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Chapter 1

Introduction

1.1 Purpose of the study

Single atomic layer of graphite, known as graphene, becomes the most fundamental material

to study physics of two dimensional (2D) systems [1]. A confined electron in the 2D quantum

well of graphene behaves as an effectively massless particle [2]. This electronic property is

probed by changing the Fermi energy of graphene through application of an electric gate

voltage [1, 3, 4, 5, 6, 7, 8]. A combination of electronic gating and inelastic scattering of

light, known as Raman spectroscopy, elucidates interplay of electron, phonons, and photons

in graphene because we can tune the Fermi energy of graphene while simultaneously probing

phonon excitation [9]. Spectral properties such as intensity, spectral linewidth, peak position,

and lineshape of the Raman spectra can be modified by varying the gate voltage, indicating

an interplay of the electron-phonon interaction. However, the physical consequence behind

the change of spectral properties measured by experiment cannot be understood unless a

theoretical calculation of Raman intensity is performed. Understanding detailed mechanism

underlying the change of Raman spectral properties mentioned above is essential for the

progress of solid state physics, in particular, for the description of the electron-photon,

electron-phonon, and electron-electron interaction of graphene. The purpose of this thesis

is to investigate the gate modulated Raman spectroscopy in graphene theoretically and to

understand the origin of the change of spectral properties as a function of the Fermi energy.
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2 Introduction

1.2 Organization of Thesis

The organization of the present thesis is as follows. In Sec. 1.3 we present basic concepts

to understand gate modulated Raman spectroscopy and its related phenomena including

the Kohn anomaly (KA) effect, the quantum interference effect, and the Breit-Wigner-Fano

(BWF) asymmetry of the Raman spectra. In Chapter 2, methods to calculate electron and

phonon dispersion relations of graphene; and electron-photon, and electron-phonon matrix

elements are presented. In Chapter 3, calculated results for the first-order Raman spectra is

presented. We discuss the KA effect, the quantum interference effect and the BWF lineshape

of the first-order Raman spectra. The KA effect and the quantum interference effect of the

second-order Raman spectra will be given in Chapter 4. Finally, conclusion of this thesis is

given in Chapter 5.

1.3 Background

Here we introduce the backgrounds and concepts which are important to this thesis.

1.3.1 Introduction to graphene

Graphene is one-atom-thick structure made out of carbon atoms arranged on a honeycomb

lattice. Among various carbon allotropes, graphene serves as the basis for the understanding

of the electronic properties of more complex structures. Its three dimensional counterpart,

graphite, became widely known after the invention of the pencil in 1564 [10]. The reason

why we can use graphite as a pencil comes from the fact that graphite is made out of stacks

of graphene layers that are weakly coupled by the van der Waals force. Although graphene is

the most fundamental structure among different carbon allotropes and has been presumably

produced whenever someone writes with a pencil, graphene was only isolated after 440 years

since the invention of pencil [1]. Novoselov et al. isolated graphene in 2004 by exfoliating

graphite flakes with scotch (adhesive) tape and they measured its transport properties [1, 11].
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One of the most interesting transport properties of graphene is that an electron in

graphene behaves as a massless Dirac fermion described by the linear electronic energy

dispersion [2, 1, 12]. In undoped graphene, the Fermi energy lies exactly at a crossing

point of the two linear energy bands, known as the Dirac point. This dispersion mimics the

physics of quantum electrodynamics (QED) for massless fermions except for the fact that

in graphene the Dirac fermions move with a speed 300 times slower than the speed of light.

Hence, many of the unusual properties of QED can show up in graphene but at much slower

speeds. For example, the integer quantum Hall effect (IQHE) can be observed even at room

temperature [3, 4, 13].

The Dirac fermions can transmit through a potential barier with 100% probability for a

classically forbidden region of energy, known as the Klein tunneling phenomenon [14]. The

Klein tunneling in graphene has been predicted in 2006 [12, 15, 16] and observed experimen-

tally in 2007 [17, 5]. Under certain conditions, Dirac fermions are “immune” to localization

effects observed in ordinary electrons [18] and it has been established experimentally that

electrons can propagate without scattering over large distance of the order of micrometers

in graphene [1].

1.3.2 Raman spectroscopy of graphene

Raman spectroscopy is the inelastic scattering of light in which the difference of energy

between the incident and scattered light, known as Raman shift, is absorbed by the material

through various light-matter interactions. Studying the Raman spectra of materials allows us

not only to measure the phonon frequencies that are used for structure characterization but

also to measure their electronic structures, phonon dispersion relations, optical properties,

and interactions among elementary excitations (electrons, phonons, and photons) [19]. The

use of a photon as probe in Raman spectroscopy provides non-destructive characterization

technique at room temperature and ambient pressure.

In conventional Raman spectroscopy, we observe excitation of quantized lattice vibrations

Fig. 1-1: fig/ch1-ramanpros.eps



4 Introduction

Figure 1-1: Schematics of (a) the first-order anti-Stokes process, (b) the first- and (c) second-
order Stokes process. Optical transitions are indicated by straight lines, while the electron-
phonon interactions are indicated by wiggly lines.

or phonons. A Raman scattering process consists of (1) an optical transition of an electron

from the valence to the conduction bands, (2) the electron-phonon interactions and (3)

the electron relaxation back to the valence band by emitting a photon as shown in Fig. 1-1.

During the electron-phonon interaction, a phonon can be absorbed, known as the anti-Stokes

Raman process [Fig. 1-1(a)], or be emitted known as the Stokes Raman process [Fig. 1-1(b)

and (c)]. The anti-Stokes (Stokes) process gives a negative (positive) value of Raman shift

because the scattered photon energy is larger (smaller) than the incident photon energy. In

this thesis, however, we do not consider the anti-Stokes process and hereafter we simply refer

to the Stokes Raman process as the Raman process. The phonon excited during the Raman

process can have either a zero momentum q = 0 [Fig. 1-1(b)] or a non-zero momentum

q ̸= 0 [Fig. 1-1(c)]. The first-order Raman process corresponds to q = 0 phonon emission

[Fig. 1-1(b)] while the second-order Raman process corresponds to q phonon and −q phonon

emission processes [Fig. 1-1(c)] in order for the photoexcited electron to recombine with the

hole.

Raman spectroscopy of graphene gives the most fundamental Raman features among sp2

carbon allotropes. Figure 1-2 shows an example of the Raman spectra in graphene observed

by a laser excitation energy EL = 3.49 eV by Liu et al. [20]. The G band occurring at a

Raman shift 1600 cm−1 originates from vibration of carbon-carbon bond stretching which

degenerate in energy for longitudinal optic (LO) and in-plane tangential optic (iTO) modes

Fig. 1-2: fig/ch1-ramanxp.eps
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Figure 1-2: An example of the Raman spectra in graphene showing the D (∼ 1400 cm−1),
G (∼ 1600 cm−1), G∗ (∼ 2400 cm−1), and G′ (∼ 2800 cm−1) bands for a laser excitation
wavelength 355 nm (3.49 eV) from Liu et al. [20].

[see Fig. 2-6 in Chapter 2]. The G band is assigned to the first-order Raman spectra which

corresponds to the q = 0 zone-centered (Γ point) phonon as shown in Fig. 1-1(b). The G∗

and G′ bands are also intrinsic Raman features of graphene which are free from the defects

in the lattice. Because the Raman shifts of the G′ and G∗ lie above 1600 cm−1 which is

the largest phonon frequency of a single phonon, the G∗ and G′ bands are assigned to the

second-order Raman spectra in which both overtone and combination modes of two phonons

with q ̸= 0 take place [Fig. 1-1(c)]. We shall discuss detailed origin of the G∗ and G′ bands

in Chapter 4.

The G (G′) band peak position is dispersionless (dispersive) by changing EL. In the case

of the G′ band, by changing EL the corresponding phonon momentum q also changes so as to

satisfy the resonance condition. Thus the G′ band is dispersive as a function of EL. The EL
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Figure 1-3: (a) Schematic view of the back gate graphene device. A variable voltage Vg can
be applied between the graphene and the n-type silicon substrate. The device is treated as a
parallel plate capacitor where the silicon oxide layer is the dielectric medium. (b) Schematic
view of top gate graphene devices using electrolyte solutions. Figures are taken from Ref. [9]

dependence of the G′ band is important to measure phonon dispersion relation experimentally

combined with theory [21]. The intensity ratio IG′/IG sensitively depends on graphene’s

number of layers thus it becomes a powerful parameter for the characterization [19].

The D band occurring at ∼ 1400 cm−1 is a defect oriented Raman feature. The D band

is an extrinsic feature of graphene and therefore does not appear if graphene sample does not

have any defect. Concentration of point defects (impurities or vacancies) in graphene sample

is proportional to the intensity ratio ID/IG [22, 23]. The D band peak position, lineshape

and intensity are also important to characterize various type of grain boundaries or edges in

graphene or in graphene nanoribbon [24, 25, 26, 27]. In this thesis, we exclude the discussion

of the D band by assuming clean graphene samples without edges.

1.3.3 Gate modulated Raman spectroscopy

Gate modulated Raman spectroscopy is a method to perform Raman measurements while

changing the Fermi energy by applying a gate voltage to the sample. In the experiments,

back gated and top gated devices are mostly used. An example of back gated device is shown

in Fig. 1-3(a). An applied gate voltage Vg can induce a potential difference between graphene

Fig. 1-3: fig/ch1-gateMR.eps
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and the substrate of n-doped silicon separated by an insulator such as silicon oxide (SiO2)

layer. When the Vg is positive or negative relative to the Si substrate, electrons or holes,

respectively, are accumulated in the graphene layer. Induced charge density n is proportional

to Vg, given by:

n = α|Vg|, (1.1)

where α = 7.2 × 1010 cm−2V−1 is capacitance of the gate for 300 nm-thick SiO2 [28, 9, 1].

Charge density n is related to EF of graphene as follows:

∫ |EF|

0

D(E)dE = n∫ |EF|

0

gE

2π(ℏvF)2
dE = n (1.2)

g|EF|2

4π(ℏvF)2
= n

where D is the density of state per unit area, g = 4 accounting the spin and valley degenera-

cies and E = 0 is taken at the Dirac point. In Eq. (1.2), we have assumed the linear energy

dispersion of graphene E(k) = ℏvFk where ℏ is the Planck constant and vF = 108 cm/s is

the Fermi velocity of graphene. From Eqs. (1.1) and (1.2), we can relate EF and Vg as

EF = sign(Vg)ℏvF
√
πα|Vg|, (1.3)

where we have defined that + (−) sign of Vg denotes electron (hole) doping.

Figure 1-3(b) shows an example of a top gated device. The polymer electrolyte (liquid,

ionic conductor) is put on the sample. When the gate voltage Vg is applied between the

sample and a counter electrode, positive (negative) ions from the electrolyte are accumulated

near the graphene sample and they form an electric double layer combined with the electrons

(holes) in the graphene sample. Most works reviewed in this thesis are related to the bottom

gate modulated Raman spectroscopy therefore we use Eq. (1.3) for Vg to EF conversion.

Fig. 1-4: fig/ch1-yoonexp.eps
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Figure 1-4: An example of a gate modulated Raman measurement by Yoon et al. [28]. (a)
Optical microscope images of the back-gated graphene samples. S1 and S2 are single layer
graphene samples, and B1 is a bilayer graphene sample. (b) Schematic of the gate modulated
Raman measurement set up. (G: graphene, S:source, D: drain, Vg: back-gate bias voltage).
(c) G band of the single layer graphene sample (S1) as a function of the back-gate voltage
(Vg) at 100 K. The Fermi energy EF is controlled by Vg. Asymmetric factor of the G band
lineshape, −1/qBWF, is obtained by fitting to the BWF line shape in Eq. (1.4). (d) G band
of the BLG (B1) as a function of Vg at room. (e) G band frequencies ωG for S1, S2, and B1
as a function of EF at several temperatures. (f) G band broadening factor Γ and (g) G band
asymmetric factor −1/qBWF as a function of EF.

Figure 1-4 shows an example of a gate modulated Raman measurement by Yoon et

al. [28]. They measure the EF dependence of the G band spectra for two samples of single

layer graphene (S1 and S2) and a sample of bilayer graphene (B1) as shown in Fig. 1-

4(a). Figure 1-4(b) shows the back gated device with a configuration: (1) metal source

(S) and drain (D) electrodes, (2) graphene, (3) SiO2 and (4) n-type silicon substrate. A

gate voltage Vg is applied between n-type silicon substrate and the drain. They convert Vg

into EF according to Eq. (1.3), with a relation EF = sign(Vg − V0)ℏvF
√
απ|Vg − V0| where

V0 = −57.5 V is the constant voltage adjusted to the Dirac point in their experiment.

Figures 1-4(c) and (d) show, respectively, the G band spectra for S1 and B1 for several

EF. The G bands for charge neutrality point EF = 0 are shown in green colors and for

a positive (negative) EF values, the G bands are shown in red (blue) colors. The G band
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peak position [Fig. 1-4(e)] and linewidth [Fig. 1-4(f)] systematically change upon variation

of EF. This phenomenon is known as the Kohn anomaly (KA) effect (see Sec. 1.3.4 for

detailed explanation of the KA effect). Furthermore, in single layer graphene, the G band

exhibit asymmetric Breit-Wigner-Fano (BWF) lineshape [Eq. (1.4)] with asymmetric factor

1/qBWF also changes by varying EF [Fig. 1-4(g)]. Introduction to the BWF lineshape will be

presented in Sec. 1.3.6.

1.3.4 Kohn anomaly effect in graphene

Due to the presence of the gapless linear energy bands of graphene, electrons can easily be

excited from the valence band to the conduction band even by a small perturbation. Kohn

mentions that a phonon in a metal can excite an electron-hole pair leading to a change of

phonon frequency [29] which is known as the Kohn anomaly effect. The change of phonon

frequency depends on concentration of the conduction electrons.

KA effect on phonon dispersion of graphene

Phonon dispersion of graphene can be calculated by solving the dynamical matrix based

on a force constant model (Sec. 2.2). No matter how accurate our selection of interatomic

potential and how precise our calculation by including correction of dynamical matrix from

long-range nearest neighbor [27], the calculated results for the highest optical phonon band,

LO phonon at the Γ point and iTO phonon at the K point cannot reproduce the experimental

results by the force constant model since the experimental results [30, 31] give discontinuous

linear bands (kinks) at the Γ and K points as shown in red lines of Fig. 1-5.

Piscanec et al. [32] perform a first-principles calculation as shown in Fig. 1-5(b) for

graphene (GE) and graphite (GI) and for two different lattice constants aexp = 0.246 nm and

ath = 0.2479 nm. In upper panel of Fig. 1-5(b), the calculated results of graphene phonon

dispersions are well reproduced the experimental results when using aexp at the Γ point

and using ath at the K point. Taking a closer look at the Γ and K points [lower panel of

Fig. 1-5: fig/ch1-phdisp.eps
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Figure 1-5: (a) Calculation results of phonon dispersion relations from force constant model
(lines) compared with experimental results (dots) [30, 31]. (b) Upper panel: phonon dis-
persion of graphene (GE) from a first principles calculation with lattice constants aexp =
0.246 nm is from experiment [31] and ath = 0.2479 nm is optimized from the first-principles
calculation. Points: experimental data from Ref. [9]. The red straight lines at Γ and K are
obtained from Eqs. (8) and (10). The two lower panels correspond to the dotted windows
in the upper panel. The points are theoretical frequencies obtained by direct calculation. A
single graphene band corresponds to two almost degenerate graphite (GI) bands. [32]

Fig. 1-5(b)] , their results show linear dispersion near the Γ and K points for graphene and

graphite where slopes αK and αΓ are proportional to the square of electron-phonon coupling

at the Γ and K points, respectively. Such a discontinuity of phonon dispersion relation

arises because the conduction electron screens lattice vibration, known as the Kohn anomaly

effect [29]. In order to understand the mechanism of the electron-phonon interaction in the

Kohn anomaly phenomenon, changing the Fermi energy of graphene is useful since part of

interband electron-hole excitation can be suppressed by the occupation of electrons in the

conduction bands which is called the Pauli blocking effect. The change of the electron-phonon

interaction can be measured by gate modulated Raman spectroscopy of the first-order (G

band) and the second-order (e.g. G′ and G∗ bands) Raman spectra.

KA effect on first-order Raman spectra

Gate modulated Raman measurement of the G band shows peak position shift and linewidth

change as a function of gate voltage Vg as shown in Fig. 1-6(a) and (b) respectively. This

Fig. 1-6: fig/ch1-KA-G.eps
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Figure 1-6: The G band (a) peak shift and (b) spectral linewidth as a function of the Fermi
energy [33]. (c) The q = 0 Kohn anomaly process. A phonon with frequency ω0 excites
an electron-hole pair. This electron-hole pair then recombines and excites a renormalized
phonon with frequency ω [34].

phenomena is attributed to the Kohn anomaly (KA) effect of the G band. There are a number

of works reporting the KA effect of the G band [33, 35, 36, 37, 34, 38, 39] and all experimental

and calculation results show that the G band peak position (linewidth) increases (decreases)

as |EF| increases. The origins of peak shift and linewidth change are renormalization of

phonon frequency by excitation of an electron-hole pair as shown in Fig. 1-6(c). The G

phonon, that is excited during the Raman process in Fig. 1-1(b) with frequency ω0, now

excites an electron-hole pair vertically by the electron-phonon interaction. The electron-hole

pair is then recombined by emitting a renormalized phonon with frequency ω. The frequency

ω is a complex number with its real part gives the renormalized frequency and its imaginary

part corresponds to the phonon linewidth. When EF is nonzero, some electron-hole pairs

cannot be excited due to the Pauli exclusion principle. Therefore the decrease of phonon

linewidth at a finite EF which is nothing but the increase of phonon lifetime can be achieve

because the phonon is less scattered by electron-hole pairs.

