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Vildagliptin Improves Glucose Tolerance and Decreases Plasma 
Triglycerides in Sprague-Dawley Rats
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Abstract : The number of patients with lifestyle-related diseases, including type 2 
diabetes, is increasing.  The onset of type 2 diabetes can be prevented by dietary 
and exercise interventions, as well as drug therapy.  Dipeptidyl peptidase-4 inhibi-
tors and glucagon-like peptide-1 receptor agonists have attracted attention recently 
as treatments for diabetes, and incretin hormones have been reported to have a 
protective effect on pancreatic β-cells.  It is not clear whether vildagliptin （VIL） 
can prevent the progression of lifestyle-related disease.  Thus, in the present study, 
Sprague-Dawley rats were fed a high-fat diet with sucrose water （HFDS） to 
determine whether VIL could inhibit deterioration in glucose tolerance and improve 
other biomarkers of lipid disorder.  Four-month-old male Sprague-Dawley rats were 
divided into three groups （n＝7 in each group）; one group was fed a normal 
diet for 4 months, whereas the remaining two groups were fed the HFDS, with or 
without VIL for 4 months.  When rats were 7 months of age, they were subjected 
to an intraperitoneal glucose tolerance test （IPGTT）; biomarkers of lipid disorder 
were measured in 8-month-old rats.  There was a decrease in the glucose spike in 
the IPGTT 10 min after loading in the HFDS＋VIL group and plasma triglyceride 
（TG） levels were signi�cantly lower in these rats compared with the HFDS group.  
The decreased TG levels in HFDS＋VIL rats were accompanied by decreases in  
plasma chylomicron levels.  These results suggest that VIL can prophylactically 
inhibit decreases in pancreatic β-cell function in type 2 diabetes and reduce the 
risk of cardiovascular disease due to high TG levels.  Thus, VIL administration may 
contribute to the prevention of lifestyle-related disease.
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Introduction

　Type 2 diabetes （T2D） is a serious, progressive disease, and the number of patients with T2D 
is increasing.  The onset of T2D can be prevented by dietary and exercise interventions, as well 
as drug therapy 1-4）.  The pathogenetic mechanism of onset of T2D is a deficiency in insulin 
secretion caused by pancreatic β-cell dysfunction and a decrease in insulin activity caused by 
increased insulin resistance.  A reduction in the number of pancreatic β-cells is known to result 
in abnormal glucose tolerance, and it may therefore be possible to prevent the onset of T2D by 
inhibiting further decreases in β-cells 5-7）.
　Glucagon-like peptide （GLP）-1 and glucose-dependent insulinotropic polypeptide （GIP） are 
hormones secreted by the L- and K-cells of the small intestine, respectively.  These hormones 
participate in serum glucose-dependent insulin secretion and have been reported to protect 
pancreatic β-cells by inducing them to undergo differentiation and proliferation while inhibiting 
apoptosis 8-11）.  GLP-1 is known to exert inhibitory effects on glucagon secretion through its 
antiglycemic activity, although the precise mechanism of action has not yet been elucidated.  
Dipeptidyl peptidase （DPP）-4 inhibitors, as represented by vildagliptin （VIL）, inhibit the 
inactivation of GLP-1 and GIP by DPP-4 and thus allow the two peptides to potentiate the 
secretion of insulin by β-cells ; furthermore, VIL exhibits antihyperglycemic activity12）.  In 
addition to lowering serum glucose levels, it has been suggested that DPP-4 inhibitors can 
directly improve endothelial function and protect the myocardium, with the magnitude of the 
effect increasing with the duration of drug administration13, 14）.
　It has also been reported that newer DPP-4 inhibitors have triglyceride （TG）-lowering 
effects 15, 16）.  In vascular diseases such as myocardial infarction, TG-rich remnant cholesterol 
is present.  Therefore, decreasing the TG levels is important in the prevention of the onset 
of vascular disease 17）.  However, the mechanism by which DPP-4 inhibitors prevent the 
development of T2D is not clear.  In the present study, we investigated whether VIL could 
prevent the deterioration in glucose tolerance and improve other biomarkers of lipid disorder in 
Sprague-Dawley rats fed a high-fat diet with sucrose water （HFDS）.

