. The interferences are such as light scattering caused by particle size 

distribution, and path length differences, large baseline variations, and 

overlapping peaks (Kusumo, 2009). Some of spectra transformation techniques 

are first or second derivative (Savitzky and Golay, 1964), maximum normalization, 

standard normal variate and detrending (SNV-D: Barnes et al., 1989) and 

multiplicative scatter correction (MSC: Martens and Naes, 1989). The derivative 

with Savitzky-Golay method is the most common used of spectra transformation 

technique as this technique allows useful and rapid calculation of smoothed 

derivatives (Brereton, 2003).  Previous studied have successfully used this 
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technique to transform the spectral for prediction of numerous soil properties 

(Scheinost et al., 1998; Malengreau et al., 1996; Reeves III and McCarty, 2001; 

Brown et al., 2005; Kodaira and Shibusawa, 2013). Thus, the second derivative 

with Savitzky-Golay method was chosen as spectral pretreatment technique in this 

study.  

 

1.2.6.2 Multivariate Statistical Analysis for Calibration and Validation 

The Vis-NIR pretreated spectra must be related to a set of known 

reference samples through a calibration model. The set of reference samples used 

in the models need to be representative of the range of soils in which the models 

are to be used.  Several statistical methods have been used to establish the 

relationship between the pretreated spectra with a set of known reference samples 

such as principle component regression (PCR) (Chang et al., 2001; Christy, 2008), 

partial least square regression (PLSR) (Mouazen et al., 2005; Bricklemeyer and 

Brown, 2010; Kodaira and Shibusawa, 2013; Tekin et al., 2013), stepwise 

multiple linear regression (Dalal and Henry, 1986), artificial neural networks 

(ANN) (Daniel et al., 2003), multivariate adaptive regression splines (MARS) 

(Shepherd and Walsh, 2002), boosted regression trees (Brown et al., 2006), PLSR 

with bootstrap aggregation (bagging-PLSR) (Viscarra Rossel, 2007), support 

vector machines SVM and penalised spline signal regression (Stevens et al., 2008), 

multiple regression analysis (MRA) (Ben-Dor and Banin, 1995), stepwise 

multiple linear regression (SMLR) (Shibusawa et al., 2001) radial basis function 

networks (RBFN) (Fidêncio et al., 2002).  
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Amongst of these statistical methods, partial least squares regression 

(PLSR) are the most common algorithm used to calibrate Vis-NIR spectra to soil 

properties (Wold et al., 1983; Cheng and Wu, 2006). It is used to construct 

predictive models when there are many predictor variables that are highly 

collinear. Both PLSR and PCR compress the data prior to performing the 

regression. However, unlike PCR, the PLSR algorithm integrates the compression 

and regression steps and it selects successive orthogonal factors that maximize the 

covariance between predictor and response variables. The number of factors to 

use in the models is selected by cross validation. By fitting a PLSR model, one 

hopes to find a few PLSR factors that explain most of the variation. PLSR is 

generally characterized by high computational and statistical efficiency and offers 

great flexibility and versatility in its handling of analysis problems (Boulesteix 

and Stimmer, 2007). It takes advantage of the correlation that exists between the 

spectra and the soil, thus the resulting spectral vectors are directly related to the 

soil attribute (Geladi and Kowalski, 1986). Further advantages of the PLSR are 

that it handles multicollinearity, robust in terms of data noise and missing values 

and it performs the decomposition and regression in a single step. Therefore, 

PLSR was chosen as multivariate statistical method for development of soil 

properties’ calibration model in this study. 

PLSR is a method to relate a matrix X (predictor variables) to a vector y 

(response variables). The x-variables (the 221 spectra data) are transformed into a 

set of a few latent variables or factors/components. These new variables are used 

for regression with a dependent variable y (the reference values from laboratory 

analysis). PLSR is linear method and therefore, the final latent variable that 

predicts the modeled property, y, is a linear combination of the original variables. 
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The goal of PLSR is to find a linear relation between x- and y-variables using an 

regression coefficient, b of and on error term or residual, e as follows; 

 

y = Xb + e            (1) 

  

Resulting model predicts a property y from the original dependent variables x1 to 

xm. The linear model contains regression coefficients b1 to bm and an intercept b0. 

The ability of the PLSR model to predict the soil properties is usually 

assessed using the coefficient of determination (R
2

val) of the linear regression of 

predicted against measured value and root mean square error of prediction or 

validation (RMSEval). R
2

val measures the proportion of the total variations 

accounted for by the model when using cross-validation. RMSEval is the standard 

deviation of the difference between the measured and the predicted values of soil 

properties. RMSEval is calculated from the validation dataset using the following 

equation (Brereton, 2003). 

 

RMSEval =
√∑ (ym − ycv)2n

i=1

n
                                                              (2) 

 

Where ym is the measured laboratory value and ycv is the predicted value using 

cross-validation in PLSR and n is the number of samples. Another parameter that 

is commonly used to assess the model accuracy is ratio of prediction to deviation 

(RPD) which is the ratio of the standard deviation of measured values of soil 

properties to the RMSEval denoted as in following equation (Chang, et al. 2001; 

Cozzolino et al,. 2005; Mouazen et al., 2006) 
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RPD =
SD(ym)

RMSEval
                                                                                                    (3) 

 

Where SD(ym) is the standard deviation of measured values. As reported by Williams 

and Norris (2001), RPD is the most useful statistic when evaluating the analytical 

efficiency of calibration models. It is also the statistically least sensitive to an 

increase in range by a few large values (Malley et al., 2004). The best prediction 

model is shown by the highest R
2

val and RPD with lowest RMSEval (Kusumo et al., 

2008). 

 

1.2.7 Soil Spatial Variability Mapping 

The global positioning system (GPS) receivers, used to locate and navigate 

agricultural vehicles within a field, have become the most common sensor in precision 

agriculture. When a GPS receiver and a data logger are used to record the position of 

each soil sample and/or spectra measurement, a map can be generated and processed 

along with other layers of spatially variable information. This method is frequently 

called a “map-based” approach (Adamchuk et al., 2004).  

The soil properties amount either measured by laboratory analysis (measured 

value) or predicted on the spectra collected using soil sensor (predicted value) are 

commonly presented in map as to clearly visualize the spatial variability of the field 

with the integration of GPS data.  Growers would be able to make agronomic decision 

based on the distribution of the soil properties presented on the map. Furthermore, 

comparison of the temporal carbon map for a period of time (several years) could assist 

the carbon inventories proses in carbon farming practice.  
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A standard method for creating soil properties maps is to assign the measured 

or predicted values on the targeted location using a grid sampling scheme (Kravchenko 

and Bullock 1999). Then, the soil map can be made by interpolating the soil property 

either measured or predicted values. Interpolation is the procedure of predicting the 

value of attributes at unsampled sites from measurements made at point locations within 

the same area (Karydas et al., 2009). Interpolation is used to convert data from point 

observations to continuous fields so that the spatial patterns sampled by these 

measurements can be compared with spatial patterns of other spatial entities. The 

rationale behind spatial interpolation is the very common observation that, on average, 

values at points close together in space are more likely to be similar than points further 

apart (Karydas et al., 2009). Among spatial interpolation methods, one can find Radial 

Basis Functions (RBF), Inverse Distance Weighting (IDW), and Kriging techniques 

(Burrough and Macdonnell, 1998). The two latter interpolation methods are most 

commonly used for agriculture soil mapping (Franzen and Peck, 1995; Weisz et al., 

1995). Many previous studies have evaluated and compared the performance of these 

two methods for mapping soil properties (Weber and Englund, 1992; Wollenhaupt et al., 

1994; Gotway et al., 1996; Karydas et al., 2009). They found that IDW method to be 

more accurate than kriging method for mapping of soil P and K (Wollenhaupt et al., 

1994), SOM and NO3 (Gotway et al., 1996; Karydas et al., 2009). Both methods 

estimate values at unsamples locations based on the measurements from the surrounding 

locations with certain weights assigned to each of the measurements. IDW method is 

however easier to implement, while kriging method is more time-consuming and 

cumbersome (Kravchenko and Bullock 1999). Thus, IDW method was chosen for 

developing soil map in this study. 
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1.3 Aims and Objectives 

Numerous techniques and approaches have been addressed in previous study of 

utilizing Vis-NIR spectroscopy for measurement of soil properties either lab-based spectra 

measurement or in real-time. However there are still many aspects that need to be 

improved as to optimize the used of Vis-NIR soil sensor for mapping of soil properties 

towards better agriculture management either in precision agriculture or precision carbon 

farming. Hence, in light of preceding background and literature reviews, the ultimate aim 

of this study is to recommend an improved techniques and function of agricultural soil 

mapping using Vis-NIR real-time soil sensor as to optimize the used of this state-of-the-art 

technology. The precision agriculture and precision carbon farming practices can 

implement this goal for better agriculture production with minimal unintended 

environmental effects. Basically, this study intended to achieve the following objectives; 

1. To investigate the potential of a Vis-NIR real-time soil sensor for mapping of paddy 

soil properties at multiple soil depths  

2. To demonstrate the potential of Vis-NIR real-time soil sensor for high-resolution 

mapping of up to 24 paddy soil properties. 

3. To describe the feasibility of integrated calibration model developed from three 

agriculture fields and compare with local model for mapping of soil properties  

 

 

1.4 Thesis Structure 

This thesis is divided into five chapters. The first chapter is the Introduction which 

described the background issues, literature reviews and objectives of this study. This 

chapter also described the chronology of the soil sensing development, methods that 

crucial for measurement of soil properties by means of spectroscopy and basic knowledge 
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on chemometrics technique. The second chapter is on the mapping of multiple-depth soil 

properties using Vis-NIR real-time soil sensor and the importance of this multiple-depth 

map for making agronomic decisions. The third chapter discussed on the development of 

high-resolutions maps for 24 soil properties. The fourth chapter discussed the development 

of integrated calibration model for prediction of agriculture soil properties and its 

predictions performance. Finally, the fifth chapter is summary and conclusion which also 

addressed some suggestions for future research. 
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Chapter 2 

Multiple-Depth Soil Mapping of a Paddy 

Field 

 

ABSTRACT 

In describing soil variability, information on the distribution of soil properties 

is required in both the horizontal and vertical directions. This study investigated the 

potential of a real-time soil sensor (RTSS) for mapping six soil properties at multiple 

soil depths of a paddy field. Soil spectra were acquired at three depths using RTSS. 

Three calibration models were developed. The first model (CM1) combined the dataset 

for depths of 10 and 15 cm, the second model (CM2) combined the dataset for depths of 

15 and 20 cm, and the third model (CM3) combined all the three depths. CM3 produced 

highest coefficient of determination (R
2

val) and ratio prediction to deviation (RPD) with 

lowest root mean square error of validation (RMSEval) was regarded as the best 

calibration model for all the soil properties. The generated maps exhibited variations in 

the distribution of all the soil properties at different depths. 
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2.1 Introduction 

The conventional practice of soil quantification often results in under-sampling 

due to time-consuming, laborious, and costly sampling and analysis, making it 

impractical for mapping large field areas for precision agriculture purposes. Moreover, 

the capacity to detect temporal changes of these properties in soil using conventional 

sampling and analysis techniques is quite limited due to the large spatial variability and 

slow response of these properties in soil (Stevens et al., 2006). Therefore, an improved 

and efficient method is required for measuring spatial and temporal variability of soil 

attributes. One solution to overcome the limitation found in the conventional method of 

soil sampling and analysis is the adoption of a visible-near infrared (Vis-NIR) sensor 

that is real time, cost effective and can rapidly measure soil properties.  

The real-time measurement of soil properties in many previous studies, 

however, was only conducted in the horizontal strata (a single depth) whilst ignoring the 

distribution of soil variability vertically (depth direction). Mouazen et al. (2007) and 

Kodaira and Shibusawa (2013) generated soil maps at the depth of 15 cm only while 

Christy (2008) estimated SOM at the depth of 7 cm only. As claimed by Donovan 

(2012), vertical distribution is important for describing the variability of soil carbon 

because it is likely to vary with depth. Most soil carbon sampling thus defines one or 

more layers of soil, usually by the distance in centimeters from the soil surface. 

Variation in soil compositions including SOM was also found at different depths as 

reported by Reeves et al. (2002). Even though there are several studies that considered 

several depths including depths of 10 to 20 cm (Yang et al., 2011), 0 to 20 cm (Viscarra 

Rossel et al., 2010) and 50 to 105 cm (Ge et al., 2011), the spectra measurements for 

calibration model development in these studies, however, were laboratory basis which is 
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again laborious, time consuming and expensive because the samples need to be crushed, 

sieved and dried prior to spectra scanning. Sarkhot et al. (2011) used a hydraulic soil 

probe to take soil cores and then separated the soil cores into five depths at increments 

of 0-10, 10-20, 20-30, 30-40 and 40-50 cm where the soil samples were oven dried 

before scanning the spectra in the laboratory. Only the map at the depth of 10 cm (single 

depth) is shown. In another study by Li (2013), the distribution of total carbon and total 

nitrogen are presented on maps at several depths but the maps were generated based on 

the laboratory analysis of a small number of samples. The resolutions of the maps were 

low because they were mapped using the laboratory analysis data only and no spectra 

were acquired to predict the value of total carbon and total nitrogen. Thus, the 

objectives of this study were to investigate the potential of a Vis-NIR real-time soil 

sensor for mapping moisture content (MC), organic matter (SOM), total carbon (C-t), 

total nitrogen (N-t), hot-water-extractable nitrogen (N-h), and available phosphorus 

(P-a) of paddy soil at multiple soil depths, and to describe the effect of sensing depth on 

the mapping of soil properties. The spatial distributions of these six soil properties were 

observed at three depths of paddy soil that were 10, 15 and 20 cm from the soil surface. 

 

2.2 Materials and Methods 

2.2.1 Experimental Site – organic paddy field in Matsuyama 

The field experiment was conducted at an organic paddy field in Matsuyama 

City of Ehime Prefecture Japan (33º 8’N, 132º 8’E) as shown in Figure 2.1. This site 

comprises a number of small paddy fields and field no. 437 (58.3 m x 21.7 m) was 

selected for this study. The experiment was conducted after harvesting the paddy in 

autumn 2012. The average, maximum and minimum temperature of the day was 20.8, 
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26.3 and 14.5 ℃, respectively. The soil texture of the field was described according 

to three depths as follows: 52.82% sand, 24.71% silt and 22.47% clay at a depth of 

10 cm, 54.55% sand, 21.02% silt and 24.43% clay at a depth of 15 cm, and 66.29% 

sand, 11.82% silt and 21.89% clay at a depth of 20 cm.  

 

 

 

 

 

 

 

Fig. 2.1 Location of the Matsuyama experimental site. 

 

2.2.2 Real-time Soil Sensor (RTSS) – SAS1000 

The RTSS used for this study was SAS1000, SHIBUYA MACHINERY Co., 

Ltd as shown in Fig. 2.2. It is comprises of a sensor unit housing, a touch panel and a 

soil penetrator with a sensor probe housing. The sensor unit housing consists of a 

personal computer, Trimble DSM132 differential global positioning system (DGPS) 

receiver, 150-W Al-coated tungsten halogen lamp as a light source and two 

spectrophotometers. The one spectrophotometer which is for visible (Vis) spectra 

(310 to 1150 nm) has a 256-pixel linear diode array, while the other 

spectrophotometer which is for NIR spectra (900 to 1700 nm), has a 128-pixel linear 

diode array of multiplexed InGaAs. In the probe housing, two optical fibers were 

Source: Google Earth 
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used to guide the light from the light source (halogen lamp) and illuminate the 

underground soil surface with an area of about 50 mm in diameter. The underground 

soil Vis-NIR reflectance spectra were then collected through additional optical fiber 

probes to the two spectrophotometers. The probe housing is also equipped with a 

micro CCD camera to capture, record and display images of uniform soil surfaces 

while the RTSS running across the field. The saved images were then used to provide 

information for eliminating the dataset from the data analysis. By checking on the 

saved images, the spectra corresponding to the image that exhibited foreign objects 

such as stone, plant debris or larvae were identified as outliers for the calibration and 

prediction process. Next to the CCD camera is a laser distance sensor for monitoring 

distance variations between the soil surface and the micro optical devices. 

Fig. 2.2 Real-time Soil Sensor SAS1000. 

 

2.2.3 Spectra Acquisition and Soil Sampling at Three Depths 

The RTSS was designed with gage wheels on both sides that can be adjusted 

to spacings of 5 cm at depths from 5 cm to 35 cm (Fig. 2.2). In this experiment, the 

gage wheels were initially adjusted for acquiring spectra at a depth of 10 cm. The 
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tractor that attached with the RTSS was travelled on four transects at spacings of 5 m 

and a speed of 0.25 ms
-1

. When the RTSS was running on the track, the soil 

penetrator tip with a flat plane edge ensured uniform soil cuts and the soil flattener 

following behind formed a trench with a uniform underground surface. The Vis-NIR 

reflectance spectra of the underground soil were acquired automatically from the 

bottom of the trench every 4 s, and this resulted in the Vis-NIR reflectance spectra 

being sampled at a distance of every 1 m. After the RTSS had completely travelled 

all four transects, the process was repeated for depths of 15 and 20 cm by adjusting 

the gage wheels.   

