
University of North Georgia
Nighthawks Open Institutional Repository

Honors Theses Honors Program

Spring 2017

COBOL as a Modern Language
Charles Kiefer
University of North Georgia, charleskiefer01@gmail.com

Follow this and additional works at: https://digitalcommons.northgeorgia.edu/honors_theses

Part of the Programming Languages and Compilers Commons

This Honors Thesis is brought to you for free and open access by the Honors Program at Nighthawks Open Institutional Repository. It has been
accepted for inclusion in Honors Theses by an authorized administrator of Nighthawks Open Institutional Repository.

Recommended Citation
Kiefer, Charles, "COBOL as a Modern Language" (2017). Honors Theses. 17.
https://digitalcommons.northgeorgia.edu/honors_theses/17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by North Georgia College & State University: Digital Commons

https://core.ac.uk/display/236069647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.northgeorgia.edu?utm_source=digitalcommons.northgeorgia.edu%2Fhonors_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.northgeorgia.edu/honors_theses?utm_source=digitalcommons.northgeorgia.edu%2Fhonors_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.northgeorgia.edu/honors?utm_source=digitalcommons.northgeorgia.edu%2Fhonors_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.northgeorgia.edu/honors_theses?utm_source=digitalcommons.northgeorgia.edu%2Fhonors_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.northgeorgia.edu%2Fhonors_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.northgeorgia.edu/honors_theses/17?utm_source=digitalcommons.northgeorgia.edu%2Fhonors_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages

COBOL as a Modern Language

A Thesis Submitted to

the Faculty of the University of North Georgia

in Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

With Honors

Charles Kiefer

Spring 2017

1

ACKNOWLEDGEMENTS

My thanks go to my committee, Dr. Markus Hitz, Dr. Bryson Payne, and John-David

Rusk for their valuable insight on what can be a difficult language to research, as well as

to Dr. Stephen Smith for his assistance in the creation of this thesis.

2

Introduction

The use of COBOL cripples the mind; its teaching should, therefore, be regarded

as a criminal offence. – Edsger Dijkstra 1

This statement may be hyperbole, but Dijkstra’s view on the language reflects

underlying feelings about COBOL throughout the programming world. The

language was created in 1959 to allow for interactivity between computation

machines. 2 More than half a century later, COBOL is still used extensively in

mainframes, computers designed for large-scale calculation and record

processing. Numerous factors have contributed to the longevity of COBOL,

including ease of use compared to its contemporaries and an upgrade to object

orientation in the 1990s. 3

 This longevity has also contributed to problems with COBOL. The chief

criticism is that it has become difficult to learn as other programming languages

become more user-friendly. 4 COBOL software tends to be verbose, even for simple

tasks. It’s said that the average size of a COBOL program is 600 lines of code,

whereas a Java program performing the same operation should be 30 lines or

1 Dijkstra, Edsger W. Selected Writings on Computing: A Personal Perspective. 1st ed. New York,
NY: Springer New York, 1982. Print.

2 Wexelblat, Richard L. History of Programming Languages. 1st ed. New York, New York:
Academic Press, 1981. 210.

3 Arranga, Edmund C., and Frank P. Coyle. Object-Oriented COBOL. New York, New York: SIGS
Books & Multimedia, 1996. 15.

4 Volpano, D., & Dunsmore, H. (1981). Problems with COBOL--Some Empirical
Evidence. Computer Science Technical Reports, 81(371). Retrieved from
http://docs.lib.purdue.edu/cstech/300/

3

fewer. 5 Difficulties with the language will only increase as the workforce

knowledgeable in COBOL’s use retire.

History of COBOL

COBOL (Common Business Oriented Language) was commissioned in 1959 as

a joint project between the United States Navy and several computing corporations

such as IBM and RCA. 6 According to Jean Sammet, a member of the original

COBOL design group, COBOL suffered from being in an intermediate period where

companies had high expectations for language features and the technology

required had not yet caught up. COBOL’s scope had to be scaled down a more

concise application for it to be completed. 7 Due to the many investors in its

development, COBOL had a lengthy process of design by committee, which was

cited as being both useful and dangerous, 8 since it meant more resources for

production, but also could have led to an overdesigned final product. The

committee established properties critical for the language:

1. Creation of four divisions in a program: PROCEDURE, DATA,

ENVIRONMENT, and IDENTIFICATION.

2. Use of the English language throughout for commands, and data names,

including allowance of 30 characters for data names.

3. Data could be organized into files that contained records, then

subrecords, and fields within (sub)records.9

5 Du Preez, Derek. Banks will stick with COBOL because Java has performance issues.
Computerworld UK, June 13, 2013.

6 Wexelblat, Richard L. History of Programming Languages. 1st ed. New York, New York: Academic
Press, 1981. 210.

7 Ibid, 212.

8 Beyer, Kurt. Grace Hopper and the Invention of the Information Age. Cambridge, Massachusetts:
MIT Press, 2009. 285.

9 Reilly, Edwin D. "COBOL." In Concise Encyclopedia of Computer Science, 104. Chichester, West
Sussex, England: Wiley, 2004.

4

Compared to its predecessors which were made for processing mathematical

formulae, COBOL had to be easy to use and understand. It also needed to be able

to run on machinery that didn’t have purpose-built hardware, which is circuitry

with logic circuits created for a specific application. Betty Holberton, a member of

the design committee, claims that this is what lead to COBOL’s unexpected

longevity when its lifecycle is compared against other languages of the time, even

though she initially thought COBOL would be a temporary solution to the

military’s needs. 10

As with many other languages of the time, COBOL began as a functional

language, with extensive use of GO TO statements for logical control. 11 Only later,

in COBOL-74 and COBOL-85, were structured programming paradigms available

in COBOL. These include functions such as loops and function blocks that could

be used repeatedly.