Materials and methods

Animals and samples

　Four-month-old male Sprague-Dawley rats were divided into three groups （n＝7 rats in each 
group）: （i） a control group fed a normal diet （ND ; CE2 ; CLEA Japan, Tokyo, Japan）; （ii） 
a group fed HFDS ; and （iii） a group fed HFDS and treated with VIL （10 mg/kg per day, 
p.o.）.  Rats were fed the different diets from 4 to 8 months of age.  The ND comprised 8.9％ 
water, 25.4％ protein, 4.4％ fat, 4.1％ fiber, 6.9％ carbohydrate, and 50.3％ nitrogen-free extracts, 
containing 342.2 kcal/100 g.  The two HFDS groups were fed a high-fat diet consisting of 8.2％ 
water, 23.4％ protein, 11.0％ fat, 3.8％ fiber, 6.3％ carbohydrate, and 46.3％ nitrogen-free extracts, 
containing 378.0 kcal/100 g, with 30％ sucrose solution available ad libitum.  Rats were housed 
in a semibarrier system under controlled room temperature （23 ± 1℃）, humidity （55 ± 5％）, 
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and lighting （lights on from 06:00 to 18:00 hours） conditions.  All studies were conducted in 
accordance with the Guiding Principles for the Care and Use of Laboratory Animals of Showa 
University.

Preparation and biochemical determination of plasma samples

　After 4 months feeding of the different diets （i.e. in 8-month-old rats）, blood samples were 
collected from the inferior vena cava under pentobarbital anesthesia （35 mg/kg, i.p.） and mixed 
with 134 mM EDTA disodium salt solution in a ratio of 50:1 （v/v）.  Samples were centrifuged 
at 1750 g for 15 min at 4℃ and the supernatant collected for subsequent analysis.  Rats 
were killed with an overdose of pentobarbital anesthesia, and the liver, visceral fat （VisF） 
and epididymal fat （EpidF） were isolated and weighed.  Plasma total cholesterol （TC）, TG, 
glucose, insulin, and glutamic pyruvic transaminase （GPT） concentrations were determined using 
commercially available kits （Cholesterol E-test, Triglyceride E-test, Glucose CⅡ-test （Wako Pure 
Chemical Industries, Tokyo, Japan）; Insulin Rat-T ELISA KIT （TMB） （Shibayagi, Gunma, 
Japan））.  Blood HbA1c levels were determined by HbA1c immunoassay （DCA2000 system ; 
Bayer Diagnostics, Elkhart, IN, USA）.  The homeostasis model assessment of insulin resistance 
（HOMA-IR） and homeostasis model assessment of β-cell function （HOMA-β） were calculated 

from fasting plasma glucose and insulin levels, respectively 18, 19）.

Lipoprotein electrophoresis

　Blood samples were collected from the inferior vena cava from pentobarbital （35 mg/kg, i.p.）
-anesthetized rats and mixed with 134 mM EDTA disodium salt solution in a ratio of 50:1 （v/v）.  
Samples were centrifuged at 1750 g for 15 min at 4℃ and the supernatant was collected for 
subsequent analysis.  To analyze lipoprotein fractions in the plasma, the samples were subjected 
to plasma electrophoresis using Lipophor （Joko, Tokyo, Japan）.

Intraperitoneal glucose tolerance test

　At 7 months of age, rats were subjected to an intraperitoneal glucose tolerance test （IPGTT）, 
which consisted of intraperitoneal glucose loading （1 g/kg body weight） in rats fasted for 16 h.  
Blood samples were collected from nicks in the tail tip at 0, 10, 20, 30, 60, 90, and 120 min 
after glucose loading.  Blood glucose levels were determined with a commercially available kit 
（Glucose CⅡ-test ; Wako Pure Chemical Industries）.

Statistical analysis

　All data are expressed as the mean ± SEM.  Data were analyzed by the Mann-Whitney U-test 
with Bonferroni correction.  P＜0.05 was considered significant.

Results

Background data in each experimental group

　Body weight （BW）, liver weight （LW）/BW, visceral fat （VisF）/BW, and epididymal fat 
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（EpidF）/BW ratios, HOMA-IR, HOMA-β, and plasma glucose, insulin, HbA1c, TG, TC, and 
GPT concentrations in the three groups of 8-month-old rats are given in Table 1.  There were 
no significant differences in BW or the EpidF/BW ratio among the three groups.  The LW 
ratio was increased significantly in the HFDS and HFDS＋VIL groups compared with the ND 
group.  There was a tendency for an increased VisF/BW ratio in the HFDS and HFDS＋VIL 
groups compared with the ND group, but the differences did not reach statistical significance.  In 
addition, there was a tendency for increased mean plasma glucose levels and decreased HOMA-
β in the HFDS compared with ND group.  Conversely, there was a tendency for an increased 
HOMA-IR in the HFDS＋VIL group.  Compared with the ND and HFDS groups, the mean 
plasma TG concentrations were significantly lower in the HFDS＋VIL group.  Mean plasma TC 
concentrations were significantly higher in the HFDS and HFDS＋VIL groups than in the ND 
group.  There were no significant differences in GPT among the three groups.