While the RTSS was running on the track, a notification lamp was triggered 

at each data acquisition (every 1 m travelled). The number of spectra data were 

counted and displayed on the touch panel screen. When the RTSS acquired every 11
th

 

spectra data (11 m), a wooden stick was inserted into the soil for marking the soil 

sampling points. Two sets of soil samples were subsequently collected at the trench 

bottom of twenty wooden sticks’ positions and they were packed in sealable plastic 

bags. This procedure was conducted for depths of 10, 15 and 20 cm. In total, there 

were two sets of 60 soil samples collected. However, due to the RTSS encountering 

an obstacle at one point at a depth of 20 cm, invalid spectra were acquired at that 

particular point. Hence, a soil sample corresponding to that single point was omitted 

from each set. Finally, only 59 soil samples of each set were collected. Figure 2.3 

illustrated the collected spectra scanning line (dotted line) and locations of the 

sampling point. The green, red and blue fulled circles corresponding to the sampling 

points locations at the depth of 10, 15 and 20 cm respectively  
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Fig. 2.3. RTSS Scanning line (dotted line) and soil sampling points’ position 

(filled circle), green:10 cm; red:15 cm; blue:20 cm.   

 

2.2.4 Soil Chemical Analysis 

In order to measure the chemical amount in the soil samples collected at the 

three depths, one set of the soil samples was transported to the Tokyo University of 

Agriculture and Technology (TUAT) laboratory for MC and SOM analysis while the 

other set was transported to the Agricultural Product Chemical Research Laboratory 

(APCRL: Federation of Tokachi Agricultural Cooperative Association, Hokkaido, 

Japan) for analysis of C-t, N-t, N-h and P-a.  

The first set of 59 fresh soil samples was crushed and sieved through a 

2-mm sieve. Debris such as plant material and stones were removed. The samples 

were then stored in sealable plastic bags at 5 °C until the completion of the chemical 

analysis. MC was measured in fresh soil samples using the oven-dry method at 

110 °C for 24 h while SOM was measured in dried soil samples that were sieved 

through a 1-mm sieve and burnt in a muffle furnace at 750 °C for 3 h. Each soil 

analysis was conducted three times, and the average values were adopted as a 

reference values for the multivariate statistical analysis. 

21.7 m 

58.3 m 

Direction of traveling 
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The second set of 59 soil samples transported to APCRL were analyzed for 

C-t, N-t, N-h and P-a by APCRL using the standard procedures in the Hokkaido area 

in Japan (Souma and Kikuchi, 1992). This set of soil samples was also dried, crushed 

and sieved. The soil analysis methods and instruments that were used for analysis of 

the six chemical properties are given in Table 2.1. 

 

Table 2.1 Soil analysis methods and instruments. 

Soil Properties Analysis Method Instrument 

MC Oven Dry DK610Yamato 

SOM Ignition Combustion FM28Yamato 

C-t Tyurin’s Method NC-220F, SUMIGRAPH 

N-t Kjeldahl Method NC-220F, SUMIGRAPH 

N-h Absorptiometry QUAATRO, BRAN+LUEBBE 

P-a Absorptiometry QUAATRO, BRAN+LUEBBE 

 

2.2.5 Calibration Model Development and Three Depths Mapping 

Prior to the development of calibration models, all collected underground 

Vis-NIR soil reflectance spectra using the RTSS in the organic paddy field were 

converted to absorbance with white reference spectra using the standard reflector 

(Spectralon, Labsphere Inc.) and dark reference due to light shielding, and using 

Beer-Lambert’s law (William and Norris, 2001) as described in Equation 3, 

Absorbance spectra =  𝑙𝑜𝑔10(𝑅𝑤ℎ𝑖𝑡𝑒 − 𝑅𝑑𝑎𝑟𝑘) − 𝑙𝑜𝑔10(𝑅 − 𝑅𝑑𝑎𝑟𝑘)                 (3) 

Rwhite = white reflectance spectra using the standard reflector 

Rdark = dark reflectance spectra due to light shielding 

R = reflectance spectra of underground soil surface 
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The absorbance spectra were then converted to 5-nm-interval data by the 

interpolation method using Data Monitor Software (Shibuya Seiki Co., Ltd.). The 

spectra of original absorbance ranged from 350 to 1700 nm. To enhance weak signals 

and remove noise due to diffuse reflection, the absorbance spectra were pre-treated 

using the second-derivative Savitzky and Golay method. Moreover, both edges of the 

spectra were removed as these parts of the spectra were unstable and rich in noise. 

The calibration models were subsequently developed by applying the partial 

least-square regression (PLSR) technique coupled with full cross-validation to 

establish the relationship between the amount of soil properties obtained by chemical 

analysis (reference values) with the pretreated Vis-NIR soil absorbance spectra from 

the corresponding locations. The spectra pretreatment and calibration model 

development were done using Unscrambler X10.2 software.  

For each soil property, three calibration models were developed. The first 

model (CM1) combined the dataset (spectra and reference values) for depths of 10 

cm and 15 cm, the second model (CM2) combined the dataset for depths of 15 cm 

and 20 cm, and the third model (CM3) combined the dataset for all three depths. In 

the PLSR analysis, sample outliers were detected by checking the residual sample 

variance plot after the PLSR. Individual sample outliers located far from the zero line 

of residual variance were considered to be outliers and excluded from the analysis. In 

this study, one sample was selected as a sample outlier at one time up to four times 

for CM1 and CM2, and six times for CM3. In total, four sample outliers were 

removed for CM1 and CM2, and six outliers for CM3.  

The performance of the three calibration models for each soil property was 

assessed based on the value of the coefficient of determination (R
2

val), root mean 
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square error of prediction (RMSEval) and residual prediction deviation (RPD) 

produced from the PLSR analysis. In this study, RPD was classified according to 

category, which means the properties of the full cross-validation ability of PLSR in 

this study. Values of RPD larger than 2.0 were considered as excellent, between 1.4 

and 2.0 were good and below 1.4 were unreliable (Chang et al., 2001). The best 

calibration model that possesses maximum R
2

val and RPD but minimum RMSEval in 

the regression analysis for each soil property was then used to provide quantitative 

prediction and mapping of the respective soil properties at three depths using ArcGIS 

Ver. 10.0 software. The soil maps were interpolated using the inverse-distance 

weighting (IDW) method. 

 

2.3 Results and Discussions 

2.3.1 Performance of the Calibration Models on Different Depths 

The raw absorbance Vis-NIR spectra and pretreated with 2
nd

 derivative 

Savitzky-Golay spectra were depicted in Figure 2.4. Both edges of the raw 

absorbance Vis-NIR were removed as these parts of spectra were unstable and rich in 

noise. Therefore, the wavelength of the Vis-NIR spectra that used for developing the 

calibration models were at range of 500 to 1600 nm. In order to obtain the best 

calibration model for each of the soil property, the PLSR were performed on spectra 

that were pretreated with second derivative Savitzky-Golay method with several 

number of smoothing points. These pretreated spectra were regressed with the 

reference values obtained from the laboratory soil analysis to generate several 

calibration models. The calibration models that produced the highest R
2

val with 
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lowest RMSEval were chosen as the best calibration models for each of the soil 

property.   

 

 

 

 

 

 

 

 

 

 

 

 

PLSR results of the calibration and validation were obtained as shown in 

Table 2.2. Based on the determination of coefficient (R
2

val) and root mean square 
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Fig. 2.4 Absorbance spectra for developing the calibration model (a) original 

absorbance spectra, (b) pretreated using 2
nd

 derivative absorbance spectra. 
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error of validation (RMSEval), CM3 that combined datasets of all three depths 

resulted in the highest accuracy for MC, SOM, C-t, N-t and N-h with R
2

val and 

RMSEval of 0.88 and 1.38 for MC, 0.83 and 0.26 for SOM, 0.88 and 0.15 for C-t, 

0.85 and 0.01 for N-t, and 0.87 and 0.43 for N-h. For P-a, however, both CM2 and 

CM3 showed the same level of accuracy with both R
2

val being 0.72, but the RMSEval 

for CM3 (4.53) was lower than CM2 (4.74). CM1 produced the lowest accuracy 

amongst the three calibration models of all the six soil properties.  

a
Combination datasets. CM1: 10 and 15 cm depths, CM2: 15 and 20 cm depths, CM3: 10, 15 and 20 cm 

depths 

b
Number of samples used in the model. 

Table 2.2 Summary of PLSR results for three calibration models of each soil property. 

Soil Properties 
Calibration 

Dataset
a
 

N
b
 

Calibration  Validation SD RPD 

R
2
cal RMSEcal  R

2
val RMSEval   

MC [%] 

CM1 35 0.76 1.28  0.64 1.62 2.66 1.6 

CM2 36 0.85 1.08  0.75 1.47 2.88 2.0 

CM3 53 0.95 0.85  0.88 1.38 3.95 2.9 

SOM [%] 

CM1 35 0.70 0.19  0.51 0.25 0.36 1.4 

CM2 36 0.83 0.20  0.71 0.27 0.50 1.9 

CM3 53 0.87 0.23  0.83 0.26 0.63 2.4 

C-t [%] 

CM1 35 0.52 0.12  0.39 0.13 0.17 1.3 

CM2 36 0.94 0.10  0.87 0.14 0.39 2.8 

CM3 53 0.91 0.13  0.88 0.15 0.43 2.9 

N-t [%] 

CM1 35 0.46 0.01  0.33 0.01 0.01 1.0 

CM2 36 0.91 0.01  0.80 0.01 0.03 3.0 

CM3 53 0.88 0.01  0.85 0.01 0.03 3.0 

N-h 

 [mg (100g)
-1

] 

CM1 35 0.55 0.44  0.44 0.50 0.66 1.3 

CM2 36 0.88 0.30  0.81 0.39 0.89 2.3 

CM3 53 0.90 0.38  0.87 0.43 1.17 2.7 

P-a  

[ mg (100g)
-1

] 

CM1 35 0.66 2.69  0.40 3.66 4.67 1.3 

CM2 36 0.80 3.90  0.72 4.74 8.87 1.9 

CM3 53 0.87 3.02  0.72 4.53 8.50 1.9 
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Referring to the accuracy classification by Chang et al. (2001), CM2 and 

CM3 proved to be excellent calibration models for MC, C-t, N-t and N-h with all of 

the RPD for these soil properties above 2.0. For SOM, only CM3 is regarded as 

excellent while CM2 is classified as good (1.4 < RPD < 2.0). CM2 and CM3 for P-a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig 2.5 Scatter plot of measured value versus Vis-NIR predicted values of CM3 

datasets using PLSR for (a) MC, (b) SOM, (c) C-t, (d) N-t, (e) N-h and (f) P-a 
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are also classified as good calibration models. CM1 for MC and SOM showed good 

models while for the other four properties are classified as unreliable (RPD < 1.4). 

The results of this study indicated that the combination of the calibration dataset for 

three depths gave a wider range of dataset and resulted in better prediction accuracy 

of MC, SOM, C-t, N-t, N-h and P-a. Hence, CM3 of each soil property was used to 

provide quantitative prediction and mapping of the respective soil properties. Scatter 

plots of the CM3 models are depicted in Figure 2.5.  

 

2.3.2 Three Depths Soil Maps 

The values of soil properties for 265 spectral collected at a depth of 10 cm, 

270 spectral at a depth of 15 cm and 377 spectral at a depth of 20 cm were predicted 

using calibration model CM3 of the respective soil properties. These predicted values 

were used to draw prediction maps at three depths as illustrated in Figure 2.6. The 

generated maps clearly show that the distribution of all six soil properties varied both 

horizontally and also in depth. At the depth of 10 cm exhibited the highest 

concentration of all six soil properties, followed by a diminishing pattern at deeper 

soil depths. The results of C-t, N-t and SOM qualitatively agreed with a previous 

study using laboratory analysis (Li et al., 2012) and using lab-based spectra 

acquisition on dried soil (Reeves et al., 2002; Xie et al., 2011). 
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Fig. 2.6. Soil maps for three depths predicted using CM3 for (a) MC, (b) SOM, (c) 

C-t, (d) N-t, (e) N-h and (f) P-a 
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2.3.3 Importance of Multiple-depth Soil Mapping 

Since it was found that the distribution of the soil properties also varied at 

different soil depths, the effect may differ if the distribution of the soil properties was 

just considered at a single depth. For example, by referring to the N-t map in Figure 

2.6 (d), it can be seen there are some areas with low nitrogen content at a depth of 15 

cm but high nitrogen content at a depth of 10 cm. If a grower makes an observation 

at a depth of 15 cm only, he might tend to put more fertilizer on the area of paddy 

field that contains low or insufficient nitrogen. This inadvertently leads to excessive 

nitrogen application if that particular area with less nitrogen at a depth of 15 cm was 

actually contains high or sufficient nitrogen at a depth of 10 cm.  Therefore, from 

this study, it can be suggested that several depths of soil variability observation need 

to be considered and growers need to determine at what depth (optimum depth) 

should be observed for specific soil management in precision agriculture practice. 

Besides its potential for producing high-resolution soil distribution maps at multiple 

depths, the use of Vis-NIR RTSS could constantly maintain the observation depth by 

adjusting the gage wheel. This may eliminate poor reproducibility due to 

inconsistency of soil sampling by manual labor at several depths as mentioned by 

Kanda (2011). 

 

2.4 Summary and Conclusion 

Three spectroscopic calibration models have been developed for MC, SOM, 

C-t, N-t, N-h and P-a using Vis-NIR spectra acquired at three depths by the RTSS. The 

CM3 produced the highest accuracy of all the examined soil properties and hence, it 

was used to predict the amounts of soil properties at three depths. The generated maps 
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exhibited variation in the distribution of MC, SOM, C-t, N-t, N-h and P-a not only 

horizontally but also at different depths. Furthermore, the incorporation of multiple soil 

depths maps for MC, SOM, C-t, N-t, N-h and P-a provided comprehensive information 

on soil variability for making precisions agronomic decisions. Hence, the Vis-NIR 

real-time soil sensor has great potential for determining the soil properties at multiple 

soil depth. 
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Chapter 3 

Mapping of Twenty-Four Paddy Soil 

Properties  

 

ABSTRACT 

This chapter describes the potential of a visible-near infrared (Vis-NIR) 

real-time soil sensor (RTSS) to predict and map 24 paddy soil properties. The Vis-NIR 

reflectance spectra of fresh soil were acquired at four fields using the RTSS SAS2500. 

Fresh soil samples were also collected at each field along the RTSS’s tramline for 

analysis of moisture content (MC), soil organic matter (SOM), pH, electrical 

conductivity (EC), cation exchange capacity (CEC), total carbon (C-t), total nitrogen 

(N-t), ammonium nitrogen (N-a), hot water extractable nitrogen (N-h), nitrate nitrogen 

(N-n), available phosphorus (P-a), exchangeable calcium (Ca), exchangeable potassium 

(K), exchangeable magnesium (Mg), hot water soluble soil boron (B), soluble copper 

(Cu), easily reducible manganese (Mn), soluble zinc (Zn), phosphate absorption 

coefficient (PAC), calcium saturation percentage (CSP), base saturation percentage 

(BSP), bulk density (BD), ratio of magnesium to potassium (Mg/K) and ratio of calcium 
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to magnesium (Ca/Mg) in the laboratory. Calibration models were then developed for 

each soil property using the partial least square regression (PLSR) technique coupled 

with full cross-validation to establish the relationship between the Vis-NIR soil spectra 

and the reference values obtained by the laboratory analysis. The 24 calibration models 

were then used to provide quantitative predictions and mapping of the 24 soil properties 

respectively. The coefficient of determination (R
2

val) ranged from 0.43 to 0.90. Of these 

24 soil properties, 8 soil properties’ models were categorized as excellent, 14 as good 

and 2 as unreliable based on their residual prediction deviation (RPD) values. 

Reasonable similarity exhibited between the measured and predicted maps is sufficient 

to declare that the Vis-NIR real-time soil sensor measurement system has potential to be 

used for the real-time measurement of numerous soil properties. 

 

3.1 Introduction 

There is wide spread interest for using visible–near infrared (Vis–NIR) diffuse 

reflectance spectroscopy for soil analysis and to provide data for digital soil mapping. 

The technique is rapid, cost effective, requires minimal sample preparation, can be used 

in situ (Viscarra Rossel et al., 2009), is non-destructive, no hazardous chemicals are 

used, and importantly, several soil properties can be measured from a single scan 

(Viscarra Rossel et al., 2006b). This multi-parameter feature of diffuse reflectance 

spectroscopy implies that one spectrum holds information about various soil 

constituents and indeed, vis–NIR spectra are sensitive to both organic and inorganic soil 

composition (Viscarra Rossel and Behren, 2010). 

The soil properties that can be determined based on a single scan action using a 

single instrument system in previous studies are limited to just several numbers of soil 
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properties. The study by Kodaira and Shibusawa (2014a, 2014b, 2014c) reported on 

mapping up to 25 soil properties for upland agriculture fields. To the best of knowledge 

at the time of writing, it was found that this is the largest number of soil properties that 

can be measured from a single scan of Vis-NIR spectra, using a single sensor system. 

However, the performances of those calibration models and comparison between 

measured and predicted maps in this previous study were not discussed in detail. The 

objective of this study is therefore to demonstrate the potential of Vis-NIR RTSS for the 

mapping of up to 24 soil properties for a paddy field. The investigated soil properties 

were moisture content (MC), soil organic matter (SOM), pH, electrical conductivity 

(EC), cation exchange capacity (CEC), total carbon (C-t), total nitrogen (N-t), 

ammonium nitrogen (N-a), hot water extractable nitrogen (N-h), nitrate nitrogen (N-n), 

available phosphorus (P-a), exchangeable calcium (Ca), exchangeable potassium (K), 

exchangeable magnesium (Mg), hot water soluble soil boron (B), soluble copper (Cu), 

easily reducible manganese (Mn), soluble zinc (Zn), phosphate absorption coefficient 

(PAC), calcium saturation percentage (CSP), base saturation percentage (BSP), bulk 

density (BD), ratio of magnesium to potassium (Mg/K) and ratio of calcium to 

magnesium (Ca/Mg). Our aimed in this study was to provide as much information as 

possible on paddy soil properties that can be derived from a single scan of Vis-NIR 

spectra in real-time. 

