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Abstract 

 

This thesis focuses on the spatial and temporal variability of concentric gravity waves 

(CGWs) in the mesopause region based on the O2 A-band (762 nm) nightglow data 

obtained with IMAP/VISI. Atmospheric gravity waves (AGWs) have been studied 

intensively because of their major role in the atmospheric dynamics, such as 

transporting energy and momentum and interaction to the mean wind and thermal 

structure of the middle atmosphere. CGWs are one of the most distinct features of 

gravity waves, which show a direct coupling between lower and upper atmosphere. The 

past studies have revealed the general properties of CGWs, such as launching 

mechanism and effect of the background wind profile. However, these are mostly based 

on a single event, which give only local information. Thus, a statistical approach with 

space-based observations is ideal since they cover wider area globally and can measure 

atmospheric gravity waves without cloud obscuration. 

For the data analysis, we used the airglow data measured with the Visible and 

near-Infrared Spectral Imager (VISI) of the IMAP mission on the International Space 

Station (ISS). IMAP/VISI was operated from October 2012 until August 2015 in the 

nightside hemisphere with geographical latitude range of +/- 51°, measuring mainly 

three different airglow emissions of OI at 630 nm, the OH Meinel band at 730 nm and 

the O2 (0-0) A-band at 762 nm at an altitude of ~400 km with the typical spatial 

resolution of 16 – 50 km. 
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The present study of CGWs is divided into two parts; the first part is a case 

study using the coordinated observations of IMAP/VISI and ground-based all-sky 

imager at Rikubetsu, and the second part is a statistical study on the global distribution 

and seasonal variability of CGWs. Here we examined a partial CGWs case observed in 

northeastward of Japan on October 18, 2012. IMAP/VISI measured an arc-like shaped; 

partial CGWs pattern around the mesopause (~95 km) in the O2 762-nm airglow 

emission at 1204 UT. The maximum radius of CGWs was ~1400–1500 km. Similar 

patterns were also observed by the all-sky imager at Rikubetsu (43.5°N, 143.8°E) in OI 

557.7-nm and OH-band airglow emissions from ~1100-1200 UT. Horizontal 

wavelengths of the observed small-scale gravity waves are ~50 km (OH-band and OI 

557.7-nm) and ~67 km (O2 762-nm). From MTSAT and TRMM data the source is 

suggested to be a deep convective activity over Honshu island (33°N, 136°E) which 

likely to be related to a typhoon in the south of Japan. Background winds and 

temperature on the propagation mechanism were analyzed with MERRA, Wakkanai 

MF Radar and SABER data. Using atmospheric temperature profiles, we conclude that 

this long-distance propagation of the waves could be caused by thermal duct in the 

middle atmosphere in the altitude range of 45 to 110 km. The zonal and meridional 

wind profiles could produce the arc-like shaped CGWs in which the wind filtering 

effect plays a role on the suppression of wave propagation in the particular direction. 

We also conducted a statistical study using 235 CGW events obtained from 3 

years data of IMAP/VISI to clarify the spatial and temporal variability of CGWs in the 

mesopause. We found the horizontal wavelength ranging from 40 to 250 km and 

maximum radius of 200 to 3000 km, clearly demonstrating the fact that the small-scale 

gravity waves can travel for a long distance up to 3000 km. The zonally averaged 

latitudinal distribution of the CGWs occurrence maximized at mid-latitudes (40°N and 
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40°S) and minimized at low latitudes (10°S). It is interesting to note that more events 

were found in the summer hemisphere mid-latitudes, with a rapid transition between 

northern and southern hemisphere around the equinoxes. Occurrence probability of the 

CGWs was significantly high during non-solstice months (February-May and August–

November) than solstice months (June-July and December-January), suggesting that 

they are able to survive breaking, critical level absorption and turning level reflection in 

the middle atmosphere to reach the mesopause region more often during these periods. 

Information regarding localized regions of high CGW activities seen in the global map 

and the seasonal variability are useful for the future mesospheric and upper atmospheric 

studies. 
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Chapter 1 

 

 

Introduction 

 

This chapter introduces the basic knowledge of the middle atmospheric dynamic to 

facilitate the understanding of physical processes discussed later in this thesis. The 

introduction begins with a brief description of the Earth’s atmosphere. Following 

description of different atmospheric layers explains the fundamental theory of 

atmospheric gravity waves (AGWs) and its importance on the dynamic of middle and 

upper atmosphere. The introduction continues with a various observation techniques of 

AGWs. Since the main topic of this thesis is the observation of concentric gravity 

waves (CGWs) in airglow emission, here we describe a section on the modulation of 

AGWs in the airglow emission and a specific section on CGWs studies. We present the 

purpose of this thesis in the last section of this chapter.  



CHAPTER 1. INTRODUCTION 
!

2!

1. Atmosphere Structure and Dynamics 

 

1.1. The Earth’s Atmosphere 

 

The Earth’s atmosphere is defined on the basis of the vertical temperature structure. 

From the bottom of atmosphere, it is divided into the tropophere, stratosphere, 

mesosphere and thermosphere regions. Figure 1.1 shows the typical vertical 

temperature profile at geographical latitude of 35° N, which displays four regions of 

the Earth’s atmosphere; troposphere, stratosphere, mesosphere and thermosphere. 

 Troposphere is the lowest region of the Earth’s atmosphere, begins from the 

ground to about 15 km. In this region, usually categorized as the lower atmosphere, 

most of the meteorological phenomena occur. As the density of the gases decrease 

with height, the air becomes thinner and the temperature decreases with height as a 

result. The upper boundary of this layer is called the tropopause. At the tropopause 

height, the temperature reaches the minimum, with an average of 210 K. The height 

of the tropopause varies with season and latitude where the peak is at Equator (~17 

km) and reaches minimum height over the poles (less than ~6 km). 

 The region above the tropopause up to ~50 km is called the stratosphere. In 

this region, the temperature rises with height because of the heating by solar 

ultraviolet absorption by the ozone layer. The upper boundary of stratosphere is 

called the stratopause. At this layer, the maximum temperature reaches 300 K.  

 The mesosphere is the region at altitude range of 50-80 km where the 

temperature decreases again. The temperature decreases because the heating by 

ozone layer falls off and the CO2 radiative emission gives a cooling effect in this 

region. The thermal effect caused by the dynamical motions such as breaking of 
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gravity wave should also be taken into account. The top of the layer (~90 km) where 

the temperature reaches minimum (~173 K) is called the mesopause. The region 

from stratosphere to mesopause is classified as middle atmosphere.  

 The region beyond the mesopause is called the thermosphere, which usually 

classified as the upper atmosphere. The thermosphere is the region right above the 

mesopause when the temperature begins to rise again because of the reduced 

radiative cooling combined with heating by absorption of UV and EUV radiation 

mainly by O2, O and N2. This region extended from ~90 km to ~500 km and the 

temperature reaches 500-1200 K at 200 km. In this region, the E and F regions of the 

ionosphere exist. The upper boundary of this region is called the thermopause.  

 The exosphere is the region above the tropopause and the uppermost part of 

the Earth’s atmosphere, where the air is extremely thin and gradually fades into 

space. Although this region is technically part of the Earth’s atmosphere but not all 

scientists agree that the exosphere is part of the atmosphere, they think that the 

exosphere is part of space.  
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Figure 1.1. Typical vertical temperature profile at 35°N showing classification of the 

Earth’s atmosphere. The temperature profile data was obtained from the MSIS-E-90 

model website (http://ccmc.gsfc.nasa.gov). 
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1.2.      Atmospheric Gravity Waves 

 

Dynamical processes in the middle and upper atmosphere are heavily influenced by 

various atmospheric waves. These waves have typical period ranging from days 

(planetary waves), ~24 hours (tidal waves) and minutes to several hours (gravity 

waves) [e.g. Kato, 1966; Lindzen, 1967; Madden and Julian, 1972; Holton, 2004; 

Nappo, 2002; Fritts and Alexander, 2003]. These waves can propagate upward and 

their amplitudes increase with height until their amplitudes become very large, these 

waves are damped and then transfer their energy and momentum to their background 

[e.g. Lindzen, 1981; Nakamura et al., 1996; Fritts and Alexander, 2003]. This energy 

and momentum transfer is contributing in turbulence and mixing, also influencing 

the mean circulation and thermal structure in the middle atmosphere [e.g. Matsuno, 

1982; Fritts and Rastogi, 1982; Fritts, 1984; Fritts and Alexander, 2003]. Although 

all the waves are superimposed on the mean winds, however gravity waves are the 

major influence for the dynamic in the middle and upper atmosphere [e.g. Holton et 

al., 1982; Nakamura et al., 1993; Fritts and Alexander, 2003]. Figure 1.2 shows the 

schematic drawing of AGWs driving of the middle atmosphere transport circulation. 
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Figure 1.2. Schematic drawing of atmospheric gravity wave coupling from 

tropopause to mesopause. White circles show the zonal wind during the solstice, W 

represents westerly wind (eastward wind) and E represents easterly wind (westward 

wind), respectively. Red and yellow arrows are gravity waves and circulation, 

respectively (modified from Fritts and Alexander, 2003).  

 

 

1.2.1.  Equation of Motion 

 

The fundamental theory of AGWs is described in this section, assuming the 

atmosphere to be an ideal gas. The linear theory is generally used to study the 

atmospheric gravity waves (AGWs) because this system is more simple and 

understandable.  
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The equation of motion of an air parcel that is displaced vertically, assuming 

that the process is adiabatic is expressed as [Nappo, 2002]:  

 

!!(!")
!"! = − !

!!
!"!
!" !"              (1.1) 

 

where ! is the acceleration of gravity and ρo is the initial density of the air parcel. 

This equation expresses a simple harmonic motion in the vertical direction. If the air 

parcel is displaced vertically and then released, the solution of Equation (1.1) can be 

expressed as 

 

!" ! = !e!"# + !e!!"#            (1.2) 

 

where A and B are constant,  and N is the frequency of the oscillation of the air parcel 

and is called as the Brunt-Väisälä frequency given by 

 

! = !
!!

!!!
!"               (1.3) 

 

The vertical motion is possible only when N is positive. If the N is imaginary, then 

the equation (1.2) represents the convective instability [Nappo, 2002; Holton, 2004].  

The Taylor-Goldstein equation [Taylor, 1931; Goldstein, 1931] forms the 

basis wave equation for linear gravity waves, assuming the perturbations like 

turbulence, zonal winds, thermal plumes and density currents are much smaller than 

the background mean values; therefore the perturbations do not affect the 

background state.  
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This linear theory is applied according to 

 

! !, !, ! = !! ! + !! !, !, ! ,            (1.4) 

 

where!! !, !, ! is the perturbation in the atmosphere,  !! ! !is a steady, horizontally 

uniform background value and !! !, !, ! !is a first-order perturbation value.  

The Taylor-Goldstein equation is then expressed as 

 

!!ŵ
!"! +

!!!!
!! + !!!!!

!!"! − !
! − !

!
!
!
!!!
!" −

!
!!! ŵ = 0           (1.5) 

 

where ŵ represents the wave equation for linear gravity waves, ! = (! − !!!)!is 

the intrinsic frequency relative to the flow, ! is the wave frequency observed in a 

fixed coordinate system, k is the horizontal wave number uo is the background wind 

and H is the scale height.  

Assuming a constant background wind where the wind speed, u0, is the 

component of the background wind velocity in the direction of wave propagation. 

The Taylor–Goldstein equation is now 

 

!!ŵ
!"! +

!!!!
(!!!!!)!

− !! − !
!!! ŵ = 0                                       (1.6) 

 

The intrinsic phase speed is given as (! − !!) = !
!. The vertical wavenumber m then 

can be written as 

 

!! = !!
!!!! ! − !! −

!
!!!                                        (1.7)   
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where c is the apparent phase speed of the wave. If we replace the bracketed part in 

Equation (1.6) with m2, then  

 

ŵ" +!!ŵ = 0                                                                       (1.8) 

 

The general solution is 

 

ŵ ! = !e!"# + !e!!"#                        (1.9) 

 

This is the basis of linear AGWs theory. Equation (1.7) indicates the dispersion 

relation relates the wave frequency to the wave’s spatial characteristics (wave 

numbers) and to the background atmosphere properties (N and u0). If m2>0, the 

gravity waves transport the energy vertically and this energy-transport is usually 

referred as internal or propagating. On the other hand, if the m2<0, the waves do not 

propagate vertically and usually referred as evanescent. However, there are cases 

where the waves propagate vertically (m2>0) but having evanescent layer above and 

below. These waves are trapped or ducted [e.g. Nappo, 2002; Fritts and Alexander, 

2003] 

The background wind also affects the polarization equations given by 

[Nappo, 2002] 

 

!Ω! − ! !!!
!" =

!
!!
!!                                                (1.10) 

 

where ! is the wind perturbation and ! is the background pressure. For constant 
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background wind and Ω ! = ! − !! !the equation becomes 

 

! = !
!! !!!!

                                                              (1.11) 

 

Thus, if c > u0, the pressure and wind speed perturbations are in phase, but if c < u0, 

then the perturbations are 180° out of phase. 

 

1.2.2.  Observations of Atmospheric Gravity Waves 

 

The previous section mostly describes the theoretical issues of the AGWs. This 

theoretical knowledge is useful for analyzing data and understanding the wave 

characteristic, i.e., amplitude, wavenumber, frequency and dispersion from the 

observations. The observations of the AGWs in the upper atmosphere have been 

made from ground and space for the last three decades. AGWs have broad and 

multidimensional spectrum, makes it difficult for one single technique of observation 

to observe the whole spectrum of AGWs since one observation technique is sensitive 

to a particular spectrum while totally insensitive to other portions. Section below is a 

summary of various techniques used to observe the AGWs. From ground-based 

method, radar, lidar and all-sky camera have been used, while satellites and Global 

Positioning System (GPS) have been used for space-based observation.  

 

1.2.2.1. Radar, Lidar and All-Sky Airglow Imager Observations 

 

A radar experiment has been extensively used to study gravity waves from the lower 

atmosphere up to mesosphere and lower thermosphere region. However the 
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observation usually limited in a few sites and on short-time campaign basis. It was 

started by Ottersten, et al. [1973] using sodar data with a carrier frequency of 950 Hz 

to describe gravity wave observations in the planetary boundary layer (lowest part of 

troposphere extending from the ground up to 100-3000 m). Gauge and Balsley 

[1978] described probing of the troposphere and stratosphere by using a VHF (Very 

High Frequency) radar operates at a frequency of 53 MHz. Manson [1990] presented 

a climatology wave structure in the mesosphere by using MF radar data at Adelaide 

and Saskatoon which operate at a frequency of 1.98 MHz and 2.2 MHz, respectively. 

Fritts and Isler [1994] described wave motions in the mesosphere and lower 

thermosphere from MF radars data at Hawaii and Christmas Island. Vincent and Reid 

[1983] used these techniques to measure gravity wave momentum fluxes in the 

mesosphere. At a height range of 80–90 km, Vincent and Reid [1983] calculated a 

westerly acceleration due to momentum flux convergence of about 20 m/s per day 

due to waves with a dominant wavelength of about 50 km and a phase speed of about 

50 m/s. The gravity waves kinetic energy as well as the wind variances 

!�!, !�!,!�!  studies, where u, v and w are zonal, meridional and vertical wind 

directions, have shown a semiannual variation with maxima in summer and winter 

and minima in spring and fall [e.g. Tsuda et al., 1990; Nakamura et al., 1996]. 

Figure 1.3 shows an example of the Frequency Modulated-Continuous Wave (FM-

CW) radar echoes taken during the CASES-99 field program [Poulos et al., 2001], 

which illustrates the fine wave-like structures that can be revealed by radar 

measurement. 
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Figure 1.3. FM-CW radar images recorded on 14th October 1999. Record begins at 

07:40:20 GMT. Kelvin–Helmholtz waves are between 1500 and 1800 m and 

between 500 and 600 m. (Courtesy of Stephen Frasier, Univ. of Massachusetts, 

Amherst.) 

 

 

 

On contrast with extensively radar observation, lidar (light detecting and 

ranging) observation of gravity waves in the middle atmosphere is restricted to a few 

specific sites. The monthly average of the data shows a seasonal cycle, maximum in 

winter and minimum in summer [e.g. Wilson et al., 1991; Marsh et al., 1991; 

Mitchell et al., 1991; Whiteway and Carswell, 1995]. These studies observe AGWs 
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with the vertical wavelength down to 1 km at altitudes in the upper stratosphere and 

lower mesosphere from Rayleigh radar observations at mid-latitudes. Figure 1.4 

shows an example of gravity waves observation from High Resolution Doppler lidar 

during the CASES-99 campaign reported by Newsom et al. [2000].  

Radar and Lidar observations provide one-dimensional (1 D) data where 

observation using an imager can provide 2-dimensional (2 D) data. In the upper 

atmosphere between 80-120 km, the gravity waves can be seen in the modulation of 

airglow emission. Common airglow emissions observations for gravity waves study 

are atomic oxygen (OI) at 557.7 nm, sodium (Na) at 589 nm, and the hydroxyl 

radical (OH) at 600–2000 nm. Each of these emissions occurs at a particular altitude 

(~95 km for OI, ~92 km for Na and ~85 km for OH) with a thickness of 10–20 km 

[Swenson and Gardner, 1998]. Because the intensity of the photochemical emission 

is proportional to the local neutral and electron density and also the temperature, 

variations in intensity can be related to variations in density and temperature. It is 

now widely accepted that these variations are due to gravity waves [e.g. Molina, 

1983; Hecht et al., 1997; Fritts et al., 1997, Nakamura et al., 2003]. Figure 1.5 

shows an example of airglow distribution caused by the AGWs taken at Haleakala 

reported by Taylor et al [1995]. 
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Figure 1.4. Vertical cross-section wind speeds scan taken from HRDL as a function 

of height and horizontal range. Positive winds are away from lidar. The data was 

taken during the CASES-99 experiment at Walnut River in Southern Kansas (38°N, 

96°W) [Newsom et al., 2000]. 

 

 

 

Figure 1.5. (a) OH and (b) OI airglow all-sky images from Haleakala, Hawaii on 

10th October 1993, 1057 UTC [Taylor et al., 1995]. 