KA effect on second-order Raman spectra

Araujo et al. also measure the gate modulated Raman spectra of the second order Raman

spectra, namely the G∗ and G′ [33]. Figure 1-7(a) shows the second order Raman spectra

Fig. 1-7: fig/ch1-KA-Gp.eps
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Figure 1-7: (a) The second order Raman spectra including the G′ and G∗ bands taken from
Araujo et al. [33]. (b) The G′ peak shift and spectral linewidth (inset) as a function of the
Fermi energy [33]. The G∗ (c) peak shift and (d) spectral linewidth as a function of the
Fermi energy [33]. (e) The iTA + iTO peak shift and spectral linewidth as a function of the
Fermi energy [37].

obtained by Araujo et al. The G′ band occurring at ∼ 2600 cm−1 is fitted by a Lorentzian

while the G∗ band is fitted by two Lorentzians with peaks located at ∼ 2450 cm−1 labeled

by G∗
1 and ∼ 2470 cm−1 labeled by G∗

2. The G′ band peak and linewidth as a function of

gate voltage Vg or the Fermi energy EF are shown in Fig.1-7(b). Compared with the Kohn

anomaly (KA) effect of the G band in Fig. 1-6, the KA effect of the G′ band is opposite in

terms of both peak position and linewidth. The opposite behavior comes from the non-zero

q phonons which non vertically excite the electron and hole pair. Because of this non vertical

transition with q ̸= 0, both intraband and interband electron-hole pairs contribute to the

KA effect. One can expect that intraband and interband transition may give opposite KA

effect with each other.

The opposite KA effect also exhibit at the G∗
1 peak position [Fig. 1-7(c)] and linewidth

[Fig. 1-7(d)]. However the G∗
2 band does not seem to be affected by the KA effect [Figs. 1-7(c)
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Figure 1-8: (a) Raman intensity of the G and G′ bands as a function of 2EF and the Raman
shift. (b) The G band intensity and frequency (inset) as a function of 2EF. (c) The G

′ band
intensity as a function of 2EF. [41]

and (d)]. Additionally, a combination phonon mode iTA + iTO occurring at ∼ 2220 cm−1

measured by Mafra et al. show the same KA effect as that of the G′ and G∗
1 [37][Fig. 1-7(e)].

Sasaki et al, discussed the opposite KA effect of the first- and second-order Raman spec-

tra [40]. They consider the competition of interband and intraband electron-hole excitation

in phonon perturbation to be of important contribution. However, since the Raman intensity

as a function of EF is not calculated, different dispersion of Raman peaks as a function of

EF cannot be explained from that theory. In this thesis, we would like to confirm the origin

of the KA effect in the second-order process by evaluating the electronic and vibrational

properties of graphene. Thus both the first-order and the second-order Raman spectra as a

function of EF can be calculated to be compared with the experimental results.

1.3.5 Quantum interference effect in graphene Raman spectra

In the viewpoint of Raman spectroscopy experiment, one can determine only photon states

(e.g. energy and polarization) of the incident photon and the states of the scattered photon.

Electronic states taking parts on the intermediate state of Raman scattering process are,

however, unknown. Quantum physics suggests that for a given initial and a final states of

a scattering event, scattering amplitudes through several intermediate states interfere with

each other.

Fig. 1-8: fig/ch1-qi.eps
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The quantum interference effect on a Raman scattering event can be observed if one

can disturb part of the intermediate states so that the Raman intensity changes. Gate

modulated Raman spectroscopy allows us to disturb that intermediate state, by changing

EF of graphene in which optical transition to the occupied states are not allowed due to the

Pauli exclusion principle. As a result, Raman intensity changes by varying EF indicate the

observation of the quantum interference effect.

Chen et al. observe the change of the G band and G′ band intensity by varying EF as

shown in Fig. 1-8 [41]. A 3D plot in Fig. 1-8(a) shows Raman intensity as functions of Raman

shift and 2|EF|. By taking a particular Raman shift, they plot G and G′ Raman intensities

as a function of 2|EF| as shown in Fig. 1-8(b) and (c), respectively. Interestingly, the G band

intensity shows a peak when 2|EF| = EL − ℏωG/2 where EL is the laser excitation energy

and ωG is the G band frequency. On the other hand, the G′ band intensity is monotonically

decreasing as a function of 2|EF|.

Chen et al. [41] argue that the peak observed at 2|EF| = EL − ℏωG/2 of the G band

intensity originates from opposite phase between two resonant condition, namely the incident

resonant condition when electron-hole energy equals EL and the scattered resonant condition

when electron-hole energy equals EL − ℏωG. Thus when we set 2|EF| = EL − ℏωG/2, the

scattered resonant condition is suppressed while the incident resonant condition survives. For

the case of the G′ band, because electron emits two phonons, no opposite phases between

the two resonant conditions are expected. Therefore they obtain monotonically decreasing

Raman intensity when number of scattering paths are reduced. However, the theoretical

analysis in their work assumes a constant matrix element therefore neglecting the change

of the Raman phase due to the electron-phonon matrix elements [41]. Previous theoretical

calculations by Jiang et al. [42] and Sasaki et al. [43] show that the electron-phonon matrix

elements change sign along electronic equi-energy lines in graphene and therefore can change

the Raman phase. A quantitative calculation is, therefore, necessary to understand how the

quantum interference effect affects the first- and the second-order Raman intensity.
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1.3.6 Breit-Wigner-Fano lineshape observed in carbon systems

Finally we introduce the Breit-Wigner-Fano effects of the G band in graphene. The asym-

metric Breit-Wigner-Fano (BWF) spectral lineshape is observed as a result of the interference

between continuous with discrete spectra [44]. The BWF lineshape is defined by the following

formula

IBWF(ωs) =I0
(1 + s/qBWF)

2

1 + s2

=I0

[
1

q2BWF

+
1− 1/q2BWF

1 + s2
+

2s/qBWF

1 + s2

]
, (1.4)

where s = (ωs − ωG)/Γ. Here ωs, ωG, 1/qBWF, Γ, and I0 are the Raman shift, the spectral

peak position, the asymmetric factor, the spectral width, and the maximum intensity of the

BWF spectra, respectively. Equation (1.4) tells us that the three terms in the right hand

side consists of a constant continuous spectrum, a discrete Lorentzian spectrum, and an

interference effect between both spectra. When 1/qBWF = 0, Eq. (1.4) gives a Lorentzian

lineshape which represents a discrete phonon spectrum. The interference term gives rise to

an asymmetric lineshape because s is a negative (positive) value when ωs < ωG (ωs > ωG).

The asymmetric factor is defined by a dimensionless parameter 1/qBWF, mimicking the ratio

of amplitude of the discrete spectra to that of the continuous spectra [45].

Historically, graphite intercalation compounds (GICs) are firstly observed in carbon ma-

terials to exhibit the BWF of the G band spectra [46]. An example is the G band of C8Cs

(donor atoms of Cs are inserted between graphite layers) as shown in Fig. 1-9(a). The contri-

bution of donated electrons from intercalated atoms (Cs) give the continuous spectra which

modify the discrete phonon spectral shapes to become the BWF lineshape. Metallic sin-

gle wall carbon nanotubes (m-SWNTs) also show the BWF lineshape of the G band [47] as

shown in Fig. 1-9(b). This asymmetric G band lineshape of m-SWNTs becomes an important

hallmark to distinguish m-SWNT samples from the semiconducting ones (s-SWNT) [48, 49].

In graphene, the BWF lineshape of the G band can be observed by the gate modulated

Raman spectroscopy as shown in Fig. 1-4(g) and 1-9(c) by Yoon et al. [28].
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Figure 1-9: Examples of BWF lineshapes found in carbon materials. (a) graphite intercala-
tion compound (C8Cs) [46], (b) m-SWNTs bundle [47], and (c) graphene with asymmetric
factor (1/qBWF = −0.071) when the Fermi energy equals zero [28].

A clue to find the origin of the BWF in graphene-related systems comes from the ob-

servation of electronic Raman scattering (ERS) feature in m-SWNTs by Farhat et al. [50].

The ERS spectra were observed exclusively in m-SWNTs but not in s-SWNTs. Although

the ERS spectra have well-defined peaks, their features are very broad with linewidth about

100 cm−1. That might be a reason why the ERS spectra are overlooked especially in bundled

or defective SWNTs. This ERS spectra in m-SWNTs can be distinguished from conventional

phonon spectra based on the EL dependence of the Raman spectra. Scattered photon en-

ergy (Es) of the ERS is always resonant to the excitonic energy Eii of m-SWNTs while Es

of the phonon spectra changes by varying EL as Es = EL − ωG, where ωG = 1600 cm−1 is

the G band Raman shift. The ERS spectra originate from the electron-electron interaction

between photoexcited carriers and electrons near the linear energy band of m-SWNTs [51].

Existence of energy gap in s-SWNTs prevents the ERS mechanism therefore there is no ERS

spectrum observed in s-SWNTs. Interference between the ERS spectra with the G phonon

spectra give rise to the asymmetric BWF lineshape of the G band. In this thesis, calculation

of the ERS spectra of graphene will be performed to explain systematic changes of 1/qBWF

as a function of EF as shown in Fig. 1-4(g).

Fig. 1-9: fig/ch1-bwf-gic.eps
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1.3.7 Summary of Background

There are three phenomena arising from the gate modulated Raman spectroscopy that are

discussing in this thesis, (1) the Kohn anomaly effect, (2) the quantum interference effect,

(3) and the Breit-Wigner-Fano lineshape of Raman spectra. Motivations of this thesis which

are based on the three phenomena will be summarized in the following paragraphs.

In Raman spectroscopy of solids, frequency of lattice vibration (phonon) can be probed

from the difference of incident to scattered light frequencies. The frequency of an excited

phonon during the Raman process corresponds to a peak in the Raman spectra. When

a gate voltage is applied to graphene, the peak position and linewidth of Raman spectra

change because the Fermi energy (EF) of graphene is varied. This phenomenon is known

as the Kohn anomaly (KA) effect, i.e. a modification of phonon frequency by means of an

electron-hole pair excitation via the electron-phonon interaction [29] (see Sec. 1.3.4). The KA

effects appear in the first-order (G band) and second-order (e.g. G′ and G∗ bands) Raman

spectra. The KA effect for the first-order Raman spectra show increasing (decreasing) of

peak frequency (spectral linewidth) when |EF| is increased. Theoretical works agree well with

the Raman measurements of the EF dependence of the first-order Raman spectra [52, 32, 53].

However, for the second-order Raman spectra, in particular the G′ band, Araujo et al. show

opposite results for the G′ band spectra as a function of EF compared to the G band spectra

in both peak position and spectral linewidth [33]. In this thesis, we present calculated results

of the second-order Raman spectra as a function of EF from which we understand the origin

of the opposite KA effects of the first- and second-order Raman spectra.

In gate modulated Raman spectroscopy, the quantum interference effect of Raman spectra

can be observed as the change of Raman intensity as a function of EF (see Sec. 1.3.5). When

EF is non-zero, some electronic states cannot contribute to Raman scattering process due

to the Pauli exclusion principle. Even with the reduced number of photo-excited electrons,

the G band intensity surprisingly increases when 2|EF| is very close to the laser excitation

energy as reported by Chen et al [41]. The theoretical analysis by Chen et al. only consider

the phase of Raman spectra based on the resonant condition and set the electron-phonon
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matrix element as a constant. However, the electron-phonon matrix elements do change the

sign for different electron or phonon states, therefore a quantitative calculation of Raman

intensity is needed to understand how quantum interference effect affects the first- and the

second-order Raman intensity.

Finally, we discuss the asymmetric Breit-Wigner-Fano (BWF) lineshape found in the

G band of graphene (see Sec. 1.3.6). For long years, the G band of graphene is fitted

to a symmetric Lorentzian lineshape. Recently, the BWF asymmetry has been observed

by Yoon et al. [28] in graphene with the BWF asymmetric factor systematically decreases

by increasing |EF|. Historically the BWF lineshape is observed in the Raman spectra of

graphite interacalation compounds (GICs) [46] and metallic single wall carbon nanotubes

(m-SWNTs) [47]. Those BWF lineshapes probe interference effect between the continuous

spectra with discrete spectra [44]. The appearance of the BWF lineshape in the G band of

graphene indicates a common origin of the BWF lineshape of the graphite-related systems

(i.e. GICs, m-SWNTS, and graphene) that arise due to the presence of the Dirac cone or

the linear energy band structure. These results give a clue that the BWF asymmetric factor

strongly depends on the electronic states near the Dirac point.

In order to quantitatively study all those phenomena, we calculate the EF dependence

of the first- and the second-order Raman spectra. The calculated spectral quantities are the

Raman peak shift, spectral linewidth, and the Raman intensity as a function of EF for both

the first- and the second-order Raman spectra. We calculate the BWF asymmetric factor

only for the first-order Raman and not for the second-order ones for simplicity. The KA

correction including both shift of phonon frequency and phonon linewidth is modeled based

on the second-order perturbation theory. The KA of the first-order Raman spectra which

is relevant to the q = 0 phonon is calculated so as to reproduce the existing theoretical

and experimental results and to compare with the KA of q ̸= 0 phonon. For the case of

the second-order Raman spectra, we focus on the intervalley scatterings which give three

prominent peaks, namely, the G′, G∗, and iTA + iTO bands (see Sec. 4.1). Finally the EF

dependence of those Raman spectra are analyzed and compared to the experimental results.



Chapter 2

Electronic, Vibrational, and Optical

Properties of Graphene

Calculation of Raman intensity requires knowledge of electronic, vibrational, and optical

properties of the material of interest. In Sec. 2.1, the electronic properties of graphene are

reviewed based on the tight binding method. We first define the geometry of graphene

and considering the nearest neighbor interaction to obtain electronic structure of graphene

from the simple tight binding (STB) method. Although STB framework explains electron

energy dispersion near the Fermi level very well, it fails at far from the Fermi level. Thus

we should incorporate more interaction from extended neighbors measured from atomic

site of interest within the extended tight binding (ETB) method. In Sec. 2.2, we derive the

phonon dispersion relations of graphene within force constant model. We assume interatomic

potential to be of harmonic potential and solve equation of motion for atoms based on

the harmonic oscillator equation. The force constant is constructed from accounting the

contribution up to the 20-th nearest neighbor. The electron-photon, and electron-phonon

interactions will be discussed in Sec.2.3-2.4 based on the knowledge of electron wave function

from the ETB method.

19
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Figure 2-1: (a) The unit cell of graphene which consists of two atomic sites A and B. a1, and
a2 are the unit vectors and aCC is the carbon-carbon distance. (b) Brillouin zone of graphene.
The Γ, K, K′, and M points indicated with a closed diamond, closed circles, opened circles,
and closed hexagons, respectively, are the high symmetry points. Reciprocal lattice vectors
is denoted by b1 and b2.

2.1 Electronic Properties of Graphene

2.1.1 Graphene unit cell and Brillouin zone

Graphene is a single atomic layer of two dimensional (2D) hexagonal carbon lattice whose

structure is considered the basic building block of sp2 carbon allotropes. The carbon-carbon

atoms of graphene are bound by covalent bondings (σ-bonds) to form the graphene layer.

Several layers of graphene sheets are stacked together by the van der Waals force to form

three dimensional (3D) graphite.

Figure 2-1 gives the unit cell and Brillouin zone of graphene. Each unit cell consist of

two atoms, labeled by A and B atomic sites as shown in Fig. 2-1(a). Unit vectors a1 and a2

are given by

a1 = a

(√
3

2
,
1

2

)
, a2 = a

(√
3

2
,−1

2

)
, (2.1)

where a =
√
3aCC is the lattice constant for the graphene unit cell and aCC = 0.142nm is

the nearest carbon-carbon distance. In Fig. 2-1(b), reciprocal lattice vectors b1 and b2 are

Fig. 2-1: fig/grapbz.eps
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obtained from the relations:

aibj = 2πδij, (2.2)

where δij is the Kronecker delta (δij = 1 for i = j, δij = 0 otherwise) and b1 and b2 are

given by

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (2.3)

The first Brillouin zone is the rhombic area whose sides consist of b1 and b2 as shown in

Fig. 2-1(b). That rhombic area is equivalent to the shaded hexagon that we will adopt as

the Brillouin zone. The high symmetry points are defined at hexagon center Γ, the center of

an edge M, and the hexagonal corners K and K′ of the Brillouin zone which are commonly

used in the analysis of electronic structure of Graphene (Sec. 2.1.2).

2.1.2 Electronic structure of graphene

The electronic dispersion relations of graphene are reviewed within the tight-binding method.

Let us start from a simple tight-binding (STB) method. The STB method (or linear combi-

nation of atomic orbitals, LCAO) is used to calculate the electronic energy dispersion relation

of a crystal, that is the energy E as a function of wavevector k. In the tight binding ap-

proximation of a crystal, the eigenfunctions of electrons are made up by the Bloch functions

corresponding to atomic orbitals. Thus the problem of finding an eigenfunction is reduced

to finding the coefficients for the Bloch functions consisting of atomic orbitals.

