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The conceptions and opinions of proof held by individuals vary 
greatly, perhaps caused by their experiences in the classroom. 
While some approach problems utilizing the involved theory 
(“theoretical”), others undertake problems with procedures 

that are familiar to them (“non-theoretical”). Solution methods become 
routine and repetitive, monotonously employing certain techniques 
without considering the purposes of the solution methods. According 
to mathematics education researchers, one’s method of proof undeni-
ably reflects what they believe about proof and its role in mathematics 
(Harel & Sowder, 1998, p. 242). For some, proof is a concept known and 
used by mathematicians but is unnecessary for lower-level mathematics 
classes. For others, proof is something they may repeat after exposure, 
but it is not something that they can derive on their own. Finally, others 
recognize proof as an attainable concept that is vital for solutions in 
mathematics (Harel & Sowder, 1998, p. 245, 252, 258). For instance, 
consider the following claim:

The product of any two consecutive integers is even.

When asking how to prove that this is true, the following response is an 
example of a non-theoretical approach:

Well 5 x 6 is 30, and 30 is even. Also, 6 x 7 is 42, and 42 is even. So, the claim 
is true.

We consider this comment to be “non-theoretical,” as the student simply 
uses a concrete example to arrive at his or her justification. Now, compare 
a theoretical response:

If you have two consecutive numbers, one must be odd and one must even. 
Because even numbers are multiples of 2, the product of an odd and even 
number is also a multiple of 2, so it is even.

Although this second solution does not constitute as a mathematically 
rigorous proof, it contains a theoretical response that is perhaps appro-
priate for someone who has had little-to-no experience in mathematical 
proof writing. Finally, consider this example of a mathematically rigorous 
and theoretical proof:
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Consider two consecutive numbers. These 
numbers can either be of the form even-odd or 
odd-even.

Case 1: Let the first number be even and the 
second odd. So for some integer k, the numbers 
are 2k and 2k + 1, by definition of even and 
odd. Then, (2k)(2k + 1) = 4k2 + 2k = 2(2k2 + k). 
Because the integers are closed under addition 
and multiplication, 2k2 + k is an integer. Thus, 
2(2k2 + k) is even by definition.

Case 2: Let the first number be odd and the 
second even. So for some integer j, the numbers 
are 2j – 1 and 2j, by definition of odd and even. 
Then, (2j – 1)(2j) = 4j2 – 2j = 2(2j2 – j). Because 
the integers are closed under addition and mul-
tiplication, 2j2 – j is an integer. Thus, 2(j2 – j) is 
even by definition.

Therefore, the product of any two consecutive 
integers is even. 

Q.E.D.

This response is expected of someone who has 
had formal training in proof; moreover, the 
solutions may vary depending on the math-
ematical exposure one has had in his or her 
background. Researcher Andreas Stylianides’ 
definition of proof asserts that proof uses  
“forms of expression… that are appropriate and 
known to, or within the conceptual reach of, the 
classroom community” (Stylianides, 2007, p. 
291). Furthermore, rigor in proof accordingly 
increases based on exposure and mathematical 
background of not only the individual, but also 
the classroom community. The variation of 
responses found in the classroom, accordingly, 
depends on each student’s intellectual need, a 
concept developed by researcher Orit Zaslavsky. 
The notion claims that students vary their 
responses depending on what they personal-
ly need to be convinced of a concept (1998, p. 
501).

The influence of mathematics teachers 
on their students is undeniable, as their con-
ceptions and opinions of mathematics will 
undoubtedly be instilled in those they teach. 
Their students are exposed to the aspects of 

mathematics that they value, which perhaps 
influences their students’ own opinions of 
mathematics. These experiences compound 
throughout the students’ time in school; hence 
it is imperative for mathematics instructors to 
not only be proficient in their field but to also 
have developed a mindset that is conducive to 
critical thinking and proof. Consequently, we 
desired to see what university students who will 
teach mathematics believe about proof and its 
role in mathematics based on their exposure 
to proof in their classes as students themselves. 

Motivation for Study
While many associate mathematics with formulas 
and procedures, it is important to recognize 
the profound creativity and reasoning involved 
in developing a rigorous understanding of the 
subject. Educators have a responsibility to effec-
tively communicate mathematical ideas to their 
students, which requires them to not merely un-
derstand the content at a surface level, but rather 
to invest in developing the ideas and theory 
behind what these mathematical ideas mean to 
students. Recognizing the importance for proper 
pedagogy inspired curiosity about the preva-
lence of analytical thinking among prospective 
teachers. Our team decided to interview a subset 
of those attending Lee University to analyze the 
relationship between their conceptions of proof 
and the proof schemes they utilize. Mathematics 
education researchers (Harel & Sowder, 1998) 
have examined students’ understanding of 
proof, claiming that, “the proof schemes held 
by an individual are inseparable from her or his 
sense of what it means to do mathematics” (p. 
242). Thus, the motivation of our study was to 
investigate if there was a relationship between an 
individual’s mathematical background and his 
or her ability to effectively communicate math-
ematical ideas, specifically through proof. It is 
our hope that this study may reveal ways that we 
can strengthen the understanding of mathemat-
ics and analytic thinking skills of mathematical 
educators.