 During COBOL’s peak as business’s most used programming language, 12

the concept of object orientation became the new favored programming style.

Object orientation allows for logic units of data, or objects, to be reused throughout

a program’s structure, with the majority of the code performing operations on

these objects. Languages like C and Java began to take market share away from

COBOL with their simpler data manipulation controls.

10 Wexelblat, Richard L. History of Programming Languages. 1st ed. New York, New York:
Academic Press, 1981. 288.

11 Sneed, H.m. "Extracting business logic from existing COBOL programs as a basis for
redevelopment." Proceedings of the 9th International Workshop on Program Comprehension,
2001, 2. Accessed April 9, 2017. doi:10.1109/wpc.2001.921728.

12 Philippakis, Andreas S., and Leonard J. Kazmier. COBOL for Business Applications. New York:
McGraw-Hill, 1973.

5

COBOL’s rapid obsolescence in the face of object-oriented languages caused

it to lose support not only in business, but also in academia.13 The loss of academic

support for the language led to fewer programmers for the language being

available, a dearth that is still visible today. 14 This programmer shortage lead to

businesses growing even more eager to replace their COBOL frameworks.

The continued lifespan of COBOL was called into question at least by 2003

in a paper examining if businesses and academia should continue to support

COBOL. 15 The paper notes that businesses are slowly halting development of new

COBOL programs, and the most likely reason is that newer languages have

essential features that COBOL is lacking; in particular, structured programming

only became popular after COBOL’s creation. Structured programming is the

practice of keeping code well organized through the use of classes and objects. This

paper was written in the transitional period to object-orientation for COBOL, and

the authors admit that this could be a temporary phase until COBOL’s features

catch up to its peers. 16

A trend in COBOL usage has become visible over the last decade. While

COBOL has been on the decline in both academia and business since the 1970s,

since 2010 it has experienced a resurgence. There are two categories of COBOL

13 Dunn, Deborah L., and Dennis Lingerfelt. "Can visual basic replace COBOL? ...and should
it?" Journal of Computing Sciences in Colleges 20, no. 4 (April 1, 2005): 214-20. Accessed April
10, 2017.

14 Mitchell, Robert L. "Rebuilding the Legacy." Computerworld. April 24, 2006. Accessed April 10,
2017. http://www.computerworld.com/article/2554624/enterprise-applications/rebuilding-the-
legacy.html.

15 Carr, Donald, and Ronald J. Kizior. "Continued Relevance of COBOL in Business and
Academia: Current Situation and Comparison to the Year 2000 Study." June 13, 2003. Accessed
April 10, 2017. https://dl.microfocus.com/000/WP-20030613_tcm21-2774.pdf.

16 Ibid, 16

6

development to be considered in this trend: Percentage of businesses that are

utilizing COBOL in any capacity, and the total percentage of programming effort

being expended on COBOL. The former indicates a stronger tendency toward

maintenance of legacy software, whereas the latter shows potentially new software

and systems being developed in the language.

Data on overall businesses usage of COBOL is available starting from 1999

in a Micro Focus survey. In 1999, 87% of businesses were using COBOL in any

capacity. 17 Micro Focus performed a similar survey in 2003, showing that the

number had dropped to 56%. 18 In 2006 and 2012 Mitchell conducted similar

surveys showing a slight uptick to 62% 19 and then 64%, 20 respectively. These

increased values could be a result of different surveying techniques or samples, but

the increase in usage correlates with other data.

17 Carr, Donald, and Ronald J. Kizior. "Continued Relevance of COBOL in Business and
Academia: Current Situation and Comparison to the Year 2000 Study." June 13, 2003. Accessed
April 10, 2017. https://dl.microfocus.com/000/WP-20030613_tcm21-2774.pdf.

18 Ibid.

19 Mitchell, Robert L. "COBOL: Not Dead Yet." Computerworld. October 04, 2006. Accessed April
10, 2017. http://www.computerworld.com/article/2554103/app-development/cobol--not-dead-
yet.html.

20 Mitchell, Robert L. "Rebuilding the Legacy." Computerworld. April 24, 2006. Accessed April 10,
2017. http://www.computerworld.com/article/2554624/enterprise-applications/rebuilding-the-
legacy.html.

7

While the number of businesses using COBOL has remained relatively stable since

the 1990s, new development in the language has dropped dramatically. Philippakis

found in 1973 that an estimated 60 to 70% of new software development was being

0%

10%

20%

30%

40%

50%

60%

70%

1970 1975 1980 1985 1990 1995 2000 2005

Market share of COBOL in new development

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 2000 2002 2004 2006 2008 2010 2012 2014

Percent of businesses utilizing COBOL

Micro Focus

Mitchell

Mitchell

Micro Focus

Philippakis

JISE

Micro Focus

Micro Focus

8

done in COBOL. 21 That value fell to 44% in 1995, 22 then 20% in 1999, 23 and finally

10% in 2003. 24 No further studies have been conducted for this particular data

point, possibly because any remaining new COBOL development is statistically

insignificant. From this trend, it can be concluded that while legacy COBOL

systems have remained intact, very few businesses find it worthwhile to do any new

development in COBOL.

Possibly the most complete usage history of COBOL can be seen in the

TIOBE index, which tracks programming languages through search engine hit

counts. This indicates only search-based popularity of a given language, not usage

percent or new development efforts. Data on COBOL is available beginning in

2001, giving it a 1.6% market share when compared to all other relevant

programming languages. This market share follows the same trend that surveys

have indicated, dropping steadily to a nadir of 0.3% in 2011. However, it began to

climb in rank again after 2012, peaking at 1.3%. 25 This trend may continue.