Per one unit cell of graphene, we have 5 atomic orbitals (1s, 2s, 2px, 2py, and 2pz) from

each A and B atomic sites (Fig. 2-1(a)), which give 10 atomic orbitals all together in the

unit cell. Electrons in 2s, 2px, and 2py orbitals construct the σ bonding while 2pz orbital

gives the π bonding. Hereafter, in this thesis, we consider only the π electron since its energy

is very close to the Fermi energy and it dominantly contributes to electronic transport and

optical properties for visible light [54].
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The electron wavefunction for a band index b is given by given by

ψb(k, r) =
∑
s=A,B

Cb
s(k)ϕs(k, r), (b = 1, 2). (2.4)

Here b = v, c is index of the electronic energy band for π bonding (valence band) and π∗

anti-bonding (conduction band), respectively and s in the sum is taken over the A and B

atomic sites. The Cb
s(k) are coefficients of the Bloch functions ϕs(k, r) that are needed to be

solved. The Bloch wavefunctions are given by linear combination of atomic orbital φ(r−Rjs)

at the j–th crystal site weighted by a phase factor eik·Rjs , given explicitly as:

ϕs(k, r) =
1√
N

N∑
j

eik·Rjsφ(r−Rjs), (s = A,B) . (2.5)

The Hamiltonian of graphene can be written as:

H =
p2

2m
+
∑
js

V (r−Rjs). (2.6)

In the right hand side of Eq. (2.6), the first term is the kinetic energy while the second term

is the periodic potential of solids. We solve the energy for eigen state b by variational method

through minimizing expectation value

Eb =
⟨ψb|H|ψb⟩
⟨ψb|ψb⟩

, (b = v, c), (2.7)

as a function of the wavefunction coefficients. The variational condition for finding the

minimum is
∂Eb

∂Cb∗
s

= 0, (b = v, c). (2.8)

The resulting equations for Cb
s(k) after minimization Eq. (2.8) are

∑
s′

Hss′C
b
s′(k) = Eb

∑
s′

Sss′C
b
s′(k) (s, s′ = A,B), (2.9)
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where the matrix elements Hss′ = ⟨ϕs|H|ϕs′⟩ and Sss′ = ⟨ϕs|ϕs′⟩. We may write explicitly

the matrix elements in Eq. (2.9) as

H(k) =

 HAA(k) HAB(k)

HBA(k) HBB(k)

 , and S(k) =

 SAA(k) SAB(k)

SBA(k) SBB(k)

 . (2.10)

Because we expect to obtain Eb as a real quantity, H(k) and S(k) should form the Hermitian

matrices, we require

HBA(k) = H∗
AB(k), and SBA(k) = S∗

AB(k). (2.11)

Now we evaluate each component of matrix elements. By using Eq. (2.5),

HAA(k) =
1

N

∑
j,j′

eik·(RjA−Rj′A)⟨φ(r−Rj′A)|H|φ(r−RjA)⟩

= ϵ2p +O(Rj′A ≥ RjA ± ai). (2.12)

In STB method we neglect hopping of electron from RjA to Rj′A ≥ RjA ± ai, with i = 1, 2,

for simplicity. Longer distance hopping will not be considered in the STB method but will

be taken into account in the ETB method in Sec. 2.1.3. Orbital energy of 2p level is obtained

from ϵ2p =
1

N

∑
j

⟨φ(r−RjA)|H|φ(r−RjA)⟩. In the same manner, HBB gives the same ϵ2p.

Since the difference of HAA and HBB is more important than their values themselves, we

may set HAA = HBB = 0 by changing the energy threshold.

For HAB(k), the largest contribution to the matrix element arise when atoms A and B are

nearest neighbors with distance Ri, (i = 1, . . . , 3) for the first nearest neighbors (Fig. 2-2).

Thus we only consider Rj′B = RjA +Ri in the summation over j′ and neglecting the more

Fig. 2-2: fig/ch2-ab.eps
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Figure 2-2: A and B atomic site of a graphene unit cell. A atom lies at center (0, 0) and

three nearest neighbor B atoms are indicated by R1 = a

(
1√
3
, 0

)
, R2 = a

(
− 1

2
√
3
,
1

2

)
, and

R3 = a

(
− 1

2
√
3
,−1

2

)
where a = 2.46 Å.

distant term to obtain

HAB(k) =
1

N

∑
j

eik·Ri⟨φ(r−RjA)|H|φ(r−RjA −Ri), i = 1, . . . 3

≡ tf(k) (2.13)

where t = −3.033 eV [55] is the hopping integral ⟨φ(r − R)|H|φ(r − R − Ri)⟩ which are

the same for three nearest neighbor B atoms in Fig. 2-2. In general, the nearest neighbor

hopping integral should have negative value so that total energy of a solid becomes smaller

than total energy of individual atoms which make sure that the solid is stable. f(k) is a

function of the sum of the phase factor f(k) =
3∑

i=1

eik.Ri . By using x, y coordinates as

shown in Fig. 2-2, f(k) is given by

f(k) = eikxa/
√
3 + 2e−ikxa/2

√
3 cos

(
kya

2

)
. (2.14)

Using Eq. (2.5), the overlap matrix elements SAA = SBB = 1, and SAB = sf(k) = S∗
BA.
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Here the overlap parameter s is defined by

s = ⟨φ(r−R)|φ(r−R−Ri)⟩. (2.15)

In this work, we take s = 0.129 [55] in order to reproduce the result from first principle

calculation of graphite energy bands. Combining Eqs. (2.10)-(2.15), Eq.(2.9) becomes,

 −Eb(k) f(k)
{
t− sEb(k)

}
f ∗(k)

{
t− sEb(k)

}
−Eb(k)

 Cb
A(k)

Cb
B(k)

 = 0 , (b = c, v). (2.16)

There are two solutions for Eq. (2.16) given by:

Eb(k) =
±tw(k)

1± sw(k)
(2.17)

where w(k) =
√
f(k)f ∗(k) + (−) sign denotes the valence (conduction) band, by noting

that t has a negative value. The electronic structure of π electron now can be obtained by

mapping Eb(k) over first Brillouin zone in Fig. 2-1(b). In Fig. 2-3(a), the 3D picture of

Eb(k) in the first Brillouin zone is plotted. Ev and Ec bands touch each other at k = K and

k = K′ points.

For a small electron wavevector k, which is measured from the K points, we expand

Eq. (2.17) around K and K′ as f(K+k) and f(K′+k). The K and K′ points have coordinates

K = (0,−4π/(3a)) and K′ = (0, 4π/(3a)). With k = (kx, ky) we obtain

f(K+ k) =

√
3a

2
(ikx + ky), and f(K′ + k) =

√
3a

2
(ikx − ky) . (2.18)

Substituting Eqs. (2.18) into Eq. (2.17), we get an approximation for the electron energy

dispersion relations close to the K points. It turns out that in the linear order approximation

we get the same energy dispersion relation around K and K′ points,

Eb(k+K) = Eb(k+K′) = ±
√
3at

2

√
k2x + k2y. (2.19)
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Figure 2-3: (a) π electron energy dispersion relation in the first Brillouin zone from Eq.
(2.17). (b) Dirac-cone around K point (Eq. (2.18)). (c) Equi–energy contour of Eg(k) which
shows circle near K point and deform to triangle, known as trigonal warping effect [56], if
we go further to M point. Separation between two equi-energy lines are 0.7 eV.

Here the “+(–)” sign corresponds to valence (conduction) band. In Fig. 2-3(b), we plot the

Eb(k) for Eq. (2.19) which has a cone shape, known as the Dirac cone. In Fig. 2-3(c) we

plot equi–energy contours which are almost circles around the K and K points. The equi–

energy circles deform to triangles, when going to the higher electron energies. This is known

as the trigonal warping effect of graphene energy dispersion [56]. The equi–energy contour

connecting three nearest M points is a triangle as shown in Fig. 2-3(c). Optical transitions

occur between the π and π∗ energy bands and from Fig. 2-3(a) it is clear that low energy

optical spectroscopy in the region of visible light mainly probes electrons around K points

between the π and π∗ bands.

We now calculate the wavefunction coefficients for electrons for A and B atoms, Cb
A and

Cb
B, respectively. The relation between Cb

A and Cb
B is obtained from Eq. (2.16) and is given

Fig. 2-3: fig/ch2-triek.eps
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by

Cb
A(k) = Cb

B(k)
f(k)

{
t− sEb(k)

}
Eb(k)

, (2.20)

Cb
A(k) = Cb

B(k)
Eb(k)

f ∗(k) {t− sEb(k)}
(2.21)

We can simplify Eqs. (2.20) and (2.21) to get:

Cb
A(k)

Cb
B(k)

= ±

√
f(k)

f ∗(k)
≡ ± f(k)

w(k)
(2.22)

Signs + and − are for the valence and conduction bands, respectively. We can then obtain

four eigenvectors Cb
s(k) for b = v, c and s = A,B as

Cv
A(k) = exp(iϕv)

√
1

2 {1 + sw(k)}
,

Cc
A(k) = exp(iϕc)

√
1

2 {1− sw(k)}
,

Cv
B(k) = exp [i(ϕv + θ(f ∗)]

√
1

2 {1 + sw(k)}
,

Cc
B(k) = − exp [i(ϕc + θ(f ∗)]

√
1

2 {1− sw(k)}
.

(2.23)

where tan θ(f ∗) = Im(f ∗)/Re(f ∗). Note that the phase factors ϕv or ϕc for Eq. (2.21) can be

chosen arbitrarily as long as the phase difference between the A and B atoms is preserved.

2.1.3 Extended tight binding method

Extended tight binding (ETB) method improves the STB method by adding long range

electronic hopping and optimizing the lattice constant of graphene. Historically the ETB

method was developed by Samsonidze [58] to improve the electronic structure of SWNTs so

as to match the experimental results of SWNTs transition energy [59, 60]. In the case of

Fig. 2-4: fig/ch2-stb-etb.eps
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Figure 2-4: Graphene energy dispersion relations and density of states calculated from (a)
simple tight binding method (b) extended tight binding method. Indices v and c indicate
valence and conduction band respectively. (c) Optical conductivity of graphene measured
by Mak et al., [57].

graphene electronic structure, the use of the ETB method improves the energy separation

between the valence and conduction bands at the M point Ecv
M as shown in Fig. 2-4. The

STB calculation show that Ecv
M ≈ 6 eV in Fig. 2-4(a), however the measurement of optical

conductivity by Mak et al., show that Ecv
M should be about 4.62 eV in Fig. 2-4(c) [57]. The

Ecv
M measured in the experiment is shown as the maximum optical conductivity because of

the Van Hove singularity in the density of state of graphene originating from the saddle point

energy bands at the M point. Using the ETB calculation, we can get Ecv
M = 5.1 eV. The

discrepancy between the ETB result and experimental measurement of Ecv
M is about 0.5 eV

which comes from excitonic effect [61].

In the ETB method, matrix elements of H(k) and S(k) in Eq. (2.10) are now given by:

H(k) =


C∑
j

t(RAA
j1 )fAA

j (k)
C∑
j

t(RAB
j1 )fAB

j (k)

C∑
j

t(RBA
j1 )f ∗BA

j (k)
C∑
j

t(RBB
j1 )fBB

j (k)

 , (2.24)

S(k) =


C∑
j

s(RAA
j1 )fAA

j (k)
C∑
j

s(RAB
j1 )fAB

j (k)

C∑
j

s(RBA
j1 )f ∗BA

j (k)
C∑
j

s(RBB
j1 )fBB

j (k)

 , (2.25)

where Rss′
jn = Rn

js′ −R0s is distance between a center atom located at R0s to a n–th atom
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Figure 2-5: (a) Hopping integral t and (b) overlap integral s as a function of interatomic
distance. Carbon-carbon distance acc = 0.142 nm and lattice constant a = 0.246 nm are
indicated in the figures.

of j–th nearest neighbor at Rn
js′ . C–th nearest neighbor is defined by the outer most atom

position inside a cutoff range, here we set RC = 7a0 with a0 = 0.052917721 nm is the Bohr

radius. Now we change definition of the hopping integral t in Eq. (2.13), overlap integral s

in Eq. (2.15), and the tight binding phase factor f in Eq. (2.14) to become:

t(Rss′

jn ) = ⟨φ(r−Rn
js′)|H|φ(r−R0s⟩ , (2.26)

s(Rss′

jn ) = ⟨φ(r−Rn
js′)|φ(r−R0s⟩ , (2.27)

f ss′

j (k) =
∑
n

eik·R
ss′
nj . (2.28)

Functions t(R) and s(R) are parameterized from density-functional theory employing the

local density approximation (LDA) and using a local orbital basis set [62]. In Fig. 2-5, the

ETB transfer and overlap integrals at the first nearest neighbor t(acc) = −3.351 eV and

s(acc) = 0.150, with acc = 0.142 nm, differ slightly from the STB integrals t = −3.033 eV

and s = 0.129 introduced in Sec. 2.1.2. At the second nearest neighbor with a distance

a =
√
3acc = 0.246 nm the ETB transfer and overlap integrals t(a) = −0.248 eV and

s(a) = 0.008 decrease significantly from t(acc) and s(acc), respectively.

Fig. 2-5: fig/ch2-st.eps
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2.2 Vibrational Properties of Graphene

In this section we shall derive the phonon dispersion of graphene. Interatomic potential of

graphene can be regarded as a harmonic potential and we shall solve atomic motion similar

to the harmonic oscillator. We utilize the force-constant model and solve the dynamical

matrix to obtain phonon dispersion relations of graphene. The force-constant parameters

are taken by considering up to the 20-th nearest neighbor with interatomic potential fitted

to the density functional theory (DFT) results [63].

Let us consider a carbon atom of mass m under influence of harmonic potential, the

equation of motion is given by:

m
d2uνj′s′α′

dt2
=

N∑
j=1

2∑
s=1

3∑
α=1

Kjsα
j′s′α′

(
uνjsα − uνj′s′α′

)
, (2.29)

where uν
js is displacement vector of carbon atom from equilibrium position Rjs with number

of unit cell j = 1, . . . , N , atomic site s = 1, 2 labels either A or B atom, α = x, y, z is the

Cartesian coordinates, ν is the phonon mode and Kjsα
j′s′α′ is the interatomic force constant.

The Fourier transform of uν
js gives normal mode of phonon vibration ενs(q) as follows:

uν
js =

∑
q

Aν(q)ενs(q)e
i(q·Rjs−ων(q)t) , (2.30)

where Aν(q) is amplitude of the ν phonon, ων(q) is the ν phonon frequency, and q is the

phonon wave vector. ενs(q) can be obtained by the group theory analysis even without solving

Eq. (2.29) [64]. Two atoms in a unit cell of graphene gives 3 acoustic modes, namely lon-

gitudinal acoustic (LA), in-plane tangential acoustic (iTA), out of plane tangential acoustic

(oTA) modes and 3 optic modes, namely longitudinal optic (LO), in-plane tangential optic

(iTO), out of plane tangential optic (oTO). Figure 2-6 shows ενs(q) for six phonon modes

(LA, iTA, oTA, LO, iTO, and oTO) at q = Γ [Figs. 2-6(a)-(f)] and at q = K [Figs. 2-6(g)-(l)].
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The normal mode ενs(q) obeys the orthogonality condition:

2∑
s=1

∑
α

εν
′∗

sα (q)ε
ν
sα(q) = δν′ν , (2.31)

where δν′ν is the Kronecker delta which gives unity for ν ′ = ν and zero for otherwise.

Additional condition for ενs(q) is

εν∗s (q) = ενs(−q) (2.32)

so as to ensure that uν
js is real when t = 0.

Substituting Eq. (2.30) to Eq. (2.29) yields:

m
∑
q

(ων(q))2 ei(q·Rj′s′−ων(q)t)ενs′α′ =
N∑
j=1

2∑
s=1

3∑
α=1

Kjsα
j′s′α′

×

(∑
q1

ei(q1·Rjs−ων(q1)t)ενsα(q1)

−
∑
q2

ei(q2·Rj′s′−ων(q2)t)ενsα(q2)

)
.

(2.33)

Multiplying both sides of Eq. (2.33) with e−i(q′·Rj′s′−ων(q′)t), taking a summation
N∑

j′=1

, and

using orthonormality condition:

N∑
j′

ei[(q−q′)·Rj′s′−ων(q′)t] = Nδqq′ , (2.34)

we get the dynamical matrix equation:

2∑
s=1

∑
α

Dsα
s′α′(q′)ενsα(q

′) = m (ων(q′))
2
ενs′α′(q′) , (2.35)

Fig. 2-6: fig/ch2-normode.eps
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Figure 2-6: Normal mode εν(q) for six phonon modes (LA, iTA, oTA, LO, iTO, and oTO)
at q = Γ [Figs. (a)-(f)] and at q = K [Figs. (g)-(l)] [58]. The large and small points in
(c),(i) and (f),(l) indicate the magnitudes of the vectors equal to

√
2 and 1/

√
2, respectively,

of the magnitudes of the vectors in (a), (b), (d), (e), (g), (h), (j), and (k).

where Dsα
s′α′(q′) is given by:

Dsα
s′α′(q′) =

N∑
j=1

(
δss′

2∑
s′′

Kjsα
j′s′′α′ − eiq

′·(Rjs−Rj′s′ )Kjsα
j′s′α′

)
. (2.36)

The force-constant parameters Kjsα
j′s′α′ will be presented in Appendix A. Figure 2-7(a) shows

the calculated results of the phonon dispersion relations (solid lines) from solving Eq. (2.35)

and the corresponding experimental phonon dispersion relations (red dots) for comparison

from Refs. [65, 30]. Because of the Kohn anomaly effect (Sec. 1.3.4, the dispersion of the
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Figure 2-7: (Color online) (a) Calculated (solid lines, this work) and experimental (red dots,
from Refs. [65, 30]) phonon dispersion relations. (b) Fitting of Eq. (2.37) (blue line) to the
iTO branch from Ref. [66] (dots) near the K point.

in-plane tangential optic (iTO) branch near the K point is discontinuous along the Γ −

K −M path which cannot be reproduced by the force constant model [32]. We fit the iTO

frequency from the experiment [66] and use the following fitting formula for the Raman

spectra calculation [Fig. 2-7(b)]:

ωiTO
q =

{
− 424.81q2 + 534.47q + 1215.95 + (6.94q2 + 10.89q) cos(3θ)

}
cm−1, (2.37)

where q is defined using polar coordinates (q, θ) whose center is at the K point and θ is

measured from the KM direction. Eq. (2.37) is valid only for q ≤ 0.4 Å−1, and when

q > 0.4 Å−1, we use the results from the force constant model for ωiTO
q . ων(q) as shown in

Fig. 2-7(a).

Fig. 2-7: fig/ch2-phdisp.eps
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2.3 Electron-Photon Interaction

The Hamiltonian in Eq. (2.6) is modified in the presence of electromagnetic field as [67]:

Htot =
[p− eA(r, t)]2

2m
+
∑
js

V (r−Rjs),

=
p2

2m
+
∑
js

V (r−Rjs)−
e

m
A(r, t) · p+

[eA(r, t)]2

2m
, (2.38)

= H +Hop,

whereA(r, t) is the vector potential operator and e is electron charge. Noting that p = −iℏ∇,

we have used the Coulomb gauge ∇ · A(r, t) = 0 to obtain Eq. (2.38). Here we assume

linear optics regime with a small laser intensity so that the term containing A2 is neglected.