Literature Review
Mathematics education researchers Guershon 
Harel and Larry Sowder define “a person’s 
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(or a community’s) proof scheme [as] what 
constitutes ascertaining and persuading for 
that person (or community)” (2007, p. 7). In 
their seminal work, “Student’s Proof Schemes: 
Results from Exploratory Studies” (1998), Harel 
and Sowder conclude that three primary proof 
schemes exist among students: external convic-
tion, empirical, and analytical proof schemes. 
Students depending on external conviction proof 

schemes are reliant upon a pattern of thinking 
or the direction of an authority figure in order 
to arrive at an answer. Those utilizing empirical 
proof schemes possess a need for physical facts or 
concrete answers in order to be convinced of an 
answer. Individuals practicing analytical proof 
schemes “validate conjectures by means of logical 
deductions.” By understanding the differences 
among these techniques when analyzing how 

Figure 1. Proof Schemes as Defined by Harel and Sowder (1998, p. 245).
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individuals approach problems in mathematics, 
we are able to examine and classify prospective 
teachers appropriately.

Additionally, Harel and Sowder’s 2007 work 
describes a distinction between conjecture and 
fact—“an assertion can be conceived by an in-
dividual either as a conjecture or as a fact.” This 
discernment influences the concept of proving, 
which is the “process employed by an individual 
(or a community) to remove doubts about the 
truth of an assertion.” Proving depends upon 
ascertaining and persuading, where ascertaining 
requires one to “remove her or his (or its) own 
doubts about the truth of an assertion,” yet per-
suading is to “remove others’ doubts about the 
truth of an assertion” (Harel & Sowder, p. 6). 
These three layered components – conjecture 
versus fact, proving, and ascertaining versus 
persuading – present a uniform approach in 
the understanding of proof schemes, allowing 
researchers to further investigate them with 
confidence.

In “Proof and Proving in School 
Mathematics” (2007), Andreas Stylianides 
defines proof as a “mathematical argument, a 
connected sequence of assertions for or against 
a mathematical claim” (2007). The manner in 
which proof manifests in classrooms or among 
individuals employs three characteristics: it 
utilizes “statements accepted by the classroom 
community … that are true and available 
without further justification”; it uses “forms of 
reasoning … that are valid and known to, or 
within the conceptual reach of, the classroom 
community”; and it communicates the argument 
with “forms of expression … that are appropriate 
and known to, or within the conceptual reach 
of, the classroom community” (Stylianides, p. 
291). This definition is useful in that, although 
these students are unable to produce proofs in 
a mathematically rigorous sense, they are able 
to communicate analytical ideas in a manner 
that is appropriate for their level. As a result, we 
were careful to analyze students’ problem-solv-
ing methods instead of their ability to produce a 
particular answer.

In their 2009 research, Stylianides and 
Stylianides worked with future elementary 
teachers studying at the master’s level. They noted 

that future elementary teachers often possess 
a weak mathematical foundation of proof and 
consistently operate within an empirical proof 
scheme. The Stylianides’ goal was to help these 
individuals develop their mathematical back-
grounds in order to better communicate ideas 
to their students. The researchers studied how 
to effectively assist these master’s students in for-
mulating a system of categorizing proof schemes 
that extends beyond using empirical evidence.

Further, if students do not consider that 
proof is an important and necessary component 
in mathematics, they are unlikely to appreciate 
it.  Thus, Harel proposes the idea of “intellectual 
need,” an internal desire to satisfy a longing for 
justification. He describes this on his 1998 work 
on proof:

‘Intellectual need’ is an expression of a natural 
human behavior: When we encounter a situation 
that is incompatible with, or presents a problem 
that is unsolvable by our existing knowledge, we 
are likely to search for a resolution or a solution 
and construct, as a result, new knowledge. Such 
knowledge is meaningful to the person who con-
structs it, because it is a product of a personal 
need and connects to prior experience (Harel, 
1998, p. 501). 

Thus, if teachers expose their students to this 
need of proof in their mathematics classes, 
the students would likely begin to approach 
problems with a need for proof in mind. 
Zaslavsky also states that this introduction of 
uncertainty can “serve to motivate people to 
change or expand their existing ways of thinking 
about a particular concept or learn about the 
concept in the first place” (Zaslavsky, 2012, p. 
223). In this manner, uncertainty is not a step 
backward but can inspire students toward ana-
lytical thinking for proof.