21 Philippakis, Andreas S., and Leonard J. Kazmier. COBOL for Business Applications. New York:
McGraw-Hill, 1973.

22 Gotwals, John, and Carlin Smith. "Restructuring Programming Instruction in The Computer
Information Systems Curriculum: One Department's Approach". Journal of Information Systems
Education 7.2 (1995): 68. Print.

23 Carr, Donald, and Ronald J. Kizior. "Continued Relevance of COBOL in Business and
Academia: Current Situation and Comparison to the Year 2000 Study." June 13, 2003. Accessed
April 10, 2017. https://dl.microfocus.com/000/WP-20030613_tcm21-2774.pdf.

24 Ibid.

25 "COBOL | TIOBE - The Software Quality Company". Tiobe.com. 2017. Web. 10 Apr. 2017.
https://www.tiobe.com/tiobe-index/cobol/.

Micro Focus

9

The underlying issue is a lack of people skilled in COBOL. The source of this

may be that COBOL is no longer being taught in academia as a beginner’s language.

The curriculum change started around 1995, when doubt arose as to COBOL’s

longevity, and at that time C was the preferred alternative. 26 By 2003 COBOL’s

demise was considered by educators to be a certainty, and those teaching had to

identify a new introductory language. 27 COBOL was used first because it was

expected to be a permanently useful skill for a programmer, and the new language

had to have that same trait. In 2003 it was suggested that while COBOL could be

retained for teaching in upper-level courses, Java should become the new

26 Gotwals, John, and Carlin Smith. "Restructuring Programming Instruction in the Computer
Information Systems Curriculum: One Department's Approach". Journal of Information Systems
Education 7.2 (1995): 68. Print.

27 Haney, John. "Something Lost - Something Gained: From COBOL to Java to C# in
Intermediate Programming Courses". Journal of Computing Sciences in Colleges 19.1 (2003):
227-234. Print.

Figure 1 "COBOL | TIOBE - The Software Quality Company". Tiobe.com. 2017. Web. 10 Apr. 2017.
https://www.tiobe.com/tiobe-index/cobol/.

10

introductory language. 28 A 2005 paper came to the same conclusion, although it

recommends Visual Basic .NET, and states that their choice could prove to be

lacking in versatility as an introductory programming language. 29

It is possible that academia is following this same usage trend as business

in which COBOL becomes more widespread since the early 2010s. Numerous

times, institutions with a computer science department have been surveyed. In

1999, COBOL was offered at 90% of these institutions. 30 A slight drop to 83%

followed in 2003, 31 followed by a falloff to 27% by 2013. 32 Micro Focus’s 2013

survey of academic institutions also revealed the relative rate at which COBOL

developers are graduating compared to other specialties, finding that the number

of COBOL courses in American college is on the rise as companies such as IBM

seek to replace retiring COBOL engineers. 33

A new study has now been conducted of 413 higher education institutions

in the United States. Universities were first filtered to those with an existing

computer science program. Availability of COBOL courses was determined

through searches of each university’s publicly available course catalog for COBOL

28 Haney, John. "Something Lost - Something Gained: From COBOL To Java To C# In
Intermediate Programming Courses". Journal of Computing Sciences in Colleges 19.1 (2003):
227-234. Print.

29 Dunn, Deborah L., and Dennis Lingerfelt. "Can visual basic replace COBOL? ...and should
it?" Journal of Computing Sciences in Colleges 20, no. 4 (April 1, 2005): 214-20. Accessed April
10, 2017.

30 Carr, Donald, and Ronald J. Kizior. "Continued Relevance of COBOL in Business and
Academia: Current Situation and Comparison to the Year 2000 Study." June 13, 2003. Accessed
April 10, 2017. https://dl.microfocus.com/000/WP-20030613_tcm21-2774.pdf.

31 Ibid.

32 "Academia Needs More Support To Tackle The IT Skills Gap | Micro Focus". Microfocus.com.
N.p., 2013. Web. 10 Apr. 2017.

33 Ibid.

11

courses or courses that use COBOL as the primary language. Of the 413, 61 were

found to have an active COBOL course available. This represents a further decrease

in 2017 to COBOL being available in approximately 15% of higher education

institutions.

IBM is taking its own initiative to solve the workforce issue through

sponsorships of institutions to grow existing COBOL programs and begin new

ones. 34 The IBM Academic Initiative program includes a drive to teach

mainframes technology in universities. The website lists eighty-two universities

taking part in the program, though not all are teaching COBOL-related material. 35

Other corporations are making similar efforts, resulting in programs such as the

Tennessee University COBOL training program. 36

34 "IBM Academic Initiative - Enterprise Systems". Enterprise.waltoncollege.uark.edu. Web. 10
Apr. 2017.

35 "Mainframe Schools". Mainframes.com. Web. 10 Apr. 2017.

36 McGee, Jamie. "Tennessee State University Offers COBOL Bootcamp". The Tennessean. N.p.,
2016. Web. 10 Apr. 2017.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Percent availability of COBOL courses in higher education
institutions

Micro Focus

Kiefer

Micro Focus

Micro Focus

12

Benchmarking

One common method of comparing programming languages is by direct

benchmarking. A representative program is written in multiple languages and run

using each language’s compiler. The running times for each language make for an

easy and visibly distinct comparison.

No standardized benchmarking tests of COBOL could be found, so a simple

set of benchmarking tests were conducted. Java, C#, and Python were selected to

benchmark against COBOL based on their similar real-world application in

locations where COBOL may be used.37 An n-body simulation program, rewritten

in COBOL with the same logical flow, was used to test each language.38 N-body

simulations conduct a large number of mathematical simulations based on the

desired number of iterations. Generally, more iterations of the program will result

in a linear increase in running time. The full source of the COBOL program can be

found in Appendix A.