Electron-photon interaction thus can be expressed by:

M fi
op(kf ,ki) = ⟨f |Hop|i⟩ =

⟨
ψf (kf , r)

∣∣∣∣ieℏmA(r, t) · ∇
∣∣∣∣ψi(ki, r)

⟩
. (2.39)

In order to explicitly write A(r, t) we assume a classical electric field E±(r, t) = E0 exp[i(κ ·

r± ω±t]P with photon energy ℏω± and polarization direction P. Electric field notation E+

(E−) represents electric field for photon emission (absorption). From the Maxwell equation,

we obtain the following relations:

A±(r, t) =
1

ω2
±

∂E±(r, t)

∂t
,

=
−i
ω±

√
I0
cϵ0

ei(κ·r±ω±t)P, (2.40)

where I0 = E2
0/µ0c is the laser intensity defined by the length of the Poynting vector, µ0 is

the permeability of vacuum, ϵ0 is the dielectric constant of vacuum, and c is the speed of

light. When light wavelength λ = 2π/κ ∼ 500 nm is much greater than the lattice constant

of graphene a ∼ 0.2 nm, we use the dipole approximation by assuming that κ ≪ ki and

κ ≪ kf . Momentum conservation of Eq. (2.39) requires kf = ki + κ, now with the dipole
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approximation we assume kf ≈ ki. Substituting Eq. (2.40) into Eq. (2.39) we obtain:

M fi
op(k) =

eℏ
mω±

√
I0
ϵ0c

Dfi(k) ·P, (2.41)

where

Dfi(k) =
⟨
ψf (k, r)|∇|ψi(k, r)

⟩
, (2.42)

is the dipole matrix element. The selection of + or− sign in Eq. (2.41) depends on selection of

i and f . In case of the Stokes Raman scattering which considers phonon emission, forM cv
op(k)

we select ℏω+ = EL with EL is the photon energy and forMvc
op(k) we select ℏω− = EL−ℏωph

with ℏωph is the phonon energy. Substituting electron wave function from Eq. (2.4) into

Eq. (2.42), we obtain:

Dfi(k) =
1

N

∑
ss′

∑
jj′

Cf∗
s (k)C i

s′(k)e
ik·(Rjs−Rj′s′ )d(Rjs −Rj′s′), (2.43)

where

d(R) =

∫
drφ(r)∇φ(r−R), (2.44)

is the atomic dipole vector. In Fig. 2-8(a) we show the magnitude of d(R) parameterized

from density-functional theory employing the local density approximation (LDA) and using

a local orbital basis set [62]. Calculated result of M cv
op(k) using ℏω+ = 1 eV is presented in

Fig. 2-8(b) and (c). Electronic wave vector k is selected from an equi–energy line with a

condition Ec
k −Ev

k = ℏω+ near the K point. From the equi–energy line we define an angle θ

measured from the kx– axis [inset of Fig. 2-8(b)]. In Fig. 2-8(b), for Px polarization parallel

to kx (solid line), imaginary part of M cv
op(k) shows similar behavior with sin θ, and for Py,

M cv
op(k) is proportional to cos θ. Real part of M cv

op(k) vanishes, therefore is not shown. The

maximum amplitude of |M cv
op(k)| is slightly larger for Px polarization compared with that

for Py (see Fig. 2-8(c)].

Fig. 2-8: fig/ch2-elop.eps
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Figure 2-8: (a) magnitude of atomic dipole vector |d| as a function of interatomic distance.
Nearest carbon-carbon distance acc = 0.142 nm and second nearest neighbor which is equal
to a = 0.246 nm are indicated in the figure. (b) Imaginary parts of electron-photon matrix
element as a function of angle θ measured from kx-axis for the Px (∥ kx) polarization (solid
line) and Py (⊥ kx) polarization (dashed line). Inset: equi–energy line for Ec

k − Ev
k = 1 eV

near the K point and definition of θ and kx. (c) Magnitude of electron photon interaction
as a function of θ for the Px polarization (solid line) and Py polarization (dashed line).

2.4 Electron-Phonon Interaction

Due to the presence of ν mode of vibration, atomic position at j–th unit cell and s–th atomic

site (Rjs) is displaced by:

uν
js =

∑
q

√
ℏ(nν(q) + 1)

2Nmων(q)
ενs(q)e

i(q·Rjs−ωνqt) , (2.45)

similar to Eq. (2.30) but we write explicitly the phonon amplitude Aν(q) expressed in the

second quantization and only consider phonon emission (Stokes) process. Here nν(q) is

phonon occupation number and in thermal equilibrium is expressed by the Bose-Einstein

distribution function:

nν(q) =
1

eℏων(q)/kBT − 1
, (2.46)

where kB is the Boltzmann constant. Displacement uν
js deforms the interatomic potential

V (r−Rjs − uν
js) ≈ V (r−Rjs)−

∑
js

uν
js · ∇V (r−Rjs) +O(uν 2

js ). (2.47)
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The first term of Eq. (2.47) is the unperturbed interatomic potential and has been taken

into account in determining the tight binding parameters of electron dispersion relations

(Sec. 2.1). The second term is the deformation potential due to ν phonon emission process.

In Eq. (2.47), we have used a rigid ion approximation in which the deformation potential

due to atomic motion ∇RV (r−R) is approximately to be the same as ∇V (r−R) recalling

R is the atomic coordinate and r is the electron coordinate. The rigid ion approximation

assumes that electron can always follow the atomic motion. This approximation is valid for

non-polar atomic structure such as carbon materials [68].

The electron-phonon interaction accounts the transition of an electron from band i and

momentum k to band f and momentum k′ by emitting a ν phonon with momentum q. The

magnitude of electron-phonon matrix element is given by

M fiν
ep (k,k′) = −

∑
js

⟨
ψf (k′, r)

∣∣uν
js · ∇V (r−Rjs)

∣∣ψi(k, r)
⟩
. (2.48)

We recall ψi(k, r) from Eq. (2.4), uν
js from Eq. (2.45) to get:

M fiν
ep (k,k′) = −

∑
q

∑
u,u1,u2

√
ℏ(nν(q) + 1)

2N3mων(q)
e−i(k′·Ru1−q·Ru−k·Ru2)Cf∗

s1C
i
s2

×⟨φs1(r−Ru1) |∇V (r−Ru)|φs2(r−Ru2⟩ · ενs(q)

(2.49)

where we have used a simplified index u = {j, s}. Furthermore, we have dropped the time

dependent from Eq. (2.45) because we have assumed conservation of energy δ(Ef
k′−ℏων(q)−

Ei
k) through the Fermi golden rule. Summation over u, u1, u2 in Eq. (2.49) can be split into

three parts by considering (1)u = u1, (2) u = u2, and (3) u1 = u2. For the case (1) we

obtain:

M
fiν(I)
ep (k,k′) = −

∑
q

∑
u,u2

√
ℏ(nν(q) + 1)

2N3mων(q)
e−i(k′−q−k)·Rueik·(Ru2−Ru)Cf∗

s C i
s2

×⟨φs(r) |∇V (r)|φs2(r−Ru2 −Ru)⟩ · ενs(q).

(2.50)
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Since
∑
u

e−i(k′−q−k)·Ru = Nδ(k′ − q− k) representing a conservation of momentum during

phonon emission, Eq. (2.50) is now simplified as:

M
fiν(I)
ep (k,k′) = −

√
ℏ(nν(q) + 1)

2Nmων(q)

∑
s,s′,j,j′

eik·(Rj′s′−Rjs)Cf∗
s Ci

s′

×β(Rj′s′ −Rjs) · ενs(q),

(2.51)

where

β(R) =

∫
drφ(r)∇V (r)φ(r−R). (2.52)

In a similar fashion, for the case (2) and (3) we can obtain:

M fiν(II)
ep (k,k′) = −

√
ℏ(nν(q) + 1)

2Nmων(q)

∑
s,s′,j,j′

eik
′·(Rj′s′−Rjs)Cf∗

s Ci
s′

×α(Rj′s′ −Rjs) · ενs(q), (2.53)

M fiν(III)
ep (k,k′) = −

√
ℏ(nν(q) + 1)

2Nmων(q)

∑
s,s′,j,j′

eiq·(Rj′s′−Rjs)Cf∗
s C i

s′

×λ(Rj′s′ −Rjs) · ενs(q), (2.54)

where

α(R) =

∫
drφ(r)∇V (r−R)φ(r−R), (2.55)

λ(R) =

∫
drφ(r)∇V (r−R)φ(r). (2.56)

From results in Eqs. (2.51), (2.53), (2.54) electron-phonon matrix element in Eq. (2.49) is
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Figure 2-9: (a) Magnitude of off-site deformation potential α and on-site deformation poten-
tial λ as a function of interatomic distance. Nearest carbon-carbon distance acc = 0.142 nm
and second nearest neighbor which is equal to a = 0.246 nm are indicated in the figure. (b)
Imaginary parts of electron-phonon matrix element M ccν

ep (k,k) for ν = iTO (solid line) and
ν = LO (dashed line). Inset: equi–energy line for Ec

k − Ev
k = 1 eV near the K point and

definition of θ and kx. (c) Magnitude of |Mvvν
ep (k,k)| (solid lines) and |M ccν

ep (k,k)| (dashed
lines) for ν = iTO (black lines) and ν = LO (red lines).

written as:

M fiν
ep (k,k′) = −

√
ℏ(nν(q) + 1)

2Nmων(q)

∑
s,s′,j,j′

Cf∗
s Ci

s′{
eik

′·(Rj′s′−Rjs)α(Rj′s′ −Rjs) · ενs(q) (2.57)

+eik·(Rj′s′−Rjs)β(Rj′s′ −Rjs) · ενs(q)

+eiq·(Rj′s′−Rjs)λ(Rj′s′ −Rjs) · ενs(q)
}
.

Comparing Eq. (2.52) with Eq. (2.55), we get a relationship α(R) = −β(R). Therefore,

the electron-phonon matrix element in Eq. (2.57) only depends on two atomic deforma-

tion potential, namely on-site deformation potential λ(R) and off-site deformation potential

α(R). Figure 2-9(a) shows magnitude of off-site deformation potential α and on-site de-

formation potential λ as a function of interatomic distance. Values of α(R) and λ(R) are

parameterized from density-functional theory employing the local density approximation

(LDA) and using a local orbital basis set [62]. After obtaining α and λ, we can plot electron-

Fig. 2-9: fig/ch2-elph.eps
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phonon matrix element from Eq. (2.57). Figure 2-9(b) shows imaginary parts of M ccν
ep (k,k)

for ν = iTO (solid line) and ν = LO (dashed line). Electronic wave vector k is selected

from an equi–energy line with a condition Ec
k−Ev

k = ℏω+ near the K point. From the equi–

energy line we define an angle θ measured from the kx– axis [inset of Fig. 2-8(b)]. In this

case we set phonon wave vector q = 0. In Eq. (2.57), by setting q = 0, the terms containing

α and β cancel to each other and the phase factor eiq·(Rj′s′−Rjs) equals unity. Therefore

the phase of M ccν
ep (k,k) is only determined by product of wave function coefficients with

λ(Rj′s′ −Rjs) ·ενs(q). As a result, the imaginary parts of M ccν
ep behave like a sin(θ− δ) func-

tion for ν = LO and a cos(θ− δ) function for ν = iTO with a phase parameter δ ≈ 0.25π. δ

originates from taking into account long range interatomic interaction in the ETB method.

This can be the case because in the previous STB calculations, δ ≈ 0 was obtained [42, 69].

The real parts of M ccν
ep (k,k) vanish, therefore are not shown. It is noted that at q = 0, four

other phonon modes give zero electron-phonon matrix element. In Fig. 2-9(c) we compare

the magnitude of Mvvν
ep (k,k) shown in solid lines with that of M ccν

ep (k,k) shown in dashed

lines for ν = iTO (black lines) and ν = LO (red lines). Maximum values of M ccν
ep (k,k) are

slightly larger compared with that ofMvvν
ep (k,k) for both LO and iTO matrix elements. The

difference between M ccν
ep (k,k) and Mvvν

ep (k,k) comes from electron-hole asymmetry in the

band structure of graphene because we consider non-orthonormal basis with a finite overlap

integral s in Eq. (2.17). Results in Fig. 2-9(b) and (c) will be shown to be essential when we

discuss the quantum interference effect of Raman spectra in Sec. 3.3 and Sec. 4.3.



Chapter 3

Fermi energy dependence of

first-order Raman spectra

In this chapter we present the calculation results of the Fermi energy dependence of the first-

order Raman spectra. The first order Raman intensity is calculated based on a perturbation

theory. The Kohn anomaly (KA) effect is manifested by the change of the G band peak

position and its linewidth as a function of the Fermi energy. The phonon renormalization

due to electron-hole pair excitation is modeled by second-order perturbation. The calculated

results will be compared with experimental results [33] and the previous theoretical works [38,

69]. Next, we calculate the G band intensity as a function of the Fermi energy. We investigate

the origin of the quantum interference effect in the G band indicated by the change of

the G band intensity as a function of the Fermi energy. Finally, the origin of the Breit-

Wigner-Fano (BWF) lineshape in the G band of graphene is discussed due to the presence

of continuous electronic Raman spectrum (ERS) at energy range much broader than the

G band spectral width. As a result, interference between the ERS and G band spectra

give the BWF lineshape. In the ERS intensity calculation we consider the electron-electron

interaction between photo-excited carrier with electrons near the Fermi energy. The electron-

electron matrix element is given in Sec. 3.4.1.

41
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Figure 3-1: (Color online) A schematic of the first-order Raman process. Optical transitions
are indicated with straight lines, the electron-phonon interaction is indicated with a wiggly
line.

3.1 First-order Raman Spectra

The first-order Raman process as shown in Fig. 3-1 consists of (1) excitation of an electron-

hole pair by the electron-photon interaction, (2) phonon emission by means of the electron-

phonon interaction, and (3) electron-hole recombination and photoemission by the electron-

photon interaction. Based on the three sub-processes, the Raman intensity formula for the

first-order Raman process is given by

I(1) =
∑
ν

∣∣∣∣∣∑
k

Mvc
op(k)M

ehν
ep (k,k)M cv

op(k) [f(E
v
k)− f(Ec

k)]

(EL − Ecv
k − iγ)(EL − Ecv

k − ων
0 − iγ)

∣∣∣∣∣
2

× δ(EL − ων
0 − Es), (3.1)

where EL is the laser excitation energy, Es is the scattered photon energy, Ecv
k = Ec

k −Ev
k is

the electron energy difference between the conduction (c) and the valence (v) bands at a wave

vector k. Energy bands of graphene have been obtained from the extended tight binding

method which is discussed in Sec. 2.1. The carrier scattering rate as a function of EL is given

by γ = (37.6EL + 13.6E2
L) × 10−3 eV according to the calculated results by Venezuela et

al. [70] considering the electron-phonon interaction. f(E) is the Fermi distribution function,

given by:

f(E) =
1

eE/kBT + 1
, (3.2)

Fig. 3-1: fig/ch3-1st.eps
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where kB is the Boltzmann constant and T is absolute temperature. M cv
op(k) is the electron-

photon matrix element accounting for the optical transition of an electron in a state k

from a valence band to a conduction band. We have considered that photon wavelength

λ ≈ 500 nm is much larger compared to graphene’s lattice constant ≈ 0.2 nm so that the

photon momentum can be neglected and the optical transition occurs vertically (does not

change the electron momentum k) [see Sec. 2.3]. M ehν
ep (q,p) = M ccν

ep (q,p) −Mvvν
ep (q,p) is

the carrier-phonon interaction considering an electron (e) in a conduction band or a hole

(h) in a valence band making a transition from a state p to a state q by emitting a phonon

with momentum q − p, mode ν, and frequency ων
q−p [see Sec. 2.4]. Calculation of phonon

dispersion relation ων
q has been performed in Sec. 2.2. Since the optical transition occurs

vertically, only phonon with zero momentum is possible in the first-order Raman process so

that the electron and hole can recombine. Hereafter, ℏ = 1 is used, so that ων
q has units of

energy. The summation over k in Eq. (3.1) is taken to occur in a uniform square mesh, with

a mesh spacing ∆k = γ/2v, and v = 6.46 eVÅ is the slope of the electron energy dispersion

of graphene and (∆k)2 is the weight of the integration. It is important to note that both

the numerator and denominator of Eq. (3.1) are complex numbers, thus the summation of k

before taking the square plays an important role in the quantum interference effect [71, 31].

3.2 Kohn anomaly effect of first-order Raman spectra

In metal, phonons can excite electrons near the Fermi energy from the valence band to the

conduction band [29]. This electronic excitation leads to the change of phonon energy, given

by:

ων
q = ω(0),ν

q + ω(2),ν
q , (3.3)

where ω
(0),ν
q is the unperturbed phonon energy obtained from the phonon dispersion relation

shown in Sec. 2.2. Here, ω
(2),ν
q is the correction term taken from the second-order perturbation

of the electron-phonon interaction by the excitation and recombination of an electron-hole

Fig. 3-2: fig/ch3-KA1.eps
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Figure 3-2: (Color online) (a) A schematic of the q = 0 Kohn anomaly process. A phonon
with zero wave vector (q = 0) and energy ω(0) vertically excites an electron-hole pair via the
electron-phonon interaction. The electron-hole pair then recombines by emitting a phonon
with energy ω. (b,c) The calculated (dotted line) and experimental (open circles) results for
the G band peak shift (b) and the G band linewidth (c) as a function of the Fermi energy,
respectively, for T = 300 K.

pair [Fig. 3-2(a)]:

ω(2),ν
q = 2

c,v∑
s,s′

∑
k

|M ss′ν
ep (k,k+ q)|2

[
f(Es

k)− f(Es′

k+q)
]

ω
(0),ν
q − Es′

k+q + Es
k + iη

, (3.4)

where the prefactor 2 in Eq. (3.4) accounts for the spin degeneracy, while the valley degen-

eracy is considered in the summation over k in the first Brillouin zone. The value of ω
(2),ν
q is

a complex number, in which Re(ω
(2),ν
q ) [ −Im(ω

(2),ν
q )] gives the phonon energy shift [phonon

linewidth]. In Eq. (3.4), the contribution of the interband (intraband) electron-hole pair

appears at s ̸= s′ (s = s′).

In a conventional 2D electron gas, the KA effect occurs at q = 2kF, where kF is the

Fermi wave vector. In graphene, due to its unique linear energy bands, the KA occurs at

q ≈ Γ and q ≈ K. The KA at the Γ (K) point is relevant for the first-order (second-order)

Raman spectra. In this section we discuss only the KA effect at the Γ point while the KA

effect at the K point will be discussed in Sec. 4.2. The schematic picture of the KA process

for q = 0 is shown in Fig. 3-2(a). In the q = 0 KA, a phonon with energy ω(0) vertically in

the k−space excites an electron-hole pair via the electron-phonon interaction [Fig. 3-2(a)].

