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The magnetic hyperfine interaction has attracted a great deal of attention since the early days of
quantum mechanics. Experimentally, this interaction is “probed through the spectroscopic techniques
such electron paramagnetic resonance (EPR)[1] and nuclear magnetic resonance (NMR) [2]. These
techniques are, in principle, very powerful tools for studying the atom-resolved contribution to the
nuclear magnetic properties of complex systems, e.g. molecular radicals or point like defects in
crystalline structures. However, the correct analysis of the experimentally observed hyperfine data is
impeded by the lack of theoretical methods, which are sufficiently adcurate and, furthermore,
adequately efficient to perform the caleulations in a reasonable time.

The aim of this thesis is to overcome the above difficulties by developing new computational methods,
which are first and foremost accurate and, moreover, capable of performing the hyperfine calculations
with the minimal computational effort. In this regard, within density functional theory (DFT), two
accurate and efficient methods for caleulating hyperfine parameters are presented, both based on the
“all-electron” methods. In the former, the so-called “all-electron mixed-basis (AEMB) method” the one
electron wavefunction is expanded in terms of both localized nucleus-centered atomic orbitals and
plane waves and thereby affords an accurate representatlon for the spin density, of particular
importance for hyperfine calculations, in the vicinity of nucleusas well as in the bonding regions. The
current method is compared with the experiment and best computational methods reported in the
literature. The mixed-basis approach is shown to yield highly accurate isotropic and anisotropic
hyperfine parameters with modest computational effort. The atom-centered representation of the
potentials and spin densities allows us to analyze, within the context of density functional theory, the
effect of individual core levels in a physically transparent way

Inspired with the capabilities of the all-electron mixed-basis method, in the second approach we
propose another alternative, a new method based on pseudopotenial formalism. Within the second
approach, so-called “all-electron pseudopotentlal (AXPP) method”, the aceurate hyperfine parameters
can be efficiently achieved in a computationally even shorter time as compared to the first method,
introduced above. The all-electron pseudopotential method is based on the evaluation of spin density
at, and in the vicinity of, nucleus by reconstructing the all-electron wavefunctions from the
corresponding pseudo-wave functions. For this purpose, first a transformation [8], so called “projector
augmented wave (PAW)” is applied to reconstruct the frozen-core-all-electron wavefunctions in the
core region: Second, the contributions. of core orbitals to the charge density at the nucleus are
evaluated by the means of first-order perturbation theory in which the perturbing potential is defined
as a functional of charge and spin densities. Similar to the first method, the new method is applied to
calculate the hyperfine parameters of various systems including the molecular complexes as well as
the isolated Fe impurity doped in PdV alloys. Comparison with the experiment and the introduced
all-electron mixed-basis method confirms the accuracy of the approach.
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FIG 1. Schematic representation of
all-electron mixed-basis method. The
one-electron wavefunction is expanded in
terms of  both nucleus-centered
wavefunctions .within the core region and

plane waves outside the atomic spheres.

In the AEMB formalism there are a number of parameters, which must be selected with care. Some
parameters, such as the cutoff energy of the PW expansion of the potential are important for
accurately computing the forces and thus affect the final geometry, but turn out to be rather
unimportant for the hyperfine parameters (HFP’s) when the correct geometry is used. Accurate forces
were obtained with a potential cutoff energy of about 1000 eV for all elements considered with a
single exception.

For hydrogen a higher value of 1500 to 2000 eV is required. Among the HFP’s, it turns out that the
isotropic (Fermi contact) HFP is far more sensitive to the choice of parameters than the anisotropic
HFP’s. Therefore, we shall focus on the effect of computational parameters on the Fermi
contact-interaction. The atomic orbitals (AQ’s) used for expanding the one-electron Kohn-Sham
wavefunctions are obtained from non-spin polarized atomic calculations. Generally, we select the
ground state electronic occupation numbers for the atomic calculation. However, for ions we have
found that more rapidly converging results are obtained if the AO’s are derived from an atomic
calculation with electronic occupation numbers that mimic the ion. Thus, for n-positive ions belonging
to group II of the periodic table we selected a non-ground state electronic configuration with n outer s
electron and n outer p 35Mg*) or d (43Ca*) electron. The outer p or d atomic orbital can be retained in
the mixed-basis expansion for the wavefunctions but this has little effect on the computed HFP’s. For
the single atom and single ion calculations we selected a rather large atoniic sphere size with a radius
of 3 A. Using this rather large size allowed optimal use of the AO’s for the more extended outer s like
states which benefits the accurate computation of the Fermi contact-interaction. Other important
parameters are supercell size and plane wave (PW) cutoff energy for the expansion of the
wavefunctions.

