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Abstract 

Densely connected convolutional neural 

networks are currently one of the best object 

recognition algorithms. Given the plasticity 

of neural networks, the DenseNet algorithm 

should perform similarly in NLP tasks. In its 

attempt to verify whether the DenseNet 

algorithm can yield equally impressive 

results on NLP tasks, this paper has modified 

the DenseNet algorithm and tested it on text 

classification. For this purpose, three 

differently sized datasets have each been 

encoded as Tf-IDf vectors and word vectors 

and then the DenseNet’s performance on 

these different feature sets was compared to 

more conventional methods including Naïve 

Bayes classifiers and other neural networks. 

The paper finds that DenseNets can perform 

on par with these algorithms but scale 

especially well with large datasets and 

semantically rich features. 

1 Introduction 

Natural language processing 

overall has grown to become one of the 

major areas of application for deep 

learning algorithms next to computer 

vision. With the significant increase in 

readily available computational power, 

open-source libraries, as well as vast 

amounts of data, deep neural networks 

especially have excelled in a number of 

complex machine learning tasks. 

Currently, two significant trends are 

observable in the field of deep learning; 

networks are increasingly becoming 

deeper, as a larger depth is generally 

associated with better performance, and 

newer architectures are seeking to 

increase interconnectedness to promote 

feature re-use and combat the vanishing 

gradient problem that is arises with 

increasing depth. In line with these trends 

and proposed as an efficient architecture 

to allow for scalability and combatting 

the vanishing gradient problem, densely 

connected convolutional neural networks 

(DenseNets) have recently been proposed 

and applied to computer vision tasks with 

significant success [3]. 

For computer vision tasks, 

specifically image classification, the 

DenseNet algorithm was able to 

outperform all existing architectures with 

relative ease, leaving a vacuum in natural 

language processing where a highly 

interconnected, scalable algorithm like 

the DenseNet should be. Given the fact 

that most neural network architectures 

display significant plasticity, meaning 

they can be utilized across different 

domains for very different tasks as long 

as they are supplied with enough data, 

this paper will modify the DenseNet 

algorithm for natural language 

processing. Its efficiency will be tested 

through text classification on various data 

sets. The three differently-sized datasets 

will be employed to allow for 

comprehensive testing on different 

feature sets. The model’s performance 

will then be compared to more 

established NLP algorithms, including 
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simple stochastic classifiers and other 

deep learning algorithms, in order to draw 

a conclusion on the algorithm’s viability 

for natural language processing, specific 

use cases, and potential room for future 

studies.  

2 Related Work 

Convolutional neural networks 

(CNN), first introduced for computer 

vision almost 30 years ago in 1989 [6] 

and recurrent neural networks (RNN) [2], 

as well as the RNN’s more effective, 

gated variations, namely long-short term 

memory (LSTM) [4] cell and gated-

recurrent unit (GRU) [16] based 

architectures, are essential building-

blocks for most deep learning NLP 

algorithms.  In a thorough analysis, [18] 

concluded that RNN variants are 

generally the more robust NLP algorithm 

even though the CNNs can perform on 

par or, for tasks depending on certain key 

words or key phrases, even exceed the 

performance of their recurrent 

alternatives. Of course, combinations of 

the two architectures are possible and 

actually quite popular for several tasks 

[7]. 

More recently, the exploration of 

different architectures has been drawn 

more toward the domain of increasing 

depth and finding different connectivity 

patterns [3], with Huang et al. offering a 

more comprehensive overview over 

different connectivity patterns that have 

led up to the particular DenseNet 

architecture that is the subject of this 

paper.  

2.1 DenseNet Model 

 For the purpose of this study, the 

model will be introduced in a top-down 

approach with a focus on the most 

essential pieces of the algorithm. This 

paper has used the algorithm mostly in 

the way it was introduced by [3] and for 

further information the original paper by 

Huang et al. is a good resource. The 

DenseNet consists of 3 essential building 

blocks, transition layers for supporting 

scalability, input and output layers, and 

dense blocks, which are the most 

essential component of the algorithm. 