The electron-hole pair then recombines by emitting a phonon with energy ω.
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Employing Eq. (3.4) at q = 0, we can obtain the energy shift [Fig. 3-2(b)] and phonon

linewidth [Fig. 3-2(c)] for the G band as a function of the Fermi energy at T = 300 K. In

Fig. 3-2 we show the calculated (dotted line) and experimental (open circles) results [33] of

the G band peak shift and linewidth as a function of the Fermi energy, respectively. The

calculated results are in good agreement with the experimental results. In Fig. 3-2(b), we

see dips when 2|EF| = ω0 ≈ 0.2 eV for the calculation, while the experimental results do not

show such dips. These dips are originated from the logarithmic singularities of Re(ω
(2)
q ) at

T = 0 K and are related to interband resonances [52, 69, 53]. For 2|EF| > ω0, the G band

energy increases linearly as a function of the Fermi energy. At 0 K, the phonon linewidth

shows a step function θ(ω0 − 2|EF|). The step function indicates that when 2|EF| > ω0,

the phonon linewidth from the KA effect becomes zero since no excited electron-hole pair

meets the resonance condition of Eq. (3.4). At finite T , on the other hand, the Fermi

distribution function becomes a smooth function and that is why we get a smooth function

of the linewidth as a function of EF. It is noted that we add an extrinsic broadening of

10.3 cm−1 in our calculations in order to fit with experimental results [33] in Fig. 3-2(c).

3.3 Quantum interference effect of first-order Raman

spectra

Next, we calculate the EF dependence of the G band intensity. The G band consists of

both the q = 0 longitudinal optic (LO) and in-plane-tangential optic (iTO) modes. From

Eq. (3.1), the Raman scattering amplitude of the G band as a function of k can be written

as

Aν
k =

Mvc
op(k)M

ehν
ep (k,k)M cv

op(k) [f(E
v
k)− f(Ec

k)]

(EL − Ecv
k − iγ)(EL − Ecv

k − ων
0 − iγ)

, ν = iTO, LO. (3.5)

In order to understand iTO and LO contributions to the Raman scattering amplitudes Aν
k

at each k point, we plot the real and imaginary parts of Aν
k in Eq. (3.5) for the LO and iTO

Fig. 3-3: fig/ch3-Rphase.eps
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Figure 3-3: (Color online) Calculated results of the real and imaginary parts of the first-order
(a) LO and (b) iTO Raman amplitudes in a two dimensional Brillouin zone near the K and
K′ points with EL = 2.33 eV.

phonons in Fig. 3-3(a) and (b), respectively. Here we use EL = 2.33 eV and take a cutoff

energy Ecut = 3.5 eV so as to reduce the total points of integration for saving computational

time. It will be clear that neglecting the contributions from energies above Ecut in the

integration is reasonable since the Raman intensity is quickly decreasing when 2|EF| > Ecut

[Fig. 3-4(a)]. In Fig. 3-3, deformed triangles near the K and the K′ points indicate equi-

energy lines that match the resonant conditions. The inner (outer) circles corresponds to

the scattered (incident) resonance when Ecv
k = EL − ωG (Ecv

k = EL) which makes one of

denominators in Eq. (3.5) becomes iγ. We see changes in the sign for both the real and

imaginary parts of the LO and iTO Raman amplitudes in both the radial and azimuthal

directions. The change of sign at the radial direction is related to an opposite phase of Ak

between the scattered resonance and the incident resonance. Meanwhile, the change of sign

in the azimuthal direction is related to the sign of the electron-phonon matrix element as

has been discussed in Sec. 2.4.

In order to analyze the opposite phase between the scattered resonance and the incident

resonance, we calculate the phase of the Raman spectra from Eq. (3.5) and setting the matrix

Fig. 3-4: fig/ch3-QI.eps
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Figure 3-4: (Color online) (a) Calculated results (dots) and experimental results (stars from
Ref. [41] and squares from Ref. [72]) of the G band Raman intensity as a function of the
reduced Fermi energy. (b) Schematic diagram showing an opposite phase between the inci-
dent (i) and scattered (s) resonances. When 2|EF| = EL − ωG/2, the scattered resonance is
suppressed, and therefore, the Raman intensity gives a maximum value.

elements equal unity:

ϕν(Ecv
k ) = arg

(
1

(EL − Ecv
k − iγ)(EL − Ecv

k − ων
0 − iγ)

)
, (3.6)

where arg(z) = tan−1[Im(z)/Re(z)]. Because ωiTO
0 and ωLO

0 are degenerated, ϕiTO = ϕLO = ϕ.

The calculated results of ϕ as a function of Ecv
k is shown in Fig. (3-4)(b). The Raman phases

ϕ of incident and scattered resonances are shown to be opposite to each other. We must

pointed out that ϕ = 0 when Ecv
k = EL−ωG/2. The opposite phase of the scattered resonance

to the incident resonance is essential insofar as both terms give destructive interference to

each other. Therefore, only taking the resonant term for calculating the G band intensity

would not give the correct result. We need to at least consider up to Ecv
k ≈ EL+ωG to get a

realistic intensity. Moreover if we plot the Raman intensity as a function of the Fermi energy

as shown in Fig. 3-4(a), it becomes clear that destructive interference between the scattered



48 Fermi energy dependence of first-order Raman spectra

resonance and the incident resonance can be suppressed when we set the Fermi energy close

to the laser excitation energy. When 2|EF| = EL − ωG/2, the scattered resonance cannot

occur due to the Pauli blocking effect [Fig. 3-4(b)]. Therefore, in Fig. 3-4(a) we see the

largest G band intensity at 2|EF| = EL − ωG/2 as pointed out by Chen et al [41]. The

difference of the intensity at positive and negative EF which comes from the electron-hole

asymmetry has been confirmed by Liu et al [72] and been discussed in Sec. 2.4. Anisotropy

in the azimuthal direction due to the electron-phonon matrix element should give destructive

interference, but the effect is negligible in the first-order Raman spectra. We shall see the

importance of this effect in the second-order Raman spectra in Sec. 4.3.

3.4 Breit-Wigner-Fano lineshape of first-order Raman

spectra

Apart from scattering by phonon in a conventional Raman process, the photoexcited electron

(PE) in metallic systems is also scattered by an electron-hole pair excitation by means of the

Coulomb interaction. The Raman spectra originate from the electron-hole pair excitation

by the Coulomb interaction are called electronic Raman spectra (ERS) [50]. Interference of

the continuous ERS and discrete phonon G band gives asymmetric lineshape of the G band

spectra which is known as the Breit-Wigner-Fano (BWF) lineshape [50, 51]. The BWF are

observed in graphite intercalation compounds [46], metallic nanotubes (m-SWNTs) [47], and

graphene [28].

The G Raman scattering and the ERS process are shown in Fig. 3-5. The ERS consist

of either intravalley (A) or intervalley (E) interaction, either intravalley (a) or intervalley

(e) scattering and either zero momentum transfer (q = 0 first-order) or non-zero momentum

transfer (q ̸= 0 second-order) processes [51]. When a photon with the laser excitation energy

EL is introduced to the graphene sample, the photon excites an electron from a valence

band to a conduction band. The photoexcited electron (PE) is then scattered to another

Fig. 3-5: fig/ch3-Fig1.eps
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Figure 3-5: (Color online) All possible Raman scattering considered in Eq. (3.7): (a) the
G Raman scattering with the Raman shift ωs = ωG, (b)-(f) the electronic Raman scat-
tering (ERS) processes. The ERS processes include the Coulomb interactions between a
photoexcited electron (PE) and electrons on the Dirac cone (DEs): (b) a first-order intraval-
ley interaction and intravalley scattering (Aa), (c) a first-order intervalley interaction and
intravalley scattering (Ea), (d) a second-order intravalley interaction and intravalley scatter-
ing (Aa), (e) a second order intervalley interaction and intravalley scattering (Ea), and (f)
a second order intervalley interaction and intervalley scattering (Ee). Capital (small) letters
A {a} and E {e} label the intravalley and the intervalley interactions {scatterings}. Here
EL and ES are the laser excitation energy and scattered photon energy, respectively. The
Raman shift for the first(second)-order processes are ωs = ωe(ωs = ω1 + ω2).

intermediate state either by the electron-phonon interaction (phonon Raman scattering) or

by the Coulomb interaction (ERS) which excites the Dirac electrons (DEs) on the Dirac cone

and the electron finally recombines with a hole by emitting a scattered photon energy ES as

shown in Fig. 3-5. Both the phonon Raman scattering and ERS processes share the same

initial and final states. Since the phonon Raman process for the G band has been discussed

in Sec. 3.1, now we focus on the ERS process.

In the ERS, the Coulomb interaction between the PE and the DEs causes the PE to

reduce its energy and changes the PE’s momentum while the DEs are being excited. The

number of DEs to be excited for each process depends on the number of the scattering order.

In the first-order process, only one DE is excited and this process requires a zero momentum
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transfer (q = 0) since the PE momentum (k) should be the same as its hole momentum in

order to emit a scattered photon with energy ES by the electron-hole recombination process.

In the second-order process, on the other hand, the PE is scattered twice (k → k− q) and

(k− q → k) and the PE excites two DEs with relative non-zero electron-hole momenta −q

and q. Due to the degeneracy of the Dirac cone at the K and K′ points of the graphene

Brillouin zone (BZ), both the first-order processes and the second-order processes may occur

either in the intravalley (A) interactions or in the intervalley (E) interactions.

In the A interactions, the DEs are excited on the same Dirac cone as the PE, while in the

E interactions, the DEs are excited on the other Dirac cone. In the case of the E interaction,

the initial and final states of the PE and DEs can be in the same (different) valley which

is defined by intravalley (intervalley) scattering labeled by a small letter “a” (“e”). The e

scattering is not possible in the A interaction because the +q and −q scattering are pointing

to two different directions at the high symmetry points of graphene; one is pointing to the

KK′ direction while the other is pointing to the KΓ direction. Thus the Ae interaction

does not conserve energy during the scattering processes. Combining all possible A and E

interactions with the a and e scatterings we have: an Aa [Fig. 3-5(b)] and an Ea [Fig. 3-

5(c)] in the first-order processes; and an Aa [Fig. 3-5(d)], an Ea [Fig. 3-5(e)], and an Ee

[Fig. 3-5(f)] in the second-order processes.

The BWF asymmetry comes from the interference effect between the phonon spectra with

the ERS because both spectra have the same initial and final states for a single PE (Fig. 3-

5). Thus in order to calculate the Raman intensity, we first sum up all possible scattering

amplitudes for given initial and final states, and then we take the square of the sum of

amplitudes [73, 74]

I(Es) = [AG(Es) + AERS(Es)]
2 , (3.7)

where AG and AERS are the G Raman scattering amplitude and the ERS scattering ampli-

tude, respectively and Es is the scattered photon energy. It is important to mention that the

G band intensity in Eq. (3.1) consider the energy conservation in δ(EL−ωG
0 −Es). However,

because of the Kohn anomaly effect in Sec. 3.2, delta-function-like spectra of the G band
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should not be realistic and we must take into account the G band linewidth for a realistic

calculation. Here we define the scattering amplitude of the G phonon as:

AG(Es) =
1

π

∑
k

Mvc
op(k)M

ehG
ep (k,k)M cv

op(k) [f(E
v
k)− f(Ec

k)]

[EL − Ecv
k − iγ][EL − Ecv

k − ωG
0 − i(γ + ΓG)][EL − ωG

0 − Es − iΓG]
, (3.8)

where linewidth of the G band ΓG is obtained from −Im
[
ω
(2),G
0

]
in Eq. (3.4) and shown

in Fig. 3-2(c). We recall that upon changing EF, the G band energy change as ωG
0 =

ω
(0),G
0 + Re

[
ω
(2),G
0

]
according to Eq. (3.4) where we strictly constraint ωG

0 to be of a real

value for clarity.

The ERS amplitude AERS is the summation of the amplitude from the first-order A
(1)
ERS

and second-order A
(2)
ERS processes. The amplitude of the first-order ERS process is given by

A
(1)
ERS(Es) =

1

π

∑
k

∑
k′

Mvc
op(k)Kkc,k′v,kc,k′c(0)M

cv
op(k) [f(E

v
k)− f(Ec

k)]

[EL − Ecv
k − iγ][EL − Ecv

k − ωe
k′ − i(γ + Γe)][EL − ωe

k′ − Es − iΓe]
,

(3.9)

where ωe
k′ and Γe = 30 meV are, respectively, the energy of the excited DE electron and

the inverse life time of the electron-electron interaction. The electron-electron interaction

K1,2,3,4(q) defines the scattering of the PE [DE] from an initial state (1) [(2)] to a final state

(3) [(4)] which consists of direct (Kd) and exchange (Kx) interaction terms as shown in

Fig. 3-7(a),

K1,2,3,4(q) = Kd
1,2,3,4(q) +Kx

1,2,3,4(q), (3.10)

for a spin singlet state where [1, 2, 3, 4] = [kc,k′v, (k− q)c, (k′ + q)c] in the case of ERS in

undoped-graphene (EF = 0) [Fig. 3-6(a)]. In the electron doped (EF > 0) and the hole doped

(EF < 0) cases, we add possible intraband transitions [2, 4] = [k′c, (k′ + q)c] and [2, 4] =

[k′v, (k′ + q)v], respectively, as long as state (2) is occupied and state (4) is unoccupied.

We do not consider spin triplet states for simplicity due to the fact that the exchange

interaction is sufficiently small compared with the direct Coulomb interaction [51, 75]. The

direct Kd
1,2,3,4(q) and exchange Kx

1,2,3,4(q) Coulomb interactions between two electrons in the
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tight binding approximation are given in Appendix B by

Kd
1,2,3,4(q) =

∑
ss′=A,B

C1
sC

2
s′C

∗3
s C

∗4
s′ Re [vss′ (q)] , (3.11)

Kx
1,2,3,4(q) =

∑
ss′=A,B

C1
sC

2
s′C

∗3
s′ C

∗4
s Re [vss′ (k

′ − k− q)] , (3.12)

Cj
s is a tight binding coefficient for an atomic site s = A, B and a state j. [43] The Fourier

transform of the Coulomb potential vss′ (q) is defined by

vss′ (q) =
1

N

∑
u′

eiq.(Ru′s′−R0s)v (R0s,Ru′s′) , (3.13)

where v(R,R′) is the effective Coulomb potential for the π electron system modeled by the

Ohno potential [76, 75]

v (R,R′) =
U0√(

4πϵ0
e2

U0 |R−R′|
)2

+ 1

, (3.14)

in which U0 is the on-site Coulomb potential for two π electrons at the same site R = R′,

defined by

U0 =

∫
drdr′

e2

|r− r′|
φ2(r)φ2(r′) = 11.3 eV. (3.15)

The amplitude of the second-order ERS process is given by

A
(2)
ERS(Es) =

1

π

∑
k

∑
k′k′′q

Mvc
op(k)K(k−q)c,(k′′+q)v,kc,k′′c(−q)

[EL − Ecv
k − iγ][EL − Ecv

k − ω1
k′ − ω2

k′′ − i(γ + 2Γe)]

×
Kkc,k′v,(k−q)c,(k′+q)c(q)M

cv
op(k) [f(E

v
k)− f(Ec

k)]

[EL − ω1
k′ − Es − iΓe][EL − ω1

k′ − ω2
k′′ − Es − i2Γe]

, (3.16)

where ω1
k′ and ω2

k′′ are the energies of the DEs emitted for the electron-electron interaction

in the second-order ERS process.

Fig. 3-6: fig/ch3-ee.eps
Fig. 3-7: fig/ch3-ersef.eps
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Figure 3-6: (Color online) (a) Illustration of the direct and exchange Coulomb interaction.
(b) The averaged absolute value of the direct Coulomb interaction matrix element Kd as a
function of momentum transfer q. The corresponding results for the exchange interaction is
not shown in the figure.

3.4.1 Electronic Raman Spectra and the BWF asymmetry

Since the electron-electron interaction depends on initial states (1, 2) of PE and DE and also

on a momentum transfer (q), we consider the averaged absolute value of the matrix elements

over the initial states in order to visualize the strength of the electron-electron interaction

in a simple manner. In Fig. 3-6(b), we show the averaged absolute value of Kd
1,2,3,4(q) over

the initial states (1, 2)

⟨|Kd(q)|⟩ = 1

N1N2

∑
(1,2)

|Kd
1,2,3,4(q)|, (3.17)

where N1 = N2 = Nk is number of k-points in the first Brillouin zone. As shown in Fig. 3-

6(b), Kd disappears at q = 0, indicated by a small black dot at q = (0, 0), due to the

symmetry of the A and B sublattice wavefunctions in the graphene unit cell which cancel in

the summation of Kd in Eq. (3.11) [51]. Detailed calculation on the absence of the direct

Coulomb interaction at q = 0 is presented in Appendix B. The absence of a direct Coulomb

interaction suggests that the ERS should not come from the first-order but from the second

order q ̸= 0 electron-electron interaction, similar to what has been found in m-SWNTs [51].

The first-order ERS can only be possible by means of the exchange Coulomb interaction.

Although we take into account the exchange Coulomb interaction, the Raman intensity from

the first-order process is still six-orders of magnitude smaller than that of the second order
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Figure 3-7: (Color online) (a) Calculated Raman intensity according to Eq. (3.7) for
EF = 0.00 eV (solid line) compared with the Lorentzian G mode intensity by taking the
square of AG in Eq. (3.8) (dashed line). The G mode constituents, i.e. iTO and LO, are
indicated by a dotted line and a dot-dashed line, respectively. An asymmetric lineshape
(solid line) appears due to the interference effect between the G mode with the ERS. The
inset shows calculated results of the first-order (dashed line) and the second-order (solid line)
ERS spectra, indicating that the second-order processes have an intensity value six-orders
of magnitude greater than that of the first-order processes. (b) Calculated Raman intensity
for EF = 0.00 eV (solid line) and EF = 0.20 eV (dashed line). The BWF asymmetric factor
1/qBWF decreases by increasing the absolute value of |EF| away from the Dirac point because
the ERS intensity also decreases by increasing |EF| (inset).

process [see inset of Fig. 3-7(a)]. Therefore, we can safely neglect the first-order processes.