Figure 2-a indicates the convergence of the calculated Fermi contact-interaction of the 7Li atom with
respect to supercell size. The cutoff energy for the PW expansion of the wavefunctions is 200 eV. A
supercell size of 12 A gives converged results that are in excellent agreement with experiment {4l.
The supercell size plays an important role for atomic "Li because of the spatial range of the 2s
wavefunction. For small supercells, the tails of the 25 wavefunctions overlap with ne1ghbormg cells
which in turn affects the ls wavefunction. For other atomic calculations the 12 A has appeared
sufficiently large also to assure convergence of the Fermi contact-interaction. Spatially extended
clusters require larger supercell sizes, and a 12 A separation distance is a guideline.

Figure 2-b shows the dependence of the Fermi contact-interaction of 7Li sample on the cutoff energy of
the PW expansion of the wavefunctions. Clearly, the PW cutoff energy plays a minor role when
compared to the supercell size. It appears that at a cutoff energy of 200 eV the wavefunctions are
described with sufficient accuracy provided that the supercell is at least 12 A. For large-scale
caleulations, where resources must be used most efficiently, it is likely that an even lower PW cutoff
energy suffices.
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FIG 2. Computed Fermi contact interaction for atomic "Li (a) as a function of supercell size, left
picture and (b) as a function of the cut-off energy of the wavefunction plane wave expansion at
supercell sizes of 6, 8, 10 and 12 A (diamonds, squares, circles and triangles in the right panel). Lines
are guide to the eye only. The experimental values (solid line) is from Ref. 4.

Figure 3 shows the radial representation of the spin density in real space in the vicinity of the nucleus
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for different supercell sizes. The PW cutoff energy for the wavefunctions is 200 eV. The analytical
data for atomic "Li was calculated using the AtomDef Package with gradient-corrected exchange and
Vosko-Wilk-Nusair correlation functionals. As could be expected from figure 2 the spin density near
the nucleus is rather sensitive to the supercell size. The outer slike wavefunction, which is essential
to properly describe the Fermi contact-interaction, is spatially very extended. Therefore, in reciprocal
space there must be a dense grid around the I' point. However, in these calculations on finite systems
we do not perform k-point sampling (I" point only). Thus, such a dense grid can be obtained only if the
real space periodicity is sufficiently large. This also clarifies why the cutoff energy of the PW’s for the
wavefunction expansion is not so important, because this does not refine the grid. Rather as this
energy is increased, more distant points are added to the grid.
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FIG 3. Computed radial spin density of atomic
TLi for various supercell sizes compared with
analytic results (see text).
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As mentioned, the AEMB has been applied to various structures including the molecular complexes
and clusters. Here, we briefly discuss the AEMB results for zinc complexes and Cu7 cluster. In the
former the effect of the electronegativity of X component on hyperfine properties of ZnX complexes
has been studied. The chosen X elements in order of increasing electronegativity are: Ag<H<CN<F. Ag
has about the same electronegativity as Zn. In the ZnX complexes a fully occupied bonding ¢ hybrid
and a singly occupied antibonding ¢ hybrid exist between the ¢ molecular orbital (MO) of the X
complex and the Zn 4s atomic orbital (AO). Therefore, it is to be expected that with increasing
electronegativity of X the bonding orbital becomes more like the 6 AO (or MO) of X while the singly
occupied molecular orbital (SOMO) becomes more like the Zn 4s state. In other words, the spin
becomes more localized on zinc and the Zn isotropic hyperfine interaction should increase. This trend
is experimentally observed. In agreement with the experimental findings, our AEMB calculations
confirm the presence of such a trend of spin distribution among ZnX complexes [5].

Tor the Cuscalculations our calculations indicate that, the point group symmetry of the cluster is D,
a pentagonal bypyramid as illustrated in Figure 4 (left paneD. The five copper atoms on the
pentagonal ring are referred to as Cu(5), and the two axial copper atoms are labeled Cu(2).