The tests were conducted on a system with an i7 4970k CPU with no

overclocking at 4.00 GHz and 26 GB DDR3 RAM. The operating system was

Windows 7 Home Edition. The COBOL and C# programs were compiled to

executables using the GnuCOBOL compiler and the Visual C# Express compiler,

respectively. Java and Python used just-in-time (JIT) compilation through the

Java Eclipse Neon IDE and Thonny IDE, respectively. Times for the programs

37 Al-Qahtani, Sultan S., Rafik Arif, Luis F. Guzman, Adrien Tevoedjre, and Pawel Pietrzynski.
"Comparing Selected Criteria of Programming Languages Java, PHP, C, Perl, Haskell, AspectJ,
Ruby, COBOL, Bash Scripts and Scheme." Concordia University, August 20, 2010. Accessed
February 13, 2017.

38 Bagley, Doug, Brent Fulgham, and Isaac Gouy. "The Computer Language Benchmarks Game."
The Computer Language Benchmarks Game. Accessed February 13, 2017.
https://benchmarksgame.alioth.debian.org/.

13

compiled to executables (C# and COBOL) were collected using Windows

PowerShell’s measure-command function. For Java and Python, basic timing

commands were added to the logic to output run time as well as existing outputs.

Data was collected for 1, 100, 10,000, 100,000, and 1,000,000 iterations.

Each program was run ten times for each iteration count, and an average time was

calculated from those runs. Both time and iterations are shown in logarithmic form

on the charts.

14

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1000.0000

1 10 100 1000 10000 100000 1000000

R
U

N
 T

IM
E

(S
EC

O
N

D
S)

ITERATIONS

COBOL

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 10 100 1000 10000 100000 1000000

R
U

N
 T

IM
E

(S
EC

O
N

D
S)

ITERATIONS

Python

15

0.0010

0.0100

0.1000

1.0000

1 10 100 1000 10000 100000 1000000
R

U
N

 T
IM

E
(S

EC
O

N
D

S)

ITERATIONS

Java

0.0100

0.1000

1.0000

1 10 100 1000 10000 100000 1000000

R
U

N
 T

IM
E

(S
EC

O
N

D
S)

ITERATIONS

C#

16

The most obvious result of the tests is that COBOL shows a much longer

running time than any of the other tested languages, for any given iteration count.

It is possible that this time is due to overhead induced by the compiler

(GnuCOBOL). The pattern of increasing runtime is most comparable to Java, in

that both languages show a constant increase with the number of iterations at the

same interval. It was theorized that COBOL’s longer running times are partly due

to the lack of multithreading, which is not directly supported by the language. 39

More modern languages frequently have multithreading support as part of the

compiling process or JIT compilation.

To simulate single threaded execution on one of the other languages, a

mutex lock was applied to the C# program. A mutex lock allows only one thread to

work on a section of code at a time. When the lock is placed over the entire

program, the compiled result is effectively single-threaded.

39 "IBM Knowledge Center." IBM Knowledge Center. October 24, 2014. Accessed February 07,
2017.
https://www.ibm.com/support/knowledgecenter/en/SS6SG3_4.2.0/com.ibm.entcobol.doc_4.2/
PGandLR/tasks/tpthr02.htm.

17

After adding locking, the C# program begins to show an increasing run time

with more iterations in a similar manner to the other languages. The runs in C#

also show a higher average deviation, likely due to the executable’s assigned thread

being already occupied with another task. COBOL’s runs also show this pattern,

although it is not as noticeable due to the longer overall run times.

A further pattern to notice in the graphs is that some languages exhibit a

time floor, beyond which fewer iterations do not decrease run time further. Java

and especially Python show a lower running time floor on execution than the

others, most notably when run with a single iteration, in which case running time

becomes lower than that of C#, which otherwise displays the best performance.

This can be interpreted as a benefit of the JIT compilation technique. To finalize

this data, more sample programs will need to be written in COBOL to match the

existing programs for others. This data set can be extended by comparing the

results here against previous benchmarks, including benchmarking COBOL

0.0100

0.1000

1.0000

1 10 100 1000 10000 100000 1000000
R

U
N

 T
IM

E
(S

EC
O

N
D

S)

ITERATIONS

C# with locking

18

against FORTRAN,40 FORTRAN against Java,41 and Java against C++.42 The

combination of these tests gives a broad overview of the performance landscape.

Other Comparisons

A more practical manner by which to compare languages is a feature by

feature review. Implementing a new system in a language that come with an

exhaustive library of pre-built modules can save programmers time that would

need to be spent implementing them. COBOL shows itself to be lacking in many of

these regards, particularly concerning recent advanced in concepts such as

encapsulation and proper exception handling. Much of this comparison process

has been performed by Al-Qahtani et al. in 2015. 43 The investigation includes

comparisons of functionality, support, and other critical aspects of a programming

language.

Replacing COBOL

A gradient of options are available for handling legacy COBOL software,

ranging from low impact and low cost to high impact and high cost. The first few

options allow for preservation of the existing software without completely

changing languages. This is the preferred method for avoiding downtime and

40 Paul, Lois. "CDC's, DEC's Time-Sharing Called Most Cost-Effective by RDC Study."
Computerworld, May 31, 1982, 31-32.

41 Bull, J.M., L.A. Smith, L. Pottage, and R. Freeman. "Benchmarking Java against C and Fortran
for Scientific Application." Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java
Grande, 2001, 97-105.

42 Sangappa, Sudhir, K. Palaniappan, and Richard Tollerton. "Benchmarking Java against C/C++
for Interactive Scientific Visualization." Proceedings of the 2002 Joint ACM-ISCOPE Conference
on Java Grande, 2002, 236.