In Fig. 3-7 we present results for the Raman intensity calculation I(ωs) of Eq. (3.7). The

solid curve in Fig. 3-7(a) shows the total Raman intensity after considering the interference

of the G mode spectra with the ERS spectra, while the dashed red line shows the Lorentzian

G phonon spectra by taking the square of its probability amplitudes AG(ωs) [Eq. (3.8)].

The phonon modes for the G band, i.e. the iTO and LO modes, are indicated by a blue

dotted line and a blue dot-dashed line, respectively. The calculated results show that LO

phonon gives a dominant contribution to the G band intensity. It is clear from Fig. 3-7(a)

that the total Raman spectra (the solid line) shows asymmetry around the peak position

at 1590 cm−1. In order to understand the results in Fig. 3-7, one can simplify the phonon

spectra and the ERS into the following considerations. The G band lineshape is a Lorentzian
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function

AG(ωs) =
A0

i+ s
(3.18)

where s = (ωs−ωG)/ΓG, ωs is the Raman shift, and A0 is the normalized G band amplitude.

Since AERS ≪ AG, we can consider the ERS lineshape as a constant function AERS(ωs) = ηA0

around ℏωG − ΓG < ℏωs < ℏωG + ΓG. If we put the definition of AG and As above into

Eq. (3.7), we can get the BWF formula:

IBWF(ωs) =A
2
0

(1 + s/qBWF)
2

1 + s2

=A2
0

[
1

q2BWF

+
1− 1/q2BWF

1 + s2
+

2s/qBWF

1 + s2

]
, (3.19)

with the asymmetric factor 1/qBWF = η for |1/qBWF| ≪ 1. The three terms of Eq. (3.19)

correspond to |AERS|2, |AG|2 with assumption |1/qBWF| ≪ 1, and an interference term,

respectively. The BWF asymmetry appears in the total Raman intensity because the inter-

ference term gives a positive (negative) value when s is negative (positive) for a negative

1/qBWF. The negative value of the 1/qBWF comes from the sign of electron-phonon matrix

element in Eq. (3.8).

By fitting the calculated result to Eq. (3.19), we obtain the fitted values of 1/qBWF, which

have the same negative sign as the experimental data [28]. For a negative 1/qBWF, when ωs

is smaller (greater) than ωG, I(ωs) is greater (smaller) than |AG(ωs)|2, indicating that the

interference between the G mode and the ERS spectra is constructive (destructive) below

(above) the resonance condition ωs = ωG.

By decreasing (increasing) EF further from the Dirac cone, transitions from (to) the

unoccupied (occupied) states are suppressed due to the Pauli principle. Thus we expect

that the asymmetric factor |1/qBWF| decreases as we change the EF from the Dirac point

EF = 0.00 eV to EF = 0.20 eV as shown in Fig. 3-7(b). The solid line is the intensity

of the spectrum with 1/qBWF = −0.073 when EF = 0.00 eV, while the blue dashed line is

the corresponding curve with 1/qBWF = −0.043 when EF = 0.20 eV. The Raman intensity

and peak position at EF = 0.20 eV are larger than that at EF = 0.00 eV due to the Kohn
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anomaly effect. [32]

Unlike the ERS spectra in m-SWNTs which are Lorentzian functions, [50, 51] the ERS

intensity in graphene is a linear function of ωs [inset of Fig. 3-7(b)]. The positive gradient of

the ERS intensity is due to the greater scattering path available to excite DEs in the second-

order processes as ωs increases. The ERS intensity will increase monotonically and will get

saturated at ωs ≥ EL/2. The absence of the ERS peak intensity in graphene is related to

the absence of van-Hove singularities in the energy region from the G mode energy ∼ 0.2

eV to EL = 2.4 eV. The absence of the ERS peak also becomes the reason why the 1/qBWF

values of the G mode in graphene are one-order of magnitude smaller compared with that in

m-SWNTs. The ERS intensity is about two-orders of magnitude smaller than that of the G

mode, and by increasing the EF the ERS intensity decreases only less than 1%; nevertheless

the change of the 1/qBWF is significant [Fig. 3-7(b)]. Thus, this BWF feature is very sensitive

to the presence or absence of the continuum spectra.

In Figs. 3-8(a) and (b), we respectively show our calculated result and the corresponding

experimental results (Ref. [28]) for the G band Raman intensity as a function of the Raman

shift, which is plotted for various values of EF in the range −0.20 ≤ EF ≤ 0.40 eV. In

the experimental results [28], Fig. 3-8(b) was given as a function of gate voltage VG. For

our present purpose of comparing the calculated results and experimental results, we here

convert VG to EF using the relation EF = sign(VG − V0)ℏvF
√
απ|VG − V0| where the Fermi

velocity vF = 108 cm/s, the constant voltage adjusted to the Dirac point V0 = −57.5 V, and

the capacitance α = 7.2 × 1010 cm−2V−1 for the SiO2 dielectric medium with a thickness

300 nm [1, 9, 28]. At the charge neutrality point EF = 0.00 eV, the G band spectrum is

broadened and its frequency is softened due to the Kohn anomaly effect.

Comparison of the BWF asymmetric factor 1/qBWF between the theory (square) and

experiment (circle) shows a reasonable agreement, as can be seen in Fig. 3-8(c), except

for EF ≥ 0.20 eV when the experimental results deviate from the calculated results. We

suppose that the deviation is related to the difficulties of observing the BWF asymmetry

Fig. 3-8: fig/ch3-Fig4.eps
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Figure 3-8: (Color online) Comparison between (a) the calculated results (this work) and (b)
the experimental results taken from Ref. [28] for the G band Raman intensity as a function
of the Raman shift, which is plotted for various values of EF in the range −0.20 ≤ EF ≤ 0.40
eV. The values of 1/qBWF obtained from the calculation and the experiment are also given
on each plot. (c) Comparison of the BWF asymmetric factor 1/qBWF as a function of EF

and gate voltage VG between theory (squares) and experiment (circles). Both the linewidth
and the phonon peak frequency-shift are due to the Kohn anomaly effect.

at EF > 0.20 eV in the experiment because the continuum ERS intensity is about two or

three-orders of magnitude smaller compared with the G band intensity. Such weak ERS

spectra might couple strongly with the background spectra in the experiment which make

the ERS contribution difficult to observe. The calculated asymmetric factor 1/qBWF has a

“V”-shaped curve structure as a function of EF with the dip position at EF = 0.00 eV. The

decrease of 1/qBWF corresponds to the decrease of the ERS intensity due to the suppression

of electron-hole pair excitations on the Dirac cone upon doping.

The present agreement between experiment and the theory also reconfirms that plasmons

do not contribute to the continuum spectra. When |EF| > 0, collective excitations (plasmons)

are expected to be generated, and consequently the ERS spectra should be enhanced [77].

However, what we obtain in the present study is that the ERS spectra are in fact suppressed

if we increase |EF|. Therefore, we rule out the contribution of plasmons in the ERS spectra
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and we conclude that only single-particle electron-hole pair excitations are important.



Chapter 4

Fermi energy dependence of

second-order Raman spectra

In this chapter we will present the calculation results of the Fermi energy dependence of the

second-order Raman spectra. The second-order Raman intensity is calculated based on a

perturbation theory including photo-absorption, two-phonon emission, and photo-emission

processes. The Kohn anomaly (KA) effect is calculated from Eq. (3.4) described in Chapter 3.

We contrast the different of the q = 0 KA process to the q ≈ K KA process. From this

different mechanism, two opposite KA effects between the G′ band and the G band are

compared and are in a good agreement with experimental results by Araujo et al. [33].

We confirm the reliability of the calculation methods by performing the EL dependence

of the second-order Raman spectra. Finally, from the EF dependence of Raman intensity,

we discuss different quantum interference effect between overtone and combination phonon

modes in the second-order Raman spectra.

59
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Figure 4-1: (Color online) Schematics of the second-order Raman processes for (a) intraval-
ley and (b) intervalley transitions. The label “ee” describes a scattering process with two
consequtive electron-phonon interactions while the label “eh” indicates the electron-phonon
interaction followed by the hole-phonon interaction. Optical transitions are indicated with
straight lines, the electron-phonon interactions are indicated with wiggly lines.

4.1 Second-order Raman spectra

The second-order Raman processes as shown in Fig. 4-1, consist of (1) excitation of an

electron-hole pair by the electron-photon interaction, (2) two-phonon emission by means

of the electron-phonon interaction, and (3) electron-hole recombination and photoemission

by the electron-photon interaction. The emitted two phonons with modes ν and µ have

momenta q and −q, respectively. Because the optical transition occurs at either the K or K′

valleys, the phonon momentum q can be either q ≈ Γ or q ≈ K. In case of q ≈ Γ [q ≈ K], an

electron moves to the same [different] valley, known as the intravalley [intervalley] transition

of the electron-phonon interaction as shown in Fig. 4-1(a) [Fig. 4-1(b)]. It is noted that the

distance between the K and K′ points equals |ΓK| and simply refer to as q = K. In this thesis,

we do not discuss the intravalley transition of the second-order Raman spectra because its

Raman intensity is much smaller compared with that of the intervalley transition [37].

Depending on the carriers taking part in the scattering event, the Raman intensity for-

Fig. 4-1: fig/ch4-2nd.eps
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mula is given by:

I(2) =
∑
qνµ

∣∣Aee
qνµ + Ahh

qνµ + Ahe
qνµ + Aeh

qνµ + Aee
−qµν + Ahh

−qµν + Ahe
−qµν + Aeh

−qµν

∣∣2
× δ(EL − ων − ωµ − Es), (4.1)

where Aeh
qνµ is a Raman amplitude for each process: (1) an electron (e), first, emits a ν

phonon with momentum q and, (2) a hole (h) emits the µ phonon with momentum −q.

Here, Aeh
qνµ and Aeh

−qµν are not equivalent to each other due to the different time order of the

two phonon emission. Aee
qµν and Aee

qµν for the intervalley transition are shown in Fig. 4-1(b).

Next, we show examples of the Raman amplitude formula for Aee
qνµ and Aeh

qνµ:

Aee
qνµ =

∑
k

Mvc
op(k)M

ccµ
ep (k,k+ q)M ccν

ep (k+ q,k)M cv
op(k) [f(E

v
k)− f(Ec

k)]

(EL − Ecv
k − iγ)(EL − Ec

k+q + Ev
k − ων

−q − iγ)(EL − Ecv
k − ων

−q − ωµ
q − iγ)

,

(4.2)

Aeh
qνµ = −

∑
k

Mvc
op(k+ q)Mvvµ

ep (k+ q,k)M ccν
ep (k+ q,k)M cv

op(k) [f(E
v
k)− f(Ec

k)]

(EL − Ecv
k − iγ)(EL − Ec

k+q + Ev
k − ων

−q − iγ)(EL − Ecv
k+q − ων

−q − ωµ
q − iγ)

.

(4.3)

The minus sign in Eq. (4.3) corresponds to the opposite charge of the hole from the electron

in the hole-phonon matrix elements [78].

4.2 Kohn anomaly effect of second-order Raman spec-

tra

In Sec. 3.2 we discussed the q = 0 Kohn anomaly process which leads to phonon renormal-

ization of the G band. In this section, we compare the KA process for q = 0 and q ≈ K

as shown in Figs. 4-2(a) and (b), respectively. In the q = 0 KA, a phonon with energy ω(0)

Fig. 4-2: fig/ch4-KA2.eps
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Figure 4-2: (Color online) (a) A schematic of the q = 0 Kohn anomaly process. A phonon
with zero wave vector (q = 0) and energy ω(0) vertically excites an electron-hole pair via the
electron-phonon interaction. The electron-hole pair then recombines by emitting a phonon
with energy ω. (b) A schematic of the q ≈ K Kohn anomaly process. An electron exists
at the K′ point leaving a hole behind at the K point with a distance in reciprocal space of
q = K + q′. If the K′ point is then translated by a vector −(K + q′), we can then imagine
a virtual vertical transition of electron and hole. When EF ̸= 0, both interband (c) and
intraband (d) transitions are expected.

vertically excites an electron-hole pair via the electron-phonon interaction [Fig. 4-2(a)]. The

electron-hole pair then recombines by emitting a phonon with energy ω. In this process,

only interband electron-hole pair excitation is allowed at verticall transition (q = 0). In the

q ≈ K KA, on the other hand, an electron exists at the K′ point, leaving a hole behind at the

K point with a distance in reciprocal space q = K+q′ [Fig. 4-2(b)]. If the K′ point is trans-

lated by a vector −(K+q′), we can imagine a virtually vertical excitation of an electron-hole

pair as shown in Fig. 4-2(c) and (d). When EF ̸= 0, both the interband [Fig. 4-2(c)] and

intraband [Fig. 4-2(d)] transitions are expected.

In Fig. 4-3, we show the calculated results of the q ̸= 0 KA effect from Eq. (3.4). First, let

Fig. 4-3: fig/ch4-KAef.eps
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Figure 4-3: (Color online) The iTO phonon energy shift and linewidth as a function of the
Fermi energy EF for (a), (d) q = K − ξ; (b), (e) q = K; and (c), (f) q = K + ξ, with
ξ = 0.14 Å−1. We use T = 300 K.

us consider the case of q = K in Figs. 4-3(b) and (e). If we compare respectively Figs. 4-3(b)

and (e) with Figs. 3-2(b) and (c), both the frequency shift and phonon linewidth show the

same trends as that of q = 0 KA because both q = 0 and q = K are dominated by the

interband electron-hole excitation. The reason why the interband excitation is dominant at

q = K, is that the K and K′ points coincide upon translation of the K′ point by a vector

−K [ q′ = 0 in Fig. 4-2(c)]. Therefore, at the q = K KA, only virtually vertical interband

excitation, the same as at q = 0 KA, is possible [79]. The previous work did not consider

the interband contribution, therefore assigning the q = K phonon frequency shift to be

dispersionless as a function of EF [33].

Next, if we shift by ξ = 0.14 Å−1 from q = K, competition between the intraband and

interband excitations take place as shown in Figs. 4-3(a), (c), (d), and (f). According to the
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Figure 4-4: (Color online) (a) The calculated results of the second-order Raman intensity
for a laser energy 1.53 eV showing three significant peaks identified with the iTA+iTO
band (∼ 2200 cm−1), iTO+LA or G∗ band (∼ 2500 cm−1), and 2iTO or 2D or G′ band
(∼ 2800 cm−1). (b) The constituents of the G′ band contribution from (a): ab = (Aeh+Ahe)
(blue dashed line) and aa = (Aee +Ahh) (red dashed line). (c) The calculated results of the
EL dependence of the G′, G∗, and iTA + iTO bands (inset) for 1.53 eV ≤ EL ≤ 2.41 eV. (d)
The G′, G∗, and iTA + iTO bands peak position as a function of EL. Black dots are the
calculated results (this work), blue and red open squares are from Ref. [21], blue asterisks
are from Ref. [80], and green triangles are from Ref. [81].

analytical formula [79], the intraband contribution to the frequency shift is proportional to

− sin−1 |2EF/vq| by assuming ω0 ≪ vq, where v is the slope of the linear energy dispersion of

graphene which is ∼ 6.46 eVÅ. The phonon linewidth is increasing linearly with |EF| in the

case of the intraband excitation [Figs. 4-3(d) and (f)] because the electron-phonon scattering

rate is proportional to the carrier concentration. The asymmetry at positive and negative

EF is related to electron-hole band asymmetry considered in the tight binding calculation.

After considering the KA effect on the q ̸= 0 phonon, in Fig 4-4 we show the calculated

Fig. 4-4: fig/ch4-elgp.eps
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Table 4.1: Summary of the second-order Raman peak position as a function of EL.

Mode Peaka ( cm−1) Peaka ( cm−1) ∆ω/∆EL( cm
−1/ eV) ∆ω/∆EL( cm

−1/ eV)
this work expermients this work experiments

G′ 2730 2683 [21], 2668 [80] 95 90 [21], 104 [80]
G∗ 2456 2456 [21] -33 -20 [21]

iTA+iTO 2176 2220 [81] -58 -56 [81]

a Data are taken at EL = 2.41 eV

Raman spectra from Eq. (4.1). Figure 4-4(a) shows three bands, respectively, assigned as

the G′ ∼ 2700 cm−1, G∗ ∼ 2500 cm−1, and iTA + iTO ∼ 2240 cm−1 for EL = 1.53 eV. We

confirm the origin of the G′ bands from the overtone of the iTO (2iTO) modes while the G∗

bands come from a combination of iTO and LA modes. The major contributions to the G′

intensity come from the Aeh and Ahe terms as shown by ab = (Aeh+Ahe) in Fig. 4-4(b). This

confirms the previous calculation that the Aee and Ahh terms are negligible [aa = (Aee+Ahh)

in Fig. 4-4(b)] because of the quantum interference effect during the k integration [70].

Figure 4-4(c) shows the second-order Raman intensities for 1.53 eV ≤ EL ≤ 2.41 eV. The

intensities of all these Raman bands are inversely proportional to EL because of the increase

of the electron-phonon scattering rate γ as a function of EL [70, 20]. Assuming that each

band can be represented by a single peak, the peak positions of the G′, G∗, and iTA + iTO

bands as a function of EL are shown in Fig. 4-4(d). The results Fig. 4-4(d) are summarized

in the Table 4.1. Good agreement between theory and experiment in the slope of the EL

dispersion indicates the reliability of our phonon dispersion used in the calculation. However,

discrepancies with the experiments for the peak position of the G′ and iTA + iTO bands of

about 50 cm−1 show that the calculated electronic energy dispersion underestimates the

experimenal results. This can be seen insofar as the G′ and iTA + iTO peaks at EL = 1.5 eV

in theory give relatively the same value for EL = 2.0 eV in the experiment, thus the present

electronic energy dispersion near EL underestimate the real value by ∼ 0.5 eV. This might

be because we neglect the many body and exciton effects in the band calculations [see Fig. 2-

4]. Nevertheless, the overal agreement is sufficient for us to proceed and consider the EF
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Figure 4-5: (Color online) (a) Fitting of the second order Raman spectra obtained in Fig. 4-
6(a) at EF = 0 eV and EL = 2.33 eV. The dotted line is the calculated Raman intensity
fitted by six Lorentzians labelled by G′

o (blue), G′
i (red), G

∗
1 (green), G∗

2 (blue), G∗
3 (red),

and iTA + iTO bands. We show the peak shift and the spectral linewidth as a function of EF

for (b) the G′
i, (c) G

∗
3, (d) G

∗
2, and (e) iTA + iTO bands. Black open circles are the results

in this work, red closed circles are experimental results from Ref. [33], and blue triangles are
experimental results from Ref. [37].

dependence of the Raman intensity for a particular EL.