 

3.2 Materials and Methods 

3.2.1 Experimental Site – inorganic paddy field Yamatsuri 

The field experiment was conducted at an inorganic paddy farm in 

Yamatsuri City of Fukushima Prefecture in Honshu Island (36
o
52’N, 140

o
25’E) 
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(Figure 3.1). The average, maximum and minimum temperatures of the day were 7.9, 

10.9 and 4.9 ℃, respectively. The experiment was conducted after the paddy 

harvesting season in early winter 2013. Four fields selected for this study were Field 

1 (0.26 ha, 26.0 x 101.5m), Field 2 (0.29 ha, 29.0 x 100.0 m), Field 3 (0.18 ha, 28.0 x 

62.8 m) and Field 5 (0.41 ha, 42.0 x 97.1 m). The soil texture of the four fields is 

described as follows: 71.4% sand, 9.3% silt and 19.3 % clay for Field 1, 66.0% sand, 

13.6% silt and 20.4% clay for Field 2, 63.7% sand, 14.4% silt and 21.9% clay for 

Field 3, 62.1% sand, 16.2% silt and 21.7% clay for Field 5. 

 

 

 

 

Fig. 3.1 Location of the Yamatsuri experimental site. 

 

3.2.2 Real-time Soil Sensor – SAS25000 

The RTSS used for this study was SAS2500, SHIBUYA MACHINERY Co., 

Ltd. as shown in Figure 3.2. It is comprised of a sensor unit, a touch panel and a soil 

penetrator with a sensor probe housing. The sensor unit consists of a personal 

computer, Trimble DSM132 single global positioning system (DGPS) receiver, 

150-W Al-coated tungsten halogen lamp as a light source and two mini 

spectrophotometers by Hamamatsu. The first mini spectrophotometer is C10083CAH, 

a high resolution (2048-pixels) spectrophotometer for visible (Vis) spectra (320 to 

1000 nm) with back-thinned type CCD image sensor as a detector, while the second 
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mini spectrophotometer is C9406GC with 512-pixels which used InGaAs linear 

image sensor for NIR (900 to 1700 nm) detection. In the probe housing, two optical 

fibers were used to guide the light from the light source (tungsten halogen lamp) and 

illuminate the underground soil surface with an area of about 50 mm in diameter. The 

underground soil Vis-NIR reflectance spectra were then collected through additional 

optical fiber probes to the two mini spectrophotometers. The probe housing is also 

equipped with a micro video camera to capture and record the video of the uniform 

soil surfaces while the RTSS runs across the field. Next to the video camera is a laser 

distance sensor for monitoring distance variations between the soil surface and the 

micro optical devices. 

 

 

 

 

 

 

Fig. 3.2 Real-time Soil Sensor SAS2500. 

 

3.2.3 Spectra Acquisition and Soil Sampling 

The Vis-NIR spectra were acquired at six transects on Field 1, seven 

transects on Field 2 and 3, and 20 transects on Field 5. When the tractor attached 

with the RTSS running on the transects, the soil penetrator tip with a flat plane edge 
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ensured uniform soil cuts and the soil flattener following behind produced a trench 

with uniform underground surface at a depth of 0.10 m. The underground soil 

Vis-NIR reflectance spectra at the range of 320 to 1700 nm were then collected 

through an additional optical fiber probe to the two spectrophotometers. Each 

spectrum data was acquired from the bottom of the trench every 3 s with the 

traveling speed of 0.28 ms
-1

. This resulted in the Vis-NIR reflectance spectra being 

sampled at approximately every 0.84 m.  

While the RTSS was running on the transects, a notification lamp with 

alarm was triggered at each data acquisition (every 0.84 m travelled). When the 

RTSS acquired every 25
th 

spectra data (21 m) on Field 1, 11
th

 spectra data (9 m) on 

Field 2, 20
th

 spectra data (17 m) on Field 3 and 8
th

 spectra data (7 m) on Field 5, a 

wooden stick was inserted into the soil for marking the soil sampling points. Two 

sets of 24, 63, 21 and 80 fresh soil samples were then collected from Field 1, Field 2, 

Field 3 and Field 5 respectively, at the trench bottom of the wooden sticks’ position 

along the RTSS’s tracks. In total, there were two sets of 188 soil samples collected 

and packed in sealable plastic bags. Figure 3.3 illustrates the collected spectra 

scanning line (dotted line) and locations of the sampling point (black circles) on 

Field 2 as an example. 

 

 

 

Fig. 3.3. RTSS Scanning line (small dotted lines) and soil sampling points’ 

position (large dotted points) of Field 2. 
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3.2.4 Laboratory Soil Chemical Analysis of Twenty-four Soil Properties 

In order to measure the chemical amount in the soil samples collected at the 

four fields, one set of the soil samples was transported to Tokyo University of 

Agriculture and Technology (TUAT) laboratory for analysis of MC, SOM, pH and 

EC while the other set was transported to the Agricultural Product Chemical 

Research Laboratory (APCRL: Federation of Tokachi Agricultural Cooperative 

Association, Hokkaido, Japan) for analysis of CEC, P-a, PAC, C-t, N-t, N-h, N-n, 

N-a, Ca, K, Mg, B, Cu, Mn, Zn, BD, BSP, CSP, Ca/Mg and Mg/K. Both sets were 

transported by a refrigerator car at a temperature below 10 °C.  

Soil chemical analyses for MC, SOM, pH and EC were conducted on the 

first set of 188 soil samples at TUAT. The fresh soil samples were crushed and sieved 

through a 2-mm sieve. Debris such as plant material and stones were removed. The 

samples were then stored in sealable plastic bags at 5 °C until the completion of the 

chemical analysis. MC, pH and EC were measured in fresh soil samples. MC was 

measured using the oven-dry method at 110 °C for 24 h. Soil pH was measured by 

glass electrode (F-74, HORIBA) using a soil:distilled-water weight ratio of 1:2.5. 

Soil EC was measured by the AC bipolar method (F-74, HORIBA) using a soil to 

distilled-water weight ratio of 1:5. After shaking for 2 h and equilibration, pH and 

EC were measured in the supernatant liquid. The soil to distilled-water mass ratios 

for pH and EC were calculated using each MC result of soil samples. SOM was 

measured on dried soil samples that were sieved through a 1-mm sieve and burnt in a 

muffle furnace at 750 °C for 3 hours. Each soil analysis was conducted three times, 

and the average values were adopted as reference values for the multivariate 

statistical analysis. 
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Table 3.1 Twenty-four Soil analysis methods, instruments and locations. 

 Soil Properties Analysis Method Instrument Location 

1. MC (%) Oven Dry DK610Yamato TUAT 

2. SOM (%) Loss on Ignition Muffle Furnace FM28 Yamato TUAT 

3 pH Glass Electrode F-74 HORIBA TUAT 

4. EC (µS/cm) AC Bipolar F-74 HORIBA TUAT 

5. CEC (me/100g) Absorptiometry BRAN+LUEBBE, QUAATRO APCRL 

6. C-t (%) Tyurin’s Method NC-220F, SUMIGRAPH APCRL 

7. N-t (%) Kjeldahl Method NC-220F, SUMIGRAPH APCRL 

8. N-h (mg/100g) Absorptiometry BRAN+LUEBBE, QUAATRO APCRL 

9. N-n (mg/100g) Absorptiometry BRAN+LUEBBE, QUAATRO APCRL 

10. N-a (mg/100g) Absorptiometry BRAN+LUEBBE, QUAATRO APCRL 

11. P-a (mg/100g) Absorptiometry BRAN+LUEBBE, QUAATRO APCRL 

12. PAC (non) Absorptiometry BRAN+LUEBBE, QUAATRO APCRL 

13. Ca (mg/100g) Absorptiometry  VARIAN, SpectrAA-280F APCRL 

14. K (mg/100g) Absorptiometry  VARIAN, SpectrAA-280FS APCRL 

15. Mg (mg/100g) Absorptiometry  VARIAN, SpectrAA-280FS APCRL 

16. B (ppm) Absorptiometry VARIAN, SpectrAA-220 APCRL 

17. Cu (ppm) Absorptiometry VARIAN, SpectrAA-220 APCRL 

18. Mn (ppm)  Absorptiometry VARIAN, SpectrAA-220 APCRL 

19. Zn (ppm) Absorptiometry VARIAN, SpectrAA-220 APCRL 

20. CSP (%) - - APCRL 

21. BSP (%) - - APCRL 

22. BD - - APCRL 

23. Mg/K  - - APCRL 

24. Ca/Mg - - APCRL 
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The second set of 188 soil samples transported to APCRL was analyzed for 

CEC, C-t, N-t, N-h, N-n, N-a, P-a, Ca, K, Mg, B, Cu, Mn, Zn, PAC, BD, BSP, CSP, 

Ca/Mg and Mg/K by APCRL using the standard procedures in the Hokkaido area in 

Japan (Souma and Kikuchi, 1992). This set of soil samples was also dried, crushed 

and sieved. The soil analysis methods and instruments that were used for analysis of 

the 24 chemical properties are listed in Table 3.1. 

 

3.2.5 Spectra Pretreatment and Calibration Model Development for Twenty-four 

Soil Properties  

Prior to the development of calibration models, all collected underground 

Vis-NIR soil reflectance spectra were converted to absorbance using Beer-Lambert’s 

law as in Equation (3) of Chapter 2. The absorbance spectra were then converted to 

5-nm-interval data by the interpolation method using Data Monitor Software 

(Shibuya Seiki Co., Ltd.). The spectra of original absorbance ranged from 350 to 

1700 nm. To enhance weak signals and remove noise due to diffuse reflection, the 

absorbance spectra were pre-treated using the second-derivative Savitzky and Golay 

method. Moreover, both edges of the spectra were removed as these parts of the 

spectra were unstable and rich in noise. This resulted in a final spectra wavelength 

range of 500 to 1600 nm. The calibration models were subsequently developed by 

applying the partial least-square regression (PLSR) technique coupled with full 

cross-validation to establish the relationship between the amount of soil properties 

obtained by chemical analysis (reference values) with the pretreated Vis-NIR soil 

absorbance spectra from the corresponding locations. These were performed using 

Unscrambler X10.2 software. In the PLSR analysis, up to 20 principal components 
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(PC) were used in the regression calculations and the number of PC was selected to 

give the highest coefficient of determination (R
2

val) close to one and the smallest root 

mean square error of full cross-validation (RMSEval). Sample outliers were also 

detected by checking the residual sample variance plot on the validation views after 

the PLSR. Individual sample outliers located far from the zero line of residual 

variance were considered to be outliers and excluded from the analysis. In this study, 

the calculation for generating the model was performed seven times. Three samples 

were selected as sample outliers at one time of calculation up to six times of 

re-calculation and one final sample was removed as an outlier at the seventh time of 

re-calculation. In total, 19 samples were removed as outliers in the PLSR for each 

soil property.   

In order to obtain the best calibration model for each of the 24 soil 

properties, the PLSR analyses were performed on the Vis-NIR spectra that were 

pretreated with 11 different numbers of smoothing points. Therefore, there were 11 

calibration models developed for each of the 24 soil properties. Among of these 

calibration models, the model that produced the highest R
2

val close to one and 

smallest RMSEval was selected as the best calibration model for each of the 24 soil 

properties. The performance of the calibration models was also assessed based on the 

value of residual prediction deviation (RPD) produced from the PLSR analysis.  

The performance of the calibration models was classified based on the value 

of RPD where RPD larger than 2.0 was considered excellent, between 1.4 and 2.0 

was good and below 1.4 was unreliable (Chang et al., 2001). Hence, the best 

calibration model that possesses the largest R
2

val and RPD but minimum RMSEval in 
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the regression analysis for each soil property was then used to provide quantitative 

prediction and mapping of the respective soil properties. 

 

3.2.6 Development of Twenty-four Soil Properties Maps 

In order to obtain higher resolution soil maps, the Vis-NIR spectra that were 

acquired in between the sampling points along transects of the four fields were then 

predicted using the best calibration model of each soil property. These quantitative 

prediction values were then used to generate high-resolution prediction maps of 24 

soil properties using ArcGIS Ver. 10.0 software (ESRI Inc. USA). As a comparison, 

the reference values obtained from the chemical analysis were also used to generate 

measured maps. Both soil maps were interpolated using the inverse-distance 

weighting (IDW) method. 

 

3.3 Results and Discussions 

3.3.1 Performance of the Twenty-four Soil Properties Calibration Models 

The raw absorbance Vis-NIR spectra and pretreated with second-derivative 

Savitzky-Golay spectra were depicted in Figure 3.4. Both edges of the raw 

absorbance Vis-NIR were removed as these parts of spectra were unstable and rich in 

noise. The PLSR results of the calibration and full cross-validation were obtained as 

listed in Table 3.2. The number of samples used in the model was 169 after excluded 

19 outliers. The highest accuracy of calibration model obtained was for Mn with the 

R
2

val is 0.90 and the lowest calibration model accuracy was for N-a with the R
2

val is 

0.43. Even though Mn and some other soil properties such as Mg, CEC, pH, and Ca  
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Fig. 3.4 Absorbance spectra collected by RTSS SAS2500 for developing the 

calibration model (a) original absorbance spectra, (b) pretreated using 2nd 

derivative absorbance spectra 
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do not have direct response to Vis-NIR spectra, the correlation analyses between 

Vis-NIR spectra and these soil properties concentration have yielded inconclusive 

results to date, suggesting that these soil properties concentration may belong to a 

class of “tertiary” soil parameters, linked to Vis-NIR spectra through “surrogate”, or 

indirect, correlations, involving some other primary or secondary parameter like soil 

organic matter content, to which Vis-NIR spectra are very sensitive (Wu et al., 2010). 

Thus, these tertiary soil properties can be measured with good accuracy due to 

co-variation with one or more primary or secondary properties (Stenberg et al., 

2010). 

Referring to the classification by Chang et al. (2001), calibration models 

that fall in the excellent category are those for Mn, Ca/Mg, SOM, Mg, C-t, pH, N-t 

and BD due to the values of RPD are 3.19, 2.46, 2.33, 2.21, 2.13, 2.11, 2.10 and 2.00 

respectively. Calibration models for EC, CEC, N-h, P-a, Ca, K, B, Cu, Zn, PAC, CSP, 

BSP and Mg/K showed good levels of accuracy with RPD values between 1.41 and 

1.93. Two models categorized as unreliable were the models for N-a and N-n due to 

their RPD values were 1.33 and 1.22 respectively. This result is consistent with the 

study by Islam et al. (2004) and Kodaira and Shibusawa (2013) who also obtained 

unreliable model accuracy for N-a and N-n respectively. Another study by Ehsani et 

al. (1999) also found that it was possible to use the NIR spectrum of the soil in the 

range of 1800 – 2300 nm to determine the soil nitrate content whereas the 

spectrophotometer used in this study was just up to 1700 nm (1600 nm after 

removing noise).  The scatter plots of the models for the 24 soil properties are 

depicted in Fig. 3.5. Also shown in this figure are the primary regression equations of 

the respective soil properties 
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Table 3.2 Summary of Partial Least Square Regression (PLSR) for the Twenty-four 

Soil Properties. 