 

206 Observational Techniques

FIGURE 8.13 OH and OI airglow all-sky images from Haleakala, Hawaii on October 10, 1993,
1057 UTC. (From “Spectrometric and imaging measurements of a spectacular gravity wave event
observed during the ALOHA-93 campaign,” M.J. Taylor, D.N. Turnbull, and R.P. Lowe, Geophys.
Res. Lett., 22: 2850, 1995.)

infrared film and a fast 35-mm camera to make a series of 15-min time exposures
of the moonless night sky in New Mexico. The photographs all showed bright
cloud-like structures which moved across the sky and varied in brightness. They
concluded that the bands were due to varying airglow emission intensity and not
intervening atmospheric clouds moving against an otherwise uniform emission
background. Assuming a height of 100 km, they calculated speeds of the struc-
tures at 20 and 43 m s−1. Because the intensity of the photochemical emission
is proportional to the local density and the temperature, variations in intensity
can be related to variations in density and temperature. It is now widely accepted
that these variations are due to gravity waves (see, for example, Molina, 1983;
Hecht et al., 1997; Fritts et al., 1997; and references contained therein). Figure
8.13 shows a striking example of these traveling waves. Indeed, a whole literature
exists devoted to gravity waves in the upper atmosphere as revealed by airglow
signatures and lidar sensing (see, for example, Swenson and Gardner, 1998). Of
particular interest is the number of waves observed to be nearly monochromatic.
Gravity waves launched in the troposphere propagate upward in the form of wave
packets. Critical levels and wave reflections encountered as the packet moves
upward erode the packet until only a small portion of the original wave spectrum
exists. The result is a nearly monochromatic wave. Current thinking suggests that
some of these waves are ducted modes in upper atmospheric wave guides (see, for
example, Munasinghe et al., 1998).

8.3.4 SATELLITES

Almost all analyses of gravity waves using satellite images are limited to wave
clouds in the lee of mountains. Some of the first analyses were made, for example,
by Döös (1962), Conover (1964), Fritz (1965), and Cohen and Doron (1967).
Ernst (1976) analyzed infrared images of low-level mountain waves taken by a
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Figure 1.6. Map showing the location of current all sky camera of OMTI network. 

 

 

An attempt to study the gravity waves over different latitudes has been made 

by installing an airglow imager network. One example is the OMTI network 

operated by Nagoya University. Figure 1.6 shows the location of OMTI all-sky 

imager installation [Shiokawa et al., 1999]. 

 

1.2.2.2. Remote Sensing Measurements from Space 

 

The modulation of AGWs in the airglow emissions can also be observed using the 

satellite-borne optical instrument from space. Observation from the space can 

provide a global view of gravity waves variations. The observations were mainly 

conducted in a limb-view of the Earth; revealed the vertical structure of the airglow 

emissions. The advantages of the limb measurement are that the contaminations due 
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to the reflections of moonlight on cloud-top can be negligible and the intensity 

increases by integrating along the line-of-sight direction. However, this type of 

observation does not have a good horizontal resolution, in which the small-scale 

waves (which is believed to be more important in the middle atmosphere dynamic) 

cannot be observed. Limb Infrared Monitor of the Stratosphere (LIMS) was launched 

to retrieve the temperature profile in the altitude range of 15-60 km [Fetzer and 

Gille, 1994]. Maps of gravity wave temperature variance have been similarly derived 

from Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere 

(CRISTA) data [Preusse et al., 1999]. The most recent limb-view observation was 

conducted by HIRDLS (High resolution Dynamics Limb Sounder) [Hays et al., 

2003]. 

Another type of satellite observation is the nadir-view measurement, which 

provides a high spatial resolution, makes it possible to observe the small-scale 

AGWs. AIRS observation provides a global map of AGWs variability in the 

stratosphere (Hoffman et al., 2013, Gong et al., 2015). The most recent state of art 

space-based nadir-imaging measurement is conducted by IMAP/VISI [Sakanoi et al., 

2011; Akiya et al., 2014; Perwitasari et al., 2015] and Suomi/DNB instrument 

[Miller et al., 2015].  
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Fig. 1.7 Summary of spaced-based observation in nadir and limb-view (modified 

from Alexander et al., 2003). 

 

 

IMAP/VISI could observe the AGWs modulation in the nightglow emission 

with a horizontal resolution ~14-16 km for O2 at 762 nm. On the other hand, the 

Suomi/DNB instrument can observe a fine structure with a horizontal resolution 

down to ~700 m. Figure 1.7 demonstrates the summary of space-based observation 

in limb and nadir view and Figure 1.8 shows the gravity wave modulation seen in O2 

atmospheric band emission at 762 nm obtained with the MSX satellite [Dewan et al., 

1998]. 
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Figure 1.8. Modulation of gravity wave in the 4.3µm taken from MSX satellite 

observation [Dewan et al., 1998]. 

 

 

In the past decade, the Global Positioning System (GPS) has been used to 

study the atmosphere [e.g., Tsuda et al., 2000]. With the advent of the GPS, it is now 

possible to make near-continuous soundings of the lower and middle atmospheres. 

Tsuda and Hocke [2004] reported a comparison of tropical temperature profiles, 

above Indonesia, measured with a radiosonde and radio-occultation (RO) system. 

The RO profile shown in Figure 1.9 shows that the wave activity above the 

tropopause continues far past the height of the radiosonde profile ends (~40 km). 

GPS-RO is useful even in the upper atmosphere, except for the ionosphere, because 

the density decreases at the upper atmosphere. 
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Figure 1.9. Comparison of temperature profiles made with radiosonde and GPS-RO 

system [Tsuda and Hocke, 2004]. 

 

 

1.3. Airglow Emissions 

 

As already mentioned in the previous section, the gravity waves can modulate the 

airglow emissions. The passage of AGWs can change the density of the chemistry in 

the airglow layer, resulting the change of the intensity. There are three major classes 

of visible and near-infrared airglow emissions in the mesosphere and the lower 

thermosphere (MLT) region: (1) the vibrational-rotational bands of OH, (2) the 

atomic and molecular emissions of oxygen, and (3) the emissions of metallic atoms 

such as sodium, calcium, potassium, and magnesium. The following sub-sections 
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describe in further detail on the emissions that will be used in this study: OH band, 

molecular (O2) and atomic (OI) emissions of oxygen. Figure 1.10 shows the volume 

emission rates of OH, sodium, molecular and atomic oxygen as a function of height 

in the MLT region. 

 

1.3.1 O2 (0-0) Atmospheric Band  

 

One of the bright emissions in the molecular oxygen atmospheric band spectrum is 

the O 2 (0-0) A-band at 762 nm. Most rocket investigations have shown that the O2 

A-band emission intensity peaks at 94!± 2 km [e.g., Witt et al., 1979; Watanabe et 

al., 1981; Murtagh et al., 1990]. This emission is the primary candidate of the space-

based observation since the high population of O2 in the lower atmosphere produces 

dark background conditions by absorbing the scattered emission from the Earth’s 

surface or clouds. The previous nighttime limb scan space-based measurement 

carried out with the HRDI photometer on board UARS satellite reveals the typical 

intensity of the O2, globally, up to several kilo-Rayleighs [Hays et al., 2003]. 
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Figure 1.10. The volume emission rates of OH, sodium molecular and atomic 

oxygen [Swenson et al., 2005; Vargas et al., 2007]. 

 

 

The chemical processes of this emission is described as two-step mechanism 

(the Bath process) proposed by Mc Dade et al. [1986], given by:  

 

! + ! +! !! + !! ⟶ !! ! !! +!          (1.12) 

!! !! +!!!!! + !! ⟶ !! !! !! + !! + ℎ!!(762− !")        (1.13) 

 

The volume emission rate (!!!)!for this process can be expressed as: 

 

!!! =
!!!! ! ! !! ! !! !!

!!!!! !! !!! !! !.! !! !!! !
                     (1.14) 

transport momentum and alter the mesospheric structure. Other sources of meso-

spheric variability have been reviewed in Solomon and Garcia [1987]. Atmospheric

gravity waves are another major source of density and temperature variations in the

mesosphere.

Figure 2.5 The volume emission rates of the most commonly imaged airglow layers

in the mesosphere. The emissions are not localized at a particular height and are

dependent on the neutral density and temperature of the mesosphere at those heights

(after Liu and Swenson [2003]).

As AGWs propagate vertically they transport energy and momentum, thereby

altering large-scale dynamics of the mesosphere and upper atmosphere. They per-

turb the local densities and temperatures that affect the emission chemistry and

create perturbations in the emission profiles. Figure 2.5 shows the volume emis-

sion rates as a function of height for four commonly observed unperturbed airglow

emissions in the mesosphere [Swenson et al., 2005; Vargas et al., 2007]. It can be

inferred that the emissions are not localized at a particular height and there exists

a Gaussian-like shape which is a function of the neutral density and temperature

13
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where c1, c2, and c3 are the rate coefficient of the three-body recombination of O (the 

rate coefficients for quenching of O2 by O2 and N2, respectively).  A1 and A2 express 

the molecular oxygen (0-0) A-band transition probability and the inverse radiative 

lifetime of O2. Figure 1.11 shows the schematic transitions between various 

electronic states in the molecular oxygen emissions. 

 

1.3.2.  OH Meinel (8,3) Band around 730 nm 

The study of the OH nightglow layer located at ∼85 km, first reported by Meinel 

[1950]. The OH emission has a typical intensity of ~400 R/nm in the mid-latitude. 

The emission arises from the reaction (McDade et al., 1986): 

 

! + !! +!⟶ !! +!   

   !! + !⟶ !! + !"∗                

!"∗ ⟶ !" + ℎ!!(730!!")      (1.27)                                                               

 

The volume emission rate of the OH Meinel (8.3) band (V) can be calculated using 

this expression: 

 

!!" =
!! ! !! ! !"" !

!.!

(!!!.!!!"!! !! )
            (1.28)                                                               

 

where K1 is the temperature-dependent rate coefficient [Machlouf et al.,1995). 
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Figure 1.11. Schematic of transitions between various electronic states of molecular 

oxygen [Greer, et al., 1987]. 

 

 

1.3.3. Atomic Oxygen Green Line at 577.7 nm 

 

The Atomic oxygen (OI) emission at 577.7 nm was detected at mid-latitudes as the 

first discrete emission in the nightglow of the upper atmosphere. The energy level 

structure of the lower metastable states of the atomic oxygen is shown in Figure 

1.12.  The OI 577.7 nm emission peak generally appears centering at an altitude of 

96 km. This emission arises from a two-step reaction given by [Mc. Dade et al. 

1986]: 

 

! + ! +! !! !!∗ +!      

!!∗ + ! ! 1! + !! + ℎ!(577.7!")                         (1.17)                          

806 J. Hedin et al.: Use of O2 airglow for calibrating direct O measurements

2.2.1 Nightglow measurements during NLTE

The second strongest O2 nightglow emission feature is the
Atmospheric Band system

⇣

b16+
g ! X36�

g

⌘

dominated by
the (0–0) and (0–1) bands at 762 nm and 864 nm, respec-
tively. The (0–0) band cannot be studied from the ground be-
cause of self absorption in the atmosphere between the emit-
ting layer and the observer. It is however easy to measure
with filter photometers from sounding rockets.

Optical measurements of the upper atmosphere from
sounding rockets have been made since the 1950’s (Heppner
and Meridith, 1958) both for understanding airglow chem-
istry in itself and for using airglow as a tool to understand at-
mospheric (e.g. dynamical) processes. For airglow measure-
ments in general, a filter photometer is positioned under the
nose cone viewing along the rocket axis. During ascent, af-
ter the nosecone ejection, the photometer then counts the in-
coming photons from the overhead column. When the rocket
passes through the layer the measured photon flux drops and
above the emission layer only weak background emissions
from the zodiacal and galactic light are present (unless there
are auroral emissions in the wavelength region defined by
the photometer passband). After the profile has been cor-
rected for background emissions and attitude (van Rhijn ef-
fect) it is converted from counts to radiance (or Rayleigh)
using pre-flight laboratory calibrations. The profile can then
be smoothed (Fig. 6a) and numerically differentiated to yield
the volume emission rate of the emitting layer (Fig. 6b). Ide-
ally one should first differentiate the radiance profile and then
smooth the resulting volume emission profile since this re-
tains more of the original structure and noise. In practise,
however, this is not realistic because of the noise, and some
smoothing is necessary before the radiance profile can be dif-
ferentiated (Murtagh et al., 1984). The data were sampled
with 100Hz on both photometers which results in an alti-
tude resolution of about 9m during the passage of the air-
glow layer. However, because of the noise, the profiles need
to be averaged to a vertical resolution of 1 km for the Atmo-
spheric band and 2 km for the Chamberlain band in order to
get satisfactory results after the differentiation. The dotted
lines in panel a of Fig. 6 shows a 1 standard deviation around
the mean profiles.

The nightglow model used in the following is a numerical
model based almost exclusively on the findings of the ETON
rocket campaign. It is a self-consistent model of the most
common nightglow emissions including the O(1S) Green
Line, OH Meinel and several O2 band emissions (Murtagh,
1989; Murtagh et al., 1990). For the O2 Atmospheric band,
the emitting state (b16+

g ) is assumed to be excited via an
energy transfer mechanism from the precursor state with O2
as the transfer agent (Greer at al., 1986). The volume emis-
sion rate of the O2 Atmospheric band may be expressed as
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Fig. 5. Energy level diagram of O2 transitions in the nightglow
(after Greer et al., 1987).

(Murtagh, 1989)

Vat=
A1 ·k1[O]2{[N2]+ [O2]}[O2]

n

A2+k
O2
2 [O2]+k

N2
2 [N2]+kO2 [O]

o · 1
�

CO2 [O2]+CO[O]
 

· (1)

Equation (1) comprises the excitation and emission processes
as well as quenching of the precursor state and O2(b16+

g )
by various atmospheric constituents. A1 is the (0–0) band
transition probability, A2 is the inverse radiative lifetime of
O2(b16+

g ,v=0), k1 is the temperature-dependent rate coef-
ficient for the three-body recombination of atomic oxygen,
and k

O2
2 , k

N2
2 and kO2 are the rate coefficients for the quench-

ing of O2(b16+
g ) by O2, N2 and O and are all determined

by laboratory investigations. The coefficients CO2 and CO

represents the quenching of the precursor state and were de-
rived empirically from the ETON measurements. The values
of all coefficients can be found in Table 1. The O2 Atmo-
spheric band profile measured during NLTE-2 is the black
profile shown in Fig. 6.
The second photometer on the NLTE payloads measured

the emission from the N2+ 1st Negative band at 391.4 nm.
This emission is a sign of precipitating auroral electrons and
thus a sensitive indicator of auroral activity. Included in the
passband of this photometer is also the (5–3) band of the O2
Chamberlain system at 390.5 nm. This is not a well stud-
ied emission feature since it is very faint and easily domi-
nated by the presence of even weak auroral emissions. Emis-
sions from the Chamberlain band system are also in general
blended in the much stronger Herzberg I and II band systems.
During the NLTE-2 launch the auroral activity was extremely
low and the O2 Chamberlain band could thus be studied. The

Atmos. Meas. Tech., 2, 801–812, 2009 www.atmos-meas-tech.net/2/801/2009/
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Figure 1.12. Structure of the metastable levels and the wavelengths of the transitions 

between these levels for a neutral oxygen atom. 

 

 

The volume emission rate (VOI) for the OI 577.7 nm emission is: 

 

!!" = !!!! ! ! !! ! !!
!!!!! !! !�!! !! !!�! !                  (1.18)     

                                                            

where A5 and A6 are the Einstein coefficients, k5 is the quenching rate of O(1S) due 

to molecular oxygen. !�!!  and !�!  determine the parameters describing the 

excitation process (Murtagh et al., 1990).  

 

 

 

by photons emitted at 557.7 nm and 630.0 nm, respectively. The photochemistry

is governed by the Chapman and Barth mechanisms and is well reviewed in the

literature [McDade et al., 1986; Torr et al., 1985; Bates, 1978, 1981].

The primary source of metallic species in the mesosphere has been attributed

to meteoric ablation. The evidence includes strong correlation between relative

abundances of metallic ions, observed in the lower thermosphere, to meteor showers

[Grebowsky and Aikin, 2002; Kopp, 1997]. Lidar observations have also revealed the

phenomenon of sudden neutral metal layers that are thin, concentrated layers of Na,

K, Fe and Ca occurring at altitudes between 90 and 110 km. The average width

of these sporadic layers is only about 2 km, and their peak concentration can be as

much as 40 times the peak of the background metal layer [Kane et al., 1993].

Figure 2.4 The transition of the excited atomic oxygen species to more stable states

results in the emission of a photon. Shown are the transitions 1S ! 1D (557.7 nm)

and 1D ! 3P (630.0 nm).

Thus, by using optical filters to isolate specific emissions along with CCD imagers

with exposure times of a few minutes, we can image a particular airglow emission.

11
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1.4. Concentric Gravity Wave Pattern 

 

At the tropics and mid-latitudes, convection is considered to play a significant source 

for the generation of AGWs. If upward moving air in the unstable troposphere 

‘overshoots’ the tropopause by 1 – 3 km into the stably stratified stratosphere and 

then collapses back down to the tropopause [Pierce and Coroniti, 1966]. These 

convectively generated AGWs reach to the upper atmosphere and produce the 

modulation of airglow emission in the mesopause region (80-100 km) as a group of 

expanding concentric rings on the horizontal plane with the center located near the 

convective source [Dewan et al., 1998; Sentman et al., 2003; Suzuki et al., 2007, Yue 

et al., 2009; Vadas et al., 2009]. Although AGWs are often observed by airglow 

imagers as quasi-linear and parallel-phase fronts, the concentric gravity waves 

(hereafter CGWs) are rarely observed [Yue et al., 2009]. Figure 1.13 shows the 

sketch of convective plume model that generates the CGWs [Vardas et al., 2009]. 

The CGWs generated in the troposphere can penetrate into the mesosphere 

and lower-thermosphere (MLT) region under some specific conditions [Horinouchi 

et al., 2002, Suzuki et al., 2007, Vadas et al., 2009, Yue et al., 2009]. In order to 

avoid the critical level filtering from the background wind around the mesopause 

(80-100 km), the CGWs should have large phase speed (several ten m/s), large 

vertical and horizontal wavelength (several tens to hundreds km). The weak 

background wind (less than ~50 m/s) is also one of the important points in the 

observation of the CGWs. 
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Figure 1.13. Schematic sketch showing the convective plume model that explains 

the concentric gravity waves [Vardas, et al., 2009]. 

 

 

The ground-based observation of CGWs has a long story started with Taylor 

and Hapgood [1988] identified concentric rings in mesopause nightglow emissions 

by isolated thunderstorm in France. Suzuki et al. [2007] observed concentric wave 

patterns in both the OI (557.7 nm) and near-infrared OH Meinel band measured at 

Shigaraki, Japan with the source of the cumulonimbus cloud. Yue et al., [2009] and 

Vardas et al. [2012] reported the observation of CGWs near the Great Plain region, 

USA. On the other hand, the space-based observations of these CGWs are limited. 