43 Al-Qahtani, Sultan S. et al. "Comparing Selected Criteria of Programming Languages Java,
PHP, C++, Perl, Haskell, Aspectj, Ruby, COBOL, Bash Scripts and Scheme". Arxiv.org. N.p.,
2010. Web. 10 Apr. 2017. https://arxiv.org/abs/1008.3434

19

simplifying the modernization process. A total rewrite could result in loss of service

for customers, the avoidance of which is crucial for certain businesses. While

upgrading the existing system will inevitably require downtime handling,

unexpected issues should be relatively fewer compared to changing technology.

 Keep original code Replace code

Less in-depth Refactor existing code Managed COBOL

More in-depth COBOL-2002 Change languages

Refactor existing code

Sellink et al. have made recommendations on restructuring COBOL code

without a version upgrade. 44 The primary focus involves the removal of GO TO

commands in favor of PERFORM-based looping. While this does not directly

impact performance or functionality, it makes the code far easier to maintain,

which will result in fewer unforeseen bugs from changes. To speed up the process

of conversion, they have written an automatic process for adapting the most

important instances of the GOTO command (those which are called often during

execution).

COBOL-2002

 Refactoring alone may not be enough of an improvement to justify the

investment. To compete with languages like Java and C++ that took the majority

44 Sellink, Alex, Harry Sneed, and Chris Verhoef. "Restructuring Of COBOL/CICS Legacy
Systems". Science of Computer Programming 45.2-3 (2002): 193-243. Web.

20

of COBOL’s market share, the COBOL 2002 standard implemented concepts from

both languages, the most important being object orientation and encapsulation. 45

 Being able to use object-based logic will alleviate a long-standing issue with

COBOL, its verbosity. As seen in the n-body simulation benchmark program, the

object-oriented languages can be more succinct in their data declarations, with

simpler member access and cleaner logical patterns. Without object orientation,

the COBOL program needed to declare arrays of each data member. Having

variables as a series of arrays makes it difficult to delete a logical structure (e.g. a

planet in the benchmark program) without severely impacting performance.

45 "COBOL 2002 – The Good, the Bad, and the UGLY". 2005. Presentation.

21

N-body declaration in C#

class Body { public double x,

y, z, vx, vy, vz, mass; }

class NBodySystem

{

 Body Jupiter = new Body()

 {

 x =

4.84143144246472090e+00,

 y = -

1.16032004402742839e+00,

 z = -

1.03622044471123109e-01,

 vx =

1.66007664274403694e-03 *

DaysPeryear,

 vy =

7.69901118419740425e-03 *

DaysPeryear,

 vz = -

6.90460016972063023e-05 *

DaysPeryear,

 mass =

9.54791938424326609e-04 *

Solarmass,

 };

} 46

N-body declaration in COBOL-85

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SYSTEM.

05 BODIES OCCURS 5 TIMES.

10 X COMP-1.

10 Y COMP-1.

10 Z COMP-1.

10 VX COMP-1.

10 VY COMP-1.

10 VZ COMP-1.

10 MASS COMP-2.

PROCEDURE DIVISION.

SETUP-PROCEDURE.

*> Array position (2) aligns

with Jupiter

COMPUTE X(2) =

4.84143144246472090.

COMPUTE Y(2) = -

1.16032004402742839.

COMPUTE Z(2) = -

0.103622044471123109.

COMPUTE VX(2) =

0.00166007664274403694 * DAYS-

PER-YEAR.

COMPUTE VY(2) =

0.00769901118419740425 * DAYS-

PER-YEAR.

COMPUTE VZ(2) = -

0.0000690460016972063023 *

DAYS-PER-YEAR.

COMPUTE MASS(2) =

0.000954791938424326609 *

SOLAR-MASS.

46 Bagley, Doug, Brent Fulgham, and Isaac Gouy. "The Computer Language Benchmarks Game."
The Computer Language Benchmarks Game. Accessed February 13, 2017.
https://benchmarksgame.alioth.debian.org/.

22

N-body declaration in COBOL-2002

IDENTIFICATION DIVISION.

CLASS-ID. BODY

DATA IS PROTECTED

INHERITS FROM BASE.

DATA DIVISION.

WORKING STORAGE SECTION.

CLASS-OBJECT.

*> Functions to instantiate new & set variables, used later

END CLASS-OBJECT.

OBJECT.

OBJECT-STORAGE SECTION.

5 X COMP-1.

5 Y COMP-1.

5 Z COMP-1.

5 VX COMP-1.

5 VY COMP-1.

5 VZ COMP-1.

5 MASS COMP-2.

END OBJECT.

END CLASS BODY.

01 JUPITER OBJECT REFERENCE OF BODY.

PROCEDURE DIVISION.

SETUP-PROCEDURE.

INVOKE BODY “NEW” RETURNING JUPITER.

While more boilerplate code is required to scaffold an object class, the procedure

section of the code becomes cleaner when handling objects instead of variable

arrays.

Encapsulation is the concept of preventing one portion of code from

accessing, manipulating, or modifying other code segments. COBOL lacks this

entirely. Instead, all variables are publicly accessible and instantiated in the data

declaration section at the start of the program. This can allow for variables to be

altered before their intended usage point later in the logic, causing logical errors

and incorrect output. This issue is relieved somewhat by the addition of a local

storage section, available in the COBOL 2002 release. However, compilers for

23

COBOL 2002 are not easily available for operating systems outside of the UNIX

family, requiring more changes than to just the core COBOL framework.

Managed COBOL

Managed COBOL is a branch of COBOL created by Micro Focus to bridge

the gap between COBOL, .NET, and Java. 47 It features extensions to connect to a

JVM or .NET framework, solving the issue of COBOL’s lack of library support.

Most existing COBOL code can be imported directly to Managed COBOL without

issue, unless certain incompatible features have been used. .NET COBOL works by

combining the framework’s COBOL, C#, and Visual Basic code into an

intermediate language, then, at runtime, that language is adapted into a single

native code language. The same applies for JVM COBOL, with just-in-time

compilation to Java bytecode.