Methods
In order to notice potential relationships among 
the proof schemes of prospective teachers and 
their effectiveness to communicate mathematics, 
we interviewed individuals currently studying 
education at Lee University, namely six future 
elementary teachers enrolled in College Algebra 
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and four future middle-grades teachers enrolled 
in Foundations of Geometry. At the time of the 
study, all ten participants were students of the 
same mathematics professor who offered her 
classes the opportunity to volunteer a maximum 
of one hour as interviewees. Upon agreement to 
the terms and conditions of the interview, each 
participant was asked a variety of questions in 
order to reveal how he or she thought about 
mathematics and proof. Initially, each individual 
provided an explanation of his or her concept 
of proof and how proof works in mathematics. 
Following, each interviewee completed a set 
of problems for further observation regarding 
how a particular view of proof may affect one’s 
reasoning process.

The first exercise prompted each participant 
to consider the following claim and explain how 
he or she might convince someone of its validity: 
“When you add any two consecutive numbers, 
the answer is always odd.” The purpose of this 
question was to observe and analyze the par-
ticipant’s reasoning regarding what he or she 
constituted as an acceptable explanation.

The next problem included Figure 2, in 
which participants determined the perimeter of 

Figure 2. Pattern of Hexagons Given to Participants

the 5th and 25th figures under the assumption 
that each hexagon had a side length of one unit. 
This exercise intended to demonstrate how a 
participant’s skills regarding pattern recognition 
affected his or her proof schemes and critical 
thinking.

The last problem posed to the participants 
provided justifications of four hypothetical 
students in response to the following claim: 
“The sum of the first n odd natural numbers 
is n2.  That is more simply put, 1 + 3 + 5 + ... 
+ 2n-1 = n2.” The arguments given by Archie, 
Bart, Charlie, and Drake as shown in Figures 
3-6 were considered by the interviewees individ-
ually based on the order of presentation.

After reviewing the first argument, each 
participant determined whether or not that 
particular argument was convincing. A repeated 
process occurred with the remaining three ex-
planations before the participants were asked to 
then rank these arguments from the least con-
vincing to the most convincing. The purpose of 
this problem was to evaluate each participant’s 
understanding of justification and proof by 
noting what information he or she viewed as 
necessary and essential in order to be convinced 

Figure 3. Archie’s Explanation

First, think about 1 + 3 = 22

1 and 3 are the first odd numbers, and when you add 
them together you get 4, which is a perfect square.

Then, think about 1 + 3 + 5 = 32

1 and 3 and 5 are the first three odd numbers, and 
when you add them together you get 9, which is a 
perfect square.

It worked for each time that I tried it, that is how I know 
that no matter how many of the first odd numbers is a 
perfect square.
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Figure 4. Bart’s Explanation
The table below shows the statement is true for the first ten odd natural 
numbers.

Term n Sum of the first n odd natural numbers n2

1 1 12 = 1

2 1 + 3 = 4 22 = 4

3 1 + 3 + 5 = 9 3² = 9

4 1 + 3 + 5 + 7 = 16 4² = 16

5 1 + 3 + 5 + 7 + 9 = 25 5² = 25

6 1 + 3 + 5 + 7 + 9 + 11 = 36 6² = 36

7 1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 7² = 49

8 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64 8² = 64

9 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81 9² = 81

10 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100 10² = 100

The sum of any consecutive odd natural numbers can be calculated in a similar 
way. Therefore, we can conclude that the sum of the first n odd natural numbers 
is n2.

Figure 5. Charlie’s Explanation

We can represent the sum of the first n odd natural numbers as the number of dots contained in the 
squares drawn in the figures below:

1 = 12 1 + 3 = 22 1 + 3 + 5 = 32 1 + 3 + 5 + 7 = 42

The figures illustrate that the number of dots contained in each n by n square represent the sum of the 
first n odd natural numbers. In the general case (shown below), the number of dots in the square with 
side length n is n2.

n

1 + 3 + 5 + 7 ... (2n – 1) = n2

{
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that the claim was in fact true.
After conducting the interviews, our team 

transcribed and analyzed each dialogue in order 
to determine each participant’s proof scheme(s), 
as defined by Harel and Sowder (1998). We 
developed a coding system that categorized the 
students’ responses, their confidence levels, and 
their uses of examples, which allowed our team 
to better understand the participants’ approach-
es to the problems with the given information. 
For simplification purposes, we ultimately clas-
sified according to the three main proof schemes 
established by Harel and Sowder: external 
conviction, empirical, and analytical. Through 
this process, we determined each participant’s 
dominant proof scheme(s) in order to observe 
correlations between the concept of proof and 

the proof schemes detected. This coding simply 
aided our understanding during the analyzing 
process but was not vital to our final results.