AEMB computations reveals that the spin density is mostly on the Cu(2) atoms with minor
contributions at the Cu(5) atoms as is evident from Figure 4 (right panel). Accordingly, the hyperfine
parameters on the Cu(2) sites are dominant (1750 MHz for Fermi contact interaction). Anisotropy is
absent on the Cu(b) sites which is in accordance with the assumption made in the related EPR
experimental measurements [6]. The anisotropy on the Cu(2) sites is measured to be weak. The Cu(®)
sites have negative HFP’s. This negative sign indicates that the spin density near the Cu(5) nuclei is
of opposite sign as the spin polarization of the Cur cluster. Relativistic effects turn out to be
insignificant.

FIG 4. Bypiramid Cur structure (left) and its spin density distribution (right), isosurface coloration:
white 0.01ev/ A3, green 0.0005 -eV/ A3, and red 0.0001 eV/ A2,

In the second part of the thesis, we have examined the accuracy of all-electron pseudopotential
method by applying the approach to various structures. Also for the sake of completeness the obtained
HFP’s have been compared with the experiment and the other computational methods such as AEMB.
As a first step to evaluate the accuracy of AEPP method, the feasibility of reconstructing all-electron
(AE) wavefunctions from the corresponding pseudo-wavefunctions is examined. Figure 5 displays the
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reconstructed using AEPP as well as the corresponding pseudo-wave obtained from a pseudopotential
calculation. The figure clearly shows excellent agreement between the reconstructed Zs orbital with
the corresponding AEMB orbital. In fact the lines are essentially indistinguishable.
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08t / \\ 4 FIG 5. Radial part of Zs orbital, R2s(r)r, obtained divectly from
Rl / \\\ i an all-electron mixed-basis calculation, AEMB (solid line), as
;T_;ﬂ Z: — / \\\' obtained from reconstructing the pseudo wavefunctions
of | 4 (dotted line) and as obtained from corresponding ultrasoft
oz J . pseudopotential caleculation, USPP (dashed line).
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To further test the accuracy of AEPDP, it has been applied to calculate the contribution of core levels to
the spin density at the nucleus, p{0), of various elements, including a series of first-row elements and
Jd-transition metals, in their ground state electronic configurations. The calculated p{0) values along
with the corresponding AEMB results have been listed in table 4.7 of thesis.

The table reveals that for first-row elements the reconstructed p{0) agree very well with the AEMB
values. The difference between the two methods for this group of elements is less than 0.5%. For
Sd-transition metals also, in spite of the different character of the SOMO, a good agreement between
reconstructed and directly calculated (with AEMB) p{0) values was obtained. The two methods differ
most when the number of unpaired 3d-$electrons is largest. However, even in the extreme case of Mn,
with the maximum number of unpaired electrons, this difference is still just 4.5%.

Interestingly, in both methods, the value of p{0) increases with the increase in the number of
unpaired electrons. Accordingly, for Zn with fully occupied valence orbitals (3d194s?), p{0) becomes
zero, whereas for Mn (8d54s?), the absolute value of p{0) is the largest among the elements considered
here.

Furthermore, it turns out that p{0) for elements with non-slike SOMO (e.g. F or Sc) is considerably
larger than that for ¢like SOMO (e.g. Cu). These are all in accordance with our earlier assumptions
that the strength of induced core spin polarization depends sensitively on the number and type of
unpaired electrons in SOMO’s [5]. It is to be noted that p{0) is always negative. For the first-row
elements it can be explained as follows: according to the Pauli exclusion principle, the exchange
interaction induced by unpaired electrons is attractive but applicable to electrons in the same spin
channel only {7]. As a result, the core lselectrons of spin majority type are pulled a little outward
thereby leaving behind a slight depletion of their corresponding charge density at the vicinity of
nucleus. Thus, the spin density associated with core electrons becomes negative.

For 3d-transition metals, a more complicated mechanism is needed for a proper interpretation of the
negative sign of the core spin densities (see our discussion in section IV-B of Ref. 5).

In the thesis, a series of more complicated AEPP calculations have been presented for various
molecular complexes including the radicals and transition metal complexes. Moreover, a detailed case
study is devoted to investigate the role of vanadium on the formation and reduction of giant moments
in PdV alloys doped by Fe impurity. For further information, the interested reader is referved to the
thesis.
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