47 "Micro Focus Documentation". Documentation.microfocus.com. Web. 10 Apr. 2017.

24

Figure 2 Willis, Paula. "Managed COBOL - An Overview". Micro Focus Community. 2012. Web.
10 Apr. 2017.

Managed COBOL gets the framework access to the vast libraries of .NET

and Java, and allows the existing COBOL framework to easily interact with utilities

written in either language. Because these utilities can now be interpreted through

the COBOL syntax, vital features such as exception handling, dependency

injection, and native SQL calls also become available. These should then be

integrated with the existing framework for reliability and performance.

Change Languages

The most extreme method for handling a legacy COBOL framework is to

entirely uproot and replace the language with something else. The potential for

downtime and software issues is the highest here, but completely replacing COBOL

will thoroughly solve the legacy software issues COBOL presents. The process can

25

be done entirely by hand, through an automated workflow, or a combination of

both.

To rewrite the code by hand, it is best to first discern the business logic

patterns used by the COBOL program so it can be recreated in a different language.

Sneed has outlined the process. 48 Sneed’s focus project was to reengineer the

COBOL framework of a banking system, and he chose to completely rewrite the

system in one written with object-orientation in mind. Sneed’s method of

repeatedly breaking down the code into smaller logical pieces is applicable to a

large variety of COBOL systems.

An automated process can also be applied to convert the code to a different

language. Tinetti et. al have attempted this on Fortran legacy code with the intent

of adding multithreading and parallelization support. 49 They place extra weight

on ensuring minimal downtime during the upgrade, and outline a five step cycle to

do this:

48 Sneed, H.m. "Extracting business logic from existing COBOL programs as a basis for
redevelopment." Proceedings of the 9th International Workshop on Program Comprehension,
2001, 2. Accessed April 9, 2017. doi:10.1109/wpc.2001.921728.

49 Tinetti, Fernando G., Mariano Méndez, and Armando De Giusti. "Restructuring Fortran Legacy
Applications for Parallel Computing In Multiprocessors". The Journal of Supercomputing 64.2
(2013): 638-659. Web.

26

Figure 3 Tinetti, Fernando G., Mariano Méndez, and Armando De Giusti. "Restructuring Fortran
Legacy Applications for Parallel Computing In Multiprocessors". The Journal of Supercomputing
64.2 (2013): 638-659. Web.

 Their recommendations for programs capable of converting FORTRAN to

other languages are inapplicable for COBOL, but numerous applications for this

purpose can be found. 50

Conclusions and Further Work

 The decision for which of these approaches should depend on the business

use of the COBOL application. If the codebase is relatively stable and free of issues,

simply refactoring for performance may be sufficient. Other cases can require as

much as a full replacement of all COBOL code. As new programs are not being

written in COBOL compared to decades prior, the use rate of COBOL is expected

to drop even further. Therefore, it will make the most business sense to handle

50 "Convert COBOL To C++, CPP With COB2CPP Translator Converter." Mpsinc.com. Web. 10
Apr. 2017. http://www.mpsinc.com/cob2cpp.html

27

COBOL issues immediately rather than delaying until no programmers are

available.

 Further research must be performed into the exact circumstances of a

business facing this dilemma with COBOL. Individual interviews would give much

more detail into why a business would choose to either replace or keep legacy

COBOL software. Additionally, more up-to-date research could be useful on the

percentage of businesses reliant on COBOL since the 2012 survey by Mitchell.

While a survey was attempted to find this data, the number of responses were

insufficient to make a conclusion.

28

Appendix A: N-body simulation COBOL source code

IDENTIFICATION DIVISION.

PROGRAM-ID. NBODY-COBOL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 CONSTANTS.

05 RUN-TIMES PIC 9(7) VALUE 100000.

05 PI COMP-1 VALUE 3.141592653589793.

05 DAYS-PER-YEAR PIC 999V99 VALUE 365.24.

05 DT PIC 9V99 VALUE 0.01.

05 SOLAR-MASS COMP-1.

01 SYSTEM.

*> 1: Sun, 2: Jupiter, 3: Saturn, 4: Uranus, 5: Neptune

05 BODIES OCCURS 5 TIMES.

10 X COMP-1.

10 Y COMP-1.

10 Z COMP-1.

10 VX COMP-1.

10 VY COMP-1.

10 VZ COMP-1.

10 MASS COMP-2.

01 TEMP-VARS.

05 I PIC 9(7) VALUE 1.

05 J PIC 9(7) VALUE 1.

05 PX COMP-1.

05 PY COMP-1.

05 PZ COMP-1.

05 ENERGY COMP-1.

05 MAG PIC 9V9(30).

05 DISTANCE COMP-1.

05 DSQUARED COMP-1.

05 AX COMP-1.

05 AY COMP-1.

05 AZ COMP-1.

PROCEDURE DIVISION.

SETUP-PROCEDURE.

*> Globals

COMPUTE SOLAR-MASS = PI * PI * 4.

*> Sun

COMPUTE X(1) = 0.

COMPUTE Y(1) = 0.

COMPUTE Z(1) = 0.

COMPUTE VX(1) = 0.

COMPUTE VY(1) = 0.

COMPUTE VZ(1) = 0.

COMPUTE MASS(1) = SOLAR-MASS.

*> Jupiter

COMPUTE X(2) = 4.84143144246472090.

COMPUTE Y(2) = -1.16032004402742839.

COMPUTE Z(2) = -0.103622044471123109.

COMPUTE VX(2) = 0.00166007664274403694 * DAYS-PER-YEAR.

COMPUTE VY(2) = 0.00769901118419740425 * DAYS-PER-YEAR.