 
Soil Properties aN PCc R2

cal R2
val RMSEval SD RPD dCategory 

1. MC (%) 169 8 0.78 0.70 1.82 3.29 1.81 B 

2. SOM (%) 169 10 0.88 0.82 0.22 0.52 2.33 A 

3. pH 169 8 0.84 0.78 0.09 0.19 2.11 A 

4. EC (µS/cm) 169 7 0.62 0.50 5.01 7.07 1.41 B 

5. CEC (me/100g) 169 8 0.80 0.73 0.58 1.10 1.90 B 

6. C-t (%) 169 5 0.80 0.77 0.11 0.23 2.13 A 

7. N-t (%) 169 5 0.78 0.74 0.01 0.02 2.10 A 

8. N-a (mg/100g) 169 2 0.53 0.43 0.15 0.20 1.33 C 

9. N-h (mg/100g) 169 5 0.75 0.54 0.52 0.76 1.46 B 

10. N-n (mg/100g) 169 7 0.54 0.45 0.09 0.11 1.22 C 

11. P-a (mg/100g) 169 8 0.65 0.50 2.22 3.18 1.43 B 

12. PAC (non) 169 6 0.81 0.66 24.99 42.64 1.71 B 

13. Ca (mg/100g) 169 8 0.79 0.72 10.52 19.70 1.87 B 

14 K (mg/100g) 169 6 0.83 0.66 1.03 1.78 1.73 B 

15. Mg (mg/100g) 169 9 0.87 0.80 1.49 3.30 2.21 A 

16. B (ppm) 169 5 0.76 0.70 0.06 0.10 1.67 B 

17. Cu (ppm) 169 5 0.70 0.65 0.35 0.59 1.69 B 

18. Mn (ppm)  169 9 0.94 0.90 3.51 11.20 3.19 A 

19. Zn (ppm) 169 7 0.66 0.55 0.40 0.60 1.50 B 

20. CSP (%) 169 6 0.87 0.73 3.82 7.38 1.93 B 

21. BSP (%) 169 5 0.83 0.67 4.43 7.70 1.74 B 

22. BD 169 8 0.77 0.70 0.02 0.04 2.00 A 

23. Mg/K  169 5 0.57 0.49 0.54 0.76 1.41 B 

24. Ca/Mg 169 13 0.92 0.83 0.28 0.69 2.46 A 

  aNumber of samples used in the model,    

   bNumber of principal component,     

   c Number of PLSR factors used in the model., 

   dCategory of prediction (full cross-validation) ability of PLSR for parameters. A: Excellent (RPD>2.0);  B: Good  

  1.4<RPD<2.0); C: Unreliable (1.4<RPD) (Chang et al., 2001). 
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Fig. 3.5 Scatter plot of measured values versus Vis–NIR predicted values 

using partial least squares regression (PLSR) coupled with full 

cross-validation datasets for 24 soil properties. 
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Fig. 3.5 (continued) 
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3.3.2 Twenty-four Soil Properties Maps 

The RTSS also acquired other spectra for prediction in between the 

sampling points along transects of the four fields. The number of spectra acquired 

was 588 at Field 1, 678 at Field 2, 408 at Field 3 and 1460 spectra at Field 5. All 

these spectra were predicted using the best 24 soil properties’ calibration models to 

determine the amount of the respective soil properties. The predicted values were 

then used to generate the predicted soil maps. The measured maps were also 

developed using the reference values obtained from soil analysis in the laboratory. In 

order to allow useful comparisons between measured and predicted maps, the same 

number of classes for both measured and predicted maps was used for every soil 

property. Moreover, the range (minimum and maximum) of each class was made 

identical for the pair of measured and predicted maps. Figure 3.6 compares the maps 

of the laboratory measured and predicted of 24 soil properties for the four fields. 

Both maps show a spatial similarity at most area especially maps for Field 2 and 

Field 5. However, less similarity exhibited for Field 1 and Field 3. This is because 

the number of datasets (reference values and spectra) from Field 1 and Field 3 that 

were used to develop the calibration models was just 24% (45 out of 188 datasets) 

whereas the majority of the datasets that were used to develop the calibration model 

were from Field 2 and Field 5 (145 out of 188 dataset). This is attributed to the 

developed models being more influenced from Field 2 and Field 5. Hence, the 

accuracies of the developed calibration models were higher and the maps generated 

were more representative for predicting Field 2 and Field 5 than Field 1 and Field 3.  
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Fig 3.6 Comparison of measured and predicted map of 24 soil properties for the 

four fields 
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Table 3.3 Comparison between mean of measured and predicted values of soil 

properties. 

Soil Properties 
 Mean Measured 

(188 samples) 

Mean Predicted 

(188 spectra) 

Mean Error 

(%) 

MC (%)  42.435 42.473 0.090 

SOM (%)  6.643 6.656 0.196 

pH  6.005 5.985 0.333 

EC (µS/cm)  49.691 50.057 0.737 

CEC (me/100g)  9.700 9.626 0.763 

C-t (%)  1.737 1.726 0.633 

N-t (%)  0.163 0.162 0.613 

N-a (mg/100g)  0.668 0.601 10.030 

N-h (mg/100g)  4.817 4.776 0.851 

N-n (mg/100g)  0.116 0.142 22.731 

P-a (mg/100g)  24.684 24.452 0.940 

PAC (non)  320.223 323.747 1.100 

Ca (mg/100g)  147.067 146.484 0.396 

K (mg/100g)  8.874 8.745 1.454 

Mg (mg/100g)  19.725 19.476 1.262 

B (ppm)  0.752 0.756 0.532 

Cu (ppm)  4.990 5.068 1.563 

Mn (ppm)   17.279 16.305 5.637 

Zn (ppm)  4.571 4.067 11.026 

CSP (%)  54.447 54.618 0.314 

BSP (%)  66.452 66.798 0.521 

BD  0.938 0.939 0.107 

Mg/K   5.316 5.330 0.263 

Ca/Mg  5.407 5.410 0.055 

 

The evaluation of the accuracy of the prediction model developed from the 

Vis-NIR spectra was performed by visual comparison between the spatial variation 

of reference (laboratory) and real-time measurement. On the other hand, the 

statistical evaluation of map similarity could be performed by considering the mean 
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error between the two techniques of measurement as listed in Table 3.3. The 

prediction error for each soil property ranged from 0.055% to 22.731% with the 

smallest and largest prediction errors were Ca/Mg and N-n respectively. 

 

3.3.3 Comparison with Previous Study 

Table 3.4 shows the result of comparison between this study and a previous 

study by Kodaira and Shibusawa (2014c). The previous study was conducted on an 

upland agriculture fields and the Vis-NIR RTSS model used was SAS1000 whereas 

our study used the SAS2500 model for spectra acquisition at a paddy field. The 

tractor speed in previous study was 0.56 ms
-1

 and the spectra was acquired at the 

depth of 15 cm. To the best of our knowledge, this previous study has the most 

number of soil properties (25 soil properties) investigated for their potential in 

predicting and mapping based on a single scan of Vis-NIR spectra acquired using a 

single real-time sensor system. Hence, this previous study was selected as a 

comparison for our study. 

As shown in Table 3.4, the category of RPD for pH, Mg, Mn, BD and 

Ca/Mg on the prediction models of this study is better than the previous study while 

MC, N-a, N-n, P-a and PAC are slightly poorer than previous study. The RPD 

categories of other 15 soil properties and are the same as in both studies. The 

accuracies of R
2

val for Vis-NIR modeling compared with the previous study are better 

for SOM, pH, Ca, K, Mg, B, Cu, Mn, CSP, BSP, and Ca/Mg. The other 13 soil 

properties show slightly poorer accuracies than in the previous study. As reported by 

Bricklemyer (2011), field moisture content is one of the factors that can reduce the 

accuracy of Vis-NIR method. Chang et al. (2005) showed that small increases in  
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Table 3.4. Comparison of quantitative predictions for the soil properties with 

previous study. 

Soil Properties 
R

2
val  RPD 

 d
Category 

S K  S K  S K 

MC (%) 0.70 0.84  1.81 2.52  B A 

SOM (%) 0.82 0.71  2.33 13.47  A A 

pH 0.78 0.65  2.11 1.68  A B 

EC (µS/cm) 0.50 0.65  1.41 1.69  B B 

CEC (me/100g) 0.73 0.74  1.90 1.95  B B 

C-t (%) 0.77 0.82  2.13 2.36  A A 

N-t (%) 0.75 0.80  2.10 2.22  A A 

N-a (mg/100g) 0.43 0.69  1.33 1.79  C B 

N-h (mg/100g) 0.54 0.74  1.46 1.94  B B 

N-n (mg/100g) 0.45 0.80  1.22 2.25  C A 

P-a (mg/100g) 0.50 0.78  1.43 2.12  B A 

PAC (non) 0.66 0.79  1.71 2.20  B A 

Ca (mg/100g) 0.72 0.64  1.87 1.67  B B 

K (mg/100g) 0.66 0.64  1.73 1.67  B B 

Mg (mg/100g) 0.80 0.64  2.21 1.67  A B 

B (ppm) 0.70 0.64  1.67 1.67  B B 

Cu (ppm) 0.65 0.64  1.69 1.67  B B 

Mn (ppm)  0.90 0.64  3.19 1.67  A B 

Zn (ppm) 0.55 0.64  1.50 1.67  B B 

CSP (%) 0.73 0.64  1.93 1.67  B B 

BSP (%) 0.67 0.64  1.74 1.67  B B 

BD 0.70 0.73  2.00 1.93  A B 

Mg/K  0.49 0.65  1.41 1.68  B B 

Ca/Mg 0.83 0.64  2.46 1.67  A B 

S = This study,  

K = Study by Kodaira and Shibusawa (2014c), 

dCategory of prediction (full cross-validation) ability of PLSR for parameters. A: Excellent (RPD>2.0); 

B: Good (1.4<RPD<2.0); C: Unreliable (1.4<RPD) (Chang et al., 2001). 
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moisture content can considerably change the reflectance baseline and increase the 

peak intensities at 1400 nm. This probably the reason for low accuracy of some soil 

properties’ models in this study as the mean soil moisture content measured in the 

laboratory for this study is higher (42.44%) than in the previous study (21.87%). 

Although the accuracy of these 13 soil properties models is better in the previous 

study, this study however, has demonstrated some improvement on the accuracies of 

other 11 soil properties’ calibration models.  

 

3.4 Summary and Conclusion 

Twenty-four spectroscopic calibration models for 24 soil properties were 

developed based on Vis-NIR underground reflectance spectra collected by the RTSS on 

a commercial paddy field. The 24 soil properties investigated in this study were MC, 

SOM, pH, EC, CEC, C-t, N-t, N-h, N-n, N-a, P-a, Ca, K, Mg, B, Cu, Mn, Zn, PAC, BD, 

BSP, CSP, Ca/Mg and Mg/K. This study showed that 22 out of 24 soil properties can be 

predicted (RPD>1.4) by just a single scan of Vis-NIR using a single soil sensor in 

real-time with different levels of model accuracy. Only two soil properties’ models are 

unreliable which were N-a and N-n (RPD<1.4). 

Improvement of the reliability and robustness of the calibration models which 

then improves the quality of the developed maps is necessary in future. One of the 

suggestions in further studies is to incorporate more soil samples from various types of 

cultivation fields at other regions of Japan in order to have large variability of soil 

properties. Using a wider spectra range probably up to 2500 nm also need to be taken 

into account as there are perhaps important absorption features available between 1700 

and 2500 nm especially for N-a and N-n. However, the efficiency of using wider range 
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of NIR need to be investigated as Mouazen et al., 2006b, claimed that a full range NIR 

spectrometer was less advantageous for real-time measurement. Further research need 

to be carried out to determine the basis of the calibration for soil properties that do not 

have direct spectra response. The correlation between the primary/secondary soil 

properties (have direct spectra response) with tertiary properties (do not have direct 

spectra response) need to be elucidated for better understanding of the surrogate 

calibration. The validation of the model on independent validation set need to be also 

carried out as to examine whether it will be robust or limited to the conditions under 

which the calibration samples were obtained. Although the on-line developed predicted 

maps did not perfectly match the corresponding measured maps for all the 24 soil 

properties especially for Field 1 and Field 3, the similar pattern of distribution that 

existed between the two map groups is sufficient to declare that the Vis-NIR real-time 

soil sensor measurement system is a promising technique for real-time measurement of 

numerous soil properties. 
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Chapter 4 

Integrated Calibration Modelling 

Approach for Soil Mapping 

 

ABSTRACT 

The visible-near infrared (Vis-NIR) based real-time soil sensor (RTSS) is 

found to be a great tool for determining distribution of various soil properties for 

precision agriculture purposes. However, the developed calibration models applied on 

the collected spectra for prediction of soil properties were site-specific (local). This is 

found to be less practical since the RTSS needs to be calibrated separately for every 

field. Integrated calibration approach is expected to minimize this limitation. This 

chapter describes the feasibility of integrated calibration model developed from three 

types of agriculture fields and to compare the performance of this model with the local 

models. For this purpose, the datasets (reference value and spectra) collected from 

previous study were used to develop 3 local calibration models, 1 calibration model 

for paddy field and 1 integrated calibration, model using partial least square regression 

(PLSR) technique coupled with full cross-validation for MC, SOM, C-t, N-t and P-a. 
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The first two local models (M and Y) were developed using dataset from organic and 

inorganic paddy field respectively while the third local model (Ob) used the datasets 

from upland field. The fourth model (MY) was combination of organic and inorganic 

paddy field (paddy model) and the fifth model (IM – integrated model) was developed 

from combination of dataset from all the three fields. Results showed for MC, C-t and 

P-a, the IM produced the highest prediction accuracy with the R
2

val are 0.94, 0.91 and 

0.86 respectively. The Y local model produced the lowest accuracy for all the soil 

properties. From this result, it can also be noted that the calibration model which 

combined datasets from all the three sites (IM model) resulted in the highest RPD for 

MC, C-t and P-a with the RPD values were 4.1, 3.3 and 2.7 respectively. The maps 

generated through prediction on the independent validation set using the IM model 

showed spatial similarity for the 4 soil properties except P-a. This result could be used 

as a step towards establishment a robust calibration model for agriculture soil in 

Japan. 

 

4.1 Introduction 

The visible-near infrared based real-time soil sensor (Vis-NIR RTSS) is 

found to be a great tool for describing distribution of various soil properties for 

precision agriculture purpose. It has been proven to be a rapid, inexpensive and 

relatively accurate tool for measuring soil properties. Furthermore, this sensing 

technology offers on-line measurement of multiple soil properties as have been 

described in Chapter 3. The information on the distribution of these multiple soil 

properties can be derived from the high-resolution soil map which then can be used 

for making agronomic decisions and environmental monitoring. 
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One of the huge advantages of Vis-NIR soil sensor can be that they can 

replace the need for time-consuming and expensive methods. However, if calibrations 

need to be developed for many different fields, then the cost of the calibrations may 

still be too great to make the method practical and a less perfect, but less expensive 

method may need to be used (Reeves III, 2010). In previous studies including the 

study described in Chapter 2 and 3 of this thesis, researchers tended to develop local 

calibration model for each field they measured with Vis-NIR spectroscopy (Imade 

Anom et al., 2001; Mouazen et al., 2005; Kodaira and Shibusawa, 2013; Tekin et al., 

2013). In other words, the developed calibration models applied on the collected 

spectra for prediction of soil properties were site-specific (local). This found to be less 

practical since the RTSS needs to be calibrated separately for every field. As 

consequences, the employment of RTSS for describing soil variability would become 

less time and cost effective because soil sampling and soil laboratory analysis need to 

be carried out every time when developing calibration model for every different fields. 

Shonk et al. (1991) developed an online soil organic matter sensor that was calibrated 

for each soil landscape rather than a larger geographic area. Mouazen et al. (2005) 

reported that the calibration of the online sensor to predict MC was limited to one 

single field, for which the calibration model was developed. From practical point of 

view, the calibration model of real-time soil sensors should facilitate measurement 

over a large geographic area. To achieve this requirement, integrated calibration 

approach is expected to minimize the drawback in the previous real-time soil sensing 

even though the accuracy of the model might less accurate but still good enough to be 

acceptable for farm management in precision agriculture application.  
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In order to establish a robust integrated calibration model, the Vis-NIR 

spectra and soil samples need to be collected from a wide geographic range. Malley et 

al. (2004), Viscarra Rossel et al. (2006b), and Stenberg et al. (2010) have drawn soils 

from a wide geographic range and thus do not directly address the use of reflectance 

spectroscopy to determine the soil properties for specific field. Estimation of soil 

properties in these studies has had varying degrees of success. Furthermore, the 

performance of multi-farm (integrated) models in predicting key soil properties 

compared with the corresponding models for individual farms with different sample 

number and statistics has not been explored so far. The objective of this study was 

therefore to describe the feasibility of integrated calibration model developed from 

three agriculture fields that have different geographical area, soil texture and soil 

nutrient management (organic, inorganic and combination). This chapter also 

compares the results of local models (individual farm) with that of an integrated 

(multi-farm) model using samples from three farms across three Japan Island. This 

study can be a preliminary step towards developing a prediction models that could be 

applied to all Japan agriculture field with whatever the agricultural management 

history.  

 

4.2 Materials and Methods 

4.2.1 Data Mining 

Japan country consists of four main islands which are Honshu, Hokkaido, 

Kyushu and Shikoku. The soil reference values and Vis-NIR spectra used in this 

research were not obtained specifically for this work. They are the datasets 

collected for three different studies. These datasets were obtained from experiments 
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at three different experimental sites in three different islands of Japan. The first 

datasets (59 reference values and Vis-NIR spectra) used for this study were 

originated from Shikoku Island (Figure 4.1) which these datasets were collected for 

the study in Chapter 2. The details on the procedure of Vis-NIR spectra acquisition, 

soil sampling and analysis are as explained in Chapter 2, section 2.2. 

For the second datasets, a field experiment was conducted at the same 

experimental site with the study explained in Chapter 4. This experimental site 

located at Honshu Island (Figure 4.1) and the field experiment was carried out on 

spring 2013. However, for this study, only Field 2 and Field 5 were involved and 

numbers of soil samples collected from these two fields were 63 and 67 

respectively. The Vis-NIR spectra were also acquired from only these fields. The 

similar procedure of Vis-NIR spectra acquisition, soil sampling and soil analysis as 

described in Chapter 3, session 3.2 were performed for this field experiment and 

soil analysis.  

The third datasets utilized in this research was the datasets for the study 

that was conducted by Kodaira and Shibusawa (2013) who demonstrated the used 

of Vis-NIR real-time soil sensor for high resolution mapping of soil properties. The 

collection of the Vis-NIR spectra and soil sample in this study were conducted at a 

commercial upland field at Obihiro city of Tokachi sub-prefecture in Hokkaido 

island Japan (Figure 4.1).  The crop rotation system used at the site was five crops 

for 5 years: winter wheat–sugar beet–soy bean–potato–green manure (Kodaira and 

Shibusawa, 2013). The Vis-NIR spectra acquisition the soil sampling for 

development of calibration model were performed on Field A (4.43 ha, 

303.0×146.2 m; 42°50′55.32″ N and 143°00′13.68″ E) and Field B (4.51 ha, 
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303.0×148.8 m; 42°50′52.85″ N and 143° 00′19.86″ E) after harvesting winter 

wheat in August 2008. Soil samples and Vis-NIR spectra were also collected at 

Field A after harvesting soy bean in October 2009. Details on the procedure of 

Vis-NIR spectra acquisition, soil sampling, soil analysis and calibration model 

developement were described by Kodaira and Shibusawa (2013).  Figure 4.1 

shows the location of the three different experimental sites for three different 

studies and Table 4.1 listed the characteristic of these three different sites.   