Participant Analysis
Amber: A Case of an Empirical Proof Scheme
Conception of Proof. Our first participant, Amber, 
was a Special Education major aspiring to work 
with elementary-aged students. It is important 
to keep this in mind, simply because College 
Algebra is the highest level of mathematics she 
will complete for her degree requirements. It was 
evident that Amber expressed proof in a more 
tangible sense regarding daily activities rather 
than as a purely mathematical topic. She viewed 
proof as something factual, which implied that 
proof is necessary for validity. However, she did 

Figure 7. Amber’s Conception of Proof

65 Interviewer: Awesome. So now that we have that in mind, we are going
66  to talk more about the notion of proof. What does the notion
67  of proof mean to you when you hear the word “proof?”
68 Amber: When I hear proof ... it’s legit. It’s like there, it’s literal. You
69  know, you have all the evidence for it ... for your proof.
70 Interviewer: Okay, so now taking that a step further, how important do 
71  you think it is to prove within mathematics, specifically?
72 Amber: Not just within mathematics, you should always prove 
73  anything. You know? You should really know what the truth is, 
74  as in just guessing. Like, okay we just guess this at any point. 
75  No. How do you know it’s the end point? That’s why you have 
76  to check your work in math, which I respect [smiles and
77  laughs].

Figure 6. Drake’s Explanation

So, think about the sum. If you have the first 5 odd numbers, n = 5, and the sum is 1 + 3 + 5 + 7 + 9 = 
25 = 52. Notice the last term in this sum is 9, which can be thought of as 2n—1, or 2(5) —1.
Now, think about it as just the first n odd numbers, 
It is
1 + 3 + 5 + ... + 2n—1 so there are n terms.

We can rewrite it like this, and add vertically,

2n—1 + 2n—3 + 2n—5 + ...
1  +  3  +  5  + ...

When we add verticaly, we get 2n + 2n + 2n + ... + 2n, and there are n of these terms.

Now if we add these up we have n terms of value 2n, which is 2n2. But, this amout is double, because we 
added two sets of the odd numbers. So, we don’t want double, therefore divide 2n2 by 2.

So the total for the sum for the first n odd numbers is equal to n2.
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not further her thoughts in stating that a lie 
is something that is false; rather, she only em-
phasized the belief that something not proven 
cannot be true. Similarly, she held a preference 
for visual aid when working through problems 
so that she could see the work step by step. 

When asked to further her definition of proof 
within a mathematical setting, Amber explained 
that guessing was not satisfactory within math-
ematics because a person cannot reach what she 
referred to as the “end point.” Even though she 
did not fully develop this idea, it was clear that 
she recognized the importance and need for all 
mathematicians to communicate in a common 
language. She even introduced this idea in 
her opening statement when asked about the 
important aspects of mathematics. She stated, 
“that is how everyone communicates through 
math, like when it comes to all the countries 
and stuff.” Interestingly enough, Amber empha-
sized the significance of this but did not believe 
she possessed the abilities to communicate the 
mathematics she experienced when attempting 
the problems throughout the interview.

Problem 1: Consecutive Numbers. Once reading 
through the prompt, Amber seemed confused 
and decided to ask for reassurance about the 
definition of consecutive numbers. She did in 
fact have a firm understanding of the concept, 
but relied on the instructor’s approval, which 

indicated she was possibly practicing an author-
itarian proof scheme. The following episode, as 
shown in Figure 8, gives a brief overview of her 
thought process.

Amber initially tested the claim by choosing  
8 and 7, which allowed her to conclude the sum 
was odd. When asked how she would convince 
others the validation of this claim, she created 
a number line with the numbers 1 through 10. 
She explained that by choosing any two consec-
utive numbers along this number line, the sum 
would always be odd, which she found when 
using (8 + 7) as her first example, followed by 
the examples (5 + 6) and (4 + 5) and explained 
verbally. Notice that Amber solely relied on the 
outcome of three examples in order to conclude 
the statement held for all cases. She lacked the 
interest for self-discovery and limited her explo-
ration by not considering numbers greater than 
10 or less than 1. She was unable to use her ob-
servations to construct a pattern or general rule 
to apply her method for all numbers, ultimately 
demonstrating her use of an empirical proof 
scheme.

Problem 2: Perimeter of the Hexagons. The episode 
recorded in Figure 9 demonstrated Amber’s 
problem-solving techniques utilized to find 
the perimeter for the 5th figure. Interestingly 
enough, she again asked for additional assis-
tance by requesting a definition for “perimeter” 

Figure 8. Amber’s Work for Problem 1

100 Amber: Now ... Is this correct...? Okay! I’m  going to tell...Okay
101  I’m not sure if this is like all correct, but the way that I ... the 
102  way that I solved this is this [pointing to 8 + 7 written on her 
103  paper] is two consecutive numbers. So that’s like two numbers 
104  right after each other...?
105 Interviewer: Correct.
106 Amber: Okay, and then the answer is always odd, so then ... just choose
107  whichever two numbers, which I choose 8 and 7, which equals 
108  15 ... I hope so. 8 ... [counts on her fingers] 15, yes [chuckles and 
109  smiles]. So then there’s your odd number.
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as well as clarification about how to account for 
the shared sides between two adjacent hexagons. 
After gaining reassurance from the interviewer, 
she attempted the problem. By counting the 
edges within each figure, she discovered the 
pattern of adding 4 sides to the figure for each 
additional hexagon. She used this pattern to add 
4 once for the 4th figure, and then 4 again for 
the 5th figure. She concluded that the perimeter 
for the 5th figure was 22, which was in fact the 
correct answer. However, she did not take this 
process a step further and attempt to create a 

mathematical equation that represented the 
change indicated by adding 4 each time.

