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A robot performs complex human skills for manipulation of objects during assembly,
the robot tasks are reproduced by synthesising a sequence of motion segments with specific
mechanical characteristics of the end effector including: when the end effector exerts a force
against an object; inducing end effector compliance upon an exerted external force, from an
object; exerting stiff motion to maintain a set trajectory, among others.

This research explores a multiple task model strategy to reconstruct assembly robot
motion tasks from: a GUI task synthesis by kinematics simulation model (Figure 1. Left); a
human force and position task demonstrations model (Figure 2.); a stiffness estimation model
(Figure 4. Right); a task geometry estimation, reconstruction and geometric optimisation
model (Figure 4. Left); and a direct kinematics model. Generation of robot motion
reconstructed from multiple task models solves the time inefficiency problem of the GUI task
synthesis by kinematics simulation, by fast extraction of spatial and force properties of a task
from the task demonstration. The segmentation of the teaching data into primitive task
motions with the optimum motion control mode properties is systematically solved by using
an intuitive task fragmentation and reconstruction model. The reconstruction depends on the
force, spatial and geometric features inherent in the demonstration data. Stiffness task
properties cannot be extracted directly from the structured human task demonstrations. It is
estimated using empirical data. Task teaching of one kind has been performed by Asada and
Asari to estimate the hand impedance, but only in the direction of the constraint using the
direct teaching method, but this does not apply to tasks using 6-DOF position and force for
primary motion control. Teaching by observing humans perform a task has also been done by
Kuniyoshi et al., and Suehiro and lIkeuchi, producing symbolic motion macros from the
visual task observations, there work does not capture the force and thus the dexterity from
expert human skill demonstrations. The inductive teaching used by Dufay and Latombe
makes simple task teaching less taxing to the user, but it is inefficient to script with complex
motion skills. Other methods of estimating hand stiffness by Mussa-Ivaldi et al., Tsuji et al.,

— 262 —



Motion Compliance-
control force control
a—Path 1/3 —s<Tath 2+

H . «—Insertion axis
L L.: y :
e Py
\
\
Dt'” pl
« Demonstration _,) e

ata

| ——20 40 T S P 20
_5\ ]"n:(,-_ space f:(vl‘l'll"l'|i'.lll( Compliant m(w:ing J— l'\
T Minimum point p_| = | Z 20pmotion | _insertion |, task frame —"-“li- 15
g0 m 10 20 _ 10
g = +
& | -2 A5
| Compliant extraction————* =t
_1 i i i L L A i i “ _4“ A i i i i i i i i'
0 2 4 B 8 10 0 2 4 6 8 10
Time |s]

Time |s]

Figure 2. Graph of the human position and force data used for task reconstruction.
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Figure 3. The algorithm integrating the multiple (coloured) models.

and Moraso et al. among many others have focused on static and freely moving hand. This
stiffness cannot directly be applied as the constrained task teaching stiffness, their models are
dimensionally simple, but do not capture the ergonomics of natural task execution.

In a new stiffness estimation model, the stiffness is measured from unstructured
human demonstrations, by analysing the effects of force perturbations against the human

hand, eliciting a response to stabilise manipulation against such uncertain contact motion.
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Figure 4. Position, force and stiffness estimation models for the constrained cranking task.

The directly estimated stiffness is validated by the GUI task simulation empirical models of
the actual tasks.

This work includes a direct kinematics model for task calibration experiments that
directly addresses any erroneous workspace transformation assumptions. The work is
motivated to model the tasks by analytically and systematically simplifying task
representation (Figure 1. Centre), into regular geometric functions, this is achieved by
estimating, optimising and incorporating their parametric and geometric definitions as the
basis of the task definitions. And thus, explicit task definitions simplify the complexities in
generating robot motion. A simple geometric task segment can be subjected to algebraic
operations, this flexibility is important for abstractions and modifications. Motion data is
broken down into its constituent primitive motion representations, then using systematic
analysis and intuitive techniques for generating and reconstructing the inherent task motion.
The task is reproduced from the multiple, independent task models. The overall task is, in
essence, a combination of the independent models. Complimentary mathematical estimation
and optimisation methods and models are used to optimise certain features in heuristic
models.

A virtual task demonstration provides a flexible and active method to model and
simultaneously obtain all the three independent variables: the position, force and stiffness, as
one novel contribution of this research. With the specification of position, force and stiffness
as the three cardinal inputs into assembly motion generation, in addition to the modelled
inputs that include friction and gravity compensation, a new level of autonomy for task
teaching is practically achieved.

The problem with the available models is that they cannot be readily used. This thesis
formulates models to evaluate and represent robot tasks as finite parameters that achieve
comparable and consistent results as human empirical tasks and data, using intuition,
estimation, and optimisation of parameters that cannot be efficiently intuited by human
observation. Generation of robot motion from human demonstration presents problems of
representation of the task, other than the spatial and force information in the demonstration
task; there are ambiguities in representation and what features to be used for characterising

— 2564 —



the task. In addition, only position and force, of the three independent variables needed for
task specification is readily extractable from the teaching demonstrations, the third variable,
stiffness or compliance is not. The human task demonstration model is applied for the
efficient acquisition of position and force data during a task demonstration session, in its raw
state, the data cannot be used for robot motion.