 

 

 

 

 

 

 

 

 

 

Fig 4.1 Location of the experimental site of three different studies (a) 

Matsuyama in Shikoku Island (b) Yamatsuri in Honshu Island and (c) Obihiro 

in Hokkaido Island. 
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Table 4.1 Characteristic of three sites. 

Site Location Matsuyama Yamatsuri Obihiro 

Field Type Paddy Field Paddy Field Upland Field 

Soil Nutrient Management 
Organic Inorganic 

Organic + 

inorganic 

Soil Composition (%) sand 57.89 64.05 81.41 

silt 19.18 14.90 11.32 

clay 22.90 21.05 7.27 

Soil texture  Sandy-clay-loam Sandy-clay-loam Loamy-sand 

Model of RTSS used for Vis-NIR 

spectra acquisition 
SAS1000 SAS1000 SAS1000 

 

4.2.2 Development of Local and Integrated Calibration Model  

The soil properties investigated in this study were MC, SOM. C-t, N-t and 

P-a. For each of the soil property, five calibration models were developed. The first 

model (M model) is a local model which was developed as in Chapter 2 (using 

dataset spectra and reference values from Matsuyama field), the second model (Y 

model) was developed using the 130 dataset from Yamatsuri field and the third 

model (Ob model) was developed by Kodaira and Shibusawa (2013) using 144 

dataset from Obihiro field. These three models were classified as local model as 

these models were developed from a single site datasets. The fourth calibration 

model (MY model) was developed by combining the datasets from Matsuyama (59 

dataset) and Yamatsuri field (130 datasets) where these two fields were organic and 

inorganic paddy fields. The fifth model which is regarded as integrated calibration 

model (IM) was a model that developed by incorporation of all the three sites 

datasets (333 datasets). All of the calibration models were subjected to a PLSR 

with full cross-validation using the Unscramber X10.2 software (Camo Inc.; Oslo, 
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Norway). The number of factors for a model was determined by examining the plot 

of full cross-validation residual variance against the number of factors obtained 

from PLSR. Furthermore, outliers were then detected by checking the residual 

sample variance plot after the PLSR. Samples located far from the zero line of 

residual variance on the validation views were considered to be outliers and 

excluded from the analysis. The number of sample outliers was determined as 10 

percent of the total samples calculated in the PLSR. Therefore, 6, 13 and 14 

datasets were removed as outliers for the M, Y and Ob model respectively. For MY 

model, 19 sample outliers were removed whereas 33 sample outliers were removed 

for IM model. The performance of the five calibration models for each of the soil 

property were then assessed based on the value of R
2

val and RPD produced from 

the PLSR analysis.  

  

4.2.3 Preparation of Soil Properties Maps 

The integrated models of each soil property were then used to provide 

quantitative prediction on Vis-NIR soil spectra that was collected from Field A in 

the year 2009 (independent set). These prediction values were then mapped using 

ArcGIS Ver10.0 software and interpolated using the inverse distance weighing 

(IDW) method. The measured values which were obtained from the laboratory soil 

analysis on the soil samples collected at Field A in 2009 were also mapped as to 

allow useful comparison of these measured maps with the predicted maps.  
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4.3 Results and Discussions 

4.3.1 Soil Compositions and Spectra Properties 

The statistic result (Table 4.2) of the laboratory soil chemical analysis 

shows that the Yamatsuri site possesses the highest content of MC, SOM, N-t and 

P-a while Obihiro site possessed the highest content of C-t. However, the 

variability of Matsuyama field is the highest for C-t, N-t and P-a while the 

variability of Obihiro Field is the highest for MC and SOM based on the coefficient 

of variations (CV) of all the fields. Yamatsuri Field possessed the lowest variability 

of all the soil properties. Merging of datasets of the two paddy fields (Matsuyama 

and Yamatsuri) increased the variability of MC and SOM while the variability of 

datasets from Matsuyama Field for other three soil properties remains highest. 

Integration of all the three fields data, increased the variability for only MC and 

P-a.  

The mean 2
nd

 derivatives of absorbance Vis-NIR spectra for the three 

fields are depicted in Figure 4.2. The spectral data were analyzed by principal 

component analysis (PCA). The two-dimensional scatter plot of PCA gives 

information about patterns among the spectra samples (Figure 4.3). The closer 

together samples were in the scatter plot, the more similar they were in 

composition as reflected in their spectra. The spectra of Matsuyama group tended 

to separate between spectra of Yamatsuri and Obihiro group along the PC-1 axis.  

From this scatter plot also, the discrimination on the spectra for different depths of 

Matsuyama field (10, 15, and 10 cm) and different plots (Field 2 and Field 5; Field 

A and Field B) of Yamatsuri and Obihiro field can be observed along the PC-2 axis.                                                                                 
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Table 4.2 Statistical results of soil chemical analysis on soil properties in 

calibration dataset 

 Calibration Dataset aSP bn Mean Min Max cSD dCV 

Matsuyama 

MC (%) 59 18.25 11.77 23.63 2.47 13.53 

SOM (%) 59 5.21 3.85 6.30 0.61 11.71 

C-t (%) 59 1.23 0.50 1.94 0.42 34.15 

N-t (%) 59 0.13 0.07 0.18 0.03 23.08 

P-a (%) 59 28.39 10.04 53.99 9.63 33.92 

Yamatsuri 

MC (%) 130 32.94 26.36 40.12 3.06 9.29 

SOM (%) 130 7.65 6.11 9.13 0.61 7.97 

C-t (%) 130 1.65 1.13 2.10 0.23 13.94 

N-t (%) 130 0.15 0.11 0.19 0.02 13.33 

P-a (%) 130 22.49 14.69 28.43 3.51 15.61 

Obihiro* 

MC (%) 144 21.87 11.32 34.36 5.30 24.23 

SOM (%) 144 6.59 3.88 10.22 1.14 17.30 

C-t (%) 144 1.88 0.81 3.13 0.47 25.00 

N-t (%) 144 0.14 0.07 0.24 0.03 21.43 

P-a (%) 144 54.23 25.20 114.73 17.29 31.88 

Matsuyama and 

Yamatsuri 

MC (%) 189 28.35 11.77 40.12 7.40 26.10 

SOM (%) 189 6.89 3.85 9.13 1.29 18.72 

C-t (%) 189 1.52 0.50 2.10 0.35 23.03 

N-t (%) 189 0.15 0.07 0.19 0.03 20.00 

P-a (%) 189 24.33 10.04 53.99 6.67 27.42 

Matsuyama + 

Yamatsuri + Obihiro 

MC (%) 333 25.55 11.32 40.12 7.31 28.61 

SOM (%) 333 6.76 3.85 10.22 1.23 18.20 

C-t (%) 333 1.67 0.50 3.13 0.44 26.35 

N-t (%) 333 0.14 0.07 0.24 0.03 21.43 

P-a (%) 333 37.26 10.04 114.73 19.34 51.91 

aSoil Properties 

bnumber of samples 

cstandard deviation 

dcoefficient of variation 
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Fig. 4.2 The mean of 2
nd

 Derivative of absorbance spectra of Matsuyama and Yamatsuri 

and Obihiro soil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Score plot of the 333 samples on the first two principal components explaining 

the variance in the Vis-NIR spectral data. 
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Matsuyama at depth of 20cm Y-2 : Yamatsuri Field 2,  Y-5 : Yamatsuri Field 5,   

Ob-FA : Obihiro Field A, Ob-FB : Obihiro Field B 
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4.3.2 Comparison of Calibration Models 

The PLSR results of the calibration and validation were obtained as shown 

in Table 4.3. Based on the R
2

val, IM model that combined datasets of soil from all 

fields resulted in the highest accuracy for MC, C-t and P-a due to the R
2

val are 0.94, 

0.91 and 0.86 respectively. For SOM, the accuracy of MY calibration model was 

the highest (R
2

val
 
= 0.95) while the Ob calibration model was the highest for N-t 

(R
2

val
 
= 0.87). The lowest model accuracy for all the soil properties was Y model. 

Referring to the classification by Chang et al. (2001), all of the calibration 

models fall in excellent category (RPD>2.0) except Y model for MC and three 

local models (M, Y, and Ob) for P-a where their models fall in good category 

(2.0<RPD<1.4). From this result, it can also be noted that the calibration model 

which combined datasets from all the three sites (IM model) resulted in the highest 

RPD for MC, C-t and P-a with the RPD values were 4.1, 3.1 and 2.7 respectively. 

For SOM, the MY model obtained the highest RPD value (4.6) and for N-t, four 

models (M, Ob, MY and IM) has similar RPD value (3.0). The scatter plots of the 

IM models are depicted in Figure 4.4. 
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 Table 4.3 Summary of Partial Least Square Regression (PLSR) 

Calibration 

Model 

a
SP 

b
n 

calibration   validation 
SD RPD 

R
2
cal RMSEcal   R

2
val RMSEval 

M 

(Matsuyama)  

 

MC 53 0.95 0.85 

 

0.88 1.38 3.95 2.9 

SOM 53 0.87 0.23 

 

0.83 0.26 0.63 2.4 

C-t 53 0.91 0.13 

 

0.88 0.15 0.43 2.9 

N-t 53 0.88 0.01 

 

0.85 0.01 0.03 3.0 

P-a 53 0.87 3.02 

 

0.72 4.53 8.50 1.9 

Y 

(Yamatsuri) 

MC 117 0.77 0.14 

 

0.73 1.52 2.89 1.9 

SOM 117 0.85 0.21 

 

0.79 0.26 0.56 2.2 

C-t 117 0.77 0.10 

 

0.74 0.11 0.22 2.0 

N-t 117 0.77 0.01 

 

0.74 0.01 0.02 2.0 

P-a 117 0.84 1.97 

 

0.65 1.97 3.31 1.7 

Ob 

(Obihiro) 

(Kodaira and 

Shibusawa, 

2013) 

MC 130 0.95 1.23 

 

0.93 1.42 5.11 3.6 

SOM 130 0.92 0.30 

 

0.90 0.35 1.02 2.9 

C-t 130 0.91 0.13 

 

0.89 0.15 0.42 2.8 

N-t 130 0.89 0.01 

 

0.87 0.01 0.03 3.0 

P-a 130 0.76 7.46 

 

0.72 8.00 14.35 1.8 

MY 

(Matsuyama 

+ Yamatsuri) 

MC 170 0.93 1.30 

 

0.90 1.55 4.77 3.1 

SOM 170 0.97 0.22 

 

0.95 0.28 1.28 4.6 

C-t 170 0.90 0.11 

 

0.87 0.13 0.36 2.8 

N-t 170 0.87 0.01 

 

0.84 0.01 0.03 3.0 

P-a 170 0.81 2.40 

 

0.77 2.64 5.53 2.1 

IM 

(Matsuyama 

+ Yamatsuri 

+ Obihiro) 

MC 303 0.96 1.51 

 

0.94 1.77 7.29 4.1 

SOM 303 0.91 0.35 

 

0.90 0.38 1.18 3.1 

C-t 303 0.93 0.12 

 

0.91 0.14 0.44 3.1 

N-t 303 0.88 0.01 

 

0.85 0.01 0.03 3.0 

P-a 303 0.87 5.74 

 

0.86 5.94 15.94 2.7 

a
Soil Properties 

b
Number of samples used in the model 
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Fig. 4.4 Scatter plot of measured values versus Vis–NIR predicted values of IM model 

using partial least squares regression (PLSR) coupled with full cross-validation datasets 

for: (a) MC, (b) SOM, (c) C-t (d) N-t and (e) P-a. 

 

Results from this study show that the combination of the calibration 

dataset from two or more fields of different soil management has provided a wider 

range of dataset (reference values and spectra responses), a wider variety sample 

types and large constituent range which resulted in improvement of model accuracy 
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for MC, C-t and P-a. The difference model performance between local and 

integrated model caused by different sample size is attributed to sample statistics, 

including the coefficient of variation (CV) of the samples in the model and 

standard deviation (SD). As indicated in Table 4.2, the combination of three sites 

data increased the CVs for MC, and P-a which resulted on highest R
2

val values of 

these soil properties. The larger value of SD in the IM model also improved the 

RPD values of this model (Table 4.3) except for SOM where the YM model 

possessed highest SD and hence highest RPD. The low accuracy of Y model is 

expected due to the small variability (CV) of Yamatsuri soil properties (Table 4.2). 

This is consistent with studies by Sudduth et al. (2010) and Udelhoven et al. (2003) 

who found that when variability in the parameter of interest was small, generally 

poor estimations of the soil properties was obtained at the field scale. Furthermore, 

as reported by Bricklemyer (2011), field moisture content is one of the factors that 

can reduce the accuracy of Vis-NIR method. Chang et al. (2005) showed that small 

increases in moisture content can considerably change the reflectance baseline and 

increase the peak intensities at 1400 nm. This might be another reason for the low 

accuracy of Y model as the soil from Yamatsuri site was high in moisture content 

than other sites (Table 4.2). 

 

4.3.3 Analysis of Prediction Error and Soil Properties Maps. 

In order to assess the robustness of the integrated calibration model (IM 

model), the 72 spectra collected from Field A at Obihiro site on 2009 (independent 

validation datasets) were used to predict the amount of the five soil properties 

using the IM model. These prediction values were compared with the measured 

values obtained from the laboratory analysis on the 72 soil samples collected from 
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Field A on 2009. Table 4.4 shows the minimum, maximum and mean of the 

measured and predicted values for all the five soil properties. Also shows in the 

table are the percentage of error between measured and predicted values. The result 

from this error analysis showed that the prediction for P-a resulted in the largest 

error (30.60%) with a large difference in the range (minimum and maximum) 

between the measured and predicted values. Higher prediction error for P-a than 

MC, SOM, C-t and N-t can be attributed to that P-a does not has direct spectral 

responses in the Vis-NIR range (Maleki et al., 2006). This is in line with most 

studies reporting on the use of Vis-NIR spectroscopy for P-a estimation 

(Krischenko et al., 1991; Chang et. al, 2001: Williams, 2003). The ranges for other 

soil properties were just slightly different. The scatter plots of measured values 

versus the prediction values that were predicted using IM on spectra collected from 

Field A in year 2009 is depicted in Figure 4.5.  

To allow visual comparison, the 72 measured and prediction values of 

Field A for year 2009 were mapped as illustrated in Figure 4.6. Maps of MC, SOM, 

C-t and N-t showed a spatial similarity between measured and predicted at most 

area. The spatial variation for P-a however, showed less distribution similarity. The 

similar distribution pattern of the two maps provides confidence in the used of IM 

model for the prediction of MC, SOM, C-t and N-t in fields of loamy-sand soils.  

The mean prediction errors were compared with the mean prediction 

errors from the previous study by Kodaira and Shibusawa (2013) who predicted the 

amount of the soil properties using the calibration model developed using datasets 

collected from the same site (local calibration model). In this previous study, 

Kodaira and Shibusawa (2013) used the local calibration model that was developed 
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using the datasets collected on Field A in year 2008 to predict and validate the local 

model on spectra collected at the same field (Field A) in year 2009. The mean error 

comparison between the integrated model (IM) with the local calibration model 

(Ob) showed that the error of integrated IM model is smaller than the local Ob 

model for all the examined soil properties except for P-a. This result indicates that 

the integrated calibration model is considerably robust for prediction of the soil 

properties particularly for MC, SOM, C-t and N-t. 

 

Table 4.4 Comparison between measured and predicted values of Field A (independent 

validation) and mean error percentage between this study (integrated model) and 

pervious study (local model). 

SP 
Min   Max   Mean   Mean error (%) 

a
Meas 

b
Pred   

a
Meas 

b
Pred   

a
Meas 

b
Pred   this study 

c
K&S 

MC 20.90 23.13 

 

36.60 36.58 

 

29.37 29.68 

 

1.06 1.6 

SOM 4.70 4.64 

 

8.30 8.31 

 

6.62 6.71 

 

1.39 9.91 

C-t 1.00 1.47 

 

2.70 2.79 

 

1.89 2.23 

 

18.14 19.95 

N-t 0.10 0.09 

 

0.20 0.18 

 

0.15 0.14 

 

6.74 7.72 

P-a 40.69 28.58   114.75 56.56   64.36 44.66   30.6 18.7 

a Measured, b Predicted, c Kodaira and Shibusawa (2013) 
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Fig. 4.5 Scatter plot of linear correlation between measured and predicted using IM 

model on 72 validation Vis–NIR spectra (of Field A collected in year 2009 for: (a) MC, 

(b) SOM, (c) C-t (d) N-t and (e) P-a. 
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Figure 4.6 Comparison of measured and predicted soil maps of Field A (Obihiro) 

(predicted using IM) for (a) MC, (b) OM, (c) C-t, (d) N-t and (e) P-a.  
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4.4 Summary and Conclusion 

Five spectroscopic calibration models based on Vis-NIR underground 

reflectance spectra of three different fields have been examined. The fifth model 

(IM-integrated model) that incorporated soil from the three fields improved the 

accuracy of the three local model (M, Y and Ob) for MC, C-t and P-a. However, when 

IM was validated with the independent set, the prediction error of IM for P-a was 

higher than the local model. The integration of the model has good potential for 

minimizing the repetitiveness of developing calibration model every time for every 

different field. With this approach, the time and cost for obtaining the samples and 

laboratory analysis can be minimized and would simultaneously reduce the total 

production cost.  