The episode recorded in Figure 10 above 
provides Amber’s three attempts before con-
cluding a final answer of 102 for the perimeter 
of the 25th figure. Upon this request, she im-
mediately commented that she must “make an 
algebra equation.” However, she was not able to 
correctly identify a mathematical equation that 
represented the change she recognized within 
this pattern.

Amber believed that she needed to find a 

Figure 9. Amber’s Work for Calculating the Perimeter for the 4th and 5th Figures

Figure 10. Amber’s Work for Calculating the Perimeter for the nth Figure
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“fast way” to solve for the perimeter so that she 
did not have to count by 4 each time to reach 
the 25th figure. She recognized the need for gen-
eralization; however, it was evident that she was 
unable to utilize her mathematical findings to 
create a general formula. Initially, she attempted 
to find a relationship between the current figure 
and the final figure. She thought that since the 
figure number was increasing by a multiple of 
5, she could multiply the perimeter of the 5th 
figure by 5 in order to find the perimeter for the 
25th figure. Thus, her original answer concluded 
the 25th figure had a perimeter of 110. However, 
when asked to verify her work, Amber became 
confused and decided to rework the problem. 

In her next attempt, she related the figure 
numbers by taking the difference. She then 
remembered she had discovered a pattern of 
adding 4 each time in the previous example, so 
she multiplied the difference of 20(25-5) by 4 to 
account for the change found in the pattern. Yet, 
her confusion was still evident as she then added 
this 80 to her original answer of 110 to conclude 
that the total perimeter was 190 upon her 
second attempt. Amber admitted that she would 
not be confident with her first two attempts 
unless the instructor gave her the correct answer, 
which exemplified once more that she utilized 
an authoritarian proof scheme frequently within 
her learning. In order to be truly satisfied with 
her answer, Amber decided to find the perimeter 
the only way she knew how: to add 4 each time 
until she reached the 25th figure. After complet-
ing her work, she was then able to determine 
102 as the total perimeter. She claimed that this 
method was the only way she knew that her 
answer was correct, even though she recognized 
there was a faster way to complete the problem. 
Her inability to deduce a general formula based 
on the pattern heavily influenced her method 
towards answering the prompt.

Problem 3: Evaluation and Ranking of Arguments. 
Initially, Amber believed that since the first two 
examples held for Archie’s argument and that 
she could continue the pattern to show that 
additional examples held, this argument was 
convincing. However, as she considered Bart’s 
argument, she stated that she did not think the 

table was helpful whatsoever. This was partic-
ularly interesting because she had created an 
informal table in order to organize her thoughts 
for the Hexagon Perimeter Problem. Further, as 
she evaluated Charlie’s argument, she reasoned 
that since the first two examples held from the 
previous argument with Bart, she could safely 
assume that this argument was equally as con-
vincing. She no longer evaluated the actual 
argument because the mathematical compre-
hension was beyond her reach. Commenting on 
the artistic and visual aspects of the argument 
was not enough to conclude validation within 
the proof. She failed to acknowledge the impor-
tance of the dots’ placement in such a way that 
it created an n-by-n box. However, as she read 
over both Bart’s and Drake’s explanations, the 
notation superseded her current mathematical 
understanding.

Once Amber had evaluated each argument 
individually, she ranked the arguments from 
most to least convincing accordingly: Charlie, 
Archie, Bart, and Drake. Interestingly, she only 
comprehended the reasoning behind Archie’s 
and Bart’s explanations, yet she labeled those 
arguments as only moderately convincing. It was 
not surprising that she ranked Drake’s argument 
as least convincing because she lacked the math-
ematical knowledge necessary to understand 
the higher-level notation. However, she ranked 
Charlie’s argument as the most convincing but 
did not properly explain why and how the math-
ematics worked. 

Based on both her individual evaluations 
and the final ranking, it was evident that Amber 
primarily utilized examples and visual presen-
tations when determining if an argument was 
convincing enough to be a proper proof. If she 
could provide an example, her confidence dra-
matically increased. Proving only one additional 
example verified that the argument was true for all 
cases. The appearance of a proof heavily reduced 
Amber’s doubts about the validation of the 
argument. In her eyes, the more mathematical 
terms, expressions, and calculations provided, 
the more willing she was to conclude a proof ’s 
reliability. Therefore, this analysis concludes that 
Amber relied mainly on empirical and external 
conviction proof schemes.
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Relationship of Definition and Practice. Amber’s 
definition of proof was more empirical in nature, 
emphasizing evidence rather than reasoning, and 
her problem-solving methods followed a similar 
pattern. As she explained the Consecutive 
Numbers Problem, she utilized empirical 
examples. Further, as she attempted to find the 
hexagons’ perimeter, she was only certain of an 
answer if she computed it by brute force. Finally, 
her rankings of the proofs displayed a ritualistic 
proof scheme, as she utilized the appearance of 
the problem to order them.  Thus, the manner 
in which she approached the problem exempli-
fied the need for evidence rather than a sense of 
reasoning behind her explanations, showing that 
she relied on an explicit, empirical method.