A direct kinematics model can solve the accuracy problems encountered from
erroneous assumptions that do not analytically establish the positional transformation
relationships between the robot workspace and the external task demonstration workspaces.
The task geometry reconstruction model estimates and recovers the task inherent in the
demonstration to reproduce the expert functional skill of the human. The direct stiffness
estimation model analyses the force and position during the time range of the involuntary
human muscle response to stimuli, after a perturbation applied to the hand. A GUI task
synthesis by kinematics simulation model is used for explicit task trajectory parameter
specification to empirically and heuristically contextualise the task, provide background
knowledge on the important aspects, and to provide robot motion performance criteria for the
task. The model provides complimentary model parameters that cannot be determined from
direct parameter models.

The problems solved in this thesis are, one, to address the accuracy and robustness
deficiencies observed in representation of human demonstration skill by a robust solution
built synergistic on human skill, empirical observation and mathematical optimisation. A
solution that directly applies to ameliorate the arduous, explicit trajectory node data by
operator-inputs teaching used before. Two, stiffness estimation during task teaching is
underscored by realising that human arm stiffness is variable, it depends on the mental
process models of the anticipated task, on the stiffness of the environment registered, on the
strength of each individual, and on the desired magnitude and direction of the environment
interacting force. This work addresses the problem of representation of human demonstration
skill by robust methods, a solution that is consequently applied to solve the arduous nodal
explicit teaching approach.

Stiffness abstracted empirically does not portray the flexibility apparent in human
skill; this limitation is solved by virtual task simulations to evaluate stiffness at multiple
stages of the task. This presents a challenge with how to estimate stiffness, and the challenge
is met with an elaborate stiffness estimation methodology.

The approach taken realises that a singular task model is not sufficient to solve for all the
three requirements of the end-effector force, position and stiffness. Therefore multiple
models are formulated to deal with particular interest parameters and a holistic synthesis
integrating the multiple model outputs is applied in the task reconstruction. The approach
taken on task reconstruction from a human skill demonstration imitates both the objective
quality of human motion; this is done by reproducing a minimum parameter set that
completely defines the simplest constituent sub motions of a task. Such a task is not robust to
robot workspace non- modelled dynamics such as friction. Task robustness is achieved by
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intuiting the human skill intention inherent in the data by analysing local data trends that
satisfy the objective qualities.

The objective intuitive task skills are superimposed upon the simple constituent sub-motions
to achieve robustness. The task is closely reconstructed to retain as much of the structure of
the demonstrations spatial skill trajectory as possible. The task shape defines the expert
skilful human motion that is not well captured by using symbolic motion macros used in
many of the robot motion task synthesis literature. The skills are also regular geometric
functions; these are superimposed, subtracted and abstracted, to provide flexibility and
robustness of the reconstructed task.

To tackle the complexity and deficiencies of dealing exclusively with one particular
model, an intuitive algorithm was formulated, it analyses force and position and rates of
change in spatial structure of the raw teaching trajectory. The task is broken down according
to the motion modes characterised by force thresholds from the analysis. Task features are
extracted based on an intuitive and a priori task estimation functions. The task representation
is optimised to reflect robot-motion-quality data. There are purges of segments of the tasks
that do not satisfy kinematic or objective constraints and motion segment patches to satisfy
such constraints. The task features are amalgamated into a robot task. Thus, the algorithm
adaptively reconstructs the robot assembly motion, from the interest features or strengths of
separate models applied on the raw human position and force demonstration data.

Feature extraction and optimisation is based on intuition of intention, and uses robust
analysis of the expected task parameters to maximise the likelthood of isolating the inherent
spatial geometry of the task. The direct kinematics model is applied to object location and
workspace calibration for disambiguating the task features from the disparate configuration
spaces. This resolves any erroneous workspace transformation assumptions.

The approach taken on stiffness estimation is twofold. The first uses an empirical
heuristic model of analysing offline, the force-stiffness relationship during task teaching trials,
using GUI simulation (Figure 1. Left). However, because of the strenuous nature of the
heuristics, a faster model is sought that can be applied directly. The task stiffness is
determined as a task dependent parameter (Figure 4.), where the constrained task stiffness is
estimated in one model. Another model explores unconstrained stochastic estimation of the
stiffness during a position and force capturing demonstration task.

The robust heuristic models formed the basis for analysing and evaluating assembly
contact and stiffness, which after validation provide the context, background knowledge and
performance criteria for the new model of stiffness estimation. The stiffness is abstracted and
applied to the more time efficient motion generation model based on an intuitive task
reconstruction algorithm (Figure 3.).