Figure 4-5(a) shows the Lorentzian fitting results on the second order Raman spectra for

EF = 0. The dotted line is the calculated Raman intensity fitted by six Lorentzians. We fit

the G′ bands with two Lorentzians labelled by G′
o (blue) and G′

i (red) which reffer to G′

bands from outer (q in KM direction) and inner (q in KΓ direction) scattering processes,

respectively [70, 80]. Three Lorentzians are needed to fit the G∗ band, labelled by G∗
1 (green),

G∗
2 (blue), and G∗

3 (red). Finally one Lorentzian is used to fit the iTA + iTO band.

Fig. 4-5: fig/ch4-KAexp.eps
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After Lorentzian fitting, we compare both the peak shift and the spectral linewidth as a

function of EF as shown in Figs. 4-5(b)-(e). We do not show the G′
o and G∗

1 for simplicity

because there is no experimental data available for comparison. The calculated results in

Fig. 4-5(b)-(e) cannot fit the experimental value of both the peak position and the linewidth

due to the underestimation of the electronic energy dispersion as previously discussed in the

EL dependence of the second-order Raman spectra [see Fig. 4-4(d)]. But we can discuss the

change of both quantities as a function of EF, where the KA effect takes place. In Figs. 4-

5(b)-(e), both the spectral peak position and the linewidth as a function of EF are plotted

in the same range, comparing the theory and experiments. Reasonable agreements between

experiments and theory are achieved. The three major peaks, i.e., the G′
i, G

∗
3, and iTA + iTO

bands show “Λ” (“V”) shapes of the Raman peak shift (spectral linewidth) as a function of

EF. These behaviors exist because of the intraband electron-hole excitation renormalization

of phonons as shown in Fig. 4-3. The G∗
2 band in Fig. 4-5(d) is relatively dispersionless in

EF because it is located in the shoulder of the G′ band where 2iTO q = K exists. Therefore,

for these bands, the competition between interband and intraband electron-hole excitations

are expected. The calculated results overestimate the experimental spectral linewidths of all

bands, which is related to the choice of ∆k in the k integration. We can tackle this issue by

reducing the value of ∆k by ∆k/n; however, the computational burden becomes en times

larger.

4.3 Quantum interference effect of second-order Ra-

man spectra

Figure 4-6(a) shows the evolution of the second-order Raman spectra for several values of

EF. We use the same EL = 2.33 eV as Araujo et al [33]. In Figs. 4-6(b) and (c) the intensities

have been multiplied by two times as indicated. Figures 4-6(a) and (d) show the decrease of

the G′ peak intensity as |EF| increases. In Fig. 4-6(d), the calculated results shown circles

Fig. 4-6: fig/ch4-QI.eps
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Figure 4-6: (Color online) (a) The second-order Raman spectra for several EF. (b) The
iTA + iTO, (c) the G∗, and (d) the G′ band intensities as a function of 2EF/EL, where
EL = 2.33 eV. In panels (b) and (c) the intensities have been multiplied by two times as
indicated in the figures. In panel (d), calculated results are represented by circles, while
experimental results are denoted by stars (from Ref. [41]) and squares (from Ref. [72]).

and the experimental results (stars from Ref. [41] and squares from Ref. [72]) reasonably

agree with each other. However, the Raman intensity of the iTA + iTO and G∗ bands

dramatically increase at certain values of EF as shown in Fig. 4-6(b) and (c), respectively.

We find that the intensity increase of the combination phonon modes (iTA + iTO and G∗

bands) originates from the electron-phonon matrix elements effect to the phase of Raman

spectra.

In Fig. 4-7(a), we plot Mvv LA
ep (k+q,k)M cc iTO

ep (k+q,k) for k is given on a equi–energy

line Ec
k −Ev

k = 1 eV near the K point and q = K. We can see that both real and imaginary
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Figure 4-7: (Color online) Product of electron-phonon matrix elements (a) Mvv LA
ep (k +

q,k)M cciTO
ep (k + q,k) and (b)Mvv iTO

ep (k + q,k)M cciTO
ep (k + q,k) with q = K as a function

of angle θ measured from kx-axis. Inset: equi–energy line for Ec
k − Ev

k = 1 eV near the K
point and definition of θ and kx.

parts of the product of matrix elements exist indicating the change of phase as a function of

k. At a finite EF, some of these destructive phases are suppressed due to the Pauli exclusion

principle, as a result the Raman intensity for the combination phonon modes are enhanced.

On the other hand, the overtone mode does not provide such a destructive phase because µ

and ν are the same thus two matrix elements are related by a complex conjugation and the

product of the two values gives only a real value as shown in Fig. 4-7(b).

These results give clues about how the Raman phase governed by the electron-phonon

matrix elements distinguishes between the EF dependence of the Raman intensity of the

combination modes from that of the overtone modes [72, 82]. Although EF ≈ 1 eV is too

high for experiments on graphene, one can reduce the EL to become ≈ 1 eV to satisfy the

condition of 2EF ≈ EL to get proper conditions for observing the quantum interference effect.

Fig. 4-7: fig/ch4-mepmep.eps



70 Fermi energy dependence of second-order Raman spectra



Chapter 5

Conclusion

In conclusion, we calculated the first- and second-order Raman spectra of graphene as a

function of the Fermi energy (EF). The calculation of Raman spectra of graphene requires

knowledge of electronic energy dispersion, phonon energy dispersion, the electron-photon,

electron-phonon, and electron-electron interactions. The calculation results of the EF depen-

dence of Raman spectra are used to explain three phenomena observed in the gate modulated

Raman experiments: (1) the Kohn anomaly effect, (2) the quantum interference effect, and

(3) the asymmetric Breit-Wigner-Fano lineshape of Raman spectra.

Kohn anomaly effect

The Kohn anomaly (KA) effect of the first-order Raman spectra comes from renormalization

of phonon energy by the interband electron-hole excitation. In contrast to the KA effect of

the first-order Raman spectra, the intraband electron-hole excitation dominates over the

KA effect of the second-order Raman spectra. Because of these two different effects arising

from the interband and intraband excitations, the opposite Kohn anomaly effect, in terms

of phonon frequency and linewidth as a function of EF, between the first- and second-order

Raman spectra was observed by Araujo et al. [33] and has been confimed by the present

calculation. We reproduce the slopes of both phonon frequency and linewidth as a function

of EF for both the first- and second-order Raman spectra. In particular, from the present
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calculation, the q = 0 and q = K phonons are found to have the same KA effect [Fig. 4-3]

but Araujo et al. assign that the G∗
2 band which is non-dispersive in EF comes from the

q = K phonon [33]. We argue that the origin of non-dispersive G∗
2 band comes from mixture

of many q phonons in which the competition between interband and intraband excitations

are balanced in the KA effect.

Quantum interference effect

We also discussed the quantum interference effect observed in the change of the Raman

intensity as a function of EF. Both the first- and the second-order Raman spectra exhibit

an impact of the quantum interference effect, especially when 2|EF| ≈ EL. The first-order

Raman spectra are found to have destructive interference between the incident and scattered

resonance. When 2EF is very close to EL, the scattered resonant condition can be suppressed

while keeping the incident resonance, the G band intensity enhancement can be achieved.

Present calculated results found that not only the resonance conditions are important, but

also the explicit consideration of the electron-phonon matrix elements are essential to deter-

mine the EF dependence of the Raman spectral lineshape. In the first-order Raman spectra,

different peak intensity between hole and electron doping observed by Liu et al. [72] has

been reproduced by the present calculation because we consider electron-hole asymmetry in

graphene electronic energy dispersion [Fig. 3-4]. In the second-order Raman spectra, the

appearance of two electron-phonon matrix elements gives two different quantum interference

effect for the overtone and combination modes. The overtone mode (G′ band) gives mono-

tonically decreasing intensity while the intensities of combination modes (G∗ and iTA + iTO

bands) are enhanced by two times when 2EF ≈ EL (Fig. 4-6). The present calculated results

have never been observed systematically in experiments thus require confirmations.

Breit-Wigner-Fano lineshape

We have shown that the origin of the Breit-Wigner-Fano (BWF) spectra in the G band

of graphene comes from the continuous ERS spectra interfering with the discrete G band
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phonon spectra. By calculating the Raman amplitudes of the ERS and phonon spectra,

we found that the interference effect between the ERS and phonon spectra gives a drastic

change in the constructive-destructive interference near the phonon frequency, leading to an

asymmetry of the phonon lineshape when fitted to the BWF lineshape. In this calculation

we found that the first-order ERS process has smaller probability compared with the second-

order one because the direct Coulomb interaction vanishes at q = 0 due to the symmetry of

electron wavefunctions in the A and B sites of graphene unit cell. Considering the second-

order Raman process for the ERS spectra, we were able to reproduce the EF dependence of

the asymmetric BWF factor 1/qBWF [Fig. 3-8]. We expect that the asymmetric BWF feature

appears generally in the phonon Raman spectra of all Dirac cone systems.
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Appendix A

Determination of Force Constant

Parameters

In this section we review Samsonidze’s Ph.D. thesis for determining the force constant pa-

rameters for the extended interatomic potential up to the 20–th nearest neighbor [58]. First

we discuss the basic force constant (BFC) model by taking into account the contribution up

to the fourth nearest neighbor. Since the BFC model is not sufficient to reproduce experi-

mental results, we improve the BFC by considering up to the 20–th nearest neighbor in the

advanced force constant (AFC) model with the force constant parameters are obtained from

the first-principles calculation [63].

A.1 Basic force-constant model

The lattice dynamics of the graphene sheet is described by the equation of motion, Eq. (2.29),

with the dynamical matrix of Eq. (2.35) expressed through the interatomic force constants,

Kjsα
j′s′α′. The interatomic force constants Kjsα

j′s′α′ are written in the form of the 3 × 3 force

constant matrix Φj′s′js over the coordinates α′, α defined by (Φj′s′js)α′α = Kjsα
j′s′α′ for each pair

j′s′js of carbon atoms. We first construct the force constant matrices using the normal

coordinates α′, α = ir, it, ot, corresponding to the in-plane radial, in-plane tangential, and
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Figure A-1: A single graphene sheet where the open and solid dots indicate the A and B
sublattices, respectively. (a) The normal coordinates (ir, it, ot) for a pair of js and j′s′ atoms
are connected by the red line. The dotted points represent the vectors ot and z pointing out
of the image plane. (b) The four shells of the nearest neighbors of the central A atom are
shown by circles. The shells that consist of the A and B atoms are shown in green and blue,
respectively. The central A atom and the three B atoms from the first shell are labeled by
indices ıȷ = 00 and ıȷ = 11, 12, 13, respectively.

out-of-plane tangential displacements of carbon atoms, as shown in Fig. A-1 (a). Then we

transform the force constant matrices from Φnorm
j′s′js in the normal coordinates to Φcart

j′s′js in the

Cartesian coordinates by means of rotation matrices.

We consider the force constants up to the fourth nearest neighbor within the basic force-

constant (BFC) model [83]. The inclusion of the fourth nearest neighbor is essential in order

to describe the twisted motion of carbon atoms [83]. Within the BFC framework, we further

neglect off-diagonal elements of the force constant matrices in the normal coordinates [83].

The four shells of the nearest neighbors of atom A are shown by the circles in Fig. A-1 (b).

Note that the first, third, and fourth shells consist of atoms B of the opposite type than the

central A atom, while the same A atoms appear in the second shell. Each atom within the

four shells is labeled by a pair of indices, ıȷ instead of js, where ı = 1, . . . , 4 indicates the

shell number and ȷ numerates the atoms in each shell counterclockwise looking down the

z-axis. The first atom ȷ = 1 within each shell ı appears in the positive direction of the x-axis.

The indices ıȷ = 11, 12, 13 for the first shell ı = 1 are shown in Fig. A-1 (b). The central A

Fig. A-1: fig/ap1-4th.eps
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atom is referred by ıȷ = 00 instead of j′s′. The indices ıȷ = 00 for the central atom are shown

in Fig. A-1 (b). In this notation, the force constant matrices Φj′s′js and the force constants

Kjsα
j′s′α′ are written as Φ00ıȷ and Kıȷα

00 , respectively. In the normal coordinates α = ir, it, ot, the

force constants Kıȷα
00 within each shell ı are equivalent. Thus, Kıȷα

00 is independent of index ȷ,

and so does Φnorm
00ıȷ . Hence, we label Kıȷα

00 as K(ı)
α , assuming α = ir, it, ot.

For the pairs of atoms 00ıȷ, the normal coordinate system is rotated by the angles ϕ00ıȷ

from the Cartesian coordinate system around the common axis ot = z, as one can see in

Fig. A-1 (a). The force constant matrices in the normal coordinates:

Φnorm
00ıȷ =


K(ı)

ir 0 0

0 K(ı)
it 0

0 0 K(ı)
ot

 (A.1)

are then transformed to Cartesian coordinates by means of the rotation matrix Rz (ϕ00ıȷ)

given by

Rz(ϕ00js) =


cosϕ00js sinϕ00js 0

− sinϕ00js cosϕ00js 0

0 0 1

 . (A.2)

and its transpose RzT(ϕ00ıȷ):

Φcart
00ıȷ = RzT(ϕ00ıȷ)Φ

norm
00ıȷ R

z(ϕ00ıȷ) . (A.3)

Upon substituting Eq. (A.2) into Eq. (A.3), we obtain the force constant matrices in Carte-

sian coordinates:

Φcart
00ıȷ =


K(ı)

ir cos2 ϕ00ıȷ +K(ı)
it sin2 ϕ00ıȷ

(
K(ı)

ir −K(ı)
it

)
cosϕ00ıȷ sinϕ00ıȷ 0(

K(ı)
ir −K(ı)

it

)
cosϕ00ıȷ sinϕ00ıȷ K(ı)

ir sin2 ϕ00ıȷ +K(ı)
it cos2 ϕ00ıȷ 0

0 0 K(ı)
ot

 . (A.4)

For the first shell of the nearest neighbors ıȷ = 11, 12, 13, the rotation angles are given
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by ϕ0011 = π, ϕ0012 = −π/3, and ϕ0013 = π/3, according to Fig. A-1 (b). Upon substituting

these angles into Eq. (A.4), we obtain the force constant matrices in Cartesian coordinates:

Φcart
0011 =


K(ı)

ir 0 0

0 K(ı)
it 0

0 0 K(ı)
ot

 , (A.5)

Φcart
0012 =


1
4
K(1)

ir + 3
4
K(1)

it −
√
3
4

(
K(1)

ir −K(1)
it

)
0

−
√
3
4

(
K(1)

ir −K(1)
it

)
3
4
K(1)

ir + 1
4
K(1)

it 0

0 0 K(1)
ot

 , (A.6)

Φcart
0013 =


1
4
K(1)

ir + 3
4
K(1)

it

√
3
4

(
K(1)

ir −K(1)
it

)
0

√
3
4

(
K(1)

ir −K(1)
it

)
3
4
K(1)

ir + 1
4
K(1)

it 0

0 0 K(1)
ot

 . (A.7)

In a similar fashion, the force constant matrices for the shells ı = 2, 3, 4 and those for the

central B atom are transformed to Cartesian coordinates using Eq. (A.4). The resulting force

constant matrices multiplied by the appropriate phase factors build up the dynamical matrix,

according to Eq. (2.35). Thus, the dynamical matrix within the BFC model is determined

by 12 force constant parameters K(ı)
α with ı = 1, . . . , 4 and α = ir, it, ot.

A.2 Advanced force-constant model

The BFC model is not sufficient to accurately reproduce the phonon dispersion curves of the

graphene sheet observed experimentally. The advanced force-constant (AFC) model is thus

introduced. The AFC model involves twenty shells of nearest neighbors and off-diagonal ma-

trix elements of the force constant matrices. The twenty shells and off-diagonal elements are

essential in order to reproduce the phonon dispersion relations of the graphene sheet obtained

from first-principles calculations on the basis of density-functional theory (DFT) employing

the local-density approximation (LDA) for the exchange-correlation potential with a plane-
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x

y

z

Figure A-2: The twenty shells of the nearest neighbors of the central A atom are shown
by the circles. The shells that consist of the A and B atoms are shown in green and blue,
respectively. The B atoms that form the shell 20′ are shown by red dots. The atoms in each
shell are numbered counterclockwise looking down the z-axis. The first atom within each
shell is highlighted by a yellow background.

wave expansion of the wavefunctions and using pseudo-potentials for the core electrons [63].

The twenty shells of the nearest neighbors of atom A are shown by circles in Fig. A-2,

where the first four shells coincide with those in Fig. A-1 (b). The shells 1, 3, 4, 7, 8, 9, 11,

13, 14, 16, 18, 20 consist of atoms B of the opposite type than the central A atom, while

the shells 2, 5, 6, 10, 12, 15, 17, 19 contain atoms A of the same type. Note that there are

two different types of atoms in shell 20, which we refer to as 20 and 20′, shown by black and

Fig. A-2: fig/ngb20.eps
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red dots in Fig. A-2, respectively. By analogy with the BFC model discussed in Section A.1,

each atom within the twenty shells is labeled by a pair of indices ıȷ, where ı = 1, . . . , 20

indicates the shell number and ȷ numerates the atoms in each shell counterclockwise looking

down the z-axis. The first atom ȷ = 1 within each shell ı appears in the positive direction

of the x-axis. These atoms are highlighted by a yellow background in Fig. A-2. The central

A atom is referred by ıȷ = 00.