Nevertheless, more research is needed to determine the basis for this 

integrated calibration and whether it will be robust or limited to the conditions under 

which the calibration samples were obtained, example, same field; same soil type and 

texture; same crop; geographic area etc. The effects on the robustness of the integrated 

model due to difference in soil management need to be also investigated. For example, 

if the integrated model successfully predict the soil properties on one particular field, 

at one season, whether the similar integrated model is accurately predict the soil 

properties on the same field at other season which the soil management practice has 

been altered or changed, need to be examined.  Moreover, the calibration sample 

selection methods need to be optimized which covering as much of the soil variation 

as possible within the calibration samples which comprise more variability in texture, 

colour, soil type, climate and origin of soil. Extending the integrated model 

application for all soil up to national or global level requires further research as an 
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integrated model probably has certain limitation such as it may be only applicable for 

the same soil type, colour, texture, moisture content and origin of the soil. Thus, 

incorporation of more soil samples from various types of cultivation fields at other 

regions of Japan is necessary in future studies as to improve the robustness of the 

calibration model that could be applied to all Japan soils with whatever the 

agricultural management background. The result from this study nevertheless could be 

used as a preliminary step towards establishment of a robust calibration model of 

Vis-NIR real-time soil sensing for various type of agriculture soil in future.  
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Chapter 5 

Overall Summary and Conclusion 

 

5.1 General Conclusion 

Numerous researches have been done on quantifying agriculture soil properties 

and presented the information on soil maps by exploring the features of emerging 

technologies. Among of these technologies spectroscopy by means of Vis-NIR has huge 

interest among researchers. From lab-based to the field-based (real-time) spectra 

measurement for prediction of soil properties, the used of this technique has gone through 

some development since the last two decades and yet there are still many aspects need to 

be further improved towards sustainable agriculture practices. This study has presented 

improved technique and function of soil properties mapping using a Vis-NIR real-time soil 

sensor as to optimize the used of this state-of-the-art technology towards better agricultural 

management either for precision agriculture or precision carbon farming practice. 

Three aspects of techniques improvement have been discussed in this study. The 

first aspect is about the measurement of the soil properties in depth direction. The result of 
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this study indicated that the incorporation of multi-depth soil properties measurement 

could increase the variability of the soil samples and hence improve the accuracy of the 

calibration model for prediction of soil properties. The generated maps exhibited variation 

in the distribution of soil properties not only horizontally but also at different depths. The 

information that can be derived from the multi-depth soil maps could provide 

comprehensive information on spatial at three-dimensional soil variability for making 

precision agronomic decisions. 

The used of the Vis-NIR real-time soil sensor for mapping of 24 soil properties 

was another feature that has been introduced in this study for optimizing the used of this 

sensor for precision agriculture practice. This study indicates that 22 out of 24 soil 

properties can be predicted by just a single action of Vis-NIR scanning using a single soil 

sensor in real-time with different levels of model accuracy. Only two soil properties’ 

models were categorized as unreliable which were N-a and N-n.  

Another technique that has been introduced in this study for the improvement of 

the soil properties measurement using Vis-NIR real-time soil sensor is the integrated 

calibration modelling approach. The proposed integrated model that incorporated soil from 

the three fields improved the accuracy of the soil properties. The integration of the model 

is expected to minimize the repetitiveness of developing calibration model every time for 

every different field. The result from this study could be used as a preliminary step towards 

establishment of a robust calibration model of Vis-NIR real-time soil sensor for various 

type of agricultural soil in future. 
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5.2 Contributions 

One of the contributions of this research is to provide improved method of 

agricultural soil mapping with the aid of real-time soil sensor for the efficiency of 

agricultural soil management. The technique developed in this research would capable 

reduce the cost and time in analysis of soil spatial variability for the precision agriculture 

and precision carbon farming practices which concomitantly increases the profit whilst 

reduces the environmental impact.  

The proposed technique of soil property mapping could be a step towards 

variable-rate applications such as site specific irrigation, fertilizer and nutrient application 

in precision agriculture practice. The developed high-resolution soil map can be used as a 

tool for decision support system and integrated with other components as a 

production-based farming system. The improvement on the technique of soil quantification 

and mapping would lead to optimize production efficiency; optimize quality; minimize 

environmental impact; minimize risk at the site-specific level management practice for 

precision agriculture and carbon sequestration activity. 

The integrated modelling approach has potential in reducing the cost, time and 

effort needed to transport and analyze the soil samples every time for calibration of the 

spectra to the soil constituents. Furthermore, the integrated modelling approach could be a 

step towards the establishment of spectral library for Japanese agriculture soil in future. 

 

5.3 Uncertainties 

Although the multi-depth soil mapping could provide comprehensive information on the 

distribution of soil properties in strata and depth direction, whether analysis of only soils’ 
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surface or several soil layers will be sufficient or more likely, how to integrate surface 

scanning and more limited sub-surface data from perhaps cores, has not been answered.  

Running the RTSS on deeper soil depth may not be possible for all field conditions as some 

field possess high soil resistance and the use of RTSS is not practical for such condition. In 

this case large amounts of more easily acquired surface data will need to be integrated with 

lesser amounts of harder to get core/sub-surface data to provide an accurate estimate of the 

total soil properties within a given area/volume of soil especially for estimation of carbon 

sequestration rate in precision carbon farming practice. 

Prediction error of calibration is commonly rooted in its calculation procedure, 

properties of reference data collected, and noise of spectral data record. Furthermore, natural 

soil heterogeneity, macro-aggregation, field moisture content are variables that can affect the 

performance of the soil prediction. The idea on using higher range of NIR for better 

prediction of some soil properties (such as nitrate) needs to be also considered in term of its 

noise occurrence. Although several researchers suggested to use further range of NIR for 

prediction of some soil properties, this method is would probably only suitable for lab-based 

spectra scanning. For real-time or online spectra acquisitions, where samples were fresh soil 

(field moist), Mouazen et al., 2006b, claimed that a full range NIR spectra was less 

advantageous. 

Calibrations based on indirect measurements of soil properties that do not have direct 

spectra response e.g., measure X which correlates with properties Y of interest, are often 

referred to as surrogate calibrations and work only as long as the surrogate relationship 

applies to both sample sets (Reeves III, 2010). Results for other similar measures such as EC, 

CEC, P-a, K, Mg etc. have been found to vary greatly and are likely due to the surrogate 

nature of the calibrations. While surrogate based calibrations can be useful, one must keep in 
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mind that changes not related to the measure of interest could change the surrogate and thus 

make the calibration inaccurate without the user ever knowing (Reeves III, 2010). Another 

uncertainty is that the performances of the developed 24 calibration model were not tested on 

independent validation datasets. Thus, the robustness of the developed 24 models for 

prediction of the 24 soil properties in other seasons is still indistinct. 

The basis for this integrated calibration whether it will be robust or limited to the 

conditions under which the calibration samples were obtained, example, same field; same soil 

type and texture; same climate; same crop; geographic area is also uncertain. The validation 

on the independent validation set was just performed on one of the field (Obihiro) that 

included in the calibration. The performance of the integrated calibration model on other 

fields that included in the calibration model (Matsuyama and Yamarsuri) and the fields that 

not included in the calibration model development is still ambiguous. 

 

5.4 Suggestions for Future Research 

The improvement in the soil properties mapping using the Vis-NIR real-time soil 

sensor has not come to the ending point. There are more researches need to be carried out 

in future study as to optimize the used of real-time soil sensor for mapping soil properties 

for either precision agriculture or precision carbon farming practices. The effects of the soil 

properties variation at different depths on the soil management such as fertilizer 

application need to be further investigated. The question on how much yield affected and 

how much excessive fertilizer applied if the grower observed the soil variability at a single 

depth is expected to be determine in future study. Furthermore, the idea of 3-dimensional 

mapping would probably give more comprehensive information about the soil variability. 

This approach could provide the distribution of the soil properties not only at a discrete 
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several layers but also in between layers. Moreover, Li (2013) pointed that the assessment 

of carbon sequestration needs to be considered up to the s 30 cm soil depth. Thus, the 

quantification of soil C, SOM and N at deeper soil depths need to be considered for carbon 

inventory in precision carbon farming. 

The accuracy of the developed calibration models for 24 soil properties could also 

be further improved in future study. The low model accuracies some of the soil properties 

without direct response in the Vis-NIR range need for further investigation to understand 

and improve the calibration accuracy of these soil properties.  Furthermore, the efficiency 

of the developed maps needs to be investigated on their applicability for soil management 

such as for variable-rate fertilizer application and soil treatment. Another aspect needs to 

be taken into account in future research is the economic feasibility on the use of the 

real-time soil sensor to the farmers. The high cost occurs when deploying this state-of-the 

art technology would always become one of the issues and become limitation for the 

adoption of this technology. Thus, the cost-benefit analysis need to be carried out in future 

study to arrive to a final conclusion on the potential of the Vis-NIR real-time soil sensor 

for multiple soil properties mapping and subsequently for variable-rate technology 

application in precision agriculture.  

Validation on the integrated calibration model on the field that was not included 

in the calibration model development is needed to be carried out in future research. 

Moreover, further research is needed to upgrade the calibration models developed in this 

study using samples collected from a larger number of fields and regions with even 

distribution of concentrations along the entire concentration range encountered in 

agricultural soils. This is recommended to improve the prediction accuracy and robustness 

of models developed for the studied soil properties. The integrated model could be expand 
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applications to regional or national (Mouazen et al., 2006c), continental or even global 

(Brown, 2007) scales. Spectral libraries for global calibration models should include 

sufficient number of soil samples, which can illustrate the soil variability in the new target 

site where the prediction will be carried out (Viscarra Rossel et al., 2008; Guerrero et al., 

2010). However, the large sample number may increase the prediction error. Therefore, 

before deciding on the scale of calibration, a decision on the degree of precision required 

has to be made. Cost evaluation for building calibration models need to be also considered.  



106 
 

REFERENCES 

 

Adamchuk, V. I., Lund, E., Dobermann, A. and Morgan, M. T. (2003). On-the-go mapping of 

soil properties using ion-selective electrodes. In: Stafford, J., Werner, A. (Eds.), 

Precision Agriculture. Wageningen Academic Publishers, Wageningen, The 

Netherlands,  27 – 33. 

Adamchuk, V. I., Hummel, J. W., Morgan, M. T. and Upadhyaya, S. K., (2004). On-the-go 

soil sensors for precision agriculture. Computers and Electronics in Agriculture. 44, 71 – 

91. 

Adamchuk, V. I., Lund, E. D., Reed, T. M. and Ferguson, R. B. (2007). Evaluation of an on-

the-go technology for soil pH mapping. Computers and. Electronics in Agriculture, 8, 

139 – 149. 

Barnes, R. J., Dhanoa, M. S. and Lister S. J. (1989). Standard normal variate transformation 

and detrending of near-infrared diffuse reflectance spectra. Applied Spectroscopy , 43, 

772 – 777. 

Barthes B. G., Brunet, D., Ferrer, H., Chotte, J. L. and Feller, C. (2006). Determination of total 

carbon and nitrogen content in a range of tropical soils using near infrared spectroscopy: 

influence of replication and sample grinding and drying. Journal of Near Infrared 

Spectroscopy, 14, 341 – 348. 

Baumgardner M. F, Silva L. R. F, Biehl L. L. snd Stoner E. R. (1985). Reflectance properties 

of soils. Advances in Agronomy 38, 1 – 44. doi: 10.1016/S0065-2113(08)60672-0 

Ben-Dor, E. and Banin, A. (1995). Near-infrared analysis as a rapid method to simultaneously 

evaluate several soil properties. Soil Science Society of America Journal, 59, 364 – 372. 

Blackmer, A. M. and White, S. E., (1998). Using precision farming technology to improve 

management of soil and fertilizer nitrogen. Australian Journal of Agricultural Research, 

49, 555 – 564. 

Boulesteix A. N. and K. Strimmer. (2007). Partial Least Square: A Versatile Toll for the 

Analysis of High-dimensional Genomial Data, Briefings in Bioinformatics, 8, 32 – 44.  



107 
 

Brejda, J., Moorman, J., Smith, T. B., Karlen, J. L., Allan, D. L. and Dao, T. H. (2000). 

Distribution and variability of surface soil properties at a regional scale. Soil Science 

Society of America Journal, 64, 974 – 982. 

Brenk, C., Pasda, G. and Zerulla, W. (1999). Nutrient mapping of soils – a suitable basis for 

site-specific fertilisation? In Precision Agriculture ’99, (J. Stafford ed.), Society of 

Chemical Industry, 49 – 59. 

Brereton, R. G. (2003). Chemometrics: Data Analysis for the laboratory and chemical Plant. 

John Wiley & Sons: Chichester, England  

Bricklemyer, R. S. and Brown, D. J. (2010). On-the-go VisNIR: Potential and limitations for 

mapping soil clay and organic carbon. Computers and Electronics in Agriculture, 70, 

209 – 216. 

Bricklemyer, R. S., Brown, D. J., Barefield, J. E. and Clegg, S. M. (2011). Intact Soil Core 

Total, Inorganic, and Organic Carbon Measurement Using Laser-Induced Breakdown 

Spectroscopy. Soil Science Society of America Journal, 75, 1006 – 1018. 

Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D. and Reinsch, T. G. (2005). Global 

soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 129 (3–4), 

215 – 267. 

Burrough P. A. and Mcdonnell, R. A. (1998). Principles of Geographic Information Systems 

(Oxford University Press) 356. 

Cahn M. D, Hummel, J. W. and Brouer, B. H. (1994). Spatial analysis soil fertility for site-

specific crop management. Soil Science Society of America Journal, 58, 1240 – 1248. 

Castrignano, A., Giugliarini, L., Risaliti, R. and Martinelli, N. (2000). Study of spatial 

relationship among some soil physico-chemical properties of a field in central Italy 

using multivariate geostatistic, Geoderma, 97, 39 – 60. 

Chang, C. W., Laird, D. A., Mausbach, M. J. and Hurburgh Jr., C. R. (2001). Near-infrared 

reflectancespectroscopy—principal components regression analysis of soil properties. 

Soil Science Society of America Journal, 65, 480 – 490. 

Chang, C. W. and Laird, D. W. (2002). Near-infrared reflectance spectroscopic analysis of 

Soil C and N. Soil Science, 167, 110 – 116 



108 
 

Chang, C. W., Laird, D. A. and Hurburgh Jr., C. R. (2005). Influence of soil moisture on 

nearinfrared reflectance spectroscopic measurement of soil properties. Soil Science, 170, 

244 – 255. 

Chen, F., Kissel, D. E, West, L. T. and Adkins, W. (2000). Field-scale mapping of surface soil 

organic carbon using remotely sensed imagery. Soil Science Society of America Journal, 

64, 746 – 753. 

Cheng, B. and Wu, X. (2006). A Modified PLSR Method in Prediction. Journal of Data 

Science, 4, 257 – 274.  

Christy C. D., Drummond, P. and Lund, E. (2010). Precision Agriculture Applications of an 

on-the-go Soil Infrared Reflectance Sensor, 1 – 12. Retrieved from 

http://www.veristech-com/pdf_files/Optical_8thinticonf.pdf   on 26
th

 November 2012. 

Christy C. D., Drummond, P. and Laird, D. A. (2003). An on-the-go spectral reflectance 

sensor for soil. ASAE Paper No 031044. 2003 ASAE Annual Meeting, Las Vegas, NV 

Christy, C. D. (2008). Real-time measurement of soil attributes using on-the-go near infrared 

reflectance spectroscopy. Computers and Electronics in Agriculture, 61 (1), 10 – 19. 

Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. p. 3–

52. In Rencz, N. (ed.), Remote sensing for the earth sciences: manual of remote sensing. 

John Wiley & Sons, New York. 

Corwin, D. L., Kaffka, S. R., Hopmans, J. W., Mori, Y., van Groenigen, J. W., van Kessel, C., 

Lesch, S. M. and Oster, J. D. (2003). Assessment and field-scale mapping of soil quality 

properties of a saline-sodic soil. Geoderma, 114 (3–4), 231 – 259. 

Cozzolino, D., Montossi, F. and San Julian, R. (2005). The use of Visible (Vis) and Near 

Infrared (NIR) reflectance spectroscopy to predict the fibre diameter in both clean and 

greasy wool samples. Animal Science, 80, 333 – 337.  

Cozzolino, D. and Morron, F. (2006). Potential of Near-infrared Reflectance Spectroscopy and 

Chemometrics to Predict Soil Carbon Fractions. Soil & Tillage Research, 85, 78 – 85.  

Dalal, R. C. and Henry, R. J. (1986). Simultaneous determination of moisture, organic carbon, 

and total nitrogen by near infrared reflectance. Soil Science Society of America Journal, 

50, 120 – 123. 

http://www.veristech-com/pdf_files/Optical_8thinticonf.pdf


109 
 

Daniel, K. W., Tripathi, N. K., Honda, K. (2003). Artificial neural network analysis of 

laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri 

(Thailand). Australian Journal of Soil Research, 41, 47 – 59. 

Debaene, G., Niedzwiecki, J. and Pecio, A. (2010). Visible and near-infrared 

spectrophotometer for soil analysis: preliminary results. Polish Journal of Agronomy, 3, 

3 – 9. 