Table 1.  Body weight （BW）, liver weight （LW）, visceral fat （VisF）, epididy-
mal fat （EpidF）, plasma glucose, insulin, HbA1c, total triglycerides 
（TG）, total cholesterol （TC）, and glutamic pyruvic transaminase 
（GPT） concentrations, homeostasis model assessment of insulin resis-
tance （HOMA-IR）, and homeostasis model assessment β-cell func-
tion （HOMA-β） in Sprague-Dawley rats fed a normal diet （ND）, a 
high-fat diet with sucrose water （HFDS）, or the HFDS plus 10 mg/
kg per day, p.o., vildagliptin （VIL） from 4 to 8 months of age

ND HFDS HFDS＋VIL

BW （g） 580 ± 14.19 585± 10.58＊ 592 ± 11.96＊†

LW/100 g BW 2.61 ± 0.06 6.58 ± 0.11 7.40 ± 0.16

VisF/100 g BW 2.99 ± 0.18 3.34 ± 0.13 3.36 ±0.24

EipdF/100 g BW 2.18 ± 0.10 2.09 ± 0.08 2.14 ±0.11

Glucose （mg/dL） 144.29 ± 5.89 171.00 ± 5.96 164.14 ±6.46

Insulin （ng/mL） 6.12 ± 1.04 6.29 ± 0.89 7.98 ±1.12

HbA1c （％） 2.64 ± 0.05 2.76 ± 0.07 2.74 ±0.06

HOMA-IR 55.59 ± 8.63 68.88 ± 9.62 84.38 ± 11.91

HOMA-β 29.02 ± 6.31 21.70 ± 3.52 29.41 ±4.90

TG （mg/dL） 64.86 ± 4.66 78.57 ± 4.52 44.86 ±2.80＊†

TC （mg/dL） 63.00 ± 4.38 103.86 ± 7.26＊ 107.57 ±7.08＊

GPT （Karmen） 50.86 ± 9.72 57.71 ± 5.61 58.14 ±5.44

Data are the mean ± SEM （n＝7 rats in each group）.  ＊P＜0.05 compared 
with the HFDS group （Mann-Whitney U-test）.  ＊P＜0.05 compared with the 
ND group ; †P＜0.05 compared with the HFDS group （Mann-Whitney U-test 
with Bonferroni correction）.
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Lipoprotein analysis

　The results of electrophoretic lipoprotein analyses and the relative ratios of each fraction are 
given in Table 2 and Fig. 1.  Electrophoresis revealed distinct chylomicron, very low-density 
lipoprotein （VLDL）, and high-density lipoprotein （HDL） bands.  However, chylomicron levels 
were significantly lower in the HFDS＋ VIL group compared with the ND and HFD groups.  
There was a significant increase in the VLDL fraction in the HFDS and HFDS＋VIL groups 
compared with the ND group.  Although there were no significant differences in HDL levels 
among the three groups, there was a tendency for decreased HDL levels in the HFDS group.

Table 2.  Chylomicron, very low-density lipoprotein （VLDL）, and 
high-density lipoprotein （HDL） levels in Sprague-Dawley 
rats fed a normal diet （ND）, a high-fat diet with sucrose 
water （HFDS）, or the HFDS plus 10 mg/kg per day, p.o., 
vildagliptin （VIL） from 4 to 8 months of age

ND HFDS HFDS＋VIL

Chylomicron 100 ± 2.79 96.74 ± 5.82 84.84 ± 2.39＊†

VLDL 100 ± 2.62 119.05 ± 5.24＊ 126.60 ± 5.98＊

HDL 100 ± 3.46 93.98 ± 4.22 104.80 ± 4.76

Data are the mean ± SEM （n＝7 rats in each group）.  ＊P＜0.05 
compared with the HFDS group （Mann-Whitney U-test）.  ＊P＜0.05 
compared with the ND group ; †P＜0.05 compared with the HFDS 
group （Mann-Whitney U-test）.
Note, levels in rats in the ND group were set at 100％ and values 
in the HFDS and HFDS＋ VIL groups are expressed relative to 
the ND group.

Fig. 1.  Results of lipoprotein electrophoresis in rats fed a normal diet （ND）, a high-fat diet with sucrose water 
（HFDS）, or the HFDS plus 10 mg/kg per day, p.o., vildagliptin （VIL） from 4 to 8 months of age.  VLDL, 

very low-density lipoprotein ; HDL, high-density lipoprotein.
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IPGTT

　Mean plasma glucose levels in each group after the IPGTT are shown in Fig. 2.  There was 
an increase in plasma glucose levels in all three groups after glucose loading.  However, at 0, 
60, 90, and 120 min after loading, the increase in plasma glucose was significantly greater in the 
HFDS and HFDS＋VIL groups than in the ND group.  At 10 min after loading, the HFDS＋
VIL group showed a significant decrease in the plasma glucose spike compared with the HFDS 
group.