 The connection pattern 

introduced before is implemented in the 

form of the dense blocks, where every 

layer is connected to each following layer 

in a feedforward fashion, meaning for any 

given layer l the input xl consists of a 

combination of the outputs of all 

preceding layers [x0, x1, …, xl-1] through 

the composite function Hl. The way the 

feature maps are combined in Hl is 

through consecutively performing a batch 

normalization operation on the output, 

Figure 1 (SOURCE): DenseNet with three dense blocks. The input vector gets passed through an initial convolution, the 

dense blocks to create the rich feature maps, and the transition layers for down-sampling, to finally produce a prediction 

Figure 2 [3]: Anatomy of a dense block with 5 

layers and a growth rate of k=4. Note how all 

layers are connected in a feed-forward fashion. 
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passing it through a rectified linear unit 

activation function and then through a 

convolutional layer with a kernel size 

depending on the network’s input size 

[3]. In the original implementation of the 

algorithm for computer vision, a three-

by-three kernel gets employed, however, 

for natural language processing, this is 

the only major modification to the 

algorithm that must be made. 

Convolutional neural networks must be 

allowed to generalize language 

understanding tasks which is why large 

kernel-sizes are generally a better choice, 

Therefore, in this implementation of the 

DenseNet algorithm, a kernel size of 25% 

of the input has yielded the best results, 

which is why it gets employed instead of 

the smaller three-step kernel.  

As one can easily see, feature 

maps produced by the large connectivity 

in the dense blocks can quickly explode 

in size and make a straight forward 

implementation of this connection pattern 

across an entire network completely 

unfeasible, which is why a down-

sampling mechanism is implemented 

between dense blocks in the form of 

transition layers. Each of these layers, 

again, begins by applying a batch 

normalization across its input, passing it 

through a 1-step convolutional layer, and 

finally down sampling through a two-step 

max-pooling function, reducing the size 

of the output vector by half and making 

the connectivity pattern viable by 

reducing the feature map size after each 

dense block [3].  

 The size of the output vectors 

produced by each respective dense block 

depends largely on a parameter in the 

network termed the growth rate (k) [3]. 

The growth rate essentially describes the 

number of filters per convolutional layer 

in the dense block, indicating how many 

feature maps will be appended to the 

‘global’ feature map, which could be 

regarded as the “global state of the 

network” [3]. Relatively narrow layers 

with a k larger or equal to 12 are shown 

to be sufficient for achieving state of the 

art results while also being 

computationally viable.   

 3 Experiment Details 

For the purpose of evaluating the 

DenseNet’s viability for natural language 

processing, it will be utilized for the task 

of text classification. Text classification 

can be regarded as the NLP-equivalent to 

the computer vision task of image 

classification – the original use case for 

the DenseNet.  

3.1 Datasets 

In order to provide comprehensive 

evaluation of this model’s capabilities, 

three different datasets will be used. The 

first dataset is extracted from the online 

forum StackOverflow [12]; the dataset 

consists of the title of 20,000 questions 

asked in that forum which are classified 

into 20 different question categories. The 

data is relatively short with each text 

portion being shorter in length than an 

average sentence. The next dataset is the 

popular Reuters-21578, which has been 

in use since 2004 [14] and was extracted 

directly from the python natural language 

toolkit package, yielding 13328 examples 

for 90 categories. The examples are 

significantly longer than the questions in 

the previous dataset, being comprised of 

the header of the article as well as the 

article’s body. The last dataset that is 

utilized is the 5-core subset of the amazon 

reviews dataset by [8]. This is by far the 

most extensive dataset, featuring 

18,365,245 sample reviews for items of 

24 different categories. The reviews 

consist of several sentences on average 
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and no title.  

All data sets are split into 60 percent 

training data and 40 percent testing data; 

better performance can likely be achieved 

by splitting the data less drastically, 

however, since the goal of this paper is to 

evaluate the performance of this 

algorithm under realistic circumstances, 

this split allows to draw better 

conclusions about the algorithm’s ability 

to generalize well with a limited amount 

of training data. 

3.2 Feature Sets 

An important difference between natural 

language processing and computer vision 

is the need for feature engineering. Long 

before deep learning has taken over NLP, 

computational linguistics was very 

preoccupied with extracting specific 

features from sets to help algorithms 

perform their specific task; however, 

specifically deep learning algorithms are 

very adept at processing relatively raw 

data very efficiently and extracting 

important features during the training 

process. For the purpose of this paper, 

two specific feature sets will be utilized 

that are expected to improve performance 

over just using raw text data as the input, 

but do not require extensive 

preprocessing of the data or specific 

feature engineering.  