Dewan et al. [1998] using the data from the Midcourse Space eXperiment reported 

the first observation of CGWs from space. They reported radiation from CO2 4.3- 

µm vibrational transitions (peak altitude at 40 km) showed circular or elliptical 

patterns above thunderstorms because the temperature and air density are perturbed 

the mean horizontal wind at the tropopause (Utrop), until a
convective plume overshoots the tropopause and pushes the
stratospheric air upward [Vadas and Fritts, 2009]. It solves
the linear solutions in a locally unsheared environment with a
constant buoyancy frequency.
[7] Observations and simulations show that there are

typically many small updrafts within the ‘‘envelope’’ of a
convectively unstable region, which give rise to a GW spec-
trum concentrated at small scales of!5–10 km [e.g., Larsen
et al., 1982; Alexander et al., 1995]. Our model neglects the
individual updrafts which generate these small-scale GWs, as
these GWs are not likely to propagate to the upper atmo-
sphere and thermosphere (due to wave breaking, critical level
absorption, and reflection in the stratosphere). Instead, our
model calculates the spectrum of larger-scale GWs excited
by the ‘‘envelope’’ of the upward motion of air within a
convective plume. (These are the larger-scale GWs, which
are more important in the mesosphere and thermosphere.)
The upward acceleration of this envelope of air is modeled as
a ‘‘vertical body force’’ in the vertical momentum equation.
We also include an image (identical), but downward moving,
vertical body force at an equal distance below the Earth’s
surface to enforce the boundary condition that the vertical
velocity is zero at the Earth’s surface. This also allows for the
inclusion of the upward reflection of downward propagating
GWs when they reach the Earth’s surface.
[8] This body force (and its image) evolves in time t as

sin2(pt/st) over the duration of the forcing from t = 0 to t = st,
thereby modeling a single occurrence of convective over-
shoot. Although GWs with periods as small as the buoyancy
period are excited, the amplitudes of GWs with periods much
smaller than st are greatly reduced in amplitude [Vadas and
Fritts, 2001]. For simplicity, and because we do not want our
results to depend on modeled spatial features which may or
may not be realistic, we represent this body force spatially as
a Gaussian function in the horizontal and vertical directions,

with DH and Dz being the full width and full depth of the
‘‘envelope’’ of this force, respectively. Note that the typical
horizontal extent of a convective plume envelope is DH !
15–20 km. We set the top of the forcing to be at the
tropopause. Therefore, the body force is maximum below
the tropopause, at z = ztrop "Dz/2. Simulations show that the
excited GWs propagate away from the center of this body
force (and from its image) [Vadas and Fritts, 2009]. Because
GWs are actually excited from convective overshoot at or
just above the tropopause in nature (since GWs cannot
propagate below the tropopause in a convectively unstable
atmosphere), we embed and ray trace this excited GW
spectrum from the tropopause.
[9] As mentioned previously, there are many individual

and localized smaller-scale updrafts within a convective
plume envelope. Thus, only a fraction of the air within
the envelope of a convective plume is actually entrained
within upward moving air which penetrates the tropopause
and excite GWs (via pushing the stratospheric air upward)
at any given time. Because only a fraction of air is moving
upward at the tropopause at t, and because our model neglects
these smaller-scale updrafts, the amplitudes of the modeled
excited GWs are larger than they should be. We take this
effect into account by multiplying each excited GW’s am-
plitude by a ‘‘filling factor’’ !. This factor equals 1 if all of
the air within the envelope is upward moving at the tropo-
pause at t, and equals 0.5 if only 1/2 of the air within the
convective plume envelope is upward moving at the tropo-
pause at t. We estimate this fraction to be ! ! 1/2–3/4 from
mesoscale simulations. This factor can be thought of as
reducing the average updraft velocity of the plume envelope,
by averaging over rapidly upwardmoving and nonmoving air
parcels at the tropopause.
[10] Figure 2 shows a sketch (not to scale) of this convec-

tive plume model. The upward moving body force (labeled
convective plume) and the image downward moving body

Figure 2. A sketch showing the components of the convective plume model, with an upward moving
body force above the Earth’s surface (labeled as convective plume) and an identical downward moving
image body force ‘‘below’’ the Earth’s surface (labeled as mirror image force). The body forces are
shown as hatched ellipses, and the dark arrows in the body forces show the direction of air motion. The
Earth’s surface is represented by the thick horizontal black line. A few of the excited GWs are shown as
thin solid lines with arrows. See text for more details.
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by GWs with the horizontal wavelength 25-50 km and radius of the ring is ~360 km. 

Yue et al. [2013] reported the joint observations of CGWs using a ground-

based airglow imager in Colorado and Atmospheric Infrared Sounder (AIRS) 

onboard the Aqua satellite on a single CGW event (3rd June 2008). The all-sky 

camera measured the CGW in OH band in the altitude of ~86 km while the AIRS 

measured the CGW in CO2 4.3-mm vibrational transitions radiation (~40 km). 

 Almost in all of the previous observations reported above they agree that the 

condition of background wind is very important in the upward propagation of the 

CGWs. Suzuki et al., (2007) first speculated that the weak background wind could 

support the upward propagation of CGW and became evanescent because of the 

strong opposite wind, and were probably reflected downward. Figure 1.14 shows the 

CGW observation from Shigaraki and the hodograph of background wind showing 

the changing wind direction (northeastward to southeastward) to the opposite of the 

CGW propagation (northeastward).  

The model study by Vardas et al. [2009] supports this speculation of weak 

background wind conditions. The wind data (for 0-120 km) for the model study was 

obtained from the HAMMONIA-GCM model. Figure 1.15 shows the effect of the 

wind on the CGW launched using the convective plume model. The result also 

shows that the background wind can shift the center of the CGW horizontally from 

its source (x=0, y=0, t=0), and “squashed” the concentric pattern into arc-like shape. 
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Figure 1.14. CGW moving northeastward observed on 3rd October 2002 from 

Shigaraki (a). The hodograph of background wind from 12:00-16:00 UT showing the 

direction of the wind in the 96 km changing from northeastward to southwestward 

[Suzuki et al., 2007]. 

 

86 km was delayed and small, as shown in Figure 3. The
disappearance sequence (OI ! OH) of the wave and the
change of background wind (downward propagation of
southwestward wind) seem to be consistent. This fact
implies that the source of this wave is in the lower
atmosphere and has an upward energy flow. If the wave
propagates downward from the thermosphere above 100 km
and breaks at the OI altitude by the opposite background
wind, it should not be observed at the OH emission altitude
after the wave disappearance in the OI images.
[17] Figure 8 illustrates the expected vertical propagation

of the wave and the background wind. At 1430 UT, the
reflection level for this gravity wave reached the OI emis-
sion altitude of 96 km. After that, the wave became
evanescent in the OI layer, while the wave was still
propagating in the OH layer. The wave generated in the
lower atmosphere propagated upward and became evanes-
cent because of the strong opposite wind, and were probably
reflected downward.
[18] A wave that has a concentric phase surface may be

generated from a localized source. Figure 9 shows an OI
image mapped on the ground at 1452 UT. Judging from the
ground maps of the OI and OH images, the wave center was
expected to be located at the Pacific Ocean to the south of
Shikoku. A developing localized cumulonimbus was rec-
ognized near the concentric center in the infrared (IR)
images from the GMS 5 satellite (not shown) and in
the radar-AMeDAS (Automated Meteorological Data
Acquisition System) precipitation charts. Figure 10 shows
the radar-AMeDAS precipitation charts (provided by the
Japan Meteorological Agency) at 0900–1600 UT on

Figure 9. Ground map of the OI airglow image at 1452
UT. Dashed circle and cross indicate prospective concentric
wave pattern and the center, respectively.

Figure 10. Radar-AMeDAS precipitation charts on 3 October 2002 at 0900–1600 UT. A highly
localized precipitation develops south of Shikoku from 1200 UT.
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waves in Figure 2 were identified to be 42 km and 36 km
for OI and OH, respectively. For the interval of clear wave
structures at 1336–1517 UT (for OI emission) and at
1329–1535 UT (for OH emission), we manually deter-
mined the averages and standard deviations of horizontal
wavelengths and horizontal phase velocities. For the OI
(OH) emission, the horizontal wavelength and horizontal
phase velocity were 38 ± 4 km and 80 ± 4 m/s (32 ± 5 km
and 87 ± 10 m/s), respectively (the numbers after ± are
standard deviations). The phase velocity of this concentric
wave was faster than the numerical studies [Piani et al.,
2000;Horinouchi et al., 2002] and the other concentric wave
event [Taylor and Hapgood, 1988]. However, Sentman et al.
[2003] reported a phase velocity of 85 m/s for their concen-
tric waves comparable to the present event.
[8] Using the wave parameters, the vertical wave number

m was calculated from the linear dispersion relation for a
gravity wave,

m2 ¼ N2

c" uð Þ2
" k2 " 1

4H2
; ð1Þ

where N, c, u, k, and H are the Brunt-Väisälä frequency,
apparent phase velocity, background wind velocity, hor-
izontal wave number, and scale height, respectively [Hines,
1960]. The value of H was assumed to be 6 km. We
investigate the parameters in the southwest-northeast
direction, in which the observed wave was defined clearly.
In equation (1), c and k (= 2p/lh, where lh is horizontal
wavelength) were determined from airglow images; u was
obtained from meteor-mode observations of the MU radar
collocated at the Shigaraki Observatory [Nakamura et al.,
1991]; and N was calculated from ambipolar diffusion
coefficients measured by the MU radar with the model
temperature profile by the COSPAR International Reference
Atmosphere (CIRA86).
[9] Figure 3 shows hodographs of the background winds

obtained by the MU radar at 1300–1645 UT. The solid and
dashed curves indicate the temporal variations of wind

velocities at 96 km (OI emission layer) and 86 km (OH
emission layer), respectively. The wind velocities were
averaged over the altitudes ±2.5 km, considering the thick-
ness of the airglow layers. The wind directions changed
from northeastward (same as the direction of wave propa-
gation) to southwestward (the opposite direction) at both
altitudes for the plotted interval.
[10] Figure 4 shows temporal variations of the Brunt-

Väisälä frequency estimated from the MU radar measure-
ments at altitudes of 96 km and 86 km. The Brunt-Väisälä
frequencies were also averaged over the altitudes ±2.5 km.
The values varied slightly between 0.015 and 0.025 rad/s.
The variation of N greatly affects the vertical propagation of
gravity waves.
[11] Using these observed parameters, we estimated the

vertical wave number m (= 2 p/lz, where lz is vertical
wavelength) from equation (1). Figure 5 shows temporal
variations of horizontal (white diamonds) and vertical
(crosses) wavelengths in the OI and OH images. These
parameters were estimated every three images (%11 min).
The vertical wavelengths are not plotted when m2 becomes
negative in equation (1). In both emissions, the vertical
wavelengths of the wave are comparable to the horizontal
wavelengths. In the OI images, m2 became negative after
1430 UT. At 1346–1405 UT in the OH images, the
horizontal wavelengths are not plotted, because the wave
structure is not clear in this interval.
[12] The temporal variations of m2 can be explained by

the background wind shown in Figure 3. The direction of
this wind changed from northeastward (same direction as
the gravity wave propagation) to southwestward (the oppo-
site direction) in time. In the opposite wind, m2 is more
likely to become negative because, as shown in equation
(1), large u with opposite direction makes c " u large
causing m2 to become negative. In the following analysis,
we took only the time bin with m2 > 0.
[13] Using the estimated parameters, the intrinsic wave

periods t (= lh/(c " u)) at the emission altitudes were
calculated, where their averages were 7.8 min (OI) and
6.1 min (OH). These periods were close to the local Brunt-
Väisälä period (%5.2 min).

Figure 3. Hodographs at altitudes of 96 km (solid curve)
and 86 km (dashed curve) for 1300–1645 UT. The data
were obtained by simultaneous MU radar measurements at
Shigaraki.

Figure 4. Temporal variations of the Brunt-Väisälä
frequency estimated from the MU radar measurements at
altitudes of 96 km (solid curve) and 86 km (dashed curve).
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Figure 1.15. Computer simulation of CGW temperature perturbations at z = 87 km 

with the propagation time at t = 50, 90, and 120 min (a, b, and c, respectively) with 

the July zonal wind and (d) the zonal wind data obtained from HAMMONIA-GCM 

[Vadas et al., 2009]. 

 

 

 

where DU = U(z) ! Utrop. Therefore for high-frequency,
eastward propagating GWs with intrinsic frequencies at the
tropopause (wIr(ztrop)) close to N and having large k (i.e.,
small lx), sinceDU"!25 m s!1 at z = 87 km and!kDU is
positive, wIr as calculated from equation (21) is larger than N
at z = 87 km. Because GWs are not able to propagate with

intrinsic frequencies larger than the buoyancy frequency,
these waves become evanescent and reflect downward
at lower altitude where wIr ’ N [Cowling et al., 1971;
Waldock and Jones, 1984]. From equation (3) and Figure 3,
convectively generated GWs with small lx have small lz at
the ridge of the spectrum. These GWs have small vertical

Figure 6. Same as in Figure 5, but for different winds. The results from the (left) January and (right)
July zonal winds are shown. From left to right, the maximum value of jT0/T j are (a) 5.9 and 5.3%, (b) 4.9
and 3.4%, (c) 3.0 and 2.3%, and (d) 1.5 and 1.3%.
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difference in monthly means (climatology) between zonal
and meridional winds. While they both exhibit seasonal
variations, the magnitudes of the monthly mean zonal winds
are typically much larger than those of the monthly mean
meridional winds, and the monthly mean zonal winds are
representative of diurnal or hourly winds. Thus, we investi-
gate the effects of winds on concentric GWs with 3 monthly
mean zonal wind profiles in January, April, and July
representing winds under winter solstice, equinox and
summer solstice conditions, respectively. Figures 4a, 4b,
and 4c show monthly mean zonal-mean zonal winds, U, at
41!N from the HAMMONIA general circulation model
[Schmidt et al., 2006] for April, January, and July as blue,
black, and red lines, respectively. Additionally, we overlay
the corresponding Na lidar observations in the mesopause

region over Fort Collins, Colorado, with dots and error bars
[Yuan et al., 2008]. Notice the general agreement between
HAMMONIA and lidar winds in the mesopause region
(80–100 km), although there is a noticeable difference in
July. Using these data, we construct typical zonal wind
profiles for the model simulations performed here by taking
the HAMMONIA output between the ground and 60 km,
and the average of the lidar and HAMMONIA data between
80 and 100 km. We also ensure smooth transitions between
60 and 80 km and between 80 and 120 km via educated
guesses. This process leads to the profiles shown in
Figure 4d. From Figure 4d, the typical mean winds in April
(at the spring equinox) are smaller than 30 m s!1, and are
smaller than the mean winds in January and July. The
January winds are dominated by a strong eastward wind

Figure 4. Representative monthly mean zonal winds at Fort Collins, CO. (a–c) Monthly mean winds for
April, January, and July with blue, black, and red colors, respectively. The lines and dots (with error bars)
show the values from the HAMMONIA-GCM and Na Lidar observations, respectively. (d) Representative
winds for April, January, and July as blue, black, and red lines, respectively, constructed from themodel and
observational results of Figures 4a–4c in order to achieve a smooth transition from one region to another.
(See text for explanation.)
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Figure 1.16. CGWs event generated by volcanic eruption observed by Suomi/DNB 

data reported by Miller et al. [2015]. 

 

 

Recently, Azeem et al. [2015] reported a multi instruments observation 

showing the CGWs propagate from troposphere up to the ionosphere. He used the 

data of AIRS in the stratosphere, DNB in the mesosphere and TEC data in the 

ionosphere. Miller et al. [2015] using the DNB data reported CGWs event generated 

by volcanic eruption along with various CGWs events generated by convective 

activities. Despite of the increasing study of CGWs, so far there is no global 

climatology of this GWs type due to the lack of observation data. The most recent 

and only statistical study of CGWs was reported by Gong et al. [2015] using the 

AIRS data to map the occurrence and wave parameters in the stratosphere (~40 km). 

As shown in Figure 1.17, they suggested that the occurrence of the CGWs is 

associated not only with tropical deep convections but also with summertime mid-

latitude convection, wintertime extra-tropical jets, and topography such as islands. 
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Figure 1.17. Geographic distribution of ring centers during January 2010 on (a) 

ascending and (b) descending orbits. The dot size is linearly proportional to wave 

amplitude, which varies from 1 to 5 K. Color corresponds to estimated phase 

propagation direction, with positive (negative) values meaning clockwise 

(counterclockwise) from the North. Arrows are MERRA monthly averaged wind 

vectors at 2.5 hPa. Thick black contours represent proxies of tropical deep 

convection. [Gong et al., 2015]. 
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2.  Purpose of Thesis 

 

CGWs are unique feature of AGWs seen in the upper atmosphere, which show an 

evidence for the direct coupling between the lower atmosphere and upper 

atmosphere. Past observations combined with model studies have revealed the 

generation of the CGWs and the mechanism of its upward propagation by identifying 

the relationship between the source region and the concentric pattern of airglow 

emission. However, all the past ground-based observations were limited by the 

typical coverage of all-sky imager (horizontal range of 20-500 km) and they have no 

data over the ocean in which the convective activities usually occur. In addition, the 

previous studies focused on the full ring pattern where the effects of the background 

profiles are minimal and direct upward propagation. More important, the past studies 

are mostly single event studies and give only local information. Therefore, a 

statistical study on global distribution of the CGWs is needed to gain a more 

comprehensive and quantitative understanding on the wave parameters, spatial and 

temporal variations regarding the energy transfer between lower and upper 

atmospheres.  

The main objective of this thesis is to reveal the spatial and temporal 

variability of CGWs in the mesopause using the airglow data taken with a space-

borne visible spectroscopic instrument. For the purpose, we analyzed the airglow 

data measured with the Visible and near-Infrared Spectral Imager (VISI) of the 

IMAP mission on the international space station (ISS). The IMAP/VISI was 

launched successfully on July 21st 2012 with H-IIB/HTV-3 and installed onto ISS. 

IMAP/VISI was continuously operated from October 2012 to August 2015 in the 

nightside hemisphere in the geographical latitude range of +/- 51 degrees.  
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IMAP/VISI measured three different airglow emissions of OI at 630 nm, the OH 

Meinel band at 730 nm and the O2 (0-0) A-band at 762 nm with the typical spatial 

resolution of 16 – 50 km. The detail description of the instrumentation and 

supporting data used for the analysis is described in Chapter II. 