Donovan, P. (2012). Measuring soil carbon change: a flexible, practical, local method, 

Retrieved from http://soilcarboncoalition.org/files/MeasuringSoilCarbonChange.pdf. on 

3
rd

  Oct 2013. 

Ebinger, M. H., Norfleet, M. L., Breshears, D. D., Cremers, D. A., Ferris, M. J., Unkefer, P. J., 

Lamb, M. S., Goddard, K. L. and Meyer, C. W. (2003). Extending the applicability of 

laser-induced breakdown spectroscopy for total soil carbon measurement. Soil Science 

Society of America Journal, 67, 616 – 1619. 

Ehsani, M. R., Upadhyaya, S. K., Slaughter, D., Shafii, S. and Pelletier, M. (1999). A NIR 

technique for rapid determination of soil mineral nitrogen. Precision Agriculture, 1, 217 

– 234. 

Fathi, H, Fathi, H. and Moradi, H. (2014). Spatial variability of soil characteristic for 

evaluation of agricultural potential in Iran Merit Research Journal of Agricultural 

Science and Soil Sciences (ISSN: 2350-2274), 2(2), 024 – 031. 

Fidêncio, P. H., Poppi, R. J. and De Andrade, J. C. (2002). Determination of organic matter in 

soils using radial basis function networks and near infrared spectroscopy. Analytica 

Chimica Acta, 453, 125 – 134. 

Franzen, D. W. and Peck. T. R. (1995). Statistical properties of the variable rate fertilization. 

Journal of Production Agriculture, 8, 568 – 574. 

Franzluebbers, A. J. and Hons, F. M. (1996). Soil-profile distribution of primary and 

secondary plant-available nutrients under conventional and no tillage. Soil & Tillage 

Research. 39 (3–4), 229 – 239. 

Futagawa, M., Iwasaki, T., Murata, H., Ishida, M. and Sawada, K. (2012). A miniature 

integrated multimodal sensor for measuring pH, EC and temperature for precision 

agriculture. Sensors, 12, 8338 – 8354. 

http://soilcarboncoalition.org/files/MeasuringSoilCarbonChange.pdf


110 
 

Ge, Y., Morgan, C. L. S., Grunwald, S. Brown, D. J. and Sarkhot. D. V. S. (2011). 

Comparison of soil reflectance spectra and calibration models obtained using multiple 

spectrometers. Geoderma, 161 (3-4), 202 – 211. 

Gehl, R. J. and Rice, C. W. (2007). Emerging technologies for in situ measurement of soil 

carbon. Climatic Change, 80, 43 – 54 DOI 10.1007/s10584-006-9150-2 

Genot, V., Colinet, G., Bock, L., Vanvyve, D., Reusen, Y. and Darbenne, P. (2011). Near 

infrared reflectance spectroscopy for estimating soil characteristics valuable in the 

diagnosis of soil fertility. Journal of Near Infrared Spectoscopy, 19, 117 – 138. 

Geladi, P. and Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica 

Chimica Acta, 185, 1 – 17. 

Godwin, R. J. and Miller, P. C. H. (2003). A review of the technologies for mapping within-

field variability. Biosystem Engineering, 84 (4), 393 – 407. 

Gotway, C. A., Ferguson, R. B. Hergert, G. W. and Peterson. T. A. (1996). Comparison of 

kriging and inverse-distance methods for mapping soil parameters. Soil Science Society 

of America Journal, 60, 1237 – 1247. 

Haneklaus, S, Paulsen, H. M., Schrer, D., Leopold, U. and Schnug, E. (1998). Self-surveying: 

A strategy for efficient mapping of the spatial variability of time constant soil 

parameters. Communication Soil Science Plant Analysis, 29, 1593 – 1601. 

Havlin, J., Beaton, J., Tisdale, S., Nelson, W. (1999). Soil Fertility and Fertilizers. 6
th

 Edition. 

Prentice Hall, Inc. NJ 07458. USA. 

Hoskinson, R. L., Hess, J. R. and Alessi, R. S. (1999). Temporal change in the spatial 

variability of soil nutrient. In: Precision agriculture ’99.J. V. Stafford (ed). 2nd 

European Conference on Precision Agriculture, Odense, Denmark, 11 – 15 July 1999, 

SCI Sheffield Academic Press, 61 – 70. 

Huang,  X., Subramanian, S., Kravchenko A., Thelen, K. and Qi, J. (2007). Total carbon 

mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and 

topographical information. Geoderma, 141, 34 – 42, 

doi:10.1016/j.geoderma.2007.04.023 

Hummel, J. W., Sudduth, K. A. and Hollinger, S. E. (2001).  Soil moisture and organic matter 

prediction of surface and subsurface soils using an NIR soil sensor. Computers and 

Electronics in Agriculture, 32, 149 – 165. 



111 
 

Imade Anom, S. W., Shibusawa, S., Sasao, A. and Hirako, S. (2001). Soil parameters maps in 

paddy field using the real time soil spectrophotometer. Journal of Japanese Society of 

Agricultural Machinery, 63 (3), 51 – 58. 

Islam, K., Singh, B. and McBratney, A. (2003). Simultaneous estimation of several soil 

properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian 

Journal of Soil Research, 41, 1101 – 1114. doi: 10.1071/SR02137 

Islam, K., Singh, B., Schwenke, G., McBratney, A., (2004). Evaluation of vertosol soil fertility 

using ultra-violet, visible and near-infrared reflectance spectroscopy. SuperSoil 2004: 3
rd

 

Australian New Zealand Soils Conference, 5 – 9 December 2004, University of Sydney, 

Australia. 

Janik, L. J, Merry, R. H. and Skjemstad, J. O. (1998). Can mid infrared diffuse reflectance 

analysis replace soil extractions? Australian Journal of Experimental Agriculture, 38, 

681 – 696. 

Kanda, R. (2011). Redefinition of depth observation of real-time soil sensor (in Japanese). 

Thesis of Bachelor of Agriculture, Agriculture and Environmental Engineering, Tokyo 

University of Agriculture and Technology, Japan   

Karydas, C. G., Gitas, I. Z., Koutsogiannaki, E., Lydakis-Simantiris, N. and Silleos, G. N. 

(2009). Evaluation of Spatial Interpolation Techniques for Mapping Agricultural Topsoil 

Properties in Crete. European Association of Remote Sensing Laboratories 

eProceedings 8, 1/2009 26 – 39.  

Kodaira, M. and Shibusawa, S. (2013). Using a mobile real-time soil visible-near infrared 

sensor for high resolution soil property mapping. Geoderma, 199, 64 – 79. 

Kodaira, M. and Shibusawa, S. (2014a). Calibration models for soil mapping of Twenty-five 

soil parameters using a Tractor-mounted Real-time soil sensor (in Japanese). 73
rd

 

Annual Meeting of The Japanese Society of Agricultural Machinery and Food Engineers, 

16 – 19 May 2014, Okinawa, Japan. 

Kodaira, M. and Shibusawa, S. (2014b). Twenty-five Soil Parameters Calibration Model 

Using a Real-Time Soil Sensor, 7
th

 International Symposium on Machinery and 

Mechatronics for Agriculture and Biosystem Engineering, 21 – 23 May 2013, Yilan, 

Taiwan. 

Kodaira, M. and Shibusawa, S. (2014c). Soil Mapping And Modeling On Twenty-Five 

Ingredients Using A Real-Time Soil Sensor．12
th

 International Conference in Precision 

Agriculture, 23 – 25 July 2014, California, USA. 



112 
 

Kravchenko, A. and Bullock, D. G. (1999). A Comparative Study of Interpolation Methods for 

Mapping Soil Properties. Agronomy  Journal, 91, 393 – 400.  

Krischenko, V. P., Samokhvalov, S. G., Fomina, L. G. and Novikova, G. A. (1991). Use of 

Infrared Spectroscopy for the Determination of Some Properties of Soil, USSR. 

Interagrotech, Moscow, USSR,  239 – 249. 

Krull, E., Skjemstad, J., and Baldock, J. (2004). Functions of Soil Organic Matter and the 

Effect on Soil Properties: A Literature Review. CSIRO Land and Water Client Report, 

Adelaide: CSIRO Land and Water. 

Kusumo, B. H., Hedley, C. B., Hedley, M. J., Hueni, A., Tuohy, M. P.,  and Arnold, G. C. 

(2008). The use of diffuse reflectance spectroscopy for in situ carbon and nitrogen 

analysis of pastoral soils. Australian Journal of Soil Research, 46, 623 – 635. 

Kusumo, B. H. (2009). Development of Field Techniques to Predict Soil Carbon, Soil 

Nitrogen and Root Density from Soil Spectral Reflectance, PhD. Thesis, Massey 

University, Palmerston North, New Zealand. 

Lal, R., (2004). Soil carbon sequestration impacts on global climate change and food security. 

Science, 304, 1623 – 1627. 

Lal, R., Griffin, M., Apt, J., Lave, L. and Morgan, M. G. (2004). Managing soil carbon. 

Science, 304 – 393. 

Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D. and Li, C. (2010). Sensing 

technologies for precision specialty crop production. Computers and Electronics in 

Agriculture, 74, 2 – 33. 

Li, Y., Shibusawa, S., Kodaira, M. Oomori, T. and Aliah, B. S. N. (2012). A scheme of 

precision carbon farming for paddy. 11
th

 International Conference on Precision 

Agriculture, International Society of Precision Agriculture, Indiana, USA, 15 – 18 July 

2012 (proceeding in CD.) 

Li, Y. (2013). Assessment of carbon sequestration potential and profitability of recommended 

carbon-capturing farming practices for Japanese paddy fields. PhD. Thesis, Agricultural 

and Environmental Engineering, Tokyo University of Agriculture and Technology, 

Japan. 

Lyons, J. B., Garres, J. H. and Amador, J. A. (1998). Spatial and temporal variability of 

phosphorus retention in a riparian forest soil. Journal of Environmental Quality, 27, 895 

– 903. 



113 
 

Maleki, M. R., Van Holm, L, Ramon, H., Merckx, R.,  De Baerdemaeker, J. and Mouazen A. 

M. (2006). Phosphorus Sensing for Fresh Soils using Visible and Near Infrared 

Spectroscopy. Biosystems Engineering 95(3), 425 – 436  

doi:10.1016/j.biosystemseng.2006.07.015 

Malengreau, N. Bedidi, A., Muller, J. P. and Herbillon, A. J. (1996). Spectroscopic Control of 

Iron Oxide Dissolution in Two Ferralitic Soil. European Journal of Soil Science, 47, 13 

– 30. 

Malhi, S. S., Grant, C. A., Johnston, A. M. and Gill, K. S. (2001). Nitrogen fertilization 

management for no-till cereal production in the Canadian Great Plains: a review. Soil & 

Tillage Research, 60 (3–4), 101 – 122. 

Malley, D. F., Martin, P. D. and Ben-Dor, E. (2004). Application in analysis of soils. p. 729–

784. In C.A. Roberts et al. (ed.) Near-infrared spectroscopy in agriculture. Agronomy 

Monograph, 44. ASA, CSSA, and SSSA, Madison, WI. 

Martens, H. and Naes, T. (1989). Multivariate Calibration, 2
nd

 edition. John Wiley & Sons, 

Ltd., Chichester, United Kingdom. 

Martin, P. D., Malley, D. F., Manning, G. and Fuller, L. (2002). Determination of soil organic 

carbon and nitrogen at the field level using near-infrared spectroscopy. Canadian 

Journal of Soil Science, 82, 413–422. 

McBratney, A. B. and Pringle, M. J. (1997). Spatial variability in soil-implications for 

precision agriculture. In: Stafford, J.V. (Ed.), Precision Agriculture ’97 Proceedings of 

the 1
st 

European Conference on Precision Agriculture, Oxford, UK, 639 – 643. 

McBratney, A. B., Mendonca Santos, M. L. and Minasny, B. (2003). On digital soil mapping. 

Geoderma, 117, 3 – 52. 

McCarty, G. W., Reeves III, J. B., Reeves, V. B., Follet, R. F. and Kimble, J. M. (2002). Mid-

infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. 

Soil Science Society of America Journal, 66, 640 – 646. 

McCauley, J. D., Engel, B. A., Scudder, C. E., Morgan, M. T. and Elliot, P. W. (1993). 

Assessing the spatial variability of organic matter. ASAE Paper No. 93–1555, American 

Society of Agricultural Engineers, St. Joseph, MI, USA. 

Mengel K. and Kirby E. (2001). Principles of Plant Nutrition. Kluwer Academic Publishers. 

Dordretcht, The Netherlands. 



114 
 

Morgan, C. L. S., Waiser, T. H., Brown, D. J. and Hallmark, C. T (2009). Simulated in situ 

characterization of soil organic and inorganic carbon with visible near-infrared diffuse 

reflectance spectroscopy. Geoderma, 151, 249–256. 

Morra, M. J., Hall, M. H. and Freeborn, L. L. (1991). Carbon and Nitrogen Analysis of Soil 

Fractions Using Near-Infrared Reflectance Spectroscopy. Soil Science Society of 

American Journal, 55 (1), 288 – 291. 

Mouazen, A. M., Dumont, K., Maertens, K. and Ramon, H. (2003). Two-dimensional 

prediction of spatial variation in topsoil compaction of a sandy loam field based on 

measured horizontal force of compaction sensor, cutting depth and moisture content. 

Soil & Tillage Research 74 (1), 91 – 102. 

Mouazen, A. M., De Baerdemaeker, J. and Ramon, H. (2005). Towards development of online 

soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil & Tillage 

Research, 80 (1–2), 171 – 183. 

Mouazen, A. M.,  Karoui, R., De Baerdemaeker, J. and Ramon, H. (2006a). Characterization 

of Soil Water Content using measured Visible and Near Infrared Spectra. Soil Science 

Society of America Journal, 70, 1295 – 1302.  

Mouazen, A. M., De Baerdemaeker, J. and Ramon, H. (2006b). Effect of wavelength range on 

the measurement accuracy of some selected soil constituents using visual-near infrared 

spectroscopy. Journal of Near Infrared Spectroscopy, 14, 189 – 199. 

Mouazen, A. M., Maleki, M. R. De Baerdemaeker, J. and Ramon, H (2007). On-line 

measurement of some selected soil properties using Vis-NIR sensor. Soil & Tillage 

Research, 93, 13 – 27. 

Müller-Lindenlauf, M. (2009). Organic Agriculture and Carbon Sequestration Possibilities and 

constrains for the consideration of organic agriculture within carbon accounting systems. 

Natural Resources Management and Environment Department Food and Agriculture 

Organization of the United Nations Rome, December 2009. Retrieved from 
ftp://ftp.fao.org/docrep/fao/012/ak998e/ak998e00.pdf  on 10

th
 August 2012. 

Niggli, U., Fliessbach, A., Hepperly, P. and Scialabba, N. (2009). Low Greenhouse Gas 

Agriculture: Mitigation and Adaptation Potential of Sustainable Farming Systems. FAO, 

April 2009, Rev. 2 – 2009. Retrieved from 
ftp://ftp.fao.org/docrep/fao/010/ai781e/ai781e00.pdf on 10

th
 August 2012. 

ftp://ftp.fao.org/docrep/fao/012/ak998e/ak998e00.pdf
ftp://ftp.fao.org/docrep/fao/010/ai781e/ai781e00.pdf


115 
 

Ozaki Y., Morita S. and Du, Y. (2007). Spectral analysis. In ‘Near-infrared spectroscopy in 

food science and technology’. (Eds Y Ozaki, W.F. McClure, A.A. Christy) (Wiley-

Interscience, John Wiley & Sons, Inc.: Hoboken, New Jersy). 

Quine, T. A. and Zhang, Y. (2002). An investigation of spatial variation in soil erosion, soil 

properties and crop production within an agricultural field in Devon, U.K. Journal of 

Soil and Water Conservation, 57, 50 – 60. 

Raun, W. R., Solie, J. B. and Johnson, G. V. (1998). Microvariability in soil test, plant nutrient, 

and yield parameters in Bermudagrass. Soil Science Society of America Journal, 62, 683 

– 690. 

Reeves III, J. B, McCarty, G. W. and Reeves, V. B. (2001). Mid-infrared and diffuse 

reflectance spectroscopy for the quantitative analysis of agricultural soils. Journal of 

Agricultural and Food Chemistry, 49, 766 – 772. 

Reeves III, J. B. and McCarty, G. W. (2001). Quantitative analysis of agricultural soils using 

near infrared reflectance spectroscopy and a fibre optic probe. Journal of Near Infrared 

Spectroscopy, 9, 25 – 34. 

Reeves III, J. B., McCarty, G. W. and Mimmo, T. (2002). The potential of diffuse reflectance 

spectroscopy for the determination of carbon inventories in soils. Environment Pollution, 

116, 277 – 284. 

Reeves III, J. B. (2010). Near- versus mid-infrared diffuse reflectance spectroscopy for soil 

analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and 

what needs to be done?. Geoderma, 158, 3 – 14 

Redulla, C. A., Havlin, J. L., Kluitenberg, G. J., Zhang, N. and Schrock, M. D. (1996). 

Variable nitrogen management for improving groundwater quality. p. 1101-1110. In P.C. 

Robert et al. (ed.) Proceeding of 3
rd

 Internationa. Conference on Precision Agriculture, 

Minneapolis, MN. 23-26 June 1996. ASA-CSSA-SSSA, Madison, WI. 