Monica: A Case of an Analytical Proof Scheme

Conception of Proof. Our second interviewee, 
Monica, was an aspiring middle-grades teacher 
with a mathematics emphasis. Initially, she 
stated that proving in mathematics encapsulates 
the process of reasoning for a concept’s validity, 
which we considered to be analytical in nature, 
according to Harel and Sowder’s classifications. 
Her mindset indicated that claims may only be 
built upon if one verifies them. In the statement 
given in Figure 11, she revealed a more analyti-
cal approach, utilizing words such as “reasoning 
on why” and “[having] evidence” to support the 
systematic approach.

Problem 1: Consecutive Numbers. As she ap-
proached the first problem seen in Figure 12, 
Monica perceived that consecutive numbers 
alternate between even and odd numbers so the 

Figure 11. Monica’s Concept of Proof

59 Monica: (chuckles) Being able ... what does proof mean? That’s an
60  interesting question. I guess being able to explain reasoning on
61  why something is true.

66 Monica: I mean a lot of the formulas and I mean, obviously I’m in the
67  geometry mindset right now too ... theorems and stuff that we 
68  learn, you have to have evidence behind them in order to say
69  that they’re true because, if not, then everything like, you know,
70  like everything crumbles (laughs). So I mean I think it’s very
71  important to be able to say, “This is how I got there, and this
72  works for every case.” I don’t know if that answers your 
73  question.

76 Monica: Yeah. I mean, being able to prove it is kind of like a foundation
77  for being able to use it in so many different areas. Cause once
78  you prove one formula for slope is true, then you can prove
79  it ... I mean you can use that forever. You know what I’m 
80  saying?

Figure 12. Monica’s Work for Problem 1

114 Monica: If any two consecutive numbers ... it’s always going to be odd
115  and even, or even and odd.
116 Interviewer: Ok.
117 Monica: So, but I don’t know how to explain that ... to prove that it
118  would be true in any case. Cause I can say, obviously that an
119  odd number and an even numer always, the sum of an odd and 
120  even number is always going to be odd. But I don’t know how 
121  to necessarily prove that ... without just giving special cases.
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sum of two consecutive numbers always consists 
of one odd and one even number. She recog-
nized that the sum of two consecutive numbers 
would always be odd. However, she faced dif-
ficulty when attempting to prove this claim in 
a non-empirical manner. Perhaps this deficien-
cy is from her lack of experience with formal 
definitions of odd and even, for the highest 
level of mathematics she had encountered was 
Foundations of Geometry. Regardless, she knew 
that the statement should be proven in order to 
be true. Thus, we determined her mindset as 
an internalized proof scheme, which Harel and 
Sowder classified as analytical (1998, p. 242).

Problem 2: Perimeter of the Hexagons. When 
approaching the second problem, Monica im-
mediately searched for a pattern in the figures, 
forgoing all empirical methods. She stated that 

if she derived a formula identifying the relation-
ship between the perimeter and the figure, it 
would allow her to find the perimeter for any 
figure number. This moment revealed a depth 
of understanding beyond the empirical under-
standing or external conviction. Ultimately, she 
deduced the formula to be “4a + 2,” where “a is 
the number of hexagons,” as displayed in Figure 
14.

Monica’s justification for this formula 
portrayed a depth of understanding and 
pattern recognition. She perceived the differ-
ence between each figure and noted a manner 
in which to relate these concepts. In our coding 
system, we determined Monica’s response to 
be transformational, according to Harel and 
Sowder’s definitions. According to their study, 
“transformational observations involve op-
erations on objects and anticipations of the 

Figure 14. Monica’s Work for Problem 2

Figure 13. Monica’s Derivation of the Perimeter Formula

235 Monica: ... we have, and we know that the top perimeter, or the top part
236  of this perimeter, is going to be 2 times the number of
237  hexagons we have because there are 2 segments for each
238  hexagon, or 2 units.
239 Interviewer: Ok.
240 Monica: Then, we know that that is going to duplicate on the bottom, so
241  that’s where we get 2 times the number of hexagons.
242 Interviewer: Ok.
243 Monica: And then we need for ... we need to account for these two 
244  missing pieces (the two end pieces) so that’s plus 2.
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operations & results [which are] goal oriented.” 
Students with the transformational mindset are 
able to “transform” the problem and “anticipate 
the results of the transformations,” leading to 
the final deduction of the problem (p. 258-259). 
Monica followed this approach, demonstrating 
that she was able to recognize the pattern through 
the transformations of each problem, which led 
to determining a mathematical equation that 
expressed the detected pattern.