Let us construct the force constant matrices in the normal coordinates Φnorm
00ıȷ . The diag-

onal matrix elements of Φnorm
00ıȷ are given by K(ı)

ir , K
(ı)
it , and K(ı)

ot , similar to Eq. (A.1) for the

BFC model. The out-of-plane off-diagonal matrix elements of Φnorm
00ıȷ are zero. The in-plane

off-diagonal matrix elements of Φnorm
00ıȷ , on the other hand, are determined by the symmetry

of the pairs of atoms shown in Fig. A-2. For the shells ı = 1, 3, 5, 8, 11, 15, 20, the in-plane off-

diagonal matrix elements of Φnorm
00ıȷ vanish. For the shells ı = 2, 4, 6, 7, 9, 12, 13, 14, 16, 18, 19, 20′,

there is one independent in-plane off-diagonal matrix element of Φnorm
00ıȷ , which we refer to

as K(ı)
i1 . For the shells ı = 10, 17, there are two independent in-plane off-diagonal matrix

elements of Φnorm
00ıȷ , which we refer to as K(ı)

i1 and K(ı)
i2 . The in-plane diagonal blocks of the

force constant matrices Φnorm
00ıȷ are then written in the following form:
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

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir 0

0 +K(ı)
it

 for

 ı = 1, 3, 8, 11, 20,

ȷ = 1, 2, 3,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir 0

0 +K(ı)
it

 for

 ı = 5, 15,

ȷ = 1, 2, 3, 4, 5, 6,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir +K(ı)

i1

−K(ı)
i1 +K(ı)

it

 for

 ı = 2, 6, 12, 19,

ȷ = 1, 3, 5,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir −K(ı)

i1

+K(ı)
i1 +K(ı)

it

 for

 ı = 2, 6, 12, 19,

ȷ = 2, 4, 6,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir +K(ı)

i1

+K(ı)
i1 +K(ı)

it

 for

 ı = 4, 7, 9, 13, 14, 16, 18, 20′,

ȷ = 1, 3, 5,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir −K(ı)

i1

−K(ı)
i1 +K(ı)

it

 for

 ı = 4, 7, 9, 13, 14, 16, 18, 20′,

ȷ = 2, 4, 6,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir +K(ı)

i1

+K(ı)
i2 +K(ı)

it

 for

 ı = 10, 17,

ȷ = 1, 5, 9,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir −K(ı)

i1

−K(ı)
i2 +K(ı)

it

 for

 ı = 10, 17,

ȷ = 4, 8, 12,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir +K(ı)

i2

+K(ı)
i1 +K(ı)

it

 for

 ı = 10, 17,

ȷ = 3, 7, 11,

(
Φnorm

00ıȷ

)
ii
=

 +K(ı)
ir −K(ı)

i2

−K(ı)
i1 +K(ı)

it

 for

 ı = 10, 17,

ȷ = 2, 6, 10,

(A.8)

while the out-of-plane diagonal blocks are given by
(
Φnorm

00ıȷ

)
oo

= K(ı)
ot , and the off-diagonal

blocks
(
Φnorm

00ıȷ

)
io
and

(
Φnorm

00ıȷ

)
oi
vanish. The force constant matrices Φnorm

00ıȷ given by Eq. (A.8)
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Figure A-3: (a) Phonon dispersion relations of a graphene sheet according to the AFC model
with the force constants [63] given in Table A.1 along the high-symmetry directions in the
first Brillouin zone. The red, green, blue, solid, and open dots are experimental data taken
from Ref. [31, 30]. (b) The density of phonon states (DOS).

are then transformed from the normal coordinates to Cartesian coordinates using Eq. (A.4).

The force constant matrices for the central B atom are obtained in a similar fashion.

The resulting force constant matrices multiplied by the appropriate phase factors build

up the dynamical matrix, according to Eq. (2.35). Thus, the dynamical matrix within

the AFC model is determined by 79 force constant parameters K(ı)
α , where α = ir, it, ot

for ı = 1, 3, 5, 8, 11, 15, 20, α = ir, it, ot, i1 for ı = 2, 4, 6, 7, 9, 12, 13, 14, 16, 18, 19, 20′, and

α = ir, it, ot, i1, i2 for ı = 10, 17. The force constant parameters within the framework of the

AFC model calculated with the help of DFT-LDA [63] are summarized in Table A.1. The

phonon dispersion relations of the graphene sheet calculated with the force constants from

Table A.1 are shown in Fig. A-3.

Fig. A-3: fig/ldagr.eps
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Table A.1: The force constants for a graphene sheet within the AFC model (in units of
104 dyn/cm; 1 dyn/cm = 6.2415meV/nm2) calculated with the help of DFT-LDA [63]. The
in-plane and out-of-plane force constants are scaled by factors 0.99152 and 0.97542, respec-
tively, in order to fit the Γ point optical phonon frequencies to the well-known experimental
data ωE2g(Γ) = 1582 cm−1 and ωB2g(Γ) = 868 cm−1 [87]. The corresponding phonon disper-
sion relations are shown in Fig. A-3.

Kir Kit Kot Ki1 Ki2

K(1) +43.0374 +16.0741 +9.6310 — —
K(2) +7.3805 −4.1183 −0.7718 +0.4415 —
K(3) −1.3043 +3.1505 +0.6341 — —
K(4) −0.6390 +0.3681 −0.7535 +1.0211 —
K(5) +0.8245 +0.1673 +0.1058 — —
K(6) +0.1737 −0.4310 −0.0180 −0.0109 —
K(7) −0.3062 +0.2356 −0.0127 +0.1669 —
K(8) −0.7099 +0.0203 +0.0982 — —
K(9) +0.0128 +0.1167 +0.0395 −0.0512 —
K(10) +0.1764 −0.0838 −0.0099 +0.2299 −0.0940
K(11) −0.1364 +0.1983 +0.0029 — —
K(12) +0.0975 +0.0096 +0.0020 −0.0306 —
K(13) −0.0496 −0.0335 −0.0063 +0.0356 —
K(14) −0.1200 −0.0283 −0.0127 +0.0542 —
K(15) +0.1428 +0.0212 +0.0020 — —
K(16) −0.0835 +0.0220 +0.0028 −0.0073 —
K(17) +0.0301 −0.0203 +0.0006 +0.0246 −0.0069
K(18) −0.0687 +0.0220 −0.0010 +0.0330 —
K(19) +0.0426 −0.0141 +0.0002 +0.0000 —
K(20) −0.1368 −0.0552 +0.0028 — —
K(20′) −0.0120 +0.0104 +0.0020 +0.0033 —
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Appendix B

Electron-Electron Interaction

In this section we elaborate the calculation of electron-electron interaction K1,2,3,4(q), where

[1, 2, 3, 4] = [kc,k′v, (k − q)c, (k′ + q)c] within tight binding (TB) approximation. An im-

portant conclusion of this section is that for the direct Coulomb interaction Kd between the

photo-excited electron (PE) and an electron in the Dirac cone (DE) vanishes at q = 0 which

give rise to the smaller amplitude of the first-order ERS process A
(1)
ERS when compared to

the second-order A
(2)
ERS counterpart. This is simply due to the symmetry of the A and B

sublattice in graphene unit cell. The interaction between a photoexcited electron (PE) from

state 1 to state 3 in the conduction band and an electron in the Dirac cone (DE) from state

2 to state 4 is given by

K1,2,3,4(q) =

∫
drdr′Φ

∗(±)
34 (r, r′)v (r, r′) Φ

(±)
12 (r, r′). (B.1)

The two-body wave function of electrons in a initial state Φ
(±)
12 is defined as:

Φ
(±)
12 (r, r′) =

1√
2
[ψ1 (r)ψ2 (r

′)± ψ1 (r
′)ψ2 (r)] , (B.2)
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and the final state Φ
(±)
34 is defined as:

Φ
(±)
34 (r, r′) =

1√
2
[ψ3 (r)ψ4 (r

′)± ψ3 (r
′)ψ4 (r)] , (B.3)

where the + (−) sign is taken for the spin singlet (triplet) state. Here we do not explicitly

show spins functions for simplicity since the Coulomb interaction does not change the spin

direction. ψi (r) is the tight binding wavefunction in Eq. (2.4) specified by wave vector ki,

subband ai = c, v, and position r.

Substituting Eqs. (B.2) and (B.3) into Eq. (B.1) we obtain

K1,2,3,4(q) = Kd
1,2,3,4(q)±Kx

1,2,3,4(q), (B.4)

where the direct interaction Kd and exchange interaction Kx terms are expressed by

Kd
1,2,3,4(q) =

1

2
(V1,2,3,4 + V2,1,4,3), (B.5)

Kx
1,2,3,4(q) =

1

2
(V1,2,4,3 + V2,1,3,4), (B.6)

and the Coulomb integral K is defined by

V1,2,3,4 =

∫
drdr′v (r, r′)ψ∗

4 (r
′)ψ∗

3 (r)ψ2 (r
′)ψ1(r). (B.7)

Substituting Eq. (2.4) into Eq. (B.7), we get

V1,2,3,4 =
1

N2

∑
s1u1,s2u2

[ ∑
s′1u

′
1,s

′
2u

′
2

Ca1∗
s1

(k1) e
−ik1.Ru1s1Ca2∗

s′1
(k2) e

−ik2.Ru′1s
′
1

× Ca3
s2

(k3) e
ik3.Ru2s2Ca4

s′2
(k4) e

ik4.Ru′2s
′
2

×
∫
drdr′v (r, r′)φ (r−Ru1s1)φ

(
r′ −Ru′

1s
′
1

)
φ (r−Ru2s2)φ

(
r′ −Ru′

2s
′
2

) ]
. (B.8)

The largest contribution from the integrand comes from (u1s1) = (u2s2) ≡ (us) and (u′1s
′
1) =
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(u′2s
′
2) ≡ (u′s′). Thus Eq. (B.8) becomes

V1,2,3,4 ∼=
1

N2

∑
su

∑
s′u′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4)

×e−ik1.Ruse−ik2.Ru′s′eik3.Ruseik4.Ru′s′

×
∫
drdr′v (r, r′) |φ (r−Rus)|2 |φ (r′ −Ru′s′)|2

=
1

N2

∑
su

∑
s′u′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4)

×ei(k3−k1).Rusei(k4−k2).Ru′s′

×
∫
drdr′v (r, r′) |φ (r−Rus)|2 |φ (r′ −Ru′s′)|2

=
1

N2

∑
su

∑
s′u′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4)

ei(k3−k1+k4−k2).Rusei(k4−k2).(Ru′s′−Rus)

×
∫
drdr′v (r, r′) |φ (r−Rus)|2 |φ (r′ −Ru′s′)|2 .

By using the fact that
∑
u,s

ei(k3−k1+k4−k2).Rus = Nδ (k3 + k4,k1 + k2), we get

V1,2,3,4 =
∑
ss′

Ca1∗
s (k1)C

a2∗
s′ (k2)C

a3
s (k3)C

a4
s′ (k4) vss′ (k4 − k2)

×δ (k3 + k4,k1 + k2) , (B.9)

where

vss′ (q) =
1

N

∑
u′

eiq.(Ru′s′−R0s)

∫
drdr′v (r, r′) |φ (r−R0s)|2 |φ (r′ −Ru′s′)|2 , (B.10)

is the Fourier transform of the Coulomb integral. When we define the integration of Eq.

(B.10) as v (R0s,Ru′s′),

vss′ (q) =
1

N

∑
u′

eiq.(Ru′s′−R0s)v (R0s,Ru′s′) , (B.11)
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we can show that vAA (q) = vBB (q) and vAB (q) = v∗BA (q) because of the symmetry between

the A and B sublattices. The Coulomb potential v (R,R′) for the π electron system is

modeled by the Ohno potential [75, 76, 38]:

v (R,R′) =
U0√(

4πϵ0
e2

U0 |R−R′|
)2

+ 1

. (B.12)

where U0 the on-site Coulomb potential for two π electrons at the same site R = R′, which

is defined by

U0 =

∫
drdr′φ2(r)φ2(r′)

e2

r− r′
= 11.3 eV (B.13)

The corresponding direct and exchange terms from Eqs. (B.5) and (B.6) are now expressed

by

Kd
1,2,3,4(q) =

∑
ss′=A,B

C1
sC

2
s′C

∗3
s C

∗4
s′ Re [vss′ (q)] , (B.14)

Kx
1,2,3,4(q) =

∑
ss′=A,B

C1
sC

2
s′C

∗3
s′ C

∗4
s Re

[
vss′
(
k

′ − k− q
)]
. (B.15)

The TB coefficient Ci
s has been derived in Eq. (2.21), and choosing the phase factor (ϕc =

ϕv = −θ(k)/2) so as to get

Cc
A (K+ k) =

1√
2
e−iθ(k)/2, Cc

B (K+ k) =
1√
2
e+iθ(k)/2,

Cv
A (K+ k) =

1√
2
e−iθ(k)/2, Cv

B (K+ k) = − 1√
2
e+iθ(k)/2,

(B.16)

where the phase θ in Eq. (B.16) is defined by the angle between k and kx– axis measured

from the K (or K’) point (see Fig.B-1, vectors corresponding to the K and K′ points are

denoted K and K′, respectively) [88]. In Eq. (B.16), we have set the overlap integral s = 0

(Eq. (2.21)). The TB coefficient near K′ point can be obtain by taking complex conjugate

of corresponding coefficient near K point.
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Figure B-1: The phase θ in Eq. (B.16) is defined by the angle between k and kx– axis
measured from the K (or K’) point.

Inserting Eqs. (B.16) and (B.11) to Eqs. (B.14) and (B.15), at q = 0, the direct

interaction term becomes

Kd
1,2,3,4(0) =

1

4
(ṽAA (0)− ṽAB (0) + ṽBA (0)− ṽBB (0)) = 0, (B.17)

and the exchange term becomes

Kx
1,2,3,4(0) =

i

2
sin (θ′ − θ) RevAB

(
k

′ − k
)
. (B.18)

Equation (B.17) proves that the direct terms Kd in the first-order process at q = 0 vanish,

and only the exchange terms Kx in Eq. (B.18) survive. Therefore, the first-order electron-

electron scattering give a very small contribution to the ERS spectra and then we must

consider the second-order process.

Fig. B-1: ch2-angle.eps
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Appendix C

Phase of Second-Order Raman

Amplitudes

In this section, we analyze the phase of the second-order Raman amplitudes. It has been

shown in Fig. 4-4(b) that the ab = (Aeh + Ahe) processes are more dominant than the

aa = (Aee + Ahh) processes, thus we focus on Eq. (4.3) for evaluating the phase of the

second-order Raman amplitudes. The phase of numerator of Eq. (4.3) comes from the

products of electron-phonon matrix elements and has been shown in Fig. 4-7. Here, we focus

on analyzing the phase of denominator of Eq. (4.3) following Chen et al. [41].

We recall the denominator of Eq. (4.3) for a given k as:

Rk =
1

(EL − Ek − iγ)(EL − Ek′ − ω − iγ)(EL − Ek′′ − 2ω − iγ)
, (C.1)

where we have used short-hand notations: Ek = Ecv
k , Ek′ = Ec

k+q−Ev
k, Ek′′ = Ecv

k+q, and we

approximate ων
−q = ωµ

q = ω to simplify the analysis. From Fig. C-1, we obtain the following

Fig. C-1: ap3-gprime.eps
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�

�

Ek Ek'' Ek'

Figure C-1: Schematic of the second-order Raman process described in Eq. (4.3). We define
short-hand notations: Ek = Ecv

k , Ek′ = Ec
k+q − Ev

k, Ek′′ = Ecv
k+q, and ω

ν
−q = ωµ

q = ω.

relationships:

Ek′ = Ek − ω, (C.2)

Ek′′ = Ek − 2ω. (C.3)

From Eqs. (C.2) and (C.3) we shall obtain,

Ek′′ + Ek = 2Ek′ . (C.4)

Substituting Eq. (C.4) into Eq. (C.1) we obtain Rk as a function of Ek and Ek′ :

Rk =
1

(EL − Ek − iγ)(EL − Ek′ − ω − iγ)(EL − 2Ek′ + Ek − 2ω − iγ)
. (C.5)

The dominant contribution to the Raman amplitude is obtain when one of the denominator
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is minimum, namely Ek′ = EL − ω. With this condition, Eq. (C.5) becomes:

Rk =
1

(EL − Ek − iγ)(−iγ)(−EL + Ek − iγ)
,

Rk ∝ 1

(EL − Ek)2 − γ2
. (C.6)

From Eq. (C.6), it is clear that the denominator of Eq. (4.3) does not change the phase when

Ek or EF changes. This is the reason why the G′ band intensity in Figs. 4-6(a) and (d) is

monotonically decreasing by increasing EF.
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Appendix: calculation program

There are three main programs to calculate the EF dependence of the first-order Raman

spectra, the Kohn anomaly effect, and the second-order Raman spectra. All the necessary

programs can be found under the following directory in FLEX workstation:

~hasdeo/for/karaman/

Hereafter, this directory will simply be referred to as ROOT/ directory. More detail explana-

tions about how to use the programs are given in the 00README file in each subdirectory of

ROOT.

First-order Raman Spectra

Main program: ROOT/gband/mesh-gband.f90

Inputs: 1. input file: “nparameter.dat”: provides values of EF and EL

G band amplitudes

Subroutine: ROOT/gband/gampli.f90 Calculate the G band amplitudes

Inputs: 1. efermi REAL(8) The Fermi energy

2. kx, ky REAL(8) Values of kx and ky of electron wave vector

Outputs: 1. amplito, amplilo COMPLEX(8) LO and iTO Raman amplitudes
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Kohn anomaly effect

Program: ROOT/kagrap/efkagrap.f90 Calculate the Kohn anomaly as a function of the

Fermi energy

Outputs: 1. selfen COMPLEX(8) phonon self energy

Second-order Raman spectra

Main Program: ROOT/gpband/kk-gpband.f90 Calculate the second order Raman spec-

tra as a function of the Fermi energy

Inputs: 1. input file “nparameter.dat”: provides values of EF and EL

Outputs: 1. output file ./data-efgband/gpintensity-⟨EL⟩-⟨EF⟩.dat
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[85] P. Pavone, R. Bauer, K. Karch, O. Schütt, S. Vent, W. Windl, D. Strauch, S. Baroni,

and S. de Gironcoli, Physica B 219–220, 439 (1996).

[86] N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).

[87] L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004).
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