COMPUTE VZ(2) = -0.0000690460016972063023 * DAYS-PER-YEAR.

COMPUTE MASS(2) = 0.000954791938424326609 * SOLAR-MASS.

*> Saturn

COMPUTE X(3) = 8.34336671824457987.

29

COMPUTE Y(3) = 4.12479856412430479.

COMPUTE Z(3) = -0.403523417114321381.

COMPUTE VX(3) = -0.00276742510726862411 * DAYS-PER-YEAR.

COMPUTE VY(3) = 0.00499852801234917238 * DAYS-PER-YEAR.

COMPUTE VZ(3) = 0.0000230417297573763929 * DAYS-PER-YEAR.

COMPUTE MASS(3) = 0.000285885980666130812 * SOLAR-MASS.

*> Uranus

COMPUTE X(4) = 12.8943695621391310.

COMPUTE Y(4) = -15.1111514016986312.

COMPUTE Z(4) = -0.223307578892655734.

COMPUTE VX(4) = 0.00296460137564761618 * DAYS-PER-YEAR.

COMPUTE VY(4) = 0.00237847173959480950 * DAYS-PER-YEAR.

COMPUTE VZ(4) = -0.0000296589568540237556 * DAYS-PER-YEAR.

COMPUTE MASS(4) = 0.0000436624404335156298 * SOLAR-MASS.

*> Neptune

COMPUTE X(5) = 15.3796971148509165.

COMPUTE Y(5) = -25.9193146099879641.

COMPUTE Z(5) = 0.179258772950371181.

COMPUTE VX(5) = 0.00268067772490389322 * DAYS-PER-YEAR.

COMPUTE VY(5) = 0.00162824170038242295 * DAYS-PER-YEAR.

COMPUTE VZ(5) = -0.000095159225451971587 * DAYS-PER-YEAR.

COMPUTE MASS(5) = 0.0000515138902046611451 * SOLAR-MASS.

MAIN-PROCEDURE.

PERFORM OFFSET-MOMENTUM-PROCEDURE.

PERFORM CALCULATE-ENERGY-PROCEDURE.

DISPLAY ENERGY.

PERFORM ADVANCE-SYSTEM-PROCEDURE RUN-TIMES TIMES.

PERFORM CALCULATE-ENERGY-PROCEDURE.

DISPLAY ENERGY.

STOP RUN.

OFFSET-MOMENTUM-PROCEDURE.

MOVE 1 TO I.

PERFORM UNTIL I > 5

COMPUTE PX = PX + (VX(I) * MASS(I))

COMPUTE PY = PY + (VY(I) * MASS(I))

COMPUTE PZ = PZ + (VZ(I) * MASS(I))

ADD 1 TO I

END-PERFORM.

COMPUTE VX(1) = -1 * PX / SOLAR-MASS.

COMPUTE VY(1) = -1 * PY / SOLAR-MASS.

COMPUTE VZ(1) = -1 * PZ / SOLAR-MASS.

CALCULATE-ENERGY-PROCEDURE.

MOVE 0 TO ENERGY.

MOVE 1 TO I.

PERFORM UNTIL I > 5

COMPUTE ENERGY = ENERGY +

(0.5 * MASS(I)

* ((VX(I) ** 2)

+ (VY(I) ** 2)

+ (VZ(I) ** 2)))

30

COMPUTE J = I + 1

PERFORM UNTIL J > 5

COMPUTE AX = X(I) - X(J)

COMPUTE AY = Y(I) - Y(J)

COMPUTE AZ = Z(I) - Z(J)

COMPUTE DISTANCE =

(AX ** 2 + AY ** 2 + AZ ** 2) ** 0.5

COMPUTE ENERGY = ENERGY -

(MASS(I) * MASS(J)) / DISTANCE

ADD 1 TO J

END-PERFORM

ADD 1 TO I

END-PERFORM.

ADVANCE-SYSTEM-PROCEDURE.

MOVE 1 TO I.

PERFORM UNTIL I > 5

COMPUTE J = I + 1

PERFORM UNTIL J > 5

COMPUTE AX = X(I) - X(J)

COMPUTE AY = Y(I) - Y(J)

COMPUTE AZ = Z(I) - Z(J)

COMPUTE DSQUARED = AX**2 + AY**2 + AZ**2

COMPUTE DISTANCE = (DSQUARED) ** 0.5

COMPUTE MAG = DT / (DSQUARED * DISTANCE)

COMPUTE VX(I) = VX(I) - (AX * MASS(J) * MAG)

COMPUTE VY(I) = VY(I) - (AY * MASS(J) * MAG)

COMPUTE VZ(I) = VZ(I) - (AZ * MASS(J) * MAG)

COMPUTE VX(J) = VX(J) + (AX * MASS(I) * MAG)

COMPUTE VY(J) = VY(J) + (AY * MASS(I) * MAG)

COMPUTE VZ(J) = VZ(J) + (AZ * MASS(I) * MAG)

ADD 1 TO J

END-PERFORM

ADD 1 TO I

END-PERFORM.

MOVE 1 TO I.

PERFORM UNTIL I > 5

COMPUTE X(I) = X(I) + (DT * VX(I))

COMPUTE Y(I) = Y(I) + (DT * VY(I))

COMPUTE Z(I) = Z(I) + (DT * VZ(I))

ADD 1 TO I

END-PERFORM.

END PROGRAM NBODY-COBOL.

31

Bibliography

"Academia Needs More Support To Tackle The IT Skills Gap | Micro
Focus". Microfocus.com. 2013. Web. 10 Apr. 2017.

"COBOL | TIOBE - The Software Quality Company". Tiobe.com. 2017.
Web. 10 Apr. 2017. https://www.tiobe.com/tiobe-index/cobol/.

"COBOL 2002 – The Good, the Bad, and the UGLY". 2005. Presentation.