Problem 3: Evaluation and Ranking of the 
Arguments. Monica tended to approach the 
prompts from a teacher’s perspective. She was not 
convinced by Archie’s explanation, as it utilized 
only a few cases. However, she considered that 
middle school students might find the argument 
convincing because it utilized examples to show 
the claim was true. When considering Bart’s ex-
planation, she alluded to a student’s propensity 
to approve a claim due to the examples shown. 
Monica initially expressed doubt with his 
argument, but later became convinced by the 
formula on the page, unaware that Bart himself 
did not arrive at this conclusion. However, she 
demonstrated a higher level of understanding 
by recognizing that the formula represented 
a general form of the data. With Charlie’s ex-
planation, she acknowledged the presence of a 
consistent pattern as more numbers were in-
troduced. She discovered that as the number of 
dots increased, the area of the square remained n 

x n though she noted that she thought that Bart 
had showed a very similar argument. Perhaps 
this was due to her misunderstanding of the 
placement of the formula from Bart’s equation. 
Further, Drake’s explanation seemed convinc-
ing to her, for she stated that Drake provided a 
formula and portrayed how it operates.

However, when asked to rank these 
arguments in order of least convincing to most 
convincing, Monica expressed her thought that 
each proof held validity, as each could be utilized 
in the classroom to assist the students’ under-
standing of the prompt. Yet, she was not satisfied 
with the explanations given by Archie and Bart, 
as recorded in Figure 15. Monica argued that 
these justifications could serve as a foundation 
to reach the conclusion, which Drake ultimately 
achieved. Monica broadened this explanation by 
expressing the need for a foundational under-
standing of how mathematicians arrive at certain 
formulas in order for others to understand their 
full implications and intentions. Thus, she 
demonstrated a developed understanding of 
proof and its role in the classroom, which must 
be established in order to gain full comprehen-
sion of the claims and manner in which to arrive 
at a conclusion. This trait was a characteristic of 
the internalized proof scheme, which utilizes the 
ability to understand the argument and transfer 
the knowledge into a mathematical expression.

Relationship of Definition and Practice. Monica’s 

Figure 15. Monica’s Explanation of the Arguments’ Importance

425 Monica: So here’s the thing. I feel like none of these are necessarily
426  wrong. I think that they are good teaching tools to get to this 
427  point (points to Drake’s explanation).
428 Interviewer: Ok.
429 Monica: So I wouldn’t say that this in and of itself ... {inaudible}. Like
430  neither of these (points to Archie’s and Bart’s explanations) in
431  and of themselves prove that it was right, but it like kind of was
432  a foundation to explain how he got there. So does that make
433  sense?
434 Interviewer: So they sort of maybe build on each other
435 Monica: Mhm ... to kind of give a foundation so that when you get to this
436  point (referring to Drake’s explanation) and you say this is how
437  I formed this formula, you have all this background knowledge
438  to understand instead of giving them the formula and being
439  like, “This is what it is.” You know?
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definition and application of proof implied an 
analytical approach, as demonstrated in her work. 
Though she did not utilize the formal definitions 
of odd and even when justifying her reasoning, 
Monica noted that it was possible and identified 
the pattern that allowed her to conclude that the 
sum of consecutive numbers would always be 
odd. As she approached the Perimeter Problem, 
she never considered employing an empirical 
method to find the perimeter of further figures. 
Finally, as she evaluated the arguments, she 
noted that the empirical arguments were not 
valid proofs in and of themselves, but could be 
beneficial for explanations and understanding. 
Each problem exemplified her analytical thought 
process and methodology when approaching 
such problems.

Findings
In our analysis, we made several interesting 
observations about our participants. Initially, 
we found a differentiation between the algebra 
students’ tendency to define proof either empiri-
cally or by external conviction and the geometry 
students’ propensity to define proof using analyt-
ical reasoning. We also discovered a correlation 
between the students’ definitions of proof and 
their considerations of important concepts 
within mathematics. That is, students with an 
empirical or externally convicting definition of 
proof tended to approach their problems exper-
imentally or computationally, whereas students 
with an analytical definition tended to approach 
problems logically and systematically.

Of the ten participants, six demonstrated 
proof schemes that were identical to the proof 
schemes evident in their conception of proof. 
For two participants, their conceptions of proof 
fell under the analytical proof scheme while they 
practiced both empirical and analytical ideology. 
One participant had both empirical and analyt-
ical proof scheme ideas within her conception 

but only expressed empirical ideas within her 
work. The last participant defined proof with 
reasoning that fell under the empirical proof 
scheme; however, she had both empirical and 
analytical approaches to the given prompts. 
These findings suggest that each participant’s 
definition of proof, along with their conceptual-
ized understanding, impacted their interactions 
with the problems posed. It is important to note 
this correlation, for it suggests that a teacher’s 
interaction with mathematics may influence his 
or her instruction with that particular material. 
Therefore, his or her students’ interactions with 
mathematics may be influenced by the teacher’s 
conceptualization and approach to problems 
within the subject.