Robertson, G. P., Paul, E. A. and Harwood, R. R. (2000). Greenhouse gases in intensive 

agriculture: contributions of individual gases to the radiative forcing of the atmosphere. 

Science, 289, 1922 – 1925. 

Sarkhot, D. V., Grunwald, S., Ge, Y. and Morgan, C. L. S. (2011). Comparison and detection 

of total and available soil carbon fractions using visible/near infrared diffuse reflectance 

spectroscopy. Geoderma, 164, 22 – 32. 



116 
 

Savitzky, A. and Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified 

least squares procedures. Analytical Chemistry 36, 1627–1639. 

Scialabba, N. and Müller-Lindenlauf, M. (2010). Organic Agriculture and Climate Change. 

Renewable Agriculture and Food Systems. 25(2); 158–169 

doi:10.1017/S1742170510000116 

Shepherd, K. D. and Walsh, M. G. (2002). Development of reflectance spectral libraries for 

characterization of soil properties. Soil Science Society of America Journal, 66, 988 – 

998. 

Shibusawa, S., Hirako, S., Otomo, A., Li, M., (1999). Real-time underground soil 

spectrophotometer. Journal of Japanese Society of Agricultural Machinery, 61 (3), 131 

– 133. 

Shibusawa, S., Imade Anom, S. W., Sato, S., Sasao, A. and Hirako, S. (2001). Soil mapping 

using the real-time soil spectrophotometer In: Grenier, G., Blackmore, S. (Eds.), ECPA 

2001, 3
rd

 European Conference on Precision Agriculture, vol. 1. Agro Montpellier, 497 

– 508. 

Shibusawa, S., Imade Anom, S. W., Hache, C., Sasao, A. and Hirako, S. (2003). Site-specific 

crop response to temporal tren of soil variability determined by the real-time soil 

spectrophotometer, In ‘precision Agriculture. Proceeding of the Joint European 

Conference of ECPA-ECPLF. Berlin, Germany (Ed. JV Stafford), 639 – 643 

(Wageningen Academic Publishers. 

Shibusawa, S., Ehara K., Okayama, T., Umeda, H., and Hirako, S. (2005). A real-time multi-

spectral soil sensor: predictability of soil moisture and organic matter content in a small 

field. 5
th

 European Conference on Precision Agriculture. Uppsala, Sweden. (Ed. JV 

Stafford), 495 – 502. 

Shonk, J. L., Gaultney, L .D., Schulze, D. G. and Van Scoyoc, G. E. (1991). Spectroscopic 

sensing of soil organic matter content. Transactions of ASAE 34, 1978 – 1984. 

Slaughter, D. C., Pelletier, M. G., Upadhyaya, S. K. (2001). Sensing soil moisture using NIR 

spectroscopy. Applied engineering in agriculture, 17 (12), 241 – 247. 

Sonka, S. T., Bauer, M. E., Cherry, E. T., Colburn, J. W., Heimlich, R. E., Joseph, D. A., 

Leboeuf, J. B., Lichtenberg, E., Mortensen, D. A., Searcy, S. W., Ustin, S. L. and 

Ventura, S. J. (1997). Precision agriculture in the 21
st
 century. Geospatial and 

information technologies in crop management. Committee on Assessing Crop Yield: 



117 
 

Site-Specific Farming, Information Systems, and Research Opportunities, Board of 

Agriculture, National Research Council. National Academy Press, Washington, DC. 

Souma, S. and Kikuchi, K. (1992). Diagnostic Criteria for Soil and Crop Nutrition—Analysis 

Method (Revised). Agriculture Research Department, Central Agricultural Experiment 

Station, Hokkaido Research Organization; Agricultural Administration Division, 

Department of Agriculture, Hokkaido Government, Hokkaido, Japan. 

Stenberg, B., Viscarra Rossel, R. A, Mouazen, A. M and Wetterlind, J. (2010). Visible and 

Near Infrared Spectroscopy in Soil Science. In Donald L. Sparks, editor: Advances in 

Agronomy, 107, 163 – 215. http://dx.doi.org/10.1016/S0065-2113(10)07005-7 

Stevens, A., Wesemael, B. V.. Vandenschrick, G., Toure, S. and Tychon, B. (2006). Detection 

of carbon stock change in agricultural soilds using spectroscopic techniques Soil Science 

Society of America Journal, 70 (3), 844 – 850. doi: 10.2136/sssaj2005.0025,  

Stevens, A., Van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B. and Ben-Dor, E. 

(2008). Laboratory, field and airborne spectroscopy for monitoring organic carbon 

content in agricultural soils. Geoderma, 144, 395–404. 

Sudduth, K. A. and Hummel, J. W., (1993a). Portable, near-infrared spectrophotometer for 

rapid soil analysis. Transaction of ASAE, 36 (1), 185 – 193. 

Sudduth, K. A. and Hummel, J. W. (1993b). Soil organic matter, CEC, and moisture sensing 

with a prototype NIR spectrometer. Transactions of ASABE, 36, 1571 – 1582. 

Sudduth, K. A. and Hummel, J. W. (1996). Geographic operating range evaluation of a NIR 

soil sensor. Transaction of ASAE 39, 1599 – 1604. 

Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G. and Wiebold, W. J. (2003). 

Comparison of electromagnetic induction and direct sensing of soil electrical 

conductivity. Agronomy Journal, 95, 472 – 482. 

Sudduth, K. A., Kitchen, N. R., Sadler, E. J., Drummond, S. T. and Myers, D. B. (2010). 

VNIR spectroscopy estimates of within-field variability in soil properties. p. 153–163. In 
R.A. Viscarra Rossel et al. (ed.) Proximal soil sensing. Springer Science + Business 

Media, Dordrecht, the Netherlands. 

 Tekin, Y., Kuang, B. and Mouazen, A. M. (2013). Potential of On-line Visible and Near 

Infrared Spectroscopy for Measurement of pH for Deriving Variable Rate Lime 

Recommendations. Sensors, 3(8), 10177-10190; doi:10.3390/s130810177 



118 
 

Troeh, F. R. and Thompson, L. M. (2005). Soil and Soil Fertility. 6
th

 edition. Blackwell. Iowa 

50014, USA. 

Udelhoven, T., Emmerling, C. and Jarmer, T. (2003). Quantitative analysis of soil chemical 

properties with diff use reflectance spectrometry and partial least-square regression: A 

feasibility study. Plant Soil, 251, 319 – 329. doi:10.1023/A:1023008322682 

Vanden Auweele, W., Boon, W., Bries, J., Coppens, G., Deckers, S., Elsen, F., Mertens, J., 

Vandendriessche, H., Ver Elst, P. and Vogels, N. (2000). The Chemistry of Soil Fertility 

of Belgium Arable and Grass Lands. Belgium Soil Service Department, Heverlee, 

Belgium 

Van Vuuren, J. A. J, Meyer J. H. and Classens, A. S. (2007). Potential Use of Near Infrared 

Reflectance monitoring in precision agriculture. Communication in Soil Science and 

Plant Analysis, 37, 2171 – 2184. 

Vieira, S. R. and Paz Gonzalez, A. (2003). Analysis of the spatial variability of crop yield and 

soil properties in small agricultural plots. Bragantia, Campinas, 62, 127 – 138. 

Viscarra Rossel, R. A. and McBratney, A. B. (1998). Laboratory evaluation of a proximal 

sensing technique for simultaneous measurement of soil clay and water content. 

Geoderma, 85, 19 – 39. 

Viscarra Rossel, R. A. and Walter, C. (2004). Rapid, quantitative and spatial field 

measurements of soil pH using an ion sensitive field effect transistor. Geoderma, 119, 9 

– 20. 

Viscarra Rossel, R. A., McGlynn, R. N. and McBratney, A. B. (2006a). Determing the 

composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance 

spectroscopy, Geoderma, 137, 70 – 82. 

Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. and Skjemstad, J. O. 

(2006b). Visible, near infrared, mid infrared or combined diffuse reflectance 

spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59 

– 75. 

Viscarra Rossel, R.A. (2007). Robust modelling of soil diffuse reflectance spectra by bagging-

partial least squares regression. Journal of Near Infrared Spectroscopy, 15, 39 – 47. 

Viscarra Rossel, R. A., Cattle, S. R., Ortega, A. and Fouad, Y. (2009). In situ measurements of 

soil colour, mineral composition and clay content by Vis–NIR spectroscopy. Geoderma, 

150, 253 – 266. 



119 
 

Viscarra Rossel, Rizzo, R. A. R., Dematte, J. A. M. and Behrens, T. (2010). Spatial modeling 

of a soil fertility index using visible-near-infrared spectra and terrain attributes. Soil 

Science Society of American Journal, 4, 1293 – 1300. 

Vrindts, E., Mouazen, A. M., Reyniers, M., Martens, K., Maleki, M. R., Ramon, H. and De 

Baerdemaeker, J. (2005). Management zones based on correlation between coil 

compaction, yield and crop data. Biosystem Engineering, 92 (4), 419 – 428. 

Waiser, T. H., Morgan, C. L. S., Brown, D. J. and Hallmark, C. T. (2007). In situ 

characterization of soil clay content with visible near-infrared diffuse reflectance 

spectroscopy. Soil Science Society of America Journal, 71, 389 – 396. 

Warrick, A. W, and Nielsen, D. R. (1980). Spatial variability of soil physical properties in the 

field. In: Hillel, D., Editor,. Applications of Soil Physics. Academic Press. New York. 

Weber, D. and Englund, E. (1992). Evaluation and comparison of spatial interpolators. 

Journal of Mathematical Geology, 24, 381 – 391. 

Weisz, R., Fleischer, S. and Smilowitz, Z. (1995). Map generation in high-value horticultural 

integrated pest management: Appropriate interpolation methods for site-specific pest 

management of Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of 

Economic Entomology, 88, 1650 – 1657. 

Wetterlind, J., Stenberg, B., and Jonsson, A. (2008). Near infrared reflectance spectroscopy 

compared with soil clay and organic matter content for estimating within-field variation 

in N uptake in cereals. Plant and Soil, 302, 317 – 327. 

Wetterlind, J., Stenberg, B. and Söderström, M. (2010) .Increased sample point density in 

farm soil mapping by local calibration of visible and near infrared prediction models. 

Geoderma, 156, 152 – 160. 

Whipker, B. E. and Cavins, T. J. (2000). Electrical Conductivity (EC): Unit and Conversions. 

North Carolina State University. 

Wielopolski, L., Mitra, S., Hendrey, G., Rogers, H., Torbert, A. and Prior, S. (2003). Non-

destructive in situ soil carbon analysis: principles and results. Proc 2
nd

 Nat Conf carbon 

sequestration: developing and validating the technology base to reduce carbon intensity. 

5 – 8 May, 2003, Alexandria, VA. 

Williams, P. C., and Norris. K. (2001). Variables affecting near-infrared spectroscopic 

analysis, 171 – 185. In P. Williams and K. Norris (ed.) Near-infrared technology in the 



120 
 

agricultural and food industries. 2nd ed. American Association of Cereal Chemists., St. 

Paul, MN. 

Williams P C (2003). Near-infrared technology—getting the best out of light. PDK Grain, 

PDK Project, Inc., 10. 

Wold, S., Martens, H., Wold, H. (1983). The multivariate calibration method in chemistry 

solved by the PLS method. In: Ruhe, A., Kagstrom, B. (Eds.), Proc. Conf. Matrix 

Pencils, Lecture Notes in Mathematics. Springer-Verlag, Heidelberg, 286 – 293. 

Wollenhaupt, N. C., Wolkowski, R. P. and Clayton. M. K. (1994). Mapping soil test 

phosphorus and potassium for variable-rate fertilizer application. Journal of Production 

Agriculture, 7, 441 – 448.  

Wu, C.Y.,  Jacobson., A. R ., Laba, M.,  Kim,  B. and Baveye, P. C. (2010). Surrogate 

Correlations and Near-Infrared Diffuse Reflectance Sensing of Trace Metal Content in 

Soils. Water Air Soil Pollution, 209, 377 – 390. DOI 10.1007/s11270-009-0206-6 

Xie, H. T., Yang, X. M., Drury, C. F., Yang, J. Y. and Zhang, X. D. (2011). Predicting soil 

organic carbon and total nitrogen using mid- and near-infrared spectra for Brookston 

clay loam soil in Southwestern Ontario, Canada. Canadian Journal of Soil Science, 91, 

53 – 63. 

Yang, H., Kuang, B. and Mouazen, A. M. (2011). Prediction of soil TN and TC at a farm-scale 

using VIS-NIR spectroscopy. Advanced Materials Research, 225 – 226 (1-2), 1258 – 

1261. 

Yemefack, M., Rossiter, D. G. and Njomgang, R. (2005). Multi-scale characterization of soil 

variability within an agricultural landscape mosaic system in southern Cameroon. 

Geoderma, 125, 117 – 143. 

Young, L. M. (2003). Carbon sequestration in agriculture: the US policy context. American 

Journal of Agricultural Economics, 85, 1164 – 1170. 



121 

 

List of Publications 

 

Journal 

Aliah, B. S. N., Shibusawa, S., Kodaira, M. and Kanda, R.  (2014), Multiple Depths 

Mapping of Soil Properties using Visible-near Infrared Real-time Soil Sensor for a Paddy 

Field. Engineering in Agriculture, Environment and Food Journal. (accepted on 23
rd

 Aug 

2014) 

 

Proceedings and Conference Presentations 

Aliah, B. S. N, Shibusawa, S., Kodaira, M. and Inoue, K. (2014), Comparison of 

Calibration Models Developed For A Visible-Near Infrared Real-Time Soil Sensor, 

proceeding of the 12
th

 International Conference on Precision Agriculture, 20 – 23 July 

2014, California, USA 

Aliah, B. S. N., Shibusawa, S.,  Kodaira, M. and Inoue, K. (2014), Mapping Of Soil 

Properties For Paddy Field In Fukushima Using Visible-Near Infrared Real-Time Soil 

Sensor. proceeding of the 7
th

 International Symposium on Machinery and Mechatronics 

for Agriculture and Biosystems Engineering (ISMAB), 21 – 23 May 2014, Yilan, Taiwan 

Aliah, B. S. N., Shibusawa, S., Kodaira, M. and Kanda, R. (2013), Utilization of Visible-

Near Infrared Real-time Soil Sensor as a Practical Tool For Precision Carbon Farming 

Practice,  proceeding of International Conference on Green Agro-Industry, Yogyakarta, 

Indonesia , 11 – 13 November 2013 

Aliah, B. S. N., Shibusawa, S.,  Kodaira, M. and Inoue, K. (2013) Paddy Soil Mapping 

with Real-time Soil Sensor toward Traceable Management, The 72
nd

 Japanese Society of 

Agricultural Machinery Meeting, Obihiro, Hokkaido, Japan, 10 – 13 September 2013 

Aliah, B. S. N., Shibusawa, S., Kodaira, M. and Kanda, R. (2013), Effects of Sensing 

Depth Variation on Total Carbon and Total Nitrogen Mapping using Real-time Soil Sensor, 

proceeding of the 5
th

  Asian Conference on Precision Agriculture, Jeju, Korea, 25 – 28 

June 2013 



122 

 

Aliah, B. S. N., Kodaira, M. and Shibusawa, S., (2013), The Potential of Visible – Near 

Infrared Spectroscopy for Mapping of Multiple Soil Properties using Real-time Soil 

Sensor, proceeding of The 1
st
 International Conference on Sensing Technologies for 

Biomaterial, Food and Agriculture. Yokohama, Japan, 23 – 26 April 2013 

Aliah, B. S. N., Shibusawa, S. and Kodaira, M. (2012), Calibration Model for Carbon and 

Nitrogen Measurement of Field Soil using Real-time Soil Sensor, Joint Conference on 

Environmental Engineering in Agriculture, Utsunomiya, Tochigi, Japan, 11 – 14 

September 2012 

 

Co-author 

Inoue, K., Shibusawa, S. and  Kodaira, M., Aliah,  B. S. N. and Ookuma, S. (2014), Soil 

Parameters Of Paddy Field In Yamatsuri Town, Fukushima, Japan, proceeding of the 7
th
 

International Symposium on Machinery and Mechatronics for Agriculture and Biosystems 

Engineering (ISMAB), 21-23 May 2014, Yilan, Taiwan 

Inoue, K., Shibusawa, S. and  Kodaira, M., Aliah,  B. S. N. and Ookuma, S.  (2014), Properties of 

paddy soil in Fukushima Prefecture Yamatsuri Town, The 73
rd

 Annual Meeting of the Japanese 

Society of Agricultural Machinery and Food Engineers 2014, Okinawa, Japan (in  Japanese) 

Kanda, R., Shibusawa, S., Kodaira, M., Aliah, B. S. N.  and Usui, K. (2013), Three-dimensional 

variability of Soil Components in a Small Paddy Field, proceeding of the 5
th
  Asian Conference on 

Precision Agriculture, Jeju, Korea, 25 – 28 June 2013 

Shibusawa, S., Kodaira, M., Li, Y., Oomori, T. and Aliah, B. S. N. (2012), A Scheme for Precision 

Carbon Farming for Paddy, proceeding of the 11
th
 International Conference on Precision 

Agriculture, Indianapolis, Indiana, USA, 15 – 18 July 2012. 

 

Invited Presentation 

Aliah, B. S. N., Precision Agriculture Technology in Malaysia, presented to the 

undergraduate students of Agriculture Technology, Universitas Udayana, Bali, Indonesia, 

15 Nov 2013 