"Convert COBOL to C++, CPP with COB2CPP Translator
Converter." Mpsinc.com. Web. 10 Apr. 2017.
http://www.mpsinc.com/cob2cpp.html

"IBM Academic Initiative - Enterprise
Systems". Enterprise.waltoncollege.uark.edu. Web. 10 Apr. 2017.

"IBM Knowledge Center." IBM Knowledge Center. October 24, 2014.
Accessed February 07, 2017.
https://www.ibm.com/support/knowledgecenter/en/SS6SG3_4.2.0/com.ibm.en
tcobol.doc_4.2/PGandLR/tasks/tpthr02.htm.

"Mainframe Schools". Mainframes.com. Web. 10 Apr. 2017.

"Micro Focus Documentation". Documentation.microfocus.com. Web. 10
Apr. 2017.

Al-Qahtani, Sultan S., Rafik Arif, Luis F. Guzman, Adrien Tevoedjre, and
Pawel Pietrzynski. "Comparing Selected Criteria of Programming Languages
Java, PHP, C, Perl, Haskell, AspectJ, Ruby, COBOL, Bash Scripts and
Scheme." Concordia University, August 20, 2010. Accessed February 13, 2017.

Arranga, Edmund C., and Frank P. Coyle. Object-Oriented COBOL. New
York, New York: SIGS Books & Multimedia, 1996. 15.

Bagley, Doug, Brent Fulgham, and Isaac Gouy. "The Computer Language
Benchmarks Game." The Computer Language Benchmarks Game. Accessed
February 13, 2017. https://benchmarksgame.alioth.debian.org/.

Beyer, Kurt. Grace Hopper and the Invention of the Information Age.
Cambridge, Massachusetts: MIT Press, 2009. 285.

Bull, J.M., L.A. Smith, L. Pottage, and R. Freeman. "Benchmarking Java
against C and Fortran for Scientific Application." Proceedings of the 2001 Joint
ACM-ISCOPE Conference on Java Grande, 2001, 97-105.

Carr, Donald, and Ronald J. Kizior. "Continued Relevance of COBOL in
Business and Academia: Current Situation and Comparison to the Year 2000
Study." June 13, 2003. Accessed April 10, 2017.
https://dl.microfocus.com/000/WP-20030613_tcm21-2774.pdf.

Dijkstra, Edsger W. Selected Writings on Computing: A Personal
Perspective. 1st ed. New York, NY: Springer New York, 1982. Print.

32

Du Preez, Derek. Banks will stick with COBOL because Java has
performance issues. Computerworld UK, June 13, 2013.

Dunn, Deborah L., and Dennis Lingerfelt. "Can visual basic replace
COBOL? ...and should it?" Journal of Computing Sciences in Colleges 20, no. 4
(April 1, 2005): 214-20. Accessed April 10, 2017.

Gotwals, John, and Carlin Smith. "Restructuring Programming Instruction
in the Computer Information Systems Curriculum: One Department's
Approach". Journal of Information Systems Education 7.2 (1995): 68. Print.

Haney, John. "Something Lost - Something Gained: From COBOL To Java
To C# In Intermediate Programming Courses". Journal of Computing Sciences in
Colleges 19.1 (2003): 227-234. Print.

McGee, Jamie. "Tennessee State University Offers COBOL Bootcamp". The
Tennessean. 2016. Web. 10 Apr. 2017.

Mitchell, Robert L. "COBOL: Not Dead Yet." Computerworld. October 04,
2006. Accessed April 10, 2017.
http://www.computerworld.com/article/2554103/app-development/cobol--not-
dead-yet.html.

Mitchell, Robert L. "Rebuilding the Legacy." Computerworld. April 24,
2006. Accessed April 10, 2017.
http://www.computerworld.com/article/2554624/enterprise-
applications/rebuilding-the-legacy.html.

Paul, Lois. "CDC's, DEC's Time-Sharing Called Most Cost-Effective by
RDC Study." Computerworld, May 31, 1982, 31-32.

Philippakis, Andreas S., and Leonard J. Kazmier. COBOL for Business
Applications. New York: McGraw-Hill, 1973.

Reilly, Edwin D. "COBOL." In Concise Encyclopedia of Computer Science,
104. Chichester, West Sussex, England: Wiley, 2004.

Sangappa, Sudhir, K. Palaniappan, and Richard Tollerton. "Benchmarking
Java against C/C++ for Interactive Scientific Visualization." Proceedings of the
2002 Joint ACM-ISCOPE Conference on Java Grande, 2002, 236.

Sellink, Alex, Harry Sneed, and Chris Verhoef. "Restructuring Of
COBOL/CICS Legacy Systems". Science of Computer Programming 45.2-3
(2002): 193-243. Web.

Sneed, H.M. "Extracting business logic from existing COBOL programs as
a basis for redevelopment." Proceedings of the 9th International Workshop on
Program Comprehension, 2001, 2. Accessed April 9, 2017.
doi:10.1109/wpc.2001.921728.

33

Tinetti, Fernando G., Mariano Méndez, and Armando De Giusti.
"Restructuring Fortran Legacy Applications for Parallel Computing In
Multiprocessors". The Journal of Supercomputing 64.2 (2013): 638-659. Web.

Volpano, D., & Dunsmore, H. (1981). Problems with COBOL--Some
Empirical Evidence. Computer Science Technical Reports, 81(371). Retrieved
from http://docs.lib.purdue.edu/cstech/300/

Wexelblat, Richard L. History of Programming Languages. 1st ed. New
York, New York: Academic Press, 1981.

	University of North Georgia
	Nighthawks Open Institutional Repository
	Spring 2017

	COBOL as a Modern Language
	Charles Kiefer
	Recommended Citation

	tmp.1500994528.pdf.vSjNf