The discussion of this thesis is divided into two parts. The first part of the 

discussion is a coordinated study between the IMAP/VISI and an airglow all-sky 

camera on a partial CGWs pattern in the mesopause described in Chapter III. The 

objective of this discussion is to examine the propagation of the CGWs through 

different airglow layers and analyze the background profile effects on the 

propagation mechanism. Since the start of the nominal observation of VISI, we 

found many interesting features on the airglow emissions showing meso-scale 

gravity waves structure in the MLT region. One of the rare events observed by 

IMAP/VISI is a partial concentric pattern of gravity wave in the O2 (762 nm) airglow 

emission on October 18, 2012 over northeastern part of Japan around 1200 UT. The 

similar pattern was also observed by the all-sky camera at Rikubetsu (43.5N, 143.8E) 

in the OI 557.7 nm and OH airglow emissions. Beside the opportunity to study the 

effect of the background, this event also gave us a good opportunity to study possible 

ducted wave propagation.  

The detailed analysis of the wave generation and propagation in the first part 

acts as a basis for the statistical study discussed in the second part of this thesis given 

in Chapter IV.  IMAP/VISI observation provides us a unique opportunity to 

understand the statistical characteristics of coupling processes between lower and 

upper atmospheres with almost 3 years data of airglow emission in the mesopause 

region. 235 CGWs events were found from 3 years data of O2 (762 nm) airglow 

emissions. The occurrence variability in seasonal, latitudinal, global distribution and 
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the relationship between the variability and background profile are shown in Chapter 

IV. Figure 1.18 shows a summary diagram of the CGWs studies that already have 

been done in the past (solid line) and the studies that will be covered in this thesis 

(dashed line).  

 

 

 

 

Figure 1.18. A Diagram showing a summary of the past studies of CGWs (solid line) 

versus the studies that will be covered in this thesis (dashed line). R is the radius of 

CGWs. 

!
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Chapter II 

 

 

Instrumentation and Data Analysis 

 

This chapter describes the instrumentation and data analysis used in this study. The 

main observational data used was the O2 A-band (762 nm) nightglow emission taken 

with IMAP/VISI during the period from October 2012 to August 2015. An all sky 

camera data from Rikubetsu were also used in the first part of discussion in Chapter III 

to conduct a coordinated observation between space-based and ground-based 

observation in order to examine the waves motion between different airglow layers and 

effects of the background profiles to the wave propagation. 

Since CGWs are tied principally to convection at lower-atmosphere, we used 

meteorological satellite data to locate the possible source of the waves. The convection 

index from MTSAT data, precipitation rate from TRMM and WWLLN lightning data 

were used to discuss the sources of the CGWs. Since there is no observational data of 

background winds above 60 km, we had to combine the observational and simulation 

data. MERRA was used to examine the background winds from 0-60 km and GAIA 

model was used to examine background winds from 60-100 km. Background wind data 

from Wakkani MF Radar was also used in the case study in Chapter III. SABER 
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instrument provides temperature profile from 0-180 km and it was used to discuss a 

possibility of thermal ducting in middle atmosphere.  

 

2.1. Airglow Emissions data observed by IMAP/VISI and All Sky 

Camera 

 

2.1.1.  IMAP/VISI 

 

IMAP/VISI is a visible and near-infrared spectral imager with a spectral 

resolution ! Δ!  of ~800 using a grism as a disperser [Sakanoi et al., 2011, Akiya et 

al., 2014]. Detail specification of IMAP/VISI is given in Table 2.1. By putting the two-

line slit on the first focal plane combining a CCD imaging sensor, IMAP/VISI achieves 

the two field-of-views (FOVs) pointing 45° forward and 45° backward to nadir with 

mapping each of slit almost perpendicular to the orbital plane.  The two-line scanning is 

useful to distinguish the airglow emission layer in the upper atmosphere (85-250 km) 

from the ground and clouds at the altitude of 0-10 km. With a wide viewing angle (90°) 

for each FOV, IMAP/VISI covers ~300 km width at the F-region altitude (~250 km) 

and ~600 km width at the E-region altitude (~95 km) perpendicular to an orbital plane 

as seen in Figure 2.1. IMAP/VISI measured three different nightglow emissions as 

shown in Table 2.2. Along with the type of airglow emissions, Table 2.2 summarizes 

the scientific targets and the characteristic of the observed airglow emissions such as 

intensity, emission height and spatial resolution.  
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!

 

Figure 2.1. Schematic drawing of the FOVs of IMAP/VISI mapped on the emission 

layers [Sakanoi et al., 2011]. 

 

 

Table 2.1. Detail specifications of IMAP/VISI 

Field-of-views Rectangular-shaped (90x0.09 deg.) FOVs pointing 45 deg. 
Forward and backward to nadir 

Objective lens F/0.96 and f=5.5 mm 
Spectroscopic 
properties 

Wavelength coverage 630-762 nm with resolution of ~1.0 
nm/pixel (R~800) 

CCD sensor E2V 47-20 back-illuminated AIMO, 1024x1024 pixels, 1 
pixel size=13.3 x13.3 µm 

CCD cooling Below -25 deg. C with a Peltier electrical cooling 
connected to a radiator toward the earth 

Size 450 (X) x 240 (Y) x 210 (Z) 
Weight and power 14.5 kg, 7.9 W 
!

!

!

!

!
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Table 2.2. Summary of scientific targets of IMAP/VISI 

Airglow 
(Wavelength) 

Region 
(Altitude) 

Scientific target Typical 
spatial 
resolution 

Typical 
intensity 

OH Meinel 
(730 nm or 
850 nm) 

Mesosphere 
(85 km) 

Gravity wave, 
temperature 

14 km 400 R/nm 

O2 (0-0) 
(762 nm) 

Mesopause 
(95 km) 

Gravity wave 14 km 1000 R 

OI 
(630 nm) 

Thermosphere 
(250 km) 

Gravity wave, 
plasma bubble, 
traveling ionospheric 
disturbance 

14-35 km 100 R 

!

!

IMAP/VISI was operated only in nighttime to avoid the sunlit contamination. 

During the observation, IMAP/VISI uses three different observation modes, i.e. 

calibration mode, spectral mode and peak mode. In the calibration mode, the whole 

CCD frame data (1024 x 1024 pixels) were recorded without binning. In the spectral 

mode, the pixel position was determined on each row in a region-of-interest (ROI) area 

and then the spectral profiles, in which each ROI area had 12 pixels along a row around 

maximum, were recorded. In the peak mode, the ROI areas were the same as those in 

the spectral mode, but only the maximum and minimum values on each row in a ROI 

were recorded. Figure 2.2 shows the first light image of IMAP/VISI taken on August 

13, 2012 and the position of each ROI. The ROI is determined for each airglow 

emission (OH, O2 and O) and each FOV (back and forward); resulted in 6 total of ROIs 

areas. For the pixel binning, the asymmetrical on-chip binning is applied for the each 

ROI. The size of row x column binning is selectable from 1x8, 1x16, and 1x32 pixels. 
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Figure 2.2. Top: First light (a CCD full-frame image) of IMAP/VISI obtained with the 

calibration mode on August 13th, 2012. The horizontal axis is the wavelength and the 

vertical axis is the zonal direction. Each ROIs are shown in forward and backward 

FOVs. Bottom: the spectral profile estimated by integrating counts along a column of 

the CCD frame. The horizontal axis is the wavelength in nm and the vertical axis shows 

the count [courtesy of T. Sakanoi].  

 

Due to the limitation of data transfer rate from the international space station, 

the peak mode was used during the nominal observation. Successive exposures of 

! ! ! ! ! !

ROIs 

O 

OH 

O2 
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IMAP/VISI in peak mode provided two scanning images, i.e., background and intensity 

peak images, for forward and backward FOVs. Typical exposure time is 1 sec and 

exposure cycle is 1.86 sec, which corresponds to 14 km resolution along an orbital 

track. Spatial resolution along a slit is approximately 10 km at the E-region altitude 

determined by a pixel binning. Relative airglow intensity is obtained by subtracting the 

background data from the intensity peak data while the absolute intensity of each 

airglow emission is calculated by applying the calibration factors obtained by the 

spectral mode. An example of O2 (762 nm) airglow emission data from IMAP/VISI 

observation is shown in Figure 2.3.  

The data from both FOVs then could be projected onto a geographical 

coordinate system by assuming the altitude layer of the airglow emission was 95 km for 

O2 (762 nm). Figure 2.4 shows the forward FOV data from the 16 April 2013 event 

mapped onto the geographical coordinate. IMAP/VISI observation covered the 

equatorial and mid-latitudes between 51.6° N to 51.6° S in geographical latitude 

(GLAT). Figure 2.5 shows an example of 4-days plot of IMAP/VISI data showing the 

latitudinal coverage of IMAP/VISI observation on global map.  
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Figure 2.3. An example of O2 (762 nm) data on April 16, 2014 around 17 UT. 

Concentric gravity waves can be seen in both FOVs. Red arrow shows the direction of 

the ISS movement.  

 

 

 

Figure 2.4. Forward FOV O2 (762 nm) airglow emission on April 16, 2013 projected 

onto geographical coordinate by assuming the altitude of the airglow layer was ~95 km.  
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Figure 2.5. 4-days plot of IMAP/VISI data on April 1-4, 2013. The plot showing the 

latitudinal coverage of the IMAP/VISI data. The color bar shows the intensity of the 

data in Rayleigh [R]. 

 

 

2.1.2.  Rikubetsu All Sky Camera 

 

The all-sky imager at Rikubetsu, Japan (43.5°N, 143.8°E in GLAT) is part of the Optical 

Mesosphere Thermosphere Imagers (OMTIs) network [Shiokawa et al., 2009]. The 

imager uses a cooled-CCD camera with 512 x 512 pixels and has five filters to measure 

OI 557.7 nm, OI 630 nm, OH near-infrared band, hydrogen-beta 486.1 nm and sky 

background emissions. The OH and OI 557.7 nm images on October 18, 2012 used in 

this discussion in Chapter III were obtained with a time resolution of 1.5 min. The 

exposure times of OH and OI 557.7 nm were 2 s and 30 s, respectively. 
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Table 2.3. Filters, typical exposure time and sensitivity for the Rikubetsu all-sky 

camera [Shiokawa et al, 2000]. 

Channel Emissions Wavelength 
(nm) 

Bandwidth 
(nm) 

Exposure 
(sec) 

Sensitivity 
(count/R/s) 

1 OI 557.7 1.78 105 0.049 
2 OI 630 1.82 165 0.053 
3 OH 720-910 190 15 - 
4 Hβ 486.1 1.92 - 0.005 
5 Background 572.5 1.77 105 0.050 

 

 

 

2.2.  Convective Activity Data from MTSAT and TRMM and 

WWLLN 

 

2.2.1. MTSAT 

  

MTSAT (Multi-function Transport Satellites) is a series of weather and aviation 

geostationary satellites, which is located in the geostational orbit at the altitude of 

35,800 km above the equator and at 140 degrees east longitude or 145 degrees east 

longitude.  They provide information for monitoring the distribution/motion of clouds, 

sea surface temperatures and distribution of water vapor with spatial and time resolution 

of 4 km and 30 min, respectively [Takeuchi et al., 2007].  

MTSAT has five channels, four infrared (IR1 at 10.3-11.30 µm, IRI2 at 11.5-

12.50 µm, IRI3 at 6.5-7.0 µm, IR4 at 3.5-4.0 µm) and one visible channel (VIS at 0.55-

0.80 µm). The data are provided by Weather Home, Kochi University and can be freely 

used for research and education purposes [http://weather.is.kochi-u.ac.jp/archive-

e.html]. To investigate the convection activity in the troposphere, the convective index 
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was derived from the MTSAT-IR1 data then the one-hourly convective index (Ic) was 

defined by [Ohsawa et al., 2001] 

 

!! = !!"#!" − !""                                                           (2.1) 

 

where the T850mb is the temperature at the altitude of 850 mb in pressure level and TBB is 

the top-cloud temperature observed by MTSAT-IR1. Figure 2.6 shows an example of 

convective index derived from MTSAT-R1 data over Japan area (20° N-50° N and 120° 

E-150° E) on October 18, 2012 at 1100 UT. 

 

2.2.2. TRMM 

 

In addition to the convective index data, precipitation data from the TRMM (Tropical 

Rainfall Measuring Mission) satellite were used to locate the wave source. The NASA 

Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.–Japan satellite mission to 

provide the first detailed and comprehensive dataset of the four dimensional distribution 

of rainfall and latent heating over vastly under sampled tropical and subtropical oceans 

and continents (40°S–40°N) [Liu, Z., et al., 2012). There are five instruments onboard 

the TRMM satellite, and four of them are used for precipitation, as shown in Table 2.4. 

Standard TRMM products from the Visible and Infrared Scanner (VIRS), the TRMM 

Microwave Imager (TMI), and Precipitation Radar (PR) are archived at and distributed 

from the NASA Goddard Space Flight Center (GSFC) Earth Sciences Data and 

Information Services Center (GES DISC). 
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Figure 2.6. The convective index derived from the TBB data of MTSAT satellite at 

1100 UT on 18 October 2012. The color bar shows the hourly convective index derived 

from the top-cloud temperature of MTSAT-R1 data. 

 

Data set used in this study was obtained from the Precipitation Radar by using 

an online user-friendly analyzing tool called Giovanni (GES-DISC Interactive Online 

Visualization and Analysis Infrastructure) TOVAS (The TRMM Online Visualization 

and Analysis System). Figure 2.7 shows an example of global precipitation data 

obtained from Giovanni TOVAS homepage at http://gdata1.sci.gsfc.nasa.gov. 
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Table 2.4 TRMM-precipitation related instruments 

Instrument name Band frequencies/ 
wavelength 

Spatial 
resolution 
(km) 

Swath 
resolution 
(km) 

Visible and Infrared 
Scanner (VIRS) 

5 channels (0.63, 1.6, 3.75, 
10.8, and 12 µm) 

2.4 833 

TRMM Microwave 
Imager (TMII) 

5 frequencies (10.7, 19.4, 
21.3, 37, 85.5 GHz) 

5.1 at 85.8 GHz 878 

Precipitation Radar 
(PR) 

13.8 GHz 5 (vertical: 250 
m) 

247 

Lightning Imaging 
Sensor (LIS) 

0.7774 µm 4.3 668 

 
 

 

 

Figure 2.7. An example of global precipitation data obtained from Giovanni TOVAS 

on March 31, 2013 at 0000 UT. 
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2.2.3. WWLLN 

 

The World Wide Lightning Location Network provides global lightning location using 

sparsely distributed very low frequency (VLF) detections stations [Jacobson et al., 

2006].  The spatial accuracy of the data is around 15 km, which is good enough to 

resolve convective-storm cells within a larger storm complex. Thus WWLLN can be 

useful for locating thunderstorms for possible source of CGWs. 

WWLLN real time data are available for research purposes from the University 

of Washington [http://wwlln.net]. Figure 2.8 shows an example of one-day lightning 

location globally from WWLLN data. 

 

2.3.  Background Wind data from GAIA, MERRA and Wakkanai 

MF Radar 

 

2.3.1.  GAIA  

 

Background wind plays important role in upward propagation of CGWs as they act as 

filtering system [Suzuki et al., 2007; Vadas et al., 2009]. However, the observational 

data for background winds are limited, especially in the middle and upper atmosphere. 

Therefore, data from model are generally used to provide the global wind data. Ground‐

to‐Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA) is a coupled 

model of atmosphere and ionosphere that covers the altitude from troposphere to 

exosphere [Jin et al., 2011]. The data from GAIA is a result from realistic simulation by 

implementing Japanese 25-years reanalysis (JRA-25) incorporating with F10.7 solar 

radiation value as the external source. Global distribution of neutral and electron 
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temperatures, wind velocities (zonal, meridional and vertical) and neutral and ion 

density of nitrogen and oxygen are estimated with the GAIA model with a horizontal 

resolution of 2.8° and 0.2 scale height in vertical direction.  Figure 2.9 shows an 

example of global map of zonal wind data at an altitude of 95 km of GAIA model.!

!

2.3.2. MERRA 

 

MERRA (Modern-Era Retrospective Analysis for Research and Application) is NASA 

reanalysis using a major new version of the Goddard Earth Observing System Data 

Assimilation System Version 5 (GEOS-5). Its product is 3-hourly background wind on 

42 pressure levels up to 0.01 hPa (~60 km). The grid used for MERRA is 1/2 degrees 

latitude and 2/3 degrees longitude [Rienecker et al., 2011]. The data are available at the 

Modeling and Assimilation Data and Information Services Center (MDISC), managed 

by the NASA Goddard Earth Sciences (GES) Data and Information Services Center 

(DISC).  Figure 2.10 shows an example of zonal-mean zonal wind from MERRA data 

on March 1 2013. This plot was obtained from NIPR Trajectory Meteorological Display 

website (http://www.firp-nitram.nipr.ac.jp/en/). 

!

 

 

 

 

!



CHAPTER II. INSTRUMENT AND DATA ANALYSIS 49!

 

Figure 2.8. One-day global lightning occurrences from WWLLN data. The map shows 

data on September 1, 2013.  

 

 

Figure 2.9. Global map of zonal wind data at an altitude of 95 km of GAIA model on 

March 30, 2013. The color bar indicates the zonal wind speed in m/s. 
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Figure 2.10. Zonal-mean zonal wind data from MERRA on March 1, 2013. The plot 

shows the latitudinal distribution as a function of pressure level. The color bar indicates 

the wind speed in m/s where positive values show the eastward wind. 

 

 

2.3.3.  Wakkani MF Radar 

 

The MF radar has been operated at Wakkanai, Japan (45.36°N, 141.81°E in GLAT) 

since 1996 [Igarashi et al., 1999]. The MF operating frequency is 1.9585 MHz with a 

peak transmitter power of 50 kW. The Wakkanai MF radar observes the wind in the 

mesosphere and lower-thermosphere (MLT) region (84-108 km) with an altitude 

resolution of 2 km. The specification of this radar is summarized in Table 2.6.  
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Table 2.6. Specification of Wakkanai MR radar [Igarashi et al., 1999] 

Parameters 
Location 45.36o N, 141.81o E  
Peak envelope power 50 kW 
Operating frequency 1.9585 MHz 
Half power pulse width 48 micro second 
Sampling internal 2 km 
Operated period Since 19th September 1996 

 

 

In this thesis, one-hour average of zonal and meridional wind data for an altitude 

range of 84-102 km were used to discuss the background wind condition in the MLT 

region in conjunction with IMAP/VISI data and Rikubetsu all-sky image data.  