 The first set of features will be a 

1024-dimensional text frequency – 

inverse document frequency (Tf-IDf) 

vector. Tf-IDf vectors are very 

commonly used in natural language 

processing as a simple way to represent 

documents that are part of a larger corpus. 

In this example, a dictionary of term-

frequencies is created by iterating over 

the entire training corpus and then 

applying sublinear scaling to the resulting 

term frequency:  

𝑡𝑓𝑡,𝑑 = log(1 + 𝑡𝑓𝑡,𝑑) [17] 

The full Tf-IDf value is then calculated 

by getting the inverse document 

frequency for each term: 

𝑖𝑑𝑓𝑡 =  log
𝑁

1 + |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
 [17] 

Where N is the number of documents in 

the given corpus and one is added in the 

denominator to avoid a division by zero 

for terms that don’t occur in a given 

document. For these experiments, a 

threshold document frequency of 0.3 was 

utilized; given the limited length of the 

vector and due to the fact that no other 

preprocessing of the input was done (for 

instance all stop-words were still 

included) the low maximum document 

frequency serves to filter out a lot of the 

noise that could potentially be created 

and distort the limited feature set. The 

low document frequency combined with 

the overall small vocabulary allowed 

evidently causes most Tf-IDf vectors to 

be very sparse, making them a sub-

optimal feature set for deep neural 

networks of any kind. Nevertheless, they 

are crucial for the evaluation of the 

DenseNet algorithm, due to their ease of 

use and how commonly they are used in 

many NLP algorithm implementations.  

 The second feature set is intended 

to complement specifically the neural 

networks. Word embeddings as proposed 

by [9] have seen a tremendous increase in 

popularity because of their ability to 

better capture and represent semantic 

information [11] which can easily be 

leveraged by deep learning algorithms to 

better extract relevant features. In this 

paper, the pre-trained word-2-vec model 

as proposed in [10] will be utilized. The 

model has pre-trained 300-dimensional 

embeddings for around 3 million words 

in the English language and has been 
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trained with the skip-gram algorithm on 

the widely used Wikipedia dump corpus. 

Since the model does exclude some stop 

words and cannot possibly contain every 

word occurring in the training corpora, 

the mechanism for accounting for words/ 

character sequences outside of the 

vocabulary of the model is to simply 

utilize trained character-vectors and 

average them for the given character 

sequence. The embedding for any given 

document in any given corpus is then 

created by simply finding the average 

vector for the entire document. While this 

may raise concerns about losing semantic 

information, especially for longer 

documents, due to computational 

limitations this compromise has to be 

made; furthermore, performance actually 

does not suffer significantly in most 

cases.  

3.3 Evaluated Algorithms 

To best evaluate the DenseNet, a wide 

variety of algorithms is used and trained 

on the same feature sets to see how the 

performance of the new algorithm 

measures up with existing classifiers.  

The first two classifiers have been a 

staple for text classification long before 

the resurgence of deep learning 

algorithms and are still widely used due 

to how easily they scale with larger 

datasets and how computationally cheap 

they are. Furthermore, these models are 

usually also more proficient at handling 

the sparse feature set provided by the Tf-

IDf vectors and require less data to train. 

 The Multinomial Naïve Bayes 

classifier computes the prior likelihood 

for each class: 

𝑃(𝑐) =  
𝑁

𝑁𝑐
 

Where N is the number of documents in 

the corpus and Nc is the number of 

documents of the given class c. 

Furthermore, it utilized conditional 

probabilities calculated based on feature 

frequencies: 

𝑃(𝑤|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐) + 1

𝑐𝑜𝑢𝑛𝑡(𝑐) + |𝑉|
 

Where V is the vocabulary size of the 

corpus and plus-one smoothing is applied 

to the numerator. A prediction is the 

based on a simple argmax operation over 

the product of the prior and the likelihood 

of a class given all features in the 

document for all possible classes: 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{1,..,𝐾}(𝑃𝑐𝐾
) ∏ 𝑝(𝑤𝑖|𝑐𝐾)

𝑛

𝑖=1

 

Where y is the predicted label, K is the 

number of classes, and i is the number of 

features in the given document [13].   