The requirement to simultaneously estimate stiffness together with the position and
force begs for unstructured task demonstration model, an active 6-DOF position and force
measuring robotic haptic interface system simulates a virtual task demonstration that robustly
models an approach to estimate 3D human hand stiffness (Figure 4. Centre). Ideally, it is
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difficult to measure the actual maximum force and stiffness during a structured trajectory
teaching demonstration. The human skill position and force from a structured demonstration
only portrays the force that would be required to overcome constraint friction or maintain
contact, but stiffness is a measure of resistance to deviation from a set trajectory. Human
hand stiffness is thus modelled in a novel setup that harnesses realistic perturbations on a set
trajectory during a simulated assembly motion task. The perturbation elicits the force and
deviation interactions that are linear to compute and characterise hand stiffness.

Results are presented from the empirical task model used which validates the
applicability of compliance and explicit force control on estimated task features. Human
offline analysis techniques and intuition are revamped with closed form analytical
methodologies to avert the onerous manual trajectory optimisation approach, from one based
solely on human observation, intuition and heuristic disambiguation to a faster and robust
analytical approach.  The formulation to extract human skill objectives from task teaching
demonstrations is presented as a fast algorithm of formulations to apply similar strategies, as
logic and human skill intuition. Intuitive skill execution strategies and techniques formulated
are reported, showing the process of skill reconstruction. Features extracted, purges from the
skill demonstration and patches added to the body of features comprise the reconstructed task,
showing the human skill objective that was inherent in the task teaching demonstrations
(Figure 4. Left). These results overcome the necessity of intensive human involvement during
the task reconstruction. This attribute makes this implementation much faster than the nodal
path specification. It requires less dependence on human skill, a factor that makes the
teaching system easily and fully applicable in generating accurate and efficient robot motion
data. In the background, the algorithm provides a platform for more technically complex
requirements to be addressed, ranging from safety, a priori assumptions on known task
features, representations and solutions to disambiguation of the task spaces; kinematics,
logical decisions and intuitive trajectory considerations; estimation, formulations and
optimisations, among others. In a way the complexities are removed from the foreground
process, to make the task teaching easily manageable, involving specifying of fewer
parameters, and conducting skill demonstration in an inconspicuous environment. At the
same time, much of the intricate model issues are formulated to be handled autonomously by
the algorithm.

Results of the human hand-held distal-end assembly-part stiffness, estimated by
analysing simulations of assembly manipulation against periodic stochastic disturbances, and
against motion uncertainties are shown (Figure 4. Right). The stiffness is evaluated for
practical applicability against an empirical stiffness model. Two stiffness estimation methods
are presented, the generalised impedance and the linear stiffness, with two stiffness
measurement models evaluated, namely, perturbations during a non constrained, and during
a constrained task.

Results on stiffness indicate that constrained trajectory perturbations satisfactorily
estimate comparable stiffness to the heuristic stiffness. Another finding shows task
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performance occurs over a wide range of stiffness values. In addition, a combination of
skilful motion and proper stiffness substantially reduce the interaction forces during
compliance control.

A 6-DOF high speed parallel robot was used to validate the task reconstructions.
Without loss of generality, specific considerations for the platform were used in teaching the
robot assembly tasks, and assumptions tailored to develop motion control algorithms suitable
for such tasks. A claim on generality of the task reconstruction stems from the fact, that the
stiffness in analysed at the point of interaction with the environment. Results of the
algorithm, using heuristic task parameters from offline teaching, analysis of the
demonstration data, the stiffness estimation models, and the autonomous reconstruction of the
task trajectory are shown depicting the decomposition of raw data into primitive modular
segments, of motion under stiff position, force and compliance control. These three modes
adequately define the control modes necessary to reconstruct the demonstrated human skill
from the raw data.

In conclusion, for trajectory reconstruction, the algorithm integrates data
synchronisation, demonstration space disambiguation and task space transformations, inverse
kinematics verifications, trajectory scaling, error minimisation and data filtering to produce
an optimised trajectory for simulation verification and playback. The time is considerably
reduced and the teaching procedure is substantially eased. The implementation is fast and
offers a succinct interface that supports less savvy user requirements to produce typical high
precision assembly tasks. For stiffness estimation, two formulations are reported, the linear
stiffness estimation model and the impedance-stiffness estimation model. The linear stiffness
model shows similar stiffness to the heuristic model. The impedance-stiffness estimation
model shows lower and fluctuating stiffness values compared to the heuristic model. Task
performance stiffness applies over a wider range of stiffness than previously known, as
shown in the evaluation and validation of the stiffness estimation methods. Linear stiffness
shows closer agreement to the heuristics model than impedance model stiffness.

Stiffness estimation in the constrained task is higher in the direction against the
constraint, but for constrained motion stiffness is required to be higher orthogonal to the
constraint direction. A generalised stiffness model for the constrained task requires more
experiments to investigate effects stiffness on the perturbation frequency, and a representative
sample of subjects must also be large enough, and address the diverse physiological
disparities in the subjects.
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