 

2.4.  Temperature Profile from SABER data 

 

The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) is 

one of four instruments on the NASA Thermospheric Ionosphere Mesosphere 

Energetics Dynamics (TIMED) satellite [Russel et al., 1999]. Using a 10-channels 

broadband infrared radiometer, which covers the spectral range from 1.27 to 17 µm, 

SABER scans the atmospheric limb vertically and provides vertical profiles of kinetic 

temperature, geopotential height, pressure, ozone, carbon dioxide, water vapor, atomic 

oxygen and atomic hydrogen as well as volume emission rate for 5.2 µm NO, 2.1 µm 

OH, and 1.27 µm O2 (1Δ) with an altitude of 80-100 km [e.g. Mertens et al., 2001, 

Feofilov et al., 2009]. Figure 2.11 shows latitudinal distribution of kinetic temperature 

on February 9, 2013. 
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Figure 2.11. Latitudinal distribution of kinetic temperature of SABER data on February 

09, 2013 as a function of altitude. The color bar shows the kinetic temperature in K.  

 

 

2.5.  Analysis Method 

 

2.5.1.  Data Analysis of IMAP/VISI 

 

In order to discuss the source of the CGWs and the wave parameters, it is necessary to 

calculate the center of the circular wave fronts since the CGWs are usually generated by 

a point source, which should be located close to the center. Owing to the unique circular 

pattern of CGWs, the center and the horizontal wavelength can be estimated by fitting a 
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circle to the wave fronts. To do the fitting, at first we picked several points from each 

curvature wave front of the airglow data in geographical latitude and longitude 

!!! ,!!! , !!! ,!!! ,… , !!" ,!!" , assuming the airglow emission was mapped onto 

the geographical coordinate with altitude of ~95 km, and then applied the least squares 

method. This method has been established in the previous studies of CGWs [Hapgood 

and Taylor, 1982; Suzuki et.al., 2013 and Yue et.al., 2013]. A reasonable measure to fit 

a circle to the points on the wave front is given by minimizing the residual of the sum of 

the squares of the distances (SS) from the points to the assumed circle. The 

minimization can be obtained by choosing the center of the assumed circle at 

geographical latitude !! and longitude !! !then calculated the distances from the chosen 

center given in Equation (2.3), finally the SS was calculated using the Equation (2.2). 

The pair of longitude and latitude !! ,!!  that gives the minimum SS is the center for 

the best fitted circle. For example, for CGWs event on April 16, 2013 shown in Figure 

2.4, we calculated the SS for the area that covers the latitude range from 20° to 30°N and 

longitude from 80° to 120°E. This measure is given by  

 

!! = !!" − !! !
!

!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2.2) 

 

and !!" can be written as 

 

!!" = !!! !!"#!! !"#!! !!"#!!" + !"#!! !!"#!!" cos !!! − !! !!!!!!!!!!!!!!!!!!(2.3) 
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where !!" is the distance from the chosen center to the i-th point on the k-th wave front 

and !! = !!" !!!  is the mean radius, nk is the number of points and Re the Earth radius 

(6378 km). 

In the case on 16 April 2013 at 1700 UT, the SS was minimized at 20°- 24° N 

with in geographical latitude, and 89-91°E in longitude with value of 0.03-0.15. The 

lowest value was found at [21.2° N, 90.5°E] with outermost radius of the ring is ~2000 

km. Since the CGWs are assumed to be generated by a point source located near the 

center of the waves, the estimated center can be used to determine the source. Figure 

2.11 shows the result of the fitting over plotted with the emission and TRMM data. The 

precipitation rate shows a highly convective activity around the estimated center, which 

was likely the source of the CGWs. 

The horizontal wavelength was calculated by averaging the radius of each wave 

front from the center [Suzuki et al., 2013]. Figure 2.13 shows estimation of horizontal 

wavelength from the calculated rings for the case on 16 April 2013 at 1700 UT shown 

in Figure 2.12. The crosses indicate the radii of the best fitting set of wavefronts. 

Number of wavefronts is determined at the peak of concentric airglow intensity pattern 

from the center. The horizontal wavelength was found to be 303.2 ± 64.7 km. 

Maximum radius was used to examine how far the CGWs can propagate in the 

horizontal direction from its source.  
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Figure 2.12. Circle fitting applied to the CGWs event on 16 April 2013 at 1700 UT. 

The X mark shows the center of the wave as a result of circle fitting. The black arrows 

represent the radius from the estimated center to each wave front. The maximum radius 

(Rmax) shows the distance from the estimated center to the outermost ring. The color bar 

shows the 3-hourly precipitation rate from TRMM data (1330-1630 UT). 
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Figure 2.13. Estimation of horizontal wavelength from the calculated rings for the case 

on 16 April 2013 at 1700 UT. The crosses indicate the radii of the best fitting set of 

wavefronts.  

 

 

235 CGWs events were found from January 2013 to August 2015 in IMAP/VISI 

O2 A-band (762 nm) data. The method above was applied to all the events to derive the 

wave parameters, horizontal wavelength and maximum radius, to study the 

characteristic of the CGWs in the mesopause discussed in Chapter IV. 

 

2.5.2. Data Analysis of All Sky Camera 

 

Airglow data from Rikubetsu all sky camera was used in Chapter III to discuss the wave 

propagation in different layers. From the successive measurements of airglow images 

taken by an all sky camera, we can estimate spatial scales, propagation directions and 

phase velocities of AGWs in the mesopause region and the thermosphere.  
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The image processing to extract the wave pattern in airglow emission from the 

raw images is done with several processes. First, bright stars are attenuated from the 

images by using a median filter [Garcia et al., 1997; Coble et al., 1998, Suzuki et al., 

2007]. In this step, when the count difference between the raw pixel count and the 

median of 20 x 20 surrounding pixels was larger than the mean raw count of the whole 

image, then the raw count was replaced with the median count. The next step is the 

background continuum subtraction. The background counts are caused by emissions 

from the sky, including light scattered by dust, from urban areas, and from the 

atmospheric continuum emission.  

Finally, the airglow images were projected into the geographical coordinates 

with an area size of 512 x 512 km by using the spatial calibration determined with the 

star catalog and assuming the altitude of the airglow was 86 km for OH and 96 km for 

OI (557.7 nm). For the detail step by step of image processing please refer to Suzuki et 

al., 2007. Figure 2.14 shows the example of the differential of two successive images 

image of OI 557.7 nm, taken at Rikubetsu at 1102-1104 UT on 18 October 2012, and 

the projected image onto the geographical grid. In this image, one pixel around the 

zenith corresponds to 1 km in the geographical coordinate system. 
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Figure 2.14. (a) An example of the differential of two successive images of OI 557.7 

nm, taken at Rikubetsu at 1102-1104 UT on 18th October 2012. (b) Same as (a), except 

that it was projected onto the geographical grid with a size of 512×512 km. (c) The OI 

557.7 nm in (b) in the geographical map, assuming the altitude of airglow layer as ~96 

km. 

 

The horizontal wavelength (λh)!was calculated by using the same fitting method 

as the IMAP/VISI data. By utilizing several successive images and background wind, 

the apparent phase speed (c) and intrinsic period (! = !!/(! − !)) were estimated.!The!
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vertical!wavelength!(λz)!was!derived!using!the!dispersion!relation!of!gravity!wave!

[Hines,+1960]!with!the!background!wind.!The!equation!is!given!by!

!

!! = !!
!!! ! − !! −

!
!!!                                             (2.4) 

!! = !!
!                                                                        (2.5) 

!

where!N,! k,!!!and!m! are! the! BruntJVäisälä! frequency,! horizontal! wave! number,!

scale!height,!vertical!wave!number!and!u!is!the!background!wind.!Since!there!is!no!

background! temperature! measurement,! we! assumed! that! the! N! has! a! constant!

value!of!2! 5!rad/min.!

 

!
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Chapter III 

 

 

Observation Result and Discussion Part I: Case Study 

Coordinated Observation of IMAP/VISI and an All Sky 

Camera on Concentric Gravity Wave in the Mesopause 

 

One of the main goals of the IMAP/VISI mission is to study the coupling processes 

between the lower atmosphere and upper atmosphere by AGWs. We found many 

interesting features on the airglow emissions showing small-scale gravity waves 

structure in the mesosphere and lower-thermosphere (MLT) region from 3 years 

observation data. One of the rare events observed with IMAP/VISI is a partial 

concentric gravity waves (CGW) pattern in the O2 A-band 762-nm airglow emission 

occurred around 1200 UT on October 18, 2012 over northeastern part of Japan. The 

similar pattern was also observed with the all-sky camera at Rikubetsu in the OI 557.7-

nm and OH airglow emissions.  

This partial CGWs event gave a good opportunity to study the effect of 

background profiles, such as wind velocities, to the upward propagation mechanism of 

AGWs. As already stated in Chapter I, all the previous studies of CGWs events were 



CHAPTER III. RESULT AND DISCUSSION PART I: CASE STUDY 61!

discussing full ring pattern, in which the effects of background profiles were suggested 

to be minimal. The discussion in this chapter is aiming to propose a plausible wave 

generation and study the effect of the background wind and temperature on the 

propagation mechanism of the partially CGWs event seen in different airglow layers 

observed from the coordinated observation between IMAP/VISI and ground-based all-

sky camera. 

 

3.1.  Observation Results 

 

3.1.1. Concentric Gravity Waves Pattern Observed by IMAP/VISI 

 

One of the distinct AGW events observed with IMAP/VISI is an arc-like shape, 

apparently a part of CGW pattern, around 1204 UT on October 18, 2012. Figure 3.1 

shows the summary plot of O2 762 nm airglow data showing the CGW event on 

October 18, 2012. We found the multiple arc-like shaped airglow patterns in the 

differential image from 1203 UT to 1232 UT on the both FOVs data. The red rectangle 

in the intensity peak image indicates the region of interest for the discussion described 

later.  

The intensity peak image in the backward FOV is mapped onto 95 km altitude in 

the geographic coordinate system as shown in Figure 3.2. The next orbit data of 

IMAP/VISI at 1336 UT is also shown in the same figure. In order to discuss the source 

of the CGWs, it is necessary to calculate the center of the circular wave fronts since we 

assume that the CGWs are usually generated by a point source, which should be located 

at the center.  
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Figure 3.1. The CGWs event in O2 762-nm airglow emission obtained with IMAP/VISI 

during the period of 1203-1232 UT on October 18, 2012. The red arrow shows the 

direction of the ISS orbit. 

 

 

To do the fitting of circle to the CGW pattern, at first we picked some points in 

each wave front and then applied the least squares method as described in the Section 

2.5.1.  On this event at 1200 UT, we estimated the best-fitted center at 33°N in 

geographical latitude, and 143°E in longitude with the outermost radius of the 

concentric airglow structure was ~1400 km as shown with the cross mark in Figure 3.2. 

The horizontal wavelength then simply calculated by averaging the radius from the 

center to each wave front, and it was found to be ~67 km. On the other hand, the CGWs 

were observed in the northeastern of Hokkaido around 1204 UT with IMAP/VISI. The 

next path data was obtained ~1.5 hours later starting from 1336 UT over the Honshu 
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Island of Japan. The IMAP/VISI data taken in this path covered the area close to the 

center of CGW seen in the previous path. However, there was no CGWs pattern 

observed with IMAP/VIS. This result indicated that the waves were generated and 

quickly evanescent within ~1.5 hours as the waves expanded outward or that the waves 

in the particular direction were filtered out.  

From the results mentioned above, we propose several initial guesses as follows: 

(1) it is reasonable to assume that the CGWs seen in O2 762-nm emission data is caused 

by a localized source.  Convective activities in the lower atmosphere might be the 

source of CGWs. (2) The CGWs are categorized as small-scale GW (horizontal 

wavelength ≤100 km [e.g., Taylor et al., 1995; Nakamura et al., 1999; Walterscheid et 

al., 1999]) as the calculated horizontal wavelength was found to be ~67 km. (3) The 

intrinsic period of this CGW should be a short period (~5-20 min), since only short 

period gravity wave can propagate up to mesopause region [e.g., Walterscheid et al., 

1999]. The ground-based measurement data can provide good estimation of duration, 

period, and propagation velocity of gravity waves. (4) It seems the background wind 

between the source and the airglow layer is relatively weak that allows the waves to 

propagate upward to the mesopause, yet enough to alter the shape of the ring pattern 

[e.g., Taylor et al., 1988; Sentman et al., 2003; Suzuki et al., 2007; Yue et al., 2009].  
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Figure 3.2. Map of the backward FOV data of IMAP/VISI at 1203 UT and 1336 UT on 

October 18, 2012. Dashed lines indicate the best fitted round circle to the circular wave 

fronts of airglow emission. The estimated center of the circle is indicated by the cross 

mark. The red arrow represents the outer radius of the circle from the expected center 

(~1400 km). The diamond marks show the location of the Rikubetsu all sky camera and 

the Wakkanai MF radar. 

 

 

The gravity wave pattern seen in the O2 762-nm emission data was not a full 

circle, only a part of the circle forming an arc-like shaped structure. This fact suggests 

that the waves pattern was disturbed and could only propagate toward particular 

direction due to the wind filtering effect. We compared the observation data from 

IMAP/VISI with the ground-based all-sky camera data at Rikubetsu to evaluate the 

suggestions (2) and (3). The meteorological satellite data were used to check the source 
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of CGWs to prove suggestion (1). The wind data from MERRA and Wakkanai MF 

radar were used to support suggestion (4). The results are given in the following 

subsections. 

 

3.1.2. Concentric Gravity Waves Patterns in OH-band and OI 557.7-nm Image 

Data at Rikubetsu 

 

The similar arc-like shaped airglow patterns were also observed in the OH-band and OI 

557.7-nm data obtained with the all-sky camera at Rikubetsu during the period of one 

hour before the conjunction with ISS (~1100-1200 UT) on October 18, 2012. However, 

the wave didn't appear on the OI 630 nm emission. This may indicate that the wave 

broke around the mesopause and could not propagate up to thermosphere. Figure 3.3 

shows the deviation of 1-hour running average plots of OH-band and OI 557.7-nm 

when the CGWs were observed from 1100 to 1200 UT. After 1200 UT, the sky was 

cloudy. We suggested that the arc-like shaped airglow pattern seen at Rikubetsu were 

part of CGWs obtained by IMAP/VISI since these happened almost simultaneously and 

the field-of-view of Rikubetsu data was overlapped with the IMAP/VISI data (see 

Figure 3.4). The advantage of ground-based all-sky camera is to examine the motion of 

AGW by from successive image data. From 1102 UT, the AGW patterns in OH image 

data appeared to be moving in the northeastward direction. As for OI 557.7-nm image 

data, the similar pattern was observed from 1103 UT until the clouds covered the sky at 

1155 UT. 
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Figure 3.3. Sequential images of OH-band (top) and OI 557.7-nm emission (bottom) 

showing the deviation of 1-hour running average during the period of 1103 – 1159 UT 

on October 18, 2012. The emissions were mapped by assuming that the airglow layer of 

OH-band is ~86 km and OI 557.7-nm is ~96 km. 
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The CGWs were observed during the period from 1102 UT to 1200 UT (~58 

min, even though the cloud began to appear around 1155 UT but a small part of the 

CGWs was still observed at ~1200 UT) in the OH-band data, and from 1103 UT to 

1156 UT (~53 min) in the OI 557.7-nm emission data. On the other hand, IMAP/VISI 

measured the CGW pattern in the O2 762-nm emission around 1203 UT beyond the 

FOV of all-sky imager at Rikubetsu (several hundred km away). Unfortunately, the 

timing of IMAP/VISI data did not exactly match to the Rikubetsu data due to the 

clouds.   

The wave parameters, such as horizontal wavelength (λh) and apparent wave 

speed (c), were estimated manually from the successive image data at Rikubetsu. The 

horizontal wavelength and phase velocity for OH data are ~50 km and ~105 m/s, 

respectively. For OI 557.7-nm data, they are ~51 km and ~96 m/s, respectively. These 

wave parameters suggest that the CGWs observed in OH-band and OI 557.7-nm 

emission have small scale and short periods. This fact is consistent with our initial 

suggestions (2) and (3) based on the IMAP/VISI O2 762-nm emission data.  

Using the observed parameters and the background wind obtained from the 

Wakkanai MF radar, the intrinsic wave periods (! = !!/(! − !))!were estimated for 

OH data and OI 557.7-nm data assuming the emission altitudes of 86 km and 96 km, 

respectively. The estimated intrinsic wave periods are 8.6 min and 9.2 min for OH and 

OI 557.7-nm data, respectively. The vertical wavelength was calculated to be ~42 km 

from the linear dispersion relation for a gravity wave in Equation (2.4). 
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Figure 3.4. Mapped airglow images, fitted circles and estimated center positions (cross 

mark) for OH data (a) and OI 557.7-nm data (b) of the CGWs event at Rikubetsu on 

October 18, 2012. 
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The innermost ring radius of the concentric pattern determines the elevation 

angle of upward propagation (θ) [Dewan et al., 1998]. From the IMAP/VISI data we 

only observed the part of the concentric pattern, which was far away from the source. 

From the data we can only determine the outermost ring radius, which is ~1400 km. 

Therefore it is difficult to calculate the elevation angle from the IMAP/VISI data 

itself. However, the angle can be calculated from observed wave period from the 

ground-based observation (!) and Brunt-Väisälä period (τB) based on the simplified 

dispersion relation of Hines [1960]. 

 

! = tan!! !
!!

!
− 1

!! !
             (3.1) 

 

The wave period observed from Rikubetsu data is ~9.2 min and assuming that the 

Brunt-Väisälä period  (!!) ~5 min, the angle was found to be ~42.5°.  

To determine the center of CGWs, the same procedure as applied for the O2 

762-nm of IMAP/VISI data was used for Rikubetsu OH and OI data. The mapped 

airglow image and fitted circle are shown in Figure 3.4 for OH data (a) and OI 557.7-

nm data (b). The estimated center for the CGWs in OH emission is at 33°N in latitude 

and 142°E in longitude with the outermost radius is ~1200 km, and for the CGWs in OI 

557.7-nm is at 35°N in latitude, and 143°E in longitude with a radius of ~1100 km. 

Compared the center location and radius with those estimated by IMAP/VISI (33° N, 

143°E and ~1400 km), it is obvious that the CGWs in OI 557.7-nm, OH and O2 762 nm 

emissions have the same source.  

Considering the small-scale horizontal wavelength and elevation angle, it is 

almost impossible for the gravity wave to propagate to a very long distance directly 

(such as ~1400 km). This indicates that the CGWs observed both by IMAP/VISI and 
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Rikubetsu all sky imager could be ducted since the duct-mode atmospheric gravity 

waves can propagate for long distance [e.g. Taylor et al., 1993; Waltersheid et al., 

2001]. The detailed discussion on ducted propagation will be given in the Section 3.2.2 

using the Wakkanai wind data for a possibility of wind ducted mode and SABER data 

for thermal ducted mode.  