 The second algorithm is a support 

vector machine.  

On a high level, the support vector 

machine algorithm attempts to plot a 

hyperplane of n-1 dimensions to separate 

instances of all n classes, so depending on 
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where a given  document falls relative to 

that hyperplane, it gets classified into the 

associated class [1].  This particular 

implementation of the support vector 

machine utilizes the popular hinge loss as 

a cost function: 

𝑐(𝑥, 𝑦,  𝑦′) = (1 − 𝑦 ∗ 𝑦′) 

For x being the input features, y being the 

actual label associated with the input, and 

y’ being the label predicted by the 

classifier. The loss is set to zero if the 

prediction is correct, of more precisely 

for any term c < 0. 

 Then, for each batch of input, the 

algorithm tries to optimize for the 

following objective function: 

𝜆‖𝑤‖2 + ∑(1 − 𝑐(𝑥𝑖, 𝑦𝑖, 𝑦′
𝑖
)

𝑛

𝑖=1

) 

Where 𝜆 is a regularization term for an L2 

regularizer, which is usually used for 

support vector machines. Since this 

algorithm will use a stochastic gradient 

descent learning function, the weights are 

updated according to: 

𝑤 = 𝑤 +  𝜂((−𝑦 ∗ 𝑥 − 2𝜆𝑤) 

Note that -y*x will be 0 for any correct 

classification. Thus, for a correct 

classification, the model will only be 

updated in accordance with the product of 

the learning rate and the regularizer term. 

In this SVM implementation, the learning 

rate is adaptive and decreasing over time.  

For both classifiers, an implementation 

from the python machine learning library 

scikit-learn [15] is used.  

 In addition to this, the DenseNet 

will be compared to another neural 

network implementation for text 

classification (table 1). This neural 

network will be a simple combination of 

an encoding step consisting of several 

convolutional and max-pooling layers 

followed by an LSTM layer and finally a 

fully connected layer  

Lastly, the specific DenseNet 

implementation is detailed in table 2. The 

DenseNet used for most tests consists of 

4 dense blocks and a growth rate of k=16. 

The kernel size is chosen depending on 

the feature set, thus kernels are smaller 

for the word-embedding feature set as 

compared to the Tf-IDf vectors, allowing 

for an equals degree of generalization 

across the feature set. It is important to 

note that this specific network size is 

chosen due to hardware limitations. Due 

to the same limitations, a decrease in size 

for the network is necessary for the larger 

Amazon reviews dataset; the network for 

that dataset has its growth rate decreased 
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to k = 10. Categorical cross-entropy is 

again the loss function. 

3.4 Training 

 All classifiers are trained with 

512-sample batches. The simple 

classifiers are trained once with the entire 

dataset, configured as detailed above.  

The convolutional LSTM neural 

network model is trained for 100 epochs 

on batches of 512 samples and 

categorical cross-entropy is employed as 

a loss function for training purposes. The 

network employs the adam-optimizer 

with an initial learning rate of 0.01, which 

is decreased after 50 and 75 epochs by a 

factor of 0.1 respectively.  

The DenseNets are trained for 200 

epochs with an initial learning rate of 0.1,  

decreasing after 100 and 150 epochs by a 

factor of 0.1. The networks have yielded 

the best performance on a batch size of 

512 and all parameters except for kernel 

size are similar across the Reuters and 

StackOverflow datasets, with necessary 

changes for the Amazon Reviews dataset 

due to GPU memory and performance 

limitations. 

 

4.0 Results 

The accuracy of the models is detailed is 

evaluated in accuracy across the entire 

testing dataset.   

4.1 Discussion 

 The results in table 3 are very 

telling about the specific use cases that 

seem appropriate for the DenseNet, and 

where it fails to perform. Across all test 

cases, the DenseNet is ahead of the 

simpler Convolutional LSTM 

implementation, something that is to be 

expected given the complexity of the two 

algorithms due to the DenseNet’s ability 

to scale to far greater depths than the 

other neural network implementation. 



 
 

8 
 

However, it must also be noted that while 

both are clearly outperformed by the 

Naïve Bayes classifier and the Support 

Vector machine in terms of training time, 

the ConvLSTM does exhibit better 

training times than the DenseNet, again, 

due to its decrease in complexity.  