In our analysis, we generally observed 
how participants from different mathematical 
backgrounds approached the various problems 
given throughout this study. We discovered 
that all four participants currently enrolled in 
College Algebra thought about the Consecutive 
Numbers Problem with an empirical proof 
scheme. Conversely, only two participants in 
Foundations of Geometry thought about this 
problem empirically, while the other four ap-
proached the prompt with an analytical mindset. 
When considering the Perimeter of Hexagons 
Problem, one algebra participant thought an-
alytically in order to calculate the perimeter of 
both the 5th and 25th figures, while the other 
three students held an empirical proof scheme 
throughout the problem. Comparatively, two 
geometry students approached calculating 
the perimeter of the 5th figure analytically 
while four participants found the perimeter of 
the 25th figure in an analytical manner. The 
remaining two geometry participants thought in 
an empirical manner throughout the problem.

The Evaluation and Ranking of Arguments 
Problem required a more complex analysis. For 
the purpose of this paper, we will only consider 

Figure 16. Number of Participants Who Utilized an Analytical Proof Scheme in Each Problem

Students Who Reached the Analytical Proof Scheme

Problem 1 Problem 2.1 Problem 2.2 Problem 3

Algebra Students 0 1 1 1

Geometry Students 4 2 4 4
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each participant’s most dominant proof scheme 
displayed throughout their efforts. Only one of 
the four algebra participants practiced an analyt-
ical proof scheme in this question while four of 
the six geometry participants practiced an ana-
lytical proof scheme. Through the observations 
of this analysis, those in geometry had a greater 
tendency to think and interact with mathemat-
ics using an analytical and logical mindset.

Within our research, we observed that each 
participant’s definition of proof influenced the 
proof schemes used within the various problems. 
This observation parallels Harel and Sowder’s 
statement that “the proof schemes held by an 
individual are inseparable from her or his sense 
of what it means to do mathematics” (1998, p. 
242).

Limitations
Our study has multiple limitations which inhibit 
our ability to assert claims beyond the scope of 
our study. Our sample was comprised of ten 
volunteer participants from only two different 
classes taught by one professor at one university. 
The small sample restricted our findings to qual-
itative results exclusively, thus narrowing our 
ability to make generalized claims. Furthermore, 
our sample was entirely middle-class and female, 
which is a highly exclusive demographic and 
leaves many others unrepresented.

Significance
In our study, we purposefully chose to work 
with future mathematics educators because it 
was important for us to see how they interacted 
with the material they hope to one day teach. 
By examining how they worked through the 
mathematics and asking them to communicate 
those ideas to us, it allowed our team to replicate 
a classroom encounter. Essentially, we were 
asking them to teach us what they saw. We can 
imagine that as future teachers, they may com-
municate mathematics in a similar manner. This 
is important to examine because these future 
educators are primarily responsible for properly 
communicating and teaching their students 
mathematics. As Harel and Sowder claim, “The 
evidence from the status studies of university 
students’ proof knowledge suggests that some, 

if not many, precollege teachers are unlikely 
to teach proof well, perhaps because their own 
grasp of proof was probably limited in college 
and may not have grown since then” (1998, p. 
36). A teacher cannot teach beyond his or her 
own scope of understanding. Consequently, if a 
teacher is not equipped to teach students to think 
analytically, then it is significantly less likely for 
the students to obtain a more critical compre-
hension. Given that those in the geometry class 
appeared to process mathematics more deduc-
tively, this may indicate a possible correlation 
between exposure to a higher level of mathe-
matics and the operation of logical faculties. 
Nevertheless, we are unable to make such a 
claim based on the findings of our study, but our 
work charges us as researchers and educators to 
investigate this theory further. 

Conclusion
Based on our research, we have reason to believe 
that the way individuals think about mathematics 
and proof ultimately impacts their problem-solv-
ing methods. We observed that within our 
sample, those who had encountered proof in 
geometry had a greater tendency to approach 
problems more analytically and generally. By 
continuing this research and analyzing more par-
ticipants, it would be interesting to determine 
if a trend would arise among those with more 
exposure to proof having a greater tendency to 
think analytically. Additionally, further investi-
gation may verify these conclusions within our 
own study, showing that future mathematics 
educators should encounter more proof-based 
classes.

While our study faced limitations due to a 
small sample size that consisted of only female 
participants from one university, these conclu-
sions seem reasonable according to our data. It 
appears evident that the more exposure students 
have had to proof and logical arguments, the 
more analytically they define and work with 
proof. 
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