 

3.2. Discussion 

 

3.2.1. Relationship between CGWs Patterns and Convection Activity Map 

 

Convective activity in the lower atmosphere, i.e., the troposphere, such as a 

development of cumulonimbus cloud, typhoon and tornado, are potentially the main 

sources of CGWs considering the typical spatial scale (~tens to hundreds km) of these 

activities. The estimated centers of three different data set (O2 762-nm emission taken 

by IMAP/VISI, OH and OI 557.7-nm emission taken by the Rikubetsu all-sky imager) 

were found to be 33±2 °N in latitude and 143±2 °E in longitude. Here, we analyzed the 

meteorological data obtained with MTSAT and TRMM over Japan covering the center 

of CGW. Figure 3.5 (a) shows the convective index derived from the top-cloud 

temperature data of MTSAT satellite at 1100 UT on October 18, 2012 with the 

Equation 2.1. The data show a deep convective activity covering wide area of the 

Honshu Island, which likely associated with the typhoon located in the southern part of 

the Honshu Island. The typhoon could be one of the sources of the CGWs, but the 

location of typhoon eye (30° N, 136° E) was too far to the south from the estimated 

center of CGWs. Therefore we suggest that the source of this CGWs is the deep 

convective activity over the Honshu Island (index value up to 40) instead of the typhoon 
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eye. This is consistent with our initial suggestion (1), which suggested the source was 

convective activity in the lower atmosphere. 

The estimated center (marked with a cross in Figure 3.5 (a)) is probably shifted 

from the active convective area likely due to the strong eastward wind around the 

tropopause, which is discussed in detail in Section 3.2.2, and shown in Figure 3.8 (a). 

The convective index strongly correlates with the development of the convective 

clouds, e.g. the cumulonimbus cloud, which usually connected with precipitation 

[Ohsawa et al., 2001].  The development of the convective cloud involves a strong 

vertical motion that possibly generates the CGWs. In the most cases, within an hour, in 

the location of the convective cloud, heavy precipitation occurs. Therefore, precipitation 

data can be used to examine the development of the convective cloud and the generation 

of the CGWs. Figure 3.6 shows the successive 3-hourly precipitation data obtained by 

TRIMM from 0600 UT to 1500 UT on October 18, 2012.  

The only highly localized precipitation was observed up to 19.7 mm/hr at 0600 

UT around the expected center was located a few hundred km (~500 km) to the west 

around (33°N, 136°N). Thus, this could be the source of the CGWs. The time difference 

between the beginning of the highly precipitation rate (0600 UT) and the observation of 

the CGWs over Rikubetsu is ~6 hours. However, only looking from the precipitation 

data without a ray tracing model and simultaneous background wind measurement, we 

cannot determine the exact location or time (where and when) of precipitation directly 

correlated with the launch of CGWs.  

A ray-tracing model can estimate precisely the time needed for the CGWs to 

propagate from its source in the lower atmosphere to the observed emission layer in the 

MLT region, and also estimate the horizontal distance from the source. However, in the 

present study, we made a rough estimation of the time needed to propagate from the 
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source to the outermost ring of airglow layer (rmax) based on the simple propagation 

geometry of CGWs [Dewan et al., 1998] given by 

 

! = !!"#
!!"

      (3.2) 

!!" = !"
!!!

= !!
! 1− !!

!
!

   (3.3) 

 

where T is the propagation time, rmax is the outermost ring (~1400 km from IMAP/VISI 

data), Kx is the horizontal wavenumber, λx is the horizontal wavelength, !! is the Brunt-

Väisälä period and !  is the observed period (9.2 min from Rikubetsu data). The 

horizontal group velocity (vgx) is found to be ~65 m/s from Rikubetsu data. The 

propagation time T is then calculated to be around 6 hours. This time is consistent with 

the beginning of the high precipitation activity, i.e., ~0600 UT on 18 October 2012, as 

seen in Figure 3.6. 
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Figure 3.5. The convective index derived from the TBB data of MTSAT satellite at 

1100 UT on October 18, 2012 (a). Dash-dotted line represents an approximate circle 

fitted to the CGW pattern, and a cross mark is its center. (b) TRMM data at 0600 UT 

plotted together with CGWs even in O2 762-nm and location of SABER data available 

during the event. 
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Figure 3.6. The precipitation data (mm/hr) from the TRMM satellite during the period 

from 0000 to 1500 UT, October 18, 2012. 
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3.2.2 Background Profile Condition and Wave Propagation Mechanism  

 

Although the localized convective activity, such as convective cloud, typhoon or 

tornado, frequently occurs, the CGWs were relatively rare to observe from the ground-

based observation in the upper atmosphere [Suzuki et al., 2007]. However, from the 

IMAP/VISI observation data, we found that these type gravity waves are not very rare. 

The reason why the ground-based observation could only observe a few events is due to 

the restrictions of ground-based measurement; limited field of view (FOV), no 

observation over the ocean area and also the ground-based observations depend heavily 

on the weather conditions. The detailed statistical study on these events is given in 

Chapter IV.  

Despite the relatively common occurrence, the CGWs’ upward propagation is 

strongly affected by the background wind profile [e.g. Suzuki et al., 2007; Yue et al., 

2009; Vadas et al., 2010]. In this study, we examined the background wind profile in 

the lower and middle atmosphere (0-60 km) from MERRA data and that in the MLT 

region (84-102 km) from the Wakkanai MF radar. Figure 3.7 shows the background 

zonal wind profile on the October 18, 2012 event from both MERRA and Wakkanai 

data. Black dashed-line represents the zonal wind derived from MERRA data over 

Wakkanai (45°N, 141°E) at 1200 UT (time of CGWs observation) while the red dashed-

line represents the zonal wind data over the center of CGWs (33°N, 143°E) at 0600 UT 

(time of generation of the CGW source in the lower-atmosphere). The zonal wind in the 

MLT region obtained from Wakkanai MF radar shown in the solid red line. The 

positive wind speed represents the eastward wind direction while the negative value 

shows the westward direction.  
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Figure 3.7. Zonal wind profile obtained from MERRA data over the expected center 

(33°N, 143°E) (0-60 km) at 0600 UT (black dashed line) and over Wakkanai (45°N, 

141°E) at 1200 UT (red dashed line). Zonal wind profile obtained from Wakkanai MF 

Radar (84-102 km) at 1200 UT is shown in solid red line. 

 

 

From the Figure 3.5 (b) we can see that the expected center (33°N, 143°E) was 

shifted eastward about ~500 km from the active convective area (33°N, 135°E). This 

fact suggests that there might be a strong eastward zonal wind in the lower atmosphere. 

Vadas et al. [2009] stated in her model study that an eastward wind with the velocity 

>30 m/s can shift the center of the CGWs up to 200 km to the east. Therefore, in this 

study we first looked at the background wind conditions around the expected center to 

analyze the effect of wind in the lower atmosphere to the propagation direction of the 

CGWs.  



CHAPTER III. RESULT AND DISCUSSION PART I: CASE STUDY 77!

 

Figure 3.8. Background wind profile obtained from MERRA at 0600 UT on 18 

October 2012: (a) Zonal wind speed from 0-60 km at the latitude of 33°N with 

longitudinal range from 134° to 144°E, (b) meridional wind speed from 0-60 km at 

longitude of 143°E with latitude from 28° to 38°N, (c) contour of zonal wind speed 

and (d) contour of meridional wind speed at the altitude of 60 km. 

 

 

Figure 3.8 (a) shows the zonal wind speed at 33°N along the longitude range 

from 134° to 144°E at 0600 UT on 18 October 2012. Strong eastward wind with a speed 

of 40 m/s was seen around the source location and slowing down to 20 m/s around the 

expected center. This fact could be the reason why the wave center was shifted 

eastward. Upward propagating gravity waves from the lower atmosphere may encounter 

a “critical layer” which prevents the waves to propagate further upward [e.g., Taylor et 

al., 1993]. This filtering effect can occur at any altitude level when the horizontal wind 
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speed in the direction of the gravity wave propagation is equal to the observed 

horizontal phase speed (c=u). When the horizontal wind along the propagation direction 

is equal to the c, according to the dispersion relationship given in the Equation (2.4), the 

m2 is infinity, hence the gravity wave do not propagate upward anymore. On the other 

hand, when a strong wind blows in the opposite direction of the gravity wave 

propagation that |c-u| becomes enormous which leads the m2 to negative (m is 

imaginary), the gravity wave is evanescent. At the altitude when the m=0, the reflection 

of gravity wave occurs. 

Figure 3.9 shows the vertical profile of m2 as a function of neutral wind (u). 

Here, m2 was calculated based on the dispersion relationship theory given in Equation 

(2.4), adopting the wave parameters derived from the Rikubetsu all-sky camera 

(horizontal wavelength of ~50 km and wave speed ~100 m/s) and assuming the 

background wind from -60 to 60 m/s. The value of m2 starts becoming negative when u 

< -40 m/s, which means at the altitude when the background wind speed is 40 m/s in the 

opposite direction of the wave propagation, the gravity wave is reflected.  

From the Figure 3.8(a), zonal wind speed above the center in the altitude range 

of 12-40 km is varying from 0-20 m/s, much smaller than the apparent horizontal speed 

of CGWs at the emission layer as mentioned earlier (~96-105 m/s). Obviously, this 

relatively weak background wind above the tropopause allows the CGWs to propagate 

upward without encountering the critical level. The wind starts to change its direction to 

eastward at stratopause (~40 km altitude) and reaches a speed of 60 m/s around 60 km 

altitude. It means that the westward propagating gravity waves are reflected off while 

the gravity waves propagating in eastward direction are hardly affected and can 

propagate upward freely. This is consistent with the CGWs seen in the Figure 3.2 

where we do not see the westward direction of the CGWs pattern.  
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Figure 3.9. Vertical profile of m2 calculated using the dispersion relationship for the 

background wind speed ranging from -60 to 60 m/s. See text for the details.  

 

 

The meridional direction of the background wind is shown in the Figure 3.8 (b), 

showing the meridional wind speed at 143°E with the altitude ranging from 28° to 38° N. 

Since this CGWs event was not one to one event, meaning that there was no immediate 

possible source in the troposphere at the expected center, here we carry out careful 

discussion on all the source possibilities to single out the most possible scenario. From 

the convective index shown in Figure 3.5 (a), we notice that there was also a typhoon 

centering in the southern part of Honshu Island that could be the source of CGWs. As 

already mentioned in the Section 3.2.1, this typhoon location was a little bit too far 

(~830 km) from the expected center but a strong meridional wind might shift the center 

in the northward direction. Therefore, we analyzed the meridional wind above the 
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typhoon eye to the expected center. The result shows that the northward wind velocity 

was insignificantly small, in the range of 0 - 14 m/s, above the tropopause along those 

locations throughout this period. Thus, we conclude that we rule out the possibility of 

the typhoon eye as the source of the CGWs.  

Figure 3.8(c) and (d) show the contour of zonal and meridional wind at the 

altitude of 60 km obtained from MERRA data. The zonal wind shows a strong eastward 

wind (>50 m/s) above the expected center, indicating that the westward propagating 

waves could be reflected off (as already mentioned above), while the meridional wind 

shows a northward velocity with a speed up to 14 m/s. This northward wind was likely 

had a little affect for the waves moving southward, and therefore, the waves could be 

expanding in the southward direction as well. However, unfortunately, there was no 

observation data in the southward direction of the estimated center and we could not 

confirm this scenario. 

Figure 3.10(a) shows the zonal wind data in the MLT region (84-104 km) for 

1000 UT-1200 UT estimated from the Wakkanai MF radar data. The CGWs began to 

appear around 1100 UT for both OH (86 km) and OI 557.7-nm (96 km) emissions at 

Rikubetsu. The absolute values of zonal winds in the MLT region during the period 

from 1000 to 1200 UT were always less than ~20 m/s as shown in Figure 3.10(a). The 

wind direction at 1100 UT dominated by the westward wind with the velocity less than 

~10 m/s. The apparent speed estimated from the eastward propagating CGWs is ~90-

105 m/s, much faster than the westward background wind. This fact suggests that these 

CGWs propagating upward could pass through the westward winds in the MLT region. 
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Figure 3.10 (a) Zonal wind profiles in the MLT region derived from the MF radar at 

10:00-12:00 UT on October 18, 2012. Eastward wind is positive. (b) Meridional wind 

profiles at 1000-1200 UT from the Wakkanai MF Radar.!

 

 

The hodograph at the altitudes of 86 km and 94 km showing the background 

wind direction is shown in Figure 3.11. The southeastward wind velocity dominates the 
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wind direction in both layers. In the altitude of OH emission (86 km), the wind velocity 

is increasing from 1000-1100 UT with the velocity of ~5-15 m/s. From 1100-1300 UT 

the wind increasing with the velocity varying between ~15-40 m/s. Unfortunately, there 

is no optical data from IMAP/VISI and the Rikubetsu all-sky imager after 1200 UT. 

However, the perpendicular wind direction to the CGWs likely did not affect the wave 

propagation. Therefore, it is reasonable to consider that the northeastward propagation 

of CGW seen during the period of ~ 1100 – 1200 UT continued after 1200 UT. 

The model study by Vadas et al [2009] showed that the CGWs near the 

mesopause are “squashed” or arc-like shaped if the intervening zonal wind in the 

altitude range of 12 - 87 km is more than ~20-30 m/s. This model study is consistent 

with the observations with both IMAP/VISI and Rikubetsu all-sky imager and confirm 

our initial suggestion (4), which showed the arc-like wave pattern (see Figure 3.2 and 

Figure 3.3) with the intervening background wind in the MLT region less than ~20 m/s.  

Based on the analyses mentioned above, the AGWs were likely generated by the 

convective activity seen in the lower atmosphere (Figure 3.5 (b)), and then the strong 

eastward wind around the tropopause shifted the waves eastward. The relatively low 

winds above the tropopause allow the wave to propagate upward but then the strong 

zonal in the altitude of 60 km reflected off the waves expanding in the westward 

direction, making the waves could only expanding in the eastward and northward 

directions, and might be in the southward direction up to the mesopause.  
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Figure 3.11. Hodographs at altitudes of OH emission layer at 86 km  (solid line) and O2 

emission layer at 95 km (dashed line) for 1000-1300 UT. Positive meridional wind 

means northward, and positive zonal wind means eastward.  

 

 

However, there is still one question remaining: How could such a small-scale 

waves propagate for a long distance up to ~1400 km from its source? One possible 

scenario is that the waves was propagate obliquely and when reached the mesopause 

height, the waves were ducted and continued to propagate horizontally until reached the 

distance when they were observed by IMAP/VISI and Rikubetsu all sky camera. 

Ducting region is described as a region with m2>0 between two evanescent 

regions in the atmosphere. The wave is vertically evanescent when m2<0; therefore the 

waves cannot propagate further upward. There are two possibilities of ducting mode, 

wind ducting and thermal ducting [e.g. Walterscheid et al., 2001; Nappo, 2002; 

Simkhada et al., 2009; Snively et al., 2008]. Based on the dispersion relation in Equation 
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(2.4), the evanescent regions may arise due to variation in the wind (u0 (z)), which is 

called the wind duct mode, or Brunt-Väisälä frequency (N (z)), which we call the 

thermal duct mode. In pure wind duct mode, the variation of the wind dominates the 

variation of the Brunt-Väisälä frequency. Several case studies of wind duct mode have 

been done in the past [e.g. Isler et al., 1997; Simkhada et al., 2009]. Figure 3.12 shows 

an example of wind duct mode reported by Simkhada et al. [2009]. They reported a 

small-scale gravity waves with horizontal wavelengths λh~15-20 km observed at Maui 

on 5 July 2003. From Figure 3.12 we can see that the wind duct mode needs a strong 

wind speed on the opposite direction of the wave propagation which depends on the 

wave parameters like horizontal scale and wave speed as described in the Equation 

(2.4). However, in the case of CGWs event, the background wind along the propagation 

track is relatively small. Thus, the wind duct for this type of gravity wave is unlikely.  

To confirm this theory, we simulated the required conditions of background 

wind strength needed to form a duct region for the CGWs case on 18 October 2012. We 

calculated the background wind assuming that the N is constant and using the horizontal 

wavelength (~50 km) and wave speed (~100 m/s) obtained from the observation. The 

result is shown in Figure 3.9, which suggests that the ducted region exists when wind 

velocities below and above the nightglow heights, i.e., altitudes of ~80 km and ~100 km 

respectively, were southward (opposite to the CGWs direction which is northward) with 

the speed more than 40 m/s (m2<0) and wind velocity at the nightglow height was weak 

with the speed of 0 to ~20 m/s (m2>0). 
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Figure 3.12. Background winds and squared vertical wavenumber analysis for 5 July 

2003 small-scale gravity wave event reported by Sikhamda et al., 2009 (top), which 

shows a strong wind inversion in the opposite direction of the wave propagation that 

lead the negative value of m2 at ~87 km and ~97 forming a duct region. The model 

simulation for the same event depicts upward wave propagation through the mesopause 

region (bottom).  

 

 

However, from the meridional wind observation from Wakkanai MF radar 

shown in Figure 3.10(b) we can see that the wind speed was less than 20 m/s 

propagating southward around the mesopause region. This relatively weak background 

wind resulted only in positive squared vertical wavenumbers throughout the mesopause 

and lower thermosphere region (80-110 km), in which the wave can still propagate 

upward in this region. Therefore, instead of considering the possibility of wind-ducting 

D. B. Simkhada et al.: Gravity waves at Maui, HI 3219

Fig. 2. Plots for July 5, 2003 ducted wave event depicting the vertical profiles of (a) measured (blue-solid)

and modeled (red-dashed) background wind fields with respect to wave propagation, (b) the Taylor-Goldstein

vertical wavenumber squared (m2) computed for measured (blue-solid) and modeled (red-dashed) background

wind fields. Contour plots depict (c) the measured background wind field over the course of the wave event

(11-14UT) and diurnal cycle, and (d) the calculated m2 drived from background wind and wave parameters

over the course of the wave event (11-14UT) and diurnal cycle.

seen extending over the entire field of view with similar horizontal scale to “ripple” waves (Hecht,250

2004). The wave was observed for 174 min from 10:51 to 13:45 UT in OH emission and from 10:54

to 13:48 UT in O2 emission. In both OH and O2 emissions, the wave was seen progressing northeast

at �50�±4� as measured clockwise from north. The arrow indicates the direction of propagation of

the wave. The average phase speeds of 37 and 36 m/s with equal horizontal wavelength of �15±1

km were measured in OH and O2 emissions, suggesting an observed period of �7±1 min.255

Figure 2a shows the vertical profile of background wind (uo(z)) and modeled wind (Uo(z)) pro-

jected along the observed direction of wave propagation, and derived from hourly meteor radar wind

data at the time 12-13 UT of the wave occurrence. The wind profile exhibited maximum positive

flow of �12 m/s at 92 km height, and gradually decreased above and below to minimum speeds of

�-33 m/s at 82 km and �-36 m/s at 99 km. For this analysis, we estimated the measurement uncer-260

tainty as the standard deviation of the mean to be �4 m/s for zonal and meridional winds between

80 and 100 km.

