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 Adaptive Optics (AO) plays a significant role in high-performance imaging as it enables the measurement and subsequent 

correction of optical aberrations in real time. The AO system is comprised of two main components: wavefront sensor and 

wavefront corrector, which are connected by a real-time controller. The wavefront corrector which is usually called deformable 

mirror (DM) is a core component for aberration compensation. Presently, the stroke of the current available DM cannot meet 

the requirement for the AO system of the next-generation large telescopes. 

Wafer bonding has been an important technique in micro fabrication as a technique for device packaging and sealing since 

the mass manufacturing of MEMS (micro-electro-mechanical system) devices. In particular, bonding techniques play an 

important role in making micro cavities in some MEMS devices such as microphone, pressure sensors and some other vacuum 

packaged devices. Moreover, for the development of next-generation microsystems, wafer bonding is of great importance to 

combine different high-performance materials or subsystems such as single-crystal-silicon, III-V materials, piezoelectric 

materials, carbon nanotubes, graphene, etc. Also, for constructing the electric interface for transducers, integrated circuits are 

desired to be combined with the transducers. The technology for combining the different high-performance materials or 

subsystems into a microsystem is called heterogeneous integration. 

As discussed in chapter 1, wafer bonding technology holds unparalleled superiority to the traditional fabrication method, 

such as bulk micromachining, surface micromachining in the fabrication of MOEMS (micro-opto-electro-mechanical system) 

device. Especially in continuous membrane mirror fabricating, wafer bonding technology provides a much easier process than 

that using surface micromachining for generating a large scale freestanding continuous membrane mirror.  

This work mainly focus on the development of a continuous membrane mirror for adaptive optics using wafer bonding 

technology. To solve the problem that the stroke of the current DM is not enough, an alternative method is proposed in chapter 

2. By introducing a reflective phase plate into the AO system, the static aberration can be compensated and the DM is only 
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responsible for the dynamic aberration. The reflective phase plate expressed by Zernike modes are fabricated by bending 

silicon thin-plate. A10

surface. A series of convex spherical surface with different diameter was generated. The surface profiles were fitted by a 

parabolic curve and the rms error derivates from the parabola was less than around 25 nanometers. The concave spherical 

-order polynomial surface expressed by high-order 

spherical aberration mode was also generated.  

In chapter 3, a novel approach was theoretically proposed and experimentally demonstrated for fabricating high aspect ratio, 

precise, spherical micromirror. Smooth spherical surface was realized by bending single crystal silicon (SCS) membrane. The 

surface profiles of the fabricated spherical mirrors were well fitted with parabolic curve. The focal lengths range from 0.4mm 

to 1.6mm with the corresponding diameter ranging from 100 -roughness (~2nm) 

mirror surface was guaranteed because no etching process was implemented on it. Polymeric lens was also manufactured using 

the fabricated mirror as a mold with a high accuracy. The simple bending mechanism for spherical surface generation makes 

this method a stable and effective approach for the fabrication of high-aspect ratio surface micromirror and microlens. 

To enlarge the stroke of the DM is also considered as an urgent issue. In chapter 4, a DM using bimorph spring is proposed 

and fabricated to solve this problem. Different from the previous design which always used a micro-post to support the 

membrane, the mirror membrane is designed to be supported by a bimorph cantilever spring. As shown in Fig. 1(a), this 

bimorph spring contains two layers: silicon layer and HfO2 layer. The HfO2 film stress will bend the bimorph spring out of the 

plane. The bimorph spring elevates the mirror membrane which is driven by a voltage applied on the electrode under it. The 

out-of-plane deflection of the bimorph spring was first evaluated by FEM (Finite Element Method) simulation. Then the 

fabrication of the bimorph spring was conducted and the deflection was measured before and after HfO2 crystallization. The 

insintric stress and crystallization-induced stress of HfO2 was calculated to be 590MPa and 1.56GPa, respectively. Using this 

A SCS membrane 

transfer process for large- -thick membrane is 

transferred to a flexible bimorph array by combining bulk micromachining, Au-Si eutectic bonding technology and the 

subsequent all-dry release process. The HfO2 st -Si 

eutectic bonding guarantees the desired bonding strength and electric interconnect. Two types of DM (with and without the 

side suspension) are fabricated. A 0.86mm×0.86mm mirror membrane with a underlying 2×2 electrode array is supported by a 

suspension), respectively. The fill factor of the fabricated mirror is ~99.9%. This process allows transferring an edge-free SCS 

membrane to a flexible suspension spring array with a large air gap. The applications of this transfer process extend to the 
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fabrication of many other MEMS devices such as large stroke actuators, wavelength selective switches and biosensors in 

additions to deformable mirrors.  

Furthermore, 8×8/4×4 pixel continuous membrane deformable mirror is designed and fabricated in chapter 5. The design of 

the 8×8/4×4 pixel DM is shown in Fig. 1(b) and Fig. 1(c). The fabricated 4×4 pixel DM and 8×8 pixel DM are shown in Fig. 

2(a) and Fig. 2(b), respectivelly. The SCS membrane of the 4×4 pixel DM is well supported by the bimorph springs with a 

uniform gap. The initial air gap is from e fabricated 4×4 pixel 

115V and the pull-in voltage is 130V, as shown in Fig. 2(c). The device influence function was measured by actuating a single 

pixel and measuring the displacement of neighboring actuator and comparing this to the displacement of the actuated pixel. 

The measured influence was 51%, with a variation of <3%.  

In chapter 6, the whole thesis is summarized. 

 

 

Fig. 1 (a) schematic diagram of the structure of the proposed DM;  (b) design of the 4×4 pixel DM;  (c) design of the 8×8 pixel DM 

  

 

Fig. 2 (a) fabricated 4×4 pixel DM; (b) fabricated 8×8 pixel DM; (c) deflection profile with zero-voltage profile subtracted 
of the 4×4 pixel DM.  
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