Discussion

　In the present study, BW changes were not observed in rats administered VIL.  Elevated 
levels of GLP-1, which acts on the central nervous system and suppresses appetite, can lead to 
weight loss 20, 21）.  Weight changes do not appear to occur in humans taking DPP-4 inhibitors 22）.  
However, in the present study, the LW/BW ratio was increased in the group of rats receiving 
VIL, probably due to the accumulation of fat in the liver with the increase in GIP activity.  
GIP is known to promote lipoprotein lipase-induced uptake of fat into fat cells 23）.  Conversely, 
GLP-1 inhibits fat accumulation in the liver through activation of AKT phosphorylation in 
liver cells, insulin signaling, and expression of peroxisome proliferator-activated receptor-α.  
Previous studies have reported incretin hormone-induced inhibition of fat accumulation in the 
liver 24, 25）.  Therefore, the increase in the LW/BW ratio in the present study may have been due 
to differences in signal intensity from GIP and GLP-1 in response to VIL administration.  It is 
also possible that the effects of VIL differ in rats and humans.  Additional research is needed to 
clarify this point.
　The mean HOMA-IR, which serves as an indicator of insulin resistance, tended to increase 
in rats administered VIL, and this may be related to the increased LW/BW ratio because fat 
accumulation in the liver contributes to increased insulin resistance 26, 27）.  In the IPGTT, a 

Fig. 2.  Plasma glucose levels following the intraperitoneal glucose tolerance test （IPGTT） in rats fed a normal diet 
（ND）, a high-fat diet with sucrose water （HFDS）, or the HFDS plus 10 mg/kg per day, p.o., vildagliptin 
（VIL） from 4 to 8 months of age.  Data are the mean ± SEM （n＝7 rats in each group）.  ＊P＜0.05 
compared with the ND group ; †P＜0.05 compared with the HFDS＋VIL group （Mann-Whitney U-test）.
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significant reduction in the glucose spike was seen in the HFDS ＋ VIL group 10 min after 
administration of the glucose load compared with the HFDS group.  The HFDS＋VIL group 
also exhibited a tendency for an increase in HOMA-β, an index of insulin secretion.  These 
results suggest that VIL can prophylactically inhibit the decrease in pancreatic β-cell function in 
T2D.
　α-Glucosidase inhibitors （α-GIs） are currently used in Japan for the treatment of impaired 
glucose tolerance.  The Study to Prevent Non-Insulin-Dependent Diabetes Mellitus （STOP-
NIDDM） trial research group reported that acarbose administration reduces the risk of 
developing diabetes by 31％ for every 3.3 years 4）.  It has also been reported that voglibose 
administration can reduce the risk of developing diabetes similar to acarbose 28）.  Activated GLP-
1 concentrations were found to increase significantly with miglitol or acarbose administration 29）.  
The prevention of diabetes by α-GIs is possibly mediated via incretin hormones.  The results 
obtained in the present study are analogous to those in previous studies of α-GIs, because 
VIL also increased GLP-1 concentrations.  Additional trials in humans are needed to determine 
whether VIL can protect against the development of T2D.
　Postprandial hyperglycemia is related to the development of vascular lesions 30, 31）.  Moreover, 
reducing postprandial hyperglycemia in patients with impaired glucose tolerance reduces the 
incidence of cardiovascular disease 32, 33）.  Lowering postprandial hyperglycemia with DPP-4 
inhibitors is useful in preventing the complications associated with diabetes, and DPP-4 inhibitors 
are also useful in ameliorating impaired glucose tolerance.
　In the present study, there was no change in plasma TC levels in rats administered VIL.  
However, TG levels decreased significantly in the HFDS＋VIL group compared with the ND 
and HFDS groups.  Based on our electrophoretic lipoprotein analyses, chylomicron levels were 
also significantly reduced in the HFDS＋VIL versus the ND and HFDS groups.  It is possible 
that VIL inhibits chylomicron synthesis.  Inhibition of chylomicron synthesis in the small intestine 
by incretin has been suggested in various studies 15, 16, 34, 35）.  High TG levels contribute to the risk 
of cardiovascular disease 17）; therefore decreasing TGs is important in reducing that risk.
　In the present study, VIL prevented the increase in glucose tolerance and decreased plasma 
TG levels in HFDS-fed Sprague-Dawley rats.  These results suggest that VIL administration may 
contribute to the prevention of lifestyle-related disease.
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