In order to derive the local vertical wavenumber squared (m2) these values of background winds

10

Fig. 2. Plots for 5 July 2003 ducted wave event depicting the vertical profiles of (a) measured (blue-solid) and modeled (red-dashed)
background wind fields with respect to wave propagation, (b) the Taylor-Goldstein vertical wavenumber squared (m2) computed for measured
(blue-solid) and modeled (red-dashed) background wind fields. Contour plots depict (c) the measured background wind field over the course
of the wave event (11:00–14:00UT) and diurnal cycle, and (d) the calculated m2 drived from background wind and wave parameters over
the course of the wave event (11:00–14:00UT) and diurnal cycle.

between ⇠20m/s (positive) and ⇠20m/s (negative) lead to
a region of positive m2 at the height range of ⇠85–95 km,
while the negative background winds greater than ⇠20m/s
above⇠96 km and below⇠84 km lead to the regions of neg-
ative m2 during the time of wave occurrence.

The structure of the background winds influence the nature
of wave structure at the time of observation. At 12:00UT,
the positive (or negative) background winds less than 15m/s
were able to make m2 positive, providing a ducting region at
85–95 km altitude range, and significantly increasing nega-
tive background winds greater than 20m/s above and below
this height range cause the region of negative m2. Figure 2d
plots the time-height contour of m2 derived from Taylor-
Goldstein equation using hourly background wind in the di-
rection of wave propagation. This shows that the propaga-
tion region (m2>0) of the wave in the duct was formed at
the height range ⇠85–95 km bounded by evanescent regions
(m2<0) at the top and bottom sides of the duct during the
time of wave occurrence. From 10:00UT to 11:00UT, a
similar wave would have been nearly evanescent for a large
altitude range. At 14:00UT and later, the wave would be
able to propagate over an expanding altitude range, and po-

tentially subject to critical level dissipation as the wind ap-
proaches and eventually exceeds its horizontal phase veloc-
ity. Thus, the ducting region was significantly modulated
in width, depth, and altitude over time as the wave was ob-
served.

4.2 30 November 2003: evanescent wave event

Figure 1c and d shows small-scale wave structures imaged
respectively in OH emission at 15:16UT and the O2 emis-
sion at 15:19UT on 30 November. This event extended over
the entire field of view as coherent waves in both OH and O2
emissions, progressing southwest at⇠250�±4�, as measured
clockwise from north. The arrow indicates the direction of
the wave propagation. The horizontal wave parameters were
derived from several successive images, with average hori-
zontal wave wavelength, phase speed and observed period
determined to be ⇠17±1 km, ⇠25±3m/s and ⇠11±1min,
respectively. The wave event duration was ⇠140min ob-
served from 13:20 to 15:40UT in OH emission and from
13:23 to 15:43UT in O2 emission.
Figure 3a plots vertical profile of the background wind

(uo) along the observed direction of horizontal motion of the

www.ann-geophys.net/27/3213/2009/ Ann. Geophys., 27, 3213–3224, 2009
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mode, we now discuss the thermal ducting mode where the strength of thermal duct 

depends mostly on the Brunt-Väisälä frequency, i.e. the thermal duct mode occurs when 

there is a sharp inversion of temperature gradient.   

Walterscheid et al. [2001] reported a nonlinear numerical study on possible 

thermal ducted of small-scale gravity wave  (λh~25 km) generated by a storm that 

observed over Adelaide that was believed to have traveled southward ~2000 km from 

its source in the tropic. Their result showed two duct regions in the stratosphere (20-60 

km) and lower thermosphere (60-140 km) shown in Figure 3.13. Snively et al. [2008] 

validated this study by conducting analytical and numerical simulations to explain the 

linear coupling between the stratospheric and lower thermosphere ducts. The 

thermospheric profile such as the neutral density, temperature and wind for both 

simulations was obtained from the MSIS-E-90 model. Figure 3.14 shows the schematic 

and result of model study for linear coupling between two duct regions. The result 

demonstrated that a simple wave tunneling is likely to be significant linear source of 

ducted wave propagating at high-altitude. The tunneling occurs when there is a 

resonance between two ducts, resulting energy exchange from one duct mode to another 

at the same frequency and horizontal wavelength [e.g. Fritts and Yuan, 1989; Snively et 

al., 2008]. This simple coupling mechanism is effective for a short-period gravity wave 

generated in the troposphere to become ducted around mesopause [e.g. Fritts and Yuan, 

1989; Walterscheid et al., 2001; Sutherland and Yewchuk, 2004, Snively et al., 2008]. 

In order to evaluate the thermal duct in the CGWs event on 18 October 2012, we 

used the temperature profile data obtained from the SABER instrument. As mentioned 

above, the waves were likely generated around 0600 UT, and fortunately, SABER has 

several simultaneous data around that time.  
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Table 3.1 shows the events around the wave generation time and Figure 3.5 (b) 

shows the time and location of each events mapped in the geographic coordinates. The 

Brunt-Väisälä frequency (N) can be derived directly from the temperature data using the 

following equations [Tuan et al., 1979]: 

 

!! = − !
!

!"
!" + !!

!!!
                                                         (3.4) 

 

where ! is atmospheric density and !! is the sound speed. Assuming an exponentially 

scaled atmosphere: 
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                                                         (3.5) 
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                                                                           (3.6)              

 

Therefore, !! can be written as 

 

!! = !
! −

!!
!!!
= !!!!

!!!
!!!
!                                                (3.7) 

 

where !, and H are the acceleration due to the gravity, and scale height, respectively. ! 

is the ratio of specific heats, kB is the Boltzmann’s constant, T is the temperature 

obtained from the SABER data and ma is the mean molecular mass (=28.96 atomic 

mass units). 
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Figure 3.13. Altitude profiles of m2 showing two duct regions in stratosphere and lower 

atmosphere [Waltherscheid et al., 2001].  

 

 

Table 3.1. SABER data on October 18, 2012 near the expected center around the time 

of the wave generation. All values reference to the 90 km tangent point. 

Event number Date Time (UT) Latitude Longitude 

37 2012-10-18 07:59:43 45.7456 146.523 

38 2012-10-18 08:00:52 41.8111 146.259 

39 2012-10-18 08:01:34 39.3782 146.165 

40 2012-10-18 08:02:45 35.3601 146.127 

41 2012-10-18 08:03:30 32.7702 146.157 

 

!
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Figure 3.14. Schematic of simulation study reported by Snively et al. [2008] (top) 

showing the linear coupling between stratospheric and lower-thermospheric ducts (top). 

Three bottom images show the vertical perturbation velocity depicting (a) stratospheric 

ducted wave excitation, (b) vertical propagation into thermosphere and (c) ducted wave 

propagation in both stratospheric and thermospheric ducts.  
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The most distinct feature of altitude profile of the N2 derived from the SABER 

data, shown in Figure 3.12(a), is the maximum value in the mesopause at the altitude of 

~95 km in the event number 40 and around ~100 km in the event number 41 data. This 

feature is constrained with a minimum value of N2 around the stratopause (~50 km) and 

lower thermosphere (~115 km). Thus, it is possible to produce duct-mode waves in the 

mesopause region where the N2 values are relatively large.  

The m2 profile then can be calculated using the derived Brunt-Väisälä frequency 

and the dispersion relation in Equation (2.4) by assuming the absence of background 

wind (u=0). Even though the dispersion relation is mostly valid for isothermal 

atmosphere, here we applied the equation to our non-isothermal atmosphere following 

the similar approach in previous studies by Walterscheid et al. [2001] and Hecht et al 

[2009]. The equation is given as 

  

!! = !!
!! − 1 !! − !

!!!                                           (3.8) 

 

where ! is the wave period obtained from the observation. In this discussion, we took 

only the event number 40 and 41, which were the closest to the expected center and the 

time of waves generation in the source region (~0600 UT).  

Figure 3.15(b) shows the plot of the vertical wavenumber squared as a function 

of altitude for two events (event number 40 and 41). The two events show a similar 

trend in the vertical wavenumber squared, where the m2<0 at the altitude of ~45 km and 

~110 km, forming a duct region in between. When m2>0 means that the wave can 

propagate vertically, on the other hand if m2<0 means that waves vertically evanescent 

[Walterscheid et al., 2001]. The altitude profile of m2 shows there are evanescent 

regions around stratopause and lower thermosphere bounding the region with m2>0 in 
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the altitude around 55-105 km. The m2 values become relatively large in the altitude of 

95-100 km. As we can see, the evanescent layer around the stratopause is thin; this 

suggests that there is a possibility of leakage of AGWs from the stratosphere into the 

mesosphere and then the waves trapped in the duct region. The AGWs can horizontally 

propagate further in the duct region until reach the distance of ~1400 km away then 

dissipate.  Thus, the thermal ducted mode is the most possible scenario for small-scale 

CGWs seen in this coordinated observations. The evanescent region in the lower 

thermosphere (~110 km) shown in the Figure 3.12(b) also indicates that the waves 

could not propagate upward to the thermosphere region. This fact is consistent with the 

observation, where we did not observe any waves pattern in the OI 630-nm from the 

Rikubetsu all-sky camera. 
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Figure 3.15. (a) Brunt-Väisälä frequency profile derived from the temperature profile 

of SABER data for event number 40 (black dashed-line) and event number 41 (red 

dashed-line). (b) Altitude profile of m2 for SABER data event number 40 (black dashed-

line) and number 41 (red dashed-line). 
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3.3. Concluding Remarks 

 

We focused on the partial (arc-like shaped) concentric gravity waves (CGWs) event 

using the data from the coordinated observation of IMAP/VISI, all-sky imager at 

Rikubetsu, MTSAT, TRMM and MF radar at Wakkanai, combined with MERRA data. 

IMAP/VISI observed the CGW event in O2 762-nm emission at ~1203 UT on October 

18, 2012 in the northeastern part of Japan. The similar pattern was also observed with 

the all-sky imager at Rikubetsu (43.5°N, 143.8°E) in the OI 557.7-nm and OH-band 

airglow emissions from ~1100-1200 UT. The horizontal wavelength, phase velocity and 

period of atmospheric gravity wave estimated from the OH data are ~50±2 km, 

~105±10 m/s and 8.6 min., and those from OI 557.7-nm data are ~51±2 km, ~96±8 m/s 

and 9.2 min with the estimated elevation angle of ~42.5°. On the other hand, the 

horizontal wavelength seen in IMAP/VISI O2 762-nm data is ~67±10 km.  

In order to locate the point source accurately, we fitted the points manually 

picked from the wave front on airglow pattern to a circle by using the least square 

method. The best fitted circle for IMAP/VISI data has an outermost radius of ~1400 km 

and the center is at (33°N, 143°E) in geographical coordinate and those for OH and OI 

577.7-nm emissions data at Rikubetsu the center are  (33°N, 143°E) and  (35°N, 143°E) 

with the outermost radius of ~1200 km and ~1100 km, respectively. Thus, we confirm 

that the CGWs observed both from IMAP/VISI and Rikubetsu all-sky imager generated 

by the same source since the radii and center positions are matched well with each 

other. The MTSAT and TRIMM data showed high-localized precipitation and 

convection activity over the Honshu island of Japan (up to 19.7 mm/h at 0600 UT), 

suggesting that this convective activity could be the source of the CGWs. The strong 

eastward wind around the tropopause was likely responsible to ~500 km shift the 
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estimated center eastward from the source. The relatively weak wind conditions above 

the tropopause (~18 m/s) allowed the wave to propagate upward then the strong zonal 

wind in the middle atmosphere (~60 m/s) reflected off the waves expanding in 

westward direction resulted in an arc-like shaped airglow pattern seen in the upper 

atmosphere. 

The data showed that the CGWs could propagate up to ~1400-1500 km 

horizontally from the source to the mesopause region, but not further away. The small-

scale horizontal wavelength and long distant propagation show that the CGWs observed 

both by IMAP/VISI and Rikubetsu all sky imager were likely ducted. From the analysis 

of the possible wind duct and thermal duct, we conclude that the wind duct was unlikely 

since the background wind from the Wakkanai MF radar during this period showed no 

strong wind in the opposite direction of the wave propagation, resulted only positive 

squared vertical wavenumber. On the other hand, the temperature profile obtained 

almost simultaneously with SABER is consistent with the generation of thermal duct. 

Thus, we concluded that the possible scenario is the thermal duct. The vertical 

wavenumber profile derived from temperature data obtained almost simultaneously 

with the SABER satellite around the expected center showed a possible ducting region 

between two evanescent regions at the stratopause and at lower thermosphere. The thin 

evanescent layer in the stratopause might allow some atmospheric gravity waves to leak 

into mesosphere and then ducted and travelled for long distance. Figure 3.16 

summarizes the plausible scenario of the CGWs propagation mechanism revealed with 

this study. However, the limitation of the observational data makes it difficult to explain 

precisely. Therefore, a future simulation study based on this result would be very useful 

to explain the characteristics of CGWs propagation in details. 
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Figure 3.16. Schematic drawing of plausible scenario of propagation mechanism of 

partially CGWs seen in O2 (762 nm) airglow emission from IMAP/VISI and OI (557.7 

nm) and OH emissions from Rikubetsu all-sky camera on 18 October 2012. 

!
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Chapter IV 

 

Observation Result and Discussion Part II: Statistical Study 

3-years of Concentric Gravity Waves Variability in the 

Mesopause as Observed by IMAP/VISI 

 

This chapter focuses on the statistical characteristics on the concentric gravity waves 

(CGWs) in the mesopause, especially on the occurrence variability, global and seasonal 

variation. In the past, CGWs event was investigated with case study basis, local 

information was clarified [e.g., Hapgood and Taylor, 1988; Dewan et al., 1998; Suzuki 

et al., (2007 and 2013), Vadas et al., 2010; Yue et al., (2009 and 2013); Akiya et al., 

2014, Azeem et al., 2005; Miller et al., 2015]. A statistical study on CGWs is necessary 

for comprehensive and quantitative understanding of the coupling process between 

lower and upper atmospheres since CGW event is useful to identify causal relationship 

between the two regions. To address this issue, space-based observations are ideal since 

they cover wider area globally and can measure atmospheric gravity waves without 

cloud obscuration. 

  Gong et al., [2015] surveyed the CGWs activity in the stratosphere (~40 km 

altitude) in CO2 emissions (4.3 µm) from AIRS (Atmospheric Infrared Sounder) data in 

the nadir direction. They showed the global distribution of CGWs occurred in January 
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and July 2010 with horizontal wavelengths ranging from 50 to 1700 km. They found 

that the occurrence of CGWs was mostly related to tropical and sub-tropical deep 

convective activities in summer and jet imbalance in winter. However, this study did 

not clarify its seasonal dependence since their analysis spanned only two months data. 

To our best knowledge, there is no statistical study of CGWs in the mesopause region. 

IMAP/VISI is one of a few space-based instruments that is capable of imaging small 

scale gravity waves in airglow emission (several tens km) in the mesosphere and lower 

thermosphere (MLT) region [Sakanoi et al., 2011; Akiya et al., 2014], which makes this 

instrument suitable for investigating the global characteristics of CGWs.   

We found totally 235 CGWs events from the O2 A-band airglow emission data 

taken with IMAP/VISI during the period of 3 years from 2013 to 2015. Using the 

method described in Chapter II, the wave parameters were derived. The occurrence 

variabilities in seasonal, latitudinal and global distribution of the CGWs events are 

shown in the observation result. In the discussion, the occurrence variability and global 

distribution of occurrence are compared with the results presented in past studies. 

Background wind data from GAIA was used to explain the latitudinal and seasonal 

distributions.  

 

4.1.  Observation Results 

 

4.1. 1.  Occurrence Probability and Characteristics of CGWs 

 

Figure 4.1 summarizes the quantitative characteristics of all of the CGW events 

examined in this study. Figure 4.1(a) is the histogram showing the total IMAP/VISI 

paths per month. IMAP/VISI provides data for approximately 15 paths/day which 
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makes total of ~400-500 data path/month in average. The number of paths normalizes 

the occurrence probability, distribution of horizontal wavelength and maximum radius. 

Figure 4.1(b) indicates the number of CGW events per month.  Out of the 235 CGW 

events, 104, 85 and 46 events occurred in 2013, 2014 and 2015, respectively. Compared 

Figure 4.1(a) and Figure 4.1(b), it is clear that that the occurrence rate of CGWs event 

is less than 5% of total paths. From the 3 years data, we can see that the occurrence is 

low during the solstice (June-July and December-January) and significantly higher 

during non-solstice months (February-May and August-November). 

Figure 4(c) shows the measured horizontal wavelength of CGWs ranging from 

50 km to 250 km, and it was dominated  (~70 %) by 60-150 km scale. Note that the 

result of horizontal wavelength is constrained by the horizontal resolution of 

IMAP/VISI instrument mentioned in the Chapter II, meaning that CGWs with smaller 

scales (less than approximately 30 km) that usually can be observed from the ground-

based imager are not detected here. Gong et al. [2015] reported that majority of the 

horizontal wavelength in the stratopause falls between 400-1300 km with the average 

values in January and July are 800 km and 500 km, respectively. These results are much 

larger than that observed by IMAP/VISI (60-150 km). This difference is probably 

caused by the difference in the spatial resolution (~30 km for IMAP/VISI data, ~50 km 

for AIRS data) and swath width of field-of-view between AIRS (1650 km) and 

IMAP/VISI (600 km). 

Figure 4.1(d) shows the maximum radius of the CGWs pattern ranging from 

200-3000 km, and it was dominated by 600-1800 km radius. The maximum radius was 

calculated from the center to the outermost ring seen in the O2 airglow emission data. 

This result of maximum radius is greater than those estimated with ground-based 

imager presenting the maximum radius between 200 km to 300 km [e.g., Suzuki et al., 



CHAPTER IV. RESULT AND DISCUSSION PART II: STATISTICAL STUDY 99!