For both the Reuters and the 

StackOverflow dataset, the highly 

complex neural networks are 

outperformed by the significantly simpler 

classifiers, which is not surprising given 

some of the characteristics of the datasets. 

Both are relatively short with only a 

limited number of samples for their 

classes. For the StackOverflow dataset, 

the individual pieces of text are extremely 

short, being only headers to forum 

questions, and thus, both the Tf-IDf 

vector and the embedding vector likely 

exhibit little noise despite the lack of 

preprocessing of the data, since stop 

words and other irrelevant data likely 

play less of a role.  

 One can also clearly see how the 

different algorithms are more efficient on 

different sets of features. The Naïve 

Bayes Classifier obviously only works on 

Tf-IDf vectors, which is why a 

comparison there is impossible, however, 

the support vector machine has 

consistently better results with Tf-IDf 

vectors, while the neural networks 

struggle a little more with the sparse 

nature of that feature set and excel more 

at interpreting the semantically rich word 

embeddings.  

  Lastly, the Amazon Reviews 

dataset sticks out as the singular saving 

grace for the DenseNet’s viability as a 

text classification, and by extension, 

potentially viable overall NLP algorithm. 

While SVMs and Naïve Bayes classifiers 

are extremely proficient at classifying 

with smaller training datasets, neural 

networks excel as the dataset size 

increases; with the Amazon Reviews 

dataset covering over 18 million 

examples for just 24 classes, 

Unfortunately, even with a 1024-

dimensional Tf-IDf vector and a down-

scaled DenseNet, GPU memory limits 

were exceeded which makes this 

comparison impossible. However, it is 

quite likely that the Tf-IDf vector would 

not have been a better feature set than the 

word embeddings, which is also indicated 

by the significant different in 

performance displayed by the 

ConvLSTM algorithm between the two 

feature sets.  

 These results reveal the use-case 

that would likely fit the DenseNet best. 

As most deep learning algorithms, it is 

frankly inferior to many other, simpler 

algorithms for small to medium sized 

datasets in most cases. However, for large 

scale applications with access to large 

datasets, the DenseNet not only performs 

other machine learning classifiers, but 

also other, fairly sophisticated neural 

networks, indicating that its potential in 

the NLP domain might be proportional to 

the access to labeled training data.  

5 Conclusion and Future Work 

“Premature optimization is the root of all 

evil” [5] 

The above quote is often used to 

illustrate the point, that when trying to 

solve a problem programmatically, 

miniscule performance gains at the cost 

of simplicity should be avoided. This 

point is especially relevant to the results 

found in this paper.  

Since access to hardware with 

great computing power has become more 

abundant, deep learning applications 

have been one of the largest areas of 
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research within the machine learning 

domain. Nevertheless, it is important to 

not lose sight of other algorithms that 

may be a better fit for solving the problem 

at hand. As this paper has shown the 

DenseNet is an extremely sophisticated 

algorithm with the ability to outperform 

both general machine learning algorithms 

as well as other neural network 

architectures; however, the results also 

reveal the algorithms dependency on vast 

amounts of training data. The outcomes 

of the tests conducted in this paper have 

revealed that traditional machine learning 

algorithms have rightfully kept their 

place in natural language processing 

applications.  

It is important to note some of the 

shortcoming of the methodology in this 

paper that can hopefully be compensated 

for in future research. Due to hardware 

restrictions, the DenseNet could not be 

scaled to it’s full potential, as compared 

to some of the implementations in the 

original paper [3] the algorithm was kept 

at only a medium growth rate and 

relatively low depth, thus it is reasonable 

to conclude that potential performance 

gains would have been possible with 

access to better hardware, however, it is 

unlikely that that would have impacted 

the conclusion of this paper.  

For future research, exploring the 

DenseNets capabilities in other NLP 

applications is imperative. Due to its 

highly interconnected nature as well as 

the findings in this paper, employing this 

algorithm to serve as an encoding 

mechanism could be an area of interest. 

Additionally, other areas of NLP, for 

instance machine comprehension, are 

extremely sophisticated and complicated 

problems that often proof too difficult for 

simple linear algorithms but could profit 

from employing the DenseNet algorithm 

instead of traditional, simpler 

convolutions.  
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