2007; Yue et al., 2009]. Nishioka et al. [2013] reported a concentric gravity wave event 

in the F-region that was observed in GPS TEC data over the North America after the 

2013 Moore EF5 tornado. The waves could propagate up to ~1600 km in the horizontal 

direction. A recent simulation study by Liu et al. [2014] suggested that typhoon-

generated CGWs could travel up to a few thousand km from its center. Our results from 

IMAP/VISI data clearly demonstrate a comprehensive and precise characteristics are 

not only for the maximum distance of CGWs propagation but also for its seasonal 

dependence and horizontal wavelength. Figure 4.2 shows the characteristics of the 

observed CGWs separated in northern and southern hemisphere. The occurrence rate is 

slightly higher in the northern hemisphere by ~24%, suggesting that the convective 

activities over the continent are likely more significant as the source of the CGWs.  

 

4.1.2. Global, Seasonal and Latitudinal Distribution of CGWs 

 

The global distribution of CGWs center is shown in Figure 4.3(a). The global map 

shows some favored regions (e.g. Central Africa and North America) but very few 

events over equatorial convective regions such as Indonesia and South America. One 

possible explanation for the lack of CGWs at equator is that the spatial scale of CGWs 

may be small in this region. If a CGW is excited by vertically deep and horizontally 

small heating at Equator associated with individual convective clouds, its horizontal 

wavelength might become smaller than the horizontal resolution of IMAP/VISI. 

However, the strength of latent heat release, or the nature of middle-atmosphere 

structure (wind, pressure, temperature) could also be the reason of the contrast drawn 

between the favored region and over the convection region in the tropics. 
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Figure 4.1. (a) Monthly-total path number from January to December. Red, black and 

green are 2013, 2014 and 2015, respectively. (b) Monthly occurrence number of the 

CGWs. (c) Distribution of horizontal wavelength.  Horizontal wavelength of 60-150 km 

is dominant. (d) Distribution of the maximum radius shows the majority of the CGWs 

travel a distance of 600-1800 km from its center. 
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Figure 4.2. The same as Figure 4.1, except these figures show the distribution of 

occurrence rate (b), horizontal wavelength (c) and (d) maximum radius in northern and 

southern hemispheres. 

 

 

 The latitudinal distribution of the CGW centers shown in Figure 4.3(b) has 

peaks at mid-latitudes (40°N and 40°S) and minimum at low-latitudes (10°S). In this 

figure, the number of CGW event was zonally averaged at each latitudinal interval of 
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10°, and normalized by the observation time, considering the fact that the ISS orbit 

provides more observation in the higher latitudes than in the equatorial region. The 

result is consistent with a modeling study by Liu et al. [2014] that displayed the 

occurrence of CGWs excited by convective activity were seen at low to middle latitudes 

with a broad range of radius. Liu et al. [2014] also showed the occurrence is low around 

the equator, consistent with the IMAP/VISI observation. Note that the horizontal 

resolution of the CGWs in their simulation study is ~200 km. 

Figure 4.4 shows the number of CGW events normalized by observation time as 

a function of latitude from January to December. The solid red line represents the data 

in 2013, black line is 2014 and green line is 2015. It is obvious that strong latitudinal 

and seasonal variations exist, and that CGWs are active in the periods of February-May 

and August-November, and also there is significant asymmetry between the northern 

and the southern hemisphere particularly during the active period (February-May and 

August-November) as shown in Figure 4.5 and Figure 4.6. 

If we look precisely at the result during the high activity period (February-May 

and August-November), there are more events in the southern hemisphere during 

February-March, but this toggles rapidly to more occurrences in the northern 

hemisphere during the April-May. During August-September, more events occur in the 

northern hemisphere, and there is a rapid change during October-November toward 

more occurrences in the southern hemisphere.  These significant changes before and 

after the equinoxes are probably related with the background wind changes its direction 

[e.g. Yue Deng et al., 2014].  
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Figure 4.3. (a) Global distribution of CGWs occurrence during the period of 2013 to 

2015. (b) Zonally averaged latitudinal occurrence probability of CGWs event which 

shows maxima at 40°N and 40°S and minimum at 10°S. 
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Figure 4.4. Latitudinal distribution of event number from January to December (a) and 

transition of CGWs occurrence between northern and southern hemisphere before and 

after the equinoxes (b).  

 

 

 

  

Figure 4.5. Transition of CGWs occurrence between northern and southern hemisphere 

before and after the equinoxes on February-March to April May seen in the latitudinal 

distribution profile (top) and global map (bottom).  
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Figure 4.6. Same as Figure 4.5, except for transition seen between August-September 

and October-November.  

 

 

4.2. Discussion 

 

4.2.1. Comparison with Previous Studies: Occurrence Variability and Global 

Distribution 

 

Yue et al. [2009] analyzed ~5 years data from an all sky camera at Yucca Ridge Field 

Station, Colorado (40.7°N, 104.9°W) and used the OH data (~87 km altitude) from 

2003 to 2008.  9 CGW events were found with a typical horizontal wavelength of 40 to 

80 km. They found that the CGWs occurred only during the periods of May-June and 

August-September. This observation was conducted in the northern hemisphere 

(~40°N). In contrast, IMAP/VISI data covered both hemispheres and showed that the 

global occurrence was seen in every month, with significantly higher during the periods 
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of February-May and August-November, as presented in Figure 4.1(b). The inter-

hemispheric transition seen in Figure 4.5 and Figure 4.6 obviously shows that the 

activities during February-March and October-November are mainly in the southern 

hemisphere, explaining the relative decrease of event detection during the same periods 

by Yue et al. [2009]. Figure 4.7(a) shows the comparison of seasonal dependence of 

CGWs obtained from Yucca Ridge data and IMAP/VISI data.  

 

 

 

Figure 4.7. Occurrence variability comparison between ground-based observation at (a) 

Yucca Ridge (Yue et al., 2009) and (b) IMAP/VISI (present study). 

 

 

IMAP/VISI 

(a) 

(b) 
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The global distribution of the CGWs in the mesopause has never been reported 

so far, and therefore, this study makes the first attempt to reveal the global distribution 

of CGWs in this region. On the other hand, there are several studies of global 

distribution of gravity waves in the lower atmosphere. For an instance, the global 

distribution of gravity waves without classification was analyzed using the AIRS 

radiance data in the stratopause [e.g., Hoffmann and Alexander, 2009; Gong et al., 

2012; Hoffmann et al., 2013]. In addition, Ern et al. [2011] reported the global 

distribution of general gravity wave momentum flux using the HIRDLS data for various 

altitudes from 30-70 km.  

Focusing on the CGWs statistical study, Gong et al., [2015] reported a global 

distribution of CGWs in the stratopause (~40 km) and compared it with the ECMWF 

model. They found a similar distribution with the result derived from IMAP/VISI data, 

showing a band-like high activity occurrence in the southern hemisphere both for 

daytime (descending) and nighttime (ascending). They also found several hotspots over 

deep convective region, such as Indonesia, Central Africa and South America. The 

correlation between the deep convective region and CGWs occurrence was higher 

during day time, while during nighttime they found that the occurrence was shifted from 

the deep convective activity region to higher latitude, especially over Indonesia. This 

result has a good agreement with our result where we observed almost no activity over 

deep convective region over Indonesia. Despite the similarity of the distribution, the 

result reported by Gong et al. [2015] did not show full seasonal variability. Thus, the 

full seasonal variability estimated from IMAP/VISI data gives us an advantage for 

clarifying more comprehensive picture on the global characteristics of CGW.  
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4.2.2.  Relationship of Zonal and Latitudinal Distribution of CGWs with the 

Background Wind 

 

Previous studies demonstrated that upward propagation of CGWs strongly affected by 

the background wind. Both Suzuki et al. [2007] and Yue at al. [2009] suggest that only 

very low background wind conditions allow CGWs to propagate upward to the 

mesopause without any significant wind filtering. According to this suggestion, the 

CGWs occurrence should be maximized around the equinoxes when the wind speed is 

close to zero in the stratosphere and mesosphere, while very low CGWs activity is 

expected during solstices when the wind speeds are strongest. This idea is basically 

consistent with the IMAP/VISI data showing that the CGW activity with low activity at 

solstice and high around equinox. Thus, it implies that not only near zero winds (< ~10 

m/s) allow the CGWs to propagate upward to the mesopause (~95 km) but low to 

moderate background wind conditions (~15-30 m/s) are important to take into account 

as well  [Vadas et al., 2009]. However, the present study also demonstrates interesting 

behaviors of the CGW occurrence, such that there is year-to-year variability and 

sometimes the occurrence peak is not always at equinoxes but shifted before or after. As 

shown in Figure 4.1(b), the total number of occurrence varies each year in which one 

year has significantly higher occurrence than others. The occurrence in 2013 (104 

events) is higher by ~22% than in 2014 (85 events). The occurrence in 2015 (46 events) 

even though only 8 months, seems to be comparable with 2014 occurrence. The 

variation may due to the variation of source, background profile (wind and temperature) 

in the middle atmosphere. However, since the mechanism is complicated, it is difficult 

to tell straight forward which factor is the most significant. More detailed analysis is 

needed, however this is out of the scope of this thesis. 

 In order to validate the hypothesis regarding the effect of the background wind 
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mentioned above, we used the zonal-mean zonal wind from GAIA data assuming that 

the meridional winds are much smaller than the zonal wind and the longitudinal 

dependence is negligibly small. Using GAIA, we analyzed the distribution of zonal 

wind at altitude range between 10-95 km for each month from 90°S- 90°N, in order to 

represent the latitudinal and seasonal wind between the tropopause and airglow layer. 

Vertical propagation is limited to conditions when the horizontal phase speed (cx) is 

equal to the horizontal background speed (U) in the direction of wave propagation 

[McLandress, 1998]. Under these conditions, the waves encounter critical level at 

certain altitude when the wave speed reached the background wind speed. Figure 4.8 

shows an example of latitudinal distribution of zonal-mean zonal wind obtained with 

the GAIA data on March 2013. The solid line represents the minimum wind speed 

(westward wind) and dashed line represents the maximum wind speed (eastward wind). 

The range between the minimum and maximum winds indicates the critical level 

region.   

We can see that the atmospheric gravity waves with cx=50 m/s should be outside 

the critical level filtering range, meaning that the westward and eastward phases of the 

CGWs can propagate through the stratosphere and mesosphere without encountering 

critical level filtering. Based on this method, we examined the critical level filtering 

effect for the each season using the results on the seasonal variation of CGWs described 

in the Section 3.1. We divided the season into solstices, i.e., December-January and 

June-July, and around equinoxes where the CGWs occurrence is high (February-May 

and August-November). The results are shown in Figure 4.9. We can see that around 

the equinoxes (February-May and August-November), the wind range is 0 to ~±30 m/s 

which means the waves with |cx|> ~30 m/s can propagate in both direction in the 

latitudinal range of 50°S-50°N. On the other hand, only high-speed waves (|cx|>~100 
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m/s) can propagate upward during solstices due to the strong zonal wind (~100 m/s) at 

the mid-latitude. These analyses explain the statistical result in the present study 

showing higher occurrence around the equinoxes than the solstices. In this figure, we 

also confirm the hypothesis that not only near zero winds allow the CGWs to propagate 

upward to the mesopause, but also low to moderate wind (~30-50 m/s) can support the 

upward propagation. Further, this moderate winds (~30 -50 m/s) must also contribute to 

produce the partial rings pattern seen in the airglow emissions at mesopause.  

 

 

 

Figure 4.8. Latitudinal distribution of zonal-mean zonal wind from the GAIA data 

between the altitude ranges of 10-95 km. The solid line represents the minimum wind 

(westward wind) and dashed line represents the maximum wind (eastward wind). The 

Blue shaded region indicates the critical level region. The waves with horizontal phase 

speed (cx) > ±50 m/s can avoid the critical level filtering. 

Encounter 
critical level 

Not encounter 
critical level  
(Propagate up to 
mesosphere) 



CHAPTER IV. RESULT AND DISCUSSION PART II: STATISTICAL STUDY 111!

 

Figure 4.9. Latitudinal distribution of zonal-mean zonal wind from the GAIA data 

between altitude range of 10-95 km on solstices (Dec-Jan and Jan-Jul) and equinoxes 

(Feb-May and Aug-Nov).  

 

 

4. 3.  Concluding Remarks 

 

The CGW occurrence variability in the mesopause region (~95 km) was examined 

using 3 years O2 A-band airglow data taken with IMAP/VISI. Statistical analysis of 235 

CGWs events indicated that horizontal wavelength ranged from 50 km to 250 km, 

dominated (70% of total event) by 60 km to 150 km (i.e., mesoscale structures). The 

!

Solstice 

Solstice 
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maximum radius of concentric pattern showed that CGWs could travel for a distance up 

to 3000 km with typical radii of 600-1800 km. The global distribution of CGW centers 

showed preferential occurrence at mid-latitudes, with peaks around 40°N and 40°S, and 

a minimum around 10°S. On the interhemispheric seasonable variability, more events 

were found at mid-latitudes in the summer hemisphere, with a rapid transition between 

northern and southern hemispheres occurring around the equinoxes. The monthly 

occurrence probability showed a similar seasonal variation for each year; lower during 

the solstices and higher during non-solstice months. This observation led us to conclude 

that low to moderate background wind conditions were preferable for the unfiltered 

upward propagation of CGWs launched in the lower atmosphere. Further, the global 

map of CGWs events showed several preferable regions (e.g. Central Africa, North 

America) but very few events over convective regions in South America and Indonesia. 

The relationships between CGW events at mesopause, their sources and wave 

propagations is the key issue to understand the precise characteristics of CGWs, such as 

regional occurrence, year-to-year variability and so on. However, these issues are 

beyond the scope of this study and will be investigated in the future.  

!
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Chapter V 

 

Conclusion 

 

We focused on the spatial and temporal variability of concentric gravity waves (CGWs) 

in the mesopause region using the O2 A-band (762 nm) nightglow data from 

IMAP/VISI data. Concentric gravity waves (CGWs) are useful to identify one-to-one 

correspondence between the source region and upper atmosphere.  However, there were 

only a handful of reports on the CGWs since the opportunity of CGWs detection was 

rather limited. To address this issue, we performed two approaches: The first approach 

is a case study of CGWs to clarify the detailed characteristics of wave generation and 

propagation mechanism using coordinated satellite and ground-based observation data 

as well as simulation result. The second approach is a statistical study to examine the 

global distribution and seasonal variability of CGWs. 

On the case study, we examined a partial CGWs event obtained with coordinated 

IMAP/VISI and an all sky imager at Rikubetsu observations. IMAP/VISI observed the 

partial CGWs in O2 762-nm emission at ~1203 UT on October 18, 2012 in the 

northeastern part of Japan. The similar airglow pattern was also seen in the all-sky 

imager data at Rikubetsu (43.5°N, 143.8°E) in the OI 557.7-nm and OH-band airglow 

emissions from ~1100-1200 UT. The least square method was carried out to fit a circle 
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to observed concentric pattern to estimate the circle center, i.e. the source point, and the 

horizontal wavelength. Outermost radius of the best fitted circle for IMAP/VISI data is 

~1400 km centering at (33°N, 143°E) in geographical coordinate, and those of OH and 

OI 577.7-nm emissions data at Rikubetsu are ~1200 km centering at (33°N, 143°E) and 

~1100 km centering at (35°N, 143°E) respectively.  The horizontal wavelength, phase 

velocity and period of atmospheric gravity wave are estimated from successive image 

data at Rikubetsu, and found to be ~50 km, ~105 m/s and 8.6 min. from the OH data, 

and ~51 km, ~96 m/s and 9.2 min from OI 557.7-nm data the elevation angle of ~42.5°. 

On the other hand, the horizontal wavelength seen in IMAP/VISI O2 762-nm data is ~67 

km. It is evident that CGWs observed both from IMAP/VISI and Rikubetsu all-sky 

imager were generated by the same source since the outermost radii; horizontal 

wavelength and center positions are matched well with each other. From the MTSAT 

and TRMM data during this period, there was a high-localized precipitation (up to 19.7 

mm/h at 0600 UT) and convection activity (convective index ~40) over the Honshu 

island of Japan, around the estimated source point, suggesting that it is reasonable to 

consider this activity as the source of the CGWs. The strong eastward wind around the 

tropopause of ~40 m/s obtained from MERRA data was likely responsible to eastward 

shift between the estimated center [33°N, 143°E] and the most active area of 

convection/precipitation [33°N, 136°E]. From TRMM data, it is found that the 

relatively low winds above the tropopause (~18 m/s), which allowed the wave to 

propagate upward. Then, the waves were probably reflected by the strong zonal wind in 

the middle atmosphere (~60 km altitude) and finally expanded in a particular direction 

resulted in partial CGWs (an arc-like shaped pattern) seen in the airglow layers. The 

observed CGWs were likely ducted considering the fact that the small scale CGWs (~50 

km in horizontal wavelength) could propagate up to ~1400-1500 km horizontally at 
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mesopause. The vertical wavenumber profile derived from temperature data from 

SABER satellite around the expected center of the wave showed a possible ducting 

region between two evanescent regions in the stratopause (~45 km altitude) and lower 

thermosphere (~ 110 km altitude). The thin evanescent layer in the stratopause may 

allow some waves to leak into mesosphere and then ducted and travelled for long 

distance.  

On the second approach, we conducted a statistical study using 235 CGWs 

events obtained from IMAP/VISI data for 3 years. We applied the similar method as 

described in the case study to derive the wave parameters. It is found that the horizontal 

wavelength of CGWs ranged from 50-250 km, dominated (70%) by 60 to 150 km. The 

maximum radius of CGWs was ~3000 km and typical radii ranged of 600 – 800 km, 

suggesting that the mesoscale CGWs could travel for such a long distance. The global 

distribution of CGW center locations showed preferential occurrence at mid-latitudes, 

with peaks on 40°N and 40°S, and a minimum around 10°S. More events tend to occur 

in the summer hemisphere mid-latitudes, with a strong transition between northern and 

southern hemispheres occurring around the equinoxes. The monthly occurrence 

probability showed a similar seasonal variation for each year; low activity at solstices 

and high activity during non-solstice months. The comparison between this 

observational data with zonal wind profile from the GAIA model led us to conclude that 

low to moderate background winds around equinoxes (~ less than 30 m/s) were 

preferable for the unfiltered upward transmission of CGWs launched from the lower 

atmosphere. The global map of CGWs locations showed several preferable regions, 

such as Central Africa, North America, but very few events over convective regions in 

South America and Indonesia. Although we have revealed the characteristics of CGWs, 

some of issues, such as regional occurrence variability showing the contrast draw 
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between some preferable regions and convective regions in tropics, and year-to-year 

variation are still unsolved. These issues are beyond the scope of this study and will be 

investigated in the future.  

!
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